
The Underground PHP
and Oracle Manual
CHRISTOPHER JONES AND ALISON HOLLOWAY

P
H
P

 Updated for Oracle Database Express Edition 11g Release 2

The Underground PHP and Oracle® Manual, Release 2.0, December 2012.
Copyright © 2008, 2012 Oracle. All rights reserved.

The latest edition of this book is available free online at:
http://www.oracle.com/technetwork/topics/php/underground-php-oracle-manual-098250.html

Authors: Christopher Jones and Alison Holloway
Contributors and acknowledgments: Vladimir Barriere, Luxi Chidambaran, Robert Clevenger,
Antony Dovgal, Wez Furlong, Maurice Gamanho, Deepak Goel, Sue Harper, Manuel Hoßfeld,
Ken Jacobs, Srinath Krishnaswamy, Shoaib Lari, Simon Law, Krishna Mohan, Craig Mohrman,
Chuck Murray, Kevin Neel, Kant Patel, Charles Poulsen, Karthik Rajan, Richard Rendell, Roy
Rossebo, Jeffrey Rubinoff, Michael Sekurski, Sreekumar Seshadri, Mohammad Sowdagar,
Makoto Tozawa, Todd Trichler, Simon Watt, Zahi, Shuping Zhou.

The chapter on globalization is derived from the Oracle Database Express Edition 2 Day Plus
PHP Developer Guide. The chapter on connection pooling is derived from the Oracle white
paper PHP Scalability and High Availability. The discussion on Client Identifiers is from an OTN
article PHP Web Auditing, Authorization and Monitoring. The foundation for the chapter on the
NetBeans IDE was contributed by Jeffrey Rubinoff. The Oracle Solaris content was contributed
by Craig Mohrman. We gratefully acknowledge all the people who contributed to the creation
of this book.

Trademark Notice
Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners. Intel and Intel Xeon are trademarks or registered
trademarks of Intel Corporation. All SPARC trademarks are used under license and are
trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD
logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.
License Restrictions Warranty/Consequential Damages Disclaimer
This software and related documentation are provided under a license agreement containing
restrictions on use and disclosure and are protected by intellectual property laws. Except as
expressly permitted in your license agreement or allowed by law, you may not use, copy,
reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform,
publish, or display any part, in any form, or by any means. Reverse engineering, disassembly,
or decompilation of this software, unless required by law for interoperability, is prohibited.
Warranty Disclaimer
The information contained herein is subject to change without notice and is not warranted to
be error-free. If you find any errors, please report them to us in writing.
Restricted Rights Notice
If this is software or related documentation that is delivered to the U.S. Government or
anyone licensing it on behalf of the U.S. Government, the following notice is applicable:
U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated
software, any programs installed on the hardware, and/or documentation, delivered to U.S.
Government end users are "commercial computer software" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use,
duplication, disclosure, modification, and adaptation of the programs, including any operating
system, integrated software, any programs installed on the hardware, and/or documentation,
shall be subject to license terms and license restrictions applicable to the programs. No other
rights are granted to the U.S. Government.

http://www.oracle.com/technetwork/topics/php/underground-php-oracle-manual-098250.html

Hazardous Applications Notice
This software or hardware is developed for general use in a variety of information
management applications. It is not developed or intended for use in any inherently dangerous
applications, including applications that may create a risk of personal injury. If you use this
software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle
Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.
Third-Party Content, Products, and Services Disclaimer
This software or hardware and documentation may provide access to or information on
content, products, and services from third parties. Oracle Corporation and its affiliates are not
responsible for and expressly disclaim all warranties of any kind with respect to third-party
content, products, and services. Oracle Corporation and its affiliates will not be responsible for
any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services.

CONTENTS
Chapter 1 Introduction..1

PHP and Oracle..1

Introduction to Oracle Database...1

Introduction to PHP..1

Chapter 2 Getting Started With PHP...5
Creating and Editing PHP Scripts...5

PHP Syntax Overview..5

Running PHP Scripts..8

Running Scripts Via a Browser..8

Running Scripts Using the PHP Development Web Server...8

Running Scripts With Command-Line PHP...9

Debugging PHP Scripts..9

Chapter 3 PHP Oracle Extensions...11
PHP Oracle Extensions..11

PHP OCI8 Extension..11

Getting the OCI8 Extension...12

OCI8 and Oracle Database Installation Options..13

PHP OCI8 History...14

PHP PDO Extension...15

Getting the PDO Extension...15

PHP Frameworks...15

PHP Database Abstraction Libraries...15

ADOdb.. 16

PEAR DB.. 16

PEAR MDB2...16

The PHP Release Cycle...17

Chapter 4 Installing Oracle Database 11g Express Edition..19
Oracle Database Editions...19

Oracle Database 11g XE..19

Installing Oracle Database 11g XE on Linux...20

Installing Oracle Database 11g XE on Windows...21

Managing the Oracle Database 11g XE..23

Setting the Oracle Database 11g XE Environment Variables on Linux..23

Starting and Stopping the Listener and Database...24

Basic Monitoring of Oracle Database 11g XE..25

Oracle Terminology...27

Chapter 5 SQL With Oracle Database...29
Oracle SQL*Plus..29

i

Setting the Environment for SQL*Plus...29

Starting SQL*Plus...29

Using SQL*Plus to Unlock the HR Schema for Demonstration Table Access................................30

Creating Database Users in SQL*Plus..31

Executing SQL and PL/SQL Statements in SQL*Plus...31

Controlling Query Output in SQL*Plus...32

Running SQL Scripts in SQL*Plus...32

Table Metadata in SQL*Plus..33

Starting and Stopping the Database With SQL*Plus...33

Oracle Application Express...34

Creating an Application Express Workspace...35

Logging In To Oracle Application Express...37

Creating Database Objects in Application Express..38

Working With SQL in Application Express...41

Creating a PL/SQL Procedure in Application Express...43

Oracle SQL Developer..46

Creating a Database Connection in SQL Developer..46

Editing Data in SQL Developer..47

Creating a Table in SQL Developer...48

Executing a SQL Query in SQL Developer..49

Editing, Compiling and Running PL/SQL in SQL Developer..51

Running Reports in SQL Developer..52

Creating Reports in SQL Developer..53

Chapter 6 NetBeans IDE for PHP...57
NetBeans Installation ...57

NetBeans Editor Features ...57

Development Processes in NetBeans ...59

OCI8 Support in NetBeans ..59

Oracle Database Support in NetBeans ..59

Getting Help for NetBeans ...60

Chapter 7 Installing Apache HTTP Server..63
Apache HTTP Server Packages on Oracle Linux...63

Building Apache HTTP Server on Linux..63

Configuring Apache HTTP Server on Linux..64

Setting the Apache Server Name..64

Setting up an Apache User Directory on Linux..64

Environment Variables for PHP in Apache on Oracle Linux...65

Permissions for PHP OCI8 in Apache on Oracle Linux..66

Installing Apache HTTP Server on Windows..66

Starting and Stopping Apache HTTP Server on Windows...67

Testing Apache HTTP Server...67

ii

Chapter 8 Installing and Configuring PHP...69
Installing PHP on Linux...69

Installing Linux PHP Packages..69

Installing Zend Server Packages on Linux..70

Compiling PHP as an Apache Module on Linux..71

Installing Oracle Instant Client on Linux for the OCI8 Extension..73

Configuration Options for Compiling OCI8 With PHP on Linux..74

Installing OCI8 on Linux as a Shared Extension Using PECL...75

Manually Installing OCI8 on Linux as a Shared Extension..76

Setting the Oracle Environment for PHP on Linux...77

Signal Handling and Defunct Processes on Linux...80

Using PHP-FPM With Apache on Linux...81

Installing PHP With OCI8 on Windows...84

Oracle Libraries on Windows...84

Installing PHP on Windows...85

Installing OCI8 With Oracle HTTP Server...86

Installing OCI8 With Oracle HTTP Server 11g on Linux..87

Installing OCI8 With Oracle HTTP Server 10g on Linux..89

Installing the PDO Extension..91

Installing PDO_OCI on Linux...91

Installing PDO_OCI on Windows...92

Checking OCI8 and PDO_OCI Installation...92

Chapter 9 Installing PHP and Apache on Oracle Solaris..95
Installing Apache on Oracle Solaris 11.1...95

Installing PHP on Oracle Solaris 11.1...96

Changing the Version of PHP used by Apache...98

Installing Oracle Instant Client on Oracle Solaris 11.1..99

Installing OCI8 on Oracle Solaris 11.1..99

Chapter 10 Connecting to Oracle Using OCI8...101
Oracle Connection Example...101

Oracle Connection Types...102

Standard Connections...103

Unique Connections..103

Persistent Connections...103

Oracle Database Name Connection Identifiers...104

Easy Connect String..104

Database Connect Descriptor String...105

Database Connect Name..106

Commonly Seen Connection and Environment Errors..107

Closing Oracle Connections..111

Closing Connections and Variable Scope..111

iii

Transactions and Connections..112

Session State With Persistent Connections...113

Optional Connection Parameters..113

Connection Character Set...113

Connection Session Mode...114

Password Handling in PHP Applications...116

External Authentication With PHP OCI8..116

Tuning Connections to Build Scalable Systems..118

Use the Best Connection Function..118

Use Connection Pooling..119

Minimize the number of database user credentials used...119

Connect With a Character Set...119

Tune the AUDSES$ Sequence Generator...120

Do Not Set the Date or Numeric Format Unnecessarily..120

Manage Persistent Connections..121

Changing the Database Password...123

Changing Passwords on Demand...123

Changing Expired Passwords...124

Authorization and Authentication With Client Identifiers..126

Setting Client Identifiers...126

A Sample Application Using Client Identifiers..127

Using a Client Identifier in PHP for Auditing...133

Using a Client Identifier in PHP With a VPD for Restricting Data Access....................................135

Using a Client Identifier in PHP for Monitoring and Tracing...138

Client Identifier Summary..142

Oracle Network Services and PHP...142

Connection Rate Limiting..142

Setting Connection Timeouts...143

Configuring Authentication Methods..143

Detecting Dead PHP Apache Sessions...144

Detecting Dead Database Servers..144

Other Oracle Net Optimizations...144

Tracing Oracle Net..144

Chapter 11 Executing SQL Statements With OCI8..147
SQL Statement Execution Steps..147

Query Example..147

Quoting SQL Statement Text...148

Oracle Data Types...149

Fetch Functions..150

Fetching to a Numeric Array..150

Fetching to an Associative Array...151

iv

Fetching Case Sensitive Column Names to an Associative Array...152

Duplicate Column Names and Associative Arrays...152

Fetching to an Object..152

Defining Output Variables..153

Fetching Nested Cursors...154

Fetching and Working With Numbers..155

Fetching and Working With Dates...156

Insert, Update, Delete, Create and Drop in PHP OCI8...157

Transactions in PHP OCI8..157

Autonomous Transactions...159

The Transactional Behavior of Multiple Connections...160

PHP Error Handling..161

Handling PHP OCI8 Errors..161

Using Bind Variables in Prepared Statements..164

Binding in a “for” Loop...167

Binding With LIKE and REGEXP_LIKE Clauses...168

Binding Multiple Values in an IN Clause..169

Using Bind Variables to Fetch Data...171

Binding in an ORDER BY Clause..172

Using ROWID Bind Variables..172

Improving Performance by Prefetching and Caching..173

Tuning the Prefetch Size...173

Tuning the Statement Cache Size...175

Using the Server and Client Query Result Caches..176

Monitoring OCI8 SQL Statements..178

OCI8 Driver Identification..179

Setting Application Information in PHP OCI8...179

LIMIT, Auto-Increment, Last Insert ID and Multiple Inserts..180

Limiting Rows and Creating Paged Datasets..181

Auto-Increment Columns...183

Getting the Last Insert ID...184

Inserting Multiple Values..185

Exploring Oracle...185

Case Insensitive Data Matching in Queries...185

Analytic Functions in SQL...186

External Tables..186

Chapter 12 Using PL/SQL With OCI8..187
PL/SQL Overview...187

Blocks, Procedures, Packages and Triggers..188

Anonymous Blocks..188

Stored Procedures and Functions...188

v

Packages..189

Triggers... 190

Creating PL/SQL Stored Procedures in PHP..190

End of Line Terminators in PL/SQL With Windows PHP..191

Calling PL/SQL Code..191

Calling PL/SQL Procedures in PHP...191

Calling PL/SQL Functions in PHP...192

Binding Unsupported PL/SQL Types...193

Array Binding and PL/SQL Bulk Processing...194

PL/SQL Success With Information Warnings..196

Using REF CURSORS for Result Sets...197

Closing Cursors...200

Prefetching From REF CURSORS and Nested Cursors for Performance...................................201

Converting from REF CURSOR to PIPELINED Results..202

Oracle Collections in PHP..203

Using PL/SQL and Oracle Object Types in PHP...205

Using a PIPELINED Function..206

Using a REF CURSOR..207

Using an Array Bind...208

Using OCI8 Collection Functions...209

Getting Output With DBMS_OUTPUT..210

PL/SQL Backtraces in a PL/SQL Exception Handler..213

PL/SQL Function Result Cache..214

Using Oracle Locator for Spatial Mapping..214

Inserting Locator Data...215

Queries Returning Scalar Values...215

Selecting Vertices Using SDO_UTIL.GETVERTICES...216

Using a Custom Function..217

Scheduling Background or Long Running Operations..218

Oracle Streams Advanced Queuing..221

Reusing Procedures Written for MOD_PLSQL...224

Easy PL/SQL Upgrades With Edition Based Redefinition...226

Database Transactions Across Stateless Web Requests..230

Chapter 13 Using Large Objects in OCI8..233
Working With LOBs..233

Inserting and Updating LOBs..233

Fetching LOBs...234

Temporary LOBs...235

Uploading and Displaying an Image..236

LOBs and PL/SQL procedures..237

Other LOB Methods..239

vi

Working With BFILEs..240

Chapter 14 Using XML With Oracle and PHP...245
Fetching Relational Rows as XML..245

Fetching Rows as Fully Formed XML...246

Using the SimpleXML Extension in PHP...247

Fetching XMLType Columns...248

Inserting Into XMLType Columns..250

Fetching an XMLType from a PL/SQL Function..252

XQuery XML Query Language..252

Accessing Data Over HTTP With XML DB..254

Chapter 15 PHP Connection Pooling and High Availability...257
Database Resident Connection Pooling...257

How DRCP Works...258

PHP OCI8 Connections and DRCP...260

When to use DRCP...262

Sharing the Server Pool..263

Using DRCP in PHP...264

Configuring and Enabling the Pool..265

Configuring PHP for DRCP...267

Application Deployment for DRCP...268

Monitoring DRCP..271

DBA_CPOOL_INFO View...271

V$PROCESS and V$SESSION Views..272

V$CPOOL_STATS View..272

V$CPOOL_CC_STATS View...273

High Availability With FAN and RAC...276

Configuring FAN Events in the Database..276

Configuring PHP for FAN...276

Application Deployment for FAN..276

RAC Connection Load Balancing With PHP..278

Chapter 16 PHP and TimesTen In-Memory Database..279
Installing TimesTen on Linux...279

Managing TimesTen...280

Creating the TimesTen Sample Database...281

Installing Apache and PHP for TimesTen..282

Checking the Installation...282

Connecting to TimesTen With PHP OCI8..283

Configuring TimesTen...283

Chapter 17 PHP and Oracle Tuxedo..285
Installing Tuxedo 11.1 and SALT for PHP Web Applications...285

Installing Oracle Tuxedo..286

vii

Installing Oracle SALT...290

Installing PHP for Oracle Tuxedo..293

Installing Oracle Tuxedo into Apache..293

Configuring Oracle Tuxedo for PHP..294

Starting and Managing Tuxedo...296

Verifying PHP and Tuxedo..298

Chapter 18 Globalization..301
Establishing the Environment Between Oracle and PHP..301

Setting the Language, Territory and Character Set With NLS_LANG..301

Setting the Oracle Number Format With NLS_NUMERIC_CHARACTERS.................................303

Setting the Oracle Date Format With NLS_DATE_FORMAT...305

Setting the Default Session Time Zone With ORA_SDTZ...307

Manipulating Strings...307

Determining the Locale of the User..307

Developing Locale Awareness...308

Encoding HTML Pages...309

Specifying the Page Encoding for HTML Pages..309

Specifying the Encoding in the HTTP Header...309

Specifying the Encoding in the HTML Page Header..309

Specifying the Page Encoding in PHP...309

Organizing the Content of HTML Pages for Translation..310

Strings in PHP...310

Static Files...310

Data from the Database..310

Presenting Data Using Conventions Expected by the User..310

Oracle Linguistic Sorts...311

Oracle Error Messages...312

Chapter 19 Testing PHP and the OCI8 Extension..313
Running OCI8 Tests..313

Running a Single Test..315

Tests that Fail...315

Creating OCI8 Tests ..315

OCI8 Test Helper Scripts...317

Configuring the Database For Testing..317

Testing PHP Applications..319

Appendix A Tracing OCI8 Internals...321
Enabling OCI8 Debugging output...321

Appendix B OCI8 php.ini Parameters...323
Enabling PHP OCI8 in php.ini...323

PHP OCI8 php.ini Parameters..324

Appendix C OCI8 Function Names in PHP 4 and PHP 5...327

viii

Appendix D The Obsolete Oracle Extension..331
Oracle and OCI8 Comparison..331

Appendix E Resources...335
General Information and Forums..335

Oracle Documentation and Whitepapers..335

Selected PHP and Oracle Books..336

Software and Source Code...337

PHP Links...338

Glossary...339

ix

CHAPTER 1

INTRODUCTION

This book is designed to bridge the gap between the many PHP scripting language and the
many Oracle Database books available. It contains unique material about PHP's OCI8
extension for Oracle Database, and about other components in the PHP-Oracle ecosystem. It
shows PHP developers how to use PHP and Oracle together, efficiently and easily.

The Underground PHP and Oracle Manual is not a complete PHP syntax or Oracle SQL
guide. It also does not describe overall application architecture. For these, Oracle
documentation is freely available online, as are extensive PHP documentation and application
development resources. For newcomers we suggest reading the Oracle Database Express
Edition 2 Day + PHP Developer's Guide which walks through building a PHP application.

Since the first release of the Underground PHP and Oracle Manual, many commercial
books on PHP and Oracle have been published. They are worthwhile additions to your library.
Each has a different viewpoint and shows something new about the technologies.

PHP and Oracle
A number of Oracle products contribute to the rich ecosystem for PHP applications. These
include the NetBeans IDE, Oracle Database, Oracle TimesTen In-Memory Database, Oracle
Tuxedo, Oracle Application Server, and various SQL development tools. There are many users
of PHP and Oracle all around the world using these technologies.

Introduction to Oracle Database
The main Oracle product discussed in this book is Oracle Database. It is well known for its
scalability, reliability and features. It is the leading relational database and is available on
many platforms. The installation discussion highlights the free Oracle Database 11g Express
Edition (known as “Oracle XE”). Since Oracle XE is a subset of the full Oracle Database
bundle, the PHP applications you write for Oracle XE can be run, without change, against all
other editions of the Oracle 11g database. PHP also supports some of the advanced
functionality of Oracle Database 11gR2 Enterprise Edition; this is covered here too.

Most of the core information in the book is relevant to previous versions of Oracle
Database.

Introduction to PHP
PHP is a hugely popular, interpreted scripting language commonly used for web applications.
It is open source, free, and has a BSD-style license making it corporation-friendly. PHP is
perfect for rapidly developing applications both big and small. It powers millions of web sites
on the Internet and has a huge user community behind it. It runs on many platforms.

The language is dynamically typed and easy to use. PHP 5 introduced strong object
orientated capabilities. PHP comes with many extensions offering all kinds of functionality
from system operations to numerical processing. PHP includes the OCI8 extension which,
when linked with Oracle client libraries, enables access to Oracle Database.

1

Introduction

A PHP command line interface (CLI) can be used to execute PHP scripts from an operating
system shell window, or a simple in-built development web server can be used to serve script
output to a browser. This is common for quick development testing.

For production applications, PHP is typically installed as an Apache module, or run by a
web server using FastCGI.

Consider the script hello.php:

Script 1: hello.php

<?php

echo "<p>hello</p>";
query_cities();

function query_cities() {
 $c = oci_connect("hr", "welcome", "localhost/XE");
 $s = oci_parse($c, "select city from locations");
 oci_execute($s);
 echo "<table border='1'>\n";
 while (($row = oci_fetch_array($s, OCI_ASSOC)) != false) {
 echo " <tr>\n";
 echo " <td>".htmlentities($row['CITY'])."</td>\n";
 echo " </tr>\n";
 }
 echo "</table>\n";
}

?>

When you enter the URL of the script (see step 1 in Figure 1) in your browser, the web server
invokes PHP to processes the file. The PHP code is loaded and executed (2). Calls to the
database (3) return data which is formatted and sent as output. Finally, this HTML is returned
to the browser (4), which formats and displays the page.

2

Introduction to PHP

PHP is an open source project. It is maintained by a wide-spread community using an open
source development methodology that has self-imposed goals and deadlines. Tasks are
completed by developers who contribute their spare time and effort on sub-projects that
interest them.

Any issues with PHP itself or with using the PHP OCI8 extension to access Oracle Database
should be reported through community channels such as the OTN PHP forum and the PHP bug
database.

3

Figure 1: The four stages of processing a PHP script.

Introduction

4

CHAPTER 2

GETTING STARTED WITH PHP

This chapter gives a very brief overview of the PHP language. Basic PHP syntax is simple to
learn. It has familiar loop, test and assignment constructs.

Creating and Editing PHP Scripts
There are a number of specialized PHP editors available, including Oracle’s NetBeans IDE
which is very highly regarded for PHP development. Some developers still prefer basic text
editors with modes that highlight code syntax and aid development. In general this manual
does not assume any particular editor or debugger is being used.

PHP scripts often have the file extension .php, but sometimes .phtml is also used. Web
servers can be configured to recognize any extension(s) that you choose and send those files
to PHP for processing.

PHP Syntax Overview
PHP scripts are enclosed in <?php and ?> tags. Lines are terminated with a semi-colon:

<?php
echo 'Hello, World!';
?>

Blocks of PHP code and HTML code may be interleaved. The PHP code can also explicitly print
HTML tags:

<?php
echo '<h3>';
echo 'Full Results';
echo '</h3>';
$output = "no results available";
?>
<table border="1">
 <tr>
 <td>
 <?php echo $output ?>
 </td>
 </tr>
</table>

The output when running this script is:

<h3>Full Results</h3><table border="1">
 <tr>
 <td>
 no results available </td>
 </tr>
</table>

5

Getting Started With PHP

A browser would display it as:

PHP strings can be enclosed in single or double quotes:

'A string constant'
"another constant"

Variable names are prefixed with a dollar sign. Things that look like variables inside a double-
quoted string will be expanded:

"A value appears here: $v1"

Strings and variables can also be concatenated using a period.

'Employee ' . $ename . ' is in department ' . $dept

Variables do not need types declared:

$count = 1;
$ename = 'Arnie';

Arrays can have numeric or associative indexes:

$a1[1] = 3.1415;
$a2['PI'] = 3.1415;

Strings and variables can be displayed with an echo or print statement. Formatted output
with printf() is also possible.

echo 'Hello, World!';
echo $v, $x;
print 'Hello, World!';
printf("There is %d %s", $v1, $v2);

Code flow can be controlled with tests and loops. PHP also has a switch statement. The if,
elseif and else statements look like:

if ($sal > 900000) {
 echo 'Salary is way too big';
} elseif ($sal > 500000) {
 echo 'Salary is huge';
} else {
 echo 'Salary might be OK';
}

This also shows how blocks of code are enclosed in braces.
A traditional incrementing loop is:

6

Figure 2: PHP script output.

PHP Syntax Overview

for ($i = 0; $i < 10; ++$i) {
 echo $i . "
\n";
}

This prints the numbers 0 to 9, each on a new line. The value of $i is incremented in each
iteration. The loop stops when the test condition evaluates to true. You can also loop with
while or do while constructs.

The foreach command is useful to iterate over arrays:

$a3 = array('Aa', 'Bb', 'Cc');
foreach ($a3 as $v) {
 echo $v;
}

This sets $v to each element of the array in turn.
Functions may be defined:

function myfunc($p1, $p2) {
 echo $p1, $p2;
 return $p1 + $p2;
}

The previous function could be called using:

$v3 = myfunc(1, 3);

Functions may have variable numbers of arguments. Function calls may appear earlier than
the function definition. Procedures use the same function keyword but do not have a return
statement.

Classes look like:

class myclass {
 private $state = 1;
 public function set($v)
 {
 $this->state = $v;
 }
 public function get()
 {
 return $this->state;
 }
}

$v = new myclass();
echo $v->get();
$v->set(3);

Sub-files can be included in PHP scripts with an include() or require() statement.

include('foo.php');
require('bar.php');

A require() will generate a fatal error if the script is not found. The include_once() and
require_once() statements prevent multiple inclusions of a file.

Comments are either single line:

7

Getting Started With PHP

// a short comment

or multi-line:

/*
 A
 longer
 comment
*/

Running PHP Scripts
PHP scripts can be loaded in a browser, or executed at a command prompt in a terminal
window. Because browsers interpret HTML tags and they also compress white space including
new-lines, this means script output can differ between command-line and browser invocation
of the same script. For a similar reason pure-PHP scripts often omit the closing ?> tag because
any accidental trailing white space after it will be sent to the browser, possibly affecting style
layouts. PHP doesn't require the closing tag.

Many aspects of PHP are controlled by settings in a php.ini configuration file. The location
of the file is system specific. Its location, the list of extensions loaded, and the value of all the
initialization settings can be found using the phpinfo() function:

<?php
phpinfo();
?>

Initialization settings can be changed by editing php.ini and restarting the web server. Some
values can also be changed within scripts at run time by using the ini_set() function.

To connect to Oracle Database, some Oracle environment variables need to be set before
the web server starts. This is discussed in the installation chapters of this book.

Running Scripts Via a Browser

PHP scripts are commonly run by loading them in a browser:
http://localhost/myphpinfo.php

Requesting a script causes the web server to invoke PHP to execute the requested code file.
All of the script output is sent to the browser which formats and displays the output. Typically
web servers such as Apache are used. The web server needs to be configured to call PHP and
to map the user given URL to its equivalent PHP file.

Running Scripts Using the PHP Development Web Server

PHP 5.4 has a small in-built command-line interface (“CLI”) web server which can help testing
by being immediately accessible. The web server is suitable for development and testing only.

If your PHP code is in a file myphpinfo.php, and the PHP executable is in your path, start
the PHP CLI web server from the command line with:

$ php -S localhost:8888

The file can be loaded in a browser with the URL:
http://localhosthost:8888/myphpinfo.php

8

Running PHP Scripts

Running Scripts With Command-Line PHP

If your PHP code is in a file myphpinfo.php, and the PHP executable is in your path, run it with:

$ php myphpinfo.php

Various options to the PHP executable control its behavior. The -h options gives the help text.
Common options when first using PHP are --ini which displays the location of the php.ini file,
and -i which displays the value of the php.ini settings.

Debugging PHP Scripts
If you are not using the NetBeans IDE then debugging will be an old-fashioned matter of
printing variables to check code flow.

The var_dump() function is particularly useful for debugging because it formats and prints
complex variables:

$a2['PI'] = 3.1415;
var_dump($a2);

The output is:

array(1) {
 ["PI"]=>
 float(3.1415)
}

The formatting is apparent when using command-line PHP. In a browser, to prevent white
space and new lines from coalescing, you will need to do:

echo '<pre>';
$a2['PI'] = 3.1415;
var_dump($a2);
echo '</pre>';

Some examples in this manual use var_dump() to simplify the code being demonstrated or to
show the type and contents of a variable.

9

Getting Started With PHP

10

CHAPTER 3

PHP ORACLE EXTENSIONS

PHP has several extensions that let applications use Oracle Database. There are also
database libraries written in PHP which are popular. These abstract the use of the underlying
extension.

Database access in each extension and abstraction library is fundamentally similar. The
differences are in support for advanced features and the programming methodology
promoted. If you want to make full use of Oracle's features and want high performance then
use OCI8, which is PHP’s main Oracle extension. If you really need database independence,
then the PHP Data Object (PDO) extension or the ADOdb abstraction library are available.

Many applications that value conformity over performance will benefit from using one of
the increasingly popular PHP frameworks. These abstract much of the data access task in an
application.

PHP Oracle Extensions
The PHP extensions that connect to Oracle Database are written in C and linked into the PHP
binary. The extensions are:

● OCI8

● PDO_OCI driver for PDO

You can also use the ODBC extension; this is not covered in this book.
The three extensions are implemented independently and have no database access code

in common. The extensions can be enabled separately or at the same time.

PHP OCI8 Extension
OCI8 is the recommended extension for accessing Oracle Database and is the focus of this
book. OCI8 has been included in PHP since PHP 3. It is open source and maintained by the PHP
community. Oracle is a member of the community looking after OCI8.

There have been major and minor changes to the OCI8 extension in the history of PHP. If
you are using PHP versions 4 to 5.2, it is highly recommended to upgrade from the default
OCI8 extension.

An example script that finds city names from the LOCATIONS table using OCI8:

Script 1: intro.php

<?php
$c = oci_connect('hr', 'welcome', 'localhost/XE');
$s = oci_parse($c, 'select city from locations');
oci_execute($s);
while (($res = oci_fetch_array($s, OCI_ASSOC)) != false) {
 echo htmlentities($res['CITY']) . "
";
}
?>

11

PHP Oracle Extensions

When invoked in a web browser, it connects as the demonstration user HR of the Oracle “XE”
database running on the local machine. The query is executed and a web page of results is
displayed in the browser:

In PHP 5 some extension function names were standardized. PHP 4 functions like OCILogin()
became oci_connect(), the function OCIParse() became oci_parse() and so on. The old
names still exist as aliases, so PHP 4 scripts do not need to be changed. A table showing old
and new names appears in Appendix C.

The name “OCI8” is also the name for Oracle’s Call Interface API used by C programs such
as the PHP OCI8 extension itself. All unqualified references to OCI8 in this book refer to the
PHP extension.

Getting the OCI8 Extension

The OCI8 extension can be obtained in various ways. The PHP source code release is the
canonical location for OCI8. It is also available from the PHP Extension Community Library
(PECL) site, which contains PHP extensions as individual source code downloads. PECL is
commonly used to install OCI8 on top of Linux distribution packages of PHP. Pre-built Windows
PHP binaries from http://php.net include the OCI8 extension DLL. The OCI8 extension is also
included in the Zend Server product, which is available for various platforms.

Table 1 shows where OCI8 can be downloaded from the PHP project.

Table 1: OCI8 Availability from the PHP Project and Sample Package Names.

Bundle Containing OCI8 Location and Sample Release

PHP Source Code http://www.php.net/downloads.php

php-5.4.8.tar.bz2

Compiles and runs on many platforms

12

Figure 3: PHP output in a web browser.

http://www.php.net/downloads.php
http://php.net/

PHP OCI8 Extension

Bundle Containing OCI8 Location and Sample Release

PHP Windows Binaries http://windows.php.net/download/

php-5.4.8-Win32-VC9-x86.zip

PECL Source Code http://pecl.php.net/package/oci8

oci8-1.4.9.tgz

Used to add or upgrade OCI8 for an existing PHP installation

OCI8 and Oracle Database Installation Options

To provide Oracle database access, the PHP binary must be linked with Oracle Client libraries.
These libraries provide underlying connectivity to the database, which may be local or remote
on your network.

Oracle has cross-version compatibility. For example, if PHP OCI8 is linked with Oracle
Database 10g client libraries, then PHP applications can connect to Oracle Database 8i , 9i,
10g or 11g. If OCI8 is linked with Oracle Database 11g libraries, then PHP can connect to
Oracle Database 9iR2 onwards.

If the database is installed on the same machine as the web server and PHP, then PHP can
be linked with Oracle libraries included in the database software. If the database is installed
on another machine, then link PHP with the small, free Oracle Instant Client libraries.

Full OCI8 functionality is not available unless the Oracle client libraries and database
server are the latest version.

Table 2 shows the compatibility of the Oracle client libraries with the current OCI8
extension and PHP. Older versions of PHP have different compatibility requirements.

13

Figure 4: PHP links with Oracle client libraries.

http://pecl.php.net/package/oci8
http://windows.php.net/download/

PHP Oracle Extensions

Table 2: OCI8 and Oracle Compatibility Matrix.

Software Bundle PHP Version OCI8 Version
Included

Oracle Client Libraries Usable
with OCI8

PHP Release Source Code Current release is
5.4

OCI8 1.4 9iR2, 10g, 11g

PHP Release Windows
Binaries

Current release is
5.4

OCI8 1.4 10gR2, 11gR2

PECL OCI8 Source Code Builds with PHP
4.3.9 onwards

Current
release is
OCI8 1.4

9iR2, 10g, 11g

If PHP 4, 5.0, 5.1 or 5.2 are being used, you should replace the default OCI8 code with the
latest version from PECL to get improved stability, behavior and performance optimizations.
This is particularly important for PHP 4 and 5.0 because their versions of OCI8 are notoriously
unstable.

PHP OCI8 History

PHP OCI8 has undergone continual development since it was first introduced in PHP 3. Table 3
shows the major features in recent revisions of OCI8, ever since the package was given an
individual version number.

Table 3: Major Revisions of OCI8.

OCI8 Version Main Features

OCI8 1.0 First PECL release. Based on PHP 4.3 OCI8 code.

OCI8 1.1 Beta releases that became OCI8 1.2.

OCI8 1.2 A major refactoring of the extension for PHP 5.1. It greatly improved
stability, added control over persistent connections, and introduced
performance features such as the ability to do statement caching and a
new array bind function.

OCI8 1.3 Refactored connection management introduced support for Oracle
Database 11g DRCP connection pooling and support for FAN giving high
scalability and availability. Included support for Oracle's external
authentication.

OCI8 1.4 New oci_set_* functions for better integration with database
authentication, auditing and monitoring, and also for helping migration
by allowing multiple versions of PL/SQL packages to be used
concurrently. Introduces OCI_NO_AUTO_COMMIT as an alias of
OCI_DEFAULT.

14

PHP PDO Extension

PHP PDO Extension
PHP Data Objects (PDO) is a data abstraction extension that provides PHP functions for
accessing databases using a common core of database independent methods. Each database
has its own driver, which may also support vendor specific functionality. PDO_OCI provides the
Oracle functionality for PDO. The PDO extension and PDO_OCI driver are open source and
included in PHP 5.1 onwards. Oracle does not contribute to PDO_OCI.

The PHP community has let the PDO project languish and Oracle recommends using OCI8
instead whenever possible because of its better feature set, performance, reliability and
stability. Use of PDO_OCI for general purpose applications is not recommended. However PDO
is used by some frameworks and higher level packages, such as content management
systems so you may need to use it.

An example script that finds city names from the LOCATIONS table using PDO_OCI is:

Script 1: connectpdo.php

<?php
$dbh = new PDO('oci:dbname=localhost/XE', 'hr', 'welcome');
$s = $dbh->prepare("select city from locations");
$s->execute();
while (($r = $s->fetch(PDO::FETCH_ASSOC)) != false) {
 echo htmlentities($r['CITY']) . "
";
}
?>

The output is the same as the OCI8 example in Figure 4.
The Data Source Name (DSN) prefix oci: must be lowercase. The value of dbname is the

Oracle connection identifier for your database.

Getting the PDO Extension

PDO and the PDO_OCI driver are included with PHP source code. Recent versions of PHP install
the generic PDO extension code by default, but the database drivers such as PDO_OCI need to
be explicitly added while building, or they can be installed manually afterward.

Only a few minor changes have been made by the community to PDO_OCI since its
introduction. The version of PDO_OCI in the PECL repository has not been updated with these
fixes, or with other changes needed to be compatible with recent versions of PHP. The PECL
repository PDO_OCI release should not be used.

PHP Frameworks
PHP Frameworks are increasingly popular. Describing them is out of scope of this book. They
almost all are written in PHP and abstract the use of PDO or native drivers. If you are choosing
a PHP framework, consider one that uses OCI8 instead of PDO_OCI because not only is OCI8
more stable, it has caching, pooling and other scalability features that PDO_OCI does not.

PHP Database Abstraction Libraries
There are some older, but still viable, abstraction libraries for PHP:

15

PHP Oracle Extensions

● ADOdb

● PEAR DB

● PEAR MDB2

You can freely download and use the PHP code for these libraries. They all use OCI8 functions
in their implementations.

ADOdb

The ADOdb library is available from http://adodb.sourceforge.net. There is an optional C
extension plug-in if you need extra performance.

An example script that finds city names from the LOCATIONS table using ADOdb:

Script 2: connectadodb.php

<?php
require_once("adodb.inc.php");
$db = ADONewConnection("oci8");
$db->Connect("localhost/XE", "hr", "welcome");
$s = $db->Execute("select city from locations");
while ($r = $s->FetchRow()) {
 echo htmlentities($r['CITY']) . "
";
}
?>

There is an Advanced Oracle Tutorial at:
http://phplens.com/lens/adodb/docs-oracle.htm

PEAR DB

The PHP Extension and Application Repository (PEAR) contains many useful packages that
extend PHP’s functionality. PEAR DB is a package for database abstraction. It is available from
http://pear.php.net/package/DB. PEAR DB has been superseded by PEAR MDB2 but is still
sometimes used.

PEAR MDB2

The PEAR MDB2 package is available from http://pear.php.net/package/MDB2. It is a library
aiming to combine the best of PEAR DB and the PHP Metabase abstraction packages.

An example script that finds city names from the LOCATIONS table using MDB2:

Script 3: connectpear.php

<?php
require("MDB2.php");
$mdb2 = MDB2::connect('oci8://hr:welcome@//localhost/XE');
$res = $mdb2->query("select city from locations");
while ($row = $res->fetchRow(MDB2_FETCHMODE_ASSOC)) {
 echo htmlentities($row['city']) . "</br>";
}
?>

16

http://pear.php.net/package/MDB2
http://pear.php.net/package/DB
http://phplens.com/lens/adodb/docs-oracle.htm
http://adodb.sourceforge.net/

The PHP Release Cycle

The PHP Release Cycle
PHP’s source code is under continual development in a source code control system viewable
at http://git.php.net/. This is the only place bug fixes are merged. The code is open source
and anyone can read the code in Git or seek approval to contribute. Git “pull” requests can be
submitted at https://github.com/php/php-src.

The code in Git is used to create the various PHP distributions:

● Two-hourly snap-shots are created containing a complete set of all PHP’s source in the Git
repository at the time the snapshot was created. You can update your PHP environment
by getting this source code and recompiling, or by downloading the Windows binaries.
The snapshots may be relatively unstable because the code is in flux. The snapshots are
located at http://snaps.php.net/.

● The PHP release manager frequently releases a new stable version of PHP. It uses the
most current Git code at the time of release. Currently the release cycle is monthly.

● PECL OCI8 source code snapshots are taken from Git. Recently snapshots have been
made concurrently at the time of a PHP release (when OCI8 has changed).

● Various operating systems bundle the version of PHP current at the time the OS is
released and provide critical patch updates.

The schedules of PHP releases, the PECL source snapshots, and third party distributions are
not fully synchronized.

17

http://snaps.php.net/
https://github.com/php/php-src
http://git.php.net/

PHP Oracle Extensions

18

CHAPTER 4

INSTALLING ORACLE DATABASE 11G
EXPRESS EDITION

This chapter contains an overview of, and installation instructions for, Oracle Database 11g
Express Edition (“Oracle XE”). The installation instructions are given for Linux and Windows.

Oracle Database Editions
There are a number of editions of the Oracle database, each with different features, licensing
options and costs. The editions are:

● Express Edition

● Standard Edition One

● Standard Edition

● Enterprise Edition

All the editions are built using the same code base. That is, they all have the same source
code, but different features are available in each edition. Enterprise Edition has all the bells
and whistles, whereas the free Express Edition has a limited feature set, but still has all the
reliability and performance of the Enterprise Edition. The PHP code you write for Express
Edition can be used unchanged with Enterprise Edition.

You could start off with the Express Edition, and, as needed, move up to another edition as
your scalability and support requirements change. You could do this without changing any of
your underlying table structure or code. Just change the Oracle software and you’re away.

There is a comprehensive list of the features for each Oracle edition at
http://www.oracle.com/us/products/database/product-editions-066501.html.

This book discusses working with Oracle Database 11g XE.

Oracle Database 11g XE
The free Oracle Database 11g Express Edition is available in 32-bit form on Windows and 64-
bit for Linux platforms. Oracle Database 11g XE is a good choice for development of PHP
applications that require a free, small footprint database.

Oracle Database 11g XE is available on the Oracle Technology Network at
http://www.oracle.com/technetwork/products/express-edition/overview/index.html for
the following operating systems:

● Microsoft Windows XP Professional

● Microsoft Windows Server 2003 (all editions), 2003 R8 (all editions), 2008 (Standard,
Enterprise, Datacenter, Web and Foundation editions)

● Microsoft Windows 7 (Professional, Enterprise, and Ultimate editions)

● Oracle Linux and RHEL 4 Update 7, or 5 Update 2, or later updates.

19

http://www.oracle.com/technetwork/products/express-edition/overview/index.html
http://www.oracle.com/us/products/database/product-editions-066501.html

Installing Oracle Database 11g Express Edition

● SUSE SLES 10 SP2 and 11

The installation needs 1.5 GB of disk space. A RAM size of 512MB is recommended as the
minimum.

There are some limitations on using Oracle Database 11g XE:

● Up to 11GB of data can be stored

● A single database instance is installable

● A single CPU is used, even if multiple CPUs exist

● Only 1GB RAM used, even if more RAM is installed

These limitations do not exist in other editions of Oracle Database.
Oracle Database 11g XE has a browser-based application development tool called Oracle

Application Express. It has some management capabilities.
Support for Oracle Database 11g XE is through an Oracle Technology Network discussion

forum, which is populated by peers and product experts. You cannot buy support from Oracle
for Oracle Database 11g XE. If you need a fully supported version for the Oracle database,
you should consider Oracle Standard Edition or Enterprise Edition. You can download all the
editions of the Oracle Database from the Oracle Technology Network. Subject to the click
through license, you can use them for application development and testing, but when you go
production, you will need to purchase a license.

Installing Oracle Database 11g XE on Linux
Most PHP applications are deployed on Linux. You can obtain Oracle Linux and patches for free
from https://linux.oracle.com/. The yum server at http://public-yum.oracle.com/
explains how to configure the repository to get updates. If you want to create a virtual
machine to run Linux, Oracle's VirtualBox makes it easy. You can download this from
https://www.virtualbox.org/.

To install Oracle Database 11g XE on Linux:
1. Turn off SELinux by editing /etc/selinux/config on Oracle Linux and setting:

SELINUX=disabled

Reboot the system after doing this, or also use the setenforce program.
2. Install the required packages, of the given versions or later:

Script 2: glibc release 2.3.4-2.41
Script 3: make release 3.80
Script 4: binutils 2.16.91.0.5
Script 5: gcc 4.1.2
Script 6: libaio 0.3.104

3. Download Oracle Database 11g XE from
http://www.oracle.com/technetwork/products/express-edition/downloads/index.html.

4. Log in or su as root:

su -
Password:

5. Install the RPM:

20

http://www.oracle.com/technetwork/products/express-edition/downloads/index.html
https://www.virtualbox.org/
http://public-yum.oracle.com/
https://linux.oracle.com/

Installing Oracle Database 11g XE on Linux

rpm -ivh oracle-xe-11.2.0-1.0.x86_64.rpm

Oracle Database 11g XE installs in a few minutes.
6. Configure the database:

/etc/init.d/oracle-xe configure

7. Accept the ports. The default are 8080 for Application Express, and 1521 for the
Database Listener.

8. Enter and confirm the password for the default users.

9. Enter Y or N for whether you want the database to start automatically on reboot. The
database and database listener are configured and started.

If you use the Oracle Unbreakable Linux Network and have the Oracle Software channel
enabled, you could instead install Oracle Database 11g XE with:

up2date oracle-xe

After this download completes, follow the previous configuration steps from step 5 onwards.

Installing Oracle Database 11g XE on Windows
To install Oracle Database 11g XE on Windows, follow these steps:
1. Log on to Windows as a user with Administrative privileges.

2. Download Oracle Database 11g XE from
http://www.oracle.com/technetwork/products/express-edition/downloads/index.html.

3. Unzip OracleXE112_Win32.zip and navigate to the Disk1 folder. Double click on the
setup.exe file.

4. In the Oracle Database 11g XE - Install Wizard welcome window, click Next.

21

Figure 5: Oracle Database 11g XE install
welcome dialog.

Installing Oracle Database 11g Express Edition

5. In the License Agreement window, accept the license and click Next.

6. In the Choose Destination Location window, either accept the default or click Browse to
select a different installation directory. Click Next.

7. Oracle Database 11g XE selects a number of default ports. If these ports are already
being used, you are prompted to enter another number.

8. In the Specify Database Passwords window, enter and confirm the password to use for the
SYS and SYSTEM database accounts. Click Next.

22

Figure 7: Oracle Database 11g XE database
password dialog.

Figure 6: Oracle Database 11g XE install
location dialog.

Installing Oracle Database 11g XE on Windows

9. In the Summary window, review the installation settings. Click Install.

10. In the InstallShield Wizard Complete window, click Finish.

Windows users will understandably want to develop on a familiar platform. However, because
most PHP deployments are on Linux, and because of differences in performance and behavior
of PHP on Windows, you should strongly consider developing on Linux to avoid unexpected
surprises when applications are deployed.

Managing the Oracle Database 11g XE
The Oracle Database 11g XE can be managed with command line tools, Oracle Application
Express and Oracle SQL Developer.

Setting the Oracle Database 11g XE Environment Variables on Linux

There are a number of environment settings and configuration options you can set for Oracle
Database 11g XE. The more commonly used settings are preconfigured.

On Linux platforms a script is provided to set the Oracle environment variables after you
log in. The script for Bourne, Bash and Korn shells:

/u01/app/oracle/product/11.2.0/xe/bin/oracle_env.sh

For C and tcsh shells, use oracle_env.csh. Run the appropriate script for your shell to set your
Oracle Database 11g XE environment variables. You can also add this script to your login
profile to have the environment variables set up automatically when you log in.

To add the script to your Bourne, Bash or Korn shell, add the following lines to your
.bash_profile or .bashrc file:

source /u01/app/oracle/product/11.2.0/xe/bin/oracle_env.sh

23

Figure 8: Oracle Database 11g XE install
summary dialog.

Installing Oracle Database 11g Express Edition

In some versions of the shells you may need to use a single period instead of source. To add
the script to your login profile for C and tcsh shells, use the oracle_env.csh file instead.
If you ever forget where the Oracle software is installed, look at the file /etc/oratab. This lists
each Oracle Database home directory.

Starting and Stopping the Listener and Database

The database listener is an Oracle Net program that listens for, and responds to, requests to
the database. The database listener must be running to handle these requests. The database
is another process that runs in memory, and needs to be started before Oracle Net can hand
connection requests to it.

After installing Oracle Database 11g XE, the listener and database should already be
running, and you may have requested during the installation that the listener and database
should be started when the operating system starts up. If you need to manually start or stop
the database listener, the options and commands for this are listed below.

Enabling Database Startup and Shutdown on Linux

You may not initially be able to start and stop the database using the menu on Linux
platforms unless you are logged in as the root user. This is because your user is not a member
of the operating system dba group by default. To enable this functionality, add your username
to the dba group using Linux's System Settings and re-login.

Starting and Stopping the Listener and Database on Linux

The administration options are in an Oracle Database 11g Express Edition menu. Depending
on your version of Linux this will be located under the Applications, Main or K Menu menu. To
start up the listener and database on Linux platforms using the desktop, select Oracle
Database 11g Express Edition > Start Database. To shut down the database on Linux
platforms using the desktop, select Oracle Database 11g Express Edition > Stop
Database.

To start the listener and database on Linux platforms using the command line, run the
following command in a shell as the root user:

service oracle-xe start

To stop the listener and database on Linux platforms using the command line, run the
following command in your shell:

service oracle-xe stop

The script is located in /etc/init.d. If service does not exist in your environment, run the script
directly.

You can also use the Services dialog under the System Administration menu to control the
listener and database. For example, to start the listener and database from the Desktop
Services dialog on Oracle Linux 5 with the Gnome window manager, select System
>Administration > Server Settings > Services. Select oracle-xe from the list of services
and select Start.

24

Managing the Oracle Database 11g XE

Starting and Stopping the Listener and Database on Windows

To start the listener and database on Windows platforms, in the All Programs menu select
Oracle Database 11g Express Edition > Start Database. A Window is displayed showing
the status of the listener and database startup process.

Type exit and press Enter to close the window. The listener and database are now started.
To stop the listener and database on Windows platforms, select All Programs > Oracle

Database 11g Express Edition > Stop Database. A window is displayed showing the
status of the listener and database shutdown process.

Type exit and press Enter to close the window. The listener and database are now stopped.
You can also start and stop the listener separately on Windows platforms using the Services
dialog.

Basic Monitoring of Oracle Database 11g XE

The Oracle Application Express “Apex” tool provides some basic database monitoring.

25

Figure 9: Start Database dialog.

Figure 10: Stop Database dialog.

Installing Oracle Database 11g Express Edition

Oracle SQL Developer also has monitoring and management capabilities, discussed in the
next chapter.

To use Apex to verify the installation of Oracle Database 11g XE:
1. Open a web browser and enter the home page administration URL, using the port you

selected during installation, http://localhost:8080/f?p=4950. This URL is also invoked by
the Get Started sub-menu option of the Oracle Database 11g Express Edition menu.

2. The Database administration page is displayed.

3. Click on Storage. Log in as user SYSTEM with the password you entered during the
installation. You should now see the database configuration parameters that have non-
default values. You can also un-check the filter to see all parameter values.

Similarly with the other top level menu items on the Database home page you can
view the current sessions of database connections, and look at the initialization
parameters of the database.

26

Figure 11: Oracle Database 11g XE home page
login screen.

Figure 12: Oracle Database 11g XE parameters
page.

Oracle Terminology

Oracle Terminology
There are some differences between the terminology used when describing an Oracle
database and other databases. The following overview covers the main Oracle terminology.

Databases and Instances

An Oracle database stores and retrieves data. Each database consists of one or more data
files. An Oracle database server consists of an Oracle database and an Oracle instance. Every
time a server is started, a shared memory region called the system global area (SGA) is
allocated and the Oracle background processes are started. The combination of the
background processes and SGA is called an Oracle instance. On some operating systems, like
Windows, there are no separate background processes. Instead threads run within the Oracle
image.

Tablespaces

Tablespaces are the logical units of data storage made up of one or more datafiles.
Tablespaces are often created for individual applications because tablespaces can be
conveniently managed. Users are assigned a default tablespace that holds all the data the
users create. A database is made up of default and DBA-created tablespaces.

Schemas and Users

A schema is a collection of database objects such as tables and indexes. A schema is owned
by a database user and has the same name as that user. Many people use the words schema
and user interchangeably.

Once you have installed PHP and want to write scripts that interact with Oracle, you need
to connect as the owner of the schema that contains the objects you want to interact with. For
example, to connect to the HR schema, you would use the username HR in PHP’s connection
string.

Although you may have more than one database per machine, typically only a single
Oracle database exists containing multiple schemas. Multiple applications can use the same
database without any conflict by using different schemas. Instead of using a CREATE DATABASE
command for new applications, in Oracle use the CREATE USER command to create a new
schema in the database.

27

Installing Oracle Database 11g Express Edition

28

CHAPTER 5

SQL WITH ORACLE DATABASE

This chapter contains an overview of some SQL*Plus, Oracle Application Express and Oracle
SQL Developer features you can use to perform database development. These three tools are
available with, or for, all editions of Oracle Database. They offer an extensive set of
development functionality. This chapter focuses on how to use them for SQL development.
Testing and tuning SQL is often more easily done in one of these tools before incorporating it
into PHP applications.

Oracle SQL*Plus
SQL*Plus is Oracle's traditional command line tool. It is available whenever the database is
installed. It is also available in “Instant Client” form so client machines can easily connect to a
remote database. SQL*Plus allows ad-hoc queries, scripting and fundamental database
administration. Many books, including this one, use SQL*Plus to show SQL examples.

Setting the Environment for SQL*Plus

Oracle Database 11g XE sets up a menu option to run SQL*Plus. However, in general, if you
want to run SQL*Plus from a terminal window, the sqlplus executable must be in your PATH
and several environment variables need to be set explicitly. These are pre-set in the registry
on Windows.

In the Linux bash shell, set the environment for Oracle Database 11g XE with:

$ source /u01/app/oracle/product/11.2.0/xe/bin/oracle_env.sh

In some versions of the shell you will need to use a period instead of source. An equivalent
file with the suffix “.csh” exists for users of the C shell.

On other editions of the Oracle database, the /usr/local/bin/oraenv or
/usr/local/bin/coraenv (for users of C shell) scripts set the environment. In the Bash shell, use:

$ source /usr/local/bin/oraenv
ORACLE_SID = [] ?

You will be prompted for the system identifier ("SID") of the database that you intend to
connect to on this machine. The available SIDs can be seen in /etc/oratab. Type the desired
SID and press enter.

If you are running SQL*Plus on a machine remote from the database server, you need to
manually set the environment.

The same environment variables needed for SQL*Plus are also used by the PHP OCI8
extension.

Starting SQL*Plus

Once the environment is set, SQL*Plus can be started with the sqlplus command:

$ sqlplus

29

SQL With Oracle Database

SQL*Plus: Release 11.2.0.2.0 - Production on Sat Jun 2 17:19:09 2012
Copyright (c) 1982, 2011, Oracle. All rights reserved.

Enter user-name: system
Enter password:

Connected to:
Oracle Database 11g Express Edition Release 11.2.0.2.0 – 64bit Production

SQL>

For Oracle 11g XE, the password to enter is the one set during installation. After starting
SQL*Plus, the prompt SQL> is shown. At the prompt you can type SQL commands. Enter HELP
INDEX to find a list of commands. Type EXIT to quit.

In development, it is common to put the username, password and database that you want
to connect to all on the command line, but beware that entering the password like this is a
security risk:

sqlplus system/systempwd@localhost/XE

A better practice is to run:

sqlplus system@localhost/XE

This will prompt for the password.
Another way is to start SQL*Plus without attempting to log on, and then use the CONNECT

command:

$ sqlplus /nolog
. . .
SQL> connect system/systempwd@localhost/XE
Connected.
SQL>

To connect as a privileged user for database administration, first login to the operating system
as a user in the operating system dba group and then use:

$ sqlplus / as sysdba

or

sqlplus /nolog
SQL> connect / as sysdba

Using SQL*Plus to Unlock the HR Schema for Demonstration Table Access

For general database access, it is better not to connect as the SYSTEM user. This book uses
the Human Resource sample tables, located in the HR schema. To unlock this account and set
the password after the database has been installed, connect as a privileged user and execute
an ALTER USER command:

SQL> connect system/systempwd
SQL> alter user hr identified by welcome account unlock;

30

Oracle SQL*Plus

This sets the password to welcome.

Creating Database Users in SQL*Plus

If you want to create your own schema, start SQL*Plus. Then run SQL statements like:

SQL> connect system/systempwd@localhost/XE
SQL> create user cj identified by welcome;
SQL> alter user cj default tablespace users
 temporary tablespace temp
 quota unlimited on users;
SQL> grant create session
 , create table
 , create procedure
 , create sequence
 , create trigger
 , create view
 , create synonym
 , alter session
 to cj;

This creates a user cj with password of welcome. The user has the capability to create and
use some types of database objects. You can choose which privileges to grant each user
depending on what your application does.

Executing SQL and PL/SQL Statements in SQL*Plus

SQL statements such as queries must be terminated with a semi-colon (;):

SQL> select * from locations;

or with a single slash (/):

SQL> select * from locations
 2 /

This last example also shows SQL*Plus prompting for a second line of input. Code in Oracle's
procedural language, PL/SQL, must end with a slash in addition to the PL/SQL code's semi-
colon:

SQL> begin
 2 myproc();
 3 end;
 4 /

The terminating semi-colon or slash is not part of the statement. Tools other then SQL*Plus
will use different methods to indicate “end of statement”.

If a blank line (in SQL) or a single period (in SQL or PL/SQL) is entered, SQL*Plus returns to
the main prompt and does not execute the statement:

SQL> select * from locations
 2
SQL>

31

SQL With Oracle Database

Commands that are local to SQL*Plus like STARTUP and SET which are not sent to the database
do not need a terminating semi-colon or slash.

Controlling Query Output in SQL*Plus

SQL*Plus has various ways to control output display.
The SET command controls some formatting. For example, to change the page size (how

often table column names repeat) and the line size (where lines wrap):

SQL> set pagesize 80
SQL> set linesize 132

If you are fetching data from LONG, CLOB or BLOB columns, increase the maximum number of
characters that will display (the default is just 80):

SQL> set long 1000

The column width of queries can be changed with the COLUMN command, here setting the
COUNTRY_NAME output width to 20 characters, and the REGION_ID column to a numeric
format with a decimal place:

SQL> select * from countries where country_id = 'FR';

CO COUNTRY_NAME REGION_ID
-- -- ----------
FR France 1

SQL> column country_name format a20
SQL> column region_id format 99.0
SQL> select * from countries where country_id = 'FR';

CO COUNTRY_NAME REGION_ID
-- -------------------- ----------
FR France 1.0

Output can be spooled to a file by using the SPOOL command before commands are executed:

SQL> spool /tmp/myfile.log

Running SQL Scripts in SQL*Plus

If multiple SQL statements are stored in a script myscript.sql, they can be executed with the
START command or its more common abbreviation @. Scripts can be run either from the
terminal prompt:

$ sqlplus hr@localhost/XE @myscript.sql

or from the SQL*Plus prompt:

SQL> @myscript.sql

Because SQL*Plus doesn't have a full history command, creating scripts in an external editor
and running them with @ is recommended.

32

Oracle SQL*Plus

Table Metadata in SQL*Plus

Queries from inbuilt views like USER_TABLES and USER_INDEXES will show information about
the objects you own. A traditional query from the CAT view gives a short summary:

SQL> select * from cat;

TABLE_NAME TABLE_TYPE
------------------------------ -----------
COUNTRIES TABLE
DEPARTMENTS TABLE
DEPARTMENTS_SEQ SEQUENCE
EMPLOYEES TABLE
EMPLOYEES_SEQ SEQUENCE
JOBS TABLE
JOB_HISTORY TABLE
LOCATIONS TABLE
LOCATIONS_SEQ SEQUENCE
REGIONS TABLE

10 rows selected.

To find out about the columns of a table, query the USER_TAB_COLUMNS view, or simply use
the DESCRIBE command to give an overview:

SQL> describe countries
 Name Null? Type
 --- -------- ----------------------------
 COUNTRY_ID NOT NULL CHAR(2)
 COUNTRY_NAME VARCHAR2(40)
 REGION_ID NUMBER

Starting and Stopping the Database With SQL*Plus

To start up the listener on Linux, open a terminal window as the root user and run the
following commands:

su – oracle
$ source /u01/app/oracle/product/11.2.0/xe/bin/oracle_env.sh
$ lsnrctl start

Oracle Net starts the listener, which handles communication between the database and client
programs like SQL*Plus or PHP. If you later want to shut down the listener manually, use
lsnrctl like:

$ lsnrctl stop

On Windows, use the Services dialog to control the listener.
After starting the listener, you need to start the database itself using SQL*Plus. For this,

you must start SQL*Plus with the SYSDBA role. To start up a database using SQL*Plus, enter
the following at the command line prompt:

su – oracle
$ source /u01/app/oracle/product/11.2.0/xe/bin/oracle_env.sh

33

SQL With Oracle Database

$ sqlplus /nolog

The SQL*Plus command line starts. You can also start SQL*Plus from the Oracle Database
11g Express Edition > Run SQL Command Line on Linux, or Program Files > Oracle
Database 11g Express Edition > Run SQL Command Line on Windows.

At the SQL*Plus command line prompt, enter the following commands to connect to the
database and start it up:

SQL> connect / as sysdba
SQL> startup

The database is started.
If you start the database before starting the Oracle Net listener, it can take a short while

before the database registers with the listener. Until this happens, connections to the
database will fail. You can explicitly force registration with:

SQL> alter system register;

To shut down the database, you need to log in as a SYSDBA user, and issue the SHUTDOWN
IMMEDIATE command. Log into SQL*Plus as before and issue the following command:

SQL> connect / as sysdba
SQL> shutdown immediate

If you use the alternative SHUTDOWN NORMAL command, the shutdown will hang until all open
connections have completed their work. Since PHP OCI8 has the concept of persistent
connections that remain open indefinitely, you will first need to shutdown Apache to close
those connections. You can also use SHUTDOWN ABORT to immediately terminate a database,
although this is not recommended.

The SQL*Plus User’s Guide and Reference manual gives you the full syntax and other
options for starting up and shutting down the database if you need more help.

The easiest way on Linux to start and stop Oracle XE 11g is with the service command as
shown in the previous chapter.

Oracle Application Express
Oracle Application Express is a browser-based application builder for the Oracle database. It is
installed with Oracle Database 11g XE and is also available for download from Oracle
Technology Network as a standalone product for other versions and editions of the database.
It contains an application development tool, not covered in this book. The release of Oracle
Application Express installed with Oracle Database 11g XE has a small additional module for
performing database monitoring.

34

Oracle Application Express

Creating an Application Express Workspace

1. Open a web browser and enter the home page administration URL, using the port you
selected during installation, http://localhost:8080/f?p=4950.

2. Click on Application Express and login using the credentials created during database
installation.

35

Figure 14: Oracle Application Express
Administration Login.

Figure 13: Oracle Application Express
Administration Page.

SQL With Oracle Database

3. Create a new workspace with new Database and Application Express users. For example,
use myapexdb and myapex, respectively.

4. Click Create Workspace and the workspace is created:

36

Figure 15: Creating new users with Oracle
Application Express

Figure 16: Oracle Application Express
Workspace Creation

Oracle Application Express

Logging In To Oracle Application Express

To log in to Oracle Application Express as the new application user:
1. Follow the “click here” link on the account confirmation page or open the URL,

http://localhost:8080/apex.The Oracle Application Express login screen is displayed:

2. Login with the credentials you created in the previous section, myapexdb and myapex.

37

Figure 17: Oracle Application Express login
screen.

Figure 18: Oracle Application Express interface.

SQL With Oracle Database

Creating Database Objects in Application Express

The Oracle Application Express Object Browser can be used to create or edit many types of
database objects, from tables and views, right through to procedures and triggers.

Oracle Application Express uses wizards to guide you through creating these database
objects. The following example covers creating a table, but you will see that the interface is
wizard-based and creating and editing different objects and queries can all be performed
through the SQL Workshop.

To create a new table:
1. On the Database home page, click the SQL Workshop menu link.

2. Click the Object Browser icon. The Object Browser page is displayed.

38

Figure 20: Oracle Application Express object
browser screen.

Figure 19: Oracle Application Express SQL
Workshop

Oracle Application Express

3. Select the yellow Create menu on the right hand side and choose Table.

4. Enter a table name in the Table Name field, and details for each column. Click Next.

39

Figure 21: Oracle Application Express object
browser screen

Figure 22: Oracle Application Express table
definition screen.

SQL With Oracle Database

5. Leave the default No Primary Key and click Next.

6. Leave the Foreign Key unset and click Next.

7. Leave the Constraints page unchanged and click Next.

8. The SQL CREATE statement used to create the table is shown.

9. On this confirmation page click Create to complete the creation. The table is created and
a description of the table is displayed.

40

Figure 24: Oracle Application Express table
created confirmation screen.

Figure 23: Oracle Application Express Create
Table

Oracle Application Express

Working With SQL in Application Express

The SQL Workshop also enables you to:

● Write SQL and PL/SQL

● Load and save SQL scripts

● Graphically build SQL

The following example guides you through creating a SQL script. This example uses the Query
Builder to graphically create a SQL script to query data. The myapex user you created has the
sample tables already created. To access Query Builder:
1. On the Application Express home page, click the SQL Workshop icon.

2. Click the Query Builder icon.

41

Figure 25: Oracle Application Express SQL
options screen.

SQL With Oracle Database

3. Select objects from the Object Selection pane. When you click on the object name, it is
displayed in the Design pane.

4. Select columns from the objects in the Design pane to select which columns to include in
the query results.

42

Figure 26: Oracle Application Express SQL
query builder screen.

Figure 27: Oracle Application Express Query
Builder

Oracle Application Express

5. Establish relationships between objects by clicking on the right-hand column of each
table.

6. Click Run to execute the query and view the results.

7. You can save your query using the Save button.

Creating a PL/SQL Procedure in Application Express

To enter and run PL/SQL code in the SQL Commands page:
1. On the Application Express home page, click the SQL Workshop icon to display the SQL

Workshop page. Then click the SQL Commands icon to display the SQL Commands page.

43

Figure 28: Oracle Application Express SQL query results screen.

Figure 29: Oracle Application Express SQL Command Page

SQL With Oracle Database

2. On the SQL Commands page, enter some PL/SQL code. For example, the procedure
emp_stat averages the salary for departments in the HR schema, and is encapsulated in a
PL/SQL package called emp_sal.

create or replace package emp_sal as
procedure emp_stat;
end emp_sal;

3. Click Run to execute the PL/SQL.

4. Now replace the code with the package body specification:
create or replace package body emp_sal as

procedure emp_stat is
 type EmpStatTyp is record (Dept_name varchar2(20), Dept_avg number);
 EmpStatVar EmpStatTyp;
begin
 dbms_output.put_line('Department Avg Salary');
 dbms_output.put_line('--------------- -----------');
 for EmpStatVar in (select round(avg(e.sal),2)
 a,d.dname b
 from dept d, emp e
 where d.deptno = e.deptno
 group by d.dname)
 loop
 dbms_output.put_line(rpad(EmpStatVar.b,16,' ')||
 to_char(EmpStatVar.a,'999,999,999.99'));
 end loop;
end;

end emp_sal;

44

Figure 30: Oracle Application Express PL/SQL
and SQL command screen.

Oracle Application Express

5. Click Run. The PL/SQL code is executed.

6. You can save the PL/SQL code for future use, by clicking Save, or execute the stored
procedure by entering the following PL/SQL code and clicking Run.

begin
 emp_sal.emp_stat;
end;

45

Figure 32: Oracle Application Express SQL
Commands Screen

Figure 31: Oracle Application Express SQL
Commands

SQL With Oracle Database

Oracle SQL Developer
In addition to Oracle Application Express and SQL*Plus, you can also use Oracle SQL
Developer for database development and administration. Oracle SQL Developer is a free,
thick-client graphical tool. You can use it to execute SQL statements, view metadata, execute
and debug PL/SQL statements, and run some SQL*Plus commands (like DESCRIBE). SQL
Developer includes a database modeler, and a module to assist migration to Oracle Database.

SQL Developer can connect to Oracle databases from version 9.2.0.1 onwards. Metadata
and data from several third party databases, including MySQL Database are also viewable.
SQL Developer is available on Linux, Windows and Mac OS X.

You can download SQL Developer from the Oracle Technology Network at
http://www.oracle.com/technetwork/developer-tools/sql-developer. You can also
download extensions, documentation, and other resources from this site. There is also a
discussion forum for you to ask questions of other users, and give feedback to the SQL
Developer product team.

Creating a Database Connection in SQL Developer

When you start SQL Developer for the first time there are no database connections
configured, so the first thing you need to do is create one. The default SQL Developer screen
is shown in Figure 33.

46

Figure 33: Oracle SQL Developer login screen.

http://www.oracle.com/technetwork/developer-tools/sql-developer

Oracle SQL Developer

To create a database connection to the local Oracle Database 11g XE database:
1. Select Connections in the left pane, right click and select New Connection. Choose a

name to associate with the connection. Enter the login credentials for the Oracle
Database 11g XE with the username hr, and password you created for the HR user, the
hostname localhost, and the SID XE.

2. Click the Test button to test the connection. A message is displayed at the bottom left
side of the dialog to tell you whether the test connection succeeded.

3. Click the Connect button to save the connection and connect to the database. When you
have connected to a database, you can browse through the database objects displayed in
the left pane, and the right pane shows the contents of the object. In Figure 35, the
EMPLOYEES table is displayed.

Editing Data in SQL Developer

You can view and edit data using the Data tab for a table definition. Select the Data tab for
the EMPLOYEES table to display the records available. You can add rows, update data and
delete rows using the data grid. If you make any changes, the records are marked with an

47

Figure 35: Oracle SQL Developer main screen.

Figure 34: Oracle SQL Developer Connection
screen.

