

Copyright © 2015 Oracle and/or its affiliates. All rights reserved. |

JSON Support
Oracle Database 12c Release 2

Mark Drake
Manager, Product Management
Server Technology
October 20th 2016

Copyright © 2016 Oracle and/or its affiliates. All rights reserved. |

Safe Harbor Statement

The following is intended to outline our general product direction. It is intended for
information purposes only, and may not be incorporated into any contract. It is not a
commitment to deliver any material, code, or functionality, and should not be relied upon
in making purchasing decisions. The development, release, and timing of any features or
functionality described for Oracle’s products remains at the sole discretion of Oracle.

Confidential – Oracle Internal/Restricted/Highly Restricted 3

Copyright © 2016 Oracle and/or its affiliates. All rights reserved. |

Agenda

Introduction to JSON

Oracle Database 12c as a Document Store

Storing and Querying JSON documents

Accelerating JSON Query performance

Understanding your JSON

Accessing relational data as JSON

Using Oracle Spatial with Geo-JSON content

Application Development with SODA

Summary

1

2

3

4

5

Confidential – Oracle Internal/Restricted/Highly Restricted 4

6

7

8

9

Copyright © 2016 Oracle and/or its affiliates. All rights reserved. |

Introduction to JSON

Confidential – Oracle Internal/Restricted/Highly Restricted 5

Copyright © 2016 Oracle and/or its affiliates. All rights reserved. |

What is JSON and why is it popular ?

• JSON – JavaScript Object Notation
– Simple, Lightweight and Easy to Use mechanism for persisting the state of an object

– Language independent

• Default serialization for browser state
– Browser based applications use JavaScript and JavaScript objects

• Supported by many public Rest interfaces
– Facebook API, Google Geocoder, Twitter API

• Growing influence on server side coding (Node.js)

• Easier to use than XML, particularly when working with JavaScript
– Perception that is more efficient / Lightweight

Copyright © 2016 Oracle and/or its affiliates. All rights reserved. |

Example JSON document
{

"PONumber" : 1600,
"Reference" : "ABULL-20140421“,
"Requestor" : "Alexis Bull“,
"User" : "ABULL“,
"CostCenter" : "A50“,
"ShippingInstructions" : {

"name" : "Alexis Bull“,
"Address" : { ... },
"Phone" : [...]

},
"Special Instructions" : null,
"AllowPartialShipment" : true,
"LineItems" : [{

"ItemNumber" : 1,
"Part" : {

"Description" : "One Magic Christmas“,
"UnitPrice" : 19.95,
"UPCCode" : 13131092899

},
"Quantity" : 9

},
{…}

]
}

Copyright © 2016 Oracle and/or its affiliates. All rights reserved. |

Application Development with JSON

• Application objects are serialized as JSON and persisted as documents

• Primary access metaphor is Key/Value

– Each document is associated with a Unique Key

– The key is used to store, retrieve or update the entire document

• Developers gravitate towards simple key/value document stores
– Provide simple, easy to use, document centric API’s

– Natural fit for popular RESTFul development techniques

– A number of NoSQL document databases, including MongoDB & CouchDB provide
this functionality

