
 

 

 

 

 

 

 

 

 

Continuous 
Availability 
Best Practices for Applications Using 
Autonomous Database - Dedicated 
 

White Paper / September 2, 2020  



 

2 WHITE PAPER / Continuous Availability 

Introduction .................................................................................................. 3 

Overview ...................................................................................................... 4 

Application Configuration Checklist ............................................................. 4 

Connect Using Services .............................................................................. 5 

Configure TNS/URL for High Availability ..................................................... 5 

Use Fast Application Notification ................................................................. 6 

Use Recommended Application Practices to Allow Draining ....................... 8 

Option 1 Enabling Transparent Application Continuity ................................. 8 

Option 2 Enabling Application Continuity ................................................... 10 

Understanding the Protection Level When Using TAC or AC .................... 11 

Configuring your Clients ............................................................................ 12 

Conclusion ................................................................................................. 14 

Appendix: Enabling Service Attributes for Failover .................................... 15 

Appendix: Enabling Service Attributes for Runtime Load Balancing .......... 16 

Appendix: Protection Levels Reported By PDB, Service and History ........ 17 

Appendix: Configuring Clients for FAN including Optional Wallets ............ 20 

Appendix: Additional Technical Resources from the Oracle Library .......... 23 

 
 

  



 

3 WHITE PAPER / Continuous Availability 

 

1 https://www.oracle.com/technetwork/database/options/clustering/applicationcontinuity/adb-continuousavailability-5169724.pdf 

 

INTRODUCTION 

Applications achieve continuous service when planned maintenance, unplanned outages, and 

load imbalances of the database tier are hidden. A combination of application best practice, 

simple configuration, and the Oracle Autonomous Database will ensure that your applications 

are continuously available.  

If the recommended application configuration solution cannot be used, alternative application 

configurations can be found in the white paper Continuous Availability Application Checklist for 

Continuous Service for MAA Solutions1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://www.oracle.com/technetwork/database/clustering/checklist-ac-6676160.pdf
https://www.oracle.com/technetwork/database/clustering/checklist-ac-6676160.pdf


 

4 WHITE PAPER / Continuous Availability 

 

2 Descriptions of Fast Application Notification, Application Continuity, and Transparent Application Continuity are available from the 

papers included in the Appendix: Additional Technical Resources, at the end of this paper 

3 How to configure Oracle WebLogic Server, IBM WebSphere, IBM Liberty, Apache Tomcat and Redhat WildFly (JBoss) using UCP 

to hide maintenance windows and unplanned outages is detailed in papers listed in the Appendix: Additional Technical 

Resources 

OVERVIEW 

The best approach for hiding planned maintenance activities from your applications is to transparently drain work from each 

database workload location prior to the maintenance window for that workload location. Oracle’s connection pools and mid-tiers, 

including the WebLogic Server, Universal Connection Pool (UCP), OCI Session pool and ODP.NET Unmanaged Provider are Fast 

Application Notification (FAN2) aware and therefore are notified before database services are scheduled to move to allow graceful 

draining of work before maintenance. FAN notification automatically triggers closing idle connections, opening new connections in 

the new service location, and allows a configurable time for active work to complete in the soon-to-be-shutdown service location. 

The major third-party JDBC mid-tiers, such as IBM WebSphere, allow for the same behavior when configured with UCP3. For 

JDBC-based applications that cannot use UCP, Oracle provides solutions using Oracle Drivers and connection tests.  

In order to hide unplanned outages resulting from a component or communication failure Oracle provides: 

Notification - FAN is the first step to hiding outages. FAN notifies clients and breaks them out of their current network wait 

when an outage occurs. This avoids stalling applications for long network waits. Importantly, FAN also invokes rebalancing of 

sessions when services are available again. 

Recovery – After the client is notified, Application Continuity (AC) or Transparent Application Continuity (TAC), re-establish a 

connection to a new workload location (which may be to the same or another instance in the Real Application Clusters (RAC) 

case, or a standby site in the Data Guard case) and replays in-flight (uncommitted) work when possible. By replaying in-flight 

work on the new location, the application can usually continue executing without knowing that any failure happened. 

AC or TAC also executes during planned maintenance: for those sessions that do not drain (complete their current database 

operation) during the allocated drain interval. 

APPLICATION CONFIGURATION CHECKLIST 

The following checklist prepares your application for using the Oracle Autonomous Database 

Connect Using Oracle Services 

Configure Connection String/URL for High Availability  

Use Fast Application Notification (FAN)   

Use recommended application practices that allow draining  

Enable Application Continuity or Transparent Application Continuity 

 

 

 

 

 

 

 



 

5 WHITE PAPER / Continuous Availability 

CONNECT USING SERVICES 

Services provide transparency for the underlying ATP-D infrastructure. FAN, connection data, Transparent Application Continuity 

(TAC), Application Continuity (AC), switchover, consumer groups and many other features and operations are predicated on the 

use of services.  The services you use also define the primary or standby role in the underlying Data Guard environment. 