SQL With Oracle Database

asterisk. Throughout SQL Developer, there are context sensitive menus. Figure 36 shows the
choice of context menus available in the data grid.

Creating a Table in SQL Developer

You can create database objects such as tables, views, indexes, and PL/SQL procedures using
SQL Developer. To create a database object, right click on the database object type you want
to create, and follow the dialogs. You can use this method to create any of the database
objects displayed in the left pane.

To create a new table:
1. Select Tables in the left pane, right click and select New Table. The Create Table dialog

is displayed. Enter the column names, types and other parameters as required.

There is an Advanced check box that will give more advanced options like
constraints, indexes, foreign keys, and partitions.

48

Figure 37: Oracle SQL Developer Create Table
screen.

Figure 36: Oracle SQL Developer Data Grid.

Oracle SQL Developer

2. Click OK to create the table. The new table mytable is now listed in the left pane.

Click on the tabs displayed in the right pane to see the options available on the table, such as
the Data tab, which enables you to add, delete, modify, sort, and filter rows in the table.

Executing a SQL Query in SQL Developer

The SQL Worksheet component included in SQL Developer can be used to execute SQL and
PL/SQL statements. Some SQL*Plus commands can also be executed. To execute a SQL
statement in SQL Developer:
1. Select the myhr tab in the right hand pane. This is the connection created earlier in

Creating a Database Connection in SQL Developer. The SQL Worksheet component is
displayed, and shows an area to enter statements, and a set of tabs below that for further
options. If the tab is not available, select the menu Tools >SQL Worksheet. You are
prompted for the database connection name.

49

Figure 38: Oracle SQL Developer screen
showing the new table, MYTABLE.

Figure 39: Oracle SQL Developer screen
showing the SQL Worksheet.

SQL With Oracle Database

2. Enter the following two statements in the SQL Worksheet:

describe employees
select * from employees;

Click the Run Script icon (the second from the left in the right hand pane), or press
F5. Both the lines of this script are run and the output is displayed in tabs below. You
can view the output of the SELECT statement in the Results tab, using F9, and the
output of the whole script (including the DESCRIBE and SELECT statements) in the
Script Output tab, by using F5. The output in the Script Output window is similar to
SQL*Plus output.

3. If you want to execute a single line of the two-line block, select the line you want to
execute and click on the Execute Statement icon (the first from the left in the right
hand pane), or press F9. In this case, the SELECT statement (second line) is selected, and
the results are shown in the Results tab.

50

Figure 40: Oracle SQL Developer screen
showing SQL Worksheet with output.

Figure 41: Oracle SQL Developer screen
showing SQL Worksheet with output.

Oracle SQL Developer

Editing, Compiling and Running PL/SQL in SQL Developer

You can use SQL Developer to browse, create, edit, compile, run, and debug PL/SQL.
1. In the Connections pane, right click the Procedures node for your connection and

select New Procedure from the context menu. Add the name ADD_DEPT and click OK.

2. The PL/SQL Editor for ADD_DEPT is opened. Change the text so that the code is as follows:
create or replace procedure add_dept

(name in departments.department_name%type,
 loc in departments.location_id%type) is
begin
 insert into departments(department_id, department_name, location_id)
 values(departments_seq.nextval, name, loc);
end add_dept;

3. Compile the code by selecting the compile icon in the toolbar. If there are errors, they will
appear in a Message-Log window below the code.

4. Run the procedure. The green arrow icon runs the code.

51

Figure 42: SQL Developer new procedure dialog.

Figure 43: SQL Developer PL/SQL Code Editor.

SQL With Oracle Database

5. SQL Developer provides a dialog with an anonymous block to help test and run your code.
Find and replace the NULL values with values of your own, for example, 'Training' and
1800.

Click OK to run the procedure. Afterward browse the Departments table and go to the
Data tab to see the results added.

Running Reports in SQL Developer

There are a number of reports included with SQL Developer that may be useful to you, for
example, getting lists of all users in a database, all the tables owned by a user, or all the
views available in the data dictionary.

You can also create your own reports (using SQL and PL/SQL), and include them in SQL
Developer.

52

Figure 44: SQL Developer Run PL/SQL dialog.

Oracle SQL Developer

To display the version numbers of the database components using one of the supplied
reports:
1. Select the Reports tab in the left hand pane. Navigate down to Reports > Data

Dictionary Reports > About Your Database > Version Banner. After confirming the
connection to use, the report is run and the results are displayed in the right hand pane.

2. Click the Run Report in SQL Worksheet icon (next to Refresh). The source code is
written to the SQL Worksheet, where you could edit it and create a new report, if you
wished.

Creating Reports in SQL Developer

To create your own report, select User Defined Reports in the Reports pane, and right
click. It is good practice to create folder for your reports, to categorize them.

53

Figure 45: Oracle SQL Developer screen
showing output from a report.

Figure 46: Oracle SQL Developer screen
showing the source code of a report.

SQL With Oracle Database

3. Right click the User Defined Reports node and select New Folder. Complete the
details in the dialog. You can use this folder to import or add new reports.

4. Select the folder you created and right click to select New Report.

5. Give the report a name and description and enter the following SQL text.

select last_name,
 department_name,
 city
from departments d,
 locations l,
 employees e
where (d.location_id = l.location_id)
and (d.manager_id = e.employee_id)
and (e.department_id = d.department_id)
order by city, department_name

54

Figure 47: SQL Developer User Defined Reports

Oracle SQL Developer

6. Notice that the default style is table. You can test the report to ensure your SQL is correct,
without leaving the dialog. Click the Test Report button above the SQL.

7. Click Apply to save and close.

8. To run the report, select it in the Reports Navigator. You are prompted for a database
connection.

You can create tabular reports, charts, drill down reports and master/detail reports. For all
reports, supplied and user defined, you can export, import and share your reports.

55

Figure 48: SQL Developer Create Report Dialog

Figure 49: SQL Developer User Defined,
Tabular Report

SQL With Oracle Database

56

CHAPTER 6

NETBEANS IDE FOR PHP

The NetBeans IDE (Integrated Developer Environment) for PHP provides tools to make PHP
development productive and effective.

The core of NetBeans PHP support is the PHP Editor, which includes code completion and
other programming aids. The IDE is also integrated with many third party components
including PHP frameworks, the Xdebug debugger, the PHPUnit tester, Jenkins continuous
integration, and the ApiGen documentation generator.

This chapter gives a high level overview of NetBeans. NetBeans is extremely popular and
there is a large amount of documentation and information already available. Refer to these
excellent resources, notably those at http://netbeans.org/kb/trails/php.html.

NetBeans Installation
To install NetBeans IDE, go to http://netbeans.org/downloads. Download the NetBeans PHP
bundle for your operating system or get the platform-independent version. Follow the
NetBeans IDE 7.2 Installation Instructions at
http://netbeans.org/community/releases/72/install.html.

If you need additional language support, you can install individual plugins from inside the
IDE.

NetBeans Editor Features
Some of the commonly used NetBeans editor features are mentioned below. For more
information and to discover other editor features, see the NetBeans IDE for PHP Editor: Brief
Overview http://netbeans.org/kb/docs/php/editorguide.html.

Syntax Highlighting and Code Navigation
Comprehensive highlighting is available for PHP and other languages, including HTML, JSON
and XML:

57

Figure 50: NetBeans IDE syntax highlighting

http://netbeans.org/kb/docs/php/editorguide.html
http://netbeans.org/community/releases/72/install.html
http://netbeans.org/downloads
http://netbeans.org/kb/trails/php.html

NetBeans IDE for PHP

NetBeans also gives parameter hints, identifies syntax errors and provides error descriptions.

Code completion and parameter hints
Strong code completion functionality is provided.

Other IDE features include code folding, smart indenting, formatting, and bracket completion.

Navigator
The Navigator allows easy interpretation of code, and allows direct access to function and
method definitions.

You can also navigate directly from an occurrence of a variable to the line where the variable
is declared or initialized.

Rename refactoring and instant renaming allows safe renaming of all occurrences of an
element across multiple files, and has a preview feature.

58

Figure 51: NetBeans code completion

Figure 52: NetBeans Navigator

NetBeans Editor Features

Third Party Component integration
NetBeans IDE can utilize many standard PHP development tools, including:

• ApiGen documentation generator support

• Code generators to generate class getters, setters, and to override implemented
methods

• PHPUnit and Selenium automated testing tools

• Symfony2, Zend Framework and Doctrine2 Frameworks

Development Processes in NetBeans
The NetBeans IDE supports both complex projects and single file development. The IDE has
support for Subversion, Mercurial, and Git versioning systems. You can also add CVS support
as a plugin.

PHP files can be run as scripts, run with PHP's built-in webserver or deployed remotely.
NetBeans supports FTP/SFTP for remote files access.

OCI8 Support in NetBeans
NetBeans IDE for PHP automatically recognizes OCI8 for code completion and provides
documentation.

If the local PHP binary registered with NetBeans has the OCI8 extension then scripts using
OCI8 will execute in command line or with the local PHP development web server. If you are
deploying to a remote host, then OCI8 needs to be installed there.

Oracle Database Support in NetBeans
The NetBeans IDE can connect to Oracle Database, view data and meta-data, and also
execute SQL commands.

To connect to Oracle, open the Services window and register your database by right-

59

Figure 53: NetBeans code completion

NetBeans IDE for PHP

clicking the Databases node and selecting New Connection. You may need to add the path
to your database driver as well. For instructions see Connecting to Oracle Database from
NetBeans IDE, http://netbeans.org/kb/docs/ide/oracle-db.html.

NetBeans IDE provides a tree view of database contents and an SQL editor.

Note that you do not need to create a connection to your Oracle database from the IDE. You
can use another tool to work with SQL and Oracle database objects, and use the NetBeans
IDE only for editing PHP, if this is your preferred development process.

NetBeans OCI8 Tutorial
For a full example of PHP development in NetBeans using Oracle Database and the OCI8
extension, see Creating a Database-Driven Application with NetBeans IDE PHP Editor
http://netbeans.org/kb/docs/php/wish-list-tutorial-main-page.html.

Daily and Development NetBeans Builds
To try out upcoming features being added to NetBeans, you can install daily development
builds of the IDE. Both public release and development builds can be installed from
http://netbeans.org/downloads/index.html. Look for the Development link.

Getting Help for NetBeans
NetBeans IDE for PHP has great sources of information:

• Built-in help. Inside the IDE, click F1 or navigate to Help > Help Contents and a help
window opens. You can also click the Help button in a dialog to see a description of the
options in that dialog. Context-sensitive help is also available for the Editor, Projects,

60

Text 1: NetBean Database connection navigator and Oracle SQL area

http://netbeans.org/downloads/index.html
http://netbeans.org/kb/docs/php/wish-list-tutorial-main-page.html
http://netbeans.org/kb/docs/ide/oracle-db.html

Getting Help for NetBeans

Services, Files, and other windows. Select any item in a window and press F1 to see the
help for that window.

• Web-based tutorials. See the PHP Learning Trail,
http://netbeans.org/kb/trails/php.html.

• NetBeans PHP Users Forum and Mailing List. A forum for PHP users is available at
http://forums.netbeans.org/php-users.html. This forum is mirrored as a mailing
list. Subscribe to the mailing list or the forum at
http://netbeans.org/community/lists/index.html.

• NetBeans PHP Blog. The NetBeans PHP development team keeps a blog where you
can learn about future plans and the latest NetBeans features. Comments welcome!
See http://blogs.oracle.com/netbeansphp/.

61

http://blogs.oracle.com/netbeansphp/
http://netbeans.org/community/lists/index.html
http://forums.netbeans.org/php-users.html
http://netbeans.org/kb/trails/php.html

NetBeans IDE for PHP

62

CHAPTER 7

INSTALLING APACHE HTTP SERVER

This chapter gives you the steps needed to install and configure the Apache HTTP Server for
use with PHP. If you already have Apache installed, for example from a Linux software
repository, you can skip this chapter.

Steps are given for Oracle Linux and Windows. The procedure to install on other Linux
platforms is the same as for Oracle Linux.

Adjust the file names and commands below if the version of Apache you have differs from
the instructions.

Apache HTTP Server Packages on Oracle Linux
Apache is available in the httpd package on Oracle Linux. If you want to rebuild PHP will also
need the httpd-devel package installed:

yum install httpd httpd-devel

Use the service command to control Apache:

service httpd start
service httpd stop

Note that service passes only a limited range of environment variables from your current shell
to Apache.

Alternatively you can control Apache with:

/usr/sbin/apachectl start
/usr/sbin/apachectl stop

Building Apache HTTP Server on Linux
The default version of Apache on your Linux distribution may not be the most recent
available. To manually install Apache HTTP Server for use with PHP on Oracle Linux:
1. Download the Apache HTTP Server from http://httpd.apache.org/download.cgi. The

version used in this installation example is httpd-2.4.2.tar.bz2.

2. Download the Apache Portable Runtime (APR) and APR utilities from
http://apr.apache.org/download.cgi. The files used in this installation are apr-
1.4.6.tar.bz2 and apr-util-1.4.1.tar.bz2.

3. Log in as the root user and extract the files:

tar -jxvf httpd-2.4.2.tar.bz2
tar -jxvf apr-1.4.6.tar.bz2
tar -jxvf apr-utl-1.4.1.tar.bz2

If you downloaded the .gz gzipped files, use the -z flag instead of the -j flag.

63

http://apr.apache.org/download.cgi
http://httpd.apache.org/download.cgi

Installing Apache HTTP Server

4. Move the APR directories into the web server source, removing the version suffix:

mv apr-1.4.6 httpd-2.4.2/srclib/apr
mv apr-util-1.4.1 httpd-2.4.2/srclib/apr-util

5. Configure and build the web server:
cd httpd-2.4.2
./configure –-prefix=/opt/apache –-with-included-apr \
 –-with-mpm=prefork --enable-mpms-shared
make
make install

When configuring the web server, the options indicate the default processing module is
prefork, a multi-process mode which is generally recommended because PHP thread
safety isn't guaranteed. However enabling the processing module as shared allows later
swapping if you want to try a different module. The --prefix option sets where Apache
HTTP Server will be installed during the command make install.

After installation, use the apachectl script in the Apache bin directory to start and stop
Apache HTTP Server:

/opt/apache/bin/apachectl start
/opt/apache/bin/apachectl stop

Configuring Apache HTTP Server on Linux
The configuration files for Apache are in /etc/httpd/conf for the system Apache, or
/opt/apache/conf if you did a manual install.

Setting the Apache Server Name

If you installed on a machine with a dynamic IP address, you might see a warning when
Apache starts: “Could not reliably determine the server's fully qualified domain name”. You
can prevent this warning by editing httpd.conf in the configuration directory and setting:

ServerName localhost:80

Setting up an Apache User Directory on Linux

You might like to set up the UserDir directive so you can run PHP scripts from your own
$HOME/public_html directory. Otherwise you will need access to the document root directory,
/var/www/html or /opt/apache/htdocs. How you enable user directories depends on the
Apache version. Typically it requires the userdir_module to be loaded and UserDir enabled.
Your home and public_html directories, and PHP or HTML files will also need read and/or
execute permissions for the “other” group.

With the httpd package on Oracle Linux:
1. Edit /etc/httpd/conf/httpd.conf

2. Change the mod_userdir section to:

<IfModule mod_userdir.c>

64

Configuring Apache HTTP Server on Linux

 UserDir public_html
</IfModule>

3. Set SELinux to permissive, otherwise files in the user directory will not be accessible:

setenforce permissive

Alternatively /etc/selinux/config can be updated.
4. Restart the web server:

service httpd restart

5. Login as your normal, non-privileged user and make a public_html sub-directory:

$ mkdir $HOME/public_html
$ chmod 755 $HOME $HOME/public_html

To create a user directory with a manually installed Apache in /opt/apache:
1. Edit /opt/apache/conf/httpd.conf

2. Uncomment the line:

LoadModule userdir_module modules/mod_userdir.so

3. Uncomment the line:

Include conf/extra/httpd-userdir.conf

4. Restart the web server:

/opt/apache/bin/apachectl restart

5. Login as your normal, non-privileged user and make a public_html sub-directory:

$ mkdir $HOME/public_html
$ chmod 755 $HOME $HOME/public_html

Environment Variables for PHP in Apache on Oracle Linux

When you use Apache HTTP Server with PHP OCI8, you must set some Oracle environment
variables before starting the web server. Which variables you need to set are determined by
how PHP is installed, how you connect to the database, and what optional settings are
desired.

Never set Oracle environment variables in PHP scripts with putenv(). The web server may
load Oracle libraries and initialize Oracle data structures before running your script. Using
putenv() causes hard to track errors as the behavior is not consistent for all variables, web
servers, operating systems, or OCI8 functions. Variables should be set prior to Apache
starting.

65

Installing Apache HTTP Server

To set environment variables for use by the Oracle Linux packaged Apache, add them to
/etc/sysconfig/httpd. These variables will be passed to Apache even if you control it with the
service command. For Apache in /opt/apache set them in the /opt/apache/bin/envvars script.
For example, if you install PHP using Oracle Database 11g XE, set:

export ORACLE_HOME=/u01/app/oracle/product/11.2.0/xe
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$ORACLE_HOME/lib

For more information about setting the environment see Setting the Oracle Environment on
Linux in the chapter Installing and Configuring PHP.

Permissions for PHP OCI8 in Apache on Oracle Linux

When you install PHP OCI8 in Apache (see the next chapter), you will need to make sure that
the Apache processes can access the Oracle libraries, messages and globalization data.
Without this, Apache may fail to start and you will see errors in the Apache log files. With
Oracle 11g or with Oracle Instant Client, giving access can be as simple as making the top
level directory readable.

If you are using a non XE edition of Oracle Database 10g Release 10.2, more complex
permission changes are needed. With Oracle Database 10g Release 10.2.0.2 onwards, there is
a script located in $ORACLE_HOME/install/changePerm.sh to change permissions.

Installing Apache HTTP Server on Windows
The following procedure describes how to install the Apache HTTP Server on Windows. The
common recommendation is to use PHP in a non-threaded mode via the FastCGI module.
6. Download Apache httpd-2.2.22-win32-x86-no_ssl.msi from

http://httpd.apache.org/download.cgi

7. Double click the MSI to start the installation wizard. Install "for All Users, on Port 80"
because the “only for the Current User” alternative will clash with Oracle Database 11g
XE's default port 8080. Do a typical install into the default destination folder, which is
C:\Program Files <x86>\Apache Software Foundation\Apache2.2 on Windows 7, or
C:\Program Files\Apache Software Foundation\Apache2.2 on Windows XP.

8. Download the Apache mod_fcgid FastCGI mod_fcgid-2.3.6-win32-x86.zip from:

http://httpd.apache.org/download.cgi#mod_fcgid

You may need to navigate to the download directory listing
http://www.apache.org/dist/httpd/binaries/win32/ if there is no direct link for
the Windows binaries on this page.

9. Unzip mod_fcgid to the installed Apache 2.2 directory. The C:\Program Files\Apache
Software Foundation\Apache2.2\modules directory should now have mod_fcgid.so and
mod_fcgid.pdb files.

10. Edit C:\Program Files\Apache Software Foundation\Apache2.2\conf\httpd.conf and add:

LoadModule fcgid_module modules/mod_fcgid.so

11. In httpd.conf locate the <Directory> section for htdocs and add ExecCGI to Options:

<Directory "C:/Program Files/Apache Software Foundation/Apache2.2/htdocs">

66

http://www.apache.org/dist/httpd/binaries/win32/
http://httpd.apache.org/download.cgi#mod_fcgid
http://httpd.apache.org/download.cgi

Installing Apache HTTP Server on Windows

...
Options Indexes FollowSymLinks ExecCGI
...
</Directory>

You can use the Start menu option to start Apache. This opens a console window
showing any error messages. Error messages may also be written to C:\Program
Files\Apache Software Foundation\Apache2.2\logs\error.log.

You can also use the ApacheMonitor utility to start Apache. If you chose to install
Apache as a service for all users, it will appear as an icon in your System Tray.

If you have errors, double check your httpd.conf file

Starting and Stopping Apache HTTP Server on Windows

Your system tray has an Apache Monitor control that makes it easy to stop and restart the
Apache HTTP Server when needed. Alternatively, use the Apache options added to your
Windows Start menu.

Testing Apache HTTP Server
You should now test that Apache HTTP Server has been installed properly by starting it on
your machine and opening your web browser to http://localhost/ or http://127.0.0.1/. This will
display an Apache banner page.

If there is no output or there are errors when starting Apache, review the error log which
may be in /var/log/htpd/error_log (for the Oracle Linux httpd package),
/opt/apache/logs/error_log (for a custom install on Linux), or in C:\Program Files
<x86>\Apache Software Foundation\Apache2.2\logs\error_log (on Windows 7).

67

Installing Apache HTTP Server

68

CHAPTER 8

INSTALLING AND CONFIGURING PHP

This chapter discusses the main ways of installing PHP on Linux and Windows. The next
chapter discusses installation on Solaris. Installation on other UNIX-like systems is similar to
the instructions for Linux.

The Apache HTTP Server generally needs to be installed before installing PHP, and a
database should be accessible in your network.

Installing PHP on Linux
There are three main ways to install PHP on Linux:
● Linux distribution packages

● Zend Server packages

● PHP source code

Depending on the PHP installation, the OCI8 extension for Oracle Database access is already
installed, or can be installed separately. A common deployment method when OCI8 is
compiled separately is to install it as a shared library. However OCI8 can be statically
compiled into PHP when building all of PHP from source code. To build the extension you need
to have Oracle source header files available. At runtime, OCI8 needs access to Oracle
libraries. The headers and libraries can be used from an Oracle database home or from Oracle
Instant Client.

The installation scenarios are covered below.

Installing Linux PHP Packages

Most Linux variants supply PHP packages that make installation easy. The caveat is that Linux
distribution maintainers generally prefer keeping users' applications stable, so often the
packages lag behind the most recent PHP source code. Using older versions of PHP is not
recommended by the PHP community.

In Oracle Linux 5 the php RPM packages are PHP version 5.1. Oracle Linux 5.6 introduced
an additional set of php53 packages for PHP 5.3. In Oracle Linux 6 the php packages contain
PHP 5.3. When newer versions of PHP become stable but are not available as packages, you
should compile your own binaries, if possible.

The basic PHP installation from Oracle Linux 6 distribution RPMs is described here.
1. Install the PHP command line and Apache modules:

yum install php php-cli

Check your local package repository for other extension packages that you may want.
Install the php-devel RPM package if you plan to install PHP extensions that are only
available in source code from PHP's PECL repository or elsewhere.

2. Once PHP is installed, edit /etc/php.ini and set the date.timezone directive to your
timezone, for example:

date.timezone = America/Los_Angeles

69

Installing and Configuring PHP

See php.net/manual/timezones.php for the available values.
For testing it is helpful to have the directive:

display_errors = On

This lets you see any problems in your code without having to review the web server
logs. Make sure you change this configuration option to Off before releasing your
application to users because it is a security risk when errors “leak” information about
your configuration.

3. Apache should now be restarted:

service httpd restart

Note that service clears the environment, so if you need to pass in Oracle
environment variables from your shell, restart Apache explicitly with:

/etc/init.d/httpd restart

Generally it is better not to rely on the variables being set correctly in the invoking
environment. Instead, set them in Apache configuration files such as
/etc/sysconf/httpd. This is discussed later in the chapter.

The bundled packages do not have the PHP OCI8 extension. Use PECL to install it, as
described below. Alternatively, Oracle Linux users with an Unbreakable Linux Network (ULN)
subscription can install an OCI8 RPM from https://linux.oracle.com.

Installing Zend Server Packages on Linux

Zend Server is a pre-built release of PHP from Zend that comes with the OCI8 extension and
PDO_OCI driver. It also comes ready with the Oracle Instant Client libraries. Zend Server is
available for several platforms, including Oracle Linux. It includes a browser-based
management console for configuration and getting updates.

Zend Server CE is free to download and use. A supported edition with enterprise features
such as advanced caching and monitoring is also available.

There are several ways to use Zend Server on Oracle Linux:
1. Using an Oracle VirtualBox VM: A quick evaluation, pre-built developer VM with Zend

Server and Oracle Database 11g XE can be downloaded from Zend.

2. Using Oracle's Unbreakable Linux Network: ULN subscribers can install Zend Server by
subscribing to the "Enterprise Linux 5 Add ons (i386)" or "Enterprise Linux 5 Add ons
(x86_64)" channels and installing the zend-server-repo RPM. Equivalent channels for
Oracle Linux 6 exist. Zend Server can then be installed:
up2date zend-server-repo
yum install zend-server-php-5.3

3. Using Oracle's free, public Yum Repository: Follow the steps to enable the Yum repository
given in http://public-yum.oracle.com. Make sure to enable one of the base channels,
for example "el5_u5_base" if you are using Oracle Linux 5 update 5. Also in your new
repository configuration file, enable the "Addons" channel. For example:

vi /etc/yum.repos.d/public-yum-el5.repo

70

http://public-yum.oracle.com/
https://linux.oracle.com/
http://php.net/manual/timezones.php

Installing PHP on Linux

In the section with the heading [el5_u5_base] enable the channel:

enabled=1

In the section with the heading [el5_addons] enable the channel:

enabled=1

Save the file and then install Zend Server with:

yum install zend-server-repo
yum install zend-server-php-5.3

See the Zend Server page for up to date information on Zend Server and Oracle:
http://www.oracle.com/technetwork/topics/php/zend-server-096314.html

Compiling PHP as an Apache Module on Linux

Compiling PHP from source code allows the packages and build options to be explicitly
customized. When building PHP from source code, it is common to build PHP first without
most extensions, and then later add the extensions as shared libraries. This allows individual
extensions to be upgraded or patched without impacting the entire PHP infrastructure. Some
people go so far as to configure PHP using --disable-all and explicitly enable only the
absolutely smallest set of extensions needed.

The basic steps for building PHP as an Apache module are:
1. Login as the root user and shutdown Apache:

service httpd stop

On Ubuntu use service apache2 stop. On other Linux variants you may need to use
/etc/init.d/httpd stop or run apachectl stop.

2. Install the Apache development tools to get the apxs utility:

yum install httpd-devel

3. Download PHP from http://www.php.net/downloads.php.

4. Extract the PHP source code, for example with PHP 5.4.4:

tar -jxf php-5.4.4.tar.bz2
cd php-5.4.4

If you downloaded the bigger .tar.gz file, extract it with tar -zxf php-5.4.4.tar.gz.

5. Configure PHP with any desired options, for example:

./configure --prefix=/opt/php --with-apxs2=/usr/sbin/apxs

The example above installs PHP in /opt/php and builds PHP's Apache “SAPI” for the
packaged httpd server. Command line PHP will also be built.

If you installed your own Apache, use the appropriate path to the Apache extension
tool, for example /opt/apache/bin/apxs. If you have Apache 1.3 instead of Apache 2,

71

http://www.php.net/downloads.php
http://www.oracle.com/technetwork/topics/php/zend-server-096314.html

Installing and Configuring PHP

change the --with-apxs2 option to --with-apxs. Other desired options and extensions
can be used in the configure command. To list all the options, use the command:

./configure –-help

You could build the OCI8 extension now by including the --with-oci8 option as
described in detail later in this chapter. Alternatively, you can build OCI8 separately
which allows easier upgrades. This is recommended and is also described in this
chapter.

To build PHP with a special compiler or compiler options, set any options before
running configure. Make sure to also remove any configuration cache. For example:

export CC=/bin/cc
export CFLAGS=+DD64
rm -rf autom4te.cache config.cache
./configure ...

PHP 5.4 requires autoconf 2.59 or later. Prior to PHP 5.4, older versions of the
operating system build tools were needed. If you have both old and new autoconf
packages installed, PHP builds can be forced to use the appropriate version, for
example with:

export PHP_AUTOCONF=autoconf-2.13
export PHP_AUTOHEADER=autoheader-2.13

6. Make and install PHP:

make
make install

7. Copy one of the supplied initialization files php.ini-development or php.ini-production for
PHP. To find the destination configuration file directory, use the --ini option to command
line PHP:

php --ini
Configuration File (php.ini) Path: /opt/php/lib
Loaded Configuration File: (none)
Scan for additional .ini files in: (none)
Additional .ini files parsed: (none)

This shows the path is /opt/php/lib. Copy one of the template files to php.ini in that
directory:

cp php.ini-development /opt/php/lib/php.ini

8. Edit php.ini and set the date.timezone directive to your timezone, for example:

date.timezone = America/Los_Angeles

See http://php.net/manual/timezones.php for the available values.

72

http://php.net/manual/timezones.php

Installing PHP on Linux

For testing it is helpful to have display_errors=On so you see any problems in your
code without having to review the web server logs. Make sure you change this
configuration option to Off before making your application available to users.

9. Edit Apache’s configuration file /etc/httpd/conf/httpd.conf and add the following lines:

#
This section will call PHP for .php and .phps files
#
<FilesMatch \.php$>
 SetHandler application/x-httpd-php
</FilesMatch>
<FilesMatch \.phps$>
 SetHandler application/x-httpd-php-source
</FilesMatch>

Files with .phps extension will be shown as highlighted source code. For production
systems, this setting should be omitted.

10. If a LoadModule line was not already inserted by the PHP install, add it too:

LoadModule php5_module /usr/lib64/httpd/modules/libphp5.so

11. If OCI8 was configured, set any required Oracle environment variables, such as
ORACLE_HOME, LD_LIBRARY_PATH and NLS_LANG. See Setting the Oracle Environment on
Linux later in this chapter.

When running PHP, set the environment to use the same version of the Oracle libraries
as were used during the build process.

12. Restart Apache:

service httpd start

You can experiment with PHP configuration, compiler and install options until you have a
binary built to your standards. For example, you could benchmark different compilers and
customize the optimizer flags. Production sites sometimes reduce binary sizes with the strip
command.

Installing Oracle Instant Client on Linux for the OCI8 Extension

The PHP OCI8 extension needs access to Oracle “client” libraries. These are contained in the
$ORACLE_HOME/lib directory. If the database is hosted on another machine or you don't have
access to its directories, then install the Oracle Instant Client. This small set of libraries is
available through ULN package management for Oracle Linux users, or over HTTP from the
Oracle Technology Network. Zend Server already includes Instant Client.

To install Instant Client:
1. Download the Basic and SDK Instant Client packages from ULN or OTN:

73

Installing and Configuring PHP

http://www.oracle.com/technetwork/database/features/instant-client/index-
100365.html

Get either the RPM or ZIP files. The even smaller Basic Lite package can be substituted for
Basic if its character set and error message language restrictions do not impact your
application.

2. If you are using the RPMs, install them as the root user:

rpm -Uvh oracle-instantclient11.2-basic-11.2.0.3.0-1.x86_64.rpm
rpm -Uvh oracle-instantclient11.2-devel-11.2.0.3.0-1.x86_64.rpm

The first RPM puts the Oracle libraries in /usr/lib/oracle/11.2/client64/lib and the second
creates headers in /usr/include/oracle/11.2/client64.

3. If you are using the Instant Client ZIP files, unzip the Basic and the SDK packages to a
directory of your choice, for example /opt/instantclient_11_2. The files should be unzipped
together so the SDK is in /opt/instantclient_11_2/sdk.

4. If Instant Client was installed from the ZIP files, create a symbolic link:

cd /opt/instantclient_11_2
ln -s libclntsh.so.11.1 libclntsh.so

In Oracle 11.2 the libclntsh file suffix retained the 11.1 name to keep compatibility
with that first release.

If you use Oracle Instant Client then don't set the ORACLE_HOME environment variable while
configuring PHP or at runtime.

Configuration Options for Compiling OCI8 With PHP on Linux

To build the OCI8 extension statically into the PHP binary when you compile PHP (as described
in the section Compiling PHP as an Apache Module on Linux), you will need to use the --with-
oci8 option when you run configure. The help description for it is brief:

--with-oci8[=DIR] Include Oracle (OCI8) support. DIR defaults to $ORACLE_HOME.
 Use --with-oci8=instantclient,/path/to/instant/client/lib
 to use an Oracle Instant Client installation

The list below describes how to use the option.
● --with-oci8

Without any argument, this looks for Oracle Database libraries in $ORACLE_HOME.
The variable must previously have been set. It links the OCI8 extension statically into
PHP. If $ORACLE_HOME is not set, it will look for the Instant Client RPM libraries. PHP
must have access to the Oracle libraries and configuration files while building and
subsequently when running.

● --with-oci8=shared

Same as --with-oci8 but creates an oci8.so shared library. This library can be added to,
or removed from, PHP without having to recompile the core PHP executable.

74

Installing PHP on Linux

● --with-oci8=/path/to/full/oracle/home

Same as --with-oci8 but uses the specified path instead of looking up
$ORACLE_HOME.

● --with-oci8=shared,/path/to/full/oracle/home

Uses the specified Oracle Database libraries and creates a shared oci8.so extension.
● --with-oci8=instantclient

Looks for Oracle Instant Client RPMs and uses the most recent version installed. Links
the OCI8 extension statically into PHP.

● --with-oci8=shared,instantclient

Like the previous option but builds a shared oci8.so extension.
● --with-oci8=instantclient,/path/to/instantclient/libs

Builds with the Instant Client in the specified directory and links the OCI8 extension
statically into PHP.

● --with-oci8=shared,instantclient,/path/to/instantclient/libs

Uses the specified Instant Client and creates a shared oci8.so extension.

To use a shared oci8.so library, edit php.ini and add extension=oci8.so. Also set
extension_dir to the directory containing the library.

Before building OCI8 from the PHP source code, navigate to the ext/oci8/php_oci8.h file
and check whether the version number in the PHP_OCI8_VERSION macro is less than the
current release of PECL OCI8. If the PECL OCI8 source code is more recent, then install OCI8
as a shared extension using the PECL code.

Installing OCI8 on Linux as a Shared Extension Using PECL

If you have PHP's pecl command then it can be used to fetch and install OCI8 with one step.
Since PECL packages are compressed, PHP needs to have the zlib extension installed (with

the --with-zlib option to configure) otherwise automatic installation will fail with the error: The
extension 'zlib' couldn't be found.

If you don't have the zlib extension installed, you can still download OCI8 from the PECL
website and use phpize, as shown in a later section.

PHP 5.4 needs autoconf 2.59 or later; earlier versions of PHP need autoconf 2.13. Use
PHP_AUTOCONF to set the version, as shown previously in this chapter.

The PECL OCI8 code can be installed on PHP 4.3.9 onwards. Upgrading OCI8 is strongly
recommended if you must use PHP 4. Note old PHP versions are no longer maintained by the
PHP community and should not be used for new projects.

To install PHP OCI8 using the PECL channel:
1. Shutdown Apache:

service httpd stop

2. Remove any existing OCI8 extension:

pecl uninstall oci8

3. If you are behind a firewall, set the PEAR proxy which is used by pecl, for example:

pear config-set http_proxy http://example.com:80/

75

Installing and Configuring PHP

4. Download and install OCI8:

pecl install oci8

Respond to the prompt as if it were a configure --with-oci8 option. If you have a local
database, type the full path to the ORACLE_HOME software location, for example:

/u01/app/oracle/product/11.2.0/xe

Otherwise if you have Oracle Instant Client 11.2 RPMs, type:

instantclient,/usr/lib/oracle/11.2/client64/lib

On 32-bit Linux with Instant Client RPMs the line would be

instantclient,/usr/lib/oracle/11.2/client/lib

Use the absolute path because variables like $ORACLE_HOME will not be expanded.
In some intermediate versions of pecl it would first prompt “1-1, 'all', 'abort', or Enter
to continue”. If you get this prompt, enter “1” before giving the real response.

5. Edit php.ini and add:

extension=oci8.so

If extension_dir is not set, set it to the directory where oci8.so was installed, for
example:

extension_dir=/usr/lib64/php/modules

The messages from the pecl install will show the correct directory.
6. Set any required Oracle environment variables such as LD_LIBRARY_PATH and NLS_LANG.

See Setting the Oracle Environment on Linux later in this chapter.

7. Restart Apache:

service httpd start

8. Check the installation, as shown at the end of this chapter.

Manually Installing OCI8 on Linux as a Shared Extension

The following steps are the manual equivalent to the previous pecl install oci8 command.
They can be used if you don't have the pecl command.

The steps use phpize. This will have been installed when you built PHP or it can be found
in the php-devel or php53-devel RPM packages.

To install OCI8 on an existing PHP installation as a shared library:
1. Shutdown Apache:

service httpd stop

2. If OCI8 was previously installed, backup or remove the oci8.so file

mv /usr/lib64/php/modules/oci8.so /usr/lib64/php/modules/oci8.so.old

76

Installing PHP on Linux

3. Download the OCI8 extension from PECL, http://pecl.php.net/package/oci8

4. Extract and prepare the new code:

tar -zxf oci8-1.4.9.tgz
cd oci8-1.4.9
phpize

5. Configure OCI8. If you have a local database, use:

./configure –-with-oci8=shared,$ORACLE_HOME

Otherwise if you have Oracle Instant Client 11.2 use the location of the libaries, for
example:

./configure –-with-oci8=\
> shared,instantclient,/usr/lib/oracle/11.2/client64/lib

6. Build and install the shared library:

make
make install

7. Edit /etc/php.ini and add this line:

extension=oci8.so

8. If extension_dir is not set, set it to the directory where oci8.so was installed, for example:

extension_dir=/usr/lib64/php/modules

9. Set any required Oracle environment variables such as LD_LIBRARY_PATH and NLS_LANG.
See the next section in this chapter.

10. Restart Apache:

service httpd start

11. Check the installation, as shown at the end of this chapter.

Setting the Oracle Environment for PHP on Linux

The Oracle environment need to be set before PHP loads Oracle libraries so that Oracle
configuration files can be found and data structures can be initialized correctly. Environment
variables need to be exported in any shell that runs command-line PHP. For web applications
they need to be exported before Apache starts. If Apache is started automatically when your
machine starts you will need to make sure the environment is set at boot time.

Some common ways to set the environment for Apache are:
● On Oracle Linux and similar distributions using the default Apache package, add

environment variables to /etc/sysconfig/httpd:

...
export ORACLE_HOME=/u01/app/oracle/product/11.2.0/xe

77

http://pecl.php.net/package/oci8

Installing and Configuring PHP

export LD_LIBRARY_PATH=$ORACLE_HOME/lib:$LD_LIBRARY_PATH
export NLS_LANG=AMERICAN_AMERICA.WE8MSWIN1252

● On systems like Ubuntu you can put the variables in /etc/apache2/envvars.

● Some Apache 2 installations have a bin/envvars script in the Apache directory.

● Sometimes users decide to set the variables in /etc/init.d/httpd and always use that script
to start the web server.

● Other users use Apache's PassEnv directive in httpd.conf to pass the environment to PHP.
Setting values with Apache's SetEnv directive will not work.

● The most generic way to set the whole environment is to create a shell script such as
start_apache.sh and run it whenever you want to start Apache.

Script 4: start_apache.sh

#! /bin/sh

ORACLE_HOME=/u01/app/oracle/product/11.2.0/xe
LD_LIBRARY_PATH=$ORACLE_HOME/lib:$LD_LIBRARY_PATH
NLS_LANG=AMERICAN_AMERICA.WE8MSWIN1252
export ORACLE_HOME LD_LIBRARY_PATH NLS_LANG
echo "Oracle Home: $ORACLE_HOME"

echo Starting Apache
#export > /tmp/envvars # uncomment to debug
/usr/sbin/apachectl start

Note: Do not set Oracle environment variables in PHP scripts with putenv(). The web server
may load Oracle libraries and initialize Oracle data structures before running your script. With
persistent connections the environment from one script may affect subsequent scripts. Using
putenv() causes hard to track errors as the behavior is not consistent for all variables, web
servers, operating systems, or OCI8 functions.

If PHP was built with Oracle Instant Client, instead of setting LD_LIBRARY_PATH it can be
convenient to set the library path system wide. Create a file
/etc/ld.so.conf.d/instantclient.conf containing the path to the Instant Client libraries:

/usr/lib/oracle/11.2/client64/lib

Run ldconfig to rebuild the system's library search path. Only do this if there is no other
Oracle software in use on the machine. It removes the need to set LD_LIBRARY_PATH
everywhere, but upgrading Instant Client does require remembering to update
instantclient.conf.

If you have environment related problems such as unexpected connection errors, then
create a script phpinfo.php:

78

Installing PHP on Linux

Script 5: phpinfo.php

<?php
phpinfo();
?>

Check the output from phpinfo.php. Look at the Environment section (not the Apache
Environment section) and make sure the Oracle variables are set to the values you expect. It
is useful to check the output using both command line PHP and via a browser.

If you are expecting shell environment variables to be passed to Apache and PHP, do not use
the Linux service command to start Apache, since this clears the environment. Instead,
directly restart Apache by executing /etc/init.d/httpd restart or the equivalent on your
platform.

Common Oracle Environment Variables on Linux

The variables needed by OCI8 depend on how PHP is installed, how you connect to the
database, and what optional settings are desired.

Table 4: Common Oracle environment variables on Linux.

Oracle Environment Variable Purpose

ORACLE_HOME The directory containing the Oracle database software. This
directory must be accessible by the Apache process. This
variable should not be set if PHP uses Oracle Instant Client.

ORACLE_SID The Oracle Net connect name of the database. Only used
when PHP is on the same machine as the database and the
connection identifier is not specified in the PHP connect
function. Not often set for PHP applications. Not used when
PHP is linked with Oracle Instant Client.

LD_LIBRARY_PATH Set this to include the Oracle libraries, for example
$ORACLE_HOME/lib or /opt/instantclient_11_2. Not needed if
the libraries are located by an alternative method, such as
with the /etc/ld.so.conf linker path file. On UNIX platforms you
will need to set the OS specific equivalent, such as LIBPATH or
SHLIB_PATH.

NLS_LANG Determines the “national language support” globalization
options for OCI8. See the chapter Globalization for more
details. If not set, a default value will be chosen by Oracle.
Setting this is recommended.

79

Installing and Configuring PHP

Oracle Environment Variable Purpose

NLS_NUMERIC_CHARACTERS Commonly set in PHP applications to force Oracle number-to-
string conversions to use a period for the decimal separator.
Otherwise numeric data values returned from the database in
string format will not correctly cast to a number in PHP in
locales where the decimal separator is not a period. The
variable is ignored if NLS_LANG is not set.

NLS_DATE_FORMAT Often set in PHP applications to force a consistent date format
independent of the locale. The variable is ignored if
NLS_LANG is not set.

TNS_ADMIN The location of the tnsnames.ora and sqlnet.ora configuration
files. Needed by PHP if a database connect name from a
tnsnames.ora file is used in the OCI8 connect functions and
you are using Oracle Instant Client, or if the tnsnames.ora file
is not in $ORACLE_HOME/network/admin. Also needed if using
a sqlnet.ora file with Oracle Instant Client, or using files not in
$ORACLE_HOME/network/admin.

With Oracle Database 11g XE, you can set the Oracle environment in a shell by using the
oracle_env.sh script:

$ source /u01/app/oracle/product/11.2.0/xe/bin/oracle_env.sh

The source command allows the script to set the environment of the shell itself. In some
shells use a single period in place of source. In C or tcsh shells use the oracle_env.csh file.

On other editions of the Oracle database, the /usr/local/bin/oraenv or
/usr/local/bin/coraenv scripts set the environment. Run one of these scripts before starting
Apache. You will be prompted for the database to connect to:

$ source /usr/local/bin/oraenv
ORACLE_SID = [] ? orcl

If your database is on a remote machine, you will have to set your local environment
manually.

After setting the variables in the shell, you can copy the settings to the appropriate
Apache configuration file to make sure they are set no matter how Apache is started.

Signal Handling and Defunct Processes on Linux

In the early days of PHP some Oracle users reported seeing defunct "zombie" proceses. The
issue has not been reported for a very long time. If it does happen to you, then start Apache
with the Oracle Net option BEQUEATH_DETACH=YES in your sqlnet.ora. Or, to keep the setting
specific to PHP, set the environment before starting Apache:

export BEQUEATH_DETACH=YES

If this doesn't help, only then consider building PHP with --enable-sigchild.
Defunct processes might happen if the Oracle code in PHP forks the Oracle server process

(called "bequeathing") and the signal handlers in PHP, as the parent of the server process, do
not correctly clean up the server process when a database connection is closed. The
BEQUEATH_DETACH=YES option causes the server processes to do a double fork and be inherited

80

Installing PHP on Linux

by "init", which prevents defunct zombies. Oracle Database 10g onwards checks for signal
handler clashes and automatically turn on BEQUEATH_DETACH, reducing the need for you to
set it. It is not on by default because it adds a few extra CPU cycles and the OS parent process
id becomes 1, making it slightly harder to identify the relationship between a server process
and the application process using it. You might need to manually set BEQUEATH_DETACH if
signal handlers are changed after Oracle has done its heuristic check.

There are some side effects with --enable-sigchild. PHP's pclose() may return failure.
Several PHP bug reports exist for this and PHP code has been patched and broken again in
this area.

If PHP is "remote" from the database server you should never need to configure PHP with
--enable-sigchild or set BEQUEATH_DETACH=YES. PHP can be remote physically or because the
PHP binary is linked with different Oracle libraries to those used by the database, for example
with Oracle Instant Client.

You also don't need to change signal handling if you use Oracle shared or pooled servers.
These are the cases where PHP does not fork the Oracle server process directly. The Oracle
Net listener does the forking instead and PHP's signal handling won't affect Oracle server
process cleanup.

Using PHP-FPM With Apache on Linux

All of the previous Linux configuration examples use a PHP Apache module. The relatively new
PHP-FPM “FastCGI Process Manager” module is an alternative that is gaining popularity. PHP-
FPM has some advanced process management and isolation controls.

PHP-FPM is documented in the PHP manual and at http://php-fpm.org/. It is often used
with the nginx web server.

Building PHP With PHP-FPM

This example shows building PHP-FPM on 64-bit Oracle Linux using the system Apache. To
vary from previous examples, it builds a shared OCI8 extension directly from the PHP source.
It assumes Instant Client RPMs are installed. You could choose to build OCI8 statically into the
PHP binary, or add it later from PECL using methods previously discussed.
1. Build and install PHP:

tar -jxf php-5.4.4.tar.bz2
cd php-5.4.4
./configure --enable-fpm --prefix=/opt/php544 \
 --with-oci8=shared,instantclient
make
make install

2. Set up the PHP configuration:

cp php.ini-development /opt/php544/lib/php.ini

Edit php.ini. Add the OCI8 extension shared module and set date.timezone to your
timezone, for example:

extension=oci8.so
date.timezone = America/Los_Angeles

81

http://php-fpm.org/

Installing and Configuring PHP

3. Create the PHP-FPM service:

cp sapi/fpm/init.d.php-fpm /etc/init.d/php-fpm
chmod +x /etc/init.d/php-fpm
chkconfig --add php-fpm

4. Create the PHP-FPM configuration file:

cp /opt/php544/etc/php-fpm.conf.default /opt/php544/etc/php-fpm.conf

5. Edit php-fpm.conf and uncomment the line:

pid = run/php-fpm.pid

6. Download FastCGI from http://www.fastcgi.com/dist/mod_fastcgi-current.tar.gz

7. Build FastCGI for Apache 2:

tar -zxf mod_fastcgi-current.tar.gz
cd mod_fastcgi-2.4.6
cp Makefile.AP2 Makefile
make top_dir=/usr/lib64/httpd

8. Install FastCGI into Apache:

make top_dir=/usr/lib64/httpd install

9. Set up Apache by enabling PHP-FPM in /etc/httpd/conf/httpd.conf:

<IfModule mod_fastcgi.c>
 FastCGIExternalServer /opt/php544/sbin/php-fpm -host 127.0.0.1:9000
 AddHandler php-fastcgi .php
 Action php-fastcgi /mycgi
 ScriptAlias /mycgi /opt/php544/sbin/php-fpm

Uncomment for the statistics page (also set pm.status_path in php-fpm.conf)
<LocationMatch "/status">
SetHandler php-fastcgi-virt
Action php-fastcgi-virt /mycgi virtual
</LocationMatch>
</IfModule>

10. Start PHP-FPM and Apache:

service php-fpm start
service httpd start

PHP scripts in your DocumentRoot directory, for example in /var/www/html, will be
executed by PHP-FPM.

82

http://www.fastcgi.com/dist/mod_fastcgi-current.tar.gz

Installing PHP on Linux

PHP-FPM Statistics

The php-fpm.conf file shows a number of PHP-FPM's features, including pool and logging
options. One straight-forward PHP-FPM feature is its built in statistics gathering. To use this,
first uncomment the LocationMatch section in httpd.conf:

<LocationMatch "/status">
 SetHandler php-fastcgi-virt
 Action php-fastcgi-virt /mycgi virtual
</LocationMatch>

1. Edit php-fpm.conf and uncomment the status_path directive:

pm.status_path = /status

2. Restart PHP-FPM and Apache:

service php-fpm start
service httpd start

3. Now the statistics page can be called with http://localhost/status?full.
The output will be like:

pool: www
process manager: dynamic
start time: 02/Oct/2012:21:55:44 -0700
start since: 4076
accepted conn: 10
listen queue: 0
max listen queue: 0
listen queue len: 128
idle processes: 1
active processes: 1
total processes: 2
max active processes: 1
max children reached: 0

pid: 9322
state: Idle
start time: 02/Oct/2012:21:55:44 -0700
start since: 4076
requests: 5
request duration: 354
request method: GET
request URI: /status?full
content length: 0
user: -
script: -
last request cpu: 0.00
last request memory: 262144

Other options to /status allow the statistics to be returned nicely marked up in HTML
or in JSON.

83

Installing and Configuring PHP

Oracle Environment Variables in PHP-FPM

To set Oracle environment variables for PHP-FPM, add them to php-fpm.conf like:

env[NLS_LANG] = AMERICAN_AMERICA.AL32UTF8
env[NLS_DATE_FORMAT] = YYYY-MM-DD

Instead of using constants, you can assign terminal environment variables to the env array.
However, beware that service clears the environment so you will need to restart PHP-FPM
explicitly like:

/etc/init.d/php-fpm restart

It is better to set the values explicitly so they always take the expected values.

Installing PHP With OCI8 on Windows
This section describes how to install PHP and Apache on Windows.

Before you do this, consider if you are intending to write PHP code that will run on a
different operating system. Most web sites run their production web servers on Linux.
Because there are numerous subtle differences between PHP on Windows and PHP on Linux,
particularly in file handling and performance, you should avoid developing on Windows unless
necessary. You can also run into library clash issues when you have multiple versions of
Oracle installed on Windows. A great solution in these cases is to use Oracle's free VirtualBox
product and create a virtual machine that runs Oracle Linux.

This example shows installing PHP 5.4.0 using the FastCGI model in Windows. This
preferred method of installing avoids any thread-safety issues that PHP's “ZTS” (Zend Thread
Safe) Windows binaries are suspected to have.

Before continuing, install Apache as shown in the previous chapter.

Oracle Libraries on Windows

The PHP OCI8 DLL on Windows requires Oracle client DLLs from 10gR2 or later. You should
install Oracle Instant Client if you don't have an Oracle Database installed. Otherwise PHP
OCI8 can use the client libraries contained in a 32-bit database install such as Oracle 11g XE.
If you have 9iR2 libraries, you will have to compile PHP OCI8 yourself, which is out of scope of
this book.

Having multiple copies of Oracle libraries installed on Windows can cause hard to resolve
conflicts unless your environment is cleanly set. Trying to use PHP with a 64-bit Oracle
Database is another issue, since PHP is 32-bit. There are some ugly hacks people have used
to resolve the conflicts, including copying the Instant Client libraries to the system directory.
These are not recommended. Instead, write a script that sets the environment and then starts
Apache. There are tips on this in
https://blogs.oracle.com/opal/entry/using_php_oci8_with_32-bit_php

Installing Oracle Instant Client on Windows

If you are not using Oracle libraries from a database installation, install Oracle Instant Client
with the following steps:
1. Download the Instant Client Basic package for Microsoft Windows (32-bit) from the Instant

Client page on the Oracle Technology Network:

84

https://blogs.oracle.com/opal/entry/using_php_oci8_with_32-bit_php

Installing PHP With OCI8 on Windows

http://www.oracle.com/technetwork/database/features/instant-
client/index-097480.html
The Windows 32-bit ZIP file is called instantclient-basic-nt-11.2.0.3.0.zip and is around
50 MB in size. If you need to connect to Oracle Database 8i, then install the Oracle
10gR2 Instant Client. On some Windows installations, to use Oracle 10gR2 Instant
Client you may need to locate a copy of msvcr71.dll and put it in your PATH.
Create a new directory, for example, C:\instantclient_11_2. Unzip the downloaded file
into the new directory.

2. Edit the Windows environment and add the location of the Oracle Instant Client files,
C:\instantclient_11_2, to the PATH environment variable, before any other Oracle
directories. For example, on Windows XP, use Start > Settings > Control Panel >
System > Advanced > Environment Variables, and edit PATH in the System Variables
list. Reboot to make this take effect. Not rebooting is a common source of installation
teething troubles.

3. If you are using a tnsnames.ora file to define Oracle Network connect names, copy your
tnsnames.ora file to C:\instantclient_11_2, and set the user environment variable
TNS_ADMIN to C:\instantclient_11_2.

4. Set any other required Oracle globalization language environment variables, such as
NLS_LANG. If nothing is set, the default local environment is used. See the Globalization
chapter, for more information on globalization with PHP and Oracle.
Unset any Oracle environment variables that are not required and should not be set
with Oracle Instant Client, such as ORACLE_HOME and ORACLE_SID.

Installing PHP on Windows

Canonical PHP builds are distributed from http://windows.php.net/download in ZIP files. In
the past, PHP MSI installer files existed, but they are not available from PHP 5.4 onwards.

To install PHP, perform the following steps, substituting the current version of PHP. You
must be an administrative user:
1. Download the PHP 5.4.0 "VC9 x86 Non Thread Safe" ZIP package php-5.4.0-nts-Win32-

VC9-x86.zip from http://windows.php.net/download/.

Use the non-thread safe bundle because it will be used with FastCGI.
In Windows Explorer, go to the directory where you downloaded the zip file.
2. Unzip the PHP package to a directory called C:\php-5.4.0

3. Copy php.ini-development to C:\php-5.4.0\php.ini

4. Edit php.ini and make the following changes:
Add your localhost timezone, for example:

date.timezone = America/Los_Angeles

Add the directory containing the PHP extensions:

extension_dir = "C:\php-5.4.0\ext"

Also in this file remove the semicolon from the beginning of the line:

extension=php_oci8_11g.dll

85

http://windows.php.net/download/
http://windows.php.net/download/
file:///C:/instantclient_11_2
http://www.oracle.com/technetwork/database/features/instant-client/index-097480.html
http://www.oracle.com/technetwork/database/features/instant-client/index-097480.html

Installing and Configuring PHP

This extension can be used when your Oracle client libraries (either from the
database install or from Instant Client) are Oracle 11gR2 or greater. If you are only
using 10gR2 Oracle client libraries, then instead uncomment the line:

extension=php_oci8.dll

Only one of php_oci8.dll and php_oci8_11g.dll can be enabled at any time.
5. Edit the httpd.conf file, for example C:\Program Files\Apache Software

Foundation\Apache2.2\conf\httpd.conf, and add the following lines. Make sure you use
forward slashes '/' and not back slashes '\':

FcgidInitialEnv PHPRC "C:/php-5.4.0"
AddHandler fcgid-script .php
FcgidWrapper "C:/php-5.4.0/php-cgi.exe" .php

The PHPRC option tells PHP which directory the php.ini file is located in. The other
options set up the FastCGI handler.

6. Make sure mod_fcgid.so is loaded and the ExecCGI option set as described in the previous
chapter.

7. Restart the Apache Server so that you can test your PHP installation. If you have errors,
double check your httpd.conf and php.ini files. If you altered the PATH environment
variable make sure you reboot the machine and check PATH includes the Oracle library
directory.

8. Check the installation, as shown at the end of this chapter.

Installing OCI8 With Oracle HTTP Server
The Oracle HTTP Server (OHS) is based on Apache. It was part of Oracle's Application Server,
and is one of the web servers that can be used by Oracle WebLogic Server (WLS). You can
install or upgrade PHP on OHS.

Note: Installing or upgrading PHP in Oracle HTTP Server is not supported (and hence is not
recommended) but is technically possible in some circumstances. For any support calls,
regardless of whether they are PHP related, Oracle Support may ask you to revert the
changes before beginning investigation.

The two sections below show how to build PHP as an Apache module for OHS on Linux.
If you want to install PHP on Oracle WebLogic Server and do not have a web tier, then

consider using one and installing PHP into Apache or nginx. Your load balancer or web server
can direct HTTP requests as appropriate to WLS or PHP. This will make licensing, installation,
management and upgrading of WLS easier. You can also use a WLS web server plug-in, as
described in the WLS documentation. The plug-in can proxy requests from, for example,
Apache to WLS. You can install PHP into Apache as shown earlier in this chapter.

86

Installing OCI8 With Oracle HTTP Server

Installing OCI8 With Oracle HTTP Server 11g on Linux

With OHS 11g, PHP is not included and you must build it yourself. The technical problem faced
with building PHP is that the Oracle libraries with Oracle HTTP Server do not include header
files. This can be overcome by linking PHP with Oracle Instant Client but care needs to be
taken so that AS itself does not use the Instant Client libraries. Otherwise you will get errors or
unpredictable behavior.

These steps are very version and platform specific. They may not be technically feasible in
all deployments.

To install PHP on OHS 11g:
1. Log on as the oracle user and shutdown OHS:

$ $ORACLE_INSTANCE/bin/opmnctl stopproc ias-component=ohs1

2. Change to the home directory:

$ cd $HOME

3. Set the Oracle environment:

$ export ORACLE_HOME=/your/path/to/your/Oracle/Home
$ export ORACLE_INSTANCE=/your/path/to/OHS
$ export CONFIG_FILE_PATH=$ORACLE_INSTANCE/config/OHS/ohs1
$ export LD_LIBRARY_PATH=$ORACLE_HOME/lib:$ORACLE_HOME/ohs/lib:\
> $LD_LIBRARY_PATH

ORACLE_HOME is the directory with the OHS binaries in $ORACLE_HOME/ohs/bin.
ORACLE_INSTANCE is your directory containing the Oracle HTTP Server component
"ohs1".

4. Optionally set the PHP compiler environment, for example if you are using a non GNU tool
chain:

$ export CFLAGS=your-compiler-flags
$ export CC=/path/to/your/compiler

5. Download and extract the Oracle Instant Client 11.1.0.7 SDK ZIP file from
http://www.oracle.com/technetwork/database/features/instant-client/index-
097480.html

6. Copy the new header files from Instant Client to the Oracle home:

$ cp instantclient_11_1/sdk/include/*.h $ORACLE_HOME/rdbms/demo

7. Download PHP from http://php.net/downloads.php and extract to a working directory,
for example with PHP 5.3:

$ tar -jzf php-5.3.13.tar.bz2

8. Change to the extracted PHP directory

$ cd php-5.3.13

9. If your version of PHP is 5.3.17 or earlier, then patch your configure script. Change all

87

http://php.net/downloads.php
http://www.oracle.com/technetwork/database/features/instant-client/index-097480.html
http://www.oracle.com/technetwork/database/features/instant-client/index-097480.html

Installing and Configuring PHP

occurrences of:

APACHE_VERSION=`expr $4 * 1000000 + $5 * 1000 + $6`

to

APACHE_VERSION=`expr $6 * 1000000 + $7 * 1000 + $8`

This is because OHS's Apache reports its version number differently from pure
Apache. Without this change, PHP will think Apache is version 1.3 and the installation
will fail.

10. Configure PHP with your choice of extensions. As a starting point begin with the basic
configuration:

$./configure --disable-all --with-apxs2=$ORACLE_HOME/ohs/bin/apxs \
 --with-oci8=$ORACLE_HOME --disable-rpath \
 --prefix=$ORACLE_HOME --with-config-file-path=$CONFIG_FILE_PATH

11. Make the PHP command line binary and Apache module:

$ make

12. Copy a default php.ini file for PHP:

$ cp php.ini-devlopment $CONFIG_FILE_PATH/php.ini

or

$ cp php.ini-production $CONFIG_FILE_PATH/php.ini

13. Edit $CONFIG_FILE_PATH/php.ini and add a timezone line:

date.timezone = America/Los_Angeles

14. If you want to run OCI8 tests, edit php.ini and add E to variables_order. This allows PHP's
run-tests.php script to pass the Oracle environment correctly:

variables_order = "EGPCS"

This change can be reverted later.

15. Edit ext/oci8/tests/details.inc and set the SYSTEM password and connection string to your
Oracle database.

16. Test the PHP command-line binary:

$ make test

17. If all is OK, then install the PHP binaries:

$ make install

The installation copies the binaries and updates $CONFIG_FILE_PATH/httpd.conf,
automatically adding the line:

88

Installing OCI8 With Oracle HTTP Server

LoadModule php5_module libexec/libphp5.so

18. Edit $CONFIG_FILE_PATH/httpd.conf and add the lines:

<FilesMatch \.php$>
 SetHandler application/x-httpd-php
</FilesMatch>

19. Restart OHS:

$ $ORACLE_INSTANCE/bin/opmnctl startproc ias-component=ohs1

Installing OCI8 With Oracle HTTP Server 10g on Linux

Oracle included PHP with its mid-tier Application Server 10g Release 3, giving an out-of-the-
box method of using the same web server for PHP and for J2EE applications.

Version 10.1.3.0 of the Application Server (AS) comes with PHP 4.3.11. The AS 10.1.3.2
patchset adds PHP 5.1.2. To use a different version of PHP you may be able to compile your
own PHP release using these steps. The same caveats about changing AS exist as for version
11.

A previous installation of AS 10.1.3 is assumed in the steps below. To upgrade the version
of PHP in this installation:
1. Log on as the oracle user and shut down the Oracle HTTP Server:

$ $ORACLE_HOME/opmn/bin/opmnctl stopproc ias-component=HTTP_Server

2. Change to the home directory:

$ cd $HOME

3. Set the ORACLE_HOME environment variable to your AS install directory:

$ export ORACLE_HOME=$HOME/product/10.1.3/OracleAS_1

4. Download the Oracle 10g or 11g Basic and SDK Instant Client ZIP packages from the
Instant Client page on the Oracle Technology Network:

http://www.oracle.com/technology/tech/oci/instantclient/instantclient.html

5. Extract the ZIP files, for example, if on a 32-bit Linux:

$ unzip basic-linux-10.2.0.5.0.zip
$ unzip sdk-linux-10.2.0.5.0.zip

6. Change to the Instant Client directory and symbolically link libclntsh.so.10.1 to
libclntsh.so:

$ cd instantclient_10_2
$ ln -s libclntsh.so.10.1 libclntsh.so

The Instant Client RPMs could also be used, in which case this last step is unnecessary.

89

http://www.oracle.com/technology/tech/oci/instantclient/instantclient.html

Installing and Configuring PHP

Be wary of having Instant Client in /etc/ld.so.conf since Instant Client libraries can
cause conflicts with AS. The opmnctl tool may fail with the error Main: NLS
Initialization Failed!!.

7. Download PHP from http://php.net/downloads.php and extract the file to a working
directory, for example with PHP 5.2.7:

$ tar -jxf php-5.2.17.tar.bz2

8. Edit $ORACLE_HOME/Apache/Apache/conf/httpd.conf and comment out the PHP
LoadModule line by prefixing it with #:

LoadModule php4_module libexec/libphp4.so

If you had enabled PHP 5 for AS 10.1.3.2, the commented line should be:

LoadModule php5_module libexec/libphp5.so

9. Back up the libphp4.so or libphp5.so library in $ORACLE_HOME/Apache/Apache/libexec
since it will be replaced.

10. Set environment variables required for the build to complete:

$ export PERL5LIB=$ORACLE_HOME/perl/lib
$ export LD_LIBRARY_PATH=$ORACLE_HOME/lib:$LD_LIBRARY_PATH
$ export CFLAGS=-DLINUX

There is no need to set CFLAGS if you have AS 10.1.3.2. It is needed with AS 10.1.3.0 to
avoid a duplicate prototype error with gethostname() that results in compilation failure.

11. Configure PHP:

$ cd php-5.2
$./configure \
> --prefix=$ORACLE_HOME/php \
> --with-config-file-path=$ORACLE_HOME/Apache/Apache/conf \
> --with-apxs=$ORACLE_HOME/Apache/Apache/bin/apxs \
> --with-oci8=instantclient,$HOME/instantclient_10_2

With AS 10.1.2 and older Instant Client releases, some users also specify --disable-rpath.

12. Make PHP:

$ make

13. Test the PHP command-line binary:

$ make test

14. If all is OK, then install PHP:

$ make install

The installation copies the binaries and updates
$ORACLE_HOME/Apache/Apache/conf/httpd.conf, automatically adding the line:

90

http://php.net/downloads.php

Installing OCI8 With Oracle HTTP Server

LoadModule php5_module libexec/libphp5.so

15. Back up and update $ORACLE_HOME/Apache/Apache/conf/php.ini with options for PHP 5,
for example all the new OCI8 directives. Refer to php.ini-recommended for new options.
Particularly if you are using PHP 5.3, set the date.timezone directive to your timezone, for
example:

date.timezone = America/Los_Angeles

See http://php.net/manual/en/timezones.php for the available values.

16. The Oracle HTTP Server can now be restarted:

$ $ORACLE_HOME/opmn/bin/opmnctl startproc ias-component=HTTP_Server

Reminder: these steps invalidate all support for AS, not just for the PHP component, and they
should not be used in production environments.

The Oracle HTTP Server document root is

$ORACLE_HOME/Apache/Apache/htdocs

(Yes, Apache is repeated twice). Files with .php extensions in this directory will be executed by
PHP. Files with a .phps extension will be displayed as formatted source code.

Installing the PDO Extension
The PDO_OCI driver for PHP's PDO extension is a separate interface to the Oracle Database.
Using it is not recommend but you may wish to experiment with it. PDO_OCI misses some
very important scaling and performance features available in OCI8, it isn't stable, and
currently it has no maintainer.

To use PDO_OCI with Oracle, install the PDO extension and the PDO_OCI database driver.
The PDO extension and drivers are included in PHP from release 5.1.

You can install PDO_OCI and OCI8 at the same time by combining the appropriate options
to configure. No PHP code is shared by the OCI8 extension and PDO_OCI driver.

Installing PDO_OCI on Linux

The steps shown below show compiling PDO for PHP 5.4 on Oracle Linux. This procedure
works for all versions of PHP after release 5.1.
1. Download PHP 5.4.4 from http://php.net/downloads.php.

2. Log in as the root user and extract the PHP source code using the following commands:

tar -jxf php-5.4.4.tar.bz2
cd php-5.4.4

If you downloaded the .tar.gz file, extract it with tar -zxf.

3. Configure PHP with options like:

91

http://php.net/downloads.php
http://php.net/manual/en/timezones.php

Installing and Configuring PHP

export ORACLE_HOME=/u01/app/oracle/product/11.2.0/xe
./configure \
> --with-apxs2=/usr/sbin/apxs \
> --enable-pdo \
> --with-pdo-oci=$ORACLE_HOME

Note there is no “8” in the --with-pdo-oci option name. Review the output of configure and
check that the extension was enabled successfully before continuing.

If you want to build PDO_OCI with the Oracle Instant Client RPMs, change the --with-pdo-
oci option to:

--with-pdo-oci=instantclient,/usr,11.2

This indicates to use the Instant Client in /usr/lib/oracle/11.2.

If Instant Client ZIP files are used, the option should be, for example:

--with-pdo-oci=instantclient,/opt/instantclient_11_2,11.2

The trailing version number in this command for ZIP installs of Instant Client is only used
for sanity checking and display purposes.

With Instant Client ZIP files, if the error I'm too dumb to figure out where the libraries are
in your Instant Client install is shown it means the symbolic link from libclntsh.so to
libclntsh.so.11.1 (or the appropriate version) is missing. This link needs to be manually
created for the ZIP file install.

4. Build and install PHP.

make
make install

5. Following steps similar to the previous OCI8 sections to create the php.ini configuration
file and configure the Oracle environment for Apache.

Installing PDO_OCI on Windows

If you want to use the PDO_OCI driver for the PDO extension follow the previous steps for
installing OCI8 on Windows and add the extension to php.ini:

extension=php_pdo_oci.dll

You can have both PDO_OCI and OCI8 enabled together.

Checking OCI8 and PDO_OCI Installation
To confirm PHP was installed correctly, create a script phpinfo.php that shows the PHP
configuration settings. The file should be in a directory Apache can read, such as the
document root. This is specified by the DocumentRoot setting in the httpd.conf file. On Oracle
Linux the directory is /var/www/html.