Oracle Confidential – Internal/Restricted/Highly Restricted 8

Copyright © 2016 Oracle and/or its affiliates. All rights reserved. |

Oracle Database 12c as a Document Store

Confidential – Oracle Internal/Restricted/Highly Restricted 9

Copyright © 2016 Oracle and/or its affiliates. All rights reserved. |

Strategy: Oracle Database as a Document Store

Core Capabilities for Document Workloads

Built on Foundation of Oracle Database

Full Support of Multi-Model and Hybrid Apps

10

Copyright © 2016 Oracle and/or its affiliates. All rights reserved. | Public 11

Core Capabilities for Document Workloads

Oracle 12c JSON document store

SQL

Applications
developed using

SODA APIs

JSON Documents
Stored and Managed

Using Oracle Database

SQL based reporting
and analytical operations

on JSON Documents

Oracle Database 12c

JSON

Copyright © 2016 Oracle and/or its affiliates. All rights reserved. |

Strategy: Oracle Database as a Document Store

12

Core Capabilities for Document Workloads

• Store and manage JSON and XML documents in Oracle Database

• Accessible via REST and all major programming languages

• Full query capabilities using JSON Path, XQuery and SQL

• Comprehensive, path-aware indexing

• No need to learn SQL or require DBA when developing applications

• Fits into the DevOPS paradigm

Copyright © 2016 Oracle and/or its affiliates. All rights reserved. |

SODA: Simple Oracle Document Access

• A simple NoSQL-style API for Oracle

– Collection Management: Create and drop collections

– Document Management: CRUD (Create, Retrieve, Update and Delete) operations

– List and Search: (Query-by-Example) operations on collections

– Utility and Control: Bulk Insert, index management

• Developers can work with Oracle without learning SQL or requiring DBA
support

– Same development experience as pure-play document stores

• Currently available for Java and REST. Other versions are planned

Copyright © 2016 Oracle and/or its affiliates. All rights reserved. | Public 14

Built on Foundation of Oracle Database

Oracle 12c JSON document store

Applications
developed using

SODA APIs

JSON Documents
Stored and Managed

Using Oracle Database

SQL based reporting
and analytical operations

on JSON Documents

Oracle Database 12c

SQLJSON

Copyright © 2016 Oracle and/or its affiliates. All rights reserved. |

Strategy: Oracle Database as a Document Store

15

Built on Foundation of Oracle Database

• Transactions and consistency
• Advanced SQL engine
• Enterprise-Grade High Availability
• Enterprise-Grade Security
• Scalability and Performance: Exadata and Real Application Clusters
• Oracle Public Cloud Infrastructure

Copyright © 2016 Oracle and/or its affiliates. All rights reserved. | Public 16

All the power of SQL when needed

Oracle 12c JSON document store

Applications
developed using

SODA APIs

JSON Documents
Stored and Managed

Using Oracle Database

SQL based reporting
and analytical operations

on JSON Documents

Oracle Database 12c

SQLJSON

Copyright © 2016 Oracle and/or its affiliates. All rights reserved. |

Strategy: Oracle Database as a Document Store

17

Full Support of Multi-Model and Hybrid Apps

• Store Relational, XML, JSON, Spatial, Graph data in same database
• Access all data via SQL

• Trivial joins between different domains
• Hybrid relational-document schemas:

• Relational columns and document in same table

Copyright © 2016 Oracle and/or its affiliates. All rights reserved. |

Querying JSON using SQL

• Simple Queries

• Advanced queries using JSON path expressions

– Complies with proposed SQL2017 syntax

18

select JSON_VALUE(PO_DOCUMENT, '$.LineItems[0].Part.UnitPrice’ returning NUMBER(5,3))
from J_PURCHASEORDER p
where JSON_VALUE(PO_DOCUMENT, '$.PONumber' returning NUMBER(10)) = 1600

select j.PO_DOCUMENT
from J_PURCHASEORDER j
where j.PO_DOCUMENT.PONumber = 1600

Copyright © 2016 Oracle and/or its affiliates. All rights reserved. |

Storing and Querying JSON documents

Confidential – Oracle Internal/Restricted/Highly Restricted 19

Copyright © 2016 Oracle and/or its affiliates. All rights reserved. |

Oracle Database 12c JSON capabilities

• JSON documents are stored using VARCHAR, CLOB and BLOB data types

• Query and update JSON documents using SQL and PL/SQL

• Optimize operations on JSON documents using indexing, in-memory and
Exadata smart storage techniques

• Discover information about the structure and content of JSON documents

• Generate JSON documents from database content (Relational, XML, JSON)

• Integrates JSON with other type of content (Multi-Model database)

20

Copyright © 2016 Oracle and/or its affiliates. All rights reserved. |

Storing JSON documents in the Oracle database

• No limitations on the kind of JSON that can be managed by the database

– Supports the full flexibility of the JSON data model

• Documents are stored using existing datatypes

– VARCHAR2, CLOB and BLOB
• Choice depends on upper bounds on the size of the document

• Choice BLOB over CLOB when dealing with large documents

– Using standard data types ensures that existing database features work with JSON

• IS [NOT] JSON predicate tests whether or not content is valid JSON

– Use an IS JSON check constraint to ensure contents of a column are valid JSON

– IS JSON check constraint also activates JSON specific features

Copyright © 2016 Oracle and/or its affiliates. All rights reserved. |

Storing JSON : DDL and DML

create table J_PURCHASEORDER (
ID RAW(16) NOT NULL,
DATE_LOADED TIMESTAMP(6) WITH TIME ZONE,
PO_DOCUMENT CLOB
CHECK (PO_DOCUMENT IS JSON)

)

insert into J_PURCHASEORDER values(‘0x1’,‘{Invalid JSON Text}');
ERROR at line 1:
ORA-02290: check constraint (DEMO.IS_VALID_JSON) violated

Copyright © 2016 Oracle and/or its affiliates. All rights reserved. |

Querying and Updating JSON

• Oracle provides two mechanisms for working with JSON from SQL

– A “Simplified Syntax” that enables simple operations directly from SQL

– JSON operators that enable more complex operations

• Included in the SQL 2017 standard

• Syntax developed in conjunction with IBM

• Both techniques use JSON path expression to navigate the content
of the JSON documents

– JSON path syntax is derived from JavaScript

Copyright © 2016 Oracle and/or its affiliates. All rights reserved. |

Simple JSON Queries

SQL> select j.PO_DOCUMENT
2 from J_PURCHASEORDER j
3 where j.PO_DOCUMENT.PONumber = 1600
4 /

SQL> select j.PO_DOCUMENT.CostCenter, count(*)
2 from J_PURCHASEORDER j
3 group by j.PO_DOCUMENT.CostCenter
4 order by j.PO_DOCUMENT.CostCenter
5 /

SQL> select j.PO_DOCUMENT.ShippingInstructions.Address
2 from J_PURCHASEORDER j
3 where j.PO_DOCUMENT.PONumber = 1600
4 /

Copyright © 2016 Oracle and/or its affiliates. All rights reserved. |

SQL/JSON operators
Operator Description

IS [NOT] JSON o test whether some data is well-formed JSON data.
o used as a check constraint.