Oracle’s Autonomous Database Transaction Processing Dedicated (ATP-D) offers five preconfigured services to choose from. All 

provide FAN and draining. TPURGENT and TP have TAC enabled by default in the ATP-D environment.  An API is available to 

change the TAC or AC settings on all preconfigured services (see Appendix).  

Pre-configured Services offered by the Oracle Autonomous Database 

SERVICE NAME DESCRIPTION DRAINING FAN TAC 

TPURGENT OLTP Highest Priority Yes Yes Yes 

TP OLTP General Priority 

 

(Use as main service) 

Yes Yes Yes 

HIGH Reporting or Batch 

 

(Highest Priority) 

Yes Yes  

MEDIUM Reporting or Batch 

 

(Medium Priority) 

Yes Yes  

LOW Reporting or Batch 

 

(Lowest Priority) 

Yes Yes  

 

To help in choosing the service for batch work: 

HIGH: Queries run with a Degree of Parallelism equal to CPU_COUNT. There is a limit of three concurrent queries after which 

statement queuing occurs. 

MEDIUM: Queries run with a Degree of Parallelism of four. The maximum number of queries that can run simultaneously is 

(CPU_COUNT*1.25). 

LOW: Queries run serially. Queueing starts when concurrent queries exceed (2*CPU_COUNT). 

CONFIGURE CONNECTION STRING/URL FOR HIGH AVAILABILITY 

Oracle recommends the Connection String/URL configuration shown below when connecting to the Oracle Autonomous Database. 

Connect strings embedded in the Oracle-supplied wallet are configured in this fashion. Do not use Easy Connect Naming on the 

client because EZCONNECT has no high-availability capabilities. 

Note that the standby-scan specified below refers to the SCAN address available on the standby site specified in the Active Data 

Guard configuration. The driver attempts to connect to the primary site first, and if the service is not available, then attempts to 

connect to the service at the standby. Once the connection to the service is made, at whichever site, the Oracle driver version 12.2 

and later remembers the TNS address list that offers that service and gives this site priority. 

 



 

6 WHITE PAPER / Continuous Availability 

 

Use this Connection String for ALL Oracle drivers version 12.2 or higher: 

Alias (or URL) =  

(DESCRIPTION = 

(CONNECT_TIMEOUT= 90)(RETRY_COUNT=50)(RETRY_DELAY=3)(TRANSPORT_CONNECT_TIMEOUT=3) 

 (ADDRESS_LIST = 

   (LOAD_BALANCE=on) 

   (ADDRESS = (PROTOCOL = TCP)(HOST=primary-scan)(PORT=1521))) 

 (ADDRESS_LIST = 

   (LOAD_BALANCE=on) 

   (ADDRESS = (PROTOCOL = TCP)(HOST=standby-scan)(PORT=1521)))        

 (CONNECT_DATA=(SERVICE_NAME = ATP-D SERVICE))) 

 

Use the following for JDBC connections using Oracle driver version 12.1 or earlier 

Alias (or URL) = 

(DESCRIPTION = 

(CONNECT_TIMEOUT= 15)(RETRY_COUNT=50)(RETRY_DELAY=3) 

(ADDRESS_LIST = 

  (LOAD_BALANCE=on) 

  (ADDRESS = (PROTOCOL = TCP)(HOST=primary-scan)(PORT=1521))) 

(ADDRESS_LIST = 

   (LOAD_BALANCE=on) 

   (ADDRESS = (PROTOCOL = TCP)(HOST=standby-scan)(PORT=1521)))       

(CONNECT_DATA=(SERVICE_NAME = ATP-D SERVICE))) 

USE FAST APPLICATION NOTIFICATION 

FAN provides immediate notification to an application in the event of an outage or resumption of service.  Without FAN, 

applications can hang on TCP/IP timeout following hardware and network failures, and omit to rebalance when resources resume. 

All Oracle pools and all Oracle application servers use FAN. Third-party JAVA application servers can use UCP to enable FAN. 

No application changes are required to use FAN. These are configuration changes only. 

