Oracle White Paper— Berkeley DB Java Edition on Android

An Oracle White Paper

Berkeley DB Java Edition on Android

Oracle White Paper— Berkeley DB Java Edition on Android

1] (g0 o [8 o3 1 o] o DO RPR P PPRPRRR 3
Performance and Scalabilityc.coooviiiiii 3
Direct Persistence Layer ... 4
Complex Relationship Modelling...........ueveiiiiiiiiieeeeeen 5
Fast INdeXEA ACCESScoeeeiieeeiieee e 6
True Multi-Threaded SUPPOI......coovii i 7
Flexible Many-to-Many Transaction-to-Thread Model........................ 7

(076] g o] [F1]T0] o FFU TR 8

Oracle White Paper— Berkeley DB Java Edition on Android

“The speed, scalability,
and robustness of

Berkeley DB Java Edition,

compared to other SQL-
based solutions, creates
new Mobile opportunities
on Android” said Chris
Eastland of Nebula
Software Systems an
Essex, Massachusetts
developer of business
mobile applications. “We
are using Berkeley DB to
enhance our application
framework to take
advantage of the Oracle
and Google stacks.”

Introduction

Oracle Berkeley DB Java Edition (JE) is an embeddable database
implemented in pure Java. It provides a transactional storage engine
that reduces the overhead of object persistence, while improving on
the flexibility, speed, and scalability of object to relation mapping
(ORM) solutions.

Recently, Oracle certified JE on the Android platform for devices like
the Motorola Droid and HTC Eris smartphones. Android breaks new
ground in the device category because it is a Java 2 Standard Edition
(J2SE) platform, whereas the previous generations of Java-based
devices are predominantly Java Micro Edition (Java ME) based.
There are significant differences between J2SE and Java ME in terms
richness of libraries and APIs and this creates a big opportunity for
improved application capabilities. Most notable are the full-featured
Java 5 language support, libraries like java.util.* and
collections, and full multi-threaded support built on the Android Linux
kernel.

This paper highlights some of the features and benefits JE offers to
the Android application programmer, including performance,
scalability, indexing, concurrency control, transactions, and a many-
to-many transaction-to-thread model.

Performance and Scalability

Oracle Berkeley DB Java Edition offers the Android application builder

significant performance and scalability improvements over the native SQL-
based data management software. Because JE is written in pure Java, there
is no translation between Java and an underlying C library thereby letting it

operate directly on the application's Java objects.

Further, JE does not have the overhead of SQL, so it incurs no penalty for
parsing, optimizing, and interpreting requests. The result is that an Android
application using JE can realize a 2x or better performance improvement

compatred to other Android-based data management libraries.

Oracle White Paper— Berkeley DB Java Edition on Android

"The Direct Persistence
Layer in Oracle Berkeley
DB Java Edition has been
very valuable to our
software development
efforts at the Children's
Hospital Informatics
Program," said Steven
Boscarine, Principal
Software Engineer,
Children's Hospital Boston,
a Harvard Medical School
Teaching Affiliate. "We
found that replacing JPA
with DPL yielded a
significant performance
increase, made it easy to
encrypt sensitive patient
data, and allowed us to
deliver scalable code
much faster than we could
have done with a
traditional RDBMS with an
ORM."

For example, using a Motorola Droid, JE can create a database of 100
simulated photos (1 MB each), in 27 seconds, more than three times as fast
as the native database software. Tests on the same database demonstrate
random access retrievals at 275 ms per record average (cold cache) and 110
ms (warm cache). Using a different database containing one million 100
byte records, JE performs random access reads (fetch) operations in 29 ms
(cold cache) and 1.5ms (warm cache). These tests cleatly demonstrate JE’s
scalable performance characteristics for small and large data sets and record
sizes. An efficient database translates into longer battery life and better

responsiveness.

Direct Persistence Layer

While relational databases are a sophisticated tool available to the developer
for data storage and analysis, they are not ideal for storing Java application
data since they require (un)marshalling objects to (and from) tuples. For
more complex data models, an RDB can create an “impedance mismatch”
between objects and database schema. Further, an RDBMS may be overkill
for the device-programmer since the analytic capabilities of SQL are
generally not needed.

JE's Direct Persistence Layer (DPL) lets the programmer model application
data using Plain Old Java Objects (POJO) without wortying about
(un)marshalling code or Object Relational Mapping (ORM) tools. Simple
Java annotations to the application program's classes are all that are needed
to use the DPL. Further, there is no SQL overhead with DPL. The result is
faster storage, lower CPU and memory requirements, and a more efficient
development process. But despite the lack of a query language, Berkeley DB
Java Edition can access Java objects in an ad hoc manner and still provide
fast, reliable and scalable data storage in a small, efficient, and easy to
manage package.

Consider an Address Book application. To store instances of a Contact
class using the JE DPL, the programmer simply annotates the class with
@Entity and the primary and (optional) secondary keys with
@PrimaryKey and @SecondaryKey, respectively:

Oracle White Paper— Berkeley DB Java Edition on Android

@Entity

class Contact {
@PrimaryKey
String name;
String street;
String city;
String state;
int zipCode;
@SecondaryKey (relate=ONE_TO_ONE)
String phone;
private Contact () {}

Storing the fields in a Contact instance is handled transparently by JE
without requiring the programmer to implement any special interfaces. The
application classes define the schema; the annotations define the metadata.
Access to the Contact data at runtime is through primary and secondary
indices. For example, to create an entry in the address book for George

Smith, we write:

PrimaryIndex<String, Contact> contactsByName = .. ;
Contact George =
new Contact (“George”, *“123 Rock Drive”,
“Bedford”, *“CA", "“90222");
contactsByName.put (george) ;