JSON_VALUE o select a scalar value from some JSON data, as a SQL value.
o used in the select list or where clause or to create a functional index

JSON_QUERY o select one or more values from some JSON data as a SQL string
o used especially to retrieve fragments of a JSON document

JSON_EXISTS o test for the existence of a particular value within some JSON data.

JSON_TABLE o project some JSON data to a relational format as a virtual table

JSON_TEXTCONTAINS otest for existence based on a text predicate

Copyright © 2016 Oracle and/or its affiliates. All rights reserved. |

SQL/JSON operators : JSON_VALUE

• Returns exactly one scalar value from a document

– Value identified by a JSON Path expression

– JSON path expression must match at most one key

• Used in the select list or the where clause

• Allows you to specify the SQL type for the result

• Provides error handling options

• Use to create functional B-Tree or Bitmap indexes on a JSON document

Copyright © 2016 Oracle and/or its affiliates. All rights reserved. |

JSON_VALUE()

SQL> select JSON_VALUE(PO_DOCUMENT,'$.CostCenter'), count(*)
2 from J_PURCHASEORDER
3 group by JSON_VALUE(PO_DOCUMENT,'$.CostCenter')
4 /

SQL> select JSON_VALUE(PO_DOCUMENT,
2 '$.LineItems[0].Part.UnitPrice'
3 returning NUMBER(5,3))
4 from J_PURCHASEORDER p
5 where JSON_VALUE(PO_DOCUMENT,
6 '$.PONumber' returning NUMBER(10)) = 1600
7 /

Copyright © 2016 Oracle and/or its affiliates. All rights reserved. |

SQL/JSON operators : JSON_QUERY

• Returns a JSON fragment (Object or Array) from JSON document

– Fragment identified by a JSON Path expression

– JSON data is returned in the specified SQL datatype

• Used in the select list

• Provides error handling options

Copyright © 2016 Oracle and/or its affiliates. All rights reserved. |

JSON_QUERY()

SQL> select JSON_QUERY(PO_DOCUMENT,'$.LineItems') LINEITEMS
2 from J_PURCHASEORDER p
3 where JSON_VALUE(PO_DOCUMENT,
4 '$.PONumber' returning NUMBER(10)) = 1600
5 /

Copyright © 2016 Oracle and/or its affiliates. All rights reserved. |

SQL/JSON operators : JSON_EXISTS

• Return true / false depending on whether a JSON document contains a
value that corresponds to a JSON Path expression

• Allow JSON Path expression to be used as a row filter.

– Select rows based on content of JSON documents

• Used in the where clause

• JSON Path expressions used with JSON_EXISTS can contain predicates
starting with Oracle Database 12c release 2

• Can be used to create functional BITMAP indexes

Copyright © 2016 Oracle and/or its affiliates. All rights reserved. |

JSON_EXISTS()

SQL> select count(*)
2 from J_PURCHASEORDER
3 where JSON_EXISTS(PO_DOCUMENT,
4 '$.ShippingInstructions.Address.state')
5 /

Copyright © 2016 Oracle and/or its affiliates. All rights reserved. |

JSON Path predicates with JSON_EXISTS

• Passing clause allows Bind Variables to be used to set JSON Path variables

• Exists clause used when searching for an object inside an array

Oracle Confidential – Internal/Restricted/Highly Restricted 32

select j.PO_DOCUMENT
from J_PURCHASEORDER j

where JSON_EXISTS(
PO_DOCUMENT,
'$?(@.PONumber == $PO_NUMBER)'
passing 1600 as "PO_NUMBER"

)
/

select j.PO_DOCUMENT.PONumber
from J_PURCHASEORDER j
where JSON_EXISTS(

PO_DOCUMENT,
'$?(@.User == $USER && exists(

@.LineItems?(
@.Part.UPCCode == $UPC
&&
@.Quantity > $QUANTITY

)
)

)'
passing 'AKHOO' as "USER", 43396087798 as "UPC", 8 as "QUANTITY"