For continuous service during planned maintenance, use FAN with: 

• Oracle pools or 

• UCP with third-party JDBC application servers or 

• The latest Oracle client drivers 

For continuous service during unplanned outages, use FAN with 

• Application Continuity or 

• Transparent Application Continuity 

 

 



 

7 WHITE PAPER / Continuous Availability 

FAN Coverage 

FAN events are integrated with: 

• Oracle Fusion Middleware and Oracle WebLogic Server 

• Oracle Data Guard Broker 

• Oracle JDBC Universal Connection Pool or Driver for both JDBC thin and Oracle Call Interface (OCI) interfaces  

• ODP.NET Connection Pool for Unmanaged and Managed Providers 

• Oracle Tuxedo 

• SQL*Plus 

• Oracle Database drivers for languages such as Python, Node.js and PHP  

• Global Data Services  

• Third party JDBC application servers using Oracle JDBC Universal Connection Pool 

• Listeners  

To enable FAN in the client: 

Use the TNS alias or URL shown in the preceding discussion.  This connection string is used to auto-configure the Oracle 

Notification Service (ONS) subscription at the client for FAN-event receipt when using an Oracle Database 12c or later client driver. 

For older drivers, refer to the FAN white paper in the Appendix for configuration details. ONS provides a secure communication 

path between the database tier and the client-tier allowing the client to be notified of service availability (components stopping or 

starting) as well as runtime load balancing advice for better work placement during normal operation. 

Depending on the client, enable FAN in the application configuration properties as follows 

Universal Connection Pool or JDBC thin driver (starting 12.2) 

Set the property FastConnectionFailoverEnabled 

WebLogic Active GridLink for Oracle RAC 

FAN and Fast Connection Failover are enabled by default 

Oracle WebLogic Server, IBM WebSphere, IBM Liberty, Apache Tomcat, Red Hat WildFly (JBoss), JDBC Applications 

Use Universal Connection Pool as a connection pool replacement 

ODP.Net clients (Managed and Unmanaged Providers) 

Set “HA events = true;pooling=true” in the connect string if using ODP.Net 12.1 or earlier 

Oracle Call Interface (OCI) clients and OCI-based drivers  

Oracle Call Interface (OCI) clients without native settings can use an oraacces.xml file and set events to true 

 

Python, Node.js and PHP have native options. In Python and Node.js you can set an events mode when creating a 

connection pool.  In PHP, edit php.ini add the entry oci8.events=on 

 



 

8 WHITE PAPER / Continuous Availability 

SQL*Plus enables FAN by default 

 

In the ATP-D environment ONS offers an optional TLS (wallet-based) authentication. Depending upon the type of application 

(JDBC or Oracle Call Interface), the wallet configuration must follow particular rules, as described in the Appendix. 

USE RECOMMENDED APPLICATION PRACTICES TO ALLOW DRAINING 

Best practice for application usage is to check out connections for the time that they are needed, and then check them back in to 

the pool when the current action is complete.  This is important to achieve good performance, for the rebalancing of work at 

runtime, and during maintenance windows for draining the work. Refer to the statistics section Understanding your protection level 

when using TAC or AC for an indication of how well your application follows this practice. 

Oracle recommends using a FAN-aware Oracle connection pool for hiding planned maintenance. There is no impact to users when 

your application uses an Oracle Pool with FAN and returns connections to the pool between requests.  You do not need to make 

any application changes to use FAN.  

When an Oracle connection pool receives the FAN event for planned downtime, it marks all connections at the instance to be 

drained. Immediately, checked-in connections are closed so that they are not re-used. As in-use connections are returned to the 

pool they are closed. This allows all connections to be closed gracefully over time.   

If you are using a third-party, Java-based application server, then the most effective method to achieve draining and failover is to 

replace the pooled data source with UCP. Many application servers support this approach, including Oracle WebLogic Server, IBM 

WebSphere, IBM Liberty, Apache Tomcat, Red Hat WildFly (JBoss), Spring, Hibernate, and others. White papers from Oracle and 

other providers, such as IBM, describe how to use UCP with these application servers. Using UCP as the data source allows UCP 

features such as Fast Connection Failover, Runtime Load Balancing, Application Continuity and Transparent Application Continuity 

to be used with full certification. 

OPTION 1 ENABLING TRANSPARENT APPLICATION CONTINUITY 

TAC transparently tracks and records session and transactional state so that a database session can be recovered following 

recoverable outages. TAC is enabled when you select the appropriate service for the Autonomous Database. 

Transparent Application Continuity Coverage 

Transparent Application Continuity for Oracle Autonomous Database supports the following clients: 

It is strongly recommended to use the latest client drivers. Oracle Database 19c client drivers and later provide full support for TAC. 

• Oracle JDBC Replay Driver 18c or later. This is a JDBC driver feature provided with Oracle Database 18c for Application 

Continuity 

• Oracle Universal Connection Pool (UCP) 18c or later with Oracle JDBC Replay Driver 18c or later. 

