Customer Driven Database Design

2 Trillion Rows of DNS Query Volume

Charlie Baker Sr. Director Product Management Oracle Dyn GBU October 4, 2017

charles.baker@oracle.com

ORACLE OPEN WORLD

October 1–5, 2017 SAN FRANCISCO, CA

ORACLE

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Quick Agenda

- 1 Who is Oracle Dyn
- ² The Problem
- Solutions Evaluated and Benchmarks
- Deployed Solution Architecture
- 5 Benefits and Next Steps

Dyn Strengthens Oracle Cloud Infrastructure

Mission | Create the World's Most Capable Enterprise Cloud Infrastructure from Edge to Core

The Next Generation Cloud

Trusted by Over 3,500 Customers, Including Some of the Most Preeminent Digital Brands

Visit dyn.com/OOW17 for more information and downloads. Visit our product experts in the Oracle Cloud Infrastructure expo

The Problem – High-Scale Billing, Reporting & Analytics

- Globally Distributed Name servers answering DNS Queries
 - Fully attributed with ASN, GEO-ID, Country Code
- Data Volume Generated:
 - Estimated at 2 Trillion Rows for 90 days of query data
 - Raw data of 1.6 TB/day working out to over 144 TB across 90 days
- Query Latency Measured across Multiple Systems:
 - -UI
 - Splash page queries < 5s
 - Detailed investigation queries <20s
 - -API
 - Single customer queries <20s
 - Multiple customer queries (billing/metering) <1min

Solutions Evaluated

Amazon Redshift	Complex system design Data loads could not keep up with incoming data volume Queries were unacceptably slow
	Could ingest and index at scale Required large shared storage Difficulties running multiple GROUP BY queries
Apache CASSANDRA	Limited expertise at Dyn Unable to support complex queries, forcing application to implement complex query processing logic
ORACLE [®] Cloud - Single Database	Good Performance and Ingest speed Complex query support Performance and Storage limited to Single Database
ORACLE [®] Cloud - Sharded Database	Superior Ingest speeds Scale queries by distributing across as many servers as needed (up to 1000) Near limitless TB of storage by adding more Shards (up to 1000)

Evaluation Results

- Loading from S3 to Redshift
 3 to 4 minutes
- Loading from Oracle Object Storage to Shards
 - 500k rows / second
 - Full load in 1 minute
 - -4 minutes of headroom for queries

Deployed Solution

Oracle Sharded Database

- Proven linear scalability
- Ingest speeds scale with number of shards
- Constant query time even as we grew size of dataset
- Geo-distributed to be close to our customers

Shards are replicated across 2 different Availability Domains for availability and disaster recovery

Utilized powerful Bare Metal Cloud servers (36 OCPUs, 512 GB memory, 12.8 TB local NVMe SSD storage)

High Speed Data Load

• Utilized fully parallel direct-to-shard data loader

- Sharded architecture scales the CPU, flash, and network interfaces
- Can add shards as needed to accommodate higher ingest rates
- Architecture applies to IIoT, IoT and edge compute scenarios

Testing the User Interface

- Basic query time < 2 seconds

 Total requests over period of time
- Complex query time <20 seconds
 - Requests by geography, operator, recursive over period of time

Wrap Up

- Oracle Sharding Allows Dyn to...
 - Deliver fast, real-time analytics to our customers, billing and analytics systems
 - Dynamically scale our computing infrastructure to handle ever-growing ingest rates, while keeping query times constant even though the data volume grows
 - Easily support geographic data distribution so that we can keep data closer to our customers
 - Collect more data per customer, so that we can make better traffic steering decisions and provide more value to customers
 - Create our data lake for analytics including recursive, RUM, synthetic, remote access, CDN and WAF data sets
- Oracle Dyn DNS and Email services officially launch at OOW leveraging the sharded DB