Script 6: phpinfo.php

<?php

92

Checking OCI8 and PDO_OCI Installation

phpinfo();
?>

Load the script in your browser using http://localhost/phpinfo.php. Alternatively, the script can
be run in a terminal window with command line PHP, after adding the directory containing
PHP to your PATH environment variable, and adding the Oracle library directory to
LD_LIBARAY_PATH for Linux:

$ php phpinfo.php

or you could simply run

$ php -i

If you have more than one version of PHP on your system beware the output in a browser and
from the command line might be different.

In the output, check the Loaded Configuration File entry shows the php.ini that the
previous installation steps created.

The Environment section should show the Oracle environment variables. See Setting the
Oracle Environment on Linux earlier in this chapter.

If OCI8 was installed, there will be a section for it:

The parameter values are discussed in later chapters.
If PDO_OCI was installed, its configuration section will look like:

93

Figure 54: phpinfo() output when OCI8 is enabled.

Installing and Configuring PHP

The chapter Connecting to Oracle Using OCI8 shows how to use OCI8 to connect to Oracle
Database.

94

Figure 55: phpinfo() when PDO_OCI is enabled.

CHAPTER 9

INSTALLING PHP AND APACHE ON
ORACLE SOLARIS

This chapter discusses installing Apache and PHP IPS packages on Oracle Solaris 11.1. Solaris
includes Apache 2.2, PHP 5.2 and PHP 5.3 IPS packages, along with several PHP extensions.
PHP is currently only available for 32-bit.

At time of writing, no IPS packages are available for Oracle Instant Client or PHP OCI8 so
they must be installed manually. Check OTN for the latest information,
http://www.oracle.com/technetwork/server-storage/solaris11/overview/index.html

Oracle Database XE is not available on Solaris, but you can install and connect to another
edition of Oracle, or connect to a database on a different machine.

Installing Apache on Oracle Solaris 11.1
The Apache webserver can be installed from an IPS repository. To install Apache, follow these
steps:
6. Check that a Solaris IPS repository is configured. For example:

$ pkg publisher
PUBLISHER TYPE STATUS P LOCATION
solaris origin online F
http://ipkg.us.oracle.com/solaris11/release/

7. Check if Apache is already installed:

$ pkg info apache-22
 Name: web/server/apache-22
 Summary: Apache Web Server V2.2
 Description: The Apache HTTP Server Version 2.2
 Category: Web Services/Application and Web Servers
 State: Installed
 Publisher: solaris
 Version: 2.2.22
 Build Release: 5.11
 Branch: 0.175.1.0.0.24.0
Packaging Date: August 20, 2012 03:34:45 PM
 Size: 9.15 MB
 FMRI: pkg://solaris/web/server/apache-22@2.2.22,5.11-
0.175.1.0.0.24.0:20120820T153445Z

Commonly Apache will be present, so the next step can be skipped.
8. If Apache is not installed, then install it using the appropriate privileges, for example with

su, sudo, or pfexec:

pkg install web/server/apache-22

95

http://www.oracle.com/technetwork/server-storage/solaris11/overview/index.html

Installing PHP and Apache on Oracle Solaris

9. Apache can be started with:

svcadm enable apache22

10. To shut Apache down, disable it with:

svcadm disable apache22

11. The status of Apache can be checked with:

svcs apache22
STATE STIME FMRI
disabled 15:44:11 svc:/network/http:apache22

If Apache is running, its STATE will be online.

Installing PHP on Oracle Solaris 11.1
Oracle Solaris 11.1 currently includes PHP versions 5.2 and 5.3. Either or both may be
installed, however only one of them can be used by Apache at any one time. Solaris 11.0 only
has PHP 5.2 IPS packages.
1. To find all of PHP's IPS packages in the remote repository do:

$ pkg search -o pkg.name -r pkg.fmri:web/php* OR \

pkg.fmri:web/server/*php*
PKG.NAME
web/php-52
web/php-52/documentation
web/php-52/extension/php-apc
web/php-52/extension/php-idn
web/php-52/extension/php-memcache
web/php-52/extension/php-mysql
web/php-52/extension/php-pear
web/php-52/extension/php-suhosin
web/php-52/extension/php-tcpwrap
web/php-52/extension/php-xdebug
web/php-53
web/php-53/documentation
web/php-53/extension/php-apc
web/php-53/extension/php-idn
web/php-53/extension/php-memcache
web/php-53/extension/php-mysql
web/php-53/extension/php-pear
web/php-53/extension/php-suhosin
web/php-53/extension/php-tcpwrap
web/php-53/extension/php-xdebug
web/php-common
web/server/apache-22/module/apache-php5
web/server/apache-22/module/apache-php52
web/server/apache-22/module/apache-php53

2. Install PHP 5.3 with pkg using appropriate privileges such as via su, sudo, or pfexec:

96

Installing PHP on Oracle Solaris 11.1

pkg install web/php-53 web/server/apache-22/module/apache-php53
 Packages to install: 10
 Packages to update: 1
 Mediators to change: 1
 Create boot environment: No
Create backup boot environment: No

DOWNLOAD PKGS FILES XFER (MB)
SPEED
Completed 11/11 606/606 22.2/22.2
2.0M/s

PHASE ITEMS
Removing old actions 1/1
Installing new actions 962/962
Updating package state database Done
Updating image state Done
Creating fast lookup database Done

3. Similarly, PHP 5.2 packages can be installed with:

pkg install web/php-52 web/server/apache-22/module/apache-php52

4. Review all the PHP packages installed:
pkg list '*php*'
NAME (PUBLISHER) VERSION IFO
web/php-52 5.2.17-0.175.1.0.0.24.0 i--
web/php-52/extension/php-apc 3.0.19-0.175.1.0.0.24.0 i--
web/php-52/extension/php-idn 0.2.0-0.175.1.0.0.24.0 i--
web/php-52/extension/php-memcache 2.2.5-0.175.1.0.0.24.0 i--
web/php-52/extension/php-mysql 5.2.17-0.175.1.0.0.24.0 i--
web/php-52/extension/php-pear 5.2.17-0.175.1.0.0.24.0 i--
web/php-52/extension/php-suhosin 0.9.29-0.175.1.0.0.24.0 i--
web/php-52/extension/php-tcpwrap 1.1.3-0.175.1.0.0.24.0 i--
web/php-52/extension/php-xdebug 2.0.5-0.175.1.0.0.24.0 i--
web/php-53 5.3.14-0.175.1.0.0.24.0 i--
web/php-53/extension/php-apc 3.1.9-0.175.1.0.0.24.0 i--
web/php-53/extension/php-idn 0.2.0-0.175.1.0.0.24.0 i--
web/php-53/extension/php-memcache 3.0.6-0.175.1.0.0.24.0 i--
web/php-53/extension/php-mysql 5.3.14-0.175.1.0.0.24.0 i--
web/php-53/extension/php-pear 5.3.14-0.175.1.0.0.24.0 i--
web/php-53/extension/php-suhosin 0.9.33-0.175.1.0.0.24.0 i--
web/php-53/extension/php-tcpwrap 1.1.3-0.175.1.0.0.24.0 i--
web/php-53/extension/php-xdebug 2.2.0-0.175.1.0.0.24.0 i--
web/php-common 11.1-0.175.1.0.0.24.0 i--
web/server/apache-22/module/apache-php52 5.2.17-0.175.1.0.0.24 i--
web/server/apache-22/module/apache-php53 5.3.14-0.175.1.0.0.24 i--

5. As required in PHP 5.3, edit /etc/php/5.3/php.ini and set the timezone, for example:

date.timezone = America/Los_Angeles

See http://php.net/manual/timezones.php for available values.

6. Start Apache:

97

http://php.net/manual/timezones.php

Installing PHP and Apache on Oracle Solaris

svcadm enable apache22

7. Confirm Apache started with:

svcs apache22
STATE STIME FMRI
online 15:43:01 svc:/network/http:apache22

8. Check PHP's configuration with the command line:

$ php -i

Alternatively create a script in the webserver document root directory,
/var/apache2/2.2/htdocs/phpinfo.php:

<?php
phpinfo();
?>

Now, in a web browser, open the URL http://localhost/phpinfo.php. If PHP is
installed, the output will show the version of PHP and the extensions that are
configured.

Changing the Version of PHP used by Apache
If more than one version of PHP installed, you can choose which one is used by Apache. To see
the current version of PHP use phpinfo() or the package mediator command:

$ pkg mediator
MEDIATOR VER. SRC. VERSION IMPL. SRC. IMPLEMENTATION
java system 1.7 system
php system 5.3 system
python vendor 2.6 vendor

This example shows that Apache is using PHP 5.3.
To see all the possible values for the package mediator:

$ pkg mediator -a
MEDIATOR VER. SRC. VERSION IMPL. SRC. IMPLEMENTATION
java system 1.6 system
java system 1.7 system
php system 5.2 system
php system 5.3 system
python vendor 2.6 vendor

To change the version of PHP used by Apache, first disable Apache:

svcadm disable apache22

Then switch to PHP 5.2:

pkg set-mediator -V 5.2 php

Restart Apache:

98

http://localhost/phpinfo.php

Changing the Version of PHP used by Apache

svcadm enable apache22

Installing Oracle Instant Client on Oracle Solaris 11.1
Oracle client libraries must be available for OCI8. If there is no Oracle Database installed on
your machine, install the lightweight Oracle Instant Client:
1. Download the Oracle Instant Client for Solaris 32-bit from OTN, choosing SPARC or x86 as

appropriate: http://www.oracle.com/technetwork/database/features/instant-
client/index-097480.html

Install the instantclient-basic-solaris and instantclient-sdk-solaris packages.
Alternatively, instead of the “basic” package, you can install instantclient-basiclite-
solaris.

2. Unzip the packages into /opt/instantclient_11_2, for example:

cd /opt
unzip instantclient-basic-solaris.sparc32-11.2.0.3.0.zip
unzip instantclient-sdk-solaris.sparc32-11.2.0.3.0.zip

3. Create a symbolic link for the client shared library:

cd /opt/instantclient_11_2
ln -s libclntsh.so.11.1 libclntsh.so

The final directory layout for the “basic” and “sdk” packages should look like:

ls /opt/instantclient_11_2
adrci libclntsh.so.11.1 libocijdbc11.so uidrvci
BASIC_README libnnz11.so ojdbc5.jar xstreams.jar
genezi libocci.so.11.1 ojdbc6.jar
libclntsh.so libociei.so sdk

Installing OCI8 on Oracle Solaris 11.1
The OCI8 extension can be installed from PECL as a shared extension.
1. Make sure autoconf and system/header are installed.

pkg install autoconf
pkg install system/header

2. A C compiler is needed to build OCI8. Install Solaris Studio by downloading it and following
the documentation:
http://www.oracle.com/technetwork/indexes/downloads/index.html#tools

If necessary, add the Solaris Studio binary directory to your PATH, for example,

export PATH=$PATH:\
/opt/SolarisStudio12.3-solaris-x86-bin/solarisstudio12.3/bin

Solaris Studio is preferred because of its optimizations but you could alternatively,
install GCC:

99

http://www.oracle.com/technetwork/indexes/downloads/index.html#tools
http://www.oracle.com/technetwork/database/features/instant-client/index-097480.html
http://www.oracle.com/technetwork/database/features/instant-client/index-097480.html

Installing PHP and Apache on Oracle Solaris

pkg install gcc-dev

3. Shutdown Apache:

svcadm disable apache22

4. If you are behind a firewall, set the PEAR proxy which is used by PECL. For example:
/usr/php/bin/pear config-set http_proxy http://your-proxy.com:80

5. Download and install OCI8:

/usr/php/bin/pecl install oci8

When prompted for the path to ORACLE_HOME respond with the full path to the
Oracle home directory or, if you installed Oracle Instant Client, enter
instantclient,/opt/instantclient_11_2. Note the installer will not expand
environment variables in your response.

6. For PHP 5.3 edit /etc/php/5.3/php.ini and add:

extension=oci8.so

If you installed PHP 5.2 then add this directive to /etc/php/5.2/php.ini.
7. Set any required environment variables, such as LD_LIBRARY_PATH, in your shell. For

Apache the variables must be set in /etc/apache2/2.2/envvars:

export LD_LIBRARY_PATH=/opt/instantclient_11_2

See Setting the Oracle Environment Variables on Linux in the previous chapter. Oracle
Solaris uses similar variables as Linux, such as NLS_LANG and TNS_ADMIN.

8. Restart Apache:

svcadm enable apache22

Calling the previous phpinfo.php script will show the OCI8 extension and its options. The
variable LD_LIBRARY_PATH should be seen in the Environment section.

You can remove the OCI8 extension by reverting the extension entry in php.ini and
physically removing the extension with:

/usr/php/bin/pecl uninstall oci8

The next chapter shows how to use OCI8 to connect to Oracle Database.

100

CHAPTER 10

CONNECTING TO ORACLE USING OCI8

This chapter covers connecting to an Oracle database from your PHP application, showing the
forms of Oracle connection and how to tune them. A later chapter PHP Connection Pooling
and High Availability discusses connection pooling and how it applies to connection
management.

Before attempting to connect, review the section Setting the Oracle Environment on Linux
in Chapter 8 and make sure that your environment is configured appropriately.

The examples use the “human resources” HR schema, a demonstration user account
installed with the database. Use SQL*Plus to unlock the account and set a password, as
described in the chapter SQL With Oracle Database.

Depending on the version of the Oracle Client libraries that OCI8 is linked with, you can
connect to various versions of Oracle Database. Oracle Support Note 207303.1 details the full
Oracle client-server compatibility matrix.

Oracle Connection Example
Once you have installed PHP OCI8, Apache, and have the credentials to access a local or
remote database, then you can test an OCI8 script. Create oci8.php in Apache's
DocumentRoot directory, where you created phpinfo.php in the previous chapter:

Script 7: oci8.php

<?php

$c = oci_pconnect("hr", "welcome", "localhost/XE");
if (!$c) {
 $e = oci_error();
 trigger_error('Could not connect to database: '. $e['message'],E_USER_ERROR);
}

$s = oci_parse($c, "select city from locations order by city");
if (!$s) {
 $e = oci_error($c);
 trigger_error('Could not parse statement: '. $e['message'], E_USER_ERROR);
}
$r = oci_execute($s);
if (!$r) {
 $e = oci_error($s);
 trigger_error('Could not execute statement: '. $e['message'], E_USER_ERROR);
}

echo "<table border='1'>\n";
$ncols = oci_num_fields($s);
echo "<tr>\n";
for ($i = 1; $i <= $ncols; ++$i) {
 $colname = oci_field_name($s, $i);
 echo " <th>".htmlentities($colname, ENT_QUOTES)."</th>\n";

101

Connecting to Oracle Using OCI8

}
echo "</tr>\n";

while (($row = oci_fetch_array($s, OCI_ASSOC+OCI_RETURN_NULLS)) != false) {
 echo "<tr>\n";
 foreach ($row as $item) {
 echo " <td>".($item!==null?htmlentities($item,
 ENT_QUOTES):" ")."</td>\n";
 }
 echo "</tr>\n";
}
echo "</table>\n";
?>

The script connects as the HR user to the local installation of Oracle 11g XE. The password is
“welcome”. Load it in a browser with: http://localhost/oci8.php. The output is like:

If you have errors, read further in this chapter about connections and troubleshooting.

Oracle Connection Types
There are three ways to connect to an Oracle database in a PHP application: using standard
connections, unique connections, or persistent connections. Each method returns a
connection resource that is used in subsequent OCI8 calls.

102

Figure 56: Output from oci8.php.

Oracle Connection Types

Independent of which one of these PHP connection methods are used in applications, the
database server can be configured to handle its end of the connection in different ways. The
best practice for most PHP web applications is for the database to use Database Resident
Connection Pooling (DRCP) connection pooling. This is discussed in the chapter PHP
Connection Pooling and High Availability.

Standard Connections

For basic connection to Oracle use PHP’s oci_connect() call:

$c = oci_connect($username, $password, $dbname);

You can call oci_connect() more than once in a script. If you do this and use the same
connection details, then you get a pointer to the original connection.

Unique Connections

To get a totally independent connection use oci_new_connect():

$c = oci_new_connect($username, $password, $dbname);

Each connection is separate from any other. This lets you have more than one database
session open at the same time, which is useful when you want to do database operations
independently from each other.

Persistent Connections

Persistent connections can be made with oci_pconnect():

$c = oci_pconnect($username, $password, $dbname);

Persistent connections are not automatically closed at the end of a PHP script when the HTTP
request finishes. They remain open in PHP’s persistent connection cache for reuse by later
scripts. This makes oci_pconnect() fast for frequently used web applications. Reconnection
does not require re-authentication to the database.

Each cache entry uses the database username, the database connect string, the hashed
password, the character set and the connection privilege to ensure reconnection in later (or
the same) PHP scripts reuses the correct cached database connection.

103

Connecting to Oracle Using OCI8

Limits on the number of persistent connections in the cache can be set, and connections can
be automatically expired to free up resources. The parameters for tuning persistent
connections are discussed later in this chapter.

When the PHP process terminates, the connection cache is destroyed and all database
connections closed. This means that for command line PHP scripts, persistent connections are
equivalent to normal connections and there is no performance benefit.

If the database is shutdown with the NORMAL option, the shutdown will hang until all
database connections are closed. If persistent connections have been used in PHP, Apache
will first need to be shutdown to close those connections.

Oracle Database Name Connection Identifiers
The $dbname connection identifier is the name of the local or remote database that you want
to attach to. It is interpreted by Oracle Net, the component of Oracle that handles the
underlying connection to the database and establishes a connection through to the network
“listener” on the database server. The connection identifier can be one of:

● An Easy Connect string

● A Connect Descriptor string

● A Connect Name

Easy Connect String

If you are running Oracle Database XE on a machine called mymachine, you could connect to
the HR schema with:

$c = oci_connect('hr', 'welcome', 'mymachine/XE');

In this guide, we assume the database is on the same machine as Apache and PHP so we use
localhost:

104

Figure 57: Persistent connections are cached in PHP and held open to
the database when the web user is idle.

Oracle Database Name Connection Identifiers

$c = oci_connect('hr', 'welcome', 'localhost/XE');

Depending on your network configuration, you may need to use the equivalent IP address:

$c = oci_connect('hr', 'welcome', '127.0.0.1/XE');

The Easy Connect string is JDBC-like. The Oracle 10g syntax is:

[//]host_name[:port][/service_name]

If the PHP binary is linked with Oracle 11g client libraries, the enhanced 11g syntax can be
used:

[//]host_name[:port][/service_name][:server_type][/instance_name]

The prefix // is optional. The port number defaults to Oracle’s standard port, 1521. The
service name defaults to the same name as the database's host computer name. The server
is the type of process that Oracle uses to handle the connection, see the chapter PHP
Connection Pooling and High Availability covering Database Resident Connection Pooling for
an example. The instance name is used when connecting to a specific machine in a clustered
environment.

While it is common for Oracle database sites to use port 1521, it is relatively rare that a
database will be installed with the service name set to the host name. You will mostly need to
specify the connection identifier as host_name/service_name.

The lsnrctl command on the database server shows the service names that the Oracle Net
listener accepts requests for. The example below shows the service XE is available.

$ lsnrctl services

LSNRCTL for Linux: Version 11.2.0.2.0 - Production on 05-Jun-2011 16:24:52

Copyright (c) 1991, 2011, Oracle. All rights reserved.

Connecting to (DESCRIPTION=(ADDRESS=(PROTOCOL=IPC)(KEY=EXTPROC_FOR_XE)))
Services Summary...
Service "PLSExtProc" has 1 instance(s).
 Instance "PLSExtProc", status UNKNOWN, has 1 handler(s) for this service...
 Handler(s):
 "DEDICATED" established:0 refused:0
 LOCAL SERVER
Service "XE" has 1 instance(s).
 Instance "XE", status READY, has 1 handler(s) for this service...
 Handler(s):
 "DEDICATED" established:18 refused:0 state:ready
 LOCAL SERVER
. . .

More information on the syntax can be found in the Oracle® Database Net Services
Administrator's Guide 11g Release 2 (11.2).

Database Connect Descriptor String

The full Oracle Net connect descriptor string gives total flexibility over the connection.

$db = '(DESCRIPTION =

105

Connecting to Oracle Using OCI8

 (ADDRESS = (PROTOCOL = TCP)
 (HOST = mymachine.mydomain)(PORT = 1521))
 (CONNECT_DATA =
 (SERVER = DEDICATED)
 (SERVICE_NAME = MYDB.MYDOMAIN)))';

$c = oci_connect($username, $password, $db);

The syntax can be more complex than this example, depending on the Oracle Net features
used. For example, you can enable features like load balancing and tweak packet sizes. The
Easy Connect syntax does not allow this flexibility.

Database Connect Name

You can store the connect descriptor string in a commonly used Oracle file called
tnsnames.ora and refer to it in PHP using a connect name:

tnsnames.ora
MYD = (DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)
 (HOST = mymachine.mydomain)(PORT = 1521))
 (CONNECT_DATA =
 (SERVER = DEDICATED)
 (SERVICE_NAME = MYDB.MYDOMAIN)))

In PHP you would use the connect name MYD to connect to the database:

$c = oci_connect($username, $password, 'MYD');

PHP needs to be able to find the tnsnames.ora file to resolve the MYD name. The directory
paths that Oracle searches for tnsnames.ora depend on your operating system. On Linux, the
search path includes:

$TNS_ADMIN/tnsnames.ora
/etc/tnsnames.ora
$ORACLE_HOME/network/admin/tnsnames.ora

If PHP was compiled using the Oracle libraries in an ORACLE_HOME-style install, then set
ORACLE_HOME before starting the web server. The pre-supplied
$ORACLE_HOME/network/admin/tnsnames.ora will then automatically be found. In Oracle
Database XE, the value of $ORACLE_HOME is:

/u01/app/oracle/product/11.2.0/xe

If PHP was built with Oracle Instant Client then put tnsnames.ora in /etc, or set TNS_ADMIN to
the directory containing it prior to starting the web server.

Make sure Apache has read permissions on tnsnames.ora. In some ORACLE_HOME-style
installs, the default permissions on the file are restrictive.

106

Commonly Seen Connection and Environment Errors

Commonly Seen Connection and Environment Errors
Establishing a database connection is the common place for installation and configuration
errors to manifest themselves.

Common errors when running PHP with the OCI8 extension are due to an incorrectly set
environment. Check the environment variables are set and exported, see Setting the Oracle
Environment on Linux, in the chapter Installing and Configuring PHP. On Windows the
common problem is having multiple versions of Oracle libraries installed.

The bottom line is that your environment should be set correctly and consistently. The
Apache process must have access to Oracle libraries and configuration files. Environment
variables must be set in the shell that starts Apache, not in PHP scripts.

Check the Apache Error Log File

Start troubleshooting by checking the Apache error_log file for errors so you try to resolve the
underlying cause, not some consequential symptom.

Check Runtime Errors

If php.ini is not configured to display errors in normal output then your web pages may simply
show as blank page in your browser. Enable output with display_errors in php.ini.
Alternatively, check the web server or PHP logs for the error messages.

Check php.ini is Loaded

Check that the correct php.ini file is being loaded. To find the php.ini location run a script
phpinfo.php:

Script 8: phpinfo.php

<?php
phpinfo();
?>

Near the top of its output are lines like:

...
Configuration File (php.ini) Path => /opt/php54/lib
Loaded Configuration File => /opt/php54/lib/php.ini
...

This immediately indicates the php.ini directory and, in this example, that it is being correctly
read. If the directory did not contain a php.ini file, the loaded value would read “(none)”.

Older versions of PHP may only show one line:

Configuration File (php.ini) Path => /opt/php/lib/php.ini

If php.ini was not found, the old output would only show the directory name:

Configuration File (php.ini) Path => /opt/php/lib

Check the phpinfo.php output with both command line PHP and via a browser.

107

Connecting to Oracle Using OCI8

You can override the default location of php.ini by adding the desired file location to your
httpd.conf:

PHPIniDir "/your/path/to/php.ini"

The path should include the filename.

Check OCI8 is enabled in php.ini

Check that OCI8 is enabled in php.ini, if required.
On Windows exactly one of the lines extension=php_oci8.dll or or

extension=php_oci8_11g.dll must be in php.ini.
On Linux, if OCI8 was statically compiled into the PHP binary then no directive is needed

but if OCI8 was built as a shared library the line should be extension=oci8.so.
If all is well in your php.ini, the output of phpinfo() will contain a section showing OCI8

parameters. See the section on Checking OCI8 and PDO_OCI Installation in the chapter
Installing and Configuring PHP.

Set Oracle Environment Variables

Never use PutEnv() to set Oracle environment variable in PHP scripts. This is the number one
cause of unexpected user problem. Variables should be set and exported in the environment
that starts the web server.

If you think your environment variables are not set, refer to Setting the Oracle
Environment on Linux in the chapter Installing and Configuring PHP.

If you are expecting shell environment variables to be passed to PHP when starting
Apache, do not use the Linux service command to start Apache, since this clears the
environment.

Check Apache Has Oracle File Access

The OCI8 extension always needs to find Oracle libraries, globalization data, error message
data and optionally needs the Oracle Network tnsnames.ora and sqlnet.ora files. Not finding
the libraries can lead to Apache startup errors about OCI8 not being initialized, such as
“OCIEnvNlsCreate() failed”, or to script runtime errors like:

PHP Fatal error: Call to undefined function oci_connect()

This particular error means that the OCI8 extension is not loaded in PHP.
Check that ORACLE_HOME and/or LD_LIBRARY_PATH on Linux, or PATH on Windows are

valid. If you built PHP with an ORACLE_HOME, then check the Oracle home directory is
readable by the Apache process owner. If you are using an Oracle Database 10g Release 2
database other than the Express Edition, refer to the $ORACLE_HOME/install/changePerm.sh
script in later Oracle patch sets.

Check that the tnsnames.ora file (if you use one for connection) is readable. Restart
Apache after making changes to Oracle Network configuration files so that PHP re-reads the
updated files.

A tool such as strace or truss can be used on PHP to see which files PHP needs access to.

108

Commonly Seen Connection and Environment Errors

Avoid Multiple Oracle Library Clashes

A potential source of problems on Windows is having multiple installations of Oracle libraries.
Using mismatched versions of Oracle libraries and files can lead to PHP returning errors such
as:

ORA-12705: Cannot access NLS data files or invalid environment specified

or:

OCIEnvNlsCreate() failed. There is something wrong with your system

Users of older versions of OCI8 may see the one of the equivalent errors:

OCIEnvCreate() failed. There is something wrong with your system

or

OCIEnvInit() failed. There is something wrong with your system

Instead of starting Apache as a service that inherits the mixed Oracle environment, write a
script that sets PATH with the correct Oracle libraries and then starts Apache. With the IIS web
server, use the IIS manager and set PATH in the php-cgi.exe entry in the FastCGI settings.

Some users move the Instant Client DLLs to the System, Apache, or PHP directory as a
quick solution, but this is not recommended as a long term solution.

Using a dependency checker program can help determine which Oracle libraries are being
loaded on Windows.

Use the Right PHP Binary

On Windows 64-bit if you use Oracle 64-bit libraries you might get an OCIEnvNLSCreate()
error or you might see:

Unable to load dynamic library 'C:\Program Files (x86)\PHP\ext\php_oci8_11g.dll'
- %1 is not a valid Win32 application.

There is only a 32-bit version of PHP on Windows so you need to make sure to use Oracle 32-
bit client libraries.

Use the Right Connection String

Your oci_connect() calls need to know which database to connect to. If an error like this
occurs:

Error while trying to retrieve text for error ORA-12154

it means two problems happened. First, a connection error ORA-12154 occurred. The second
problem is the “Error while trying to retrieve text” message, indicating Oracle’s message files
were not found, most likely because ORACLE_HOME is not correctly set.

The expected description for ORA-12154 is actually:

ORA-12154: TNS:could not resolve service name

109

Connecting to Oracle Using OCI8

This error indicates that the connection string is not valid, or the tnsnames.ora file (if one is
being used) wasn't readable. The result is that OCI8 does not know which machine to connect
to. A similar error:

ORA-12514 TNS:listener does not currently know of service requested in connect
descriptor

means that OCI8 was able to contact a machine hosting Oracle, but the expected database is
not running on that computer. For example, if Oracle Database 11g XE is currently running on
your computer and you try to connect to localhost/abc then you will get this error.

Other Troubleshooting Tips

Here are some further things to check if you are having problems connecting or configuring
OCI8:

● Turn on error reporting in php.ini (remember to turn it off for production deployment) or
do it in each script with:

error_reporting(E_ALL); // In PHP 5.3 use E_ALL|E_STRICT
ini_set('display_errors', 'On');

● You might get “OCIEnvNlsCreate() failed” if PHP links with an older Oracle version at
runtime than the one it was compiled with. If you have multiple versions of Oracle
installed on Linux then you might be able to use LD_PRELOAD or equivalent to force
Apache to load the desired Oracle libclntsh.so file.

● If scripts sometime fail with ORA-12516 TNS:listener could not find available handler with
matching protocol stack then use DRCP connection pooling or increase the Oracle
Database processes parameter. Pooling is discussed in the chapter PHP Connection
Pooling and High Availability. Changing the database parameter is discussed in the
chapter Testing PHP and the OCI8 Extension.

● On Windows make sure to reboot after modifying the PATH environment variable.

● If you copied tnsnames.ora from Windows to Linux you will get an error if it still contains:

SQLNET.AUTHENTICATION_SERVICES = (NTS)

● If there is a client sqlnet.ora (which would be in the same directory as tnsnames.ora),
check what the names.default_domain value is. This value will be automatically appended
to the TNS string in PHP before being looked up in tnsnames.ora. For example, if
sqlnet.ora had names.default_domain = oracle.com and the connection call was
oci_connect($u, $p, 'XE'), then tnsnames.ora would need to have an entry
'XE.oracle.com = (DESCRIPTION ...)'.

● Only one version of the PHP module can be loaded in Apache at a time. It is possible to
get the error “OCIEnvNlsCreate() failed” if httpd.conf has two LoadModule lines like:

 LoadModule php5_module modules/libphp5.so
 LoadModule php6_module modules/libphp6.so

110

Closing Oracle Connections

Closing Oracle Connections
At the end of each script, connections opened with oci_connect() or oci_new_connect() are
automatically closed. You can also explicitly close these connections by calling:

oci_close($c);

Any uncommitted data is rolled back. The function has no effect on persistent connections.
(See the section on connection pooling in the PHP Connection Pooling and High Availability
chapter for caveats).

If a long running script only spends a small amount of time interacting with the database,
close connections as soon as possible to free database resources for other users. When the
Apache or PHP command line process terminates, all database connections are closed.

The oci_close() function was a “no-op” prior to the re-factoring of OCI8 in PHP 5.1. That
is, it had no functional code, and never actually closed a connection. You could not explicitly
close connections even if you wanted to! You can revert to this old behavior with a php.ini
setting:

oci8.old_oci_close_semantics = On

Closing Connections and Variable Scope

PHP resources such as connection resources work by reference counting. Only when all PHP
references to the database connection are finished will it actually be closed and database
resources freed. This example shows the effect of reference counting:

Script 9: close.php

<?php

$c = oci_connect("hr", "welcome", "localhost/XE");
$s = oci_parse($c, "select * from locations");
oci_execute($s);
oci_fetch_all($s, $res);

// oci_free_statement($s); // Uncomment this for the oci_close() to work
oci_close($c);

echo "Sleeping . . .";
sleep(10);
echo "Done";

?>

While close.php is sleeping, if you query the database as a privileged user:

SQL> select username from v$session where username is not null;

you will see that HR is still shown as connected until the sleep() finishes and the script
terminates. This is because the oci_parse() call creating the statement resource $s internally
increases the reference count on $c. The database connection is not closed until PHP's end-of-
script processing destroys $s.

111

Connecting to Oracle Using OCI8

An oci_free_statement($s) call will explicitly decrease the reference count on $c allowing
the oci_close() to have an immediate effect. If this freeing call is uncommented in the
example, the SQL*Plus query will show the database connection was explicitly closed before
the sleep() starts.

Another commonly seen idiom to close resources is to assign null to them:

$s = null;

Variables and other kinds of resources may also increase the reference count on a connection,
and in turn have their own reference count which must be zero before they can destroyed.
The reference count will decrease if the variables goes out of scope or are assigned new
values.

In the next example script, close2.php, the variables $c1 and $c2 are the same database
connection because oci_connect() returns the same connection resource when called more
than once in a script with the same credentials. If you query v$session while the script is
running you will only see one open connection. The physical database connection is released
only when $c1 and c2 are both closed. Also the statement resource must be freed, which
happens automatically when do_query() completes and $s goes out of scope.

Script 10: close2.php

<?php

function do_query($c, $query)
{
 $s = oci_parse($c, $query);
 oci_execute($s);
 oci_fetch_all($s, $res);
 echo "<pre>";
 var_dump($res);
 echo "</pre>";
}

$c1 = oci_connect('hr', 'welcome', 'localhost/XE');
$c2 = oci_connect('hr', 'welcome', 'localhost/XE'); // Reuses $c1 DB connection

do_query($c1, 'select user from dual'); // Query 1 works
oci_close($c1); // DB connection doesn't get closed
do_query($c1, 'select user from dual'); // Query 2 fails
do_query($c2, 'select user from dual'); // Query 3 works
oci_close($c2); // DB connection is now closed

?>

Variable $c1 is not usable after oci_close($c1) is executed: PHP has dissociated it from the
connection. But the database connection remains open because $c2 still references it. The
script outcome is that the first and third queries succeed but the second one fails.

Transactions and Connections

Uncommitted data is rolled back when a connection is closed or at the end of a script. For
oci_pconnect() this means subsequent scripts reusing a cached database connection will not
see any data that should not be shared.

112

Closing Oracle Connections

Avoid letting database transactions remain open if a second oci_connect() or
oci_pconnect() call with the same user credentials is executed within a script, or if
oci_close() is used. Making sure data is committed or rolled back first can prevent hard to
debug edge cases where data is not being stored as expected.

The next chapter covers database transactions in more detail.

Session State With Persistent Connections

It is possible for a script to change session attributes for oci_pconnect() that are not reset at
the end of the script. (The Oracle term session is effectively the same as the PHP term
connection). One example is the globalization setting for the date format:

$c = oci_pconnect("hr", "welcome", "localhost/XE");
do_query($c, "select sysdate from dual");
$s = oci_parse($c, "alter session set nls_date_format=’YYYY-MM-DD HH24:MI:SS’");
$r = oci_execute($s);
do_query($c, "select sysdate from dual");

The first time this is called in a browser, the two dates returned by the queries are:

18-APR-07
2007-04-18 14:21:09

The first date has the Oracle default format. The second is different because the ALTER
SESSION command changed the format.

Calling the script a second time gives:

2007-04-18 14:21:10
2007-04-18 14:21:10

The persistent connection has retained the session setting and the first query no longer uses
the system default format. This only happens if the same Apache process serves both HTTP
requests. If a new Apache process serves the second request then it will open a new
connection to the database, which will have the original default date format. (Also the system
will have two persistent connections left open instead of one.)

Session changes like this may not be a concern. Your applications may never need to do
anything like it, or all connections may need the same values anyway. If there is a possibility
incorrect settings will be inherited, make sure your application resets values after connecting.

Optional Connection Parameters
The oci_connect(), oci_new_connect() and oci_pconnect() functions take an optional extra
two parameters:

● Connection character set

● Connection session mode

Connection Character Set

The character set is a string containing an Oracle character set name, for example, JA16UEC or
AL32UTF8:

113

Connecting to Oracle Using OCI8

$c = oci_connect("hr", "welcome", "localhost/XE", "AL32UTF8");

When not specified or NULL is passed, the NLS_LANG environment variable setting is used.
The character set determines how Oracle translates data when it is transferred from the

database to PHP. If the database character set is not equivalent to the OCI8 character set,
some data may get converted abnormally. It is recommended to set this parameter to
improve performance and guarantee a known value is used.

It is up to your application to handle returned data correctly, perhaps by using PHP’s
mb_string, iconv or intl extensions. Globalization is discussed in more detail in the
Globalization chapter.

Connection Session Mode

The session mode parameter allows privileged or externally authenticated connections to be
made. For example:

$c = oci_connect("hr", "welcome", "localhost/XE", "AL32UTF8", OCI_SYSDBA);

Connection Privilege Level

The OCI8 extension allows privileged SYSDBA and SYSOPER connections. Privileged
connections are disabled by default. They can be enabled in php.ini using:

oci8.privileged_connect = 1

The SYSDBA and SYSOPER privileges give you the ability to change the state of the database,
perform data recovery, and even access the database when it has not fully started. Be very
careful about exposing this on customer facing web sites, that is, do not do it! It might be
useful for command line PHP scripts in very special circumstances.

When you installed Oracle, the SYS administrative user account was automatically created
with the password that you supplied. All base tables and views for the database data
dictionary are stored in the SYS schema – they are critical for the operation of Oracle. By
default, the SYSDBA privilege is assigned only to user SYS, but it and SYSOPER can manually
be granted to other users.

Operating System Authenticated Privileged Connections

You can have the operating system perform the authentication for privileged connections
based around the operating system user that is running the web server system process. An
operating system authenticated privileged connection in PHP is equivalent to the SQL*Plus
connection:

$ sqlplus / as sydba

For / as sysdba access (where no username and password is used) in PHP, all these must be
true:

● The operating system process user is a member of the OS dba group

● PHP is linked with the same ORACLE_HOME software that the database is using (not
Oracle Instant Client)

114

Optional Connection Parameters

● The database is your default local database, for example, specified by the ORACLE_SID
environment variable

● oci8.privileged_connect = 1 in php.ini.

Scripts that contain operating system authenticated privileged connection calls will connect
successfully:

$c = oci_connect("/", "", null, null, OCI_SYSDBA);

If PHP is invoked by Apache, the library path needs to contain the same Oracle libraries as
used by the database. Also the nobody user must be in the privileged Oracle group, for
example, in the operating system dba group. This is not recommended.

Similarly, AS SYSOPER access is available for members of the oper group. In PHP use
OCI_SYSOPER in oci_connect().

On Windows, the operating system groups are called ORA_DBA and ORA_OPER.

Remote Privileged Access

When OCI8 uses Oracle Instant Client, a username and password must be given when
connecting to a database. These connections are considered “remote” from the database
because the libraries used by PHP are not those used by the running database.

Remote users can make privileged connections only when they have been given the
appropriate Oracle access. In SQL*Plus a privileged session would be started like:

$ sqlplus username/password@sid as sysdba

The database will not permit the (possibly physically) “remote” operating system to authorize
access. An extra Oracle password file needs to be created and a password needs to be used in
the database connection.

To set up a password file, check the database initialization parameter
remote_login_passwordfile is EXCLUSIVE. This is the default value. To do this, log in to the
operating system shell as the Oracle database software owner, and start SQL*Plus:

$ sqlplus / as sysdba

SQL> show parameter remote_login_passwordfile

NAME TYPE VALUE
----------------------------- ----------- ------------
remote_login_passwordfile string EXCLUSIVE

A setting of EXCLUSIVE means the password file is only used with one database and not
shared among several databases on the host. It enables you to have multiple users connect to
the database as themselves, and not just as SYS. If this parameter is not set to EXCLUSIVE,
you can change the value in SQL*Plus by entering a command similar to:

SQL> alter system set remote_login_passwordfile='exclusive'
 2 scope=spfile sid='*';

From the operating system shell, create an Oracle password file:

$ $ORACLE_HOME/bin/orapwd file=$ORACLE_HOME/dbs/acct.pwd \
> password=secret entries=10

115

Connecting to Oracle Using OCI8

This creates a password file named acct.pwd that allows up to 10 privileged users with
different passwords (this number can be changed later). The file is initially created with the
password secret for users connecting with the username SYS.

To add a new user to the password file use SQL*Plus:

SQL> create user c1 identified by c1pw;
SQL> grant connect to c1;
SQL> grant sysdba to c1;
SQL> select * from v$pwfile_users;
USERNAME SYSDBA SYSOPER
------------------------------ ------ -------
SYS TRUE TRUE
C1 TRUE FALSE

Now in PHP you can use the following connection command:

$c = oci_connect("c1", "c1pw", 'localhost/XE', null, OCI_SYSDBA);

One feature of a privileged connection is that if you issue a SELECT USER FROM DUAL
statement, any OCI_SYSDBA connection will show the user as SYS not C1. A connection made
with OCI_SYSOPER will show a user of PUBLIC.

Password Handling in PHP Applications
The examples in this book hard code the database password in each PHP script. Real
applications need to be more careful with password management.

PHP operates in a stateless way but a typical application needs database access over a
number of sequential HTTP requests. Once the user has logged into the web application you
don't want to store their plaintext password in a cookie and reuse it for database connection
on their next web request because storing it this way is a security risk. So web applications
typically connect to the database using one pre-determined database schema and do their
own application-specific authorization.

The first problem is how to protect that schema. A typical PHP approach to avoid hard
coding the database password in scripts is to set it in an environment variable. The variable is
passed through to PHP with Apache's PassEnv. Whenever Apache is started or the machine
rebooted, the variable must be manually set. The value is then available to PHP scripts in the
$_ENV global:

$c = oci_connect('hr', $_ENV['HRPASSWORD'], 'localhost/XE');

Note that on Linux the service httpd start command only passes the LANG and TERM
variables, so Apache must be started with /usr/sbin/apachectl for this to work on Oracle Linux.

External Authentication With PHP OCI8

Instead of storing the database username and password in PHP scripts or environment
variables, database access can be authenticated by an outside system. Once this
authentication system is configured, PHP scripts connect like:

$c = oci_connect("/", "", "mynetalias", null, OCI_CRED_EXT);

where mynetalias is a connect name configured in a tnsnames.ora file. No username or
password is stored in the PHP code.

116

Password Handling in PHP Applications

One such external storage mechanism is Oracle Wallet which creates a secret wallet store.
Only the operating system user running the Apache process needs to be granted read access
to the wallet, which can be done using Access Control Lists (ACL). This further helps protect
the database password.

The following example is an overview of using Oracle Wallet Manager. Because the details
vary from version to version and the options may be specific to your application, verify the
steps before trusting this. Note this is not supported in Oracle XE, and also that the external
authentication feature of OCI8 is not available on Windows.
1. First create a wallet directory as the Oracle user:

$ mkstore -wrl /home/oracle/wallet_dir -create

This will prompt for a new password for the store.
2. Create the wallet for the username and password that are currently hardcoded in your

PHP scripts:

$ mkstore -wrl "/home/oracle/wallet_dir" -createCredential my112 hr welcome

This will prompt for the wallet password previously set. The alias key my112
immediately following the -createCredential option will be the connect name to be
used in PHP scripts. If your application connects with multiple different database
users, you could create a wallet entry with different connect names for each.

You can see the newly created credential with:

$ mkstore -wrl "/home/oracle/wallet_dir" -listCredential

3. Create a tnsnames.ora file, for example in /opt/oracle/tnsnames.ora. This will be used by
PHP applications:

my112 =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)(HOST = localhost)(PORT = 1521))
 (CONNECT_DATA =
 (SERVER = DEDICATED)
 (SERVICE_NAME = orcl)
)
)

The file uses the description for your existing database and sets the connect name
alias to my112, which is the new identifier used in the wallet.

4. In the same directory as the tnsnames.ora file, create a sqlnet.ora file containing the
wallet location:

WALLET_LOCATION =
 (SOURCE =
 (METHOD = FILE)
 (METHOD_DATA =
 (DIRECTORY = /home/oracle/wallet_dir)
)
)

SQLNET.WALLET_OVERRIDE = TRUE

117

Connecting to Oracle Using OCI8

SSL_CLIENT_AUTHENTICATION = FALSE
SSL_VERSION = 0

5. Set TNS_ADMIN to the directory containing these two files, and export the variable. On
Oracle Linux it would be exported in /etc/sysconfig/httpd for PHP, for example:

export TNS_ADMIN=/opt/oracle

6. Apache needs access to the wallet:

setfacl -m u:apache:rx /home/oracle/wallet_dir
setfacl -m u:apache:r /home/oracle/wallet_dir/{cwallet.sso,ewallet.p12}

7. Restart Apache:

service httpd restart

8. Create an OCI8 script of your choice, passing the flag OCI_CRED_EXT as the session_mode
parameter to oci_connect(), oci_new_connect() or oci_pconnect():

$c = oci_connect("/", "", "my112", null, OCI_CRED_EXT);

The OCI_CRED_EXT mode can only be used with a username of "/" and an empty
password. The php.ini parameter oci8.privileged_connection may be On or Off. The
OCI_CRED_EXT mode may be combined with the OCI_SYSOPER or OCI_SYSDBA
modes, for example:

$c = oci_connect("/", "", $db, null, OCI_CRED_EXT+OCI_SYSOPER);

The php.ini directive oci8.privileged_connection does need to be On for OCI_SYSDBA
and OCI_SYSOPER use.

9. Load your script in a browser.

Tuning Connections to Build Scalable Systems
Oracle achieved its well-known scalability in part through a multi-threaded architecture. PHP
instead has a multi-process architecture. This design difference means care is required when
designing scalable applications because, instead of connections being shared via a mid-tier
connection pool, large numbers of PHP processes each have one or more database
connections. The number of connections open is a factor for database server memory
requirements. Creating new connections is also relatively slow in Oracle. Connecting pooling
in OCI8 and Oracle Database helps resolve these issues.

A general connection tip is to make applications as efficient as possible. This minimizes
the length of time connections are held. The following sub-sections give some detailed tips.

Use the Best Connection Function

Using oci_pconnect() makes a big improvement in overall connection speed of frequently
used applications because it uses the connection cache in PHP. A new, physical connection to
the database does not have to be created if one already exists in PHP’s cache. Using
persistent connections is common for web sites that have high numbers of connections being

118

Tuning Connections to Build Scalable Systems

established. Reusing a previously opened connection is significantly faster than opening a
fresh one.

Overall database load may be reduced if idle connections are closed with Apache process
timeouts, although this needs to be balanced against the expense of creating new
connections at peak user login time.

If unused-but-still-open persistent connections consume too much memory on the
database server, consider using connection pooling.

Use Connection Pooling

The general best practice suggestion is to use persistent OCI8 connections with Oracle
Database Resident Connection Pooling. DRCP dramatically reduces the database server
memory used for each connection, allowing more memory to be allocated to shared
structures in the database itself. DRCP can be useful even for small sites because it allows
database servers to handle relatively large numbers of connections. If DRCP is not available
then Oracle Shared Servers also known as “Multi Threaded Servers” (MTS) might give some
benefits. See the chapter PHP Connection Pooling and High Availability for information on
using DRCP with OCI8.

Minimize the number of database user credentials used

Each persistent connection that uses a different set of credentials will create a separate
process on the database host. If the application connects with a large number of different
schemas, then the number of persistent connections can be reduced by connecting as one
user who has been granted permission to the original schemas' objects.

The application can either be recoded to use explicit schema names in queries:

SQL> select * from olduser.mytable;

Or, if the application is too extensive to modify, the first statement executed can set the
default schema:

SQL> alter session set current_schema = olduser;

Setting the default schema this way requires an extra database operation per connection but,
depending on the application, it may be bundled in a PL/SQL block or trigger that does other
operations.

Connect With a Character Set

Explicitly passing the client character set name as the fourth parameter to the connection
functions reduces the time to connect:

$c = oci_connect("hr", "welcome", "localhost/XE", "WE8DEC");

If you do not enter a character set, PHP has to determine one to use. This may involve a
potentially expensive environment lookup. Use the appropriate character set for your
globalization requirements.

119

Connecting to Oracle Using OCI8

Tune the AUDSES$ Sequence Generator

For sites with hundreds of connections per second, tune the cache size of the internal
sequence generator, SYS.AUDSES$. A starting point is to change it to perhaps 10000:

SQL> alter sequence sys.audses$ cache 10000;

This is also recommended if you are using Oracle RAC (“Real Application Clusters”).

Do Not Set the Date or Numeric Format Unnecessarily

Avoid executing ALTER SESSION statements after each connection. Applications commonly set
NLS_DATE_FORMAT and NLS_NUMERIC_CHARACTERS to guarantee data values are returned
from Oracle in a known format. Consider an existing connection routine that always sets the
date format:

function my_connect($un, $pw, $db)
{
 $c = oci_pconnect($un, $pw, $db);
 $s = oci_parse($c, "alter session set nls_date_format='YYYY-MM-DD'");
 oci_execute($s);
 return $c;
}

One way to optimize this is simply to set the environment variable NLS_DATE_FORMAT in the
shell that starts the web server. Each PHP connection will have the required date format
automatically. Note, when setting Oracle NLS_* globalization environment variables you also
need to set NLS_LANG otherwise they will be ignored.

Sometimes different database users should have different session values so setting
NLS_DATE_FORMAT globally is not possible. With persistent connections the ALTER SESSION
can be moved to a logon trigger. This is because session settings are retained in cached
connections ready for the next script that makes an oci_pconnect() call. Using a trigger
means the date format is only set when the physical database connection is created the very
first time oci_pconnect() is called in the lifetime of the Apache/PHP process. The trigger does
not fire when subsequent oci_pconnect() calls return a cached connection. It is also a
database procedure and does not require any interaction between the PHP script and the
database. This reduces load on the whole system. The same solution will help when a
standard connection oci_connect() is called multiple times in the one script

A logon trigger can be created using SQL*Plus by connecting as a privileged database
user:

$ sqlplus system@localhost/XE

Then run logontrig.sql:

Script 11: logontrig.sql

create or replace trigger my_set_date after logon on database
begin
 if (user = 'HR') then
 execute immediate 'alter session set nls_date_format = ''YYYY-MM-DD'' ';
 end if;
end my_set_date;
/

120

Tuning Connections to Build Scalable Systems

This trigger sets the session’s date format every time HR connects to the database from any
client tool. Note the use of single quotes. The date format string is enclosed in a pair of two
quotes, which is the Oracle method of nesting single quotes inside a quoted string.

With the trigger, Oracle does all the work setting the date format when the physical
database connection is originally established and first used. When PHP later uses a cached
connection it will already have the desired date format.

In PHP, the connection function from the start of this section can be simplified and
performance improved because it no longer needs to set the date format.

Script 12: logontrig.php

<?php
function my_connect($un, $pw, $db)
{
 return(oci_pconnect($un, $pw, $db));
}

$c = my_connect('hr', 'welcome', 'localhost/XE');
$s = oci_parse($c, 'select sysdate from dual');
oci_execute($s);
$row = oci_fetch_array($s, OCI_ASSOC);
echo $row['SYSDATE'] . "
\n";
?>

The script logontrig.php connects as HR using the now trivialized my_connect() and queries
the current date. It shows the new format set by the trigger:

2007-05-04

If the connection is any user other than HR the standard default date format will be displayed,
for example:

04-MAY-07

Using a trigger like this only works when the required session setting is the same for all PHP
application users that share the same database user name.

The suggested practice is to use LOGON triggers only for setting session attributes and not
for executing per PHP-connection logic such as custom logon auditing.

If you cannot use a trigger because each PHP invocation needs different settings, and you
need more than one SQL statement executed, you can put the statements inside a PL/SQL
procedure. After connecting you can call the PL/SQL procedure, which is one oci_execute()
call to the database, instead of multiple calls to execute other SQL statements.

Manage Persistent Connections

Persistent connections are great if the cost of opening a connection is high. What you
consider high depends on your application requirements and on implementation issues such
as whether the web server and database are on the same host, which will affect the time
taken to establish a connection, and on memory availability. The drawback is persistent
connections use Oracle resources even when no one is accessing the application or database.
And if Apache spawns a number of server processes, each of them may have its own set of
connections to the database. The proliferation of connections can be controlled to some

121

Connecting to Oracle Using OCI8

extent with php.ini directives and Apache configuration settings. If connection pooling is used,
the number of connections can be kept small.

Maximum Number of Persistent Connections Allowed

oci8.max_persistent

This parameter limits the number of persistent connections cached by each individual
Apache-PHP process. It is a not a system-wide restriction on database usage. When the limit is
reached by a PHP process, then all new oci_pconnect() calls are treated like oci_connect()
calls and are closed at the end of the script. Setting it to -1 (the default) means there is no
limit. If your PHP scripts connect using the same database credentials, each PHP process will
only have one connection entry in its cache so this setting will have no effect on your
application's resource usage.

Timeout for Unused Persistent Connections

oci8.persistent_timeout

This parameter is the length in seconds that an Apache process maintains an idle persistent
connection. Setting this parameter to -1 (the default) means there is no timeout. If a
connection has been expired, the next time oci_pconnect() is called a new connection is
created.

It is not an asynchronous timer. The expiry check happens whenever any PHP script
finishes, regardless of whether OCI8 calls were made. Only the persistent connections in the
invoked Apache process will be checked. This is an unresolvable weakness with PHP: you want
idle connections to be closed, but if PHP is idle then no scripts execute and the timeout is not
triggered. Luckily Oracle 11g DRCP makes this issue irrelevant.

Pinging for Closed Persistent Connections

oci8.ping_interval

There is no guarantee that the connection descriptor returned by oci_pconnect() represents
a usable connection to the database. During the time PHP stored an unaccessed connection
resource in its cache, the connection to the database may have become unusable due to a
network error, a database error, or being expired by the DBA. If this happens, oci_pconnect()
appears to be successful but an error is thrown when the connection is later used, for
example in oci_execute(). The ping interval is an easy way to improve connection reliability
for persistent connections.

This parameter is the number of seconds that pass before OCI8 does a ping during a
oci_pconnect() call. If the ping determines the connection is no longer usable, a new
connection is transparently created and returned by oci_pconnect(). To disable pinging, set
the value to -1. When set to 0, PHP checks the database each time oci_pconnect() is called.
The default value is 60 seconds.

Regardless of the value of oci8.ping_interval, an oci_pconnect() call will always check an
internal Oracle client-side value to see if the server was known to be available the last time
anything was received from the database. This is a quick operation. Setting oci8.ping_interval

122

Tuning Connections to Build Scalable Systems

physically sends a message to the server, causing a “round-trip” over the network. This is a
“bad thing” for scalability.

Good application design gracefully recovers from failures. In any application there are a
number of potential points of failure including the network, the hardware and user actions
such as shutting down the database. Oracle itself may be configured to close idle connections
and release their database resources. The database administrator may have installed user
profiles with CREATE PROFILE IDLE_TIMEOUT, or the Oracle network layer may time out the
network.

You need to balance performance (no pings) with having to handle disconnected Oracle
sessions (or other changes in the Oracle environment) in your PHP code. For highest reliability
and scalability it is generally recommended that you do not use oci8.ping_interval, but do
error recovery in your application code.

Apache Configuration Parameters

You can tune Apache to kill idle processes, which will free up Oracle resources used by
persistent connections. Table 5 lists some Apache pre-fork model configuration parameters
that can be used to tune PHP.

Table 5: Apache pre-fork configuration parameters.

Parameter Purpose

MaxRequestsPerChild Sets how many requests Apache will serve before restarting.

MaxSpareServers Sets how many servers to keep in memory that are not handling
requests.

KeepAlive Defines whether Apache can serve a number of documents to the
one user over the same HTTP connection.

Setting MaxRequestsPerChild too low will cause persistent connections to be closed more
often than perhaps necessary, removing any potential performance gain of caching. Many
sites use MaxRequestsPerChild to restart PHP occasionally, avoiding any potential memory
leaks or other unwanted behaviors.

Changing the Database Password
The OCI8 extension allows Oracle database passwords to be changed.

Be cautious about changing passwords when PHP persistent connections are used. This is
because a persistent connection is cached in a PHP process using the original password as
part of the look-up key. This key is not updated when the password is changed. PHP
applications would therefore allow an open persistent DB connection to be reused only when
oci_pconnect() is given the old password. This is a security issue since knowing the old
password is sufficient to get access to the database. It can also cause extra database load
because users connecting with the new password will create a new persistent connection to
the database, leaving the original connection idle.

Changing Passwords on Demand

After connecting, a password can be changed with oci_password_change():

123

Connecting to Oracle Using OCI8

$c = oci_connect('hr', 'welcome', 'localhost/XE');
oci_password_change($c, 'hr', 'welcome', 'new_password');

Subsequent scripts may now connect using:

$c = oci_connect('hr', 'new_password', 'localhost/XE');

Changing Expired Passwords

Sometimes connection may fail because the password is no longer valid. For example, the
DBA may have set a password policy using CREATE PROFILE to expire passwords at a certain
time, or they may have expired a password immediately with ALTER USER, forcing the user to
choose a new password the next time they connect. When the user tries to connect, their
password is recognized but they get an ORA-28001: the password has expired message and
will not be able to complete their log on. In this case, instead of the user having to bother the
DBA to manually reset the expired password, oci_password_change() can be used to re-
connect and change the password one operation. The next example shows this in action.

Script 13: connectexpired.sql

drop user peregrine cascade;
create user peregrine identified by abc;
grant create session to peregrine;
alter user peregrine password expire;

Script 14: connectexpired.php

<?php

$un = "peregrine"; // New temporary user to be created.
$pw = "abc"; // Initial password for $un
$db = "localhost/XE"; // Database to connect to

function do_connect($un, $pw, $db)
{
 echo "Calling oci_connect()
\n";
 $c = oci_connect($un, $pw, $db);
 if ($c) {
 echo "Connected successfully
\n";
 }
 else {
 $e = oci_error();
 if ($e['code'] == 28001) {
 // Connect and change the password to a new one formed by
 // appending 'x' to the original password.
 // In an application you could prompt the user to choose
 // the new password.
 echo "Connection failed: the password for $un has expired
\n";
 $c = change_and_connect($un, $pw, $pw."x", $db);
 }
 else {
 echo "Error: ", $e["message"], "
\n";

124

Changing the Database Password

 exit;
 }
 }
 return($c);
}

function change_and_connect($un, $oldpw, $newpw, $db)
{
 echo "Calling oci_password_change() to connect
\n";
 // Note $db is a connection identifier string, not a PHP connection resource
 $c = oci_password_change($db, $un, $oldpw, $newpw);
 if (!$c) {
 $e = oci_error();
 echo "Error: ", $e["message"], "
\n";
 }
 else {
 echo "Connected and changed password to $newpw
\n";
 }
 return($c);
}

function show_user($c)
{
 $s = oci_parse($c, "select user from dual");
 oci_execute($s);
 oci_fetch_all($s, $res);
 echo "You are connected as {$res['USER'][0]}
\n";
}

// Connect as $un and confirm connection succeeded
$c = do_connect($un, $pw, $db);
show_user($c);

?>

Before running the PHP script, first run connectexpired.sql as a privileged user:

$ sqlplus system@localhost/XE @connectexpired.sql

In the PHP script, when oci_connect() in do_connect() fails with an ORA-28001: the
password has expired error, change_and_connect() is called to change the password and
connect in a single step. In this example, the new password is simply formed by
concatenating an “x” to the current password. In an application, the user would be prompted
for the new password.

The output of connectexpired.php is:

Calling oci_connect()
Connection failed: the password for peregrine has expired
Calling oci_password_change() to connect
Connected and changed password to abcx
You are connected as PEREGRINE

The password change call oci_password_change($db, $un, $oldpw, $newpw) differs from the
example in the previous section Changing Passwords On Demand in that it passes a database
connection identifier identifier string, 'localhost/XE', as the first parameter instead of

125

Connecting to Oracle Using OCI8

passing the connection resource of an already opened connection. This new usage connects
to the database and changes the password to $newpw all at the same time. Subsequent scripts
will be able to connect using the new password.

This method of connecting with oci_password_change() also works if the password has
not expired.

Authorization and Authentication With Client Identifiers
Applications that connect to the database via the one set of Oracle credentials should use
oci_set_client_identifier() so the database can distinguish between individual web
application users.

The "client identifier" is a small string identifier token you set for each connection and
which is passed into the database. For example, if your web application physically connects to
the database as the database user phpuser, and if two different people 'Chris' and 'Alison' are
using the site, these two user names could be set as their respective client identifiers.

By associating a unique client identifier with each web user, Oracle Database can:
● Provide an audit trail on individual web users, for example on 'Chris' and 'Alison'

● Automatically apply rules to individual web users to restrict their data access

● Monitor and trace applications per web user

If you don't set client identifiers, all database activity is only recorded as coming from
phpuser.

Setting Client Identifiers

Each PHP file in a typical Oracle PHP application calls oci_pconnect() with an identical
database user name. Once the application's own authentication system decides a particular
web user is OK, then a unique token is passed back and forth in HTTP responses and requests
so that the web user doesn't have to re-authenticate each time a new web page is loaded..

Client identifiers should be set with oci_set_client_identifier() after connecting but
before executing any statements or OCI8 calls on behalf of the web user. At its most basic, the
client identifier could be the web user's name which was validated and stored in PHP's session
data by a previous authentication script request:

session_start();
$c = oci_pconnect('phpuser', 'welcome', 'localhost/orcl');
oci_set_client_identifier($c, $_SESSION['app_user_name']);
. . .

If the identity of the end user alters during the run time of the script (perhaps if PHP is
executing a long running command-line process, or perhaps in an administrative web page
that runs different components representing different end users) then
oci_set_client_identifier() can be called at each point the end-user identity changes:

$c = oci_pconnect('phpuser', 'welcome', 'localhost/orcl');

$myuser = 'Chris';
oci_set_client_identifier($c, $myuser);
. . .
$myuser = 'Alison';
oci_set_client_identifier($c, $myuser);

126

Authorization and Authentication With Client Identifiers

. . .

In practice, consider using more secure values for identifiers.
Client identifiers can be set when using oci_connect(), oci_new_connect(), or

oci_pconnect() connection calls. Identifiers can be used when the database is configured to
use any of the three types of server processes: "Dedicated" servers, "Shared" servers, and
when using Database Resident Connection Pooling (DRCP) servers.

The oci_set_client_identifier() function was introduced in PHP OCI8 1.4 (first included
in PHP 5.3.1). With older versions of OCI8 you can use the PL/SQL DBMS_SESSION package
instead:

session_start();
$c = oci_pconnect('phpuser', 'welcome', 'localhost/orcl');
$s = oci_parse($c, "begin dbms_session.set_identifier(:id); end;");
oci_bind_by_name($s, ":id", $_SESSION['app_user_name']);
oci_execute($s);

The oci_set_client_identifier() function is preferred because unlike
DBMS_SESSION.SET_IDENTIFIER it doesn't force a database round-trip request-and-response.
With the PHP function, the identifier is piggy-backed on any subsequent OCI8 call that actually
does reach the database from PHP. This avoids unnecessary round-trips which slow down each
PHP page and impact application scalability.

PHP OCI8 does not clear the client identifier at the end of an HTTP request since the
overhead of a round-trip to clear the value would impact scalability of every application. This
is not detrimental for standard oci_connect() connections since the database connection is
destroyed at the end of the HTTP request and the identifier value is cleared as a result.
However identifiers may remain in effect across web requests that use oci_pconnect()
persistent connections. To avoid an incorrect or no identifier being recorded by the database,
all PHP files that connect to the database should set the identifier so it is correct for the
duration of the request's execution. If many connections are idle causing monitoring to be
affected by showing apparently still connected web users, then every script that sets the
client identifier should forcefully clear it at the script end with:

$s = oci_parse($c, "begin dbms_session.clear_identifier; end;");
oci_execute($s);

This causes a round-trip to the database, which will impact scalability.
PHP's oci_set_client_identifier() corresponds to setting Oracle's C level

OCI_ATTR_CLIENT_IDENTIFIER attribute. Oracle literature on this, and on PL/SQL's equivalent
DBMS_SESSION.SET_IDENTIFIER, provides good references about client identifiers.

A Sample Application Using Client Identifiers

A sample PHP "Parts" application illustrates how client identifiers can be used in the OCI8
extension. Overall, the application shows an inventory of electrical and plumbing parts. An
application-level authentication system handles web user logins. For successful logins, an
identifier that is unique for each web user is passed between HTTP requests in PHP's session
data. It is used for the client identifier value. The application has just enough complexity so
the Oracle technologies being discussed are not abstract, but it is no where near a production
example. The sample application is simply intended to show the relationship between the web
user and the database user, and to show how a client identifier can be used in the database.
PHP session management requires careful design to minimize security issues. There are many

127

Connecting to Oracle Using OCI8

external references discussing this problem which should be closely studied by every PHP
developer. Michael McLaughlin's OTN article Database-Based Authentication for PHP Apps is a
good place to begin reading more.

The core of the Parts application is a setup.sql file that creates the database objects. All
the PHP scripts in the application will connect to the database using the PHPUSER schema,
which owns the PARTS application table. The SQL script creates a second user
PHP_SEC_ADMIN to hold security information about the application. This user is given some
extra database privileges needed for the auditing example, shown later. The
PHP_AUTHENTICATION table contains the application user names and passwords. Query
access on this table is granted to the PHPUSER user so the PHP application only has to open
one connection to the database, but that connection cannot modify the security information.

Script 15: setup.sql

set echo on

-- Create PHP application user
connect system/systempwd

-- Create the PHP application user
drop user phpuser cascade;
create user phpuser identified by welcome;
grant connect, resource to phpuser;
alter user phpuser default tablespace users
 temporary tablespace tnt unlock;

-- Create user owner security information about the application
drop user php_sec_admin cascade;
create user php_sec_admin identified by welcome;
alter user php_sec_admin default tablespace system
 temporary tablespace temp account unlock;
grant create procedure, create session, create table,
 resource, select any dictionary to php_sec_admin;

connect phpuser/welcome

-- "Parts" table for the application demo
create table parts
 (id number primary key,
 category varchar2(20),
 name varchar2(20));

insert into parts values (1, 'electrical', 'lamp');
insert into parts values (2, 'electrical', 'wire');
insert into parts values (3, 'electrical', 'switch');
insert into parts values (4, 'plumbing', 'pipe');
insert into parts values (5, 'plumbing', 'sink');
insert into parts values (6, 'plumbing', 'toilet');
commit;

connect php_sec_admin/welcome

-- Authentication table with the web user user names & passwords.
-- A real application would NEVER store plain-text passwords but this

128

Authorization and Authentication With Client Identifiers

-- article is about uses of client identifiers and not about
-- authentication.
create table php_authentication
 (app_username varchar2(20) primary key,
 app_password varchar2(20) not null);

insert into php_authentication values ('chris', 'tiger');
insert into php_authentication values ('alison', 'red');
commit;

grant select on php_authentication to phpuser;

Production applications would not use such simple passwords and would never store clear
text passwords in tables. Applications could do end user authentication in a number of ways,
including using LDAP.

Each script in the PHP application needs to know the Oracle DB credentials so they are
stored in a common include file dbinfo.inc.php:

Script 16: dbinfo.inc.php

<?php
// All connections to the database use these credentials
define("ORA_CON_UN", "phpuser");
define("ORA_CON_PW", "welcome");
define("ORA_CON_DB", "localhost/orcl");
?>

In real life, consider using Oracle Wallet Manager and connecting with OCI_CRED_EXT instead
of hard coding the database password.

The application login page is a typical simple PHP script that when first loaded displays a
form:

The code that generates this form looks like:

Script 17: login.php

<?php

require_once('./dbinfo.inc.php');
session_start();

function login_form($message)

129

Figure 58: Login page of login.php.

Connecting to Oracle Using OCI8

{
 echo <<<EOD
 <body style="font-family: Arial, sans-serif;">

 <h2>Login Page</h2>
 <p>$message</p>
 <form action="login.php" method="POST">
 <p>Username: <input type="text" name="username"></p>

 <p>Password: <input type="text" name="password"</p>
 <input type="submit" value="Login">
 </form>
 </body>
EOD;
}

if (!isset($_POST['username']) || !isset($_POST['password'])) {
 login_form('Welcome');
} else {
 // Check validity of the supplied username & password
 $c = oci_pconnect(ORA_CON_UN, ORA_CON_PW, ORA_CON_DB);
 // Use a "bootstrap" identifier for this administration page
 oci_set_client_identifier($c, 'admin');

 $s = oci_parse($c, 'select app_username
 from php_sec_admin.php_authentication
 where app_username = :un_bv
 and app_password = :pw_bv');
 oci_bind_by_name($s, ":un_bv", $_POST['username']);
 oci_bind_by_name($s, ":pw_bv", $_POST['password']);
 oci_execute($s);
 $r = oci_fetch_array($s, OCI_ASSOC);

 if ($r) {
 // The password matches: the user can use the application

 // Set the user name to be used as the client identifier in
 // future HTTP requests:
 $_SESSION['username'] = $_POST['username'];

 echo <<<EOD
 <body style="font-family: Arial, sans-serif;">
 <h2>Login was successful</h2>
 <p>Run the Application<p>
 </body>
EOD;
 }
 else {
 // No rows matched so login failed
 login_form('Login failed. Valid usernames/passwords ' .
 'are "chris/tiger" and "alison/red"');
 }
}

130

Authorization and Authentication With Client Identifiers

?>

If you copy this code, make sure the EOD "heredoc" tokens are at the very start of their lines.
For form submission, the script calls back to itself, which now validates the entered user

name and password against the users in the PHP_AUTHENTICATION table. A client identifier of
admin is set as a bootstrap value since at this initial point we don't know if we have a valid
end user and also the login script is an administrative component not doing any actual
application work on behalf of an end user.