• Oracle WebLogic Server Active GridLink, or third-party JDBC application servers using UCP with Oracle JDBC Replay 

Driver 18c or later 

• Java connection pools or standalone Java applications using Oracle JDBC Replay Driver 18c or later  

• Oracle Call Interface Session Pool 19c or later 

• SQL*Plus 19c (19.3) or later 

• ODP.NET pooled, Unmanaged Driver 18c or later (“Pooling=true” default in 12.2 and later)  



 

9 WHITE PAPER / Continuous Availability 

 

4 Refer to the whitepaper Continuous Availability Application Checklist for Continuous Service for MAA Solutions 

(https://www.oracle.com/technetwork/database/options/clustering/applicationcontinuity/adb-continuousavailability-5169724.pdf) 

for information on how to register a callback 

• Oracle Call Interface based applications using 19c OCI driver or later 

 

 

Steps for using Transparent Application Continuity 

REFER TO APPENDIX: ENABLING SERVICE ATTRIBUTES FOR FAILOVER 

USE A SUPPORTED CLIENT (SEE COVERAGE ABOVE) 

RETURN CONNECTIONS TO THE CONNECTION POOL 

You do not need to make any changes to your application for identifying request boundaries if the application uses connections: 

• from the Oracle connection pools or  

• from the Oracle JDBC Replay Driver 18c or later or 

• from the  Oracle Call Interface based applications using 19c or later 

When using connection pools, the application should return the connection to the pool on completion of each request. Oracle 

recommends that an application checks out a connection only for the time it needs it. Holding a connection when not in use is not 

good practice. Transparent Application Continuity with the listed drivers also detects where boundaries can be added and makes 

its own boundaries. 

USE FAILOVER_RESTORE 

Enabling Transparent Application Continuity automatically restores preset session states. If you find that you need preset session 

states in addition to the standard set, then you can register a callback4 or UCP label to restore these states. If you find that you 

need complex session states, such as temporary tables or SYS_CONTEXT, restored, then use Application Continuity that offers this 

flexibility.  

ENABLE MUTABLE USE IN THE APPLICATION 

Mutable functions are functions that can return a new value each time they are executed. Support for keeping the original results is 

provided for SYSDATE, SYSTIMESTAMP, SYS_GUID, and sequence.NEXTVAL. Application Continuity 19c and later automatically 

KEEP’s mutables for SQL, so no action is required.  If you need mutables for PL/SQL, then the dba must issue the GRANT KEEP 

privilege. When KEEP privilege is granted, replay applies the original function result at replay.   

For example: 

SIDE EFFECTS ARE DISABLED 

SQL> GRANT [KEEP DATE TIME | KEEP SYSGUID] … TO USER 

SQL> GRANT KEEP SEQUENCE mySequence TO myUser ON sequence.object 

https://www.oracle.com/technetwork/database/options/clustering/applicationcontinuity/adb-continuousavailability-5169724.pdf


 

10 WHITE PAPER / Continuous Availability 

A side effect is an external action such as sending mail, transferring files or using TCP. Transparent Application Continuity detects 

side effects and does not replay them.  If you want the side effects replayed, then use Application Continuity that allows this extra 

flexibility. 

OPTION 2 ENABLING APPLICATION CONTINUITY 

Application Continuity is customizable, allowing you to choose to replay side effects or to add complex callbacks at failover that 

Transparent Application Continuity does not allow. Use Application Continuity if you are using Oracle 12c drivers (JDBC-thin or  

Oracle Call Interface), or you want to customize with side effects or callbacks, or have an application that uses state such as 

session duration temp tables and does not clean up across requests. 

Application Continuity Coverage 

Application Continuity for Oracle Database 19c supports the following clients: 

• Oracle JDBC Replay Driver 12c or later. This is a JDBC driver feature provided with Oracle Database 12c for 

Application Continuity 

• Oracle Universal Connection Pool (UCP) 12c or later with Oracle JDBC Replay Driver 12c or later 

• Oracle WebLogic Server Active GridLink and third-party JDBC application servers using UCP with Oracle JDBC 

Replay Driver 12c or later 

• Java connection pools or standalone Java applications using Oracle JDBC Replay Driver 12c or later with Request 

Boundaries or Pooled Data Source 

• Applications and language drivers using Oracle Call Interface Session Pool 12c Release 2 or later 

• SQL*Plus 19.3 or later 

• ODP.NET pooled, Unmanaged Driver 12c Release 2 or later (“Pooling=true”;“Application 

Continuity=true” default in 12.2 and later) 

Steps for using Application Continuity 

REFER TO APPENDIX: ENABLING SERVICE ATTRIBUTES FOR FAILOVER 

USE A SUPPORTED CLIENT (SEE COVERAGE) 

RETURN CONNECTIONS TO THE POOL 

You do not need to make any changes to your application for identifying request boundaries if the application is using an Oracle 

connection pool or a third-party JDBC pool that supports request boundaries. It is best practice to use an Oracle pool and return 

the connections to that pool between requests. Oracle recommends that an application checks out a connection only for the time it 

needs it. Holding a connection when not in use is not good practice.  