)
/

Copyright © 2016 Oracle and/or its affiliates. All rights reserved. |

SQL/JSON operators : JSON_TABLE

• Generates In-Line views of JSON content

• Used in the from clause of a SQL statement

• JSON Path expressions used to pivot values into columns

– The ROW Pattern defines the starting point for the pivot

– $ represents the start of the document

– COLUMN patterns are relative to the ROW pattern and map values to columns

• One row is output for each node identified by the Row Pattern

• Use JSON_TABLE rather than large numbers of JSON_VALUE operators

Copyright © 2016 Oracle and/or its affiliates. All rights reserved. |

JSON_TABLE()

SQL> select M.*
2 from J_PURCHASEORDER p,
3 JSON_TABLE(
4 p.PO_DOCUMENT,
5 '$'
6 columns
7 PO_NUMBER NUMBER(10) path '$.PONumber',
8 REFERENCE VARCHAR2(30 CHAR) path '$.Reference',
9 REQUESTOR VARCHAR2(32 CHAR) path '$.Requestor',

10 USERID VARCHAR2(10 CHAR) path '$.User',
11 COSTCENTER VARCHAR2(16) path '$.CostCenter'
12) M
13 where PO_NUMBER > 1600 and PO_Number < 1605
14 /

Copyright © 2016 Oracle and/or its affiliates. All rights reserved. |

JSON_TABLE output
1 row output for each row in table

PO_NUMBER REFERENCE REQUSTOR USERID COSTCENTER

1600 ABULL-20140421 Alexis Bull ABULL A50

1601 ABULL-20140423 Alexis Bull ABULL A50

1602 ABULL-20140430 Alexis Bull ABULL A50

1603 KCHUNG-20141022 Kelly Chung KCHUNG A50

1604 LBISSOT-20141009 Laura Bissot LBISSOT A50

Copyright © 2016 Oracle and/or its affiliates. All rights reserved. |

JSON_TABLE : Dealing with Arrays

• The NESTED PATH clause allows JSON_TABLE to process arrays

• When processing an array terminate the path expression with [*]

• Nested arrays can be processed using nested NESTED PATH clauses

• There is natural join between the rows generated by the NESTED PATH
clause the parent row

• When the NESTED PATH clause is present JSON_TABLE generates one row
for each member of the deepest array

Copyright © 2016 Oracle and/or its affiliates. All rights reserved. |

Nested Path example
SQL> select D.*
2 from J_PURCHASEORDER p,
3 JSON_TABLE(
4 p.PO_DOCUMENT,
5 '$'
6 columns(
7 PO_NUMBER NUMBER(10) path '$.PONumber',
8 NESTED PATH '$.LineItems[*]'
9 columns(

10 ITEMNO NUMBER(16) path '$.ItemNumber',
11 UPCCODE VARCHAR2(14 CHAR) path '$.Part.UPCCode‘))
12) D
13 where PO_NUMBER = 1600 or PO_NUMBER = 1601
14 /

Copyright © 2016 Oracle and/or its affiliates. All rights reserved. |

JSON_TABLE output
1 row output for each member of LineItems array

PO_NUMBER ITEMNO UPCCODE

1600 1 13131092899

1600 2 85391628927

1601 1 97366003448

1601 2 43396050839

1601 3 13131119695

1601 4 25192032325

Copyright © 2016 Oracle and/or its affiliates. All rights reserved. |

Piecewise updates of JSON documents

• Piecewise updates of JSON documents now supported in PL/SQL

• New PL/SQL objects enable fine grained manipulation of JSON content

– JSON_OBJECT_T : for working with JSON objects

– JSON_ARRAY_T : for working with JSON Arrays

– JSON_OBJECT_T and JSON_ARRAY_T are subtypes of JSON_ELEMENT_T

• These objects provide a set of methods for manipulating JSON

Copyright © 2016 Oracle and/or its affiliates. All rights reserved. |

PL/SQL API for JSON

• Similar to GSON

– parse()
• Converts a variable or column containing JSON into a object. Returns JSON_ELEMENT_T.

– isArray(), isObject(), isString() ,etc.
• Determine the type of the value portion of a key:value pair

– get, put
• Access the value portion of a key:value pair as an object or array

– get_String, get_Number:
• Access the value portion of a key:value pair as scalar

– stringify, to_string
• Converts a PL/SQL JSON data type back into textual JSON

Copyright © 2016 Oracle and/or its affiliates. All rights reserved. |

JSON integration with PL/SQL

WITH FUNCTION updateTax(JSON_DOC in VARCHAR2) RETURN VARCHAR2 IS

jo JSON_OBJECT_T;

price NUMBER;

taxRate NUMBER;

BEGIN

jo := JSON_OBJECT_T(JSON_DOC);

taxRate := jo.get_Number('taxRate');

price := jo.get_Number('total');

jo.put('totalIncludingTax', price * (1+taxRate));

RETURN jo.to_string();

END;

ORDERS as (

select '{"taxRate":0.175,"total":10.00}' JSON_DOCUMENT

from dual

)

select JSON_DOCUMENT, updateTax(JSON_DOCUMENT)

from ORDERS;