From the login page, authenticated users can click to the application inventory page:

The user name is passed to the application page in PHP session data as
$_SESSION['username']. This value will be used as the client identifier for the web user. In a
real application a less obvious identifier would be recommended. For example, as part of
application authentication for a successful end-user login, an initial look-up query or PL/SQL
function could return a pre-computed obscure value to be used as the user's client identifier.
This value would then be stored in the PHP session information for use in subsequent "real"
application work. An obscure value would make it harder for attackers to predict identifier
values. Also an identifier could be quickly changed if there was ever a concern about the
authenticity of HTTP requests using it.

The application page application.php checks that the user is authenticated - this
application's definition of an authenticated user is simply that a user name is set. The code
then sets the client identifier and shows the inventory list by querying the PARTS table:

Script 18: application.php

<?php

require_once('./dbinfo.inc.php');
session_start();

// Check the user is logged in according to our application authentication
if (!isset($_SESSION['username'])) {
 echo <<<EOD
 <h2>Unauthorized</h2>
 <p>You are not authenticated.

 Valid usernames/passwords are "chris/tiger" and "alison/red"<p>

 <p>Login Page<p>
EOD;
 exit;
}

// Generate the application page

$c = oci_pconnect(ORA_CON_UN, ORA_CON_PW, ORA_CON_DB);

131

Figure 59: Successful login in login.php

Connecting to Oracle Using OCI8

// Set the client identifier after every connection call
// using a value unique for the web end user.
oci_set_client_identifier($c, $_SESSION['username']);

$username = htmlentities($_SESSION['username'], ENT_QUOTES);
echo <<<EOD
<body style="font-family: Arial, sans-serif;">
<h2>Parts Company</h2>
<table border='1'>

<caption>Inventory for $username </caption>
EOD;

$s = oci_parse($c, "select * from parts order by id");
oci_execute($s);
while (($row = oci_fetch_array($s, OCI_ASSOC+OCI_RETURN_NULLS))
 != false) {
 echo "<tr>\n";
 foreach ($row as $item) {
 echo " <td>" .
 ($item!==null?htmlentities($item, ENT_QUOTES):" ") .
 "</td>\n";
 }
 echo "</tr>\n";
}

echo <<<EOD

</table>
<p>Logout</p>
</body>
EOD;

?>

When logged in as Chris, the application shows:

132

Figure 60: Parts report for Chris.

Authorization and Authentication With Client Identifiers

A logout script clears PHP's session information:

Script 19: logout.php

<?php

session_start();
unset($_SESSION['username']);

echo <<<EOD
<body style="font-family: Arial, sans-serif;">
<h2>Goodbye</h2>

<p>You are logged out.<p>

<p>Login Page<p>
</body>
EOD;

?>

The logout page does not call dbms_session.clear_identifier to clear the database
connection's identifier: that would need to be done at the end of all the files that use a
database connection if there was concern about the effect on monitoring due to the identifiers
not being cleared.

The same application code will be used in the next sections without any modifications.
To summarize, this simple application is designed to show the relationship between

database users and end users so that client identifiers can be discussed. It does not
constitute a suitable example for production use. The application sets a client identifier with
oci_set_client_identifier() immediately after each oci_pconnect() connection call. This
identifier uniquely identifies the end user who is sitting at his or her web browser. For existing
real-life applications, adding a call to oci_set_client_identifier() with a unique identifier
per web user is the only application change that needs to be made to take advantage of client
identification.

Using a Client Identifier in PHP for Auditing

Auditing lets you:
● Identify inappropriate database changes

● Investigate suspicious activity

● Verify authorization or access control policies

● Satisfy business compliance regulations

● Gather data about database activities for use in capacity and resource allocation planning

Oracle auditing is powerful and multi-faceted. You can audit general activities such as the
type of SQL statement executed. You can audit fine grained activities such as when specific
values occur, or what IP address initiated a request. Auditing can occur on both successful
and failed activities. The audit trail can be stored inside the database or outside it, suitable for
analysis with various tools. Auditing is available is various forms in different editions of the
database. The full “Fine Grained Auditing” feature is available with Oracle Database
Enterprise Edition.

133

Connecting to Oracle Using OCI8

Setting a client identifier allows auditing to be associated with unique web users, and not
just with the database schema owner who authenticated the PHP OCI8 oci_pconnect() call to
the database.

The auditon.sql script is a basic example of query auditing on the PARTS table:

Script 20: auditon.sql

-- Turn on object auditing for the PARTS table
connect system/systempwd
audit select on phpuser.parts by access;

Run autiton.sql in SQL*Plus. Then run the application and login as 'chris' or 'alison' (their
passwords are set to 'tiger' and 'red' respectively in setup.sql). You can even query the table
as the SYSTEM user in SQL*Plus outside the application:

SQL> select * from phpuser.parts;

This returns the expected parts list.
To show the audit trail from all these table accesses, the SQL script auditreport.sql queries

the DBA_AUDIT_TRAIL view, which contains the audit data when the database initialization
parameter AUDIT_TRAIL is set to DB.

Script 21: auditreport.sql

-- View the audit trail for the PARTS table

connect system/systempwd

set pagesize 100

col app_username format a13
col username format a13
col extended_timestamp format a37
col action_name format a13

select auth.app_username,
 dat.username,
 extended_timestamp,
 action_name
from dba_audit_trail dat
 left outer join
 php_sec_admin.php_authentication auth
 on auth.app_username = client_id
where obj_name = 'PARTS'
order by extended_timestamp;

Running the report shows the time each web user accessed the PARTS table:

APP_USERNAME USERNAME EXTENDED_TIMESTAMP ACTION_NAME
------------- ------------- ------------------------------------- -------------
chris PHPUSER 16-AUG-10 12.25.42.846153 PM -07:00 SELECT
alison PHPUSER 16-AUG-10 12.25.50.870773 PM -07:00 SELECT
 SYSTEM 16-AUG-10 12.25.58.660922 PM -07:00 SELECT

134

Authorization and Authentication With Client Identifiers

There is no APP_USERNAME shown for the SYSTEM user because there was no client identifier
set in the SQL*Plus session. Sometimes identifying data accesses where the client identifier is
not correctly set is the desired auditing goal. Oracle's Fine-Grained Auditing can be used to
audit specific events like this, helping monitor suspicious activity. This can be useful when
client identifiers are used by Virtual Private Databases to restrict data access but complete
auditing is not required.

When you are finished exploring the example, you can turn auditing off using the NOAUDIT
command in SQL*Plus:

Script 22: auditoff.sql

-- Turn off object auditing for the PARTS table
connect system/systempwd
noaudit all on phpuser.parts;

More information about auditing can be found in the Verifying Security Access with Auditing
chapter of the Oracle Database Security Guide 11g Release 2 (11.2) manual.

Using a Client Identifier in PHP With a VPD for Restricting Data Access

Limiting access to avoid misuse of sensitive data is an architectural goal of all applications.
Oracle PHP applications can use the client identifier to restrict data access in a manually
coded or an automatic way. The manual way is to modify every SQL and PL/SQL statement to
use sys_context(), which returns the client identifier of the PHP connection. For example,
queries could be written to returns rows from PARTS only when the identifier of the current
connection is 'chris':

select * from parts
where sys_context('userenv', 'client_identifier') = 'chris';

When Alison (or any user with a different client identifier) is connected, then the WHERE
clause evaluates to false and no rows will be returned. This kind of logic is cumbersome to
code and error prone to consistently implement everywhere. Oracle Database Enterprise
Edition's Virtual Private Database (VPD) technology comes to the rescue. It will automatically
add a WHERE predicate to each statement the application executes.

To set up VPD, a PL/SQL function that returns the desired text of the restrictive WHERE
clause needs to be created. To automatically restrict data returned from the query select *
from parts the PL/SQL function would just need to return the string:

sys_context('userenv', 'client_identifier') = 'chris'

With VPD enabled to use such a function, the query from PARTS would be executed by Oracle
as if it had the restrictive WHERE clause, resulting in the same application behavior as
discussed above for the manual implementation. Technically Oracle uses a transient view that
enforces the WHERE clause and rewrites the application query to use the view instead of the
base table, as described in the VPD documentation. Regardless of the implementation details,
Oracle transparently handles the authorization, so security is consistent and programmers
can be more productive on other tasks. Remember that from the database perspective, client
identifiers are "insecure" because the database has to rely on externally provided information
for policy enforcement. This is the outcome of using shared database connections and middle-
tier authentication in a stateless web architecture and it places a reliance on having correct
application code.

135

Connecting to Oracle Using OCI8

For the Parts application, the SQL script vpdon.sql sets up VPD. First it creates an
application specific table of privileges. In this example Chris can only see electrical items but
Alison can see electrical and plumbing supplies. The VPD policy function F_POLICY_PARTS
returns a subquery that checks the current client identifier has access to the part category of
the row. Although F_POLICY_PARTS is passed the schema and table name that the policy is
being applied to, in this example the policy is only used for one table so the function
parameters are not referenced. With the policy function defined, the DBMS_RLS.ADD_POLICY
procedure is used to enable it for the PARTS table.

Script 23: vpdon.sql

set echo on

connect / as sysdba
grant execute on sys.dbms_rls to php_sec_admin;

connect php_sec_admin/welcome

-- Application policy table
drop table php_privs;
create table php_privs (username varchar2(64), category varchar2(20));

-- Chris should only see electrical items. Alison can see
-- electrical and plumbing items
insert into php_privs values ('chris', 'electrical');
insert into php_privs values ('alison', 'electrical');
insert into php_privs values ('alison', 'plumbing');
commit;

grant select on php_privs to phpuser;

-- Policy function F_POLICY_PARTS returns a "WHERE" clause to restrict access

create or replace function f_policy_parts
 (schema in varchar2, tab in varchar2) return varchar2
as
 predicate varchar2(400);

begin
 predicate :=
 'category in
 (select category
 from php_sec_admin.php_privs
 where username = sys_context(''userenv'', ''client_identifier''))';
 return predicate;
end;
/
show errors

begin
 dbms_rls.add_policy (
 object_schema => 'PHPUSER',
 object_name => 'PARTS',
 policy_name => 'ACCESS_CONTROL_PARTS',

136

Authorization and Authentication With Client Identifiers

 function_schema => 'PHP_SEC_ADMIN',
 policy_function => 'F_POLICY_PARTS',
 policy_type => DBMS_RLS.STATIC);
end;
/

The policy functions in an application can be as complex as needed. Your own web sites can
implement policy rules in the most suitable way for them, which is likely to be completely
different to that used in this example. Take care with the POLICY_TYPE argument. Here the
policy function returns a simple string, making the function identical for all uses. This means
the type can be specified as DBMS_RLS.STATIC allowing the function to be cached. The client
identifier is not considered part of the user defined application context so if the policy
function logic evaluates the identifier value then you will need to set the type to
DBMS_RLS.DYNAMIC.

Login to the Parts application as Chris see how the inventory list now only shows electrical
supplies:

 When logged in as Alison you can continue to see everything:

137

Figure 61: VPD automatically restricts the report for Chris.

Figure 62: The VPD policy allows Alison to see everything.

Connecting to Oracle Using OCI8

Oracle Database has a number of views for VPD management. One is the V$VPD_POLICY view
that can be used to find the policies that were applied to executed SQL statements. This can
be useful for debugging the values returned by the policy function.

A fun thing to do with VPD is to login to SQL*Plus as the owner of the PARTS table and
check its contents:

SQL> connect phpuser/welcome
SQL> select * from parts;

No rows will be returned because the policy function F_POLICY_PARTS is applied even for the
table owner. Without having an identifier validly set, the condition can never be satisfied. To
remove this restriction and make administration of objects easier, Oracle has an EXEMPT
ACCESS POLICY privilege for exempting users from VPD policies.

VPD is useful for more than personnel access control. The model can be extended to allow
"shared hosting". The infrastructure for one application can be shared between multiple
different groups of people who are never authorized to see data from any other group.

When you are finished with the VPD example, you can remove the policy by dropping it:

Script 24: vpdoff.sql

set echo on

connect php_sec_admin/welcome

begin
 dbms_rls.drop_policy (
 object_schema => 'PHPUSER',
 object_name => 'PARTS',
 policy_name => 'ACCESS_CONTROL_PARTS');
end;
/

More information on VPD can be found in the Using Oracle Virtual Private Database to Control
Data Access chapter of the Oracle Database Security Guide 11g Release 2 (11.2) manual.

Using a Client Identifier in PHP for Monitoring and Tracing

While many tuning projects start with the automatic performance diagnostics run by Oracle
Database, or analyze overall system performance manually using AWR snapshots, this may
not be possible in all environments. Sometimes on a shared system, monitoring and analyzing
the behavior of one web user is more practical and simplifies the process of diagnosing
performance problems in PHP. During development, the behavior of a proposed application
patch can be isolated from what else is happening on the system. The client identifier allows
focused monitoring via Oracle's End to End Application Tracing, a feature introduced for multi-
tier applications.

To collect database statistics about a user's database resource usage, the database
administrator can execute dbms_monitor.client_id_stat_enable() in SQL*Plus:

SQL> connect system/systempwd
SQL> execute dbms_monitor.client_id_stat_enable(client_id => 'chris');

138

Authorization and Authentication With Client Identifiers

The PHP application can then be run normally for any chosen actions and duration. Statistics
it produces can be accessed in various way, including from the V$CLIENT_STATS view. After
Chris looks at the Parts application inventory once, this view might contain:

STAT_NAME VALUE
----------------------------------- ----------
user calls 1
DB time 943
DB CPU 2000
parse count (total) 1
parse time elapsed 91
execute count 1
sql execute elapsed time 494
opened cursors cumulative 1
session logical reads 7
physical reads 0
physical writes 0
. . .

This particular example shows a single SQL statement was parsed and executed. Standard
Oracle manuals and literature describes interpreting all the values, and describe the other
statistics views.

Statistics can be turned off and reset to zero with:

execute dbms_monitor.client_id_stat_disable(client_id => 'chris');

A database trace to show the SQL "Explain Plan" output for analyzing executed statements
can also be turned on for each web user. It will show how statements actually got optimized -
not just how you thought they would be run. The database administrator can enable tracing
with the DBMS_MONITOR.CLIENT_ID_TRACE_ENABLE procedure in SQL*Plus:

SQL> connect system/systempwd
SQL> execute dbms_monitor.client_id_trace_enable(client_id => 'chris',

waits => true, binds => true);

The application can then be run normally. After completion of the analysis period, tracing can
be turned off with:

SQL> execute dbms_monitor.client_id_trace_disable(client_id => 'chris');

To examine the created trace files, find the trace directory using SHOW PARAMETER in
SQL*Plus:

SQL> show parameter user_dump_dest

This gives output like:

NAME TYPE VALUE
------------------------------------ ----------- ------------------------------
user_dump_dest string /home/oracle/app/diag/rdbms/or
 cl/orcl/trace

The trace directory typically contains many trace files from normal operation. The trcsess
utility can consolidate any of those created by Chris's use of the application. The
consolidation (or an individual file) can then be formatted with tkprof. For example, start a
terminal window as the Oracle software owner and run:

139

Connecting to Oracle Using OCI8

$ cd /home/oracle/app/diag/rdbms/orcl/orcl/trace
$ trcsess output=/tmp/all.trc clientid=chris *.trc
$ tkprof /tmp/all.trc /tmp/tkprof.out explain=phpuser/welcome

This looks through all the trace files in the directory and aggregates those created by Chris. If
you need to run trcsess on a subset of files, such as the files for a particular day, search for
the client identifier near the top of the files and pass the relevant file names to trcsess.
Individual trace files contain a section like:

*** 2010-08-16 15:29:12.481
*** SESSION ID:(143.943) 2010-08-16 15:29:12.481
*** CLIENT ID:(chris) 2010-08-16 15:29:12.481
*** SERVICE NAME:(orcl) 2010-08-16 15:29:12.481
*** MODULE NAME:(httpd@localhost (TNS V1-V3)) 2010-08-16 15:29:12.481
*** ACTION NAME:() 2010-08-16 15:29:12.481

Oracle Database can also name files with a given suffix, for example myphp, to make them
easier to identify. Do this by executing the SQL command alter session set
tracefile_identifier = 'myphp' in PHP after connecting. Database server trace file names
would then look like orcl_ora_9414_myphp.trc. Logic would need to be added to each PHP file
to decide the trace file suffix to use, and what conditions to set it.

The output from tkprof in tkprof.out contains analysis of the executed statements. Here is
a section of the file analyzing results on a small system:

SQL ID: af69s0fa3cjnp
Plan Hash: 3769467330
select *
from
 parts order by id

call count cpu elapsed disk query current rows
------- ------ -------- ---------- ---------- ---------- ---------- ----------
Parse 5 0.00 0.16 0 8 0 0
Execute 33 0.00 0.00 0 0 0 0
Fetch 33 0.00 0.00 0 231 0 198
------- ------ -------- ---------- ---------- ---------- ---------- ----------
total 71 0.01 0.17 0 239 0 198

Misses in library cache during parse: 1
Optimizer mode: ALL_ROWS
Parsing user id: 1602 (PHPUSER)

Rows Row Source Operation
------- ---
 6 SORT ORDER BY (cr=7 pr=0 pw=0 time=5 us cost=4 size=222 card=6)
 6 TABLE ACCESS FULL PARTS (cr=7 pr=0 pw=0 time=5 us cost=3 size=222
 card=6)

Rows Execution Plan
------- ---
 0 SELECT STATEMENT MODE: ALL_ROWS
 6 SORT (ORDER BY)

140

Authorization and Authentication With Client Identifiers

 6 TABLE ACCESS (FULL) OF 'PARTS' (TABLE)

Elapsed times include waiting on following events:
 Event waited on Times Max. Wait Total Waited
 -- Waited ---------- ------------
 SQL*Net message to client 33 0.00 0.00
 SQL*Net message from client 32 2219.78 5720.55
 cursor: mutex S 1 0.02 0.02
 library cache lock 1 0.01 0.01
 cursor: pin S wait on X 1 0.01 0.01
 Disk file operations I/O 4 0.00 0.00

The section Understanding SQL Trace and TKPROF in the Oracle Database Performance
Tuning Guide 11g Release 2 (11.2) manual describes how to interpret the trace output.

For lovers of GUIs, Enterprise Manager 11g (Database Control) has a number of ways to
check the impact of the application on the database. For example, to see statistics for a
particular client identifier, start the Enterprise Manager console http://localhost:5500/em/ in a
browser and navigate to Performance > Top Consumers > Top Clients. Set the View drop-
down to "Clients with Aggregation Enabled". Click Add Client and specify the client identifier
'chris'. You can then select the row 'chris' and click the Enable SQL Trace button (this is same
as DBMS_MONITOR.CLIENT_ID_TRACE_ENABLE). Aggregation allows each run to be totaled
together:

Other areas of Enterprise Manager can also filter by client identifier, including the Top Activity
report.

A single run of the small Parts application may not make Enterprise Manager's monitoring
thresholds or be visible in the aggregation periods.

You might have noticed that trcsess and Enterprise Manager also let data be aggregated
by Action and by Module. These values can be set in PHP OCI8 with the functions
oci_set_action() and oci_set_module_name() respectively to identify which parts of a PHP

141

Figure 63: Enterprise Manager Top Clients

Connecting to Oracle Using OCI8

application are being executed. The section Monitoring OCI8 SQL Statements in the chapter
Executing SQL Statements with OCI8 covers them. Monitoring and tracing can show up the
application-wide hot spots, and the SQL statements being executed can easily be identified.

Enterprise Manager is useful for tracing performance bottlenecks and tracking causes of
database slowdowns during development. It allows live analysis in a large system without
impacting other concurrent web users. For more information on tracing see Using Application
Tracing Tools in the Oracle Database Performance Tuning Guide 11g Release 2 (11.2).

Client Identifier Summary

Client identifiers should be used by PHP web applications that allow multiple application users
to connect to the database via a single database user name. The identifier is a developer
chosen value that can be derived from session information about the end user that is already
present in most web applications. Client identifiers are set by simply calling the
oci_set_client_identifier() function in PHP scripts connecting to the database. Oracle
Database uses identifiers to audit, automatically restrict access to sensitive data, and allow
focused monitoring and tracing of resource usage. Oracle PHP applications should use client
identifiers so these Oracle Database features can be utilized at any point in the lifetime of the
application.

Oracle Network Services and PHP
Oracle Net is the database component handling communication between the database and its
clients. It allows sophisticated control over network connection management for connectivity,
performance and has features such as encryption of network traffic. This section gives an
overview of some Oracle Net features of interest to PHP applications. Tuning the OS, hardware
and TCP/IP stack will also substantially help improve performance and scalability.

Some of the Oracle Net settings are configured in a file called sqlnet.ora that you can
create. For PHP, it should be put in the same directory as the tnsnames.ora file if you use one.
Otherwise, set the TNS_ADMIN environment variable to the directory containing sqlnet.ora.
The database server can also have a sqlnet.ora file, which should be in
$ORACLE_HOME/network/admin. This directory on the database server also contains
listener.ora, a file automatically created during database installation, which configures the
Oracle Network listener process.

Connection Rate Limiting

Large sites that have abnormal spikes in the number of users connecting can prevent
database host CPU overload by limiting the rate that connections can be established. The
database listener.ora file can specify a RATE_LIMIT clause to set the maximum number of
requests per second that will be serviced:

 LISTENER=(ADDRESS_LIST=
 (ADDRESS=(PROTOCOL=tcp)(HOST=sales)(PORT=1521)(RATE_LIMIT=4))

The value will depend on the hardware in use.

142

Oracle Network Services and PHP

Setting Connection Timeouts

From Oracle 10.2.0.3 onwards, you can specify a connection timeout in case there is a
network problem during connection. This lets PHP connections return an Oracle error to the
user faster, instead of appearing to “hang”. Set SQLNET.OUTBOUND_CONNECT_TIMEOUT in
the client side (the PHP-side) sqlnet.ora file. This sets the upper time limit for establishing a
connection right through to the database, including the time for attempts to connect to other
database services.

In Oracle 11g, a slightly lighter-weight solution TCP.CONNECT_TIMEOUT was introduced. It
is also a sqlnet.ora parameter. It bounds just the TCP connection establishment time, which is
mostly where connection problems occur.

Configuring Authentication Methods

There are many ways to configure connection and authentication. For example a connection:

$c = oci_connect("hr", "welcome", "abc");

could be evaluated by Oracle 10g as using the Easy Connect syntax to host machine abc
(using the default port and database service) or using a net alias abc configured in a
tnsnames.ora file.

The flexibility can cause a delay in getting an error back if the connection details are
invalid or a database is not operational. Both internal connection methods may be tried in
sequence adding to the time delay before a PHP script gets the error. This depends on your
Oracle Net and DNS settings.

How Oracle is configured to authenticate the user’s credentials (here a username and
password) can also have an effect.

The issue is not specific to PHP. In SQL*Plus the connection:

$ sqlplus hr/welcome@abc

would be the same.
In a basic Oracle 10g or 11g installation, one way to return an error as soon as possible is

to set this in your OCI8 sqlnet.ora file:

NAMES.DIRECTORY_PATH = (TNSNAMES)
SQLNET.AUTHENTICATION_SERVICES = (NONE)

This DIRECTORY_PATH value disables Easy Connect’s hostname:port/service syntax. Instead
of using Easy Connect syntax, a connect name and tnsnames.ora file would be needed. (This
may also add a small measure of security if your scripts accidentally allow arbitrary
connection identifiers. It stops users guessing database server hostnames they should not
know about.)

Setting AUTHENTICATION_SERVICES to NONE stops different authentication methods being
tried. Although this may prevent privileged database connections, which require operating
system authorization, this, again, might be beneficial. Check the Oracle Net documentation
for details and for other authentication methods and authentication-type specific timeout
parameters.

143

Connecting to Oracle Using OCI8

Detecting Dead PHP Apache Sessions

If a PHP Apache process hangs, its database server process will not be closed. This will not
prevent other PHP processes from continuing to work, unless a required lock was not
released.

The TCP keepalive feature will automatically detect unusable connections based on the
operating system timeout setting, which is typically some hours. This detection is enabled on
the database server by default.

Oracle Net itself can also be configured to detect dead connections, which is useful if a
much smaller timeout compared with the default TCP keepalive is desired. This is configured
by SQLNET.EXPIRE_TIME in the database $ORACLE_HOME/network/admin/sqlnet.ora. A
starting recommendation is to set it to 10 minutes. If a dead or terminated connection is
identified, the server process exits.

Both settings will use some resources. Avoid setting them too short, which may interrupt
normal user activity.

Detecting Dead Database Servers

If the network drops out – or a RAC node goes down, the connection to the database server
from a PHP process is likely to be lost. You can tell PHP to detect and recover from these
dropouts by enabling keepalive in the PHP side tnsnames.ora using the (ENABLE=BROKEN)
clause under the DESCRIPTION parameter in a connect string. The operating system settings
will be used to determine the timeout period.

Other Oracle Net Optimizations

Oracle Net lets you tune a lot of other options too. Check the Oracle Net Services
Administrator’s Guide and the Oracle Net Services Reference for details and more features. A
few more tips are mentioned below.

The best session data unit (SDU) size will depend on the application. An 8K size (the new
default in Oracle 11g) is suitable for many applications. If LOBs are used, a bigger value might
be better. It should be set the same value in both the database server sqlnet.ora and the OCI8
tnsnames.ora file.

For sites that have a large number of connections being made, tune the QUEUESIZE option
in the listener.ora file.

Keeping the PATH environment variable short for the oracle user on the database machine
can reduce time for forking a database server process. This is of most benefit for standard
PHP connections. Reducing the number of environment variables also helps.

Tracing Oracle Net

Sometimes your network is the bottleneck. If you suspect this is the case, turn on Oracle Net
tracing in your OCI8 sqlnet.ora file and see where time is being spent. The example
$ORACLE_HOME/network/admin/sample/sqlnet.ora has some notes on the parameters that
help. For example, with a USER level trace in the PHP-side sqlnet.ora:

trace_level_client = USER
trace_directory_client = /tmp

And the PHP code:

144

Oracle Network Services and PHP

$c = oci_connect('hr', 'welcome', '#c'); // invalid db name

The trace file, for example /tmp/cli_3232.trc, shows:

...
[17-JUN-2012 09:54:58:100] nnftmlf_make_system_addrfile: system names file is ...
[17-JUN-2012 09:55:00:854] snlinGetAddrInfo: Name resolution failed for #c
...

The left hand column is the timestamp of each low level call. Here, it shows a relatively big
time delay doing name resolution for the non-existent host #c. The cause is the configuration
of the machine network name resolution.

The logging infrastructure of Oracle 11g changed significantly. Look for trace files in a sub-
directory of the Oracle diagnostic directory, for example in
$HOME/oradiag_cjones/diag/clients/user_cjones for command line PHP. For Oracle Net log files
created by a web server running PHP, look in /root/oradiag_root if no other path was
configured. You can also set the environment variable ADR_BASE to indicate where tracing
and logging files should be stored.

145

Connecting to Oracle Using OCI8

146

CHAPTER 11

EXECUTING SQL STATEMENTS WITH
OCI8

This chapter discusses using SQL statements with the PHP OCI8 extension. It covers
statement execution, the OCI8 functions available, handling transactions, tuning queries, and
some useful tips and tricks.

SQL Statement Execution Steps
Queries using the OCI8 extension follow a model familiar in the Oracle world: parse, execute
and fetch. Statements like CREATE and INSERT require only parsing and executing.

The possible steps are:
1. Parse: Prepares a statement for execution. Parsing is really just a light-weight local

preparatory step, since Oracle’s actual text parse occurs in the database at the execution
stage.

2. Bind: An optional step that lets you bind data values, for example, in the WHERE clause,
for better performance and security. Binding local values into a statement is similar to the
way you use a %s print format specification in a string.

3. Define: An optional step allowing you to specify which PHP variables will hold query
results. This is not commonly used because most scripts use the OCI8 fetch functions to
return results.

4. Execute: The database processes the statement and buffers any results.

5. Fetch: Gets any query results back from the database.
There is no one-stop function to do all these steps in a single PHP call but it is trivial to create
one in your application and you can then add custom error handling requirements.

To safeguard from run-away scripts, by default PHP will terminate if a script takes longer
than 30 seconds. This is set with the php.ini parameter max_execution_time or the
set_time_limit() function. The value is the CPU time used by PHP, so long running SQL
statements in the database may not get interrupted. You will need to enable resource
management in the database to overcome this.

Similarly, if you are manipulating large amounts of data, you may need to increase the
php.ini parameter memory_limit, which caps the amount of memory each PHP process can
consume.

Query Example

A basic query in OCI8 is:

Script 25: query.php

<?php

147

Executing SQL Statements With OCI8

$c = oci_pconnect("hr", "welcome", "localhost/XE");

$s = oci_parse($c, "select city, postal_code from locations");
oci_execute($s);
print '<table border="1">';
while ($row = oci_fetch_array($s, OCI_NUM+OCI_RETURN_NULLS)) {
 print "<tr>";
 foreach ($row as $item)
 print "<td>".htmlentities($item)."</td>";
 print "</tr>";
}
print "</table>";

?>

The output from the script query.php is:

The htmlentities() function prevents any user data such as '<' from being interpreted as an
HTML tag. In many cases you will want to use this function's optional ENT_QUOTES parameter.
You should also use the optional character set parameter, specifying a value that matches the
character set of your document.

Quoting SQL Statement Text

In PHP, single and double quotes can both be used for strings. Strings with embedded quotes
can be made by escaping the nested quotes with a backslash, or by using both quoting
characters. The next example shows single quotes around the city name. To make the query a
valid PHP string it, therefore, must be enclosed in double quotes:

$q = "select * from locations where city = 'Sydney'";
$s = oci_parse($c, $q);

If you have a query syntax error, echo out the string and verify the quoting is valid for Oracle:

148

Figure 64: Output from
query.php.

SQL Statement Execution Steps

echo $q;

PHP 5.3 introduced a NOWDOC syntax that is useful for embedding quotes and dollar signs in
strings, such as this example that queries one of Oracle's administration views V$SQL:

$sql = <<<'END'
select parse_calls, executions
from v$sql
END;

$s = oci_parse($c, $sql);
. . .

Note the END token must appear in the first column of the script, without any indentation.

Freeing Statements

In long scripts it is recommended to close statements when they are complete:

oci_free_statement($s);

This allows resources to be reused efficiently. For brevity, and because the examples execute
quickly or the statement resource is closed automatically at the end of function scope, most
code snippets in this book do not follow this practice.

Oracle Data Types

Each column has a data type, which is associated with a specific storage format. The common
built-in Oracle data types are:

● CHAR

● VARCHAR2

● NUMBER

● DATE

● TIMESTAMP

● INTERVAL

● BLOB

● CLOB

● BFILE

● XMLType

The CHAR, VARCHAR2, NUMBER, DATE, TIMESTAMP and INTERVAL data types are stored
directly in PHP variables. BLOB, CLOB, and BFILE data types use PHP descriptors and are
shown in the Using Large Objects in OCI8 chapter. XMLTypes are returned as strings or LOBs,
as discussed in the Using XML with Oracle and PHP chapter. Oracle's NCHAR, NVARCHAR2,
and NCLOB types are not supported in the OCI8 extension.

149

Executing SQL Statements With OCI8

Fetch Functions
There are a number of OCI8 fetch functions, all documented in the PHP Oracle OCI8 Manual at
http://php.net/manual/en/book.oci8.php. Table 6 lists the functions.

Table 6: OCI8 fetch functions.

OCI8 Function Purpose

oci_fetch_all() Gets all the results at once.

oci_fetch_array() Gets the next row as an array indexed by an integer or as an
associative array, depending on your choice.

oci_fetch_assoc() Gets the next row as an associative array.

oci_fetch_object() Gets the next row as an object.

oci_fetch_row() Gets the next row as an integer indexed array.

oci_fetch() Used with oci_result(), which returns the result of a given
field. Also used with oci_define_by_name() which presets which
variable the data will be returned into.

Some of the functions have optional parameters. Refer to the PHP manual for more
information.

The function commonly used is oci_fetch_array():

$rowarray = oci_fetch_array($statement, $mode);

The mode is optional. Table 7 lists the available modes.

Table 7: oci_fetch_array() options.

Parameter Purpose

OCI_ASSOC Return results as an associative array.

OCI_NUM Return results as a numerically indexed array.

OCI_BOTH Return results as both associative and numeric arrays. This is
the default.

OCI_RETURN_NULLS Return PHP NULL value for NULL data.

OCI_RETURN_LOBS Return the actual LOB data instead of an OCI-LOB resource.

Modes can be used together by adding or binary-or'ing them together:

$rowarray = oci_fetch_array($s, OCI_NUM + OCI_RETURN_NULLS);

The oci_fetch_assoc() and oci_fetch_row() functions are special cases of
oci_fetch_array().

Fetching to a Numeric Array

A basic example to fetch results into a numerically indexed PHP array is:

150

http://php.net/manual/en/book.oci8.php

Fetch Functions

$s = oci_parse($c, "select city, postal_code from locations");
oci_execute($s);
while ($row = oci_fetch_array($s, OCI_NUM)) {
 echo $row[0] . " - " . $row[1] . "
\n";
}

The two columns are index 0 and index 1 in the result array. This displays:

Roma - 00989
Venice - 10934
Tokyo - 1689
Hiroshima - 6823
Southlake – 26192
. . .

Some of the fetch functions do not return NULL data by default. This can be tricky when using
numerically indexed arrays. The result array can appear to have fewer columns than selected,
and you can’t always tell which column was NULL. Either use associative arrays so the column
names are directly associated with their values, or specify the OCI_RETURN_NULLS flag:

$row = oci_fetch_array($s, OCI_NUM + OCI_RETURN_NULLS);

Fetching to an Associative Array

Associative array keys are the column names in the case shown when describing the table in
SQL*Plus:

SQL> describe locations
 Name Null? Type
 --- -------- ----------------------------
 LOCATION_ID NOT NULL NUMBER(4)
 STREET_ADDRESS VARCHAR2(40)
 POSTAL_CODE VARCHAR2(12)
 CITY NOT NULL VARCHAR2(30)
 STATE_PROVINCE VARCHAR2(25)
 COUNTRY_ID CHAR(2)

A script to access the post code column would be:

$s = oci_parse($c, "select postal_code from locations");
oci_execute($s);
while ($row = oci_fetch_array($s, OCI_ASSOC)) {
 echo $row["POSTAL_CODE"] . "
\n";
}

This displays:

00989
10934
1689
6823
26192
. . .

151

Executing SQL Statements With OCI8

Fetching Case Sensitive Column Names to an Associative Array

If the table column names were created case sensitively by using quotes at table creation,
then the PHP array indices need to match the case:

SQL> create table cs_tab ("MyCol" number);
SQL> describe cs_tab
 Name Null? Type
 --- -------- ----------------------------
 MyCol NUMBER

This should be fetched in PHP as:

while ($row = oci_fetch_array($s, OCI_ASSOC)) {
 echo $row['MyCol'] . "
\n";
}

Duplicate Column Names and Associative Arrays

In an associative array index there is no table prefix for the column name. If you have to join
tables where the same column name occurs with different meanings in both tables, use a
column alias in the query. Otherwise only one of the similarly named columns will be returned
by PHP.

This contrived example selects two columns called COLOR:

$s = oci_parse($c, "select cat_name,
 cats.color as cat_color,
 dog_name,
 dogs.color
 from cats, dogs");
oci_execute($s);

while ($row = oci_fetch_array($s, OCI_ASSOC)) {
 echo $row["CAT_NAME"] . " " . $row["CAT_COLOR"] . " - " .
 $row["DOG_NAME"] . " " . $row["COLOR"] . " " .
 "
\n";
}

The associative array has COLOR and CAT_COLOR indices for the two different COLOR
columns.

A straightforward alternative is to use OCI_NUM to return numeric array indexes.

Fetching to an Object

Fetching as objects allows property-style access to be used.

$s = oci_parse($c, 'select * from locations');
oci_execute($s);
while ($row = oci_fetch_object($s)) {
 var_dump($row);
}

This shows each row is an object and gives its properties. The var_dump() function prints and
automatically formats the variable $row. The output is:

152

Fetch Functions

object(stdClass)#1 (6) {
 ["LOCATION_ID"]=>
 string(4) "1000"
 ["STREET_ADDRESS"]=>
 string(20) "1297 Via Cola di Rie"
 ["POSTAL_CODE"]=>
 string(5) "00989"
 ["CITY"]=>
 string(4) "Roma"
 ["STATE_PROVINCE"]=>
 NULL
 ["COUNTRY_ID"]=>
 string(2) "IT"
}
. . .

If the loop is changed to:

while ($row = oci_fetch_object($s)) {
 echo "Address is " . $row->STREET_ADDRESS . "
\n";
}

the output is:

Address is 1297 Via Cola di Rie
Address is 93091 Calle della Testa
Address is 2017 Shinjuku-ku
Address is 9450 Kamiya-cho
Address is 2014 Jabberwocky Rd
. . .

Defining Output Variables

Explicitly setting output variables can be done with oci_define_by_name(). This example
fetches city names:

$s = oci_parse($c, 'select city from locations');
oci_define_by_name($s, 'CITY', $city); // column name is uppercase
oci_execute($s);
while (oci_fetch($s)) {
 echo "City is " . $city . "
\n";
}

The define is done before execution so Oracle knows where to store the output. The column
name in the oci_define_by_name() call must be in uppercase unless the table was created
with case sensitive column names. The result is:

City is Roma
City is Venice
City is Tokyo
City is Hiroshima
City is Southlake
. . .

153

Executing SQL Statements With OCI8

The oci_define_by_name() function has an optional type parameter that is useful, for
example, to specify that the PHP variable should be a LOB.

Fetching Nested Cursors

The next example shows a query that fetches two data values. The first is the
DEPARTMENT_NAME and the second is a nested cursor for the sub-query of people within that
department. This second value is given the column alias NC:

Script 26: nestedcur1.php

<?php

$c = oci_connect('hr', 'welcome', 'localhost/XE');

$sql =
'select department_name,
 cursor(select first_name
 from employees
 where employees.department_id = departments.department_id) as nc
from departments
where department_id in (10, 20, 30)';

$s = oci_parse($c, $sql);
$r = oci_execute($s);
while (($row1 = oci_fetch_array($s, OCI_ASSOC)) != false) {
 echo "Department: " . $row1['DEPARTMENT_NAME'] . "
\n";
 $nc = $row1['NC']; // treat as a statement resource
 oci_execute($nc);
 while (($row2 = oci_fetch_array($nc, OCI_ASSOC+OCI_RETURN_NULLS)) != false) {
 echo $row2['FIRST_NAME'] . "
\n";
 }
 oci_free_statement($nc);
 echo "
\n";
}

?>

The value in $nc is treated like a parsed query. After executing $nc any of the fetch functions
can be used. The output is:

Department: Administration
Jennifer

Department: Marketing
Michael
Pat

Department: Purchasing
Den
Alexander
Shelli
Sigal
Guy

154

Fetch Functions

Karen

Fetching and Working With Numbers

Number Formatting and String Conversion

When fetching numbers, a conversion to string representation is done by Oracle. This means
Oracle formats the data according to its globalization settings. In some regions the decimal
separator for numbers might be a comma, causing problems if your PHP script later casts the
string to a PHP number for an arithmetic operation. Oracle’s default format can be changed
easily and it is recommended to explicitly set the number conversion format
NLS_NUMERIC_CHARACTERS to '.,' if the default value inherited from your territory settings
is different. See Setting the Oracle Number Format with NLS_NUMERIC_CHARACTERS in the
chapter Globalization.

Number Accuracy

PHP and Oracle differ in their arithmetic handling and precision so a choice must be made
where to do calculations.

If your application depends on numeric accuracy with financial data, do arithmetic in
Oracle SQL or PL/SQL, or consider using PHP’s bcmath extension.

This example shows how by default PHP fetches numbers as strings, and the difference
between doing arithmetic in PHP and the database. SQL statements to create the number
data are:

create table dt (cn1 number, cn2 number);
insert into dt (cn1, cn2) values (71, 70.6);
commit;

PHP code to fetch the row is:

$s = oci_parse($c, "select cn1, cn2, cn1 - cn2 as diff from dt");
oci_execute($s);
$row = oci_fetch_array($s, OCI_ASSOC);
var_dump($row);

The var_dump() function shows the PHP data type for numeric columns is string:

array(3) {
 ["CN1"]=>
 string(2) "71"
 ["CN2"]=>
 string(4) "70.6"
 ["DIFF"]=>
 string(2) ".4"
}

Arithmetic calculations are handled with different precision in PHP. The previous example
showed the result of the subtraction was the expected value. If the code is changed to do the
subtraction in PHP:

$row = oci_fetch_array($s, OCI_ASSOC);

155

Executing SQL Statements With OCI8

$diff = $row['CN1'] - $row['CN2'];
echo "PHP difference is " . $diff . "\n";

The output shows:

PHP difference is 0.40000000000001

PHP has a php.ini parameter precision which determines how many significant digits are
displayed in floating point numbers. By default it is set to 14.

Fetching and Working With Dates

Oracle has capable date handling functionality, supporting various needs. Dates and times
with user specified precisions can be stored. Oracle's date arithmetic makes calendar work
easy.

DATE, DATETIME and INTERVAL types are fetched from Oracle as strings, similar to the way
PHP returns Oracle's numeric types.

The DATE type has resolution to the second but the default format is often just the day,
month and year. This example queries a date column:

$s = oci_parse($c, "select hire_date from employees where employee_id = 200");
oci_execute($s);
$row = oci_fetch_array($s, OCI_ASSOC);
echo "Hire date is " . $row['HIRE_DATE']. "\n";

If the default format is the Oracle American standard of DD-MON-YY then the output is:

Hire date is 17-SEP-87

Dates inserted are expected to be in the default Oracle format too:

$s = oci_parse($c, "insert into mydtb (dcol) values ('04-AUG-07')");
oci_execute($s);

The default format can be changed with Oracle's globalization setting NLS_DATE_FORMAT
before or after PHP starts. See the chapter Globalization.

Regardless of the default, any statement can use its own custom format. When querying,
use the TO_CHAR() function. When inserting, use TO_DATE():

// insert a date
$s = oci_parse($c,
 "insert into mydtb (dcol)
 values (to_date('2006/01/01 05:36:50', 'YYYY/MM/DD HH:MI:SS'))");
oci_execute($s);

// fetch a date
$s = oci_parse($c, "select to_char(dcol, 'DD/MM/YY') as dcol from mydtb");
oci_execute($s);
$row = oci_fetch_array($s, OCI_ASSOC);

echo "Date is " . $row["DCOL"] . "\n";

The output is:

Date is 01/01/06

156

Fetch Functions

To find the current database server time, use SYSDATE. Here the date and time returned by
SYSDATE are displayed:

$s = oci_parse($c,
 "select to_char (sysdate, 'YYYY-MM-DD HH24:MI:SS') as now from dual");
$r = oci_execute($s);
$row = oci_fetch_array($s, OCI_ASSOC);
echo "Time is " . $row["NOW"] . "\n";

The output is:

Time is 2007-08-01 15:28:44

Oracle's TIMESTAMP type stores values precise to fractional seconds. You can optionally store
a time zone or local time zone. For PHP, the local time zone would be the time zone of the
web server, which may not be relevant to users located remotely.

For an example, SYSTIMESTAMP, which is analogous to SYSDATE, gives the current server
time stamp and time zone:

$s = oci_parse($c, "select systimestamp from dual");
$r = oci_execute($s);
$row = oci_fetch_array($s, OCI_ASSOC);
echo "Time is " . $row["SYSTIMESTAMP"] . "\n";

The output is:

Time is 01-AUG-07 03.28.44.233887 PM -07:00

An INTERVAL type represents the difference between two date values. Intervals are useful for
Oracle's analytic functions. In PHP they are fetched as strings, like DATE and TIMESTAMP are
fetched.

Insert, Update, Delete, Create and Drop in PHP OCI8
Executing Data Definition Language (DDL) and Data Manipulation Language (DML)
statements, like CREATE and INSERT, simply requires a parse and execute:

$s = oci_parse($c, "create table i1test (col1 number)");
oci_execute($s);

The only-run-once installation sections of applications should contain almost all the CREATE
TABLE statements used. Applications in Oracle do not commonly need to create temporary
tables at run time, and it is expensive to do so. Use inline views, or join tables when required.
In some cases “global temporary tables” might be useful.

Transactions in PHP OCI8
Using transactions to protect the integrity of data is as important in PHP as any other
relational database application. Except in special cases, you want either all your changes to
be committed, or none of them.

Unnecessarily committing or rolling back impacts database performance as it causes
unnecessary network traffic (round trips) between PHP and the database.

157

Executing SQL Statements With OCI8

It is also causes extra processing and more IO to the database files. To maximize efficiency,
use transactions where appropriate.

OCI8’s default commit behavior is like other PHP extensions but different from Oracle
Database’s standard. The default mode of oci_execute() is OCI_COMMIT_ON_SUCCESS to
commit changes. This can easily be overridden in OCI8. But take care with committing and
rolling back. Hidden transactional consistency problems can be created by not understanding
when commits or rollbacks occur. Such problems may not be apparent in normal conditions,
but an abnormal event might cause only part of a transaction to be committed. Problems can
also be caused by programmers trying to squeeze out absolutely optimal performance by
committing or rolling back only when absolutely necessary.

Scripts that call a connection function more than once with the same credentials should
make sure transactions are complete before re-connecting. Similarly, be careful at the end of
scope if the transaction state is uncommitted.

In the following example a new record is committed when the oci_execute() call is called:

$s = oci_parse($c, "insert into testtable values ('my data')");
oci_execute($s); // automatically committed by default

Other users of the table will immediately be able to see the new record. Auto-committing can
be handy for a single INSERT or UPDATE, but transactional and performance requirements
should be thought about before using the default mode everywhere.

You specify to begin a transaction without auto-committing by:

$s = oci_parse($c, "insert into testtest values ('my data 2')");
oci_execute($s, OCI_NO_AUTO_COMMIT); // not committed

Prior to OCI8 1.4 (prior to PHP 5.3), use OCI_DEFAULT instead of the new more obviously
named alias OCI_NO_AUTO_COMMIT.

To commit any un-committed transactions for your connection, do:

oci_commit($c);

To rollback, do:

oci_rollback($c);

158

Figure 65: Each round trip between PHP and the database reduces scalability.

Transactions in PHP OCI8

Any outstanding transaction is automatically rolled back when a connection is closed or at the
end of the script. If you need a transaction that spans multiple HTTP requests, use DBMS_XA
which is discussed in the chapter Using PL/SQL with OCI8.

Note: Be careful mixing and matching oci_execute() calls with both commit modes in one
script, since you may commit at incorrect times. In particular, note executing a query will
commit an outstanding transaction if OCI_NO_AUTO_COMMIT is not used in the query's
oci_execute() call.

Any CREATE or DROP statement will automatically commit regardless of the oci_execute()
mode. This is a feature of Oracle Database that cannot be altered.

If all your database calls in a script are queries, or are calls to PL/SQL packages that handle
transactions internally, use:

oci_execute($s);

If you pass OCI_NO_AUTO_COMMIT, PHP will send an explicit rollback to the database at the
end of every script, even though it is unnecessary for your application.

Autonomous Transactions

Oracle’s PL/SQL procedural language (covered in detail in the next chapter) allows you to do
autonomous transactions, which are effectively sub-transactions. An autonomous transaction
can be committed or rolled back without affecting the main transaction. This might be useful
for logging data access - an audit record can be inserted even if the user decides to rollback
their main change. An example is:

Script 27: logger.sql

drop table mytable;
drop table logtable;

create table mytable (c1 varchar2(10));
create table logtable (event varchar2(30));

create or replace procedure updatelog(p_event in varchar2) as
 pragma autonomous_transaction;
begin
 insert into logtable (event) values(p_event);
 commit;
end;
/

You could call the PL/SQL function from PHP to log events:

Script 28: logger.php

<?php

159

Executing SQL Statements With OCI8

$c = oci_connect('hr', 'welcome', 'localhost/XE');

$s = oci_parse($c, "insert into mytable values ('abc')");
oci_execute($s, OCI_NO_AUTO_COMMIT); // don't commit

$s = oci_parse($c, "begin updatelog('INSERT attempted'); end;");
oci_execute($s, OCI_NO_AUTO_COMMIT); // don't commit

oci_rollback($c);

?>

Even though OCI_NO_AUTO_COMMIT is used, the autonomous transaction commits to the log
table. This commit does not also commit the PHP script insert into MYTABLE. After running
logger.php, the tables contain:

SQL> select * from mytable;

no rows selected

SQL> select * from logtable;

EVENT

INSERT attempted

The Transactional Behavior of Multiple Connections

To see the transactional behavior of the three connection functions, use SQL*Plus to create a
table with a single date column:

SQL> create table mytable (col date);

Create and run transactions.php a few times, changing oci_connect() to oci_new_connect()
and oci_pconnect():

Script 29: transactions.php

<?php

function do_query($c)
{
 $s = oci_parse($c, 'select col from mytable');
 oci_execute($s, OCI_NO_AUTO_COMMIT);
 $row = oci_fetch_array($s);
 echo "<p>Date is: " . $row['COL'] . "</p>\n";
}

$c1 = oci_connect("hr", "welcome", "localhost/XE"); // first PHP connection
$s = oci_parse($c1, "insert into mytable values ('" . date('j:M:y') . "')");
oci_execute($s, OCI_NO_AUTO_COMMIT);
do_query($c1);

$c2 = oci_connect("hr", "welcome", "localhost/XE"); // second PHP connection

160

Transactions in PHP OCI8

do_query($c2);

?>

The script inserts (but does not commit) using one connection and queries back the results
with both the original and a second connection.

Using an oci_connect() connection lets you query the newly inserted (but uncommitted)
data both times because $c1 and $c2 refer to the same Oracle connection. Using
oci_pconnect() is the same as oci_connect(). The output in both cases is:

Date is: 16-JUN-12
Date is: 16-JUN-12

Using oci_new_connect() for $c2 gives a new connection which cannot see the uncommitted
data. The output shows the second query does not fetch any rows:

Date is: 16-JUN-12
Date is:

PHP Error Handling
The Installing and Configuring PHP chapter recommended setting display_errors to On in
php.ini to aid debugging. You can also setting the error_reporting parameter to E_ALL to catch
all potential problems during development. In a production system you should make sure
error output is logged instead of displayed. You do not want to leak internal information to
web users, and you do not want application pages containing ugly error messages.

The E_STRICT level was not part of the E_ALL level prior to PHP 5.4. You must explicitly
“or” the two values together.

Error handling can also be controlled at runtime. For example, to see all errors displayed,
scripts can set:

error_reporting(E_ALL); // In PHP 5.3 use E_ALL|E_STRICT
ini_set('display_errors', 'On');

Depending on the php.ini value of display_errors, you might consider using PHP’s @ prefix to
completely suppress automatic display of function errors, although this impacts performance:

$c = @oci_connect('hr', 'welcome', 'localhost/XE');

To trap output and recover from errors, PHP’s output buffering functions may be useful. If an
error occurs part way during creation of the HTML page, the partially complete page contents
can be discarded and a nicely formatted error page can be created instead.

Handling PHP OCI8 Errors

The error handing of any solid application requires careful design. Expect the unexpected.
Check all return codes. Oracle may piggy-back calls to the database to optimize performance.
This means that errors may occur during later OCI8 calls than you might expect.

To fetch OCI8 errors, use the oci_error() function. The function requires a different
argument depending on the calling context, as shown later. It returns an array:

161

Executing SQL Statements With OCI8

Table 8: Error array after $e = oci_error().

Variable Description

$e["code"] Oracle error number.

$e["message"] Oracle error message.

$e["offset"] Column position in the SQL statement of the error. Will be 0 if
no SQL statement was involved.

$e["sqltext"] The text of the SQL statement. Will be empty if no SQL
statement was involved.

For information on getting extra information for errors during creation of PL/SQL procedures,
see the chapter Using PL/SQL with OCI8.

OCI8 Connection Errors

To get connection error messages, no argument to oci_error() is needed:

error_reporting(E_ALL);
ini_set('display_errors', 'Off'); // Don't automatically show errors

$c = oci_connect('hr', 'not_welcome', 'localhost/XE');

if (!$c) {
 $e = oci_error(); // No parameter passed
 ini_set('display_errors', 'On'); // Allow trigger_error() to display
 trigger_error('Could not connect: '. $e['message'], E_USER_ERROR);
}

With the invalid password, the output in a browser is:

Fatal error: Could not connect: ORA-01017: invalid username/password;
logon denied

OCI8 Persistent Connection Errors

An internal reimplementation of connection management in OCI8 1.3 made it much better at
automatically recovering from database unavailability errors. However with persistent
connections, PHP can still return a cached connection without knowing if the database at the
other end of the network is in fact still available. If the database has restarted since the time
of first connection, or if the DBA had enabled resource management that limited the
maximum connection time for a user, or even if the DBA issued an ALTER SYSTEM KILL
SESSION command to close the user's database session, then an already cached OCI8
connection returned by a future oci_pconnect() call will be unusable. The oci_pconnect()
call will not return an error in this case. Typically the error will be returned by the first
oci_execute() call that tries to use the connection resource. However OCI8 will then mark the
connection as invalid and the subsequent time PHP calls oci_pconnect() a brand new
connection to the database will be successfully created and will be usable in the PHP script.
(The section on oci8.ping_interval in the chapter Connecting to Oracle Using OCI8 has further
discussion on this case).

162

PHP Error Handling

For example, consider the script oci8.php at the start of the chapter Connecting to Oracle
Using OCI8. After the script is successfully run in a web browser, if the DBA issues an ALTER
DATABASE KILL SESSION command for the database connection it created, then the next time
the script is run in a browser it will display the error after the oci_execute() call:

Could not execute statement: ORA-00028: your session has been killed

The oci_pconnect() call doesn't generate an error itself – it just returns a cached connection.
If the script is run a third time by the same Apache process it will silently reconnect and run to
completion normally. This assumes there is no ping due to oci8.ping_interval.

The bottom line is that all OCI8 calls should be checked for errors because architectural
and internal optimizations may defer error notification.

OCI8 Parse Errors

To get parse error messages, pass oci_error() the connection resource:

error_reporting(E_ALL);
ini_set('display_errors', 'Off'); // Don't automatically show errors

$s = oci_parse($c, "select ' city from locations"); // Note stray quote
if (!$s) {
 $e = oci_error($c); // Connection resource passed
 ini_set('display_errors', 'On'); // Allow trigger_error() to display
 trigger_error('Could not parse: '. $e['message'], E_USER_ERROR);
}

Note the one extra single-quote in the middle of the query string. The result is the error
message:

PHP Fatal error: Could not parse: ORA-01756: quoted string not properly
terminated

OCI8 Execution and Fetching Errors

An example of an execution error is when the table being queried does not exist. For
execution errors, pass the statement resource to oci_error():

error_reporting(E_ALL);
ini_set('display_errors', 'Off'); // Don't automatically show errors

$s = oci_parse($c, "select city from not_locations");
$r = oci_execute($s);
if (!$r) {
 $e = oci_error($s); // Statement resource passed
 ini_set('display_errors', 'On'); // Allow trigger_error() to display
 trigger_error('Could not execute: '. $e['message'], E_USER_ERROR);
}

The parse completes successfully but when the statement is sent to the database for
execution, the table will not be found. The output is:

Fatal error: Could not execute: ORA-00942: table or view does not exist

163

Executing SQL Statements With OCI8

If you call var_dump($e), you will see the array contains the text of the statement and the
column offset position of the error in that statement. Column 17 of the query is the table
name NOT_LOCATIONS:

array(4) {
 ["code"]=>
 int(942)
 ["message"]=>
 string(39) "ORA-00942: table or view does not exist"
 ["offset"]=>
 int(17)
 ["sqltext"]=>
 string(30) "select city from not_locations"
}

A fetch error might occur if the network to the database disconnects unexpectedly. For fetch
errors, pass the statement resource:

$r = oci_fetch_all($s, $results);
if (!r) {
 $e = oci_error($s); // Statement resource passed
 ini_set('display_errors', 'On'); // Allow trigger_error() to display
 trigger_error('Could not fetch: '. $e['message'], E_USER_ERROR);
}

Using Bind Variables in Prepared Statements
Bind variables are just like %s print format specifiers. They let you re-execute a statement with
different values for the variables and get different results. In the PHP community statements
like this are known as prepared statements.

If you do not bind, Oracle must reparse and cache multiple statements. Each statement
requires creation of a cursor in the Oracle SGA, causes library latch contention, and causes
shared pool contention. The overall result is scalability issues. An application that runs fine in
small development and testing environments may not be able to handle the intended number
of real users.

164

Using Bind Variables in Prepared Statements

Binding is highly recommended. It can improve overall database throughput. Oracle is more
likely to find the statement in its cache and be able to reuse the execution plan and context
for that statement, even if someone else originally executed it.

Bind variables are also an important way to prevent SQL injection security attacks. SQL
injection may occur when SQL statements are constructed from hard-coded text concatenated
with user input:

$w = "userid = 1"; // emulate "user input"
$s = oci_parse($c, "select * from mytable where $w");

If the user input is not carefully checked, then it may be possible for a malicious user to
execute a SQL statement of their choice instead of the one you intended.

In Oracle, a bind variable is a colon-prefixed name in the SQL text. An oci_bind_by_name()
call tells Oracle which PHP variable to actually use when executing the statement.

165

Figure 67: Binding improves performance and security.

Figure 66: Not binding wastes database resources.

Executing SQL Statements With OCI8

Script 30: bindvar.php

<?php

$c = oci_connect("hr", "welcome", "localhost/XE");

$s = oci_parse($c, "select last_name from employees where employee_id = :eidbv");
$myeid = 101;
oci_bind_by_name($s, ":eidbv", $myeid);
oci_execute($s);
$row = oci_fetch_array($s, OCI_ASSOC);
echo "Last name is: ". $row['LAST_NAME'] ."
\n";

?>

The output is the last name of employee 101:

Last name is: Kochhar

There is no need to (and for efficiency you should not) re-parse the SQL statement if you just
want to change the value of the bind variable. The following code would work when appended
to the end of bindvar.php:

// No need to re-parse or re-bind
$myeid = 102;
oci_execute($s);
$row = oci_fetch_array($s, OCI_ASSOC);
echo "Last name is: ". $row['LAST_NAME'] ."
\n";

Re-running bindvar.php now gives:

Last name is: Kochhar
Last name is: De Haan

You can bind a single value with each oci_bind_by_name() call. Multiple values can be bound
with another function, oci_bind_array_by_name(), and passed to PL/SQL blocks. This is
discussed in the chapter on PL/SQL.

Do not to change the PHP type of $myeid after binding or between executions otherwise the
internal representation won't be recognized by OCI8.

The syntax of oci_bind_by_name() is:

$rc = oci_bind_by_name($statement, $bindvarname, $phpvariable, $length, $type)

The length and type are notionally optional. The default type is the string type, SQLT_CHR.
Oracle will convert most basic types to or from this as needed. For example when binding a
number you can omit the type parameter.

You will need to set a length when data is being returned from Oracle as an OUT bind. This
is so PHP can allocate a buffer of the correct size. It is also recommended to pass the length if
a query is being re-executed in a script with different IN bind values. For example when
binding, pass the length of the largest potential string. Passing the length also avoids

166

Using Bind Variables in Prepared Statements

potential edge-case behavior differences if a script runs with multiple different Oracle
character sets, or with different architectures.

Some very old PHP examples use an ampersand '&' with oci_bind_by_name() parameters.
Do not do this. Since a general clean up of the overall call-by-reference implementation in
PHP, this syntax has been deprecated and may cause problems.

A bind call tells Oracle which memory address to read data from. That address needs to
contain valid data when oci_execute() is called. If the bind call is made in a different scope
from the execute call there could be a problem. For example, if the bind is in a function and a
function-local PHP variable is bound, then Oracle may read an invalid memory location if the
execute occurs after the function has returned. This has an unpredictable outcome.

There is one case where you might decide not to use bind variables. When queries contain
bind variables, the optimizer does not have any information about the value you may
eventually use when the statement is executed. If your data is highly skewed, you might want
to hard code values. But if the data is derived from user input be sure to sanitize it to avoid
SQL injection security issues.

Finally, Oracle does not use question mark '?' for bind variable placeholders at all. OCI8
supports only named placeholders with a colon prefix. Some PHP database abstraction layers
will simulate support for question marks by scanning your statements and replacing them
with supported syntax.

Binding in a “for” Loop

There is a common problem with binding in a foreach loop with PHP OCI8:

$s = oci_parse($c, 'select *
 from departments
 where department_name = :dname and location_id = :loc');

$ba = array(':dname' => 'IT Support', ':loc' => 1700);
foreach ($ba as $key => $val) {
 oci_bind_by_name($s, $key, $val); // problem here
}

The problem here is that $val is local to the loop (and is reused). The SQL statement will not
execute as expected. Changing the bind call in the loop to use $ba[$key] solves the problem:

Script 31: bindloop.php

<?php

$c = oci_connect("hr", "welcome", "localhost/XE");

$s = oci_parse($c, 'select *
 from departments
 where department_name = :dname and location_id = :loc');

$ba = array(':dname' => 'IT Support', ':loc' => 1700);
foreach ($ba as $key => $val) {
 oci_bind_by_name($s, $key, $ba[$key]);
}

oci_execute($s);

167

Executing SQL Statements With OCI8

while (($row = oci_fetch_array($s, OCI_ASSOC))) {
 foreach ($row as $item) {
 echo htmlentities($item) . " ";
 }
 echo "
\n";
}

?>

Binding With LIKE and REGEXP_LIKE Clauses

You can bind the value used in a pattern-matching SQL LIKE or REGEXP_LIKE clause:

Script 32: bindlike.php

<?php

$c = oci_connect("hr", "welcome", "localhost/XE");

$s = oci_parse($c,
 "select city, state_province from locations where city like :bv");
$city = 'South%';
oci_bind_by_name($s, ":bv", $city);
oci_execute($s);
oci_fetch_all($s, $res);

var_dump($res);

?>

This uses Oracle's traditional LIKE syntax, where '%' means match anything. An underscore in
the pattern string '_' would match exactly one character.

The output from bindlike.php is cities and states where the city starts with 'South':

array(2) {
 ["CITY"]=>
 array(3) {
 [0]=>
 string(15) "South Brunswick"
 [1]=>
 string(19) "South San Francisco"
 [2]=>
 string(9) "Southlake"
 }
 ["STATE_PROVINCE"]=>
 array(3) {
 [0]=>
 string(10) "New Jersey"
 [1]=>
 string(10) "California"
 [2]=>
 string(5) "Texas"
 }

168

Using Bind Variables in Prepared Statements

}

Oracle also supports regular expression matching with functions like REGEXP_LIKE,
REGEXP_INSTR, REGEXP_SUBSTR, and REGEXP_REPLACE.

In a query from PHP you might bind to REGEXP_LIKE using:

Script 33: bindregexp.php

<?php

$c = oci_connect("hr", "welcome", "localhost/XE");

$s = oci_parse($c, "select city from locations where regexp_like(city, :bv)");
$city = '.*ing.*';
oci_bind_by_name($s, ":bv", $city);
oci_execute($s);
oci_fetch_all($s, $res);

var_dump($res);

?>

This displays all the cities that contain the letters 'ing':

array(1) {
 ["CITY"]=>
 array(2) {
 [0]=>
 string(7) "Beijing"
 [1]=>
 string(9) "Singapore"
 }
}

Binding Multiple Values in an IN Clause

User data for a bind variable is always treated as pure data and never as part of the SQL
statement. Because of this, trying to use a comma separated list of items in a single bind
variable will be recognized by Oracle only as a single value, not as multiple values. The
common use case is when allowing a web user to choose multiple options from a list and
wanting to do a query on all values.

Hard coding multiple values in an IN clause in the SQL statement is the anti-example that
should be avoided:

$s = oci_parse($c,
 "select last_name from employees where employee_id in (101,102)");
oci_execute($s);
oci_fetch_all($s, $res);
foreach ($res['LAST_NAME'] as $name) {
 echo "Last name is: ". $name ."
\n";
}

169

Executing SQL Statements With OCI8

This displays both surnames but it leads to the scaling and security issues that bind variables
overcome.

The next code snippet shows the naïve equivalent using a single bind variable:

$s = oci_parse($c,
 "select last_name from employees where employee_id in (:eidbv)");
$myeids = "101,102";
oci_bind_by_name($s, ":EIDBV", $myeids);
oci_execute($s);
oci_fetch_all($s, $res);

The code gives the error ORA-01722: invalid number because the $myeids string is treated as
a single value and is not recognized as a list of numbers.

The solution for a fixed, small number of values in an IN bind clause is to use individual
bind variables. A NULL can be bound for any unknown values:

Script 34: bindinlist.php

<?php

$c = oci_connect("hr", "welcome", "localhost/XE");

$s = oci_parse($c,
 "select last_name from employees where employee_id in (:e1, :e2, :e3)");
$mye1 = 103;
$mye2 = 104;
$mye3 = NULL; // pretend we were not given this value
oci_bind_by_name($s, ":E1", $mye1);
oci_bind_by_name($s, ":E2", $mye2);
oci_bind_by_name($s, ":E3", $mye3);
oci_execute($s);
oci_fetch_all($s, $res);

foreach ($res['LAST_NAME'] as $name) {
 echo "Last name is: ". $name ."
\n";
}

?>

The output is:

Last name is: Ernst
Last name is: Hunold

If the number of values to be compared is big, you could dynamically build up the SQL
statement, although try to avoid doing this where too many distinct SQL statements are
created and executed:

Script 35: dynamicinlist.php

<?php

$args = array(100,105,111); // simulate a variable number of arguments

$c = oci_connect('hr', 'welcome', 'localhost/XE');

170

Using Bind Variables in Prepared Statements

// Create uniquely named bind variables in the IN list
$sql = 'select last_name from employees where employee_id in (';
$ac = count($args);
for ($i = 0; $i < $ac; ++$i) {
 $sql .= ":".$i.",";
}
$sql = rtrim($sql, ",");
$sql .= ')';

// Bind each variable
$s = oci_parse($c, $sql);
for ($i = 0; $i < $ac; ++$i) {
 oci_bind_by_name($s, $i, $args[$i]);
}

oci_execute($s);
while (($row = oci_fetch_array($s, OCI_ASSOC)) != false) {
 foreach ($row as $item)
 echo $item . "\n";
}

?>

For very large numbers of IN bind values, binding may not be possible and alternative
solutions such as inserting the values into a global temporary tables and using a join might be
required. Tom Kyte discusses the general problem and gives solutions for other cases in the
March – April 2007 Oracle Magazine.

Using Bind Variables to Fetch Data

As well as what are called IN binds, which pass data into Oracle, there are also OUT binds that
return values. These are mostly used to return values from PL/SQL procedures and functions.
(See the chapter on using PL/SQL). If the PHP variable associated with an OUT bind does not
exist, you need to specify the optional length parameter. Another case when the length
should be specified is when returning numbers. By default in OCI8, numbers are converted to
and from strings when they are bound. This means the length parameter should also be
passed to oci_bind_by_name() when returning a number, otherwise digits may be truncated:

oci_bind_by_name($s, ":MB", $mb, 10);

There is also an optional fifth parameter, which is the data type. This mostly used for binding
LOBs and result sets as shown in the chapter on LOBs. One micro-optimization when numbers
are known to be integral, is to specify the data type as SQLT_INT. This avoids the type
conversion cost:

oci_bind_by_name($s, ":MB", $mb, -1, SQLT_INT);

In this example, the length was set to –1 meaning use the native data size of an integer.

171

Executing SQL Statements With OCI8

Binding in an ORDER BY Clause

Some applications allow the user to choose the presentation order of results. Typically the
number of variations for an ORDER BY clause are small and so having different statements
executed for each condition is efficient:

switch ($v) {
 case 1:
 $ob = ' order by first_name';
 break;
 default:
 $ob = ' order by last_name';
 break;
}

$s = oci_parse($c, 'select first_name, last_name from employees' . $ob);

But if your tuning indicates that binding in a ORDER BY clause is necessary, and the columns
are of the same type, you might be able to use a SQL CASE statement. However this might
negatively impact SQL statement optimization:

$s = oci_parse($c, "select first_name, last_name
 from employees
 order by
 case :ob
 when 'FIRST_NAME' then first_name
 else last_name
 end");
$vs = "FIRST_NAME";
oci_bind_by_name($s, ":ob", $vs);
oci_execute($s);

Using ROWID Bind Variables

The pseudo-column ROWID uniquely identifies a row within a table. This example shows
fetching a record, changing the data, and binding its ROWID in the WHERE clause of an UPDATE
statement.