USE FAILOVER_RESTORE 

Most common states are restored automatically with FAILOVER_RESTORE=LEVEL1. If your application presets session states in 

addition to the standard set, then you must register a callback, or UCP label, to restore these states. Use: 

FAILOVER_RESTORE=LEVEL1 is set on the service and  

o Connection Initialization Callback for Java or the (older) TAF Callback for Oracle Call Interface or 

o Universal Connection Pool or WebLogic Server Connection Labelling 



 

11 WHITE PAPER / Continuous Availability 

 

5 For information about downloading, configuring and running ORAchk utility, refer to My Oracle Support note 1268927.2 

ENABLE MUTABLE USE IN THE APPLICATION (SEE ENABLING TRANSPARENT APPLICATION CONTINUITY SECTION ON MUTABLES) 

DECIDE IF YOU WANT TO REPLAY SIDE EFFECTS  

A side effect is an external action such as sending mail, transferring files or using TCP. With Application Continuity, side effects are 

replayed unless the application specifies otherwise.  If a request has an external action that should not be replayed, then that 

request can use a connection that does not have Application Continuity enabled, or replay can be disabled for that request using 

the disableReplay() API for Java or OCIRequestDisableReplay()for Oracle Call Interface. If you do not wish to replay all 

side effects, use Transparent Application Continuity. 

UNDERSTANDING THE PROTECTION LEVEL WHEN USING TAC OR AC 

Use the statistics for request boundaries and protection level to monitor the level of coverage to know whether your application 

returns connections to the pool and how well your application is protected.  

Application Continuity collects statistics from the system, the session, and the service, enabling you to monitor your protection 

levels. The statistics are available in V$SYSSTAT, V$SESSTAT, also in V$SERVICE_STATS starting in later 19 versions. These 

statistics are saved in the Automatic Workload Repository (AWR) and are available in AWR reports and in ASH views.  

The output is similar to the following: 

 

TIP: To report the protection level by PDB or using historic data, see the Appendix for example SQL to use. 

TAC or AC are enabled and protecting your application when 

• Cumulative user calls in request = cumulative user calls protected  

• And the above numbers are not equal to zero 

This protection level is measured inside the database. The client may need to use an ORDER BY clause in queries and preset the 

initial session state if this contains state not covered by FAILOVER_RESTORE to achieve this level of protection. 

The example above shows an increasing number of Begin and End requests. The number itself will depend on how frequently your 

application checks out and checks into the connection pool, or the request boundaries that the database can discover when using 

TAC. The rate of increase of these values will depend on the rate your requests are being submitted. You can compute the 

percentage of user calls being protected using: 

Percentage of Protected Calls = cumulative user calls protected / cumulative user calls in request * 100 

It is possible that the percentage of protected calls is less than 100%. You may be using JDBC concrete classes, side effects are 

disabled, unrecoverable state may be being used, or the application may choose to disable Application Continuity for certain 

requests. If your application is not 100% protected, the ORAchk5 component acchk can be used, at your own site, to show where 

Statistic            Total          per Second   per Trans 

--------------------------------          ------------------ -------------- ------------- 

cumulative begin requests         1,500,000        14,192.9             2.4 

cumulative end requests                 1,500,000        14,192.9             2.4 

cumulative user calls in request             6,672,566        63,135.2           10.8 

cumulative user calls protected              6,672,566        63,135.2           10.8 

https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&id=1268927.2


 

12 WHITE PAPER / Continuous Availability 

 

6 For more information on ORAchk –acchk refer to blog Using Orachk to Clean Up Concrete Classes for Application Continuity 

in your application coverage is below 100%. Your management can decide whether to follow the advisor or take no action by 

evaluating the impact. 

 

 

CONFIGURING YOUR CLIENTS 

JDBC-thin Driver Checklist 

1. Ensure all recommended patches are applied at the client.  Refer to the MOS note Client Validation Matrix for 

Application Continuity (Doc ID 2511448.1) 

2. Use JDBC Statement Cache for Coverage and Performance 

For best coverage and performance, use the JDBC driver statement cache in place of an application server statement cache. This 

allows the driver to know that statements are closed and memory to be freed at the end of requests. 

To use the JDBC statement cache, use the connection property oracle.jdbc.implicitStatementCacheSize 

(OracleConnection.CONNECTION_PROPERTY_IMPLICIT_STATEMENT_CACHE_SIZE). The value for the cache size 

matches your number of open_cursors. For example: 

oracle.jdbc.implicitStatementCacheSize=nnn   where nnn is typically between 10 and 100 and is 

equal to the number of open cursors your application maintains. 