JSON_DOCUMENT UPDATETAX(JSON_DOCUMENT)

------------------------------- ---

{"taxRate":0.175,"total":10.00} {"taxRate":0.175,"total":10.00,"totalIncludingTax":11.75}

Copyright © 2016 Oracle and/or its affiliates. All rights reserved. |

Accelerating JSON Query performance
Indexing, Exadata and Database In-Memory Support

Confidential – Oracle Internal/Restricted/Highly Restricted 42

Copyright © 2016 Oracle and/or its affiliates. All rights reserved. |

JSON Search Index : A universal index for JSON content

• Supports searching on JSON using key, path and value

• Supports range searches on numeric values

• Supports full text searches:

– Full boolean search capabilities (and, or, and not)

– Phrase search, proximity search and "within field" searches.

– Inexact queries: fuzzy match, soundex and name search.

– Automatic linguistic stemming for 32 languages

– A full, integrated ISO thesaurus framework

Oracle Confidential – Internal/Restricted/Highly Restricted 43

create search index JSON_SEARCH_INDEX on J_PURCHASEORDER (PO_DOCUMENT) for json

Copyright © 2016 Oracle and/or its affiliates. All rights reserved. |

Query Optimizations for JSON

Exadata Smart Scans

• Exadata Smart Scans execute portions of SQL queries
on Exadata storage cells

• JSON query operations ‘pushed down’ to Exadata
storage cells

• Massively parallel processing of JSON documents

In-Memory Columnstore

• Virtual columns, included those generated using JSON
Data Guide loaded into In-Memory Virtual Columns

• JSON documents loaded using a highly optimized In-
Memory binary format

• Query operations on JSON content automatically
directed to In-Memory

Oracle Confidential – Internal/Restricted/Highly Restricted 44

Copyright © 2016 Oracle and/or its affiliates. All rights reserved. |

Optimizing JSON using database In-Memory

• JSON documents stored in memory using a binary representation

• JSON path expressions evaluated without parsing

• In Memory format encodes documents using a transient dictionary to
tokenize keys

• In Memory format reduces memory footprint for JSON

– Space savings dependant on a number of factors
• Size of Key name (ratio of Key:Value in bytes)

• Size of Object Arrays (Number of times Key name is repeated)

Oracle Confidential – Internal/Restricted/Highly Restricted 45

Copyright © 2016 Oracle and/or its affiliates. All rights reserved. |

JSON Database In-Memory Performance

00:00.00

00:00.04

00:00.09

00:00.13

00:00.17

00:00.22

00:00.26

Query 1 Query 2 Query 3 Query 4 Query 5 Query 6

Json Path Eval

Json InMemory

Oracle Confidential – Internal/Restricted/Highly Restricted 46

Copyright © 2016 Oracle and/or its affiliates. All rights reserved. |

Understanding your JSON
The Oracle Data Guide for JSON

Confidential – Oracle Internal/Restricted/Highly Restricted 47

Copyright © 2016 Oracle and/or its affiliates. All rights reserved. |

Data Guide : Understanding your JSON documents

• Metadata discovery: discovers the structure of
collection of JSON documents

– Optional: deep analysis of JSON for List of Values, ranges,
sizing etc.

• Automatically Generates

– Virtual columns

– Relational views
• De-normalized relational views for arrays

– Reports/Synopsis of JSON structure

Oracle Confidential – Internal/Restricted/Highly Restricted 48

Copyright © 2016 Oracle and/or its affiliates. All rights reserved. |

1. Create Table

2. Create Search Index

3. Insert Document

4. Generate Data Guide

5. Data Guide

6. Create View

7. Describe View

Oracle Confidential – Internal/Restricted/Highly Restricted 49

JSON Data Guide : Generating the Data Guide
SQL> create table MOVIE_TICKETS (
2 BOOKING_ID RAW(16),
3 BOOKING_TIME TIMESTAMP(6) WITH TIME ZONE,
4 BOOKING_DETAILS VARCHAR2(4000)
5 CHECK (BOOKING_DETAILS IS JSON)
6)
7 /

Table created.

SQL>

SQL> create search index MOVIE_TICKETS_DGUIDE
2 on MOVIE_TICKETS (BOOKING_DETAILS)
3 for json
4 parameters(‘dataguide on')
5 /

Index created.