Script 36: rowid.php

<?php

$c = oci_connect('hr', 'welcome', 'localhost/XE');

// Fetch a record
$s = oci_parse($c,
 'select rowid, street_address
 from locations where location_id = :l_bv');
$locid = 3000; // location to fetch
oci_bind_by_name($s, ':l_bv', $locid);
oci_execute($s);
$row = oci_fetch_array($s, OCI_ASSOC+OCI_RETURN_NULLS);

$rid = $row['ROWID'];

172

Using Bind Variables in Prepared Statements

$addr = $row['STREET_ADDRESS'];

// Change the address to upper case
$addr = strtoupper($addr);

// Save new value
$s = oci_parse($c,
 'update locations set street_address = :a_bv where rowid = :r_bv');
oci_bind_by_name($s, ':r_bv', $rid, -1, OCI_B_ROWID);
oci_bind_by_name($s, ':a_bv', $addr);
oci_execute($s);

?>

After running rowid.php, the address has been changed from

Murtenstrasse 921

to

MURTENSTRASSE 921

Improving Performance by Prefetching and Caching
PHP OCI8 can use several well known Oracle data access features to improve PHP application
performance.

Tuning the Prefetch Size

You can tune PHP’s overall query performance with the php.ini configuration parameter
oci8.default_prefetch. This parameter sets the number of extra rows returned in a batch when
an underlying fetch call across the network to the database occurs. Increasing the prefetch
value can significantly improve performance of queries that return a large number of rows. It
minimizes database server round-trips by returning as much data as possible each time an
underlying network fetch request to the database is made.

All the prefetched rows are cached by the Oracle client libraries and there is no interface
impact to PHP applications from altering the value. PHP functions like oci_fetch_array()
return one row to the user per call regardless of the prefetch size. Subsequent OCI8 fetches
will consume the data from the cache until eventually another batch of records is needed to
be retrieved from the database.

173

Executing SQL Statements With OCI8

You can also change the prefetch value at runtime with the oci_set_prefetch() function:

$s = oci_parse($c, "select city from locations");
oci_execute($s);
oci_set_prefetch($s, 200);
$row = oci_fetch_array($s, OCI_ASSOC);

For oci_fetch_all(), which returns all query rows to the PHP script in one call, PHP OCI8
internally fetches the records from the database in batches.

Testing will show the optimal prefetch size for your queries. There is no benefit using too
large a prefetch value. Conversely, because Oracle dynamically allocates space, there is little
to be gained by reducing the value too small.

The default prefetch value is 100. Prior to OCI8 1.3, the default was 10 and the OCI8
extension also capped the memory used by the prefetch buffer at 1024 *
oci8.default_prefetch bytes.

From OCI8 1.4 the prefetch value can be set to 0. The prefetch value is the number of
extra rows to be fetched on each underlying database access, so a prefetch value of 0 means
only one row is returned each time across the network. When PHP is linked with Oracle 11gR2
libraries, prefetching will also occur for REF CURSOR fetches, see the chapter Using PL/SQL
with OCI8. Setting the prefetch value to 0 may be useful only in one edge case, which
involves REF CURSORS.

Prefetching works for nested cursor columns as long as both the Oracle client libraries
linked with PHP and the database are both Oracle Database 11gR2. The default prefetch value
is used or it can be overridden prior to executing the nested cursor resource. To change the
inner prefetch value for the previous example nestedcur1.php, add an oci_set_prefetch()
call. The outer fetch will still use the oci8.default_prefetch value:

174

Figure 68: The first request to the database fetches multiple rows to the cache. Subsequent
fetches read from the cache without requiring DB access.

Improving Performance by Prefetching and Caching

Script 37: nestedcur2.php

<?php

$c = oci_connect('hr', 'welcome', 'localhost/XE');

$sql =
'select department_name,
 cursor(select first_name
 from employees
 where employees.department_id = departments.department_id) as nc
from departments
where department_id in (10, 20, 30)';

$s = oci_parse($c, $sql);
$r = oci_execute($s);
while (($row1 = oci_fetch_array($s, OCI_ASSOC)) != false) {
 echo "Department: " . $row1['DEPARTMENT_NAME'] . "
\n";
 $nc = $row1['NC']; // treat as a statement resource
 oci_set_prefetch($nc, 20); // override default prefetch if desired
 oci_execute($nc);
 while (($row2 = oci_fetch_array($nc, OCI_ASSOC+OCI_RETURN_NULLS)) != false) {
 echo $row2['FIRST_NAME'] . "
\n";
 }
 oci_free_statement($nc);
 echo "
\n";
}

?>

Prefetching is not used when queries contain LONG or LOB columns. One partial solution is to
structure the application so that queries only need to fetch and display part of the LOB data,
which can be done efficiently. For example a query fetching a column MYLOBCOL could be
changed to fetch dbms_lob.substr(mylobcol, 1000, 1) instead of returning all of the data
upfront. A drill-down link on the application would then fully query just one selected LOB.

Tuning the Statement Cache Size

Performance is improved with Oracle's “client” (that is, PHP OCI8) statement caching feature.
In the PHP extension the default statement cache size is 20 statements. You can change the
size with the php.ini directive oci8.statement_cache_size. The recommendation is to use the
number of statements in the application’s working set of SQL as the value. Caching can be
disabled by setting the size to 0.

The client-side statement cache is in addition to the standard database statement cache.
The client statement cache means even the text of the statement does not need to be
transmitted to the database more than once, reducing network traffic and database server
load. The database can directly look up the statement context in its cache without even
having to hash the statement. In turn, the database does not need to transfer meta-data
about the statement back to PHP.

175

Executing SQL Statements With OCI8

The cache is per-Oracle session so this feature is more useful when persistent connections are
used. Like many tuning options, there is a time/memory trade-off when tweaking this
parameter. The statement cache also means slightly more load is put on the PHP host.

To tune the statement cache size, monitor general web server load and the database
statistic "bytes sent via SQL*Net to client". This can be seen, for example, in Oracle Automatic
Workload Repository (AWR) reports. When caching is effective, the statistic should show an
improvement. Adjust the value of oci8.statement_cache_size to your satisfaction.

If the schema changes, such as during the initial design and prototyping phases of an
application, you may experience errors such as ORA-01007 variable not in select list or ORA-
00932: inconsistent datatypes because the statement cache can become out of sync. The
way to prevent this is to turn off statement caching and restart Apache.

OCI8 will clear the cache if a statement returns a database error.

Using the Server and Client Query Result Caches

Oracle Database 11g introduces “server-side”and “client-side” result caches. These store the
final result of queries, reducing the work needed when queries are re-executed.

The database cache is enabled with the RESULT_CACHE_MODE database parameter, which
has several settings. With Oracle 11gR2, tables which are candidates for query results being
cached can be nominated with CREATE TABLE, or with an ALTER TABLE command :

SQL> alter table employees result_cache (mode force);

No PHP changes are required in Oracle 11gR2. Applications will immediately benefit from
caches when the EMPLOYEES table is queried. With Oracle 11gR1, you do need to add a hint
to the query:

$s = oci_parse($c, "select /*+ result_cache */ * from employees");

The client cache is ideal for small queries from infrequently modified tables, such as look-up
tables. It can reduce PHP statement processing time and significantly reduce database CPU
usage, allowing the database to handle more PHP processes and users. The client-side cache
is per PHP process.

176

Figure 69: The second time a statement is issued, the statement text is not sent to the
database.

Improving Performance by Prefetching and Caching

A key feature is that Oracle automatically handles cache entry invalidation when a data
change invalidates the stored results. Oracle will check the client cache validity each time any
round trip to the database occurs. If no round trip has happened within a configurable “lag”
time, the client cache is assumed stale and the next query will go to the database for
processing. The cache will be refreshed at this time.

The Oracle Call Interface Programmer's Guide, 11g Release 2 (11.2) contains the best
description of the feature and has more about when to use it and how to manage it.

Client Query Result Caching (CRC) is best suited for small lookup tables, so commonly the
query statement will be static and won't involve bind variables. If queries have string binds,
such as the default bind type, PHP queries won't be able to use CRC. However CRC is used
when binding numbers with SQLT_INT like:

oci_bind_by_name($s, ":bv", $bv, -1, SQLT_INT);

To demonstrate client caching, the database parameter CLIENT_RESULT_CACHE_SIZE can be
set to a non zero value and the Oracle database restarted:

$ sqlplus / as sysdba
SQL> alter system set client_result_cache_size=64M scope=spfile;
SQL> startup force

Because the EMPLOYEES table was altered above to always be a candidate for caching, the
PHP code needs no magic to take advantage of CRC in Oracle 11gR2:

Script 38: crc.php

<?php

$c = oci_pconnect('hr', 'welcome', 'localhost/orcl');

for ($i = 0; $i < 1000; ++$i) {
 $s = oci_parse($c, "select * from employees where rownum < 2");
 oci_execute($s);
 oci_fetch_all($s, $res);
}

?>

However, if PHP is linked with Oracle 11.1 client libraries, change the query to use a hint:

select /*+ result_cache */ * from employees where rownum < 2

Also, prior to Oracle 11.2.0.2 make sure not to auto commit. Instead do:

oci_execute($s,OCI_NO_AUTO_COMMIT);

Before executing crc.php, run this query in the SQL*Plus session:

SQL> select parse_calls, executions, sql_text
 2 from v$sql
 3 where sql_text like '%employees%';

PARSE_CALLS EXECUTIONS SQL_TEXT
----------- ---------- ---
 1 1 select parse_calls, executions, sql_text from v$sql

177

Executing SQL Statements With OCI8

 where sql_text like '%employees%'

This shows the database being accessed when the query is executed. Initially it shows just the
monitoring query itself.

In another terminal window, run crc.php from the command line or run it in a browser – it
doesn't display any results.

$ php crc.php

Re-running the monitoring query shows that during the 1000 loop iterations, the database
executed the PHP query just twice, once for the initial execution and the second time by a
subsequent cache validation check:

PARSE_CALLS EXECUTIONS SQL_TEXT
----------- ---------- ---
 2 2 select * from employees where rownum < 2
 2 2 select parse_calls, executions, sql_text from v$sql
 where sql_text like '%employees%'

This means that 998 of the times the statement was performed, the client cache was used for
the results, with no database access required.

Now edit crc.php and add /*+ no_result_cache */ to the SQL statement:

$s = oci_parse($c,
 "select /*+ no_result_cache */ * from employees where rownum < 2");

Re-run the script:

$ php crc.php

The monitoring query now shows the modified query was executed 1000 times, or once per
loop iteration. This means the client query result cache was not used and each iteration had
to be sent to the database and processed:

PARSE_CALLS EXECUTIONS SQL_TEXT
----------- ---------- --
 2 2 select * from employees where rownum < 2
 3 3 select parse_calls, executions, sql_text from v$sql
 where sql_text like '%employees%'

 2 1000 select /*+ no_result_cache */ * from employees where
 rownum < 2

A dedicated view CLIENT_RESULT_CACHE_STATS$ is periodically updated with statistics on
client caching. For short tests like this example where the process quickly runs and
terminates, it may not give meaningful results and V$SQL can be more useful.

Monitoring OCI8 SQL Statements
Monitoring is the first step to tuning applications. The database-centric approach is to first
tune the application, next tune the SQL, and finally tune the database.

OCI8 1.4 (PHP 5.3) allows some meta data to be passed to Oracle which can help assess
the impact of your application on the system and identify performance issues. The chapter

178

Monitoring OCI8 SQL Statements

Connecting to Oracle using OCI8 showed using oci_set_client_identifier() for tracing and
monitoring. Below are some other OCI8 features that can also be useful.

OCI8 Driver Identification

OCI8 1.4 automatically sets the DRIVER_NAME attribute of V$SESSION_CONNECT_INFO (when
using Oracle 11gR2 client libraries). This allows administrators to monitor which applications
connect to the database. The attribute value set is "PHP OCI8" followed by the OCI8 version
number. You can test by running a script:

$c = oci_connect('hr', 'welcome', 'localhost/XE');
sleep(20); // let the script run, so the trace information can be viewed

In SQL*Plus you can query V$SESSION_CONNECT_INFO:

select unique sid, client_driver, authentication_type
from v$session_connect_info
where client_driver like 'PHP OCI8%'
order by sid;

This shows something like:

 SID CLIENT_DR
---------- ---------
 22 PHP OCI8

Note the view truncates the driver name attribute to nine characters in current releases of
Oracle. The "UNIQUE" clause is used because V$SESSION_CONNECT_INFO view is not
normalized: each Oracle Net banner for the session appears in one row. Another column in the
V$SESSION_CONNECT_INFO view is CLIENT_CHARSET. This could be used to verify all PHP
applications are using the correct character set. At disconnect time, entries used for job
cleanup may be shown in this view. It can be useful to join V$SESSION_CONNECT_INFO with
V$SESSION.

Setting Application Information in PHP OCI8

OCI8 1.4 introduced functions to set user defined attribute values for tracing:
oci_set_module_name(), oci_set_action() and oci_set_client_info().

The values are visible in various data dictionary views in the database, such as
V$SESSION. Tools like Oracle Enterprise Manager allow searching and grouping on the values.
You can also architect your code to use the values. For example they can be viewed and
tested in SQL queries using the SYS_CONTEXT() function.

The attributes are sent to the database with the next roundtrip, which occurs most
commonly when a SQL or PL/SQL statement is executed. This is the most efficient way to set
the values. If Client Query Result Caching is enabled, a roundtrip may not happen. When
using persistent connections, the values may not be cleared at the end of the script.

One use for the MODULE and ACTION attributes is to track the SQL statements that each
part of your application executes:

Script 39: appinfo.php

<?php

179

Executing SQL Statements With OCI8

$c = oci_connect('hr', 'welcome', 'localhost/XE');

oci_set_client_info($c, 'My Application Version 2');
oci_set_module_name($c, 'Home Page');
oci_set_action($c, 'Friend Lookup');

// Do some action which touches the database
// The three attribute values will be "piggy backed"
// and sent with the SQL to the database
$s = oci_parse($c, 'select * from dual');
oci_execute($s);
oci_fetch_all($s, $res);

// sleep so the trace information can be viewed in SQL*Plus
sleep(20);

?>

The first time the script is run and the SQL statement is executed, the MODULE and ACTION
are recorded along with the SQL statement in the V$SQLAREA view:

select sql_text, module, action
from v$sqlarea
where module = 'Home Page';

This produces:

SQL_TEXT MODULE ACTION
--------------------------- --------------- ----------------
select * from dual Home Page Friend Lookup

This can help narrow down where problematic statements are coded and lets performance
issues be resolved.

With older versions of OCI8, use PL/SQL to set the attributes. However this method incurs
a roundtrip which will slow down the application:

$s = oci_parse($c,
 "begin
 dbms_application_info.set_client_info('My Application Version 2');
 dbms_application_info.set_module(
 'Home Page', // Module
 'Friend Lookup'); // Action
 end;");
oci_execute($s);

LIMIT, Auto-Increment, Last Insert ID and Multiple Inserts
If you are migrating from another database to Oracle, there are several common operations
you might have used that are handled differently in Oracle.

180

LIMIT, Auto-Increment, Last Insert ID and Multiple Inserts

Limiting Rows and Creating Paged Datasets

Oracle 11g SQL does not have a LIMIT keyword. There are several alternative ways to limit
the number of rows returned in OCI8.
The canonical paging query for Oracle8i onwards is given on http://asktom.oracle.com:

select *
from (select a.*, rownum as rnum
 from (YOUR_QUERY_GOES_HERE -- including the order by) a
 where rownum <= MAX_ROW)
where rnum >= MIN_ROW

Here, MIN_ROW is the row number of first row and MAX_ROW is the row number of the last
row to return. In PHP you might do this:

Script 40: limit.php

<?php

$c = oci_connect('hr', 'welcome', 'localhost/XE');

$mystmt = "select city from locations order by city";
$minrow = 4; // row number of first row to return
$maxrow = 8; // row number of last row to return

$pagesql = "select *
 from (select a.*, rownum as rnum
 from ($mystmt) a
 where rownum <= :maxrow)
 where rnum >= :minrow";

$s = oci_parse($c, $pagesql);
oci_bind_by_name($s, ":maxrow", $maxrow);
oci_bind_by_name($s, ":minrow", $minrow);
oci_execute($s);
oci_fetch_all($s, $res);

var_dump($res);

?>

Note that $mystmt itself is not bound. Bind data is not treated as code, so you cannot bind the
text of the statement and expect it to be executed. Beware of SQL injection security issues if
SQL statements are constructed or concatenated.

The output of the script is:

array(2) {
 ["CITY"]=>
 array(5) {
 [0]=>
 string(6) "Geneva"
 [1]=>
 string(9) "Hiroshima"
 [2]=>

181

Executing SQL Statements With OCI8

 string(6) "London"
 [3]=>
 string(11) "Mexico City"
 [4]=>
 string(6) "Munich"
 }
 ["RNUM"]=>
 array(5) {
 [0]=>
 string(1) "4"
 [1]=>
 string(1) "5"
 [2]=>
 string(1) "6"
 [3]=>
 string(1) "7"
 [4]=>
 string(1) "8"
 }
}

An alternative and preferred query syntax uses Oracle’s analytic ROW_NUMBER() function. The
query:

select last_name, row_number() over (order by last_name) as myr
from employees

returns two columns identifying the last name with its row number:

LAST_NAME MYR
------------------------- ----------
Abel 1
Ande 2
Atkinson 3
. . .

By turning this into a subquery and using a WHERE condition any range of names can be
queried. For example to get the 11th to 20th names the query is:

select last_name FROM
 (select last_name,
 row_number() over (order by last_name) as myr
 from employees)
 where myr between 11 and 20

In SQL*Plus the output is:

LAST_NAME

Bissot
Bloom
Bull
Cabrio
Cambrault
Cambrault
Chen

182

LIMIT, Auto-Increment, Last Insert ID and Multiple Inserts

Chung
Colmenares
Davies

As an anti-example, another way to limit the number of rows returned involves the
oci_fetch_all() function, which has optional arguments to specify a range of results to
fetch. This is implemented by the extension, not by Oracle’s native functionality. All rows
preceding those you want still have to be fetched from the database. These unused rows are
discarded, which is wasteful of network and processing resources:

$firstrow = 3;
$numrows = 5;
oci_execute($s);
oci_fetch_all($s, $res, $firstrow, $numrows);
var_dump($res);

It is more efficient to let Oracle do the row selection and only return the exact number of rows
required.

Auto-Increment Columns

Auto-increment columns in Oracle can be created using a sequence generator and a trigger.
Sequence generators are defined in the database and return Oracle numbers. Sequence

numbers are generated independently of tables. Therefore, the same sequence generator can
be used for more than one table or anywhere that you want to use a unique number.
Sequence generation is useful to generate unique primary keys for your data and to
coordinate keys across multiple tables. You can get a new value from a sequence generator
using the NEXTVAL operator in a SQL statement. This gives the next available number and
increments the generator. The similar CURRVAL operator returns the current value of a
sequence without incrementing the generator.

A trigger is a PL/SQL procedure that is automatically invoked at a predetermined point. In
this example a trigger is invoked whenever an insert is made to a table.

In SQL*Plus an auto increment column MYID can be created like:

Script 41: autoinc.sql

create sequence myseq;

create table mytable (myid number primary key, mydata varchar2(20));

create trigger mytrigger
before insert on mytable for each row
begin
 :new.myid := myseq.nextval;
end;
/

Prior to Oracle Database 11g you need to fetch the value using a SELECT like:

select myseq.nextval into :new.myid from dual;

In PHP insert two rows:

183

Executing SQL Statements With OCI8

Script 42: autoinc.php

<?php

$c = oci_connect("hr", "welcome", "localhost/XE");

$s = oci_parse($c, "insert into mytable (mydata) values ('Hello')");
oci_execute($s);
$s = oci_parse($c, "insert into mytable (mydata) values ('Bye')");
oci_execute($s);

?>

Querying the table in SQL*Plus shows the MYID values were automatically inserted and
incremented:

SQL> select * from mytable;

 MYID MYDATA
---------- --------------------
 1 Hello
 2 Bye

The identifier numbers will be unique and increasing but may not be consecutive. For
example if someone rolls back an insert, a sequence number can be “lost”.

Getting the Last Insert ID

OCI8 does not have an explicit “insert_id” function. Instead, use a RETURN INTO clause and a
bind variable. Using the table and trigger created above in autoinc.sql, the insert would be:

Script 43: insertid.php

<?php

$c = oci_connect("hr", "welcome", "localhost/XE");

$s = oci_parse($c,
 "insert into mytable (mydata) values ('Hello') return myid into :id");
oci_bind_by_name($s, ":id", $id, 20, SQLT_INT);
oci_execute($s);
echo "Data inserted with id: $id\n";

?>

This returns the value of the MYID column for the new row into the PHP variable $id. The
output, assuming the two inserts of autoinc.php were previously executed, is:

Data inserted with id: 3

You could similarly return the ROWID of the new row into a descriptor:

$rid = oci_new_descriptor($c, OCI_D_ROWID);
$s = oci_parse($c,
 "insert into mytable (mydata) values ('Hello') return rowid into :rid");

184

LIMIT, Auto-Increment, Last Insert ID and Multiple Inserts

oci_bind_by_name($s, ":rid", $rid, -1, OCI_B_ROWID);
oci_execute($s);

Inserting Multiple Values

Some databases allow multiple values to be inserted in one call similar to:

insert into mytab (col_1, col_2) values (1,2),(3,4);

In Oracle, you can use oci_bind_array_by_name() (see the chapter on PL/SQL) or try the
INSERT ALL statement:

insert all
 into mytab (col_1, col_2) values (1, 2)
 into mytab (col_1, col_2) values (3, 4)
 select 1 from dual;

Don't forget to bind data values unlike this simple example shows.
Benchmark your implementation in an environment representative of your production

system. If you have a large number of values, or have to build up the statement text by string
concatenation in a loop, or have a fast network, then multiple INSERT statements might be
faster.

If you are migrating to Oracle, watch out for differences in transactional behavior, since
failure will cause the whole statement to be rolled back unlike some other databases.

One related use of INSERT ALL is to insert into multiple different tables in the one
statement.

Exploring Oracle
Explore the SQL and PL/SQL languages. Make maximum reuse of functionality that already
exists. Tom Kyte’s popular site, http://asktom.oracle.com, has a lot of useful information.

Oracle’s general guideline is to let the database manage data and to transfer the
minimum amount across the network. Avoid shipping data from the database to PHP for
unnecessary post processing. Data is a core asset of your business. It should be treated
consistently across your applications. Keeping a thin interface between your application layer
and the database is also good programming practice.

There are many more useful SQL and Database features than those described in this book.
They are left for you to explore. A few are mentioned below.

Case Insensitive Data Matching in Queries

If you want to do queries that sort and match data in a case insensitive manner, change the
session attributes NLS_SORT and NLS_COMP first, either with environment variables, or per
session:

alter session set nls_sort = binary_ci;
alter session set nls_comp = linguistic;

185

Executing SQL Statements With OCI8

Analytic Functions in SQL

Oracle’s Analytic functions are a useful tool to compute aggregate values based on a group of
rows. Here is an example of a correlation. CORR() returns the coefficient of correlation of a set
of number pairs:

select max_extents, corr(max_trans, initial_extent)
from all_tables
group by max_extents;

You must be connected as the SYSTEM user in this particular example, since it depends on
table data not available to the HR schema.

Other analytic functions allow you to get basic information like standard deviations or do
tasks such as ranking (for Top-N or Bottom-N queries) or do linear regressions.

External Tables

Oracle External tables allow data outside the database to be accessed as if it were in a
database table. You can read and write data. External tables can be used to load and unload
data. In Oracle Database 11g querying an external table can invoke an external program
which can generate the data.

186

CHAPTER 12

USING PL/SQL WITH OCI8

PL/SQL is Oracle’s procedural language extension to SQL. It is a database-side language that
is easy-to-use. PL/SQL enables you to mix SQL statements with procedural constructs. PHP
can call PL/SQL blocks to make use of advanced database functionality, and can use it to
efficiently insert and fetch data. As with SQL, the PL/SQL language gives applications easy
access to Oracle’s better date and number handling, for example to make sure your financial
data is not affected by PHP’s floating point semantics. You can create stored procedures,
functions and packages so your business logic is reusable in all your applications. PL/SQL has
an inbuilt native compiler, optimizing and debugging features, and a ‘wrap’ code obfuscation
facility to protect the intellectual property in applications.

PL/SQL Overview
A PL/SQL block has three basic parts:

● An optional declarative part DECLARE

● An executable part BEGIN ... END

● An optional exception-handling part EXCEPTION

An example PL/SQL block is:

declare
 sal_l pls_integer;
begin
 select salary into sal_l from employees where employee_id = 191;
 dbms_output.put_line('Salary is ' || sal_l);
 exception
 when no_data_found then
 dbms_output.put_line('No results returned');
end;

You can run this in many tools, including PHP. In Oracle’s SQL*Plus it is run by entering the
text at the prompt and finishing with a single slash (/) to tell SQL*Plus to execute the code. If
you turn on SET SERVEROUTPUT beforehand, then SQL*Plus will display the output messages
after execution:

SQL> set serveroutput on
SQL> declare
 2 sal_l pls_integer;
 3 begin
 4 select salary into sal_l
 5 from employees
 6 where employee_id = 191;
 7 dbms_output.put_line('Salary is ' || sal_l);
 8 exception
 9 when no_data_found then
 10 dbms_output.put_line('No results returned');

187

Using PL/SQL With OCI8

 11 end;
 12 /
Salary is 2500

Other tools have different ways to indicate the end of the statements and how to switch
server output on.

If a PHP application performs several SQL statements at one time, it can be efficient to
bundle the statements together in a single PL/SQL procedure. Instead of executing multiple
SQL statements, PHP only needs to execute one PL/SQL call. This reduces the number of
round trips between PHP and the database, and can improve overall performance.

There are a number of pre-supplied PL/SQL packages to make application development
easier. Packages exist for full text indexing, queuing, change notification, sending emails, job
scheduling and TCP access, just to name a few. When deciding whether to write PHP on the
mid-tier or PL/SQL in the server, consider your skill level in the languages, the cost of data
transfer across the network and the re-usability of the code. If you write in PL/SQL, all your
Oracle applications in any tool or client language can reuse the functionality.

Blocks, Procedures, Packages and Triggers
PL/SQL code can be categorized as one of the following:

● Anonymous blocks

● Stored procedures or functions

● Packages

● Triggers

Anonymous Blocks

An anonymous block is a PL/SQL block included in your application that is not named or
stored in the database. The previous example is an anonymous block. Because these blocks
are not stored in the database, they are generally for one-time use in a SQL script, or for
simple code dynamically submitted to the Oracle server.

Stored Procedures and Functions

A stored procedure is a PL/SQL block that Oracle stores in the database. They can be called by
name from an application. Functions are similar but also return a value when executed.

Procedures and functions can be used from other procedures or functions. They can be
enabled and disabled to prevent them being used. They may also have an invalid state, if
anything they reference is not available. They can be created individually, or be part of a
package.

When you create a stored procedure or function, Oracle stores its parsed representation in
the database for efficient reuse. Procedures can be created in SQL*Plus like:

SQL> create table mytab (mydata varchar2(40), myid number);

SQL> create or replace procedure
 2 myproc(d_p in varchar2, i_p in number) as
 3 begin

188

Blocks, Procedures, Packages and Triggers

 4 insert into mytab (mydata, myid) values (d_p, i_p);
 5 end;
 6 /

The procedure is only created, not run. Programs like PHP can run it later.
PL/SQL functions are created in a similar way using the CREATE OR REPLACE FUNCTION

command.
If you have creation errors, use the SQL*Plus SHOW ERRORS command to display any

messages. For example, creating a procedure that references an invalid table causes an error:

SQL> create or replace procedure
 2 myproc(d_p in varchar2, i_p in number) as
 3 begin
 4 insert into yourtab (mydata, myid) values (d_p, i_p);
 5 end;
 6 /

Warning: Procedure created with compilation errors.

SQL> show errors
Errors for PROCEDURE MYPROC:

LINE/COL ERROR
-------- ---
4/3 PL/SQL: SQL Statement ignored
4/15 PL/SQL: ORA-00942: table or view does not exist

If you are running SQL script files in SQL*Plus, it is helpful to turn SET ECHO ON to see the line
numbers.

See later below for handling PL/SQL errors in PHP.

Packages

Typically, stored procedures and functions are encapsulated into packages. This helps
minimizes recompilation of dependent objects. The package specification defines the
signatures of the functions and procedures. If that definition is unchanged, code that invokes
it will not need to be recompiled even if the implementation of the package body changes.

Script 44: toyshop.sql

create table toys (id number, name varchar2(40));
insert into toys (id, name) values (1, 'bicycle');
commit;

create or replace package toyshop as
 function find_toy(id_p in number) return varchar2;
 procedure add_toy(id_p in number, name_p in varchar2);
 procedure find_toy_proc(id_p in number, name_p out varchar2);
end toyshop;
/

create or replace package body toyshop as
 function find_toy(id_p in number) return varchar2 as
 name_l varchar2(20);

189

Using PL/SQL With OCI8

 begin
 select name into name_l from toys where id = id_p;
 return name_l;
 end;

 procedure add_toy(id_p in number, name_p in varchar2) as
 begin
 insert into toys (id, name) values(id_p, name_p);
 end;

 procedure find_toy_proc(id_p in number, name_p out varchar2) as
 begin
 select name into name_p from toys where id = id_p;
 end;
end toyshop;
/

Triggers

A database trigger is a stored procedure associated with a database table, view, or event. The
trigger can be called after the event, to record it, or take some follow-up action. A trigger can
also be called before an event, to prevent erroneous operations or fix new data so that it
conforms to business rules. Triggers were shown earlier as a way to optimize setting date
formats (see Do Not Set the Date or Numeric Format Unnecessarily in the chapter on
connecting) and as a way of creating auto-increment columns (see Auto-Increment Columns
in the previous chapter).

Creating PL/SQL Stored Procedures in PHP
Procedures, functions and triggers can be created using PHP. For example, to create a
procedure BIKE_CREATE the code is:

Script 45: bikecreate.php

<?php

$c = oci_connect('hr', 'welcome', 'localhost/XE');

$plsql = <<<'EOS'
create or replace procedure bike_create(type_p in varchar2) as
begin
 insert into bicycles (style) values (type_p);
end;
EOS; // this must be at the start of the line without leading whitespace

$s = oci_parse($c, $plsql);
$r = oci_execute($s);
if ($r) {
 echo 'Procedure created';
}

?>

190

Creating PL/SQL Stored Procedures in PHP

Note the last character of the PL/SQL statement is a semi-colon (after the PL/SQL keyword
end), which is different to the way SQL statements are terminated in Oracle.

The example shows a PHP NOWDOC containing the statement. If you are on Windows,
make sure you avoid the end-of-line terminator issue mentioned below.

Similar to the earlier performance advice on creating tables, avoid creating packages and
procedures at runtime in an application. Pre-create them as part of application installation.

End of Line Terminators in PL/SQL With Windows PHP

With older versions of Oracle on Windows, multi-line PL/SQL blocks won't run if the line
terminators are incorrect. The problem happens when the end of line characters in a multi-line
PL/SQL string are Windows carriage-return line-feeds:

$plsql = "create or replace procedure
 myproc(d_p in varchar2, i_p in number) as
 begin
 insert into mytab(mydata, myid) values (d_p, i_p);
 end;";

The typical error is ORA-24344: success with compilation error.
If the showcompilationerrors() function, shown later, is used, additional Oracle messages

will show the error PLS-00103: Encountered the symbol "" when expecting one of the
following. This error, which may have the symbol ";" or a seemingly empty token representing
the unexpected end-of-line syntax, is followed by a list of keywords or tokens the PL/SQL
parser was expecting.

Use one of these solutions to fix the problem:

● Write the PL/SQL code on a single line:

$plsql = "create or replace procedure myproc . . . end;";

● Use PHP string concatenation with appropriate white space padding between string
tokens:

$plsql = "create or replace procedure "
 . "myproc(d_p in varchar2, i_p in number) as "
 . "begin "
 . "insert into mytab(mydata, myid) values (d_p, i_p); "
 . "end;";

● Convert the file to use UNIX-style line-feeds with a conversion utility or editor.

Calling PL/SQL Code

Calling PL/SQL Procedures in PHP

To invoke a PL/SQL procedure from PHP, use BEGIN and END to create an anonymous block:

Script 46: anonplsql.php

<?php

191

Using PL/SQL With OCI8

$c = oci_connect('hr', 'welcome', 'localhost/XE');

$s = oci_parse($c, "begin toyshop.add_toy(2, 'ball'); end;");
oci_execute($s);

?>

The block contains a single procedure call, but you could include any number of other PL/SQL
statements.

You can also use the SQL CALL statement like:

Script 47: callplsql.php

<?php

$c = oci_connect('hr', 'welcome', 'localhost/XE');

$s = oci_parse($c, "call toyshop.add_toy(3, 'paddling pool')");
oci_execute($s);

?>

The call command is actually a SQL command and does not have the trailing semi-colon
needed for PL/SQL blocks.

Binding Parameters in PL/SQL Procedure Calls

PL/SQL procedure and function arguments can be marked IN, OUT or IN OUT depending on
whether data is being passed into or out of PL/SQL. Single value parameters can be bound in
PHP with oci_bind_by_name(). In the toyshop.sql example, the find_toy_proc() parameters
were IN and OUT. The code could be:

$s = oci_parse($c, "begin toyshop.find_toy_proc(:id, :name); end;");
$id = 1;
oci_bind_by_name($s, ":id", $id);
oci_bind_by_name($s, ":name", $name, 40);
oci_execute($s);
echo "Name is: ".$name;

The bind call specifies that 40 bytes should be allocated to hold the retrieved toy name. For
OUT and IN OUT parameters, make sure the length is specified in the bind call. As mentioned
in the previous chapter, specifying the length for IN binds is often a good idea too, if the one
statement is executed multiple times in a loop.

Calling PL/SQL Functions in PHP

Calling a PL/SQL function requires a bind variable for the return value. Using the function
find_toy() created previously in toyshop.sql:

Script 48: plsqlfunc.php

<?php

192

Calling PL/SQL Code

$c = oci_connect('hr', 'welcome', 'localhost/XE');

$s = oci_parse($c, "begin :name := toyshop.find_toy(1); end;");
oci_bind_by_name($s, ':name', $name, 40);
oci_execute($s);
echo "Name is: " . $name;

?>

The := token is the assignment operator in PL/SQL. Here it assigns the return value of the
function to the bind variable. The bind call specifies that 40 bytes should be allocated to hold
the result. The script output is:

Name is: bicycle

Binding Unsupported PL/SQL Types

Some PL/SQL data types are internal to PL/SQL and cannot be returned through the C layer
used by the OCI8 extension. In these cases some extra PL/SQL code that maps the type to a
form usable in PHP is needed. For example, the PL/SQL user function is_valid() returns the
internal Oracle type BOOLEAN:

Script 49: isvalid.sql

create or replace function is_valid(p_uid in number) return boolean as
begin
 if (p_uid < 10) then
 return true;
 else
 return false;
 end if;
end;
/

The anti-example PHP code to call this is:

Script 50: isvalid.php

<?php

$c = oci_connect('hr', 'welcome', 'localhost/XE');

$sql = "begin :r := is_valid(:userid); end;"; // will fail
$s = oci_parse($c, $sql);
oci_bind_by_name($s, ':r', $r, 40);
$userid = 4;
oci_bind_by_name($s, ':userid', $userid);
oci_execute($s);
echo "Result is " . ($r ? "true" : "false") . "\n";

?>

193

Using PL/SQL With OCI8

The expectation is that user id 4 is less than 10 and so the result will display as true.
However, because of the use of the internal PL/SQL type, this script actually gives the error
PLS-00382: expression is of wrong type. The solution is to change the anonymous PL/SQL
statement to make it evaluate the is_valid() return value and propagate a type that can be
bound in OCI8:

$sql = "begin
 if (is_valid(:userid) = true) then
 :r := 1;
 else
 :r := 0;
 end if;
end;";

The output of the script is now:

Result is true

Array Binding and PL/SQL Bulk Processing
OCI8 1.2 (PHP 5.1.2) introduced a function, oci_bind_array_by_name(). Used with a PL/SQL
procedure, this can be very efficient for insertion or retrieval, requiring just a single
oci_execute() to transfer multiple values. The following example, arraybind.sql, creates a
PL/SQL package with two procedures. The first, myinsproc(), will be passed a PHP array to
insert. It uses Oracle’s “bulk” FORALL statement for fast insertion. The second procedure,
myselproc(), selects back from the table using the BULK COLLECT clause and returns the array
as the OUT parameter p_arr. The p_count parameter is used to make sure PL/SQL does not
try to return more values than the PHP array can handle.

Script 51: arraybind.sql

drop table mytab;
create table mytab(name varchar2(20));

create or replace package mypkg as
 type arrtype is table of varchar2(20) index by pls_integer;
 procedure myinsproc(p_arr in arrtype);
 procedure myselproc(p_arr out arrtype, p_count in number);
end mypkg;
/
show errors

create or replace package body mypkg as
 procedure myinsproc(p_arr in arrtype) is
 begin
 forall i in indices of p_arr
 insert into mytab values (p_arr(i));
 end myinsproc;

 procedure myselproc(p_arr out arrtype, p_count in number) is
 begin
 select name bulk collect into p_arr from mytab where rownum <= p_count;

194

Array Binding and PL/SQL Bulk Processing

 end myselproc;
end mypkg;
/
show errors

To insert a PHP array $a into MYTAB, use:

Script 52: arrayinsert.php

<?php

$c = oci_connect('hr', 'welcome', 'localhost/XE');

$a = array('abc', 'def', 'ghi', 'jkl');

$s = oci_parse($c, "begin mypkg.myinsproc(:a); end;");
oci_bind_array_by_name($s, ":a", $a, count($a), -1, SQLT_CHR);
oci_execute($s);

?>

The oci_bind_array_by_name() function is similar to oci_bind_by_name(). As well as the
upper data length, it has an extra parameter giving the number of elements in the array. In
this example, the number of elements inserted is count($a). The data length –1 tells PHP to
use the actual length of the character data, which is known to PHP.

To query the table in PHP, the myselproc() procedure can be called. The number of
elements $numelems to be fetched is passed into myselproc() by being bound to :n. This
limits the query to return four rows. The value is also used in the oci_bind_array_by_name()
call so the output array $r is correctly sized to hold the four rows returned. The value 20 is the
width of the database column. Any lower value could result in shorter strings being returned
to PHP.

Script 53: arrayfetch.php

<?php

$c = oci_connect("hr", "welcome", "localhost/XE");

$numelems = 4;
$s = oci_parse($c, "begin mypkg.myselproc(:p1, :n); end;");
oci_bind_array_by_name($s, ":p1", $r, $numelems, 20, SQLT_CHR);
oci_bind_by_name($s, ":n", $numelems);
oci_execute($s);

var_dump($r); // print the array

?>

The output is:

array(4) {
 [0]=>
 string(3) "abc"
 [1]=>

195

Using PL/SQL With OCI8

 string(3) "def"
 [2]=>
 string(3) "ghi"
 [3]=>
 string(3) "jkl"
}

A number of other Oracle types can be bound with oci_array_bind_by_name(), for example
SQLT_FLT for floating point numbers.

There are more examples of oci_bind_array_by_name() in the automated OCI8 tests
bundled with the PHP source code, see ext/oci8/tests.

PL/SQL Success With Information Warnings
A common PL/SQL error when creating packages, procedures or triggers is Warning:
oci_execute(): OCI_SUCCESS_WITH_INFO: ORA-24344: success with compilation error. This
message is most likely to be seen during development of PL/SQL which is commonly done in
SQL*Plus or SQL Developer. It can also be seen during application installation if PL/SQL
packages, procedures or functions have an unresolved dependency.

PHP code to check for informational errors and warnings is shown in the example
plsqlerr.php. It creates a procedure referencing a non-existent table and then queries the
USER_ERRORS table after the ORA-24344 error occurs:

Script 54: plsqlerr.php

<?php

$c = oci_connect('hr', 'welcome', 'localhost/XE');

ini_set('display_errors', false); // do not automatically show PHP errors

// PL/SQL statement with deliberate error: not_mytab does not exist
$plsql = "create or replace procedure
 myproc(d_p in varchar2, i_p in number) as
 begin
 insert into not_mytab (mydata, myid) values (d_p, i_p);
 end;";

$s = oci_parse($c, $plsql);
$r = @oci_execute($s);

if (!$r) {
 $m = oci_error($s);
 if ($m['code'] == 24344) { // A PL/SQL "success with compilation error"
 echo "Warning is " . $m['message'] . "\n";
 showcompilationerrors($c);
 } else { // A normal SQL-style error
 echo "Error is " . $m['message'] . "\n";
 }
}

// Display PL/SQL errors
function showcompilationerrors($c)

196

PL/SQL Success With Information Warnings

{
 $s = oci_parse($c, "SELECT NAME || ': ' || ATTRIBUTE
 || ' at character ' || POSITION
 || ' of line ' || LINE || ' - ' || TEXT
 FROM USER_ERRORS
 ORDER BY NAME,LINE,POSITION,ATTRIBUTE,MESSAGE_NUMBER");
 oci_execute($s);
 print "<pre>\n";
 while ($row = oci_fetch_array($s, OCI_ASSOC+OCI_RETURN_NULLS)) {
 foreach ($row as $item) {
 print ($item?htmlentities($item):"");
 }
 print "\n";
 }
 print "</pre>";
}

?>

This displays:

Warning is ORA-24344: success with compilation error
MYPROC: ERROR at character 13 of line 4 - PL/SQL: SQL Statement ignored
MYPROC: ERROR at character 25 of line 4 - PL/SQL: ORA-00942: table or view does
not exist

Looking at the PL/SQL code creating the procedure, character 13 on line 4 of the PL/SQL code
is the INSERT statement. Character 25 is the table name NOT_MYTAB.

Your output may also include errors from creating earlier blocks. You can insert a WHERE
clause before the ORDER BY to restrict the error messages:

 where name = 'MYPROC'

Using REF CURSORS for Result Sets
REF CURSORS let you return a set of query results to PHP - think of them like a pointer to
results. In PHP you bind an OCI_B_CURSOR variable to a PL/SQL REF CURSOR procedure
parameter and retrieve the rows of the result set in a normal fetch loop.

As an example, we create a PL/SQL package with a procedure that queries the EMPLOYEES
table. The procedure returns a REF CURSOR containing the employees’ last names.

The PL/SQL procedure contains the code:

Script 55: refcur1.sql

create or replace procedure myproc(p1 out sys_refcursor) as
begin
 open p1 for select last_name from employees where rownum <= 5;
end;
/
show errors

In PHP the oci_new_cursor() function returns a REF CURSOR resource. This is bound to :rc in
the call to myproc(). The bind size of -1 means “ignore the size passed”. It is used because

197

Using PL/SQL With OCI8

the size of the REF CURSOR is fixed by Oracle. Once the PL/SQL procedure has completed
then the value in $refcur is treated like a prepared statement identifier. It is simply executed
and used in a fetch loop like a normal query.

Script 56: refcur1.php

<?php

$c = oci_connect('hr', 'welcome', 'localhost/XE');

// Excute the call to the PL/SQL stored procedure
$s = oci_parse($c, "call myproc(:rc)");
$refcur = oci_new_cursor($c);
oci_bind_by_name($s, ':rc', $refcur, -1, OCI_B_CURSOR);
oci_execute($s);

// Execute and fetch from the cursor
oci_execute($refcur); // treat the returned cursor as an OCI8 statement resource

echo "<table border='1'>\n";
while($row = oci_fetch_array($refcur, OCI_ASSOC)) {
 echo "<tr>";
 foreach ($row as $item) {
 echo "<td>". htmlentities($item) . "</td>";
 }
 echo "</tr>\n";
}
echo "</table>\n";

?>

The output is:

Abel
Ande
Atkinson
Austin
Baer

This next example uses a user-defined type for the REF CURSOR, making the cursor “strongly
typed”. The type is declared in a package specification.

Script 57: refcur2.sql

create or replace package emp_pack as

 type contact_info_type is record (
 fname employees.first_name%type,
 lname employees.last_name%type,
 phone employees.phone_number%type,
 email employees.email%type);

 type contact_info_cur_type is ref cursor return contact_info_type;

 procedure get_contact_info(

198

Using REF CURSORS for Result Sets

 p_emp_id in number,
 p_contact_info out contact_info_cur_type);

end emp_pack;
/
show errors

create or replace package body emp_pack as

 procedure get_contact_info(
 p_emp_id in number,
 p_contact_info out contact_info_cur_type) as
 begin
 open p_contact_info for
 select first_name, last_name, phone_number, email
 from employees
 where employee_id = p_emp_id;
 end;

end emp_pack;
/
show errors

The PHP code is very similar to refcur1.php, except in the call to the procedure. The
procedure name has changed and, for this example, an example employee identifier of 188 is
used.

. . .
$s = oci_parse($c, "call emp_pack.get_contact_info(188, :rc)");
. . .

The output would be the record for employee 188. The four values match the
CONTACT_INFO_TYPE:

Kelly Chung 650.505.1876 KCHUNG

A PL/SQL function that returns a REF CURSOR can be called in an anonymous block like used
previously, or be used as a query column. For example:

create or replace function selectme(eid_p number) return sys_refcursor is
 rc_l sys_refcursor;
begin
 open rc_l for
 select first_name, last_name from employees where employee_id = eid_p;
 return rc_l;
end;
/

This can be called in PHP with a query like:

<?php

$c = oci_connect('hr', 'welcome', 'localhost/XE');

$s = oci_parse($c, "select selectme(:eid) as rc from dual");
$eid = 101;

199

Using PL/SQL With OCI8

oci_bind_by_name($s, ":eid", $eid);
oci_execute($s);
$r = oci_fetch_array($s);

$refcur = $r['RC'];
oci_execute($refcur);
oci_fetch_all($refcur, $res);
var_dump($res);

?>

Closing Cursors

To avoid running out of Oracle cursors (which have a database-configured, per-session limit
open_cursors set by the DBA), make sure to explicitly free cursors. The example in
refcur3.php is a script that implicitly creates cursors.

Script 58: refcur3.php

<?php

// Create a table with 400 rows
function initialize($c)
{
 $stmtarray = array("drop table mytab",
 "create table mytab(col1 varchar2(1))");

 foreach ($stmtarray as $stmt) {
 $s = oci_parse($c, $stmt);
 @oci_execute($s);
 }

 $s = oci_parse($c, "insert into mytab values ('A')");
 for ($i = 0; $i < 400; ++$i) {
 oci_execute($s);
 }
}

$c = oci_connect('hr', 'welcome', 'localhost/XE');

initialize($c);

$s = oci_parse($c, 'select cursor(select * from dual) from mytab');
oci_execute($s);
while ($refcur = oci_fetch_array($s, OCI_NUM)) { // get each REF CURSOR
 oci_execute($refcur[0]); // execute the REF CURSOR
 while ($row = oci_fetch_array($refcur[0], OCI_NUM)) {
 foreach ($row as $item)
 echo "$item ";
 echo "\n";
 }
 oci_free_statement($refcur[0]); // free the ref cursor
}

200

Using REF CURSORS for Result Sets

?>

The outer select from MYTAB returns not rows, but a CURSOR per row of MYTAB. Those cursors
each represent the result from the inner query. That is, there are 400 queries from the DUAL
table. The outer WHILE loop fetches each of the 400 REF CURSORs in turn. The inner WHILE
loop fetches from each REF CURSOR. The result is a stream of X's (which is the single row of
data in DUAL) being displayed:

X
X
X
. . .

This script works, but if the oci_free_statement() line is commented out:

// oci_free_statement($refcur[0]); // free the ref cursor

then the script can reach the database limit on the number of cursors. After some iterations
through the loop, an error is displayed:

PHP Warning:oci_fetch_array(): ORA-00604: error occurred at recursive SQL level 1
ORA-01000: maximum open cursors exceeded

The number of iterations before getting the messages depends on the database configuration
parameter open_cursors.

Prefetching From REF CURSORS and Nested Cursors for Performance

Prefetching of rows from REF CURSORS is supported from Oracle Database 11gR2 onwards.
Prefetching is also performed when connected to previous database versions as long as PHP
OCI8 is using version 11.2 Oracle client libraries. Taking advantage of the better performance
can be as simple as relinking PHP with the latest libraries. The value of oci8.default_prefetch
is used for prefetching REF CURSORS, or the value can be changed at runtime:

$s = oci_parse($c, "call myproc(:rc)");
$refcur = oci_new_cursor($c);
oci_bind_by_name($s, ':rc', $refcur, -1, OCI_B_CURSOR);
oci_execute($s);
oci_set_prefetch($refcur, 200);
oci_execute($refcur);
oci_fetch_all($refcur, $res);

Setting the prefetch count on the "parent" resource $s does not change the prefetch size for
$refcur.

If your script retrieves a REF CURSOR, fetches a few records from it, and then passes the
REF CURSOR back to the database where a stored procedure continues fetching records from
it, you should set the prefetch size to 0. Otherwise the prefetch buffer of records sent to PHP
might not be completely consumed by PHP oci_fetch_* calls, and those extra rows would not
be available to the second PL/SQL stored procedure. This would give the appearance of
missing data, which wasn't processed by the PHP application or the stored procedure.

201

Using PL/SQL With OCI8

Converting from REF CURSOR to PIPELINED Results

If you are using an older version of Oracle client libraries and cannot use REF CURSOR
prefetching, evaluate alternatives such as doing direct queries, writing a wrapping function in
PL/SQL that has types that can be bound with oci_bind_array_by_name(), or writing a
wrapping function that pipelines the output. A pipelined PL/SQL function gives the ability to
select from the function as if it were a table.

To convert the myproc() procedure from refcur1.sql to return pipelined data, create a
package:

Script 59: rc2pipeline.sql

create or replace package myplmap as
 type outtype is record (-- structure of the ref cursor in myproc
 last_name varchar2(25)
);
 type outtype_set is table of outtype;
 function maprctopl return outtype_set pipelined;
end;
/
show errors

create or replace package body myplmap as
 function maprctopl return outtype_set pipelined is
 outrow outtype_set;
 p_rc sys_refcursor;
 batchsize pls_integer := 20; -- fetch batches of 20 rows at a time
 begin
 myproc(p_rc); -- call the original procedure
 loop
 fetch p_rc bulk collect into outrow limit batchsize;
 for i in 1 .. outrow.count() loop
 pipe row (outrow(i));
 end loop;
 exit when outrow.count < batchsize;
 end loop;
 end maprctopl;
end myplmap;
/
show errors

This calls myproc() and pipes each record. It can be called in PHP using a simple query with
the table operator:

Script 60: rc2pipeline.php

<?php

$c = oci_connect('hr', 'welcome', 'localhost/XE');

$s = oci_parse($c, "select * from table(myplmap.maprctopl())");
oci_execute($s);
oci_fetch_all($s, $res);
var_dump($res);

202

Using REF CURSORS for Result Sets

?>

If the REF CURSOR query in myproc() selected all columns, then OUTTYPE_SET could simply
have been declared in the SQL script as:

type outtype_set is table of employees%rowtype;

Oracle Collections in PHP
Many programming techniques use collection types such as arrays, bags, lists, nested tables,
sets, and trees. To support these techniques in database applications, PL/SQL provides the
data types TABLE and VARRAY, which allow you to declare index-by tables, nested tables, and
variable-size arrays.

An Oracle collection is an ordered group of elements, all of the same type. Each element
has a unique subscript that determines its position in the collection. Collections work like the
arrays found in most third-generation programming languages. Also, collections can be
passed as parameters. So, you can use them to move columns of data into and out of
database tables or between client-side applications and stored subprograms.

Oracle collections can be manipulated in PHP by methods on a collection resource, which
is allocated with oci_new_collection().

In a simple email address book example, two VARRAYs are created, one for an array of
people’s names, and one for an array of email addresses. VARRAYs (short for variable-size
arrays) use sequential numbers as subscripts to access a fixed number of elements.

Script 61: addressbook.sql

drop table emails;

create table emails (
 user_id varchar2(10),
 friend_name varchar2(20),
 email_address varchar2(20));

create or replace type email_array as varray(100) of varchar2(20);
/
show errors

create or replace type friend_array as varray(100) of varchar2(20);
/
show errors

create or replace procedure update_address_book(
 p_user_id in varchar2,
 p_friend_name friend_array,
 p_email_addresses email_array)
is
begin
 delete from emails where user_id = p_user_id;
 forall i in indices of p_email_addresses
 insert into emails (user_id, friend_name, email_address)
 values (p_user_id, p_friend_name(i), p_email_addresses(i));

203

Using PL/SQL With OCI8

end update_address_book;
/
show errors

The update_address_book() procedure loops over all elements of the address collection and
inserts each one and its matching name.

The updateaddresses.php code creates a collection of names and a collection of email
addresses using the append() method to add elements to each array. These collections are
bound as OCI_B_NTY (“named type”) to the arguments of the PL/SQL address_book() call.
The size -1 is used because Oracle internally knows the size of the type. When
address_book() is executed, the names and email addresses are inserted into the database.

Script 62: updateaddresses.php

<?php

$c = oci_connect('hr', 'welcome', 'localhost/XE');

$user_name = 'cjones';
$friends_names = array('alison', 'aslam');
$friends_emails = array('alison@example.com', 'aslam@example.com');

$friend_coll = oci_new_collection($c, 'FRIEND_ARRAY');
$email_coll = oci_new_collection($c, 'EMAIL_ARRAY');

for ($i = 0; $i < count($friends_names); ++$i) {
 $friend_coll->append($friends_names[$i]);
 $email_coll->append($friends_emails[$i]);
}

$s = oci_parse($c, "begin update_address_book(:un, :friends, :emails); end;");

oci_bind_by_name($s, ':un', $user_name);
oci_bind_by_name($s, ':friends', $friend_coll, -1, OCI_B_NTY);
oci_bind_by_name($s, ':emails', $email_coll, -1, OCI_B_NTY);

oci_execute($s);

?>

The EMAILS table now has the inserted data:

SQL> select * from emails;

USER_ID FRIEND_NAME EMAIL_ADDRESS
---------- -------------------- --------------------
cjones alison alison@example.com
cjones aslam aslam@example.com

Other OCI8 collection methods allow accessing or copying data in a collection. See the PHP
OCI8 manual for more information.

204

Using PL/SQL and Oracle Object Types in PHP

Using PL/SQL and Oracle Object Types in PHP
Sometime you have to work with Oracle object types or call PL/SQL procedures that are
designed for interacting with other PL/SQL code and that cannot be used directly with OCI8.
Previous sections have introduced some methods. This section gives more examples. It is a
brief guide, and not exhaustive. Also, some techniques will work better in some situations
than in others.

The first example simulates the Oracle Text CTX_THES package procedures. These return
Oracle object types. (Oracle Text is a database component that uses standard SQL to index,
search, and analyze text and documents stored in the database, in files, and on the web. It
can perform linguistic analysis on documents, as well as search text using a variety of
strategies including keyword searching and context queries).

This example, ctx.sql, sets up an example package with a similar interface to CTX_THES.
Here it just returns random data in the OUT parameter:

Script 63: ctx.sql

-- Package "SuppliedPkg" simulates Oracle Text's CTX_THES.
-- It has a procedure that returns a PL/SQL type.

create or replace package SuppliedPkg as
 type SuppliedRec is record (
 id number,
 data varchar2(100)
);
 type SuppliedTabType is table of SuppliedRec index by binary_integer;
 procedure SuppliedProc(p_p in out nocopy SuppliedTabType);
end SuppliedPkg;
/
show errors

create or replace package body SuppliedPkg as
 procedure SuppliedProc(p_p in out nocopy SuppliedTabType) is
 begin
 -- Create some random data
 p_p.delete;
 for i in 1..5 loop
 p_p(i).id := i;
 p_p(i).data := 'Random: ' || i || (1+ABS(MOD(dbms_random.random,100000)));
 end loop;
 end SuppliedProc;
end SuppliedPkg;
/
show errors

Run the file ctx.sql in SQL*Plus:

$ sqlplus hr/welcome@localhost/XE @ctx.sql

This is the “fixed” part of the problem, representing the unchangeable, pre-supplied
functionality you need to work with. The next four sections show different techniques for
fetching data from SuppliedProc().

205

Using PL/SQL With OCI8

Using a PIPELINED Function

A PL/SQL wrapper function using PIPE can be used to fetch the values returned by
SuppliedProc():

Script 64: myplpkg.sql

create or replace package myplpkg as
 type pltab is table of SuppliedPkg.SuppliedRec;
 function mywrapper1 return pltab pipelined;
end;
/
show errors

create or replace package body myplpkg as
 function mywrapper1 return pltab pipelined is
 origdata SuppliedPkg.SuppliedTabType;
 begin
 SuppliedPkg.SuppliedProc(origdata);
 for i in 1..origdata.count loop
 pipe row (origdata(i));
 end loop;
 end mywrapper1;
end myplpkg;
/
show errors

The PHP code to call the wrapper is:

Script 65: myplpkg.php

<?php

$c = oci_connect("hr", "welcome", "localhost/XE");

$s = oci_parse($c, "select * from table(myplpkg.mywrapper1())");
oci_execute($s);
oci_fetch_all($s, $res);
var_dump($res);

?>

The output is like:

array(2) {
 ["ID"]=>
 array(5) {
 [0]=>
 string(1) "1"
 [1]=>
 string(1) "2"
 [2]=>
 string(1) "3"
 [3]=>
 string(1) "4"

206

Using PL/SQL and Oracle Object Types in PHP

 [4]=>
 string(1) "5"
 }
 ["DATA"]=>
 array(5) {
 [0]=>
 string(14) "Random: 174852"
 [1]=>
 string(14) "Random: 210905"
 [2]=>
 string(14) "Random: 341032"
 [3]=>
 string(13) "Random: 41530"
 [4]=>
 string(14) "Random: 540388"
 }
}

Using a REF CURSOR

Since data from MYPLPKG.MYWRAPPER1 is fetched with a query, you could also easily return
the values to PHP using a REF CURSOR, if this is your preferred coding style:

Script 66: myrcpkg.sql

create or replace package myrcpkg as
 procedure mywrapper2 (p_rc out sys_refcursor);
end;
/
show errors

create or replace package body myrcpkg as
 procedure mywrapper2 (p_rc out sys_refcursor) is
 begin
 open p_rc for select * from table(myplpkg.mywrapper1());
 end mywrapper2;
end myrcpkg;
/
show errors

This can be called in PHP like:

Script 67: myrcpkg.php

<?php

$c = oci_connect("hr", "welcome", "localhost/XE");

$s = oci_parse($c, "begin myrcpkg.mywrapper2(:myrc); end;");
$rc = oci_new_cursor($c);
oci_bind_by_name($s, ':myrc', $rc, -1, OCI_B_CURSOR);
oci_execute($s);
oci_execute($rc);
oci_fetch_all($rc, $res);

207

Using PL/SQL With OCI8

var_dump($res);

?>

The output is the same as from myrcpkg.php.

Using an Array Bind

A third solution lets you use the fast oci_bind_array_by_name() function. The wrapper
procedure looks like:

Script 68: mybapkg.sql
create or replace package mybapkg as

 procedure mywrapper3 (
 p_id out dbms_sql.number_table,
 p_data out dbms_sql.varchar2_table);
end;
/
show errors

create or replace package body mybapkg as
 procedure mywrapper3(

 p_id out dbms_sql.number_table,
 p_data out dbms_sql.varchar2_table) as

 begin
 select id, data
 bulk collect into p_id, p_data
 from hxuntabtable(myplpkg.mywrapper1());
 end mywrapper3;
end mybapkg;
/
show errors

This can be called from PHP with:

Script 69: mybapkg.php

<?php

$c = oci_connect("hr", "welcome", "localhost/XE");

$s = oci_parse($c, "begin mybapkg.mywrapper3(:myid, :mydata); end;");
oci_bind_array_by_name($s, ":myid", $myid, 10, -1, SQLT_INT);
oci_bind_array_by_name($s, ":mydata", $mydata, 10, 20, SQLT_CHR);
oci_execute($s);

var_dump($myid);
var_dump($mydata);

?>

This technique can be used when the number of items to return is known. The output is
similar to:

208

Using PL/SQL and Oracle Object Types in PHP

array(5) {
 [0] =>
 int(1)
 [1] =>
 int(2)
 [2] =>
 int(3)
 [3] =>
 int(4)
 [4] =>
 int(5)
}
array(5) {
 [0] =>
 string(14) "Random: 113453"
 [1] =>
 string(14) "Random: 298387"
 [2] =>
 string(14) "Random: 375767"
 [3] =>
 string(14) "Random: 450352"
 [4] =>
 string(14) "Random: 599520"
}

Using OCI8 Collection Functions

The SuppliedProc() procedure can also be called using OCI8 collection functions by creating
yet another a wrapper function in PL/SQL to convert the PL/SQL type SuppliedTabType to a
pair of SQL types:

Script 70: myclpkg.sql

create or replace type MyIdRec as table of number;
/
show errors

create or replace type MyDataRec as table of varchar2(100);
/
show errors

create or replace package myclpkg as
 procedure wrapper4 (p_id in out MyIdRec, p_data in out MyDataRec);
end;
/
show errors

create or replace package body myclpkg as
 procedure wrapper4 (p_id in out MyIdRec, p_data in out MyDataRec)
 as
 begin
 select id, data
 bulk collect into p_id, p_data

209

Using PL/SQL With OCI8

 from table(myplpkg.mywrapper1());
 end wrapper4;
end myclpkg;
/
show errors

Now you can call wrapper4() in PHP:

Script 71: myclpkg.php

<?php

$c = oci_connect("hr", "welcome", "localhost/XE");

$s = oci_parse($c, 'begin myclpkg.wrapper4(:res_id, :res_data); end;');
$res_id = oci_new_collection($c, 'MYIDREC');
$res_data = oci_new_collection($c, 'MYDATAREC');
oci_bind_by_name($s, ':res_id', $res_id, -1, OCI_B_NTY);
oci_bind_by_name($s, ':res_data', $res_data, -1, OCI_B_NTY);
oci_execute($s);

for ($i = 0; $i < $res_id->size(); $i++) {
 $id = $res_id->getElem($i);
 $data = $res_data->getElem($i);
 echo "Id: $id, Data: $data\n";
}

?>

This allocates two collections and binds them as the parameters to wrapper4(). After
wrapper4() has been called, the PHP OCI8 collection method getElem() is used to access
each value returned. The output is similar to:

Id: 1, Data: Random: 155942
Id: 2, Data: Random: 247783
Id: 3, Data: Random: 365553
Id: 4, Data: Random: 487553
Id: 5, Data: Random: 589879

This section has shown four methods of fetching PL/SQL types. The best method will depend
on personal preference, data size and performance in your environment.

Getting Output With DBMS_OUTPUT
The DBMS_OUTPUT package is the standard way to “print” output from PL/SQL. The drawback
is that it is not asynchronous. The PL/SQL procedure or block that calls DBMS_OUTPUT runs to
completion before any output is returned to the user.

DBMS_OUTPUT is like a buffer. Your PHP code turns on DBMS_OUTPUT buffering, calls some
PL/SQL code that puts output in the buffer, and then later fetches from the buffer. Other
database connections cannot access your buffer.

A basic way to fetch DBMS_OUTPUT in PHP is to bind an output string to the PL/SQL
dbms_output.get_line() procedure:

$s = oci_parse($c, "begin dbms_output.get_line(:ln, :st); end;");

210

Getting Output With DBMS_OUTPUT

oci_bind_by_name($s, ":ln", $ln, 255); // output line
oci_bind_by_name($s, ":st", $st, -1, SQLT_INT); // status: 1 means no more lines
while (($succ = oci_execute($s)) && !$st) {
 echo "$ln\n";
}

The variable :ln is arbitrarily bound as length 255. This was the DBMS_OUTPUT line size limit
prior to Oracle Database 10g Release 10.2, when it was then changed to 32KB. (The limitation
on the number of lines was also raised). Avoid binding 32KB, especially if the database is
running in Oracle’s shared server mode. If you bind this size, then it is easy to slow down
performance or get memory errors. However, if you bind less than the full size, make sure
your application does not print wider lines.

Alternatively, you can use oci_bind_array_by_name() and call another DBMS_OUTPUT
package that returns multiple lines, get_lines(). The performance of this is generally better
but it does depend on how big the bind array is, how much data is returned and how the code
is structured. In the worst case it might be slower than the simple code, so benchmark your
application carefully.

A more consistent and fast DBMS_OUTPUT fetching implementation uses a custom
pipelined PL/SQL function. In SQL*Plus create the function:

Script 72: dbmsoutput.sql

create or replace type dorow as table of varchar2(4000);
/
show errors

create or replace function mydofetch return dorow pipelined is
 line varchar2(4000);
 status integer;
begin
 loop
 dbms_output.get_line(line, status);
 exit when status = 1;
 pipe row (line);
 end loop;
 return;
end;
/
show errors

Because we will fetch the data in a query as a SQL string, the maximum length is 4000 bytes.
A function to turn on output buffering is shown in dbmsoutput.inc.php along with

getdbmsoutput() which returns an array of the output lines:

Script 73: dbmsoutput.inc.php

<?php

// Turn DBMS_OUTPUT on
function enabledbmsoutput($c)
{
 $s = oci_parse($c, "begin dbms_output.enable(null); end;");
 $r = oci_execute($s);
 return $r;

211

Using PL/SQL With OCI8

}

// Returns an array of DBMS_OUTPUT lines
function getdbmsoutput($c)
{
 $res = false;
 $s = oci_parse($c, "select * from table(mydofetch())");
 oci_execute($s);
 oci_fetch_all($s, $res);
 return $res['COLUMN_VALUE'];
}

?>

This has the arbtritrary file extension “.inc.php” file to indicate it will be included in other PHP
scripts.

The next script uses these functions to show “printing” output from PL/SQL blocks:

Script 74: dbmsoutput.php

<?php

include("dbmsoutput.inc.php");

$c = oci_connect("hr", "welcome", "localhost/XE");

// Turn output buffering on
enabledbmsoutput($c);

// Create some output
$s = oci_parse($c, "call dbms_output.put_line('Hello, world!')");
oci_execute($s);

// Create more output
// Any PL/SQL code being run can insert into the output buffer
$s = oci_parse($c, "begin
 dbms_output.put_line('Hello again');
 dbms_output.put_line('Hello finally');
 end;");
oci_execute($s);

// Display the output
$output = getdbmsoutput($c);
if ($output) {
 foreach ($output as $line) {
 echo "$line
\n";
 }
}

?>

The output is all the dbms_output.put_line() text:

Hello, world!
Hello again

212

Getting Output With DBMS_OUTPUT

Hello finally

If you expect large amounts of output, you may want to stream results as they are fetched
from the database instead of returning them in one array from getdbmsoutput().

If DBMS_OUTPUT does not suit your application, you can also get output from PL/SQL by
logging it to database tables or by using packages like UTL_FILE and DBMS_PIPE to
asynchronously display output to a separate terminal window.

PL/SQL Backtraces in a PL/SQL Exception Handler
PL/SQL has several functions helpful for problem resolution when dealing with exceptions.
Instead of hiding errors or returning abstract messages from an exception handler you can
return the exact Oracle problem and location. If your PL/SQL code includes these functions,
your PHP application can generate useful backtraces to help debugging. Remember to log
these errors and not display them to web users.

Sample SQL code that always generates and then catches an exception is in backtrace.sql:

Script 75: backtrace.sql

create or replace procedure mybt is
begin
 dbms_output.put_line('In mybt');
 raise no_data_found; // always throw an error
exception
 when others then
 dbms_output.put_line('Displaying the error stack:');
 dbms_output.put(dbms_utility.format_error_stack);
 dbms_output.put_line(dbms_utility.format_error_backtrace);
end;
/

PHP code to call this and fetch the output is in backtrace.php:

Script 76: backtrace.php

<?php

include("dbmsoutput.inc.php");

$c = oci_connect("hr", "welcome", "localhost/XE");

enabledbmsoutput($c);

$s = oci_parse($c, "begin mybt(); end;");
oci_execute($s);

// Display the output
$output = getdbmsoutput($c); // see previous examples
foreach ($output as $line)
 echo "$line
\n";

?>

Running backtrace.php gives:

213

Using PL/SQL With OCI8

In mybt
Displaying the error stack:
ORA-01403: no data found
ORA-06512: at "HR.MYBT", line 4

PL/SQL Function Result Cache
Oracle Database 11g introduced a cache for PL/SQL function results, ideal for repeated lookup
operations. The cache contains the generated results of previous function calls, for particular
sets of input parameters. If the function is re-run with the same parameter values, the result
from the cache is returned immediately without needing to re-execute the code. The cached
results are available to any user. The cache will age out results if more memory is required.