3. Tune the Garbage Collector 

For many applications the default Garbage Collector tuning is sufficient. For applications that return and keep large amounts of 

data you can use higher values, such as 2G or larger.  For example: 

    java -Xms3072m -Xmx3072m 

It is recommended to set the memory allocation for the initial Java heap size (ms) and maximum heap size (mx) to the same 

value. This prevents using system resources on growing and shrinking the memory heap. 

4. JDBC Concrete Classes 

For JDBC applications, Oracle does not support deprecated oracle.sql concrete classes BLOB, CLOB, BFILE, OPAQUE, 

ARRAY, STRUCT or ORADATA. (See MOS note 1364193.1 New JDBC Interfaces). Use ORAchk -acchk on the client to 

know if an application passes6.  The list of restricted concrete classes for JDBC Replay Driver is reduced to the following 

starting with Oracle JDBC-thin driver version 18c and later:  oracle.sql.OPAQUE, oracle.sql.STRUCT, 

oracle.sql.ANYDATA 

5. Configure Fast Connection Failover (FCF) 

For client drivers 12c and later 

• Use the recommended Connection String or URL for auto-configuration of ONS 

• Check that ons.jar (plus optional WALLET jars, osdt_cert.jar, osdt_core.jar, oraclepki.jar) are on the CLASSPATH 

• Set the pool or driver property fastConnectionFailoverEnabled=true 

https://blogs.oracle.com/weblogicserver/using-orachk-to-clean-up-concrete-classes-for-application-continuity
https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&id=1364193.1


 

13 WHITE PAPER / Continuous Availability 

• For third party JDBC pools, UCP is recommended 

• Open port 6200 for ONS (6200 is the default port, a different port may have been chosen) 

For client drivers prior to 12c use the addresses provided:  

Set oracle.ons.nodes =XXX01:6200, XXX02:6200, XXX03:6200 

Oracle Call Interface (OCI) Driver Checklist 

1. Ensure all recommended patches are applied at the client. Refer to the MOS Note Client Validation Matrix for 

Application Continuity (Doc ID 251148.1)  

2. Replace OCIStmtPrepare with OCIStmtPrepare2. OCIStmtPrepare() has been deprecated since 12.2.  All 

applications should use OCIStmtPrepare2().  TAC and AC allow OCIStmtPrepare but do not replay this 

statement. 

https://docs.oracle.com/en/database/oracle/oracle-database/19/lnoci/deprecated-oci-functions.html#GUID-

FD74B639-8B97-4A5A-BC3E-269CE59345CA 

3. To use FAN for OCI-based applications, do the following: 

• ATP-D presets aq_ha_notifications on the services 

• Use the recommended Connection String for auto-configuration of ONS 

• Set auto_config, events, and wallet_location (optional) in oraaccess.xml (See Appendix) 

• Link the application with the O/S client thread library  

• Open port 6200 for ONS (6200 is the default port, a different port may have been chosen) 

For client drivers prior to 12c copy the addresses provided in oraccess.xml. 

ODP.NET Unmanaged Provider Driver Checklist 

1. Ensure all recommended patches are applied at the client. Refer to the MOS Note Client Validation Matrix for Application 

Continuity (Doc ID 251148.1)  

 

2. To use FAN for  Oracle Call Interface based applications, do the following: 

• ATP-D presets aq_ha_notifications on the services 

• Use Recommended Connection String for auto-ons 

• Set onsConfig and wallet_location (optional) in oraaccess.xml (See Appendix) 

• Open port 6200 for ONS (6200 is the default port, a different port may have been chosen) 

• Set FAN, in the connection string - 

"user id=oracle; password=oracle; data source=HA; pooling=true; HA events=true;“ 

• (optional) Set Runtime Load Balancing, also in the connection string - 

"user id=oracle; password=oracle; data source=HA; pooling=true; HA events=true; load 

balancing=true;“ 

 

https://docs.oracle.com/en/database/oracle/oracle-database/19/lnoci/deprecated-oci-functions.html#GUID-FD74B639-8B97-4A5A-BC3E-269CE59345CA
https://docs.oracle.com/en/database/oracle/oracle-database/19/lnoci/deprecated-oci-functions.html#GUID-FD74B639-8B97-4A5A-BC3E-269CE59345CA


 

14 WHITE PAPER / Continuous Availability 

CONCLUSION 

The Oracle Autonomous Database is configured and managed for high availability on your behalf. No additional configuration or 

management is required by you. 

There are a few simple steps to achieving Continuous Availability for your applications: 

• Select the ATP-D service that is appropriate for your SLA’s 

• Configure Fast Application Notification (FAN)  

• Use the recommended connection string for your applications 

• Use application best practices to optimize for draining 

• Use Transparent Application Continuity or Application Continuity for continuous service 

By following these five simple steps, planned maintenance activities will no longer require outages and unplanned events will rarely 

result in failed transactions and interruptions to service.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

15 WHITE PAPER / Continuous Availability 

APPENDIX: ENABLING SERVICE ATTRIBUTES FOR FAILOVER 

Transparent Application Continuity is the default for the preconfigured services TPURGENT and TP, nothing needs to be done. The 

DEFAULT value for FAILOVER_RESTORE is AUTO when using TPURGENT and TP.  