To look up his neighbor Bi11:
Contact bill = contactsByName.get (“Bill”);

Complex Relationship Modelling

JE's storage capabilities are even more important when thete are multiple
related objects in the schema. Consider a mobile sales order entry system in
which salespersons enter orders on their Android handset. An order
consists of an Order object with references to a Customer object;
multiple Parts with SKUs; and a series of strings containing special
instructions (notes) for the order. Modeling this using the JE DPL is quite

simple:

Oracle White Paper— Berkeley DB Java Edition on Android

@Entity
class Order {

@PrimaryKey (sequence="1ID")

long orderId;

@SecondaryKey (relate=MANY_TO_ONE,
relatedEntity=Customer.class)

String customerName;

@SecondaryKey (relate=MANY_TO_MANY,
relatedEntity=Part.class,
onRelatedEntityDelete=NULLIFY)

Set<Long> skus = new HashSet<Long>();

List<String> notes = new ArrayList<String>();
private Order () {}

}

@Entity

class Customer {
@PrimaryKey

String name;
String address;

@Entity

class Part {
@PrimaryKey (sequence="ID")
long partsSku;

JE maintains consistency of all the relationships between the various entities
as well as the storage of the fields, thereby simplifying the code and the
programmer's task.

Fast Indexed Access

JE's indexing capabilities are valuable in a mobile environment, not only
because they provide relationship capabilities like the ones shown in the
above sample schema, but also because they provide fast access to the data.
Our sample mobile sales application keeps a local read-only copy of the
widget catalog on the device and utilizes JE's indices for fast search and
retrieval without going over the web to a backend server. JE supports
primary and secondary indices, composite keys, keys based on complex
classes, lazy index population, and key prefixing. On Android, JE databases
can reside on the flash memory card (for example, up to 32 GB on a
Motorola Droid, 8GB on HTC Eris) facilitating large local data sets.

Oracle White Paper— Berkeley DB Java Edition on Android

On a Motorola Droid, a random access read of a 1 KB record in a 100,000
record (100MB) database is about 1 ms using JE and about 5 ms using the
native Android SQI.-based database.

True Multi-Threaded Support

JE provides versatile multi-threaded concurrency control, an important
feature for many applications on the Android platform. For example,
consider an application which uploads and downloads to (and from) a
server in a background thread while the user is entering or viewing data on
the screen. In this scenario, the application may benefit from loosening
locking requirements to permit these background updates. JE lets the
programmer adjust locking and concurrency by supporting all four levels of
ANSI serialization. Some of an application's data may requite strict two-
phase locking, which JE enforces by default. On the other end of the
spectrum, there may be a set of data for which strict inter-thread locking is
not required, and for that, JE allows data-access using dirty reads.

Flexible Many-to-Many Transaction-to-Thread
Model

Programs can make use of JE's transaction capabilities by wrapping one or
more operations with beginTransaction() and commit () (or
abort ()) method calls. Transactions might seem overkill on a device like
a smartphone, but consider a mobile sales order entry application where a
user enters multi-component orders into the device and then uploads them
to the server for fulfillment processing: Atomicity and consistency over the
orders in the local storage is important. For example, depending on the
outcome of a large order upload -- success or network failure in the middle
of uploading -- the application may want to delete all of the local order
elements in a single transaction. Or, the application may want to read
several objects from a device-local database in a transactionally consistent
manner while a background task is concurrently updating data received from
a server (e.g. updates to email/text messages or ‘friend’ presence status).
This is a scenario where the availability of different serialization options is
useful. Further, JE has a many-to-many transaction-to-thread model;
multiple threads may use a transaction and one thread may use multiple
transactions, allowing you the greatest flexibility over the ACID
characteristics of the application.

Oracle White Paper— Berkeley DB Java Edition on Android

Conclusion

Android has created the next generation of mobile device technology by
implementing a J2SE stack capable of supporting sophisticated multi-
threaded database applications. In turn, Berkeley DB Java Edition and its
Direct Persistence Layer provide scalable, transactional data management to

the new breed of Android applications and services.

For more information, see:

Oracle Berkeley DB Java Edition
ttp:/ /www.oracle.com/database/berkeley-db/je/index.html

Oracle Berkeley DB Product Family
(http://www.oracle.com/database/berkeley-db/index.html)

Oracle Berkeley DB Blog (http://blogs.oracle.com/berkelevdb/)
Charles Lamb’s Blog (http://blogs.oracle.com/charlesl.amb /)

http://blogs.oracle.com/charlesLamb
http://blogs.oracle.com/berkeleydb
http://www.oracle.com/database/berkeley-db/index.html
http://www.oracle.com/database/berkeley-db/je/index.html

ORACLE

Berkeley DB Java Edition on Android
February 2010
Author: Charles Lamb

Oracle Corporation

World Headquarters

500 Oracle Parkway
Redwood Shores, CA 94065
US.A.

Worldwide Inquiries:
Phone: +1.650.506.7000
Fax: +1.650.506.7200
oracle.com

& | Oracle is committed to developing practices and products that help protect the environment

Copyright © 2010, 2015 Oracle and/or its affiliates. All rights reserved.

This document is provided for information purposes only and the contents hereof are subject to change without notice. This
document is not warranted to be error-free, nor subject to any other warranties or conditions, whether expressed orally or implied in
law, including implied warranties and conditions of merchantability or fitness for a particular purpose. We specifically disclaim any
liability with respect to this document and no contractual obligations are formed either directly or indirectly by this document. This
document may not be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, without our
prior written permission.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective
owners.

AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. Intel
and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are
trademarks or registered trademarks of SPARC International, Inc. UNIX is a registered trademark licensed through X/Open
Company, Ltd. 0110