SQL>

SQL> insert into MOVIE_TICKETS
2 values (
3 SYS_GUID(),
4 SYSTIMESTAMP,
5 '{
6 "Theater":"Century 21",
7 "Movie":"Iron Man 3",
8 "StartTime":"2015-10-26T18:45:00",
9 "Tickets":{
10 "Adults":2
11 }
12 }')
13 /

SQL> select dbms_json.getDataGuide('MOVIE_TICKETS',
2 'BOOKING_DETAILS',
3 dbms_json.JSON_SCHEMA,
4 dbms_json.PRETTY)
5 from dual

"{"type" : "object",
"properties" : {

"Movie" : {
"type" : "string", "o:length" : 16,
"o:preferred_vc_name" : "BOOKING_DETAILS$Movie"},

"Theater" : {
"type" : "string", "o:length" : 16,
"o:preferred_vc_name" : "BOOKING_DETAILS$Theater"},

"Tickets" : {
"type" : "object“, "o:length" : 16,
"o:preferred_vc_name" : "BOOKING_DETAILS$Tickets",
"properties" : {

"Adults" : { …... }}},
"StartTime" : {

"type" : "string", "o:length" : 32,
"o:preferred_vc_name" : "BOOKING_DETAILS$StartTime"}}

}"

SQL> call dbms_json.createviewonpath(
2 'MOVIE_TICKETS_VIEW',
3 'MOVIE_TICKETS',
4 'BOOKING_DETAILS','$'
5)
6 /

Call completed.

SQL>

SQL> desc MOVIE_TICKETS_VIEW
Name Type
-- ----------------------------
BOOKING_ID RAW(16)
BOOKING_TIME TIMESTAMP(6) WITH TIME ZONE
BOOKING_DETAILS$Movie VARCHAR2(16)
BOOKING_DETAILS$Theater VARCHAR2(16)
BOOKING_DETAILS$Adults NUMBER
BOOKING_DETAILS$StartTime VARCHAR2(32)

SQL>

Copyright © 2016 Oracle and/or its affiliates. All rights reserved. |

1. Create Table

2. Create Data Guide

3. Insert Document

4. Describe Table

5. Insert Document

6. Describe Table

Oracle Confidential – Internal/Restricted/Highly Restricted 50

JSON Dataguide Example : Virtual Columns
SQL> create table MOVIE_TICKETS (
2 BOOKING_ID RAW(16),
3 BOOKING_TIME TIMESTAMP(6) WITH TIME ZONE,
4 BOOKING_DETAILS VARCHAR2(4000)
5 CHECK (BOOKING_DETAILS IS JSON)
6)
7 /

Table created.

SQL>

SQL> create search index MOVIE_TICKETS_DGUIDE
2 on MOVIE_TICKETS (BOOKING_DETAILS)
3 for json
4 parameters(
5 ‘dataguide on
6 change add_vc'
7)
8 /

Index created.

SQL>

SQL> insert into MOVIE_TICKETS
2 values (
3 SYS_GUID(),
4 SYSTIMESTAMP,
5 '{
6 "Theater":"Century 21",
7 "Movie":"Iron Man 3",
8 "StartTime":"2015-10-26T18:45:00",
9 "Tickets":{
10 "Adults":2
11 }
12 }')
13 /

SQL> desc MOVIE_TICKETS
Name Type
--- ------------------------
BOOKING_ID RAW(16)
BOOKING_TIME TIMESTAMP(6) WITH TIME ZONE
BOOKING_DETAILS VARCHAR2(4000)
BOOKING_DETAILS$Movie VARCHAR2(16)
BOOKING_DETAILS$Theater VARCHAR2(16)
BOOKING_DETAILS$Adults NUMBER
BOOKING_DETAILS$StartTime VARCHAR2(32)

SQL>

SQL> insert into MOVIE_TICKETS
2 values (
3 SYS_GUID(),
4 SYSTIMESTAMP,
5 '{
6 "Theater":"AMC 15",
7 "Movie":"Spectre",
8 "StartTime":"2015-11-26T18:45:00",
9 "Tickets":{
10 "Adults":2,
11 "Child":4,
12 "Senior":2
13 }
14 }')
15 /

SQL> desc MOVIE_TICKETS
Name Type
--- ------------------------
BOOKING_ID RAW(16)
BOOKING_TIME TIMESTAMP(6) WITH TIME ZONE
BOOKING_DETAILS VARCHAR2(4000)
BOOKING_DETAILS$Movie VARCHAR2(16)
BOOKING_DETAILS$Theater VARCHAR2(16)
BOOKING_DETAILS$Adults NUMBER
BOOKING_DETAILS$StartTime VARCHAR2(32)
BOOKING_DETAILS$Child NUMBER
BOOKING_DETAILS$Senior NUMBER

SQL>

Copyright © 2016 Oracle and/or its affiliates. All rights reserved. |

Accessing relational data as JSON
SQL/JSON Publishing operators

Confidential – Oracle Internal/Restricted/Highly Restricted 51

Copyright © 2016 Oracle and/or its affiliates. All rights reserved. |

JSON Generation

• Operators defined by SQL Standards body

– JSON_ARRAY, JSON_OBJECT, JSON_ARRAYAGG and JSON_OBJECTAGG

– Nesting of operators enables generation of complex JSON documents

• Simplifies generating JSON documents from SQL Queries
– Eliminate syntactic errors associated with string concatenation