There are some restrictions including that only basic types can be used for parameters,
and they must be IN only. Return types are similar restricted, in particular not using REF
CURSOR or PIPELINED results.

To use the cache, a normal function is created with the RESULT_CACHE option:

Script 77: frc.sql

create or replace function mycachefunc(p_id in varchar2) return varchar2
 result_cache relies_on(mytab)
as
 l_data varchar2(40);
begin
 select mydata into l_data from mytab where myid = p_id;
 return l_data;
end;
/
show errors

The relies_on() clause is a comma separated list of tables. If any of these tables change,
than the cache is automatically invalidated by Oracle. The next time the function is called, it
will execute completely and update the cache appropriately. From Oracle Database 11.2,
tables used in the function are automatically detected.

See the Oracle Database PL/SQL Language Reference 11g Release 2 (11.2) manual for
more details about the feature.

Using Oracle Locator for Spatial Mapping
Oracle Locator is a subset of Oracle Spatial, a comprehensive mapping library. Oracle Locator
is powerful itself and is available in all Oracle Database editions. A great introduction to
Oracle Locator is in the Oracle Database Express Edition 2 Day Plus Locator Developer Guide
11g Release 2.

This section shows some techniques to use Locator data in PHP. Oracle Locator makes use
of PL/SQL types such as collections. These can not always be directly fetched into PHP.

The examples here use the tables shown in the above mentioned manual's sample
scenario. Create the CUSTOMERS and STORES tables from Example 1-1 SQL Script for
Customers and Stores Scenario in SQL*Plus before continuing. The URL for the script is:
http://docs.oracle.com/cd/E17781_01/appdev.112/e18750/xe_locator.htm#XELOC56
0

214

http://docs.oracle.com/cd/E17781_01/appdev.112/e18750/xe_locator.htm#XELOC560
http://docs.oracle.com/cd/E17781_01/appdev.112/e18750/xe_locator.htm#XELOC560

Using Oracle Locator for Spatial Mapping

Inserting Locator Data

Inserting Locator data in PHP is simply a matter of executing the appropriate SQL INSERT
statement:

$sql = "insert into customers values
 (100, 'A', 'B',
 '111 Reese Ave', 'Chicago', 'IL', 12345,
 SDO_GEOMETRY(2001,
 8307,
 SDO_POINT_TYPE(-69.231445,12.001254,NULL), NULL, NULL))";
$s = oci_parse($c, $sql);
oci_execute($s);

Queries Returning Scalar Values

Before fetching data, determine if this is, in fact, necessary. Often the data can be processed
in Oracle SQL or PL/SQL efficiently and easily.

Queries returning scalar values from Locator objects are no different to other PHP queries.
This example finds the three closest customers to the store with CUSTOMER_ID of 101. The
query uses the in-built Spatial function SOD_NN() to determine the nearest neighbor
relationship.

Script 78: loc1.php

<?php

$c = oci_connect('hr', 'welcome', 'localhost/XE');

$sql = "select /*+ ordered */
 c.customer_id,
 c.first_name,
 c.last_name
 from stores s, customers c
 where s.store_id = :sid
 and sdo_nn(c.cust_geo_location, s.store_geo_location, :nres) = 'TRUE'";

$s = oci_parse($c, $sql);

$sid = 101;
$nres = 'sdo_num_res=3'; // return 3 results

oci_bind_by_name($s, ":sid", $sid);
oci_bind_by_name($s, ":nres", $nres);
oci_execute($s);
oci_fetch_all($s, $res);
var_dump($res);

?>

The output is:

array(3) {
 ["CUSTOMER_ID"]=>

215

Using PL/SQL With OCI8

 array(3) {
 [0]=>
 string(4) "1001"
 [1]=>
 string(4) "1003"
 [2]=>
 string(4) "1004"
 }
 ["FIRST_NAME"]=>
 array(3) {
 [0]=>
 string(9) "Alexandra"
 [1]=>
 string(6) "Marian"
 [2]=>
 string(6) "Thomas"
 }
 ["LAST_NAME"]=>
 array(3) {
 [0]=>
 string(7) "Nichols"
 [1]=>
 string(5) "Chang"
 [2]=>
 string(8) "Williams"
 }
}

The CUSTOMER_ID, FIRST_NAME and LAST_NAME columns are scalar NUMBER and VARCHAR2
columns returned directly into a PHP array.

Selecting Vertices Using SDO_UTIL.GETVERTICES

For some Locator types, in-built functions will convert objects to scalar values that can be
returned to PHP. For example, to fetch the coordinates from a geometry for customer 1001,
use the inbuilt SDO_UTIL.GETVERTICES() function:

Script 79: loc2.php

<?php

$c = oci_connect('hr', 'welcome', 'localhost/XE');

$sql = "select t.x, t.y
 from customers,
 table(sdo_util.getvertices(customers.cust_geo_location)) t
 where customer_id = :cid";

$s = oci_parse($c, $sql);
$cid = 1001;
oci_bind_by_name($s, ":cid", $cid);
oci_execute($s);
oci_fetch_all($s, $res);
var_dump($res);

216

Using Oracle Locator for Spatial Mapping

?>

The output is:

array(2) {
 ["X"]=>
 array(1) {
 [0]=>
 string(9) "-71.48923"
 }
 ["Y"]=>
 array(1) {
 [0]=>
 string(8) "42.72347"
 }
}

Using a Custom Function

Sometimes you may need to create a PL/SQL function to decompose spatial data into simple

types to return them to PHP. This example uses the COLA_MARKETS table from section 1.9,
Using Non-Point Geometry Types in the Locator manual:
http://docs.oracle.com/cd/E17781_01/appdev.112/e18750/xe_locator.htm#XELOC57
5

Before continuing, execute the three statements given in the manual to create the table,
insert the meta-data into USER_SDO_GEOM_METADATA table, and create the index.

Next, insert a sample row as shown below in cm1.sql. The row describes a polygon of (x,y)
ordinates which are given as pairs in the SDO_ORDINATE_ARRAY array:

Script 80: cm1.sql

insert into cola_markets values (
 301, -- market ID number
 'polygon',
 sdo_geometry (
 2003, -- two-dimensional polygon
 null,
 null,
 sdo_elem_info_array(1,1003,1), -- one polygon (exterior polygon ring)
 sdo_ordinate_array(5,1, 8,1, 8,6, 5,7, 5,1) -- list of X,Y coordinates
)
);

commit;

A decomposition function in cm2.sql helps query the coordinates in PHP. Note the alias CM (an
alias here is also known as a correlation name) for the table in the query. This allows the
SDO_ORDINATES collection to be included as a select column:

217

http://docs.oracle.com/cd/E17781_01/appdev.112/e18750/xe_locator.htm#XELOC575
http://docs.oracle.com/cd/E17781_01/appdev.112/e18750/xe_locator.htm#XELOC575

Using PL/SQL With OCI8

Script 81: cm2.sql

create or replace procedure myproc(p_id in number, p_o out sdo_ordinate_array) as
 begin
 select cm.shape.sdo_ordinates
 into p_o
 from cola_markets cm
 where mkt_id = p_id;
 end;
/
show errors

The coordinates can now be retrieved in PHP as a collection:

Script 82: cm.php

<?php

$c = oci_connect('hr', 'welcome', 'localhost/XE');

$s = oci_parse($c, "begin myproc(:id, :ords); end;");
$id = 301;
oci_bind_by_name($s, ":id", $id);
$ords = oci_new_collection($c, "SDO_ORDINATE_ARRAY");
oci_bind_by_name($s, ":ords", $ords, -1, OCI_B_NTY);
oci_execute($s);

for ($i = 0; $i < $ords->size(); $i++) {
 $v = $ords->getElem($i);
 echo "Value: $v\n";
}

?>

The output is the list of coordinates that were inserted in the SDO_ORDINATE_ARRAY:

Value: 5
Value: 1
Value: 8
Value: 1
Value: 8
Value: 6
Value: 5
Value: 7
Value: 5
Value: 1

Similar techniques to these example given, or those techniques in earlier sections like Using
PL/SQL and Oracle Object Types in PHP can be used to fetch other Locator data, if required.

Scheduling Background or Long Running Operations
Sometimes a web page starts a database operation that can run in the background while the
user continues other work.

218

Scheduling Background or Long Running Operations

For example, there might be some database cleanup to be run periodically. Another
example is when a user of a photo site decides to change the name of a tag associated with
images. The photo site application might initiate the name change, but return the user an
HTML page saying Your request is being processed and will soon complete. The user can
continue viewing photos without having to wait for the renaming process to complete. This
technique can improve user satisfaction. It can also free up an Apache server that would
otherwise be blocked, allowing it to be used by another page request.

The DBMS_SCHEDULER package can be used to start such background database tasks. It
has a lot of functionality, including allowing tasks to be repeated at intervals, or started when
events are received. It can also be used to invoke operating system programs. In Oracle 9i,
the DBMS_JOB package can be used instead of DBMS_SCHEDULER.

For the photo site example, create some data with the tag weeding:

Script 83: dschedinit.sql

connect system/systempwd

grant create job to hr;

connect hr/welcome

drop table tag_table;

create table tag_table (tag varchar2(20), photo_id number);
insert into tag_table values ('weeding', 2034);
insert into tag_table values ('weeding', 2035);
insert into tag_table values ('sanfrancisco', 4540);
commit;

To change the tag weeding to wedding, a procedure changetagname() can be created:

Script 84: dbsched.sql

create or replace procedure changetagname(old in varchar2, new in varchar2) as
 b number;
begin
 for i in 1..100000000 loop b := 1; end loop; -- simulate slow transaction
 update tag_table set tag = new where tag = old;
 commit;
end;
/
show errors

This script creates a sample table and the procedure to update tags. The procedure is
artificially slowed down to simulate a big, long running database operation.

The following PHP script uses an anonymous block to create a job calling changetagname().

Script 85: dsched.php

<?php

$c = oci_connect("hr", "welcome", "localhost/XE");

function doquery($c)

219

Using PL/SQL With OCI8

{
 $s = oci_parse($c, "select tag from tag_table");
 oci_execute($s);
 oci_fetch_all($s, $res);
 var_dump($res);
}

// Schedule a task to change a tag name from 'weeding' to 'wedding'

$stmt =
"begin
 dbms_scheduler.create_job(
 job_name => :jobname,
 job_type => 'STORED_PROCEDURE',
 job_action => 'changetagname', // procedure to call
 number_of_arguments => 2);
 dbms_scheduler.set_job_argument_value (
 job_name => :jobname,
 argument_position => 1,
 argument_value => :oldval);
 dbms_scheduler.set_job_argument_value (
 job_name => :jobname,
 argument_position => 2,
 argument_value => :newval);
 dbms_scheduler.enable(:jobname);
end;";

$s = oci_parse($c, $stmt);

$jobname = uniqid('ut');
$oldval = 'weeding';
$newval = 'wedding';
oci_bind_by_name($s, ":jobname", $jobname);
oci_bind_by_name($s, ":oldval", $oldval);
oci_bind_by_name($s, ":newval", $newval);

oci_execute($s);

echo "<pre>Your request is being processed and will soon complete\n";
doquery($c); // gives old results
sleep(10);
echo "Your request has probably completed\n";
doquery($c); // gives new results

?>

The PHP call to the anonymous PL/SQL block returns quickly. The background PL/SQL call to
changetagname() will take several more seconds to complete (because of its for loop), so the
first doquery() output shows the original, incorrect tag values. Then, after PHP has given the
job time to conclude, the second doquery() call shows the updated values:

Your request is being processed and will soon complete
array(1) {
 ["TAG"]=>

220

Scheduling Background or Long Running Operations

 array(3) {
 [0]=>
 string(7) "weeding"
 [1]=>
 string(7) "weeding"
 [2]=>
 string(12) "sanfrancisco"
 }
}
Your request has probably completed
array(1) {
 ["TAG"]=>
 array(3) {
 [0]=>
 string(7) "wedding"
 [1]=>
 string(7) "wedding"
 [2]=>
 string(12) "sanfrancisco"
 }
}

Oracle Streams Advanced Queuing
Another way to initiate background tasks is to use Oracle Streams Advanced Queuing in a
producer-consumer message passing fashion. Oracle AQ is highly configurable. Messages can
queued by multiple producers. Different consumers can filter messages for them. Messages
can also be propagated to queues in other databases. Oracle AQ has PL/SQL, Java, C and
HTTPS interfaces. From PHP, the PL/SQL interface is used.

The following example simulates an application user registration system where the PHP
application queues each new user's street address. An external system can then fetch and
process that address. In real life the external system might mail a welcome letter, or do
further, slower validation on the address.

The SQL*Plus script qcreate.sql creates a new Oracle user demoqueue with permission to
create and use queues. A payload type for the address is created and a queue set up for this
payload.

Script 86: qcreate.sql

connect / as sysdba
drop user demoqueue cascade;

create user demoqueue identified by welcome;
grant connect, resource to demoqueue;
grant aq_administrator_role, aq_user_role to demoqueue;
grant execute on dbms_aq to demoqueue;
grant create type to demoqueue;

connect demoqueue/welcome@localhost/xe

-- The data we want to queue
create or replace type user_address_type as object (

221

Using PL/SQL With OCI8

 name varchar2(10),
 address varchar2(50)
);
/

begin
 dbms_aqadm.create_queue_table(
 queue_table => 'demoqueue.addr_queue_tab',
 queue_payload_type => 'demoqueue.user_address_type');
end;
/

begin
 dbms_aqadm.create_queue(
 queue_name => 'demoqueue.addr_queue',
 queue_table => 'demoqueue.addr_queue_tab');
end;
/

begin
 dbms_aqadm.start_queue(
 queue_name => 'demoqueue.addr_queue',
 enqueue => true);
end;
/

The script qhelper.sql creates two helper functions to enqueue and dequeue messages.

Script 87: qhelper.sql

-- Set up enqueue/dequeue procedures

connect demoqueue/welcome@localhost/xe

create or replace procedure my_enq(
 user_addr_p in user_address_type,
 priority_p in number) as
 enqueue_options dbms_aq.enqueue_options_t;
 message_properties dbms_aq.message_properties_t;
 enq_id raw(16);
begin
 dbms_aq.enqueue(queue_name => 'demoqueue.addr_queue',
 enqueue_options => enqueue_options,
 message_properties => message_properties,
 payload => user_addr_p,
 msgid => enq_id);
 commit;
end;
/
show errors

create or replace procedure my_deq(
 user_addr_p out user_address_type) as
 dequeue_options dbms_aq.dequeue_options_t;

222

Oracle Streams Advanced Queuing

 message_properties dbms_aq.message_properties_t;
 enq_id raw(16);
begin
 dbms_aq.dequeue(queue_name => 'demoqueue.addr_queue',
 dequeue_options => dequeue_options,
 message_properties => message_properties,
 payload => user_addr_p,
 msgid => enq_id);
 commit;
end;
/
show errors

The script newuser.php handles a new application user and queues a message containing
their address:

Script 88: newuser.php

<?php

$c = oci_connect("demoqueue", "welcome", "localhost/xe");

// The new application user details
$username = 'Fred';
$address = '500 Oracle Parkway';

// Enqueue the user information for further offline handling
$sql = "begin my_enq(user_address_type('$username', '$address'), 1); end;";
$s = oci_parse($c, $sql);
$r = oci_execute($s);

// Continue processing the new user in the current script
echo "Welcome $username\n";

?>

This executes an anonymous PL/SQL block to create and enqueue the address message. The
immediate output to the caller is simply the welcome message:

Welcome Fred

Once this PHP script is executed, any application can dequeue the new message at its leisure.
For example, the following SQL*Plus commands call the helper my_deq() dequeue function
and display the user details:

Script 89: showuser.sql

connect demoqueue/welcome@localhost/xe

set serveroutput on

declare
 user_address user_address_type;
begin
 my_deq(user_address);

223

Using PL/SQL With OCI8

 dbms_output.put_line('Name : ' || user_address.name);
 dbms_output.put_line('Address : ' || user_address.address);
end;
/

The output is:

Name : Fred
Address : 500 Oracle Parkway

If this dequeue operation is called without anything in the queue, it will block waiting for a
message until the queue wait time expires.

The PL/SQL API has much more functionality than shown in this overview. For example you
can enqueue an array of messages, or listen to more than one queue.

Queuing is highly configurable and scalable, providing a great way to distribute workload
for a web application. Oracle AQ is available in all editions of the database.

Reusing Procedures Written for MOD_PLSQL
Oracle's MOD_PLSQL gateway allows a Web browser to invoke a PL/SQL stored subprogram
through an HTTP listener. This is the interface used by Oracle Application Express. Existing
user-created PL/SQL procedures written for this gateway can be called from PHP using a
wrapper function. For example, consider a stored procedure for MOD_PLSQL that was created
in SQL*Plus:

Script 90: myowa.sql

create or replace procedure myowa as
begin
 htp.htmlOpen;
 htp.headOpen;
 htp.title('Greeting Title');
 htp.headClose;
 htp.bodyOpen;
 htp.header(1, 'Salutation Heading');
 htp.p('Hello, world!');
 htp.bodyClose;
 htp.htmlClose;
end;
/
show errors

This generates HTML output to the gateway:

<HTML>
<HEAD>
<TITLE>Greeting Title</TITLE>
</HEAD>
<BODY>
<H1>Salutation Heading</H1>
Hello, world!
</BODY>
</HTML>

224

Reusing Procedures Written for MOD_PLSQL

To reuse the procedure directly in PHP, use HTP.GET_LINE in a mapping function to pipe the
output from the myowa.sql HTP calls:

Script 91: mymodplsql.sql
create or replace type modpsrow as table of varchar2(512);
/
show errors

create or replace function mymodplsql(proc varchar2) return modpsrow pipelined is
 param_val owa.vc_arr;
 line varchar2(256);
 irows integer;
begin
 owa.init_cgi_env(param_val);
 htp.init;
 execute immediate 'begin '||proc||'; end;';
 loop
 line := htp.get_line(irows);
 exit when line is null;
 pipe row (line);
 end loop;
 return;
end;
/
show errors

This is fundamentally similar to the previous pipelined examples.
In modpsrow() you can optionally use PARAM_VAL to set CGI values. See the definition of

init.cgi_env() in $ORACLE_HOME/rdbms/admin/privowa.sql for details.
In PHP, the new wrapper can be called like:

Script 92: mymodplsql.php

<?php

$c = oci_connect('hr', 'welcome', 'localhost/XE');

$stmt = oci_parse($c, 'select * from table(mymodplsql(:proc))');
$func = 'myowa';
oci_bind_by_name($stmt, ':proc', $func);

oci_execute($stmt);

$content = false;
while ($row = oci_fetch_array($stmt, OCI_ASSOC)) {
 if ($content) {
 print $row["COLUMN_VALUE"];
 } else {
 if ($row["COLUMN_VALUE"] == "\n")
 $content = true;
 else
 header($row["COLUMN_VALUE"]);
 }
}

225

Using PL/SQL With OCI8

?>

When called in a browser, the output is the expected rendition of the HTML fragment shown
earlier.

Easy PL/SQL Upgrades With Edition Based Redefinition
The Editioning feature of Oracle Database 11gR2 is very useful for web applications that aim
for no downtime when releasing enhanced versions of applications. It allows multiple versions
of PL/SQL objects with the same names to be used concurrently. This lets you upgrade stored
procedures and test new versions while production users are still accessing the original
versions. As well as allowing this safe way to upgrade, you can also use it for A/B testing,
where you evaluate the user response to a new version of your application. The application
versions that users don't appreciate can quickly be dropped.

The objects you can edition are:
● synonyms

● views

● PL/SQL object types:

● function

● library

● package and package body

● procedure

● trigger

● type and type body

Tables themselves can't be editioned but there is support for moving and viewing data across
editions.

The following example shows how editioning can be used to upgrade a live PHP
application. The changes can be made and tested on the production database and then
enabled for all users with a one keyword change in the application.

As the user SYSTEM, allow the application user HR to use editions:

Script 93: ed1.sql

connect system/systempwd@localhost/XE
grant create any edition to hr;
alter user hr enable editions;

As the user HR create a table of employees for the application and create the stored function
that calculates the number of days of vacation an employee is eligible for. This function is
stored in the database so all Oracle applications can reuse the same logic:

Script 94: ed2.sql

connect hr/welcome@localhost/XE

drop table myemp;

226

Easy PL/SQL Upgrades With Edition Based Redefinition

create table myemp (name varchar2(10), hoursworked number);
insert into myemp (name, hoursworked) values ('alison', 200);
insert into myemp (name, hoursworked) values ('kris', 200);
insert into myemp (name, hoursworked) values ('wenji', 200);
commit;

create or replace function vacationdaysleft(p_name in varchar2) return number as
 vdl number;
begin
 -- For every 40 hours worked, you get 1 day of vacation
 select floor(hoursworked / 40) into vdl
 from myemp
 where myemp.name = p_name;
 return vdl;
end;
/

Test the function in SQL*Plus by calling it:

SQL> select name, vacationdaysleft(name) from myemp;

This returns:

NAME VACATIONDAYSLEFT(NAME)
------------------------------ ----------------------
alison 5
kris 5
wenji 5

In PHP the function might be used like:

Script 95: edition1.php

<?php

oci_set_edition('ora$base');
$c = oci_connect('hr', 'welcome', 'localhost/XE');

$s = oci_parse($c, "begin :vdl := vacationdaysleft(:name); end;");
oci_bind_by_name($s, ":vdl", $vdl, 10);
oci_bind_by_name($s, ":name", $name, 10);
$name = 'alison';
oci_execute($s);

echo "$name has ".$vdl." days vacation left\n";

?>

This makes a simple call to the stored function and returns the number of vacation days
person $name has.

The ora$base token in oci_set_edition() means to use the root or first edition of objects,
i.e the PL/SQL function we just created. Although currently redundant because it sets the
default edition, the edition name will be changed in the next version of this file to change the
version of the vacationdaysleft() procedure being called. Instead of calling

227

Using PL/SQL With OCI8

oci_set_edition() you could alternatively assign an edition to an Oracle Net service with the
DBMS_SERVICE PL/SQL procedure and set the PHP connection string to that service..

A DBA can query DBA_EDITIONS to see what editions are available in the database. An
application user can query select sys_context('USERENV', 'CURRENT_EDITION_NAME') from
dual to see the edition they are currently accessing.

The script edition1.php produces output like:

alison has 5 days vacation left

This is good. We can put the application into production and employees can start using it.
Now assume the rate used to calculate vacation hours needs to be changed so that for

every 30 hours worked, employees get one day of vacation. Also we now want the calculation
to include how many days vacation they have already taken.

First, we need a new column to store the vacation they have previously taken. Adding this
column won't affect the running PHP application since it doesn't know about it (this is a good
reminder never to do select * in an application). The new column is created and, for the
purpose of this example, populated with some arbitrary values:

Script 96: ed3.sql

-- Run as HR
alter table myemp add daysvacationtaken number;

update myemp set daysvacationtaken = 2 where name = 'alison';
update myemp set daysvacationtaken = 3 where name = 'kris';
update myemp set daysvacationtaken = 0 where name = 'wenji';
commit;

(For more complex migration scenarios the editioning feature has crossedition triggers and
editioning views to help ensure the appropriate data is used in the old and new editions.)

Now create the new version of the PL/SQL function. In SQL*Plus as HR create a new
edition:

Script 97: ed4.sql

-- Run as HR
create edition e2;

Create the updated version of the PL/SQL procedure. Because the SQL*Plus session is now
running in edition E2 this new procedure won't affect the PHP application which is running
using edition ORA$BASE:

Script 98: ed5.sql

-- Run as HR

alter session set edition = e2;

create or replace function vacationdaysleft(p_name in varchar2) return number as
 vdl number;
begin
 -- For every 30 hours worked, you get 1 day of vacation
 select floor(hoursworked / 30) - daysvacationtaken into vdl
 from myemp

228

Easy PL/SQL Upgrades With Edition Based Redefinition

 where myemp.name = p_name;
 return vdl;
end;
/

Querying it shows the updated values:

SQL> select name, vacationdaysleft(name) from myemp;

NAME VACATIONDAYSLEFT(NAME)
------------------------------ ----------------------
alison 4
kris 3
wenji 6

This is all done while others users continue to use the PHP application live and get the original
results. The new PL/SQL procedure shows Alison now has only 4 days of vacation. You can run
the PHP script and check it still returns the "old" value:

alison has 5 days vacation left

Now copy the PHP file to edition2.php and change the oci_set_edition() function to set the
new edition:

Script 99: edition2.php

<?php

oci_set_edition('e2');
$c = oci_connect('hr', 'welcome', 'localhost/XE');

$s = oci_parse($c, "begin :vdl := vacationdaysleft(:name); end;");
oci_bind_by_name($s, ":vdl", $vdl, 10);
oci_bind_by_name($s, ":name", $name, 10);
$name = 'alison';
oci_execute($s);

echo "$name has ".$vdl." days vacation left\n";;

?>

When edition2.php is run, the output shows the updated calculation of vacation time:

alison has 4 days vacation left

You can run both edition1.php and edition2.php concurrently and they will show different
results even though the PHP application logic and the PL/SQL procedure name they call is
identical.

Oracle Database 11gR2 Edition Based Redefinition helps PHP applications meet the goals
of minimal downtime with the frequent upgrade cycle needed by web applications. It allows
PHP applications, their often complex stored logic, and large data sets to be updated ready for
rolling out in production without impacting the operation of existing users.

229

Using PL/SQL With OCI8

Database Transactions Across Stateless Web Requests
The DBMS_XA package can be used to start, resume and complete database transactions.
Web applications can rely on the database to store the transaction state. If you have multiple
mid-tier web servers, this removes the need to track the state of a set of SQL operations. The
only shared information needed by each web request is a numeric key identifying the
transaction. This key should be secured and made available to the application via PHP's
session handling.

Using the TOYS table from toyshop.sql (shown in the introduction to packages at the start
of this chapter) run SQL*Plus and check the current records:

SQL> select * from toys;

 ID NAME
---------- --
 2 ball
 3 paddling pool
 1 bicycle

A DBMS_XA example starts with xa1.php:

Script 100: xa1.php

<?php

$id = 123;

$c = oci_connect('hr', 'welcome', 'localhost/XE');

// Start a transaction, insert a Teddy Bear, and suspend the transaction

$sql =
"declare
 rc pls_integer;
begin
 rc := dbms_xa.xa_start(dbms_xa_xid(:id), dbms_xa.tmnoflags);
 insert into toys (id, name) values (4, 'teddy bear');
 rc := dbms_xa.xa_end(dbms_xa_xid(:id), dbms_xa.tmsuspend);
end;";

$s = oci_parse($c, $sql);
oci_bind_by_name($s, ":id", $id);
oci_execute($s);

?>

This script begins a transaction arbitrarily identified as 123, and inserts a new toy. For sake of
the example, the identifier value is hard coded.

Execute xa1.php:

$ php xa1.php

There is no output.

230

Database Transactions Across Stateless Web Requests

In SQL*Plus check the rows in the table. The new row has not yet been committed and is
not visible yet.

The second script, xa2.php, resumes transaction number 123, inserts another new row
and commits the transaction:

Script 101: xa2.php

<?php

$id = 123;

$c = oci_connect('hr', 'welcome', 'localhost/XE');

// Resume the transaction, insert a Stethoscope, and commit

$sql =
"declare
 rc pls_integer;
begin
 rc := dbms_xa.xa_start(dbms_xa_xid(:id), dbms_xa.tmresume);
 insert into toys (id, name) values (5, 'stethoscope');
 rc := dbms_xa.xa_commit(dbms_xa_xid(123), true);
end;";

$s = oci_parse($c, $sql);
oci_bind_by_name($s, ":id", $id);
oci_execute($s);

?>

Run this script (there is no output) and then use SQL*Plus to query the table:

SQL> select * from toys;

ID NAME
---------- --

 2 ball
 3 paddling pool
 4 teddy bear
 5 stethoscope
 1 bicycle

This shows that both new rows were inserted, even though the PHP scripts were run in
independent processes, with an unknown time frame. If you don't see the teddy bear row, you
probably took longer than 60 seconds between running xa1.php and xa2.php. This is the
default timeout before a transaction is aborted. It can be set with DBMS_XA.XA_SETTIMEOUT.

The DBMS_XA package is a convenient way to conduct transactions across the web. It
provides functionality to start, suspend, and cancel transactions. The transaction number is
the only piece of metadata that needs to be chosen and shared across web requests. This is
easily managed using standard PHP techniques such as with PHP sessions.

231

Using PL/SQL With OCI8

232

CHAPTER 13

USING LARGE OBJECTS IN OCI8

Oracle Character Large Object (CLOB) and Binary Large Object (BLOB) types can be used for
very large amounts of data. They can be used for table columns and as PL/SQL variables. A
pre-supplied DBMS_LOB package makes manipulation in PL/SQL easy. OCI8 LOB methods
allow storing and fetching LOB data in PHP

Oracle also has a BFILE type for large objects stored outside the database.

Working With LOBs
In successive versions, the Oracle database has made it easier to work with LOBs. Along the
way “Temporary LOBs” were added, and some string-to-LOB conversions are now transparent
so data can be handled directly as strings. Develop and test your LOB application with the
Oracle client libraries and database that will be used for deployment so you can be sure all
the expected functionality is available.

When working with large amounts of data, set memory_limit appropriately in php.ini
otherwise PHP may terminate early. When reading or writing files to disk, check if
open_basedir allows file access.

These example show BLOBs. Using CLOBs is almost identical to using BLOBs: the
descriptor type becomes OCI_D_CLOB, the bind type becomes OCI_B_CLOB, and tables must
obviously contain a CLOB column.

The examples use a table created in SQL*Plus containing a BLOB column called BLOBDATA:

SQL> create table mybtab (blobid number primary key, blobdata blob);

Note querying BLOB columns in SQL*Plus is not possible unless SQL*Plus 11g is used, where it
will display a hexadecimal version of the data. Tables with CLOB columns can be queried in all
versions of SQL*Plus. The output of BLOB and CLOB data can be controlled in SQL*Plus with
the SET LONG command. The default value of 80 means that only the first 80 characters of
data will be displayed by a query.

LOB database storage and access options can be configured at table creation time, or with
ALTER TABLE. Frequently accessed LOBs will benefit from monitoring their use and adjusting
their configuration. One common tuning step is to turn on LOB caching:

SQL> alter table mybtab modify lob (blobdata) (cache);

In Oracle 11g you can optionally create LOBs with the storage option SECUREFILE to take
advantage of LOB SecureFile features such as deduplication and compression.

Inserting and Updating LOBs

In PHP, LOBs are generally manipulated using a descriptor. PHP code to insert into MYBTAB is:

Script 102: blobinsert.php

<?php

$c = oci_connect('hr', 'welcome', 'localhost/XE');

233

Using Large Objects in OCI8

$myblobid = 123;
$myv = 'a very large amount of binary data';

$s = oci_parse($c, 'insert into mybtab (blobid, blobdata)
 values (:myblobid, EMPTY_BLOB())
 returning blobdata into :blobdata');
$lob = oci_new_descriptor($c, OCI_D_LOB);
oci_bind_by_name($s, ':myblobid', $myblobid);
oci_bind_by_name($s, ':blobdata', $lob, -1, OCI_B_BLOB);
oci_execute($s, OCI_NO_AUTO_COMMIT); // Don't commit so $lob->save() works

$lob->save($myv);
oci_commit($c);
$lob->close(); // close LOB descriptor to free resources

?>

The RETURNING clause returns the Oracle LOB locator of the new row. By binding as
OCI_B_BLOB, the PHP descriptor in $lob references this locator. The $lob->save() method
then stores the data in $myv into the BLOB column. The OCI_NO_AUTO_COMMIT flag is used
for oci_execute() so the descriptor remains valid for the save() method. The commit
concludes the insert and makes the data visible to other database users.

If the application uploads LOB data using a web form, it can be inserted directly from the
upload directory with $lob->import($filename). PHP’s maximum allowed size for uploaded
files is set in php.ini using the upload_max_filesize parameter.

To update a LOB, use the same code with this SQL statement:

$s = oci_parse($c, 'update mybtab set
 blobdata = empty_blob()
 returning blobdata into :blobdata');

Fetching LOBs

When fetching a LOB, OCI8 returns a LOB descriptor. The data can be retrieved by using a
load() or read() method:

Script 103: blobfetch.php

<?php

$c = oci_connect('hr', 'welcome', 'localhost/XE');

$myblobid = 123;

$query = 'select blobdata from mybtab where blobid = :myblobid';
$s = oci_parse ($c, $query);
oci_bind_by_name($s, ':myblobid', $myblobid);
oci_execute($s);
$arr = oci_fetch_array($s, OCI_ASSOC);
if (is_object($arr['BLOBDATA'])) { // protect against a NULL LOB
 $data = $arr['BLOBDATA']->load();
 $arr['BLOBDATA']->free();

234

Working With LOBs

 echo $data;
}

?>

It is important to free all returned LOB locators to avoid leaks:

while (($arr = oci_fetch_array($s, OCI_ASSOC))) {
 echo $arr['BLOBDATA']->load(); // do something with the BLOB
 $arr['BLOBDATA']->free(); // cleanup before next fetch
}

If LOBS are not freed, the ABSTRACT_LOBS column in the V$TEMPORARY_LOBS table will show
increasing values.

Instead of using locators, LOB data can alternatively be returned as a string:

$arr = oci_fetch_array($s, OCI_ASSOC+OCI_RETURN_LOBS);
echo $arr['BLOBDATA'];

If the returned data is larger than expected, PHP may not be able to allocate enough memory.
To protect against this, use a locator with the read() method, which allows the data to be
fetched in chunks.

When doing SELECT … FOR UPDATE, use oci_execute($s, OCI_NO_AUTO_COMMIT)
otherwise you will get an ORA-01002: fetch out of sequence error when fetching the LOB.

In LOB-fetching loops it is good practice to free local PHP variables containing LOB data
before fetching the next record. This can reduce the overall memory use of PHP, because only
one LOB value needs to be held in memory at a time, instead of the original and new values:

while (($arr = oci_fetch_array($s, OCI_ASSOC))) {
 $arr = oci_fetch_array($s, OCI_ASSOC+OCI_RETURN_LOBS);
 echo $arr['BLOBDATA']; // do something with the LOB
 unset($arr); // free PHP's memory before fetching the next LOB.
}

Temporary LOBs

Temporary LOBs are created and maintained in the database. PHP accesses the LOB there for
reading and writing. Temporary LOBs are not persistent and are available only within the
current PHP connection. Temporary LOBs make some operations easier.

Inserting data with a Temporary LOB does not use a RETURNING INTO clause, for example:

Script 104: tempblobinsert.php

<?php

$c = oci_connect('hr', 'welcome', 'localhost/XE');

$myblobid = 124;
$myv = 'a very large amount of binary data';

$s = oci_parse($c, 'insert into mybtab (blobid, blobdata)
 values (:myblobid, :blobdata)');
$lob = oci_new_descriptor($c, OCI_D_LOB);
oci_bind_by_name($s, ':myblobid', $myblobid);

235

Using Large Objects in OCI8

oci_bind_by_name($s, ':blobdata', $lob, -1, OCI_B_BLOB);
$lob->writeTemporary($myv, OCI_TEMP_BLOB);
oci_execute($s, OCI_NO_AUTO_COMMIT);
oci_commit($c);
$lob->close(); // close lob descriptor to free resources

?>

Temporary LOBs also simplify updating values:

$s = oci_parse($c, 'update mybtab set blobdata = :bd where blobid = :bid');

If you want to either insert a new row or update existing data if the row turns out to exist
already, the SQL statement can be changed to use an anonymous block :

$s = oci_parse($c,
 'begin'
 . ' insert into mybtab (blobdata, blobid) values(:blobdata, :myblobid);'
 . ' exception'
 . ' when dup_val_on_index then'
 . ' update mybtab set blobdata = :blobdata where blobid = :myblobid;'
 . 'end;');

Uploading and Displaying an Image

The script image.php shows how a JPEG image can be uploaded and inserted into the
database. After the data is inserted, it queries the image data back immediately and displays
the picture to verify the insert and query work. The same MYBTAB table as created above is
used.

Script 105: image.php

<?php

if (!isset($_FILES['lob_upload'])) {
?>
<h1>BLOB Example - Uploading a JPEG</h1>
<form action="<?php echo $_SERVER['PHP_SELF']; ?>" method="POST"
 enctype="multipart/form-data">
JPEG image filename: <input type="file" name="lob_upload">
<input type="submit" value="Upload">
</form>

<?php
} else {
 $c = oci_connect('hr', 'welcome', 'localhost/xe');

 $myblobid = 1; // should really be a unique id e.g. a sequence number

 // Delete any existing BLOB so the query at the bottom
 // displays the new data

 $sql = 'delete from mybtab where blobid = :myblobid';
 $s = oci_parse ($c, $sql);

236

Working With LOBs

 oci_bind_by_name($s, ':myblobid', $myblobid);
 $e = oci_execute($s, OCI_COMMIT_ON_SUCCESS);

 // Read and insert the BLOB from PHP's temporary upload area

 $lob = oci_new_descriptor($c, OCI_D_LOB);
 $sql = 'insert into mybtab (blobid, blobdata) values(:myblobid, :blobdata)';
 $s = oci_parse($c, $sql);
 oci_bind_by_name($s, ':myblobid', $myblobid);
 oci_bind_by_name($s, ':blobdata', $lob, -1, OCI_B_BLOB);
 $myv = file_get_contents($_FILES['lob_upload']['tmp_name']);
 $lob->writeTemporary($myv, OCI_TEMP_BLOB);
 oci_execute($s, OCI_NO_AUTO_COMMIT);
 oci_commit($c);
 $lob->close();

 // Now query back the uploaded BLOB and display it

 $sql = 'select blobdata from mybtab where blobid = :myblobid';
 $s = oci_parse ($c, $sql);
 oci_bind_by_name($s, ':myblobid', $myblobid);
 oci_execute($s, OCI_NO_AUTO_COMMIT);
 $arr = oci_fetch_assoc($s);
 $result = $arr['BLOBDATA']->load();

 // If any text (or whitespace!) is printed before this header is sent,
 // the text won't be displayed and the image won't display properly.
 // Comment out this line to see the text and debug such a problem.

 header("Content-type: image/JPEG");
 echo $result;
}
?>

When the script is initially loaded in a browser, $_FILES['lob_upload'] is not set and so the
HTML upload form is displayed. Submitting this form calls $_SERVER['PHP_SELF'] which is the
same PHP script. It now executes the second part of the else block. This deletes any existing
image, uploads the new data from PHP's upload area and inserts it. Finally the image is
selected and displayed. If there is any text such as whitespace before the <?php tag, or any of
the OCI8 functions produce an error then the image will not display. To debug this, comment
out the header() call to see the text being displayed before the image data.

LOBs and PL/SQL procedures

Temporary LOBs can also be used to pass data into PL/SQL IN parameters, or returned from
OUT parameters. Given a PL/SQL procedure that accepts a BLOB and inserts it into MYBTAB:

Script 106: inproc.sql

create or replace procedure inproc(pid in number, pdata in blob) as
begin
 insert into mybtab (blobid, blobdata) values (pid, pdata);
end;

237

Using Large Objects in OCI8

/
show errors

PHP code to pass a BLOB to INPROC would look like:

Script 107: inproc.php

<?php

$c = oci_connect('hr', 'welcome', 'localhost/XE');

$myblobid = 125;
$myv = 'a very large amount of binary data';

$s = oci_parse($c, 'begin inproc(:myblobid, :myblobdata); end;');
$lob = oci_new_descriptor($c, OCI_D_LOB);
oci_bind_by_name($s, ':MYBLOBID', $myblobid);
oci_bind_by_name($s, ':MYBLOBDATA', $lob, -1, OCI_B_BLOB);
$lob->writeTemporary($myv, OCI_TEMP_BLOB);
oci_execute($s);
$lob->close();

?>

If the PL/SQL procedure returns a BLOB as an OUT parameter:

Script 108: outproc.sql

create or replace procedure outproc(pid in number, pdata out blob) as
begin
 select blobdata into pdata from mybtab where blobid = pid;
end;
/
show errors

PHP code to fetch and display the BLOB would look like:

Script 109: outproc.php

<?php

$c = oci_connect('hr', 'welcome', 'localhost/XE');

$myblobid = 125;

$s = oci_parse($c, "begin outproc(:myblobid, :myblobdata); end;");
$lob = oci_new_descriptor($c, OCI_D_LOB);
oci_bind_by_name($s, ':MYBLOBID', $myblobid);
oci_bind_by_name($s, ':MYBLOBDATA', $lob, -1, OCI_B_BLOB);
oci_execute($s, OCI_NO_AUTO_COMMIT);
if (is_object($lob)) { // protect against a NULL LOB
 $data = $lob->load();
 $lob->free();
 echo $data;
}

238

Working With LOBs

?>

Other LOB Methods

A number of other methods on the LOB descriptor allow seeking to a specified offset,
exporting data directly to file, erasing data, and copying or comparing a LOB.

This code snippet shows seeking to the 10th position in the result descriptor, and then
storing the next 50 bytes in $result:

$arr['BLOBDATA']->seek(10, OCI_SEEK_SET);
$result = $arr['BLOBDATA']->read(50);

The LOB buffering methods allow writes to the database to be deferred and then explicitly
flushed. This reduces the number of network round-trips to the database, and allows the
database to operate more efficiently.

The full list of LOB methods and functions is shown in Table 9. Check the PHP manual for
usage.

Table 9: LOB methods and functions.

PHP Function or Method Action

OCI-Lob->close Close a LOB descriptor

OCI-Lob->eof Test for LOB end-of-file

OCI-Lob->erase Erases a specified part of the LOB

OCI-Lob->export

OCI-Lob->writeToFile

Write a LOB to a file

OCI-Lob->flush Flushes buffer of the LOB to the server

OCI-Lob->free Frees database resources associated with the LOB

OCI-Lob->getBuffering Returns current state of buffering for the LOB

OCI-Lob->import

OCI-Lob->saveFile

Loads data from a file to a LOB. OCI8 reads the complete
file before transferring it to the database.

OCI-Lob->load Returns LOB contents

OCI-Lob->read Returns part of the LOB

OCI-Lob->rewind Moves the LOB’s internal pointer back to the beginning

OCI-Lob->save Saves data to the LOB

OCI-Lob->seek Sets the LOB's internal position pointer

239

Using Large Objects in OCI8

PHP Function or Method Action

OCI-Lob->setBuffering Changes LOB's current state of buffering

OCI-Lob->size Returns size of LOB

OCI-Lob->tell Returns current pointer position

OCI-Lob->truncate Truncates a LOB

OCI-Lob->write Writes data to the LOB

OCI-Lob->writeTemporary Writes a temporary LOB

oci_lob_copy Copies a LOB

oci_lob_is_equal Compare two LOB locators for equality

Working With BFILEs
A BFILE is an Oracle large object (LOB) data type for files stored outside the database. BFILEs
are a handy way for using relatively static, externally created content. They are also useful for
loading text or binary data into Oracle tables.

If you are evaluating features, compare BFILES with Oracle's External Table feature, not
covered in this book.

In SQL and PL/SQL, a BFILE is accessed via a locator, which is simply a pointer to the
external file. There are numerous pre-supplied functions that operate on BFILE locators.

To show how BFILEs work in PHP this section creates a sample application that accesses
and displays a single image. The image will not be loaded into the database but the picture
description is loaded so it can be queried. The BFILE allows the image to be related to the
description. Also the application could be extended in future to use PL/SQL packages to read
and manipulate the image.

In this example, the image data is not loaded and printed in PHP. Instead, the browser is
redirected to the image URL of the external file. This significantly reduces the amount of data
that needs to be handled by the application.

To allow Apache to serve the image, edit httpd.conf and map a URL to the directory
containing the file. For example if the file is /tmp/cj.jpg add:

 Alias /tmp/ "/tmp/"
 <Directory "/tmp/">
 Options None
 AllowOverride None
 Order allow,deny
 Allow from all
 </Directory>

Using /tmp like this is not recommended for anything except testing!
Restart Apache and use a browser to check that http://localhost/tmp/cj.jpg loads the

picture in /tmp/cj.jpg.

240

Working With BFILEs

In Oracle, create a DIRECTORY alias for /tmp. This is Oracle’s pointer to the operating
system and forms part of each BFILE. The directory must be on the same machine that the
database server runs on. Run SQL*Plus as:

$ sqlplus system@localhost/XE @bfile.sql

Where bfile.sql is:

Script 110: bfile.sql
create directory TestDir AS '/tmp';
grant read on directory TestDir to hr;
connect hr/welcome@localhost/XE
create table FileTest (
 FileNum number primary key,
 FileDesc varchar2(30),
 Image bfile);

This gives the HR user access to the /tmp directory and creates a table FILETEST containing a
file number identifier, a text description of the file, and the BFILE itself. The image data is not
loaded into this table; the BFILE in the table is a pointer to the file on your file system.

PHP code to insert the image name into the FILETEST table looks like:

Script 111: bfileinsert.php

<?php

$c = oci_connect("hr", "welcome", "localhost/XE");

$fnum = 1;
$fdsc = "Some description to search";
$name = "cj.jpg";

$s = oci_parse($c, "insert into FileTest (FileNum, FileDesc, Image) "
 . "values (:fnum, :fdsc, bfilename('TESTDIR', :name))");
oci_bind_by_name($s, ":fnum", $fnum, -1, SQLT_INT);
oci_bind_by_name($s, ":fdsc", $fdsc, -1, SQLT_CHR);
oci_bind_by_name($s, ":name", $name, -1, SQLT_CHR);
oci_execute($s, OCI_NO_AUTO_COMMIT);
oci_commit($c);

?>

The bfilename() constructor inserts into the BFILE-type column using the TESTDIR directory
alias created earlier. Bind variables are used for efficiency and security.

This new BFILE can be queried back in PHP:

Script 112: bfilequery1.php

<?php

$c = oci_connect("hr", "welcome", "localhost/XE");

$fnum = 1;

$s = oci_parse($c, "select Image from FileTest where FileNum = :fnum");

241

Using Large Objects in OCI8

oci_bind_by_name($s, ":fnum", $fnum);
oci_execute($s);
$row = oci_fetch_assoc($s);
$bf = $row['IMAGE']; // This is a BFILE descriptor
echo "<pre>"; var_dump($bf); echo "</pre>";

?>

This displays the BFILE descriptor:

object(OCI-Lob)#1 (1) {
 ["descriptor"]=>
 resource(7) of type (oci8 descriptor)
}
For simplicity, the query condition is the file number of the new record. In real life it might use
a regular expression on the FILEDESC column like:

select Image from FileTest where regexp_like(FileDesc, 'somepattern')

In this example the file name is needed so the browser can redirect to a page showing the
image. Unfortunately there is no direct method in PHP to get the filename from the descriptor.
However, an Oracle procedure can be created to do this.

Instead of executing the query in PHP and using PL/SQL to find the filename, a more
efficient method is to do both in PL/SQL. Here an anonymous block is used. Alternatively, a
procedure could be used.

The previous query code in bfilequery1.php can be replaced with:

Script 113: showpic.php

<?php

$c = oci_connect("hr", "welcome", "localhost/XE");

$s = oci_parse($c,
 'declare '
 . 'b_l bfile;'
 . 'da_l varchar2(255);'
 . 'begin '
 . 'select image into b_l from filetest where filenum = :fnum;'
 . 'dbms_lob.filegetname(b_l, da_l, :name);'
 . 'end;');
$fnum = 1;
oci_bind_by_name($s, ":fnum", $fnum);
oci_bind_by_name($s, ":name", $name, 255, SQLT_CHR);
oci_execute($s);

header("Location: http://localhost/tmp/$name");

?>

The filename cj.jpg is returned in $name courtesy of the :name bind variable argument to the
DBMS_LOB.FILEGETNAME() function. The header() function redirects the user to the image. If
any text is printed before the header() is output, the HTTP headers will not be correct and the

242

Working With BFILEs

image will not display. If you have problems, comment out the header() call and echo $name
to check it is valid.

BFILEs are easy to use in PL/SQL because the pre-supplied DBMS_LOB package has a
number of useful functions. For example DBMS_LOB.LOADFROMFILE() reads BFILE data from the
file system into a PL/SQL BLOB or CLOB. This could be loaded into a BLOB table column,
manipulated in PL/SQL, or even returned to PHP using OCI8’s LOB features. Another example
is DBMS_LOB.FILEEXISTS(), which can be used to check whether the FILETEST table contains
references to images that do not exist.

BFILEs are very useful for many purposes including loading images into the database, but
BLOBs may be better in some circumstances. Changes to BFILE locators can be rolled back or
committed but since the files themselves are outside the database, BFILE data does not
participate in transactions. You can have dangling references to BFILEs because Oracle does
not check the validity of BFILEs until the data is explicitly read (this allows you to pre-create
BFILEs or to change the physical data on disk). BFILE data files are read-only and cannot be
changed within Oracle. Finally, BFILEs need to be backed up manually. Because of these
points, there might be times you should use BLOBs to store images inside the database to
ensure data and application consistency but BFILEs are there if you want them.

243

Using Large Objects in OCI8

244

CHAPTER 14

USING XML WITH ORACLE AND PHP

Both Oracle and PHP 5 have excellent XML capabilities. All editions of Oracle contain what is
known as “XML DB”, the XML capabilities of the database. When tables are created, XML can
be stored in linear LOB format, or according to the structure of your XML schema.

This chapter covers the basics of using XML data with Oracle and PHP. It also shows how to
access data over HTTP directly from the database.

Fetching Relational Rows as XML
One useful feature of XML DB is that existing relational SQL tables can automatically be
retrieved as XML:

Script 114: xmlfrag.php

<?php

$c = oci_connect('hr', 'welcome', 'localhost/XE');

$query =
 'select xmlelement("Employees",
 xmlelement("Name", employees.last_name),
 xmlelement("Id", employees.employee_id)) as result
 from employees
 where employee_id > 200';

$s = oci_parse($c, $query);
oci_execute($s);
while ($row = oci_fetch_array($s, OCI_NUM)) {
 foreach ($row as $item) {
 echo htmlentities($item)."
\n";
 }
}

?>

The returned values are XML fragments, and not fully formed XML documents. The output is:

<Employees><Name>Hartstein</Name><Id>201</Id></Employees>
<Employees><Name>Fay</Name><Id>202</Id></Employees>
<Employees><Name>Mavris</Name><Id>203</Id></Employees>
<Employees><Name>Baer</Name><Id>204</Id></Employees>
<Employees><Name>Higgins</Name><Id>205</Id></Employees>
<Employees><Name>Gietz</Name><Id>206</Id></Employees>

245

Using XML With Oracle and PHP

Tip: Watch out for the quoting of XML queries. The XML functions can have embedded double-
quotes. This is the exact opposite of standard SQL queries, which can have embedded single
quotes. Use a PHP HEREDOC or NOWDOC to help construct queries.

There are a number of other XML functions that can be similarly used. See the Oracle
Database SQL Language Reference.

Fetching Rows as Fully Formed XML
Another way to create XML from relational data is to use the PL/SQL package DBMS_XMLGEN.
This package returns a fully formed XML document, with the XML header.

Queries that use DBMS_XMLGEN return a CLOB column, so the result in PHP needs to be
treated as a LOB descriptor. There is effectively no length limit for CLOBs. The following
example queries the first name of employees in department 30 and stores the XML marked-
up output in $mylob:

Script 115: getxml.php

<?php

$c = oci_connect('hr', 'welcome', 'localhost/XE');

$query = "select dbms_xmlgen.getxml('
 select first_name
 from employees
 where department_id = 30') xml
 from dual";

$s = oci_parse($c, $query);
oci_execute($s);
$row = oci_fetch_array($s, OCI_NUM);
$x = $row[0]->load(); // treat result as a LOB descriptor
$row[0]->free();

echo "<pre>\n";
echo htmlentities($x);
echo "</pre>\n";

?>

The output in a browser is:

<?xml version="1.0"?>
<ROWSET>
 <ROW>
 <FIRST_NAME>Den</FIRST_NAME>
 </ROW>
 <ROW>
 <FIRST_NAME>Alexander</FIRST_NAME>
 </ROW>

246

Fetching Rows as Fully Formed XML

 <ROW>
 <FIRST_NAME>Shelli</FIRST_NAME>
 </ROW>
 <ROW>
 <FIRST_NAME>Sigal</FIRST_NAME>
 </ROW>
 <ROW>
 <FIRST_NAME>Guy</FIRST_NAME>
 </ROW>
 <ROW>
 <FIRST_NAME>Karen</FIRST_NAME>
 </ROW>
</ROWSET>

Using the SimpleXML Extension in PHP
You can use PHP’s SimpleXML extension to convert XML to a PHP object. Following on from the
previous example the query results can be converted with:

$xo = simplexml_load_string((binary)$x);

Note the cast to binary which ensures consistent encoding. The value in $xo is a PHP object:

object(SimpleXMLElement)#2 (1) {
 ["ROW"]=>
 array(6) {
 [0]=>
 object(SimpleXMLElement)#3 (1) {
 ["FIRST_NAME"]=>
 string(3) "Den"
 }
 [1]=>
 object(SimpleXMLElement)#4 (1) {
 ["FIRST_NAME"]=>
 string(9) "Alexander"
 }
 [2]=>
 object(SimpleXMLElement)#5 (1) {
 ["FIRST_NAME"]=>
 string(6) "Shelli"
 }
 [3]=>
 object(SimpleXMLElement)#6 (1) {
 ["FIRST_NAME"]=>
 string(5) "Sigal"
 }
 [4]=>
 object(SimpleXMLElement)#7 (1) {
 ["FIRST_NAME"]=>
 string(3) "Guy"
 }
 [5]=>
 object(SimpleXMLElement)#8 (1) {

247

Using XML With Oracle and PHP

 ["FIRST_NAME"]=>
 string(5) "Karen"
 }
 }
}

This object can be accessed with array iterators and properties:

foreach ($xo->ROW as $r) {
 echo "Name: " . $r->FIRST_NAME . "
\n";
}

This output from the loop is:

Name: Den
Name: Alexander
Name: Shelli
Name: Sigal
Name: Guy
Name: Karen

There are more examples of using SimpleXML with XML data in PHP's test suite under the
ext/simplexml/tests directory of the PHP source code bundle.

To trap and gracefully handle SimpleXML errors use libxml_use_internal_errors():

<?php
libxml_use_internal_errors(true);
$xo = simplexml_load_string("not XML");
if (!$xo) {
 echo "XML load failed:\n";
 foreach(libxml_get_errors() as $error)
 echo " ", $error->message;
}
?>

This gives:

XML load failed:
 Start tag expected, '<' not found

If you comment out libxml_use_internal_errors(true) you would see a normal warning
raised:

PHP Warning: simplexml_load_string(): Entity: line 1: parser error :
Start tag expected, '<' not found in xml.php on line 3

Fetching XMLType Columns
Data in XMLType columns can be longer than Oracle's 4000 byte string length limit. When
data is fetched as a string, queries may fail depending on the data length. For example, the
RES column in RESOURCE_VIEW (which is a way to access the Oracle XML DB repository from
SQL) is an XMLType:

SQL> describe resource_view
 Name Null? Type

248

Fetching XMLType Columns

 ---------------------- -------- ----------------------------
 RES SYS.XMLTYPE(XMLSchema "http:
 //xmlns.oracle.com/xdb/XDBRe
 source.xsd" Element "Resourc
 e")
 ANY_PATH VARCHAR2(4000)
 RESID RAW(16)

PHP code to query it is:

$s = oci_parse($c, 'select res from resource_view');
oci_execute($s);
while ($row = oci_fetch_array($s, OCI_ASSOC)) {
 var_dump($row);
}

This is likely to successfully fetch and display some rows before failing:

 . . .
 <Owner>SYS</Owner>
 <Creator>SYS</Creator>
 <LastModifier>SYS</LastModifier>
 <SchemaElement>http://xmlns.oracle.com/xdb/XDBSchema.xsd#binary</SchemaElement>
 <Contents>
 <binary>47494638396116001 . . . 003B</binary>
 </Contents>
</Resource>
 PHP Warning: oci_fetch_array(): ORA-19011: Character string buffer too small

The failure happens because the database does a conversion from XMLType to a string before
returning results to PHP. When the rows are short there is no error. During testing you could
be tricked into thinking your query will always return a complete set of rows.

Use the XMLTYPE.GETCLOBVAL() function to force XMLType conversion to return a CLOB,
avoiding the string size limit problem. Standard OCI8 CLOB methods can be used on the
returned data:

Script 116: xmltype.php

<?php

$c = oci_connect('hr', 'welcome', 'localhost/XE');

$s = oci_parse($c, 'select xmltype.getclobval(res) from resource_view');
oci_execute($s);
while ($row = oci_fetch_array($s, OCI_NUM)) {
 var_dump($row[0]->load());
 $row[0]->free();
}

?>

249

Using XML With Oracle and PHP

Inserting Into XMLType Columns
You can insert or update XMLType columns by binding as a CLOB.

This warehouse example updates a table without an XMLSchema, and which stores the
XMLType column as a CLOB.

Script 117: xmlcreate.sql

create table xwarehouses (warehouse_id number, warehouse_spec xmltype)
 xmltype warehouse_spec store as clob;

PHP code to insert a warehouse loading dock is:

Script 118: xmlinsert.php

<?php

$c = oci_connect('hr', 'welcome', 'localhost/XE');

// XML data to be inserted
$xml =<<<EOF
<?xml version="1.0"?>
<Warehouse>
<WarehouseId>1</WarehouseId>
<WarehouseName>Southlake, Texas</WarehouseName>
<Building>Owned</Building>
<Area>25000</Area>
<Docks>2</Docks>
<DockType>Rear load</DockType>
<WaterAccess>true</WaterAccess>
<RailAccess>N</RailAccess>
<Parking>Street</Parking>
<VClearance>10</VClearance>
</Warehouse>
EOF;

// Insert new XML data using a temporary CLOB
$s = oci_parse($c,
 "insert into xwarehouses (warehouse_id, warehouse_spec)
 values (:id, XMLType(:clob))");
$id = 1;
oci_bind_by_name($s, ':id', $id);
$lob = oci_new_descriptor($c, OCI_D_LOB);
oci_bind_by_name($s, ':clob', $lob, -1, OCI_B_CLOB);
$lob->writeTemporary($xml);
oci_execute($s);
$lob->close();

?>

PHP code to update the number of available warehouse docks is:

Script 119: xmlupdate.php

<?php

250

Inserting Into XMLType Columns

$c = oci_connect('hr', 'welcome', 'localhost/XE');

$s = oci_parse($c, 'select xmltype.getclobval(warehouse_spec)
 from xwarehouses where warehouse_id = :id');
$id = 1;
$r = oci_bind_by_name($s, ':id', $id);
oci_execute($s);
$row = oci_fetch_array($s, OCI_NUM);

// Manipulate the data using SimpleXML
$sx = simplexml_load_string((binary)$row[0]->load());
$row[0]->free();

$sx->Docks -= 1; // change the data

// Insert changes using a temporary CLOB
$s = oci_parse($c, 'update xwarehouses
 set warehouse_spec = XMLType(:clob)
 where warehouse_id = :id');
oci_bind_by_name($s, ':id', $id);
$lob = oci_new_descriptor($c, OCI_D_LOB);
oci_bind_by_name($s, ':clob', $lob, -1, OCI_B_CLOB);
$lob->writeTemporary($sx->asXml());
oci_execute($s);
$lob->close();

?>

The $sx->asXml() method converts the SimpleXML object to the text representation used to
update the table. A temporary LOB is created to pass the new XML value to the database.

After running the PHP script, querying the record in SQL*Plus shows the number of docks
has been decremented from 2 to 1:

SQL> set long 1000 pagesize 100
SQL> select warehouse_spec from xwarehouses;

This gives:

WAREHOUSE_SPEC

<?xml version="1.0"?>
<Warehouse>
 <WarehouseId>1</WarehouseId>
 <WarehouseName>Southlake, Texas</WarehouseName>
 <Building>Owned</Building>
 <Area>25000</Area>
 <Docks>1</Docks>
 <DockType>Rear load</DockType>
 <WaterAccess>true</WaterAccess>
 <RailAccess>N</RailAccess>
 <Parking>Street</Parking>
 <VClearance>10</VClearance>
</Warehouse>

251

Using XML With Oracle and PHP

See Using XML in SQL Statements in the Oracle Database SQL Reference for more discussion
of XMLType.

Fetching an XMLType from a PL/SQL Function
The GETCLOBVAL() function is also useful when trying to get an XMLType from a stored PL/SQL
function. File xmlfunc.sql creates a simple PL/SQL function returning XMLType query data for a
given identifier value.

Script 120: xmlfunc.sql

drop table mytab;
create table mytab (id number, data xmltype);
insert into mytab (id, data) values (1, '<something>mydata</something>');

create or replace function myf(p_id number) return xmltype as
 loc xmltype;
begin
 select data into loc from mytab where id = p_id;
 return loc;
end;
/

To access this function in PHP, use GETCLOBVAL() and bind a LOB descriptor to the return
value. OCI8 LOB methods like load() can be used on the descriptor:

Script 121: xmlfunc.php

<?php

$c = oci_connect('hr', 'welcome', 'localhost/XE');

$bd = oci_new_descriptor($c, OCI_D_LOB);
$s = oci_parse($c, "begin :bv := myf(1).getclobval(); end;");
oci_bind_by_name($s, ":bv", $bd, -1, OCI_B_CLOB);
oci_execute($s);

echo htmlentities($bd->load()); // Print output
$bd->close();

?>

The output is the expected:

<something>mydata</something>

XQuery XML Query Language
Oracle’s support for XQuery was introduced in Oracle Database 10g Release 2. A basic
XQuery to return the records from the EMPLOYEES table is:

for $i in ora:view("employees") return $i

252

XQuery XML Query Language

In use, this XQuery syntax is embedded in a special SELECT:

select column_value from xmltable('for $i in ora:view("employees") return $i')

The different quoting styles used by SQL and XQuery need careful attention in PHP. It can be
coded:

Script 122: xquery.php

<?php

$c = oci_connect('hr', 'welcome', 'localhost/XE');

$xq = 'for $i in ora:view("employees") return $i';
$query = 'select column_value from xmltable(\''.$xq.'\')';

$s = oci_parse($c, $query);
oci_execute($s);
while ($row = oci_fetch_array($s, OCI_NUM)) {
 foreach ($row as $item) {
 echo htmlentities($item)." ";
 }
}

?>

The query could also be in a single PHP NOWDOC:

$query = <<<'END'
select column_value from xmltable('for $i in ora:view("employees") return $i')
END;

Note there cannot be whitespace on the last line before or after the token END;
Prior to PHP 5.3, use HEREDOC syntax and escape XQuery variables like $i with a

backslash.
Whichever query format you choose, table rows are automatically wrapped in tags and

returned:

<ROW>
 <EMPLOYEE_ID>100</EMPLOYEE_ID>

<FIRST_NAME>Steven</FIRST_NAME>
<LAST_NAME>King</LAST_NAME>
<EMAIL>SKING</EMAIL>
<PHONE_NUMBER>515.123.4567</PHONE_NUMBER>
<HIRE_DATE>1987-06-17</HIRE_DATE>
<JOB_ID>AD_PRES</JOB_ID>
<SALARY>24000</SALARY>
<DEPARTMENT_ID>90</DEPARTMENT_ID>

</ROW>
…
<ROW>

<EMPLOYEE_ID>206</EMPLOYEE_ID>
<FIRST_NAME>William</FIRST_NAME>
<LAST_NAME>Gietz</LAST_NAME>
<EMAIL>WGIETZ</EMAIL>

253

Using XML With Oracle and PHP

<PHONE_NUMBER>515.123.8181</PHONE_NUMBER>
<HIRE_DATE>1994-06-07</HIRE_DATE>
<JOB_ID>AC_ACCOUNT</JOB_ID>
<SALARY>8300</SALARY>
<MANAGER_ID>205</MANAGER_ID>
<DEPARTMENT_ID>110</DEPARTMENT_ID>

</ROW>

You can also use RETURNING CONTENT to return a single document node:

$query = <<<'END'
select xmlquery('for $i in ora:view("hr", "locations")/ROW
 return $i/CITY'
 returning content) from dual
END;

For both XMLTABLE() and XMLQUERY() PHP OCI8 will generate an ORA-19011: Character string
buffer too small error for results sets bigger than a several thousand bytes. To prevent this,
use the XMLTYPE.GETCLOBVAL() function, for example:

$query = <<<'END'
select xmltype.getclobval(column_value)
from xmltable('for $i in ora:view("employees") return $i')
END;

and

$query = <<<'END'
select xmltype.getclobval(xmlquery('for $i in ora:view("hr",
 "locations")/ROW return $i/CITY'
 returning content)) from dual
END;

The returned data is a LOB locator and so the fetch needs LOB methods, such as load():

$s = oci_parse($c, $query);
oci_execute($s);
while ($row = oci_fetch_array($s, OCI_NUM)) {
 var_dump($row[0]->load());
 $row[0]->free();
}

Accessing Data Over HTTP With XML DB
XML DB allows you to access data directly via HTTP, FTP or WebDAV. The Oracle Network
listener will handle all these requests. As an example of HTTP access, use the PL/SQL
DBMS_XDB package to create a resource, which here is some simple text:

Script 123: xdb.sql
declare
 res boolean;
begin
 begin
 -- delete if it already exists

254

Accessing Data Over HTTP With XML DB

 dbms_xdb.deleteResource('/public/test1.txt');
 exception when others then
 null;
 end;
 -- create the file - don’t forget to commit
 res := dbms_xdb.createResource('/public/test1.txt', 'the text to store');
 commit;
end;
/

For testing, remove access control on the public resource:

SQL> connect system/systempwd
SQL> alter user anonymous identified by anonymous account unlock;

The file can now be accessed from a browser (or PHP application) using:
http://localhost:8080/public/test1.txt

You may need to enter database credentials such as HR and HR's password when prompted in
the browser.

There is extensive Oracle documentation on XML DB in the Oracle manuals, and on the
Oracle Technology network at
http://www.oracle.com/technetwork/database/features/xmldb/.

255

http://www.oracle.com/technetwork/database/features/xmldb/

Using XML With Oracle and PHP

256

PHP CONNECTION POOLING AND HIGH
AVAILABILITY

This chapter discusses two database features supported by PHP OCI8 that improve scalability
and high availability:

● Database Resident Connection Pooling (DRCP): a feature introduced in Oracle Database
11g that addresses scalability requirements in environments requiring large numbers of
connections while using minimal database resources. An Oracle benchmark showed
20,000 connections being supported on a small commodity machine with 2GB of RAM.

● Fast Application Notification (FAN): Web applications that run in high availability
configurations such as with Oracle Real Application Clusters (RAC) or Data Guard Physical
Stand-By can take advantage of FAN events in PHP to allow applications to respond
quickly to database node failures.

The features are usable separately or together. PHP 5.3 onwards (OCI8 1.3 onwards) has
immediate support for them.

Database Resident Connection Pooling
Oracle Database 11g DRCP addresses scalability requirements in environments requiring large
numbers of connections while using minimal database resources. DRCP allows pooling of a set
of dedicated database server processes (known as pooled servers), which can be shared
across multiple applications running on the same or several hosts. A connection broker
process manages the pooled servers at the database instance level. DRCP is a configurable
feature chosen at program runtime, allowing traditional and DRCP-based connection
architectures to be in concurrent use

Without DRCP, each PHP process creates and destroys database servers when connections
are opened and closed. This can be expensive and crippling to high scalability. Or
alternatively, PHP processes use persistent connections, keeping connections open even
when they are not processing any user scripts. This removes connection creation and
destruction costs but incurs unnecessary memory overhead in the database, as shown in
Figure 70.

257

PHP Connection Pooling and High Availability

How DRCP Works

The architecture of DRCP is shown in Figure 71. A connection broker accepts incoming
connection requests from PHP processes and assigns each a free server in the DRCP pool.
Each PHP process that is executing a PHP script communicates with this Oracle server until
the connection is released. This release can be explicit with oci_close() or it will happen
automatically at the end of the script. When the connection is released, the server process is
returned to the pool and the PHP process keeps a link only to the connection broker. Active
pooled servers contain the Process Global Area (PGA) and the user session data. Idle servers
in the pool can optionally retain the user session for reuse by subsequent persistent PHP
connections.