You can change the failover type offered on your service by using the generic package DBMS_APP_CONT_ADMIN. Use this API to 

enable  Application Continuity, Transparent Application Continuity or Transparent Application Failover (TAF), or to disable failover 

altogether. New sessions will use the new failover type.  

To use these procedures you must have been granted the role PDBADMIN. 

To enable Transparent Application Continuity for your service: 

To enable Application Continuity for your service: 

To enable TAF SELECT for your service:: 

To enable TAF BASIC for you service: 

To disable failover for your service: 

If you wish to use TAF without modifying services, use the older client-side configuration for TAF in your connection string: 

(FAILOVER_MODE=(TYPE=select)(METHOD=basic)(OVERRIDE=TRUE)) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

execute DBMS_APP_CONT_ADMIN.ENABLE_TAC(`HIGH`); 

execute DBMS_APP_CONT_ADMIN.ENABLE_AC(`TPURGENT`); 

execute DBMS_APP_CONT_ADMIN.ENABLE_TAF(`LOW`); 

execute DBMS_APP_CONT_ADMIN.ENABLE_TAF(`MEDIUM`, `SESSION`); 

execute DBMS_APP_CONT_ADMIN.DISABLE_FAILOVER(`HIGH`); 



 

16 WHITE PAPER / Continuous Availability 

APPENDIX: ENABLING SERVICE ATTRIBUTES FOR RUNTIME LOAD BALANCING 

Use Runtime Load Balancing to load balance OLTP and batch applications.  It is only suitable for services that run on more than 

one instance at a time. NONE is the default setting. To use these procedures you must have been granted the PDBADMIN role. 

For OLTP-style applications, enable runtime load balancing where the service response time is used to direct work: 

For batch-style applications enable runtime load balancing where service throughput is used to direct work 

To disable load balancing at runtime: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

execute DBMS_APP_CONT_ADMIN.SET_LOAD_BALANCING_GOAL(`TPURGENT`, `SERVICE_TIME`); 

execute DBMS_APP_CONT_ADMIN.SET_LOAD_BALANCING_GOAL(`HIGH`, `THROUGHPUT`); 

execute DBMS_APP_CONT_ADMIN.SET_LOAD_BALANCING_GOAL(`HIGH`, `NONE`); 



 

17 WHITE PAPER / Continuous Availability 

APPENDIX: PROTECTION LEVELS REPORTED BY PDB, SERVICE AND HISTORY 

To report protection by PDB, use the following example: 

 

set lines 85 

col Service_name format a30 trunc heading "Service" 

break on con_id skip1 

col Total_requests format 999,999,9999 heading "Requests" 

col Total_calls format 9,999,9999 heading "Calls in requests" 

col Total_protected format 9,999,9999 heading "Calls Protected" 

col Protected format 999.9 heading "Protected %" 

 

select con_id, total_requests, 

total_calls,total_protected,total_protected*100/NULLIF(total_calls,0) as Protected 

from( 

select * from 

(select  s.con_id, s.name, s.value 

  FROM   GV$CON_SYSSTAT s, GV$STATNAME n 

  WHERE s.inst_id    = n.inst_id 

  AND   s.statistic# = n.statistic# 

  AND   s.value     != 0 ) 

pivot( 

  sum(value) 

  for name in ('cumulative begin requests' as total_requests, 'cumulative end requests' as 

Total_end_requests, 'cumulative user calls in requests' as Total_calls, 'cumulative user 

calls protected by Application Continuity' as total_protected) 

)) 

order by con_id; 
 



 

18 WHITE PAPER / Continuous Availability 

To report protection by service, use the following example: 

 

To report protection history over last three days, use the following example: 

set pagesize 60  

set lines 120  

col Service_name format a30 trunc heading "Service"  

break on con_id skip1  

col Total_requests format 999,999,9999 heading "Requests"  

col Total_calls format 9,999,9999 heading "Calls in requests"  

col Total_protected format 9,999,9999 heading "Calls Protected"  

col Protected format 999.9 heading "Protected %"  

 

select con_id, service_name,total_requests, 

total_calls,total_protected,total_protected*100/NULLIF(total_calls,0) as Protected  

from(  

select * from  

(select  a.con_id, a.service_name, c.name,b.value  

  FROM   gv$session a, gv$sesstat b, gv$statname c  

  WHERE  a.sid        = b.sid  

  AND    a.inst_id    = b.inst_id  

  AND    b.value     != 0  

  AND    b.statistic# = c.statistic#  

  AND    b.inst_id    = c.inst_id  

  AND    a.service_name not in ('SYS$USERS','SYS$BACKGROUND'))  

pivot(  

  sum(value)  

  for name in ('cumulative begin requests' as total_requests, 'cumulative end requests' as 