• Improves performance

– Eliminate multiple round trips between client and server

Oracle Confidential – Internal/Restricted/Highly Restricted 52

Copyright © 2016 Oracle and/or its affiliates. All rights reserved. |

JSON_ARRAY: Representing rows as arrays

• JSON Array contains one item for each argument

• Arrays can contain heterogeneous items

Oracle Confidential – Internal/Restricted/Highly Restricted 53

SQL> select JSON_ARRAY(EMPLOYEE_ID, FIRST_NAME, LAST_NAME) JSON

2 from HR.EMPLOYEES

3 where EMPLOYEE_ID = 100;

JSON

--

[100 , "Steven" , "King"]

SQL>

Copyright © 2016 Oracle and/or its affiliates. All rights reserved. |

JSON_OBJECT : Representing rows as objects

• JSON object contains a key:value pair for each set of arguments

Oracle Confidential – Internal/Restricted/Highly Restricted 54

SQL> select JSON_OBJECT('Id' is EMPLOYEE_ID, 'FirstName' is FIRST_NAME,

2 'LastName' is LAST_NAME) JSON

3 from HR.EMPLOYEES

4 where EMPLOYEE_ID = 100;

JSON

--

{ "Id" : 100 , "FirstName" : "Steven" , "LastName" : "King" }

SQL>

Copyright © 2016 Oracle and/or its affiliates. All rights reserved. |

JSON_ARRAYAGG: Embedding arrays in documents

Oracle Confidential – Internal/Restricted/Highly Restricted 55

select JSON_OBJECT(

'departmentId' is d.DEPARTMENT_ID,

'name' is d. DEPARTMENT_NAME,

'employees' is (

select JSON_ARRAYAGG(

JSON_OBJECT(

'employeeId' is EMPLOYEE_ID,

'firstName' is FIRST_NAME,

'lastName' is LAST_NAME,

'emailAddress' is EMAIL

)

)

from HR.EMPLOYEES e

where e.DEPARTMENT_ID = d.DEPARTMENT_ID

)

) DEPT_WITH_EMPLOYEES

from HR.DEPARTMENTS d

where DEPARTMENT_NAME = 'Executive';

DEPT_WITH_EMPLOYEES

--

{

"departmentId": 90,

"name": "Executive",

"employees": [

{

"employeeId": 100,

"firstName": "Steven",

"lastName": "King",

"emailAddress": "SKING"

}, {

"employeeId": 101,

"firstName": "Neena",

"lastName": "Kochhar",

"emailAddress": "NKOCHHAR"

}, {

"employeeId": 102,

"firstName": "Lex",

"lastName": "De Haan",

"emailAddress": "LDEHAAN"

}

]

}

• Creates a JSON Array from the results of a
nested sub-query

Copyright © 2016 Oracle and/or its affiliates. All rights reserved. |

Using Oracle Spatial with Geo-JSON content
Multi-Model Database

Confidential – Oracle Internal/Restricted/Highly Restricted 56

Copyright © 2016 Oracle and/or its affiliates. All rights reserved. |

• SQL

• SODA Query-by-Example

Confidential – Oracle Internal/Restricted/Highly Restricted 58

GeoJSON support : Location Indexing & Searching

{

"location.geoCoding": {

"$near": {

"$geometry": {

"type":"Point",

"coordinates":[37.8922312,-122.1306916]

},

"$distance":5,

"$unit":"mile"

}

}

}

select t.JSON_DOCUMENT.name

from THEATER t

where SDO_WITHIN_DISTANCE(

JSON_VALUE(t.JSON_DOCUMENT, '$.location.geoCoding'

returning SDO_GEOMETRY NULL ON ERROR),

sdo_geometry(2001, 8307,

sdo_point_type(37.8922312,-122.1306916, null),

null,null),

'distance=5, units="mile"'

) = 'TRUE‘;

Copyright © 2016 Oracle and/or its affiliates. All rights reserved. |

Application Development with SODA
NoSQL Style programming with the Oracle Database

Confidential – Oracle Internal/Restricted/Highly Restricted 59

Copyright © 2016 Oracle and/or its affiliates. All rights reserved. |

SODA for REST

• Implementation of SODA for REST developers

• Collection of Micro-Services for working with JSON documents stored in
Oracle Database 12c

• URI patterns mapped to operations on document collections

• Can be invoked from almost any programming language

• Distributed as part of Oracle REST Data Services (ORDS 3.0)