When the number of persistent connections is less than the number of pooled servers, a
“dedicated optimization” avoids unnecessarily returning servers to the pool when a PHP
connection is closed. Instead, the dedicated association between the PHP process and the
server is kept in anticipation that the PHP process will quickly become active again. If PHP
scripts are executed by numerous web servers, the DRCP pool can grow to its maximum size
(albeit typically a relatively small size), even if the rate of incoming user requests is low. Each
PHP process, either busy or now idle, will be attached to its own pooled server. When the pool
reaches its maximum size, another PHP process that needs a pooled server will cause an idle
server in the pool to be made available for immediate reuse.

258

Figure 70: Without DRCP, idle persistent connections from PHP still
consume database resources.

Database Resident Connection Pooling

The pool size and number of connection brokers are configurable. There is always at least one
connection broker per database instance when DRCP is enabled. Also, at any time, around 5%
of the current pooled servers are reserved for authenticating new PHP connections.
Authentication is performed when a PHP process establishes a connection to the connection
broker.

DRCP boosts the scalability of the database and the web server tier because connections
to the database are held at minimal cost. Database memory is only used by the pooled
servers, and scaling can be explicitly controlled by DRCP tuning options.

With the introduction of pooled servers used by DRCP, there are now three types of
database server process models that Oracle applications can use: dedicated servers, shared
servers and pooled servers.

Table 10: Differences between dedicated servers, shared servers, and pooled servers.

Dedicated Servers Shared Servers Pooled Servers

When the PHP connection is
created, a network
connection to a dedicated
server process and
associated session are
created.

When the PHP connection is
created, a network
connection to the
dispatcher process is
established. A session is
created in the SGA.

When the PHP connection is
created, a network connection to
the connection broker is
established.

259

Figure 71: DRCP Architecture.

PHP Connection Pooling and High Availability

Dedicated Servers Shared Servers Pooled Servers

Activity on a connection is
handled by the dedicated
server.

Each action on a connection
goes through the
dispatcher, which hands the
work to a shared server.

Activity on a connection wakes
the broker, which hands the
network connection to a pooled
server. The server then handles
subsequent requests directly, just
like a dedicated server.

Scripts executing but with
idle PHP connections hold a
server process and session
resources.

Scripts executing but with
idle PHP connections hold
session resources but not a
server process.

Scripts executing but with idle
PHP connections hold a server
process and session resources.

Closing a PHP connection
causes the session to be
freed and the server process
to be terminated.

Closing a PHP connection
causes the session to be
freed.

Closing a PHP connection
optionally causes the session to
be destroyed. The pooled server
is released to the pool. A network
connection to the connection
broker is retained.

Memory usage is
proportional to the number
of server processes and
sessions. There is one server
and one session for each
PHP connection.

Memory usage is
proportional to the sum of
the shared servers and
sessions. There is one
session for each PHP
connection.

Memory usage is proportional to
the number of pooled servers
and their sessions. There is one
session for each pooled server.

Pooled servers used by PHP are similar in behavior to dedicated servers. After connection, PHP
directly communicates with the pooled server for all database operations.

PHP OCI8 Connections and DRCP

The implementation of the connection functions, oci_connect(), oci_new_connect(), and
oci_pconnect() was reworked in OCI8 1.3. All three benefit from using DRCP. Table 11
compares dedicated and pooled servers. Shared servers are not shown but behave similarly
to dedicated servers with the exception that only the session and not the server is destroyed
when a connection is closed.

260

Database Resident Connection Pooling

Table 11: Behavior of OCI8 connection functions for Dedicated and Pooled Servers.

OCI8 Function Dedicated Servers Pooled Servers

oci_connect() Creates a PHP connection to
the database using a
dedicated server. The
connection is cached in the
PHP process for reuse by
subsequent oci_connect()
calls in the same script. At the
end of the script or with
oci_close(), the connection is
closed and the server process
and session are destroyed.

Gets a pooled server from the
DRCP pool and creates a brand
new session. Subsequent
oci_connect() calls in the same
script use the same connection.
When the script completes, or
oci_close() is called, the
session is destroyed and the
pooled server is available for
other PHP connections to use.

oci_new_connect() Similar to oci_connect()
above, but an independent
new PHP connection and
server process is created every
time this function is called,
even within the same script.
All PHP connections and the
database servers are closed
when the script ends or with
oci_close(). Sessions are
destroyed at that time.

Similar to oci_connect() above,
but an independent server in the
pool is used and a new session
is created each time this
function is called in the same
script. All sessions are destroyed
at the end of the script or with
oci_close(). The pooled servers
are made available for other
connections to use.

oci_pconnect() Creates a persistent PHP
connection which is cached in
the PHP process. The database
connection is not closed at the
end of the script. When no
script is executing, an idle PHP
process still holds the server
process and session resource.
The server and session are
available for reuse by
subsequent oci_pconnect()
calls that pass the same
credentials in any script
handled by this PHP process.

Creates a persistent PHP
connection. Calling oci_close()
releases the connection. This
makes the server and its intact
session available in the pool for
reuse by other PHP processes. If
oci_close() is not called, then
this connection release happens
at the end of the script. When
no script is executing, an idle
PHP process retains only an
authenticated network
connection to the broker.
Subsequent oci_pconnect()
calls passing the same
credentials in scripts handled by
this PHP process reuse the
existing network connection to
quickly get a server and session
from the pool

261

PHP Connection Pooling and High Availability

With DRCP, all three connection functions save on the cost of authentication and benefit from
the network connection to the connection broker being maintained, even for connections that
are “closed” from PHP’s point of view. They also benefit from having pre-spawned server
processes in the DRCP pool.

The oci_pconnect() function reuses sessions, allowing even greater scalability. The non-
persistent connection functions create and destroy new sessions each time they are used,
allowing less sharing at the cost of reduced performance.

Overall, after a brief warm-up period for the pool, DRCP allows reduced connection times
in addition to the reuse benefits of pooling.

When to use DRCP

DRCP is typically preferred for PHP applications with a large number of connections. Shared
servers can be useful for a medium number of connections if DRCP is not available. Dedicated
sessions are preferred for small numbers of connections. The threshold sizes are relative to
the amount of memory available on the database host.

DRCP provides the following advantages:

● It enables resource sharing among multiple client applications and multiple middle-tier
application servers.

● It improves scalability of databases and applications by reducing resource usage on the
database host.

DRCP can be used if:

● PHP applications mostly use the same database credentials for all connections.

● The applications acquire a database connection, work on it for a relatively short duration,
and then release it.

● Connections look identical in terms of session settings, for example date format settings
and PL/SQL package state.

These are all typically true for PHP applications.
For persistent PHP connections, normal dedicated servers can be fastest. There is no

broker or dispatcher overhead. The database server process is always connected and
available whenever the PHP process needs it. But as the number of connections increases, the
memory cost of keeping connections open quickly reduces efficiency of the database system.

For non-persistent PHP connections, DRCP can be fastest because the use of pooled server
processes removes the need for PHP connections to create and destroy processes, and
removes the need to re-authenticate for each connect call.

Consider an application in which the memory required for each session is 400 KB. On a 32
bit operating system the memory required for each server process could be, for example, 4
MB, and DRCP could use 35 KB per connection (mostly in the connection broker). If the
number of pooled servers is configured at 100, the number of shared servers is configured at
100, and the deployed application creates 5000 PHP connections, then the memory used by
each type of server is estimated in Table 10.

262

Database Resident Connection Pooling

Table 12: Example database host memory use for dedicated, shared and pooled servers.

Dedicated Servers Shared Servers Pooled Servers

Database Server
Memory

5000 * 4 MB 100 * 4 MB 100 * 4 MB

Session Memory 5000 * 400 KB 5000 * 400 KB

Note: For Shared
Servers, session
memory is allocated
from the SGA.

100 * 400 KB

DRCP Connection
Broker Overhead

5000 * 35 KB

Total Memory 21 GB 2.3 GB 610 MB

There is a significant memory saving when using DRCP.
Even if sufficient memory is available to run in dedicated mode, DRCP can still be a viable

option if the PHP application needs database connections for only short periods of time. In this
case the memory saved by using DRCP can be used towards increasing the SGA, thereby
improving overall performance.

Pooling is available when connecting over TCP/IP with userid/password based database
authentication. It is not available using Oracle's “bequeath” connections.

With Oracle 11.2, pooled connections can take advantage of Oracle's Client Result Cache
feature.

Sharing the Server Pool

DRCP guarantees that pooled servers and sessions initially used by one database user are
only ever reusable by connections with that same user identifier. DRCP also further partitions
the pool into logical groups or “connection classes”. A connection class is a user chosen name
set with oci8.connection_class in the php.ini configuration file.

Session-specific attributes, like the date format or an explicit role, may be re-usable by
any connection in a particular application. Subsequent persistent connections will reuse the
session and inherit those settings if the username and connection class are the same as the
previous connection.

Applications that need different state in the session memory should use different
usernames and/or connection classes.

263

PHP Connection Pooling and High Availability

For example, applications in a suite called RPT may be willing to share pooled servers
between themselves but not with applications in a suite called HR. An example of different
connection classes and the resulting logical partitioning of the DRCP server pool is shown in
the previous figure. Connections with the same username and connection class from any host
will share the same sub-pool of servers. If there are no free pooled servers matching a request
for a userid in the specified connection class, and if the pool is already at its maximum size,
then an idle server in the pool will be used and a new session created for it. If the server
originally belonged to a different connection class, the current session will be destroyed, the
server will migrate to the new class, and a new session will be created. If there are no pooled
servers available, the connection request waits for one to become available. This allows the
database to continue without becoming overloaded.

The connection class should be set to the same value for each instance of PHP running the
same application where sharing of pooled connections is desired. If no connection class is
specified, each web server process will have a unique, system generated class name, limiting
sharing of connections to each process, and affecting overall performance.

If DRCP is used but session sharing is not desirable under any condition, use
oci_connect() or oci_new_connect() which recreate the session each time.

Although session data may be reused by subsequent persistent connections, transactions
do not span connections across scripts. Uncommitted data will be rolled back at the end of a
PHP script.

Using DRCP in PHP
Using DRCP with PHP applications involves the following steps:

264

Figure 72: The DRCP pool is logically partitioned by username and connection class.

Using DRCP in PHP

1. Configuring and enabling the pool.

2. Configuring PHP.

3. Deploying the application.
PHP applications deployed as Apache modules, FastCGI, CGI and standalone applications can
benefit from DRCP. PHP applications deployed as Apache modules or with FastCGI gain most,
since the PHP processes are long running and remain connected to the connection broker over
multiple script executions. This lets them take advantage of other optimizations, such as
statement caching.

Configuring and Enabling the Pool

Every instance of Oracle Database 11g uses a single, default connection pool. User defined
pools are currently not supported. The default pool can be configured and administered by a
DBA using the DBMS_CONNECTION_POOL package:

SQL> execute dbms_connection_pool.configure_pool(
 pool_name => 'SYS_DEFAULT_CONNECTION_POOL',
 minsize => 4,
 maxsize => 40,
 incrsize => 2,
 session_cached_cursors => 20,
 inactivity_timeout => 300,
 max_think_time => 600,
 max_use_session => 500000,
 max_lifetime_session => 86400)

Alternatively the method dbms_connection_pool.alter_param() can be used to set a single
parameter:

SQL> execute dbms_connection_pool.alter_param(
 pool_name => 'SYS_DEFAULT_CONNECTION_POOL',
 param_name => 'MAX_THINK_TIME',
 param_value => '1200')

There is a dbms_connection_pool.restore_defaults() procedure to reset all values.
When DRCP is used with RAC, each database instance has its own connection broker and

pool of servers. Each pool has the identical configuration. For example, all pools start with
MINSIZE server processes. A single DBMS_CONNECTION_POOL command will alter the pool of
each instance at the same time.

The pool needs to be started before connection requests begin. The command below does
this by bringing up the broker, which registers itself with the database listener:

SQL> execute dbms_connection_pool.start_pool()

Once enabled this way, the pool automatically restarts when the instance restarts, unless
explicitly stopped with the dbms_connection_pool.stop_pool() command:

SQL> execute dbms_connection_pool.stop_pool()

The pool can't be stopped while connections are open. If the PHP application uses persistent
connections, then the web server should be stopped before shutting the pool down. Similarly
users cannot be dropped unless the web server is first stopped.

265

PHP Connection Pooling and High Availability

The DRCP configuration options are described in the next table:

Table 13: DRCP Configuration Options.

DRCP Option Description

pool_name The pool to be configured. Currently the only supported name is
the default value SYS_DEFAULT_CONNECTION_POOL.

minsize Minimum number of pooled servers in the pool. The default is 4.

maxsize Maximum number of pooled servers in the pool. If this limit is
reached and all the pooled servers are busy, then connection
requests wait until a server becomes free. The value should be
less than the database init.ora values of sessions and
processes. The default value is 40.

incrsize The number of pooled servers is increased by this value when
servers are unavailable for PHP connections and if the pool is
not yet at its maximum size. The default is 2.

session_cached_cursors Indicates to turn on SESSION_CACHED_CURSORS for all
connections in the pool. This value is typically set to the size of
the working set of frequently used statements. The cache uses
cursor resources on the server. The default is 20. Note: there is
also an init.ora parameter for setting the value for the whole
database instance. The pool option allows a DRCP-based
application to override the instance setting.

inactivity_timeout Time to live for an idle server in the pool. If a server remains
idle in the pool for this time, it is killed. This parameter helps to
shrink the pool when it is not used to its maximum capacity. The
default is 300 seconds.

max_think_time Maximum time of inactivity the PHP script is allowed after
connecting. If the script does not issue a database call for this
amount of time, the pooled server may be returned to the pool
for reuse. The PHP script will get an ORA error if it later tries to
use the connection. The default is 120 seconds.

max_use_session Maximum number of times a server can be taken and released
to the pool before it is flagged for restarting. The default is
500000.

max_lifetime_session Time to live for a pooled server before it is restarted. The
default is 86400 seconds.

num_cbrok The number of connection brokers that are created to handle
connection requests. The default is 1. Note: this can only be set
with alter_param().

266

Using DRCP in PHP

DRCP Option Description

maxconn_cbrok The maximum number of connections that each connection
broker can handle. Set the per-process file descriptor limit of the
operating system sufficiently high so that it supports the
number of connections specified. The default is 40000. Note:
this can only be set with alter_param().

The parameters have been described here relative to their use in PHP but it is worth
remembering that the DRCP pool is usable concurrently by other programs, including those
using Perl's DBD::Oracle and Python's cx_Oracle extensions.

In general, if pool parameters are changed, the pool should be restarted, otherwise server
processes will continue to use old settings.

The inactivity_timeout setting terminates idle pooled servers, helping optimize database
resources. To avoid pooled servers permanently being held onto by a dead web server process
or a selfish PHP script, the max_think_time parameter can be set. The parameters num_cbrok
and maxconn_cbrok can be used to distribute the persistent connections from the clients
across multiple brokers. This may be needed in cases where the operating system per-process
descriptor limit is small.

Some customers have found that having several connection brokers improves
performance.

The max_use_session and max_lifetime_session parameters help protect against any
unforeseen problems affecting server processes. The default values will be suitable for most
users.

Users of Oracle Database 11.1.0.6 must apply the database patch for bug 6474441 to
avoid query errors. It also enables LOGON trigger support. This patch is not needed with 11.2
or 11.1.0.7 onwards.

Configuring PHP for DRCP

PHP must be built with the OCI8 1.3 or later extension. (PHP 5.3 contains OCI8 1.4).
DRCP functionality is only available when PHP OCI8 is linked with Oracle Database 11g

client libraries and connected to Oracle Database 11g.
Before using DRCP, the new php.ini parameter oci8.connection_class should be set to

specify the connection class used by all the requests for pooled servers by the PHP
application.

oci8.connection_class = MYPHPAPP

The parameter can be set in php.ini, .htaccess or httpd.conf files. It can also be set and
retrieved programmatically using the PHP functions ini_set() and ini_get().

The OCI8 extension has several legacy php.ini configuration parameters for tuning
persistent connections. These were mainly used to limit idle resource usage. With DRCP, the
parameters still have an effect but it may be easier to use the DRCP pool configuration
options.

267

PHP Connection Pooling and High Availability

Table 14: Existing php.ini parameters for persistent connections.

php.ini Parameter Behavior with DRCP

oci8.persistent_timeout At the timeout of an idle PHP connection, PHP will close
the Oracle connection to the broker. The default is no
timeout.

oci8.max_persistent The maximum number of unique persistent connections
that each PHP process will maintain to the broker. When
the limit is reached a new persistent connection behaves
like oci_connect() and releases the connection at the
end of the script. The default is no limit. Note: The DRCP
maxsize setting will still be enforced by the database
independently from oci8.max_persistent.

oci8.ping_interval The oci8.ping_interval value is also used for non-
persistent connections when DRCP is used. The default
is 60 seconds.

With oci8.ping_interval, the non-DRCP recommendation to set it to -1 to disable pinging, and
to use appropriate error checking still holds true with DRCP. Also, the use of FAN (see later)
reduces the chance of idle connections becoming unusable.

Web servers and the network should benefit from oci8.statement_cache_size being set. For
best performance it should generally be larger than the size of the working set of SQL
statements. To tune it, monitor general web server load and the AWR “bytes sent via
SQL*Net to client“ values. The latter statistic should benefit from not needing to send
statement meta-data to PHP. Adjust the statement cache size to your satisfaction.

Once you are happy with the statement cache size, then tune the DRCP pool
session_cached_cursors value. Monitor AWR reports with the goal to make the “session
cursor cache hits“ close to the number of soft parses. Soft parses can be calculated from
“parse count (total)“ minus “parse count (hard)”.

Application Deployment for DRCP

PHP applications must specify the server type POOLED in the connect string. Using Oracle’s
Easy Connect syntax, the PHP call to connect to the sales database on myhost would look like:

$c = oci_pconnect('myuser', 'mypassword', 'myhost/sales:POOLED');

Or if PHP uses an Oracle Network connect name that looks like:

$c = oci_pconnect('myuser', 'mypassword', 'salespool');

Then only the Oracle Network configuration file tnsnames.ora needs to be modified:

salespool=(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)
(HOST=myhost.dom.com)

 (PORT=1521))(CONNECT_DATA=(SERVICE_NAME=sales)
(SERVER=POOLED)))

If these changes are made and the database is not actually configured for DRCP, or the pool is
not started, then connections will not succeed and an error will be returned to PHP.

268

Using DRCP in PHP

Although applications can choose whether or not to use pooled connections at runtime,
care must be taken to the configure the database appropriately for the number of expected
connections, and also to stop inadvertent use of non-pooled connections leading to a resource
shortage.

Closing Connections

PHP scripts that do not currently use oci_close() should be examined to see if they can use it
to explicitly return connections to the pool, allowing maximum use of pooled servers:

// 1. Do some database operations
$c = oci_pconnect('myuser', 'mypassword', 'myhost/sales:POOLED');
. . .
oci_commit($c);
oci_close($c); // Release the connection to the DRCP pool

// 2. Do lots of non-database work
. . .

// 3. Do some more database operations
$c = oci_pconnect('myuser', 'mypassword', 'myhost/sales:POOLED');
. . .
oci_commit($c);
oci_close($c);

Remember to free statement and other resources that internally increase the reference count
on the PHP connection and will otherwise stop a database connection from closing.

Prior to OCI8 1.3, closing oci_connect() and oci_new_connect() connections had an effect
but closing an oci_pconnect() connection was a no-op. From OCI8 1.3, oci_close() on a
persistent connection rolls back any uncommitted transaction. Also the extension will do a roll
back when all PHP variables referencing a persistent connection go out of scope, for example
if the connection was opened in a function and the function has now finished. For DRCP, in
addition to the rollback, the connection is also released; a subsequent oci_pconnect() may
get a different connection. For DRCP, the benefit is that scripts taking advantage of persistent
connections can explicitly return a server to the pool when non-database processing occurs,
allowing other concurrent scripts to make use of the pooled server.

With pooled servers, the recommendation is to release the connection when the script
does a significant amount of processing that is not database related. Explicitly control
commits and rollbacks so there is no unexpectedly open transaction when the close or end-of-
scope occurs. Scripts coded like this can use oci_close() to take advantage of DRCP but still
be portable to older versions of the OCI8 extension.

If behavior where oci_close() is a no-op for all connection types is preferred, set the
php.ini parameter oci8.old_oci_close_semantics to On.

Transactions Across Re-connection

Scripts should avoid re-opening connections if there are incomplete transactions:

// 1. Do some database operations
$c = oci_pconnect('myuser', 'mypassword', 'salespool');
// Start a transaction
$s = oci_parse($c, 'insert into mytab values (1)');

269

PHP Connection Pooling and High Availability

$r = oci_execute($s, OCI_NO_AUTO_COMMIT); // no commit
...
// BAD: no commit or rollback done

// 2. Continue database operations on same credentials
$c = oci_pconnect('myuser', 'mypassword', 'salespool');
$s = oci_parse($c, 'insert into mytab values (2)');
$r = oci_execute($s, OCI_NO_AUTO_COMMIT); // no commit
// Intend to commit both 1 & 2 but behavior could be random
oci_commit($c);

If there was a node or network failure just prior to point 2, the first transaction could be lost.
The second connection command may return a new, valid connection if a ping (see
oci8.ping_interval) occurs to validate the connection, and the script might not be aware that
only the second part of the transaction is committed.

The script should do an explicit commit or rollback before the second connect, or simply
continue to use the original connection. It should always do appropriate error handling.

LOGON and LOGOFF Triggers with DRCP

LOGON triggers are useful for setting session attributes needed by each PHP connection. For
example a trigger could be used to execute an ALTER SESSION statement to set a date format.
The LOGON trigger will execute when oci_pconnect() first creates the session, and the
session will be reused by subsequent persistent connections. Scripts save time by no longer
always executing code to set the date format.

The suggested practice with DRCP is to use LOGON triggers only for setting session
attributes and not for executing per PHP-connection logic such as custom logon auditing. This
recommendation is also true for persistent connections with dedicated or shared servers.

Database actions that must be performed exactly once per OCI8 connection call should be
explicitly executed in the PHP script.

From Oracle 11gR2 onwards, LOGOFF triggers fire for pooled servers when sessions are
terminated. For oci_connect() and oci_new_connect() connections, this is with oci_close()
or at the end of the script. For oci_pconnect() connections, it can happen when the pooled
server process naturally terminates or its session needs to be recreated.

It is not possible to depend on triggers for tracking PHP OCI8 connect calls. The caching,
pooling, timing out and recreation of sessions and connections with or without DRCP can
distort any record. With pooled servers, LOGON triggers can fire at authentication and when
the session is created, in effect firing twice for the initial connection.

Changing Passwords with DRCP Connections

In general, PHP applications that change passwords should avoid using oci_pconnect(). This
call will use the old password to match an open connection in PHP’s persistent connection
cache without requiring re- authentication to the database with the new password. This can
cause confusion over which password to connect with since if there is no cached connection it
is the new password that must be used. With DRCP, there is a further limitation - connections
cannot be used to change passwords programmatically. PHP scripts that use
oci_password_change() should continue to use dedicated or shared servers.

270

Monitoring DRCP

Monitoring DRCP
Data dictionary views are available to monitor the performance of DRCP. Database
administrators can check statistics such as the number of busy and free servers, and the
number of hits and misses in the pool against the total number of requests from clients. The
views are:

● DBA_CPOOL_INFO

● V$PROCESS

● V$SESSION

● V$CPOOL_STATS

● V$CPOOL_CC_STATS

● V$CPOOL_CONN_INFO

For Oracle RAC, there are GV$CPOOL_STATS, GV$CPOOL_CC_STATS and
GV$CPOOL_CONN_INFO views corresponding to the instance-level views. These record DRCP
statistics across clustered instances. If a database instance in a cluster is shut down, the
statistics for that instance are purged from the GV$ views.

The DRCP statistics are reset each time the pool is started.

DBA_CPOOL_INFO View

DBA_CPOOL_INFO displays configuration information about the DRCP pool. The columns are
equivalent to the dbms_connection_pool.configure_pool() settings described in the table of
DRCP configuration options, with the addition of a STATUS column. The status is ACTIVE if the
pool has been started and INACTIVE otherwise. Note the pool name column is called
CONNECTION_POOL. This example checks whether the pool has been started and finds the
maximum number of pooled servers:

SQL> select connection_pool, status, maxsize
 from dba_cpool_info;

CONNECTION_POOL STATUS MAXSIZE
---------------------------- ---------------- ----------
SYS_DEFAULT_CONNECTION_POOL ACTIVE 40

In Oracle 11gR2, DBA_CPOOL_INFO gained NUM_CBROK and MAXCONN_CBROK columns,
equivalent to the pool configuration options of the same names. In Oracle 11gR1 the number
of configured brokers per instance can be found from the V$PROCESS view, for example on
Linux this query shows one broker has been enabled:

SQL> select program
 from v$process
 where program like 'oracle%(N%)';

PROGRAM
--
oracle@localhost (N001)

271

PHP Connection Pooling and High Availability

V$PROCESS and V$SESSION Views

The V$SESSION view will show information about the currently active DRCP sessions. It can
also be joined with V$PROCESS via V$SESSION.PADDR = V$PROCESS.ADDR to correlate the
views.

V$CPOOL_STATS View

V$CPOOL_STATS displays information about the DRCP statistics for an instance.

Table 15: V$CPOOL_STATS View.

Column Description

POOL_NAME Name of the Database Resident Connection Pool.

NUM_OPEN_SERVERS Total number of busy and free servers in the pool (including
the authentication servers).

NUM_BUSY_SERVERS Total number of busy servers in the pool (not including the
authentication servers).

NUM_AUTH_SERVERS Number of authentication servers in the pool.

NUM_REQUESTS Number of client requests.

NUM_HITS Total number of times client requests found matching
pooled servers and sessions in the pool.

NUM_MISSES Total number of times client requests could not find a
matching pooled server and session in the pool.

NUM_WAITS Total number of client requests that had to wait due to non-
availability of free pooled servers.

WAIT_TIME Reserved for future use.

CLIENT_REQ_TIMEOUTS Reserved for future use.

NUM_AUTHENTICATIONS Total number of authentications of clients done by the pool.

NUM_PURGED Total number of sessions purged by the pool.

HISTORIC_MAX Maximum size that the pool has ever reached. With PHP
this is likely to reach the maximum pool size value.

The V$CPOOL_STATS view can be used to assess how efficient the pool settings are. This
example query shows an application using the pool effectively. The low number of misses
indicates that servers and sessions were reused. The wait count shows just over 1% of
requests had to wait for a pooled server to become available:

SQL> select num_requests,num_hits,num_misses,num_waits
 from v$cpool_stats;

NUM_REQUESTS NUM_HITS NUM_MISSES NUM_WAITS
------------ ---------- ---------- ----------
 100031 99993 38 1054

272

Monitoring DRCP

If oci8.connection_class is set (allowing pooled servers and sessions to be reused) then
NUM_MISSES is low. If the pool maxsize is too small for the connection load then NUM_WAITS
is high:

NUM_REQUESTS NUM_HITS NUM_MISSES NUM_WAITS
------------ ---------- ---------- ----------
 50352 50348 4 50149

Tune the pool size by monitoring the NUM_WAITS trend. If the value is high then increase the
number of pooled servers.

If the connection class is left unset, the sharing of pooled servers is restricted to within
each web server process. Even if the pool size is large, session sharing is limited causing poor
utilization of pooled servers and contention for them:

NUM_REQUESTS NUM_HITS NUM_MISSES NUM_WAITS
------------ ---------- ---------- ----------
 64152 17941 46211 15118

If NUM_HITS is 0 or very low, one potential cause is the use of oci_connect() since this is
designed to recreate the session each time it is called. Use oci_pconnect() instead.

V$CPOOL_CC_STATS View

V$CPOOL_CC_STATS displays information about the connection class level statistics for the
pool per instance. The columns are similar to those of V$CPOOL_STATS described in Table 15,
with a CCLASS_NAME column giving the name of the connection sub-pool the results are for:

SQL> select cclass_name, num_requests, num_hits, num_misses
 from v$cpool_cc_stats;

CCLASS_NAME NUM_REQUESTS NUM_HITS NUM_MISSES
-------------------------------- ------------ ---------- ----------
HR.MYPHPAPP 100031 99993 38
SCOTT.SHARED 10 0 10
CJ.OCI:SP:wshbIFDtb7rgQwMyuYvodA 1 0 1

For PHP, the CCLASS_NAME value is composed of the value of the username and of the
oci8.connection_class value used by the connecting PHP processes. The example above
shows an application known as MYPHPAPP using the pool effectively.

For programs like SQL*Plus that were not built using Oracle’s Session Pooling APIs, the
class name will be SHARED. The example shows that ten such connections were made as the
user SCOTT. Although these programs share the same connection class, new sessions are
created for each connection, keeping each cleanly isolated from any unwanted session
changes. This is similar to using PHP’s oci_connect() with DRCP pooled servers.

The last line of the example output shows a system generated class name for an
application that created a connection without explicitly setting oci8.connection_class, or had it
set to an empty string. Pooling would not be effectively used if this application continued to
be executed. Such an entry could be an indication that a php.ini file is mis-configured.

273

PHP Connection Pooling and High Availability

V$CPOOL_CONN_INFO View

This view gives insight into client processes that are connected to the connection broker,
making it easier to monitor and trace applications that are currently using pooled servers or
are idle.

This view was introduced in Oracle 11gR2.

Table 16: V$CPOOL_CONN_INFO View.

Column Description

CMON_ADDR Address of the connection broker

SESSION_ADDR Address of the session associated with the
connection. NULL if there is no active
session. Can be joined with
V$SESSION.SADDR

CONNECTION_ADDR Address of the connection

USERNAME Name of the user associated with the
connection

PROXY_USER Name of the proxy user

CCLASS_NAME Connection class associated with the
connection

PURITY Will be SELF for oci_pconnect() calls or
NEW otherwise

TAG Not set by PHP

SERVICE TNS service name for the connection

PROCESS_ID Process ID of the PHP or Apache process

PROGRAM Program name of the PHP or Apache process

MACHINE Machine name where PHP is running

TERMINAL Terminal identifier of the PHP process that
created the connection

CONNECTION_MODE Reserved for internal use

CONNECTION_STATUS Status of the connection: NONE,
CONNECTING, ACTIVE, WAITING, IDLE

274

Monitoring DRCP

You can monitor V$CPOOL_CONN_INFO to, for example, identify mis-configured machines that
do not have the connection class set correctly. This view maps the machine name to the class
name:

SQL> select cclass_name, machine from v$cpool_conn_info;
CCLASS_NAME MACHINE
--------------------------------------- ------------
. . .
CJ.OCI:SP:wshbIFDtb7rgQwMyuYvodA cjlinux
. . .

In Oracle 11gR1 or in highly dynamic situations you can find this same information by turning
on OCI tracing in the database:

$ sqlplus / as sysdba
SQL> alter system set events '10524 trace name context forever, level 1';

There is no need to restart the database.
Now run the application to generate the trace files.
The trace file directory can be found by doing show parameter background_dump_dest in

SQL*Plus. In the pooled server trace files, search for kpplsPopulate:

$ grep kpplsPopulate *.trc
. . .
orcl3_l005_28576.trc:kpplsPopulate: cso authenticated,
key=(CJ*CJ.OCI:SP:wshbIFDtb7rgQwMyuYvodA**1*orcl3*ORA$BASE*)

You can see the correspondence between the "key" fields and the class names shown earlier
in V$CPOOL_CC_STATS. Open the related trace file, for example orcl3_l005_28576.trc. Near
the CJ.OCI:SP:wshbIFDtb7rgQwMyuYvodA entry it contains:

. . .
*** SESSION ID:(9.4985) 2012-06-18 16:16:29.973
*** SERVICE NAME:(orcl3) 2012-06-18 16:16:29.973
*** MODULE NAME:(httpd@cjlinux (TNS V1-V3)) 2012-06-18 16:16:29.973
*** ACTION NAME:() 2012-06-18 16:16:29.973

kpplsPostProcessState:(acquired=0)(call=OSESSKEY)
kpplsh_cso_release_hdlr: cso=(0xcbfdbd88)
Release (FALSE): cso=0xcbfdbd88
kpplsPreProcessState:(acquired=0)(call=OAUTH)
Authentication complete: cso=0xcbfdbd88
kpplsPopulate: cso authenticated,
key=(CJ*CJ.OCI:SP:wshbIFDtb7rgQwMyuYvodA**1*orcl3*ORA$BASE*)
kpplsClearSession: svsoCtx = (0xaf578bc8)
kpplsClearSession: Destroying session= (0xcf640268)
. . .

Reading back up the trace file to the MODULE NAME line shows the host name was cjlinux.
This is the host Apache was running on. Check the php.ini of this machine, ensuring that it
contains a valid oci8.connection_class parameter.

Tracing can now be turned off:

alter system set events '10524 trace name context forever, level 0';

275

PHP Connection Pooling and High Availability

High Availability With FAN and RAC
Clients that run in high availability configurations such as with Oracle RAC or Data Guard
Physical Stand-By can take advantage of Fast Application Notification (FAN) events to allow
applications to respond quickly to database node failures. FAN support in PHP may be used
with or without DRCP – the two features are independent.

Without FAN, when a database instance or machine node fails unexpectedly, PHP
applications may be blocked waiting for a database response until a TCP timeout expires.
Errors are therefore delayed, sometimes up to several minutes.

By leveraging FAN events, PHP applications are quickly notified of failures that affect their
established database connections. Connections to a failed database instance are pro-actively
terminated without waiting for a potentially lengthy TCP timeout. This allows PHP scripts to
recover quickly from a node or network failure. The application can reconnect and continue
processing without the user being aware of a problem.

Also, all inactive network connections cached in PHP to the connection broker in case of
DRCP, and persistent connections to the server processes or dispatcher in case of dedicated
or shared server connections on the failed instances, are automatically cleaned up.

A subsequent PHP connection call will create a new connection to a surviving RAC node,
activated stand-by database, or even the restarted single-instance database.

Configuring FAN Events in the Database

To get the benefit of high availability, the database service to which the applications connect
must be enabled to post FAN events. For example, to enable events on the service SALES in
an Oracle 11gR2 database SALESDB:

$ srvctl modify service –d SALESDB –s SALES –q TRUE

The –q option indicates that AQ high availability events should be enabled.

Configuring PHP for FAN

With the OCI8 extension, a php.ini configuration parameter oci8.events allows PHP to be
notified of FAN events:

oci8.events = On

FAN support is only available when PHP uses OCI8 1.3 onwards, and is linked with Oracle
Database 10g Release 2 or 11g libraries. PHP must connect to Oracle Database 10g Release 2
or 11g.

With older versions of Oracle Database, review the patches for Oracle bugs 7143299 (fixed
in Oracle 11.2.0.1) and 8670389 (fixed in 11.2.0.2) to improve login times in various
conditions when using oci8.events.

Application Deployment for FAN

The error codes returned to PHP will generally be the same as without FAN enabled, so
application error handling can remain unchanged.

Alternatively, applications can be enhanced to reconnect and retry actions, taking
advantage of the higher level of service given by FAN.

276

High Availability With FAN and RAC

As an example, the code below does some work (perhaps a series of update statements).
If there is a connection failure, it reconnects, checks the transaction state and retries the
work. The OCI8 extension will detect the connection failure and be able reconnect on request,
but the user script must also determine that work failed, why it failed, and be able to continue
that work. The example code detects connections errors so it can identify it needs to continue
or retry work. It is generally important not to redo operations that already committed updated
data.

Typical errors returned after an instance failure are ORA-12153: TNS:not connected or
ORA-03113: end-of-file on communication channel. Some more connection related errors are
shown in the example but others, and errors including standard database errors, may be
returned, depending on timing.

function isConnectionError($err)
{
 switch($err) {
 case 22: /* session does not exist */
 case 28: /* session killed */
 case 378: /* buffer pool param incorrect */
 case 602: /* core dump */
 case 603: /* fatal error */
 case 604: /* recursive SQL error */
 case 609: /* attach failed */
 case 1012: /* not logged in */
 case 1033: /* init or shutdown in progress */
 case 1041: /* internal error */
 case 1043: /* Oracle not available */
 case 1089: /* immediate shutdown in progress */
 case 1090: /* shutdown in progress */
 case 1092: /* instance terminated */
 case 3113: /* disconnect */
 case 3114: /* not connected */
 case 3122: /* closing window */
 case 3135: /* lost contact */
 case 12153: /* TNS: not connected */
 case 27146: /* fatal or instance terminated */
 case 28511: /* Lost RPC */
 return true;
 }
 return false;
}

$c = doConnect();
$err = doSomeWork($c);
if (isConnectionError($err)) {
 // reconnect, find what was committed, and retry
 $c = doConnect();
 $err = checkApplicationStateAndContinueWork($c);
}
if ($err) {
 // end the application
 handleError($err);
}

277

PHP Connection Pooling and High Availability

The complexity is with identifying what work the application has completed and what needs
to be redone after reconnection. Make sure the application uses transactions and does not
auto-commit. One technique for identifying what work remains to be done is to add a status
column to a table. Each part of the script updates the status column when it has completed.

RAC Connection Load Balancing With PHP

PHP OCI8 1.3 onwards will automatically balance new connections across RAC instances with
Oracle's Connection Load Balancing (CLB) to use resources efficiently. The balancing happens
at the first connect for each set of credentials in a PHP process. The same RAC instance will
then be used for the life of the PHP process.

It is recommended to use FAN and CLB together.
No PHP script changes are needed to use CLB. The connection balancing is handled

transparently by the Oracle Net listener. To enable CLB, the database service must be
modified to send load events to the listener. In Oracle 11gR2 use the -j SHORT or -j LONG
options to srvctl. For example:

$ srvctl modify service –d SALESDB –s SALES –j LONG

Table 17: CLB goal parameter values.

Parameter Value Parameter Description

SHORT Use for connection load balancing method for applications
that have short-lived connections such as created by
oci_connect() in quick scripts. This uses CPU-based
statistics to distribute connections.

LONG Use for applications that have long-lived connections such
as created by oci_pconnect(). This uses a simple session-
based metric to distribute connections

278

CHAPTER 15

PHP AND TIMESTEN IN-MEMORY
DATABASE

TimesTen is an in-memory database that can be used standalone or as a cache to Oracle
database. The product marketing description gives this overview:

Oracle TimesTen In-Memory Database (TimesTen) is a full-featured, memory-
optimized, relational database with persistence and recoverability. It provides
applications with the instant responsiveness and very high throughput required by
database-intensive applications. Deployed in the application tier, TimesTen operates
on databases that fit entirely in physical memory (RAM). Applications access the
TimesTen database using standard SQL interfaces. For customers with existing
application data residing on the Oracle Database, TimesTen is deployed as an in-
memory cache database with automatic data synchronization between TimesTen and
the Oracle Database.

The native C interface to TimesTen is ODBC but there is an Oracle OCI layer on top of this that
allows some standard PHP OCI8 features to work. You can build PHP OCI8 and connect to both
Oracle Database and TimesTen In-Memory Database.

Many basic PHP scripts will work unchanged against either database. However, TimesTen
is a different database than Oracle Database. Some PHP OCI8 features cannot be expected to
work the same way, or don't work at all. In particular LOB support from PHP OCI8 is not
available, even though TimesTen 11g Release 2 allows LOBS to be stored. Collection support
isn't available and you might experience some edge cases with binding, particularly if your
code is not well formed. Error messages might differ. If you are migrating existing applications
to TimesTen is also important to test thoroughly because TimesTen does not support all SQL,
PL/SQL or database features of Oracle Database. Problem resolution for using PHP with
TimesTen is via OTN forums, which is the same as for PHP with Oracle Database.

Native ODBC applications will generally be much faster than PHP due to the overheads of
PHP, some overheads of the Oracle OCI layer that sits on top of TimeTen's native ODBC API,
and due to the scale-out architecture commonly used by PHP applications not being directly
congruent with the in-memory high performance design of TimesTen.

Installing TimesTen on Linux
Install TimesTen following the Oracle TimesTen In-Memory Database Installation Guide 11.
These steps are summarized below using 64-bit Oracle Linux 6.
1. Download "TimesTen 11.2.2.2.0 for Linux x86 (64-bit)" from the TimesTen downloads

page, http://www.oracle.com/technetwork/products/timesten/downloads/

2. As root, create a new software owner and set a password:

useradd -m -c "TimesTen Owner" -d /home/ttadmin -s /bin/bash ttadmin
chmod 755 /home/ttadmin
passwd ttadmin

279

http://www.oracle.com/technetwork/products/timesten/downloads/

PHP and TimesTen In-Memory Database

3. Create a new timesten group and add the TimesTen administrator and the Apache users
to it:

groupadd timesten
usermod -a -G timesten ttadmin
usermod -a -G timesten apache

4. Create the instance registry:

mkdir /etc/TimesTen
chgrp ttadmin /etc/TimesTen
chmod 770 /etc/TimesTen/

5. Login as the ttadmin user.

6. In a terminal, extract the downloaded software archive:

$ tar -xf /tmp/timesten112220.linux8664.tar.gz

7. Install TimesTen:

$ cd linux8664
$./setup.sh

Accept the default values except for the Group and the QuickStart questions. The
prompts are answered:

• Instance name: tt1122
• Install the "Client/Sever and Data manager"
• Install into /home/ttadmin
• Create the daemon directory /home/ttadmin/TimesTen/tt1122/info
• Daemon logs are in /home/ttadmin/TimesTen/tt1122/info
• Default port for the TimesTen daemon: 53396
• Change the group to restrict access from ttadmin to timesten.
• Enable PL/SQL
• TNS_ADMIN is skipped and left unset
• The TimesTen server listens on 53397
• Install the QuickStart and Documentation: yes (This is not the default.)
• Create the DemoDataStore in /home/ttadmin/TimesTen/tt1122/info
• Do not use Replication with Oracle Clusterware

8. If you want the database to start when the machine boots, login as the root user and
follow the steps given on the screen to install the startup scripts in /etc/init.d:

cd /home/ttadmin/TimesTen/tt1122/bin
./setuproot -install

TimesTen will now be running.

Managing TimesTen
The /home/ttadmin/TimesTen/tt1122/quickstart/ttquickstartenv.sh script is a convenient way
to set environment variables before accessing the sample database.

280

Managing TimesTen

As the ttadmin user, check the status of the instance by setting the environment and
running the ttstatus command:

$ source /home/ttadmin/TimesTen/tt1122/quickstart/ttquickstartenv.sh
$ ttstatus

This gives:

TimesTen status report as of Mon Jun 18 12:44:50 2012

Daemon pid 23629 port 53396 instance tt1122
TimesTen server pid 23638 started on port 53397
--
Data store /home/ttadmin/TimesTen/tt1122/info/DemoDataStore/sampledb_1122
There are no connections to the data store
Replication policy : Manual
Cache Agent policy : Manual
PL/SQL enabled.

Accessible by group timesten
End of report

There is a command-line tool for running ad hoc queries against an instance:

$ ttisql "dsn=sampledb_1122;uid=appuser"

Installing the sample database is shown in the next section. The default appuser password is
oracle.

If you need to manually stop or start the instance of TimesTen, login as ttadmin, set the
environment, and run:

$ ttdaemonadmin -start

or

$ ttdaemonadmin -stop

If you want to remove the instance of TimesTen, first stop it and then, as root, run:

cd /home/ttadmin
TimesTen/tt1122/bin/setup.sh -uninstall

Creating the TimesTen Sample Database
Create the sample database by logging in as the ttadmin operating system user and following
these steps:
1. Run the creation script:

$ cd \ /home/ttadmin/TimesTen/tt1122/quickstart/sample_scripts/createdb
$./build_sampledb.sh

2. Choose and remember passwords when prompted for the adm, appuser and xlauser
users.

281

PHP and TimesTen In-Memory Database

Installing Apache and PHP for TimesTen
The packaged Apache and PHP binaries are used below, but installation can be customized as
needed using steps shown earlier in this book.

Install Apache and PHP with:
1. As root, use the bundled packages for the web server and for PHP:

yum install httpd php php-devel

2. Edit /etc/php.ini and add a timezone setting using an appropriate timezone, for example:

date.timezone = America/Los_Angeles

3. Download the latest OCI8 extension from PECL. Extract and install it with:

tar -xf oci8-1.4.9.tgz
cd oci8-1.4.9
phpize
./configure –with-oci8=instantclient,\
/home/ttadmin/TimesTen/tt1122/ttoracle_home/instantclient_11_2
make
make install

4. Edit /etc/php.ini and add:

extension=oci8.so

5. Configure Apache. In /etc/sysconfig/httpd set TNS_ADMIN and LD_LIBRARY_PATH:

TT=/home/ttadmin/TimesTen/tt1122
export TNS_ADMIN=$TT/network/admin/samples
export LD_LIBRARY_PATH=$TT/lib:$TT/ttoracle_home/instantclient_11_2

6. Make sure SELinux is in Permissive mode by editing /etc/sysconfig/selinux and rebooting.
Alternatively turn it off temporarily with:

setenforce permissive

Checking the Installation
Use the httpd service if you manually need to stop and restart Apache. Since the
configuration just changed when OCI8 was installed, restart it now:

service httpd restart

Test PHP by creating a file /var/www/html/pi.php:

<?php
phpinfo();
?>

Load this in a browser using http://localhost/pi.php. You will get the normal page of
configuration information about PHP. Check there is a section for OCI8.

282

Connecting to TimesTen With PHP OCI8

Connecting to TimesTen With PHP OCI8
The ttisql example given earlier shows the credentials and connect string for the sample
database. These can be used in PHP scripts to connect to TimesTen. Test with a basic query
script such as /var/www/html/oci8tt.php:

Script 124: /var/www/html/oci8tt.php

<?php

$c = oci_connect("appuser", "oracle", "sampledb_1122");
if (!$c) {
 $m = oci_error();
 trigger_error('Could not connect to database: ' .
 $m['message'], E_USER_ERROR);
}

$s = oci_parse($c, "select * from emp");
if (!$s) {
 $m = oci_error($c);
 trigger_error('Could not parse statement: ' .
 $m['message'], E_USER_ERROR);
}
$r = oci_execute($s);
if (!$r) {
 $m = oci_error($s);
 trigger_error('Could not execute statement: ' .
 $m['message'], E_USER_ERROR);
}

echo "<table border='1'>\n";
while (($row =
 oci_fetch_array($s, OCI_ASSOC+OCI_RETURN_NULLS)) != false) {
 echo "<tr>\n";
 foreach ($row as $item) {
 echo " <td>".($item !== null ? htmlentities($item,
 ENT_QUOTES) : " ")."</td>\n";
 }
 echo "</tr>\n";
}
echo "</table>\n";

?>

Load this in a browser with http://localhost/oci8tt.php. The query results will be displayed in a
table.

If you get a blank screen or have problems, check the Apache log in
/var/logs/httpd/error_log.

Configuring TimesTen
The default RAM policy of TimesTen is inUse, meaning that the database is loaded into
memory at time of first connection, and unloaded when the last connection completes. This

283

PHP and TimesTen In-Memory Database

means that the first and last connections can be slow. This is most noticeable if you are using
command line scripts or using non-persistent connections.

You can change the inUse grace period or alter the RAM policy with ttRamPolicySet() to
overcome this. The changed value is persistent.

With an inUse policy, the slow unload-on-last-connect issue can be resolved by setting a
grace period time the database is kept in RAM after the last application has disconnected. For
example this PHP code sets it to five seconds, deferring the database shutdown and allowing
the PHP application to close the last connection without delay:

$s = oci_parse($cc, "call ttRamPolicySet('inUse', 5)");
oci_execute($s);

However instead of inUse, a general recommendation is to change the RAM policy to manual:

$s = oci_parse($cc, "call ttRamPolicySet('manual', null)");
oci_execute($s);

With this done, before running applications, you must explicitly load the database into RAM by
using the ttAdmin utility:

$ ttAdmin -ramLoad

When the database is no longer needed it can be unloaded with:

$ ttAdmin -ramUnLoad

The TimesTen manual discusses RAM policies and gives other options.

284

CHAPTER 16

PHP AND ORACLE TUXEDO

Oracle Tuxedo is a transaction oriented application server which can be used for developing
and deploying applications written in PHP, Python and Ruby, as well as in the traditional
languages C, C++, and COBOL. Tuxedo is based on a routing and queuing system, which is
highly configurable.

This chapter shows using Oracle Tuxedo 11.1 with PHP applications running under Apache.
HTTP requests are forwarded from Apache to mod_tuxedo which then invokes the PHP script
engine.

The mod_tuxedo component for handling PHP (and Python and Ruby) web requests is licensed
with Oracle Service Architecture Leveraging Tuxedo (SALT) . It is available on Linux and
Solaris. It is included in SALT from 11.1.1.2.2 onwards. In Tuxedo 12c, it is part of the base
Tuxedo component.

There is a pre-configured demonstration Tuxedo Web Application Server Demo VM for
VirtualBox available that shows similar examples to this chapter. It can be found on the
Tuxedo download page:
http://www.oracle.com/technetwork/middleware/tuxedo/downloads/index.html.

With a service orientated architecture, Tuxedo also allows multiple languages, including
PHP, to be used as service consumers and producers. This is not covered in this manual.

Installing Tuxedo 11.1 and SALT for PHP Web Applications
Begin by reviewing the prerequisites in the documentation at
http://www.oracle.com/technetwork/middleware/tuxedo/documentation/index.html.

285

Figure 73: Oracle SALT Web Appliction Server Architecture

http://www.oracle.com/technetwork/middleware/tuxedo/documentation/index.html
http://www.oracle.com/technetwork/middleware/tuxedo/downloads/index.html

PHP and Oracle Tuxedo

Remember to turn off SELinux before beginning the installation by editing
/etc/sysconfig/selinux and rebooting.

Installing Oracle Tuxedo

To install Tuxedo, follow these steps:
1. Create a user to be the Tuxedo administrator and login as that user, for example cjones.

2. If you intend to run the operating system packaged Apache, make the new user directory
readable to the webserver:

$ chmod 755 /home/cjones

3. Download Oracle Tuxedo 11gR1 (11.1.1.2.0) from
http://www.oracle.com/technetwork/middleware/tuxedo/downloads/index.html

4. Run the Tuxedo installer:

$ sh tuxedo111120_64_Linux_01_x86.bin

5. A GUI appears. Start the menu by clicking Next:

286

Figure 74: Oracle Tuxedo Installer Introduction

http://www.oracle.com/technetwork/middleware/tuxedo/downloads/index.html

Installing Tuxedo 11.1 and SALT for PHP Web Applications

6. Do a Full Install:

7. Create a new Oracle Home. Here, the directory /home/cjones/oracle was chosen:

287

Figure 76: Oracle Tuxedo Choosing the Oracle Home

Figure 75: Oracle Tuxedo Install Set Menu

PHP and Oracle Tuxedo

8. Install the Samples by checking the box in the bottom right of the installer. Leave the
Product Installation Directory as the default.

9. Confirm the installation:

288

Figure 77: Oracle Tuxedo Choosing the Product Directory

Figure 78: Oracle Tuxedo Pre-Installation Summary

Installing Tuxedo 11.1 and SALT for PHP Web Applications

10. In the post installation setup, Enter a password for tlisten. This won't be used for this
example:

11. For this example, complete the installation by choosing No to configuring LDAP in the SSL
Installation Choice menu:

289

Figure 80: Oracle Tuxedo SSL Configuration

Figure 79: Oracle Tuxedo "tlisten" configuration

PHP and Oracle Tuxedo

Installing Oracle SALT

To install Oracle SALT follow these instructions:
1. Download Oracle Service Architecture Leveraging Tuxedo (SALT) 11gR1 (11.1.1.2.2) from

http://www.oracle.com/technetwork/middleware/tuxedo/downloads/index.html

2. Run the SALT installer:

$ sh salt111122_64_Linux_01_x86.bin

3. Start the menu by clicking Next:

4. Install into the same home as Tuxedo, /home/cjones/oracle:

290

Figure 81: Oracle SALT Installation Introduction

http://www.oracle.com/technetwork/middleware/tuxedo/downloads/index.html

Installing Tuxedo 11.1 and SALT for PHP Web Applications

5. Choose to install the SALT Client and Server. The client is for the Service Component
Architecture which makes components distributable:

6. Review the install options and click Install:

291

Figure 82: Oracle SALT Choosing the Home Directory

Figure 83: Oracle SALT Install Set Choice

PHP and Oracle Tuxedo

7. The installation of SALT is complete:

292

Figure 84: Oracle SALT Installation Review

Figure 85: Oracle SALT Installation Completion

Installing PHP for Oracle Tuxedo

Installing PHP for Oracle Tuxedo
PHP must be built with the embded option so it can be loaded by mod_tuxedo.
1. Install Oracle Instant Client for the PHP OCI8 Extension. Download the basic and devel

packages from http://www.oracle.com/technetwork/database/features/instant-
client/index-097480.html and install with:

rpm -i oracle-instantclient11.2-basic-11.2.0.3.0-1.x86_64.rpm
rpm -i oracle-instantclient11.2-devel-11.2.0.3.0-1.x86_64.rpm

2. Download PHP from http://php.net/downloads.php. Use PHP 5.3.2 or higher.

3. Extract, configure and install PHP with the embedded option, for example with:

$ tar -jxf php-5.4.4.tar.bz2
$ cd php-5.4.4
$./configure --prefix=/home/cjones/php --with-oci8=instantclient \

 --enable-embed
$ make install

In this example, OCI8 will automatically locate the Instant Client RPMs. Adjust the
configuration line if you use Oracle client libraries in a different location. Refer to the
chapter Installing and Configuring PHP.

4. Copy a php.ini configuration file:

$ cp php8.ini-development $HOME/php/lib/php.ini

5. Edit the new php.ini and set the time zone, for example:

date.timezone = America/Los_Angeles

These steps have created the shared, embedded library /home/cjones/php/lib/libphp5.so.

Installing Oracle Tuxedo into Apache
1. Typically Tuxedo is installed in Oracle HTTP Server as shown in the Tuxedo manuals.

However for this example the packaged system Apache is used.
Edit /etc/httpd/conf/httpd.conf and, for the duration of this example, change the user
and group so that Apache runs as the Tuxedo software owner, for example:

User cjones
Group cjones

You could alternatively install Apache 2.2 as the Tuxedo software owner, configuring
it, for example, with ./configure --prefix=$HOME/apache --enable-so --with-
port=8888. Modify any paths suggested below if you choose this option.

2. As the root users, copy the Tuxedo module into Apache's modules directory:

cp /home/cjones/oracle/tuxedo11gR1/udataobj/mod_tuxedo.so \
 /etc/httpd/modules/

3. In /etc/httpd/conf/httpd.conf load mod_tuxedo.so:

293

http://php.net/downloads.php
http://www.oracle.com/technetwork/database/features/instant-client/index-097480.html
http://www.oracle.com/technetwork/database/features/instant-client/index-097480.html

PHP and Oracle Tuxedo

LoadModule tuxedo_module modules/mod_tuxedo.so

4. Also in httpd.conf, locate the Directory directive for the document root /var/www/html.
Add an <IfModule mod_tuxedo.c> block at the bottom of the section:

<Directory "/var/www/html">

. . .

<IfModule mod_tuxedo.c>
 AddHandler tuxedo-script .php
 TuxService myphpdemo
 TuxConfig /home/cjones/phpdemo/tuxconfig
</IfModule>

</Directory>

This forwards requests for PHP files located in Apache's document root directory to
the myphpdemo service of Tuxedo which is described in the
/home/cjones/phpdemo/tuxconfig configuration file. The next steps show how to
create this service and how to create the configuration file. Change the user directory
cjones to your Tuxedo software owner.

Because it is Tuxedo that invokes PHP, you could also configure Apache to run in the
more efficient threaded mode than the standard Apache mod_php uses.

Configuring Oracle Tuxedo for PHP
The sample PHP application does a database query. Follow these steps to configure Tuxedo:
1. Make a directory for the sample application's configuration:

$ mkdir $HOME/phpdemo

2. Create a Tuxedo "Universal Bulletin Board" configuration file. The state of a Tuxedo
system is kept in a “bulletin board”, hence the configuration file name. A binary version of
this configuration file will be used by Tuxedo administrative commands. For this example
the configuration file $HOME/phpdemo/ubbphpdemo contains:

*RESOURCES
IPCKEY 123456

DOMAINID phpdemoapp
MASTER phpdemo
MAXACCESSERS 50
MAXSERVERS 50
MAXSERVICES 100
MODEL SHM
LDBAL N

*MACHINES
DEFAULT:
 APPDIR="/home/cjones/phpdemo"

294

Configuring Oracle Tuxedo for PHP

 TUXCONFIG="/home/cjones/phpdemo/tuxconfig"
 TUXDIR="/home/cjones/oracle/tuxedo11gR1"

"localhost.localdomain" LMID=phpdemo

*GROUPS
GROUP1
 LMID=phpdemo GRPNO=1 OPENINFO=NONE

*SERVERS
DEFAULT:
 CLOPT="-A"

WEBHNDLR SRVGRP=GROUP1 SRVID=1 CLOPT="-A -- -l PHP -S myphpdemo"
 MIN=5 MAX=50 RESTART=Y MAXGEN=255

*SERVICES

Change cjones in the directory paths to your user name. TUXCONFIG gives the name
of the binary file that ubbphpdemo will be compiled to, as shown in the next section.

The IPCKEY value sets the address of shared memory, effectively “naming” the
bulletin board.

The MAXACCESSERS, MAXSERVERS and MAXSERVICES values configure the size of
Tuxedo data structures, determining the limits of the system. One PHP application is
one service. Each HTTP request will be sent to a server for processing.
MAXACCESSERS is the number of clients and servers that can connect to the bulletin
board.

The MODEL is set to SHM for “shared memory”, which is suitable for this
demonstration's single machine setup.

The load balancer control, LDBAL, is set to N as recommended for a standalone
server.

Other options exist, such as BLOCKTIME for limiting the request time. The general UBB
configuration options are documented in the UBBCONFIG(5) section of the File
Formats, Data Descriptions, MIBs, and System Processes Reference
http://docs.oracle.com/cd/E18050_01/tuxedo/docs11gr1/rf5/rf5.html#wp3370
051. There are other examples of configuration files in the example directories under
$HOME/oracle/tuxedo11gR1/samples/atmi.

The WEBHNDLR entry is a system process server used with mod_tuxedo for scripts
written in PHP, Python or Ruby. In this example, it is defined to handle PHP requests.
The name myphpdemo matches the TuxService name in httpd.conf. WEBHNDLR
syntax is shown in the Oracle SALT Command Reference
http://docs.oracle.com/cd/E18050_01/salt/docs11gr1/ref/comref.html#wp118
5303.

295

http://docs.oracle.com/cd/E18050_01/salt/docs11gr1/ref/comref.html#wp1185303
http://docs.oracle.com/cd/E18050_01/salt/docs11gr1/ref/comref.html#wp1185303
http://docs.oracle.com/cd/E18050_01/tuxedo/docs11gr1/rf5/rf5.html#wp3370051
http://docs.oracle.com/cd/E18050_01/tuxedo/docs11gr1/rf5/rf5.html#wp3370051

PHP and Oracle Tuxedo

Your machine name must be given in the MACHINES section of ubbphpdemo. Without
this, the tmloadcf command (used in the next section) will fail with CMDTUX_CAT:868
ERROR: tmloadcf cannot run on a non-master node. Use the name returned by your
hostname command. If your machine has a long DHCP generated name, you can
temporarily set a shorter name by executing this as root:

hostname phptux

However if you do this command, connections to an Oracle database will fail with
ORA-24408: could not generate unique server group name unless you also add the
name to /etc/hosts:

127.0.0.1 localhost.localdomain localhost phptux

You can also set the name in httpd.conf to avoid an Apache warning when the web
server is started:

ServerName phptux:80

3. Build the binary configuration file from ubbphpdemo:

$ cd $HOME/phpdemo
$ source env.sh
$ tmloadcf -y ubbphpdemo

This creates the file tuxconfig specified by the ubbphpdemo TUXCONFIG directive.
Tuxedo uses tuxconfig to set up the “bulletin board” on each server machine in the
Tuxedo domain.

Starting and Managing Tuxedo
1. Create a file $HOME/phpdemo/env.sh to set the environment for Tuxedo administration

commands:

export TUXDIR=$HOME/oracle/tuxedo11gR1
export PATH=$TUXDIR/bin:$PATH
export LD_LIBRARY_PATH=$TUXDIR/lib:$HOME/php/lib:$LD_LIBRARY_PATH
export APPDIR=$HOME/phpdemo
export TUXCONFIG=$APPDIR/tuxconfig
export FLDTBLDIR32=$TUXDIR/udataobj
export FIELDTBLS32=http.fml32

The “field table” httpd.fml32 maps the HTTP header fields for mod_tuxedo. The library
path includes the location of the PHP embedded library.

2. Run the file to set the environment:

$ source $HOME/phpdemo/env.sh

3. Apache needs the same environment. Edit /etc/sysconfig/httpd and add these variables:

export TUXDIR=/home/youruser/oracle/tuxedo11gR1
export FLDTBLDIR32=$TUXDIR/udataobj
export FIELDTBLS32=http.fml32

296

Starting and Managing Tuxedo

export LD_LIBRARY_PATH=$TUXDIR/lib:$LD_LIBRARY_PATH

If you installed your own Apache 2.2, add the variables to the envvars file, for
example /opt/apache/bin/envvars, or otherwise make sure the shell that starts Apache
has the values set.
Note that Apache does not invoke PHP and doesn't need the PHP library directory in
LD_LIBRARY_PATH.

4. Use tmboot to start Tuxedo as the Tuxedo software owner:

$ tmboot -y
Booting all admin and server processes in /home/cjones/phpdemo/tuxconfig
INFO: Oracle Tuxedo, Version 11.1.1.2.0, 64-bit, Patch Level (none)

Booting admin processes ...

exec BBL -A :
process id=3625 ... Started.

Booting server processes ...

exec WEBHNDLR -A -- -l PHP -S myphpdemo :
process id=3626 ... Started.
exec WEBHNDLR -A -- -l PHP -S myphpdemo :
process id=3627 ... Started.
exec WEBHNDLR -A -- -l PHP -S myphpdemo :
process id=3628 ... Started.
exec WEBHNDLR -A -- -l PHP -S myphpdemo :
process id=3629 ... Started.
exec WEBHNDLR -A -- -l PHP -S myphpdemo :
process id=3630 ... Started.
6 processes started.

You can see the services running by using tmadmin, which gives information about
the Tuxedo "Bulletin Boards":

$ tmadmin
> printservice
Service Name Routine Name Prog Name Grp Name ID Machine # Done Status
------------ ------------ --------- -------- -- ------- ------ ------
myphpdemo SVCWEB WEBHNDLR GROUP1 1 simple 0 AVAIL
SVCWEB SVCWEB WEBHNDLR GROUP1 1 simple 0 AVAIL
myphpdemo SVCWEB WEBHNDLR GROUP1 2 simple 0 AVAIL
SVCWEB SVCWEB WEBHNDLR GROUP1 2 simple 0 AVAIL
myphpdemo SVCWEB WEBHNDLR GROUP1 3 simple 0 AVAIL
SVCWEB SVCWEB WEBHNDLR GROUP1 3 simple 0 AVAIL
myphpdemo SVCWEB WEBHNDLR GROUP1 4 simple 0 AVAIL
SVCWEB SVCWEB WEBHNDLR GROUP1 4 simple 0 AVAIL
myphpdemo SVCWEB WEBHNDLR GROUP1 5 simple 0 AVAIL
SVCWEB SVCWEB WEBHNDLR GROUP1 5 simple 0 AVAIL

For more information on tmadmin see The Use of tmadmin(1) in
http://docs.oracle.com/cd/E13203_01/tuxedo/tux64/tag/adminops.htm.

297

http://docs.oracle.com/cd/E13203_01/tuxedo/tux64/tag/adminops.htm

PHP and Oracle Tuxedo

There is a separately installable Oracle Tuxedo System and Application Monitor
(TSAM) for Tuxedo that can be used to monitor and manage the Tuxedo and SALT. It
includes graphing and alerting functionality. Data can be viewed in real time or
historically. TSAM is available from the Tuxedo web pages,
http://www.oracle.com/us/products/middleware/tuxedo/tsam/index.html.

5. To handle requests for PHP scripts, start Apache as root:

service httpd start

6. When finished with the example, shutdown Apache first:

service httpd stop

Then shutdown Tuxedo as the Tuxedo software owner:

$ tmshutdown -y

Verifying PHP and Tuxedo
1. Create /var/www/html/phpinfo.php containing:

<?php
phpinfo();
?>

2. Load the file in a browser http://localhost/phpinfo.php. The standard PHP configuration
screen is shown.

3. Create a database query script, /var/www/html/ocitux.php:

Script 1: ocitux.php

<?php

 $c = oci_connect("hr", "welcome", "localhost/XE");

 $s = oci_parse($c, "select city from locations");
 oci_execute($s);
 echo "<table border='1'>\n";
 while (($row = oci_fetch_array($s, OCI_ASSOC)) != false) {
 echo " <tr>\n";
 echo " <td>".htmlentities($row['CITY'], ENT_QUOTES)."</td>\n";
 echo " </tr>\n";
 }
 echo "</table>\n";

?>

4. This file can be run by loading the URL http://localhost/ocitux.php:

298

http://www.oracle.com/us/products/middleware/tuxedo/tsam/index.html

Verifying PHP and Tuxedo

Existing PHP applications can make use of Tuxedo via mod_tuxedo allowing them to be
integrated into a highly managed environment.

299

Figure 86: Output from ocitux.php

PHP and Oracle Tuxedo

300

CHAPTER 17

GLOBALIZATION

This chapter discusses global application development in a PHP and Oracle Database
environment. It addresses the basic tasks associated with developing and deploying global
Internet applications, including developing locale awareness, constructing HTML content in
the user-preferred language, and presenting data following the cultural conventions of the
locale of the user.

Building a global Internet application that supports different locales requires good
development practices. A locale refers to a national language and the region in which the
language is spoken. The application itself must be aware of the locale preference of the user
and be able to present content following the cultural conventions expected by the user. It is
important to present data with appropriate locale characteristics, such as the correct date and
number formats. Oracle Database is fully internationalized to provide a global platform for
developing and deploying global applications.

Establishing the Environment Between Oracle and PHP
Correctly setting up the connectivity between the PHP engine and the Oracle database is the
first step in building a global application. It guarantees data integrity across all tiers. Most
Internet based standards support Unicode as a character encoding. This chapter focuses on
using Unicode as the character set for data exchange.

Setting the Language, Territory and Character Set With NLS_LANG

OCI8 is an Oracle OCI application, and rules that apply to OCI also apply to PHP. Oracle locale
behavior (including the client character set used in OCI applications) is defined by Oracle’s
national language support NLS_LANG environment variable. This environment variable has
the form:

<language>_<territory>.<character set>

For example, for a German user in Germany running an application in Unicode, NLS_LANG
should be set to:

GERMAN_GERMANY.AL32UTF8

The language and territory settings control Oracle behaviors such as the Oracle date format,
error message language, and the rules used for sort order. The character set AL32UTF8 is the
Oracle name for UTF-8. You should use a character set compatible with the operating system,
for example on Windows where there is no UTF-8, you could use WE8MSWIN1252 to match
the English Windows code page 1252.

In some operating system environments you may also need to set the LC_ALL and LANG
environment variables, for example these could be added to /etc/sysconfig/httpd:

export NLS_LANG=FRENCH_FRANCE.WE8ISO8859P1
export LC_ALL=french
export LANG=french

301

Globalization

The NLS_LANG character set can also be passed as a parameter to the OCI8 connection
functions. Doing this is recommended for connection performance reasons, even if NLS_LANG
is also set.

If the character set used by PHP OCI8 does not match the character set used by the
database, Oracle will try to convert when data is inserted and queried. This may reduce
runtime performance. Also an accurate mapping is not always be possible, resulting in data
being converted to question marks.

There are other environment variables that can be used to set particular aspects of
globalization. For information on NLS_LANG and other Oracle language environment variables,
see the Oracle documentation.

The section Setting the Oracle Environment on Linux in the Installing and Configuring PHP
chapter discusses how environment variables can be set for Apache.

If the globalization settings are invalid, PHP may fail to connect to Oracle and give an error
like ORA-12705: Cannot access NLS data files or invalid environment specified.

Some globalization values can be changed per connection:

$s = oci_parse($c,"alter session set nls_territory=germany nls_language=german");
oci_execute($s);

After executing this, Oracle error messages will be in German and some localization features
such as the default date format will have changed.

Caution: When changing the session settings for a persistent PHP connection, the next time
the connection is used, the old values will still be in effect.

If PHP is installed on Oracle HTTP Server, you must set NLS_LANG as an environment variable
in $ORACLE_HOME/opmn/conf/opmn.xml:

<ias-component id="HTTP_Server">
 <process-type id="HTTP_Server" module-id="OHS">
 <environment>
 <variable id="PERL5LIB"
value="D:\oracle\1012J2EE\Apache\Apache\mod_perl\site\5.6.1\lib"/>
 <variable id="PHPRC" value="D:\oracle\1012J2EE\Apache\Apache\conf"/>
 <variable id="NLS_LANG" value="german_germany.al32utf8"/>
 </environment>
 <module-data>
 <category id="start-parameters">
 <data id="start-mode" value="ssl-disabled"/>
 </category>
 </module-data>
 <process-set id="HTTP_Server" numprocs="1"/>
 </process-type>
 </ias-component>

You must restart the Web listener to implement the change.
To find the language and territory currently used by PHP, and the character set with which

the database stores data, execute:

$s = oci_parse($c,
 "select sys_context('userenv', 'language') as nls_lang from dual");

302

Establishing the Environment Between Oracle and PHP

oci_execute($s);
$res = oci_fetch_array($s, OCI_ASSOC);
echo $res['NLS_LANG'] . "\n";

Output is of the form:

AMERICAN_AMERICA.WE8MSWIN1252

Setting the Oracle Number Format With NLS_NUMERIC_CHARACTERS

OCI8 fetches numbers as PHP strings. The conversion is done by Oracle before the values are
returned to the application code. It is possible to lose precision or get errors in PHP when
strings not using the US decimal and thousands separator conventions expected by PHP are
later cast to numbers for arithmetic. To avoid problems it is recommended to explicitly set the
number conversion format.

The following examples illustrate the differences in the decimal character and group
separator between the United States and Germany when numbers are converted to strings by
Oracle.

SQL> alter session set nls_territory = america;

Session altered.

SQL> select employee_id EmpID,
 2 substr(first_name,1,1)||'.'||last_name "EmpName",
 3 to_char(salary, '99G999D99') "Salary"
 4 from employees
 5 where employee_id < 105;

 EMPID EmpName Salary
---------- --------------------------- ----------
 100 S.King 24,000.00
 101 N.Kochhar 17,000.00
 102 L.De Haan 17,000.00
 103 A.Hunold 9,000.00
 104 B.Ernst 6,000.00

SQL> alter session set nls_territory = germany;

Session altered.

SQL> select employee_id EmpID,
 2 substr(first_name,1,1)||'.'||last_name "EmpName",
 3 to_char(salary, '99G999D99') "Salary"
 4 from employees
 5 where employee_id < 105;

 EMPID EmpName Salary
---------- --------------------------- ----------
 100 S.King 24.000,00
 101 N.Kochhar 17.000,00
 102 L.De Haan 17.000,00
 103 A.Hunold 9.000,00

303

Globalization

 104 B.Ernst 6.000,00

The format '99G999D99' contains the 'G' thousands separator and 'D' decimal separator at
the appropriate places in the desired output number. In the two territories, the actual
character displayed is different.

The equivalent PHP example is:

Script 125: numformat.php

<?php

$c = oci_connect('hr', 'welcome', 'localhost/XE');

$s = oci_parse($c, "alter session set nls_territory = germany");
oci_execute($s);

$s = oci_parse($c, "select 123.567 as num from dual");
oci_execute($s);
$r = oci_fetch_array($s, OCI_ASSOC);

$n1 = $r['NUM']; // value as fetched
var_dump($n1);

$n2 = (float)$n1; // now cast it to a number
var_dump($n2);

?>

The output is:

string(7) "123,567"
float(123)

If NLS_TERRITORY had instead been set to america the output would have been correct:

string(7) "123.567"
float(123.567)

The problem can also occur depending on the territory component of NLS_LANG, or the value
of NLS_NUMERIC_CHARACTERS. The latter variable can be used to override the number
format while other territory settings remain in effect. It can be set as an environment variable
in /etc/sysconfig/httpd or in the shell that runs the PHP executable:

export NLS_LANG=AMERICAN_AMERICA.AL32UTF8
export NLS_NUMERIC_CHARACTERS=".,"

The NLS_NUMERIC_CHARACTERS environment variable is only evaluated if NLS_LANG is also
set.

The value can also be set with a LOGON trigger, or by using an ALTER SESSION command
in PHP:

$s = oci_parse($c, "alter session set nls_numeric_characters = '.,'");
oci_execute($s);

Changing the setting in PHP is likely to be the slowest of the methods.

304

Establishing the Environment Between Oracle and PHP

The tip Do Not Set the Date or Numeric Format Unnecessarily in the chapter Connecting to
Oracle Using OCI8 shows how an ALTER SESSION command can be used in a database LOGON
trigger.

Setting the Oracle Date Format With NLS_DATE_FORMAT

The basic date format used by Oracle depends on your Globalization settings, such as the
value in NLS_LANG.

The three different date presentation formats in Oracle are standard, short, and long
dates. The following examples illustrate the differences between the short date and long date
formats for both the United States and Germany.

SQL> alter session set nls_territory = america nls_language = american;

SQL> select employee_id EmpID,
 2 substr(first_name,1,1)||'.'||last_name "EmpName",
 3 to_char(hire_date,'DS') "Hiredate",
 4 to_char(hire_date,'DL') "Long HireDate"
 5 from employees
 6* where employee_id <105;

 EMPID EmpName Hiredate Long HireDate
---------- ---------------- ---------- -----------------------------
 100 S.King 06/17/1987 Wednesday, June 17, 1987
 101 N.Kochhar 09/21/1989 Thursday, September 21, 1989
 102 L.De Haan 01/13/1993 Wednesday, January 13, 1993
 103 A.Hunold 01/03/1990 Wednesday, January 3, 1990
 104 B.Ernst 05/21/1991 Tuesday, May 21, 1991

SQL> alter session set nls_territory=germany nls_language=german;

SQL> select employee_id EmpID,
 2 substr(first_name,1,1)||'.'||last_name "EmpName",
 3 to_char(hire_date,'DS') "Hiredate",
 4 to_char(hire_date,'DL') "Long HireDate"
 5 from employees
 6* where employee_id <105;

 EMPID EmpName Hiredate Long HireDate
---------- ----------------- -------- ------------------------------
 100 S.King 17.06.87 Mittwoch, 17. Juni 1987
 101 N.Kochhar 21.09.89 Donnerstag, 21. September 1989
 102 L.De Haan 13.01.93 Mittwoch, 13. Januar 1993
 103 A.Hunold 03.01.90 Mittwoch, 3. Januar 1990
 104 B.Ernst 21.05.91 Dienstag, 21. Mai 1991

In addition to these three format styles you can customize the format using many other date
format specifiers. Search the Oracle SQL language documentation for “datetime format
elements” to see a list.

If the date format derived from the NLS_LANG setting is not the one you want for your PHP
session, you can override the format by setting the environment variable NLS_DATE_FORMAT
in /etc/sysconfig/httpd or in the shell that runs the PHP executable:

export NLS_LANG=AMERICAN_AMERICA.AL32UTF8

305

Globalization

export NLS_DATE_FORMAT='YYYY-MM-DD HH24:MI:SS'

Note if you set NLS_DATE_FORMAT as an environment variable, you also need to set
NLS_LANG otherwise the variable is ignored.

Alternatively you can set it in a LOGON trigger, or change it after connecting in PHP:

$s = oci_parse($c, "alter session set nls_date_format='YYYY-MM-DD HH24:MI:SS'");
oci_execute($s);

Subsequent queries will return the new format:

$s = oci_parse($c, "select sysdate from dual");
$r = oci_execute($s);
$row = oci_fetch_array($s, OCI_ASSOC);
echo "Date is " . $row["SYSDATE"] . "\n";

The output is:

Date is 2007-08-01 11:43:30

One advantage of setting the date format globally instead of using TO_CHAR() is it allows PHP
and Oracle to share a common format for inserts and queries:

Script 126: dateformat.php

<?php

$c = oci_connect('hr', 'welcome', 'localhost/XE');

// Set default Oracle date format
$s = oci_parse($c, "alter session set nls_date_format='YYYY-MM-DD HH24:MI:SS'");
oci_execute($s);

// This PHP Date format matches the new Oracle format
$d = date('Y-m-d H:i:s');
echo "Inserting $d\n";
$s = oci_parse($c, "insert into employees
 (employee_id, last_name, email, hire_date, job_id)
 values (1, 'Jones', 'cj@example.com', :dt, 'ST_CLERK')");
oci_bind_by_name($s, ":dt", $d);
oci_execute($s);

$s = oci_parse($c, "select hire_date from employees where employee_id = 1");
oci_execute($s);
oci_fetch_all($s, $res);
var_dump($res);

?>

The output is:

Inserting 2008-10-23 04:01:17
array(1) {
 ["HIRE_DATE"]=>
 array(1) {
 [0]=>

306

Establishing the Environment Between Oracle and PHP

 string(19) "2008-10-23 04:01:17"
 }
}

Date formats can be explicitly altered by a language setting:

SQL> select to_char(systimestamp,

 'Dy, dd Mon yyyy hh24:mi:ss tzhtzm','NLS_DATE_LANGUAGE=American') from dual;

TO_CHAR(SYSTIMESTAMP,'DY,DDMONYYYYHH24:MI:SSTZHTZ

Thu, 07 Jun 2012 17:05:55 -0700

SQL> select to_char(systimestamp,
 'Dy, dd Mon yyyy hh24:mi:ss tzhtzm','NLS_DATE_LANGUAGE=German') from dual;

TO_CHAR(SYSTIMESTAMP,'DY,DDMONYYYYHH24:MI:SST

Do, 07 Jun 2012 17:05:56 -0700

Here, the day of the week has been translated.

Setting the Default Session Time Zone With ORA_SDTZ

The ORA_SDTZ environment variable sets the time zone used when querying TIMESTAMP
WITH LOCAL TIME ZONE columns. It also affects TIMESTAMP values converted to TIMESTAMP
WITH TIME ZONE or TIMESTAMP WITH LOCAL TIME ZONE data types. It does not affect
SYSDATE and SYSTIMESTAMP values which use the database server time.

You can set ORA_SDTZ to a timezone, an offset or a region:

$ export ORA_SDTZ='-05:00'

Manipulating Strings
To handle data in PHP, there are several extensions that can be used. The common extensions
are mbstring, intl and iconv. These can be installed and configured like any other PHP source
code or PECL extension.

Once mbstring is installed, you can change the behavior of the standard PHP string
functions by setting mbstring.func_overload in php.ini to one of the Overload settings. For
more information, see the PHP mbstring reference manual at http://php.net/mbstring.

Your application code should use functions such as mb_strlen() to calculate the number of
characters in strings. This may return different values than strlen(), which returns the
number of bytes in a string.

The intl package implements some International Components for Unicode (ICU)
functionality such as Collators and Transliterators.

Determining the Locale of the User
In a global environment, your application should accommodate users with different locale
preferences. Once it has determined the preferred locale of the user, the application should

307

http://php.net/mbstring
http://php.net/mbstring

Globalization

construct HTML content in the language of the locale and follow the cultural conventions
implied by the locale.

A common method to determine the locale of a user is from the default ISO locale setting
of the browser. Usually a browser sends its locale preference setting to the HTTP server with
the Accept-Language HTTP header. If the Accept-Language header is NULL, then there is no
locale preference information available, and the application should fall back to a predefined
default locale.

The following PHP code retrieves the ISO locale from the Accept-Language HTTP header
through the $_SERVER Server variable.

$s = $_SERVER["HTTP_ACCEPT_LANGUAGE"]

The intl package's Locale::acceptFromHttp method could also be used.

Developing Locale Awareness

Once the locale preference of the user has been determined, the application can call locale-
sensitive functions, such as date, time, and monetary formatting to format the HTML pages
according to the cultural conventions of the locale.

When you write global applications implemented in different programming environments,
you should enable the synchronization of user locale settings between the different
environments. For example, PHP applications that call PL/SQL procedures should map the ISO
locales to the corresponding NLS_LANGUAGE and NLS_TERRITORY values and change the
parameter values to match the locale of the user before calling the PL/SQL procedures. The
PL/SQL UTL_I18N package contains mapping functions that can map between ISO and Oracle
locales.

Table 18 shows how some commonly used locales are defined in ISO and Oracle
environments.

Table 18: Locale representations in ISO, SQL and PL/SQL programming
environments.

Locale Locale ID NLS_LANGUAGE NLS_TERRITORY

Chinese (P.R.C.) zh-CN SIMPLIFIED CHINESE CHINA

Chinese (Taiwan) zh-TW TRADITIONAL CHINESE TAIWAN

English (U.S.A) en-US AMERICAN AMERICA

English (United Kingdom) en-GB ENGLISH UNITED KINGDOM

French (Canada) fr-CA CANADIAN FRENCH CANADA

French (France) fr-FR FRENCH FRANCE

German de GERMAN GERMANY

Italian it ITALIAN ITALY

Japanese ja JAPANESE JAPAN

Korean ko KOREAN KOREA

Portuguese (Brazil) pt-BR BRAZILIAN PORTUGUESE BRAZIL

Portuguese pt PORTUGUESE PORTUGAL

308

Determining the Locale of the User

Locale Locale ID NLS_LANGUAGE NLS_TERRITORY

Spanish es SPANISH SPAIN

Encoding HTML Pages
The encoding of an HTML page is important information for a browser and an Internet
application. You can think of the page encoding as the character set used for the locale that
an Internet application is serving. The browser must know about the page encoding so that it
can use the correct fonts and character set mapping tables to display the HTML pages.
Internet applications must know about the HTML page encoding so they can process input
data from an HTML form.

Instead of using different native encodings for the different locales, Oracle recommends
that you use UTF-8 (Unicode encoding) for all page encodings. This encoding not only
simplifies the coding for global applications, but it also enables multilingual content on a
single page.

Specifying the Page Encoding for HTML Pages

You can specify the encoding of an HTML page either in the HTTP header, or in HTML page
header.

Specifying the Encoding in the HTTP Header

To specify HTML page encoding in the HTTP header, include the Content-Type HTTP header in
the HTTP specification. It specifies the content type and character set. The Content-Type HTTP
header has the following form:

Content-Type: text/html; charset=utf-8

The charset parameter specifies the encoding for the HTML page. The possible values for the
charset parameter are the IANA names for the character encodings that the browser supports.

It is important to be consistent using the page encoding. For example, the htmlentities()
encoding parameter should match the page encoding so that characters are recognized and
escaped properly. Otherwise your application will be vulnerable to security attacks.

Specifying the Encoding in the HTML Page Header

Use this method primarily for static HTML pages. To specify HTML page encoding in the HTML
page header, specify the character encoding in the HTML header as follows:

<meta http-equiv="Content-Type" content="text/html;charset=utf-8">

The charset parameter specifies the encoding for the HTML page. As with the Content-Type
HTTP Header, the possible values for the charset parameter are the IANA (Internet Assigned
Numbers Authority) names for the character encodings that the browser supports.

Specifying the Page Encoding in PHP

You can specify the encoding of an HTML page in the Content-Type HTTP header in PHP by
setting the default_charset configuration variable in php.ini:

309

Globalization

default_charset = UTF-8

Note the default value of this character set directive was changed to UTF-8 in PHP 5.4. You
can alternatively use the PHP header() function to set the content type:

header('Content-Type: text/html; charset=utf-8');

This setting does not imply any conversion of outgoing pages. Your application must ensure
that the server-generated pages are encoded in UTF-8.

Organizing the Content of HTML Pages for Translation
Making the user interface available in the local language of the user is a fundamental task in
globalizing an application. Translatable sources for the content of an HTML page belong to the
following categories:

● Text strings included in the application code

● Static HTML files, images files, and template files such as CSS

● Dynamic data stored in the database

Strings in PHP

You should externalize translatable strings within your PHP application logic, so that the text is
readily available for translation. These text messages can be stored in flat files or database
tables depending on the type and the volume of the data being translated. PHP's gettext
extension is often used for this purpose.

Static Files

Static files such as HTML and text stored as images are readily translatable. When these files
are translated, they should be translated into the corresponding language with UTF-8 as the
file encoding. To differentiate the languages of the translated files, stage the static files of
different languages in different directories or with different file names.

Data from the Database

Dynamic information such as product names and product descriptions is typically stored in
the database. To differentiate various translations, the database schema holding this
information should include a column to indicate the language. To select the desired language,
you must include a WHERE clause in your query.

Presenting Data Using Conventions Expected by the User
Data in the application must be presented in a way that conforms to the expectation of the
user. Otherwise, the meaning of the data can be misinterpreted. For example, the date
‘12/11/09’ implies ‘11th December 2009’ in the United States, whereas in the United Kingdom
it means ‘12th November 2009’. Similar confusion exists for number and monetary formats of
the users. For example, the symbol ‘.’ is a decimal separator in the United States; in Germany
this symbol is a thousand separator.

310

Presenting Data Using Conventions Expected by the User

Different languages have their own sorting rules. Some languages are collated according
to the letter sequence in the alphabet, some according to the number of stroke counts in the
letter, and some languages are ordered by the pronunciation of the words. Presenting data
not sorted in the linguistic sequence that your users are accustomed to can make searching
for information difficult and time consuming.

Depending on the application logic and the volume of data retrieved from the database, it
may be more appropriate to format the data at the database level rather than at the
application level. Oracle offers many features that help to refine the presentation of data
when the locale preference of the user is known. Earlier in this chapter, examples using date
and numeric formats were shown. The next section provides another example of a locale-
sensitive operation in SQL.

Oracle Linguistic Sorts

Spain traditionally treats ch, ll as well as ñ as unique letters, ordered after c, l and n,
respectively. The following examples illustrate the effect of using a Spanish sort against the
employee names Chen and Chung.

SQL> alter session set nls_sort = binary;

SQL> select employee_id EmpID,
 2 last_name "Last Name"
 3 from employees
 4 where last_name like 'C%'
 5 order by last_name;

 EMPID Last Name
---------- -------------------------
 187 Cabrio
 148 Cambrault
 154 Cambrault
 110 Chen
 188 Chung
 119 Colmenares

SQL> alter session set nls_sort = spanish_m;

SQL> select employee_id EmpID,
 2 last_name "Last Name"
 3 from employees
 4 where last_name like 'C%'
 5 order by last_name;

 EMPID Last Name
---------- -------------------------
 187 Cabrio
 148 Cambrault
 154 Cambrault
 119 Colmenares
 110 Chen
 188 Chung

311

Globalization

Oracle Error Messages

The NLS_LANGUAGE parameter also controls the language of the database error messages
being returned from the database. Setting this parameter prior to submitting your SQL
statement ensures that language-specific database error messages will be logged by the
application.

Consider the following server message:

ORA-00942: table or view does not exist

When the NLS_LANGUAGE parameter is set to French, the server message appears as follows:

ORA-00942: table ou vue inexistante

For more discussion of globalization support features in Oracle Database 11g XE, see Working
in a Global Environment in the Oracle Database Express Edition 2 Day Developer's Guide.

312

CHAPTER 18

TESTING PHP AND THE OCI8
EXTENSION

This chapter discusses running the PHP test suite on Linux. The PHP source code includes
command-line tests for all the core functionality and extensions. You should run these tests
after building PHP on Linux.

It is a good idea to pro-actively test your applications with PHP “release candidates” and
snapshots, http://snaps.php.net. Please report problems so they can be fixed prior to each
final PHP release. This ensures PHP continues doing what you need it to do. Consider
contributing new tests to the PHP community. Adding tests that are relevant to your
application reduces the risks of PHP developers breaking PHP features important to you.
Please send new tests or report issues with PHP’s test suite to php-qa@lists.php.net.

Running OCI8 Tests
The tests in the PHP source directory ext/oci8/tests verify the behavior of the OCI8 extension.
For the tests to run successfully some configuration is needed:
1. Set the Oracle connection details by editing ext/oci8/tests/details.inc and updating the

credentials section:

$user = "system";
$password = "systempwd";
$dbase = "localhost/XE";

The tests rely on being able to create tables, types, stored procedures, and so on. If you
change $user, you may have to grant that database user some extra privileges.

With OCI8 1.4, if you are using Oracle Database 11g Connection Pooling, also set:

$test_drcp = TRUE

To use DRCP, the pool must also be enabled in the database and the PHP connection
string must specify that a pooled database server should be used, for example:

$dbase = "localhost/XE:pooled";

Instead of editing details.inc, equivalent environment variables can be set in a terminal
window:

$ export PHP_OCI8_TEST_USER=system
$ export PHP_OCI8_TEST_PASS=systempwd
$ export PHP_OCI8_TEST_DB=localhost/XE
$ export PHP_OCI8_TEST_DRCP=FALSE

2. Check that variables_order has 'E' in your php.ini, for example:

313

http://snaps.php.net/

Testing PHP and the OCI8 Extension

variables_order = "EGPCS"

Without this flag, the Oracle environment variables are not propagated through the test
system and OCI8 tests can fail to connect.

3. Set any necessary Oracle environment variables in your shell. For example, for PHP linked
with Oracle Database 11g XE enter:

$ source /u01/app/oracle/product/11.2.0/xe/bin/oracle_env.sh

For other database editions run oraenv and enter the identifier of your database:

$ source /usr/local/bin/oraenv
ORACLE_SID = [] ? orcl

If Oracle is on a different machine, you may manually need to set the environment
variables that are otherwise set by these scripts.

4. Some of the OCI8 tests take longer than the default test timeout period, particularly if the
database is on a remote server. Either increase the test suite timeout:

$ export TEST_TIMEOUT=600

or skip the slow tests:

$ export SKIP_SLOW_TESTS=1

5. Run PHP’s test suite with:

$ cd php-5.4
$ make test

If you want to run just the OCI8 tests use:

$ make test TESTS=ext/oci8

Each test script is executed and its status reported.

==
PHP : /home/myhome/php-5.4/sapi/cli/php
PHP_SAPI : cli
PHP_VERSION : 5.4.4
ZEND_VERSION: 2.4,0
PHP_OS : Linux - Linux cj-ol62x64 2.6.39-100
INI actual : /usr/local/apache/conf/php.ini
More .INIs :
CWD : /home/myhome/php-5.4
Extra dirs :
VALGRIND : not used
==
Running selected tests.
PASS oci_bind_array_by_name() and invalid values 1 [array_bind_001.phpt]
PASS oci_bind_array_by_name() and invalid values 2 [array_bind_002.phpt]
PASS oci_bind_array_by_name() and invalid values 3 [array_bind_003.phpt]
...

314

Running OCI8 Tests

Successful tests begin with PASS. Tests that are to be skipped in the current
configuration are marked SKIP. Failing tests are marked FAIL. A summary of the test
results is given at the completion of the tests.

Running a Single Test

To run only one or two tests, execute run-tests.php directly and pass the test names as
parameters. For example, to run a script called demotest.phpt, do the following:

$ cd php-5.4
$ export TEST_PHP_EXECUTABLE=/home/myhome/php-5.4/sapi/cli/php
$ $TEST_PHP_EXECUTABLE run-tests.php ext/oci8/tests/demotest.phpt

The variable TEST_PHP_EXECUTABLE is used inside the controlling run-tests.php script when it
invokes demotest.phpt. In the example, the same PHP binary is also used to run the run-
tests.php script itself, but they could be different executables. The test output is similar to the
previous output.

Tests that Fail
The output of failing tests is kept for analysis. For example, if ext/oci8/tests/demotest.phpt
fails, the following files will be in ext/oci8/tests:

Table 19: Test files and their contents.

File name File Contents

demotest.phpt Test framework script

demotest.php PHP file executed

demotest.out Test output

demotest.exp Expected output as coded in the .phpt file

demotest.diff Difference between actual and expected output

demotest.log Actual and expected output in a single file

It is common for the full PHP test suite to report some test failures. This is because many PHP
extensions are wrappers around system libraries with slightly different behaviors on different
platforms or versions. Also some system configurations may restrict access, for example to
network ports. You can review commonly seen differences at http://qa.php.net/reports.

The PHP test infrastructure doesn't practically allow tests to accept differences across all
versions of Oracle Database. Also if you use the latest OCI8 extension with an older version of
PHP, differences in PHP's var_dump() output can make tests appear to fail.

Creating OCI8 Tests
To add a new OCI8 test, create a phpt file in ext/oci8/tests using the test file format. When you
run make test the new file is automatically run, or you can call it explicitly as shown above.
For example, create demotest.phpt:

315

http://qa.php.net/reports

Testing PHP and the OCI8 Extension

Script 127: demotest.phpt

--TEST--
Demo to test the Test system
--SKIPIF--
<?php
if (!extension_loaded('oci8')) die("skip no oci8 extension");
?>
--FILE--
<?php
require (__DIR__.'/connect.inc');
$s = oci_parse($c, "select user from dual");
oci_execute($s);
oci_fetch_all($s, $res);
var_dump($res);
echo "Done\n";
?>
===DONE===
<?php exit(0); ?>
--EXPECT--
array(1) {
 ["USER"]=>
 array(1) {
 [0]=>
 string(6) "SYSTEM"
 }
}
===DONE===

The test begins with a comment that is displayed when the test runs. The SKIPIF section
causes the test to be skipped when the OCI8 extension is not enabled in PHP. The FILE section
is the PHP code to be executed. The EXPECT section has the expected output. The file
connect.inc is found in ext/oci8/tests/connect.inc. It includes details.inc, connects to Oracle,
and returns the connection resource in $c.

The line ===DONE=== is outside the executed script and is echoed verbatim, verifying that
the script completed. The extra PHP block containing exit(0) makes calling the test directly
in PHP without using run-tests.php a little cleaner:

$ php demotest.phpt
--TEST--
Demo to test the Test system
--SKIPIF--
--FILE--
array(1) {
 ["USER"]=>
 array(1) {
 [0]=>
 string(6) "SYSTEM"
 }
}
Done
===DONE===

316

Creating OCI8 Tests

Running like this, some of the demotest.phpt test framework content is shown, but code
executes and only the actual, and not the expected, output is displayed. This can make it
easier to quickly validate tests, without having to set TEST_PHP_EXECUTABLE and invoke run-
tests.php.

The page Writing Tests at http://qa.php.net/write-test.php shows other sections a
test file can have, including ways to set arguments and php.ini parameters. This page also
has generic examples and helpful information on writing tests. The sections of a .phpt file are
documented at http://qa.php.net/phpt_details.php.

Writing good units tests is an art. Making a test portable, accurate, simple and self-
diagnosing requires fine judgment and tidy programming.

OCI8 Test Helper Scripts

Along with connect.inc and details.inc, there are several useful scripts in ext/oci8/tests for
creating and dropping basic tables and types, these include:

● create_table.inc

● create_type.inc

● drop_table.inc

● drop_type.inc

You can include these in any new tests you write.
Make sure new tests create any needed objects and drop them at the end of the test. Use

unique names for each object, for example if the test demotest.phpt needs to create (and
drop) a table, a good table name would be DEMOTEST_TAB.

Configuring the Database For Testing
Sometimes it is possible for rapidly executing OCI8 test scripts to flood the database with
connections. This may be noticeable with Oracle Database XE, which has smaller defaults.
Random tests fail with errors like the following:

ORA-12516 TNS:listener could not find available handler with matching protocol
stack

or:

ORA-12520: TNS:listener could not find available handler for requested type of
server

The best general solution is to use DRCP connecting pooling solution as discussed in the
chapter PHP Connection Pooling and High Availability. An alternative method suitable for the
specific case of testing is to increase the number of “processes” that Oracle can handle. This
method is also applicable when connection pooling is not desired or available, for example
when using Oracle Database 10.2.

To increase the number of processes in Oracle:
1. You may need to su as the oracle user so you have operating system privileges when

starting SQL*Plus:

$ su – oracle
Password:

317

http://qa.php.net/phpt_details.php
http://qa.php.net/write-test.php

Testing PHP and the OCI8 Extension

2. Set the Oracle environment variables needed by SQL*Plus, for example:

$ source /u01/app/oracle/product/11.2.0/xe/bin/oracle_env.sh

3. Use SQL*Plus to connect as a privileged database user:

$ sqlplus / as sysdba

4. Check the current value of processes using the SHOW PARAMETER PROCESSES command:

SQL> show parameter processes
NAME TYPE VALUE
------------------------- ----------- -----------
 ...
processes integer 40

5. Increase the value to, say, 100:

SQL> alter system set processes=100 scope=spfile;
System altered.

6. Restart the database using the SHUTDOWN IMMEDIATE, followed by the STARTUP command:

SQL> shutdown immediate
Database closed.
Database dismounted.
ORACLE instance shut down.
SQL> startup
ORACLE instance started.
Total System Global Area 289406976 bytes
Fixed Size 1258488 bytes
Variable Size 96472072 bytes
Database Buffers 188743680 bytes
Redo Buffers2932736 bytes
Database mounted.
Database opened.

7. Use the SHOW PARAMETER PROCESSES command to confirm the new value is in effect:

SQL> show parameter processes
NAME TYPE VALUE
------------------------- ----------- ----------
...
processes integer 100

8. Exit SQL*Plus using the EXIT command:

SQL> exit

9. Now the tests can be run again:

$ make test TESTS=ext/oci8

318

Testing PHP Applications

Testing PHP Applications
You should verify your applications work correctly with any new PHP binary before putting it
into production. This gives load and real-life testing not possible with PHP’s command-line test
suite. Application level testing brings even more challenges. There are several PHP test
frameworks with sophisticated features that might be suited to create application test suites.
They include PHPUnit and SimpleTest. These are not covered in this manual.

319

Testing PHP and the OCI8 Extension

320

APPENDIX A

TRACING OCI8 INTERNALS

This appendix discusses tracing the OCI8 internals. To see exactly what calls to the Oracle
database the OCI8 extension makes, you can turn on debugging output. This is mostly useful
for the maintainers of the OCI8 extension.

Enabling OCI8 Debugging output
Tracing can be turned on in your script with oci_internal_debug(). For a script that connects
and does an insert:

Script 128: trace.php

<?php

oci_internal_debug(1); // turn on tracing

$c = oci_connect("hr", "welcome", "localhost/XE");
$s = oci_parse($c, "insert into testtable values ('my data')");
oci_execute($s, OCI_NO_AUTO_COMMIT);

?>

You get output like:

OCI8 DEBUG: OCINlsEnvironmentVariableGet at (phpsrc/php-5.4/ext/oci8/oci8.c:1873)
OCI8 DEBUG L1: Got NO cached connection at (phpsrc/php-5.4/ext/oci8/oci8.c:1918)
OCI8 DEBUG: OCIEnvNlsCreate at (phpsrc/php-5.4/ext/oci8/oci8.c:2916)
OCI8 DEBUG: OCIHandleAlloc at (phpsrc/php-5.4/ext/oci8/oci8.c:2737)
OCI8 DEBUG: OCIHandleAlloc at (phpsrc/php-5.4/ext/oci8/oci8.c:2749)
OCI8 DEBUG: OCIHandleAlloc at (phpsrc/php-5.4/ext/oci8/oci8.c:2766)
OCI8 DEBUG: OCIAttrSet at (phpsrc/php-5.4/ext/oci8/oci8.c:2786)
OCI8 DEBUG: OCIAttrSet at (phpsrc/php-5.4/ext/oci8/oci8.c:2795)
OCI8 DEBUG: OCISessionPoolCreate at (phpsrc/php-5.4/ext/oci8/oci8.c:2807)
OCI8 DEBUG: OCIHandleFree at (phpsrc/php-5.4/ext/oci8/oci8.c:2821)
OCI8 DEBUG L1: create_spool: (0xa881548) at (phpsrc/php-5.4/ext/oci8/oci8.c:2825)
OCI8 DEBUG L1: using shared pool: (0xa881548) at (phpsrc/php-
5.4/ext/oci8/oci8.c:3143)
OCI8 DEBUG: OCIHandleAlloc at (phpsrc/php-5.4/ext/oci8/oci8.c:3154)
OCI8 DEBUG: OCIHandleAlloc at (phpsrc/php-5.4/ext/oci8/oci8.c:3164)
OCI8 DEBUG: OCIAttrSet at (phpsrc/php-5.4/ext/oci8/oci8.c:3173)
OCI8 DEBUG: OCIAttrSet at (phpsrc/php-5.4/ext/oci8/oci8.c:3185)
OCI8 DEBUG: OCIAttrGet at (phpsrc/php-5.4/ext/oci8/oci8.c:3197)
OCI8 DEBUG: OCIAttrGet at (phpsrc/php-5.4/ext/oci8/oci8.c:3198)
OCI8 DEBUG L1: (numopen=0)(numbusy=0)(numfree=0) at (phpsrc/php-
5.4/ext/oci8/oci8.c:3200)
OCI8 DEBUG: OCISessionGet at (phpsrc/php-5.4/ext/oci8/oci8.c:3211)
OCI8 DEBUG: OCIAttrGet at (phpsrc/php-5.4/ext/oci8/oci8.c:3226)
OCI8 DEBUG: OCIAttrGet at (phpsrc/php-5.4/ext/oci8/oci8.c:3228)
OCI8 DEBUG: OCIContextGetValue at (phpsrc/php-5.4/ext/oci8/oci8.c:3230)

321

Tracing OCI8 Internals

OCI8 DEBUG: OCIContextGetValue at (phpsrc/php-5.4/ext/oci8/oci8.c:3325)
OCI8 DEBUG: OCIMemoryAlloc at (phpsrc/php-5.4/ext/oci8/oci8.c:3332)
OCI8 DEBUG: OCIContextSetValue at (phpsrc/php-5.4/ext/oci8/oci8.c:3346)
OCI8 DEBUG: OCIAttrSet at (phpsrc/php-5.4/ext/oci8/oci8.c:3256)
OCI8 DEBUG L1: New Non-Persistent Connection address: (0xb452d160) at
(phpsrc/php-5.4/ext/oci8/oci8.c:2167)
OCI8 DEBUG L1: num_persistent=(0), num_links=(1) at (phpsrc/php-
5.4/ext/oci8/oci8.c:2169)
OCI8 DEBUG: OCIHandleAlloc at (phpsrc/php-5.4/ext/oci8/oci8_statement.c:57)
OCI8 DEBUG: OCIStmtPrepare2 at (phpsrc/php-5.4/ext/oci8/oci8_statement.c:72)
OCI8 DEBUG: OCIAttrSet at (phpsrc/php-5.4/ext/oci8/oci8_statement.c:123)
OCI8 DEBUG: OCIAttrGet at (phpsrc/php-5.4/ext/oci8/oci8_statement.c:433)
OCI8 DEBUG: OCIStmtExecute at (phpsrc/php-5.4/ext/oci8/oci8_statement.c:461)
OCI8 DEBUG: OCIStmtRelease at (phpsrc/php-5.4/ext/oci8/oci8_statement.c:766)
OCI8 DEBUG: OCIHandleFree at (phpsrc/php-5.4/ext/oci8/oci8_statement.c:774)
OCI8 DEBUG: OCITransRollback at (phpsrc/php-5.4/ext/oci8/oci8.c:2241)
OCI8 DEBUG: OCISessionRelease at (phpsrc/php-5.4/ext/oci8/oci8.c:2402)
OCI8 DEBUG: OCIHandleFree at (phpsrc/php-5.4/ext/oci8/oci8.c:2288)
OCI8 DEBUG: OCIHandleFree at (phpsrc/php-5.4/ext/oci8/oci8.c:2291)
OCI8 DEBUG: OCISessionPoolDestroy at (phpsrc/php-5.4/ext/oci8/oci8.c:3293)
OCI8 DEBUG: OCIHandleFree at (phpsrc/php-5.4/ext/oci8/oci8.c:3297)
OCI8 DEBUG: OCIHandleFree at (phpsrc/php-5.4/ext/oci8/oci8.c:3301)
OCI8 DEBUG: OCIHandleFree at (phpsrc/php-5.4/ext/oci8/oci8.c:3305)
OCI8 DEBUG: OCIHandleFree at (phpsrc/php-5.4/ext/oci8/oci8.c:1144)
OCI8 DEBUG: OCIHandleFree at (phpsrc/php-5.4/ext/oci8/oci8.c:1149)

Many of these calls just allocate local resources (handles) and set local state (attributes), but
some require a round trip to the database.

One of these is the OCITransRollback() call near the end of the script. The
OCI_NO_AUTO_COMMIT flag said not to auto-commit and there was no explicit oci_commit()
call. As part of PHP’s end of HTTP request shutdown at the conclusion of the script, the
rollback was issued.

Note: if you change to auto-commit mode you will not see a call to OCITransCommit()
because the commit message is piggy-backed with Oracle's statement execution call, thus
saving a round-trip. If a script only inserts one row it is fine to auto-commit. Otherwise, do the
transaction management yourself.

322

APPENDIX B

OCI8 PHP.INI PARAMETERS

This appendix gives an overview of the php.ini parameters for the OCI8 extension. Detailed
discussion of their use is covered in previous chapters.

The parameters can be changed in the PHP configuration file php.ini, for example:

oci8.default_prefetch = 75

Variables can also be set in Apache's httpd.conf:

<IfModule mod_php5.c>
 php_admin_flag oci8.old_oci_close_semantics On
 php_admin_value oci8.connection_class MYPHPAPP
</IfModule>

The web server must be restarted for any changes to take effect.
The location of php.ini can be found by running the command line PHP executable php

--ini. The current values of the OCI8 parameters can be found by running php --ri oci8.
Loading phpinfo.php in a browser will show all parameters and is equivalent to php -i:

Script 129: phpinfo.php

<?php
phpinfo();
?>

If you might have multiple versions of PHP installed, check the settings via both command line
and a browser.

If you are using Windows, remember to edit php.ini using administrative privileges.

Enabling PHP OCI8 in php.ini
On Windows, you will need to enable OCI8 in php.ini. If you are using OCI8 with Oracle 11gR2
client libraries than add:

extension=php_oci8_11g.dll

If you are using OCI8 with Oracle 10gR2 client libraries than add:

extension=php_oci8.dll

Only one of these extensions can be enabled at a time.
If PHP OCI8 was compiled as a shared extension on Linux, you will need to enable it in

php.ini with:

extension=oci8.so

If OCI8 was built statically into the PHP executable you do not need to set this.
On both platforms, make sure extension_dir is set to the directory containing the shared

library.

323

OCI8 php.ini Parameters

PHP OCI8 php.ini Parameters
The php.ini directives for OCI8 are shown in the next table:

Table 20: OCI8 php.ini parameters

Name Default Valid Range Description

oci8.connection_class null A short
string

A user-chosen name for Oracle
Database 11g Connection Pooling
(DRCP). In general, use the same
name for all web servers running
the same application. Can also be
set with ini_set().

Introduced in OCI8 1.3.

oci8.default_prefetch 100

Prior to
OCI8
1.3.4
the
default
was 10

>= 0

Prior to
OCI8 1.4 it
had to be
>= 1

The number of extra rows that
Oracle fetches and internally
buffers whenever a query row is
physically retrieved from the
database. This improves query
performance by reducing the
number of network accesses to
the database. From Oracle 11gR2
onwards this parameter also
affects fetching from REF
CURSORS.

Also see oci_set_prefetch().

oci8.events Off Off or On Allows PHP to receive Fast
Application Notification (FAN)
events from Oracle to give
immediate notification of a
database node or network failure.
The database must also be
configured to post events.

Introduced in OCI8 1.3.

oci8.max_persistent -1 >= -1

-1 means
no limit

Maximum number of persistent
connections each PHP process
caches. Note this is not a system-
wide total.

oci8.old_oci_close_semantics Off Off or On Toggles whether oci_close() uses
the old behavior, which was a “no-
op”.

324

PHP OCI8 php.ini Parameters

Name Default Valid Range Description

oci8.persistent_timeout -1 > -1

-1 means
no timeout

How many seconds a persistent
connection is allowed to remain
idle before being terminated by its
PHP process. PHP processes will
check this each time the process
is reused.

oci8.ping_interval 60 >= 0

-1 means
no extra
check
occurs

How many seconds a persistent
connection can be unused before
an extra check during
oci_pconnect() verifies the
database connection is still valid.

oci8.privileged_connect Off Off or On Toggles whether SYSDBA and
SYSOPER connections are
permitted.

oci8.statement_cache_size 20 >= 0 Improves database performance
by caching the given number of
SQL statements in PHP. Setting it
to 0 disables statement caching.

325

OCI8 php.ini Parameters

326

APPENDIX C

OCI8 FUNCTION NAMES IN PHP 4 AND
PHP 5

In PHP 5 several extensions including OCI8 underwent function name standardization. PHP 4
functions like OCILogin() became oci_connect(), the function OCIParse() became
oci_parse(), and so on. Although deprecated, the old OCI8 names still exist as aliases. PHP 4
scripts do not necessarily need to be changed when migrating. PECL OCI8 releases from 1.1
onwards have the new function names.

Note: The OCI8 1.4 extension builds and runs with PHP 4 and PHP 5. If you are still using PHP
4 and cannot upgrade to PHP 5, you should replace the OCI8 code with the new version to get
improved stability and performance optimizations. Steps to install from PECL are given in this
book.

Function names in PHP are case insensitive. There seems to be a common acceptance for PHP
4 names to be written with a capitalized prefix but the PHP 5 names to be all lowercase.

Table 21 shows the PHP 4 OCI8 functions and gives their PHP 5 replacements. Note several
functions such as ocifreedesc() and ocilobclose() were only usable as methods in PHP 4.

Table 21: Relationship between OCI8's PHP 4 and PHP 5 function names.

Operation Action PHP 4 Name PHP 5 Name

Connection Open
connection

ocilogon() oci_connect()

Open new
connection

ocinlogon() oci_new_connect()

Persistent
connection

ociplogon() oci_pconnect()

(and new php.ini parameters)

Close
connection

ocilogoff() oci_close()

Cursor Open cursor ocinewcursor() oci_new_cursor()

Close
cursor

ocifreecursor()

ocifreestatement()

oci_free_statement()

Parsing Parse
statement

ociparse() oci_parse()

Binding Bind
variable

ocibindbyname() oci_bind_by_name()

327

OCI8 Function Names in PHP 4 and PHP 5

Operation Action PHP 4 Name PHP 5 Name

Bind array Not available oci_bind_array_by_name()

Defining Define
output
variables

ocidefinebyname() oci_define_by_name()

Execution Execute
statement

ociexecute() oci_execute()

Fetching Fetch row ocifetch() oci_fetch()

Fetch row ocifetchinto() oci_fetch_array()

oci_fetch_row()

oci_fetch_assoc()

oci_fetch_object()

Fetch all
rows

ocifetchstatement() oci_fetch_all()

Fetch
column

ociresult() oci_result()

Is the
column
NULL?

ocicolumnisnull() oci_field_is_null()

Cancel
Fetch

ocicancel() oci_cancel()

Transaction
Management

Commit ocicommit() oci_commit()

Rollback ocirollback() oci_rollback()

Descriptors ocinewdescriptor() oci_new_descriptor()

ocifreedesc() oci_free_descriptor()

Error
Handling

ocierror() oci_error()

Long Objects
(LOBs)

ocisavelob() OCI-Lob::save()

ocisavelobfile() OCI-LOB::import()

ociwritelobtofile() OCI-LOB::export()

ociwritetemporarylob() OCI-Lob::writeTemporary()

ociloadlob() OCI-Lob::load()

ocicloselob() OCI-Lob::close()

Collections ocinewcollection() oci_new_collection()

ocifreecollection() OCI-Collection::free()

328

OCI8 Function Names in PHP 4 and PHP 5

Operation Action PHP 4 Name PHP 5 Name

ocicollappend() OCI-Collection::append()

ocicollgetelem() OCI-Collection::getElem()

ocicollassign() OCI-Collection::assign()

ocicollassignelem() OCI-Collection::assignElem()

ocicollsize() OCI-Collection::size()

ocicollmax() OCI-Collection::max()

ocicolltrim() OCI-Collection::trim()

Metadata Statement
type

ocistatementtype() oci_statement_type()

Name of
result
column

ocicolumnname() oci_field_name()

Size of
result
column

ocicolumnsize() oci_field_size()

Data type
of result
column

ocicolumntype() oci_field_type()

Data type
of result
column

ocicolumntyperaw() oci_field_type_raw()

Precision of
result
column

ocicolumnprecision() oci_field_precision()

Scale of
result
column

ocicolumnscale() oci_field_scale()

Number of
rows
affected

ocirowcount() oci_num_rows()

Number of
columns
returned

ocinumcols() oci_num_fields()

Changing
Password

ocipasswordchange() oci_password_change()

329

OCI8 Function Names in PHP 4 and PHP 5

Operation Action PHP 4 Name PHP 5 Name

Monitoring,
Tuning and
Auditing

Not available oci_set_module_name()

oci_set_action()

oci_set_client_info()

oci_set_client_identifier()

Tracing ociinternaldebug() oci_internal_debug()

Upgrading Allow
multiple
versions of
PL/SQL
objects to
be used

Not available oci_set_edition()

Oracle Client
Version

Not available oci_client_version()

Server
Version

ociserverversion() oci_server_version()

Tuning ocisetprefetch() oci_set_prefetch()

(and new php.ini parameter)

330

APPENDIX D

THE OBSOLETE ORACLE EXTENSION

This appendix compares the long obsolete Oracle PHP extension to the current OCI8
extension. Very rarely you might come across PHP scripts that use this early Oracle API. It is
no longer included with PHP. The functionality it offered was limited. Upgrading to the new
OCI8 extension might be as simple as enabling the newer OCI8 extension in the PHP binary
and renaming the old function calls in your scripts. Pay some attention to transaction
management and connection handling changes. It is wise to test your application and make
sure it behaves as you expect it to.

Oracle and OCI8 Comparison
The following table shows the general relationship between the obsolete and current
extensions:

Table 22: Relationship between the OCI8 and the obsolete Oracle extensions.

Operation Action ORA function (obsolete) OCI8 function

Connection Open
connection

ora_logon() oci_connect()

Open new
connection

Not available oci_new_connect()

Persistent
connection

ora_plogon() oci_pconnect()

(and new php.ini parameters)

Close
connection

ora_logoff() oci_close()

Used for
monitoring,
auditing and
VPD

Not available oci_set_client_identifier()

Cursor Open cursor ora_open() oci_new_cursor()

Close cursor ora_close() oci_free_statement()

Parsing Parse
statement

ora_parse() oci_parse()

Binding Bind variable ora_bind() oci_bind_by_name()

Bind array Not available oci_bind_array_by_name()

Execution Execute
statement

ora_exec() oci_execute()

331

The Obsolete Oracle Extension

Operation Action ORA function (obsolete) OCI8 function

Prepare,
execute and
fetch

ora_do() oci_parse()

Followed by

oci_execute()

and one of:

oci_fetch_all()

oci_fetch_array()

oci_fetch_assoc()

oci_fetch_object()

oci_fetch_row()

oci_fetch()

Fetching Fetch row ora_fetch() oci_fetch()

Fetch row ora_fetch_into oci_fetch_array()

oci_fetch_row()

oci_fetch_assoc()

oci_fetch_object()

Fetch all rows Not available oci_fetch_all()

Fetch column ora_getcolumn() oci_result()

Is the column
NULL?

Not available oci_field_is_null()

Cancel Fetch Not available oci_cancel()

Transaction
Management

Commit ora_commit() oci_commit()

Commit mode ora_commiton()

ora_commitoff()

Pass OCI_NO_AUTO_COMMIT flag
to oci_execute()

Rollback ora_rollback() oci_rollback()

Error
Handling

ora_error()

ora_errorcode()

oci_error()

332

Oracle and OCI8 Comparison

Operation Action ORA function (obsolete) OCI8 function

Long Objects
(LOBS)

Not available OCI-Lob->append

OCI-Lob->close

OCI-Lob->eof

OCI-Lob->erase

OCI-Lob->export

OCI-Lob->flush

OCI-Lob->free

OCI-Lob->getBuffering

OCI-Lob->import

OCI-Lob->load

OCI-Lob->read

OCI-Lob->rewind

OCI-Lob->save

OCI-Lob->saveFile

OCI-Lob->seek

OCI-Lob->setBuffering

OCI-Lob->size

OCI-Lob->tell

OCI-Lob->truncate

OCI-Lob->write

OCI-Lob->writeTemporary

OCI-Lob->writeToFile

Collections Not available OCI-Collection->append

OCI-Collection->assign

OCI-Collection->assignElem

OCI-Collection->free

OCI-Collection->getElem

OCI-Collection->max

OCI-Collection->size

OCI-Collection->trim

Metadata Statement
type

Not available oci_statement_type()

Name of
result column

ora_columnname() oci_field_name()

333

The Obsolete Oracle Extension

Operation Action ORA function (obsolete) OCI8 function

Size of result
column

ora_columnsize() oci_field_size()

Data type of
result column

ora_columntype() oci_field_type()

oci_field_type_raw()

Precision of
result column

Not available oci_field_precision()

Scale of result
column

Not available oci_field_scale()

Number of
rows effected

ora_numrows() oci_num_rows()

Number of
columns
returned

ora_numcols() oci_num_fields()

SQL
Monitoring

Send
metadata to
Oracle for
tracing and
monitoring

Not available oci_set_module_name()

oci_set_action()

oci_set_client_info()

Changing
Password

Not available oci_password_change()

Tracing Not available oci_internal_debug()

Oracle Client
and Server
Versions

Not available oci_client_version()

oci_server_version()

Tuning Not available oci_set_prefetch()

(and new php.ini parameter)

Upgrading Allow multiple
versions of
PL/SQL
objects to be
used

Not available oci_set_edition()

334

APPENDIX E

RESOURCES

This appendix gives links to documentation, resources and articles discussed in this book, and
to other web sites of interest. This book itself can be found free online at:
http://www.oracle.com/technetwork/topics/php/underground-php-oracle-manual-
098250.html

General Information and Forums

PHP Developer Center on Oracle Technology Network (OTN)

http://www.oracle.com/technetwork/topics/php/whatsnew/

OTN PHP Discussion Forum

http://www.oracle.com/technetwork/forums/php/

Blog: Christopher Jones on OPAL

http://blogs.oracle.com/opal/

AskTom
General Oracle language and application design help
http://asktom.oracle.com/

Oracle Linux
https://linux.oracle.com/

Oracle Support

http://support.oracle.com/

Oracle’s Free and Open Source Software

http://oss.oracle.com/

Oracle Documentation and Whitepapers

Oracle 11g Release 2 Documentation Library

http://www.oracle.com/pls/db112/homepage

335

http://www.oracle.com/pls/db112/homepage
http://oss.oracle.com/
http://support.oracle.com/
http://metalink.oracle.com/
https://linux.oracle.com/
http://asktom.oracle.com/
http://blogs.oracle.com/opal/
http://www.oracle.com/technetwork/forums/php/index.html
http://www.oracle.com/technetwork/topics/php/whatsnew/index.html
http://www.oracle.com/technetwork/topics/php/underground-php-oracle-manual-098250.html
http://www.oracle.com/technetwork/topics/php/underground-php-oracle-manual-098250.html

Resources

Oracle TimesTen In-Memory Database Documentation

http://www.oracle.com/technetwork/products/timesten/documentation/

Oracle Database Express Edition Documentation

http://www.oracle.com/technetwork/products/express-edition/documentation/

Oracle Call Interface Programmer's Guide 11g Release 2 (11.2)

http://docs.oracle.com/cd/E11882_01/appdev.112/e10646/toc.htm

Oracle Database Express Edition 2 Day + PHP Developer's Guide 11g Release 2 (11.2)

http://docs.oracle.com/cd/E17781_01/appdev.112/e18555/toc.htm

Oracle Database Net Services Administrator's Guide 11g Release 2 (11.2)

http://docs.oracle.com/cd/E11882_01/network.112/e10836/toc.htm

Oracle Database PL/SQL Language Reference 11g Release 2 (11.2)

http://docs.oracle.com/cd/E11882_01/appdev.112/e25519/toc.htm

Oracle Database SQL Language Reference 11g Release 2 (11.2)

http://docs.oracle.com/cd/E11882_01/server.112/e26088/toc.htm

Oracle Tuxedo Documentation

http://www.oracle.com/technetwork/middleware/tuxedo/documentation/index.html

Whitepaper: Oracle Tuxedo: An Enterprise Platform for Dynamic Languages

http://www.oracle.com/technetwork/middleware/tuxedo/tuxedo-dynamic-langs-
twp-401471.pdf

Selected PHP and Oracle Books

Oracle Database 11g PL/SQL Programming
Michael McLaughlin, Oracle Press, 2008.

Oracle Database AJAX & PHP Web Application Development
Lee Barney and Michael McLaughlin, Oracle Press, 2008

PHP Oracle Web Development
Yuli Vasiliev, Packt Publishing, 2007

Beginning PHP and Oracle: From Novice to Professional
W. Jason Gilmore and Bob Bryla, Apress, 2007

336

http://www.oracle.com/technetwork/middleware/tuxedo/tuxedo-dynamic-langs-twp-401471.pdf
http://www.oracle.com/technetwork/middleware/tuxedo/tuxedo-dynamic-langs-twp-401471.pdf
http://www.oracle.com/technetwork/middleware/tuxedo/documentation/index.html
http://docs.oracle.com/cd/E11882_01/server.112/e26088/toc.htm
http://docs.oracle.com/cd/E11882_01/appdev.112/e25519/toc.htm
http://docs.oracle.com/cd/E11882_01/network.112/e10836/toc.htm
http://docs.oracle.com/cd/E17781_01/appdev.112/e18555/toc.htm
http://docs.oracle.com/cd/E11882_01/appdev.112/e10646/toc.htm
http://www.oracle.com/technetwork/products/express-edition/documentation/index.html
http://www.oracle.com/technetwork/products/timesten/documentation/index.html

Selected PHP and Oracle Books

Application Development with Oracle & PHP on Linux for Beginners
Ivan Bayross and Sharanam Shah, Shroff Publishers & Distributers, 2nd Edition 2007

Oracle Database 10g Express Edition PHP Web Programming
Michael McLaughlin, Osbourne Oracle Press, 2006

Easy Oracle PHP: Create Dynamic Web Pages with Oracle Data
Mladen Gogala, Rampant TechPress, 2006

Software and Source Code

PHP Distribution Releases
Source and Windows binaries
http://www.php.net/downloads.php

PHP Snapshots (includes OCI8)
Snapshots of PHP's source code and Windows binaries
http://snaps.php.net/

PHP Source (includes OCI8)
http://git.php.net/?p=php-src.git

https://github.com/php/php-src

PECL OCI8 Source package (standalone)

http://pecl.php.net/package/oci8

Zend Server

http://www.oracle.com/technetwork/topics/php/zend-server-096314.html

Oracle Instant Client

http://www.oracle.com/technetwork/database/features/instant-client/index-
097480.html

Oracle NetBeans IDE
http://netbeans.org/

Oracle SQL Developer

http://www.oracle.com/technetwork/developer-tools/sql-developer/overview/

ADOdb Database Abstraction Library for PHP (and Python)

http://adodb.sourceforge.net/

337

http://adodb.sourceforge.net/
http://www.oracle.com/technetwork/developer-tools/sql-developer/overview/index.html
http://netbeans.org/
http://www.oracle.com/technetwork/database/features/instant-client/index-097480.html
http://www.oracle.com/technetwork/database/features/instant-client/index-097480.html
http://www.oracle.com/technetwork/topics/php/zend-server-096314.html
http://pecl.php.net/package/oci8
https://github.com/php/php-src
http://git.php.net/?p=php-src.git
http://snaps.php.net/
http://www.php.net/downloads.php

Resources

PHPUnit PHP Unit Tester

http://www.phpunit.de/

SimpleTest PHP Unit Tester

http://www.simpletest.org/

Xdebug - Debugger and Profiler Tool for PHP

http://www.xdebug.org/

PHP Links

PHP Home Page

http://php.net/

PHP Documentation

http://php.net/docs.php

PHP Oracle OCI8 Documentation

http://php.net/oci8

PHP Quality Assurance Site

http://qa.php.net/

PHP Bug System

http://bugs.php.net/

PHP Wiki

http://wiki.php.net/

338

http://wiki.php.net/
http://bugs.php.net/
http://qa.php.net/
http://php.net/oci8
http://www.php.net/oci8
http://php.net/docs.php
http://www.php.net/docs.php
http://php.net/
http://www.php.net/
http://www.xdebug.org/
http://www.simpletest.org/
http://www.phpunit.de/

GLOSSARY

Anonymous Block
A PL/SQL block that appears in your application and is not named or stored in the
database. In many applications, PL/SQL blocks can appear wherever SQL statements can
appear. A PL/SQL block groups related declarations and statements. Because these blocks
are not stored in the database, they are generally for one-time use.

AWR
Automatic Workload Repository. Used to store and report statistics on database
performance.

Binding
A method of including data in SQL statements that allows SQL statements to be efficiently
reused with different data.

BFILE
The BFILE data type stores unstructured binary data in operating-system files outside the
database. A BFILE column or attribute stores a file locator that points to an external file
containing the data.

BLOB
The BLOB data type stores unstructured binary data in the database.

CHAR
The CHAR data type stores fixed-length character strings in the database.

CLOB and NCLOB
The CLOB and NCLOB data types store up to eight terabytes of character data in the
database. CLOBs store database character set data, and NCLOBs store Unicode national
character set data.

Collection Type
A collection is an ordered group of elements, all of the same type. Each element has a
unique subscript that determines its position in the collection. PL/SQL data types TABLE
and VARRAY enable collection types such as arrays, bags, lists, nested tables, sets and
trees.

Connection Identifier
The string used to identify which database to connect to, for example, localhost/XE.

339

Connection String
The full string used to identify which database to connect to commonly used for SQL*Plus.
It contains the username, password and connect identifier, for example,
hr/welcome@localhost/XE.

Data Dictionary
A set of tables and views that are used as a read-only reference about the database.

Database
A database stores and retrieves data. Each database consists of one or more data files.
Although you may have more than one database per machine, typically a single Oracle
database contains multiple schemas. A schema is often equated with a user. Multiple
applications can use the same database without any conflict by using different schemas.

Database Link
A pointer that defines a one-way communication path from an Oracle Database server to
another database server. A database link connection allows local users to access data on a
remote database.

Database Name
The name of the database. In PHP, this is the text used in oci_connect() calls. Also see
Easy Connect.

Data type
Each column value and constant in a SQL statement has a data type, which is associated
with a specific storage format, constraints, and a valid range of values. When you create a
table, you must specify a data type for each of its columns. For example, NUMBER, or
DATE.

DATE
The DATE data type stores point-in-time values (dates and times) in a database table.

DATETIME
An extension of the date type with greater precision than DATE and with an associated
timezone.

DBA
Database Administrator. A person who administers the Oracle database. This person is a
specialist in Oracle databases, and would usually have SYSDBA access to the database.

340

DDL
SQL’s Data Definition Language. SQL statements that define the database structure or
schema, like CREATE, ALTER, and DROP.

DML
SQL’s Data Manipulation Language. SQL statements that define or manage the data in the
database, like SELECT, INSERT, UPDATE and DELETE.

DRCP
Database Resident Connection Pooling. Introduced in Oracle Database 11g, this
connection pooling allows multiple client processes and machines to share connection
data structures on the database server, reducing the memory requirements of large
numbers of users.

Easy Connect
A simple hostname and database connect identifier that is used to identify which database
to connect to.

Git
An open source version control system used for development of PHP.

HR
The sample user created by default with an Oracle seed database installation. The HR user
has access to the Human Resources demonstration tables in the HR schema.

Index
Indexes are optional structures associated with database tables. Indexes can be created to
increase the performance of data retrieval.

Instance
The Oracle Instance is the running component of an Oracle database server. When an
Oracle database is started, a system global area (SGA) is allocated and Oracle background
processes are started. The combination of the background processes and memory buffers
is called an Oracle instance.

Instant Client
The Oracle Instant Client is a small set of libraries, which allows applications to connect to
an Oracle Database. A subset of the full Oracle Client, it requires minimal installation but
has full functionality. Instant Client is downloadable from OTN and is usable and
distributable for free.

341

LOB
A large object. LOBS may be persistent (stored in the database) or temporary. See CLOB,
BLOB, and BFILE.

LOB Locator
A “pointer” to LOB data.

Materialized View
A materialized view provides access to table data by storing the results of a query in a
separate database schema object. Unlike an ordinary view, which does not take up any
storage space or contain any data, a materialized view contains the rows resulting from a
query against one or more base tables or views.

NCHAR and NVARCHAR2
NCHAR and NVARCHAR2 are Unicode data types that store Unicode character data in the
database.

NUMBER
The NUMBER data type stores fixed and floating-point numbers in the database.

Object Privilege
A right to perform a particular action on a specific database schema object. Different
object privileges are available for different types of schema objects. The privilege to delete
rows from the DEPARTMENTS table is an example of an object privilege.

OCI
Oracle Call Interface. The main C API for accessing the Oracle Database. First introduced in
version eight of Oracle Database it is commonly referred to as OCI8.

OCI8
PHP's main extension for accessing Oracle Database It is implemented using calls to
Oracle's OCI API.

ORACLE_HOME install
An Oracle Client or Oracle Database install. These installs contain all software required by
PHP in a directory hierarchy. This set of directories includes binaries, utilities, configuration
scripts, demonstration scripts and error message files for each component of Oracle. Any
program using Oracle typically requires the ORACLE_HOME environment variable to be set
to the top level installation directory.

342

Oracle Net
The networking component of Oracle that connects client tools such as PHP to local or
remote databases. The Oracle Net listener is a process that handles connection requests
from clients and passes them to the target database.

OTN
The Oracle Technology Network is Oracle’s free repository of articles on Oracle
technologies. It also hosts software downloads and many discussion forums, including one
on PHP.

Package
A group of PL/SQL procedures, functions, and variable definitions stored in the Oracle
database. Procedures, functions, and variables in packages can be called from other
packages, procedures, or functions.

PDO
PHP Data Objects. A data abstraction layer for PHP. It consists of two parts, a generic layer
and database vendor specific drivers, each of which may expose database specific
features.

PEAR
The PHP Extension and Application Repository is a repository for reusable packages written
in PHP.

PECL
The PHP Extension Community Library is a repository of PHP extensions that can be linked
into the PHP binary.

PHP
A popular, interpreted scripting language commonly used for web applications. PHP is a
recursive acronym for “PHP: Hypertext Preprocessor”.

php.ini
The configuration file used by PHP. Many (but not all) options that are set in php.ini can
also be set at runtime using ini_set(). Systems can be configured to read multiple
initialization files.

PL/SQL
Oracle’s procedural language extension to SQL. It is a server-side, stored, procedural
language that enables you to mix SQL statements with procedural constructs. With
PL/SQL, you can create and run PL/SQL program units such as procedures, functions, and
packages. PL/SQL program units generally are categorized as anonymous blocks, stored
functions, stored procedures, and packages.

343

Prepared Statement
A SQL statement that has been parsed by the database. In Oracle, it is generally called a
parsed statement.

Procedures and Functions
A PL/SQL procedure or function is a schema object that consists of a set of SQL statements
and other PL/SQL programming constructs, grouped together, stored in the database, and
run as a unit to solve a specific problem or perform a set of related tasks.

Regular Expression
A pattern used to match data. Oracle has several functions that accept regular
expressions.

Round Trip
A call and return sequence from PHP OCI8 to the Database performed by the underlying
driver libraries. Each round trip takes network time and machine CPU resources. The fewer
round trips performed, the more scalable a system is likely to be. PHP OCI8 functions may
initiate zero or many round trips.

Schema
A schema is a collection of database objects. A schema is owned by a database user and
has the same name as that user. Schema objects are the logical structures that directly
refer to the database's data. Schema objects include structures like tables, views, and
indexes.

SDK
Software Development Kit. Oracle Instant Client has an SDK for building programs that use
the Instant Client libraries.

Sequence
A sequential series of Oracle integers of up to 38 digits defined in the database.

Service Name
A service name is a string that is the global database name, comprised of the database
name and domain name. You can obtain it from the SERVICE_NAMES parameter in the
database initialization parameter file or by using SHOW PARAMETERS in SQL*Plus. It is used
during connection to identify which database to connect to.

SID (System Identifier)
The system identifier is commonly used to mean the database name alias in the
connection string.

344

SID (Session Identifier)
A session identifier is a unique number assigned to each database user session when a
user connects to the database.

SQL*Plus
The traditional command line tool for executing SQL statements available with all Oracle
databases. Although recently superseded by GUI tools like Oracle’s free SQL Developer,
SQL*Plus remains hugely popular. It is also convenient to show examples using SQL*Plus.

Stored Procedures and Functions
A PL/SQL block that Oracle stores in the database and can be called by name from an
application. Functions are different than procedures in that functions return a value when
executed. When you create a stored procedure or function, Oracle parses the procedure or
function, and stores its parsed representation in the database.

Synonym
A synonym is an alias for any database table, view, materialized view, sequence,
procedure, function, package, type, Java class schema object, user-defined object type, or
another synonym.

SYS
An Oracle database administrative user account name. SYS has access to all base tables
and views for the database data dictionary.

SYSDBA
An Oracle database system privilege that, by default, is assigned only to the SYS user. It
enables SYS to perform high-level administrative tasks such as starting up and shutting
down the database.

SYSOPER
Similar to SYSDBA, but with a limited set of privileges that allows basic administrative
tasks without having access to user data.

SYSTEM
An Oracle database administrative user account name that is used to perform all
administrative functions other than starting up and shutting down the database.

System privilege
The right to perform a particular action, or to perform an action on any database schema
objects of a particular type. For example, the privileges to create tables and to delete the
rows of any table in a database.

345

Table
Tables are the basic unit of data storage. Database tables hold all user-accessible data.
Each table has columns and rows.

Tablespace
Tablespaces are the logical units of Oracle data storage made up of one or more datafiles.
Tablespaces are often created for individual applications because tablespaces can be
conveniently managed. Users are assigned a default tablespace that holds all the data the
users creates. A database is made up of default and DBA-created tablespaces.

Temporary Table
A Global Temporary Table is a special table that holds session-private data that exists only
for the duration of a transaction or session. The table is created before the application
runs.

TimesTen
An in-memory database that can be standalone with file-backed storage, or can act as a
cache for Oracle Database.

Tnsnames.ora
The Oracle Net configuration file used for connecting to a database. The file maps an alias
to a local or remote database and allows various configuration options for connections.
The alias is used in the PHP connection string. TNS stands for Transparent Network
Substrate.

Transaction
A sequence of SQL statements whose changes are either all committed, or all rolled back.

Trigger
A stored procedure associated with a database table, view, or event. The trigger can be
called after the event, to record it, or take some follow-up action. The trigger can be called
before the event, to prevent erroneous operations or fix new data so that it conforms to
business rules.

ULN
Unbreakable Linux Network. It provides Oracle Linux software patches, updates
and fixes for support subscribers.

User
A database user is often equated to a schema. Each user connects to the database with a
username and secret password, and has access to tables, and so on, in the database.

346

VARCHAR and VARCHAR2
These data types store variable-length character strings in the database. The names are
currently synonyms but VARCHAR2 is recommended to ensure maximum compatibility of
applications in future.

View
Views are customized presentations of data in one or more tables or other views. A view
can also be considered a stored query. Views do not actually contain data. Rather, they
derive their data from the tables on which they are based, referred to as the base tables of
the views.

VPD
Virtual Private Database. An Oracle Database features that allows you to create security
policies restricting access to data at the row and column level.

XMLType
XMLType is a database data type that can be used to store XML data in table columns.

347

The Underground PHP
and Oracle Manual

About this Book
This book is for PHP programmers developing applications for Oracle
Database. It bridges the gap between the many PHP and Oracle
books available and shows how to use the PHP scripting language
with Oracle Database. You may be starting out with PHP for your
Oracle Database. You may be a PHP programmer wanting to learn
Oracle. You may be unsure how to install PHP or Oracle. Or you may
just want to know the latest best practices. This book gives you
the fundamental building blocks needed to create high-performance
PHP Oracle Web applications.

About the Authors
Christopher Jones works for Oracle on dynamic scripting languages
with a strong focus on PHP. He is a lead maintainer of PHP’s open
source OCI8 extension and works closely with the PHP community.
He also helps ensure that future versions of Oracle Database are
compatible with PHP. He is the author of various technical articles on
PHP and Oracle technology, and has presented at conferences including
PHP|Tek, the International PHP Conference, the O’Reilly Open Source
Convention, and ZendCon. He also helps present Oracle PHP tutorials
and PHPFests worldwide.

Alison Holloway is a Consulting Technical Writer at Oracle with a number
of years experience in advanced technology. She has presented at various
PHP conferences. Most recently she has been working with Oracle VM.