– Can be installed as a JAVA servlet under the XMLDB HTTP Listener

Copyright © 2016 Oracle and/or its affiliates. All rights reserved. |

Sample services provide by SODA for REST

GET /DBSODA/schema List all collections in a schema

GET /DBSODA/schema/collection Get all objects in collection

GET /DBSODA/schema/collection/id Get specific object in collection

PUT /DBSODA/schema/collection Create a collection if necessary

PUT /DBSODA/schema/collection/id Update object with id

POST /DBSODA/schema/collection Insert object into collection

POST /DBSODA/schema/coll?action=query Find objects matching filter in
body

Copyright © 2016 Oracle and/or its affiliates. All rights reserved. |

• Order By

• Exact Match

• List of Values

• Full Text Searching

SODA: Sample Query-By-Example documents

{"$query":{},"$orderby":{"releaseDate":-1}}

{"location.geoCoding":{

"$near":{

"$geometry":{

"type":"Point",

"coordinates":[37.8953,-122.1247]

},

"$distance":5,

"$unit":"mile"

}}}

{"location.city":"SAN FRANCISCO"}

{"id":{"$in":[245168,299687,177572,76757]}}

{"plot":{"$contains":"$(colour)"}}

• Multiple Predicates with Ordering

–

• Distance Search

{"movieId":109410,

"startTime":{

"$gte":"2016-09-12T07:00:00.000Z",

"$lt":"2016-09-13T07:00:00.000Z“

},

"$orderby":{"screenId":1,"startTime":2}

}

Copyright © 2016 Oracle and/or its affiliates. All rights reserved. |

SODA for JAVA

• Implementation of SODA for Java programmers

• SODA for Java provides classes for

– Collection Management

– CRUD operations on JSON documents

– Query-by-Example for document searching

– Utility and control functions

• Much simpler than JDBC for working with collections of JSON documents
stored in Oracle Database

Copyright © 2016 Oracle and/or its affiliates. All rights reserved. |

Sample SODA code

// Create a Connection
OracleRDBMSClient client = new OracleRDBMSClient();
OracleDatabase database = client.getDatabase(conn);

// Now create a collection
OracleCollection collection = database.getDatabaseAdmin().createCollection(“MyCollection”);

// Create a document
OracleDocument document = database.createDocumentFromString("{ \”name\" : \”Alexander\” }”);

// Next, insert it into the collection
OracleDocument insertedDocument = collection.insertAndGet(document);

// Get the key of the inserted document
String key = insertedDocument.getKey();

// Get the version of the inserted document
String version = insertedDocument.getVersion();

Creating a Collection, Inserting a Document and getting the ID and Version

Copyright © 2016 Oracle and/or its affiliates. All rights reserved. |

Why choose Oracle Database 12c and SODA

• Oracle Database 12c can satisfy the data management requirements for
modern application development stacks

• Using Oracle and SODA is a simple as using any other No-SQL based
document store technology

• SODA allows applications to be developed and deployed without any
knowledge of SQL and without DBA support.

• Applications can take full advantage of the capabilities of Oracle Database

• Using Oracle Database protects existing investment in data management
software and skills

Confidential – Oracle Internal/Restricted/Highly Restricted 65

Copyright © 2016 Oracle and/or its affiliates. All rights reserved. |

Summary

Confidential – Oracle Internal/Restricted/Highly Restricted 66

Copyright © 2016 Oracle and/or its affiliates. All rights reserved. |

JSON Support in Oracle Database
Fast Application Development + Powerful SQL Access

Public 67

Application developers:
Access JSON documents using RESTful API

PUT /my_database/my_schema/customers HTTP/1.0

Content-Type: application/json

Body:

{
"firstName": "John",

“lastName”: "Smith",

"age": 25,

"address": {

"streetAddress": "21 2nd Street",

"city": "New York",

"state": "NY",

"postalCode": "10021“,

"isBusiness" : false },

"phoneNumbers": [

{"type": "home",

"number": "212 555-1234“ },

{"type": "fax",

"number": "646 555-4567“ }]

}

select

c.json_document.firstName,

c.json_document.lastName,

c.json_document.address.city

from customers c;

firstName lastName address.city

----------- ----------- --------------

“John” “Smith” “New York”

SQL Developers and Analytical tools:
Query JSON using SQL

Oracle Database 12c

JSON

Copyright © 2016 Oracle and/or its affiliates. All rights reserved. |

Where do Customers go to learn more?

68

http://www.oracle.com/technetwork/database/application-development/oracle-document-store/index.html

Copyright © 2016 Oracle and/or its affiliates. All rights reserved. |

Learn More about Oracle, JSON and SODA

• Oracle JSON document store on the Oracle Technology Network

– http://otn.oracle.com/database/application-development/oracle-document-
store/index.html

• Downloadable Oracle XML and JSON Code samples on Github

– https://github.com/oracle/xml-sample-demo

– https://github.com/oracle/json-in-db

Oracle Confidential – Internal/Restricted/Highly Restricted 69

http://otn.oracle.com/database/application-development/oracle-document-store/index.html
https://github.com/oracle/xml-sample-demo
https://github.com/oracle/json-in-db