Total_end_requests, 'cumulative user calls in requests' as Total_calls, 'cumulative user 

calls protected by Application Continuity' as total_protected) ))  

order by con_id, service_name;  

 



 

19 WHITE PAPER / Continuous Availability 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

set lines 85 

col Service_name format a30 trunc heading"Service" 

break on con_id skip1 

col Total_requests format 999,999,9999 heading "Requests" 

col Total_calls format 9,999,9999 heading "Calls in requests" 

col Total_protected format 9,999,9999 heading "Calls Protected" 

col Protected format 999.9 heading "Protected %" 

 

set lines 85 

col Service_name format a30 trunc heading"Service" 

break on con_id skip1 

col Total_requests format 999,999,9999 heading "Requests" 

col Total_calls format 9,999,9999 heading "Calls in requests" 

col Total_protected format 9,999,9999 heading "Calls Protected" 

col Protected format 999.9 heading "Protected %" 

 

select  a.instance_number,begin_interval_time, total_requests, total_calls, total_protected, 

total_protected*100/NULLIF(total_calls,0) as Protected 

from( 

select * from 

(select  a.snap_id, a.instance_number,a.stat_name, a.value 

  FROM   dba_hist_sysstat a 

  WHERE    a.value     != 0 ) 

pivot( 

  sum(value) 

  for stat_name in ('cumulative begin requests' as total_requests, 'cumulative end requests' 

as Total_end_requests, 'cumulative user calls in requests' as Total_calls, 'cumulative user 

calls protected by Application Continuity' as total_protected) 

)) a, 

dba_hist_snapshot b 

where a.snap_id=b.snap_id 

and a.instance_number=b.instance_number 

and begin_interval_time>systimestamp - interval '3' day 

order by a.snap_id,a.instance_number; 

 



 

20 WHITE PAPER / Continuous Availability 

APPENDIX: CONFIGURING CLIENTS FOR FAN INCLUDING OPTIONAL WALLETS 

Wallet-based authentication is an option for FAN when using ATP-D. Use the same wallet as for the TNS connection. 

For JDBC applications: 

1. Ensure the following jar files are present in the application’s CLASSPATH 

(ons.jar, osdt_cert.jar, osdt_core.jar, oraclepki.jar) 

2. Specify the wallet for FAN in one of the following ways: 

o To use auto-configured ONS with wallets, set the following Java system properties: 

“-Doracle.ons.walletfile=/replace this with host path/onswallet” 

“-Doracle.ons.walletpassword=myONSWalletPassword” 

Note that these cannot be set on a per-pool or per-connection basis  

o To explicitly set ONS do one of the following: 

▪ Set explicitly using an UCP XML Configuration file. For example: 

 

 

▪ Set programmatically from within UCP, using a call to setONSConfiguration(), for example: 

<!--?xml version="1.0" encoding="UTF-8"? --> 

<ucp-properties> 

  <connection-pool 

    connection-pool-name="UCP_pool1" 

    user="dbuser" 

    password="dbuserpasswd" 

    connection-factory-class-name="oracle.jdbc.pool.OracleDataSource" 

    initial-pool-size="10" 

    min-pool-size="5" 

    max-pool-size="15" 

    validate-connection-on-borrow="true" 

    connection-wait-timeout="900" 

    max-connections-per-service="50" 

    sql-for-validate-connection="select 1 from dual"  

    url="jdbc:oracle:thin:@(DESCRIPTION =(CONNECT_TIMEOUT= 120)(RETRY_COUNT=20) 

(RETRY_DELAY=3) (TRANSPORT_CONNECT_TIMEOUT=3)(ADDRESS_LIST =(LOAD_BALANCE=on)(ADDRESS 

= (PROTOCOL = TCP)(HOST=primary-scan)(PORT=1521)))(ADDRESS_LIST 

=(LOAD_BALANCE=on)(ADDRESS = (PROTOCOL = TCP)(HOST=standby-

scan)(PORT=1521)))(CONNECT_DATA=(SERVICE_NAME = MY-SERVICE)))" 

    fastConnectionFailoverEnabled="true"  

    onsConfiguration="nodes=primary-scanhost:6200,secondary-

scanhost:6200\nwalletfile=/replace_with_host_path/onswallet\nwalletpassword=myWalletP

assword"> 

  </connection-pool> 

</ucp-properties> 



 

21 WHITE PAPER / Continuous Availability 

 

 

For Oracle Call Interface (OCI) Applications Using Oracle driver version 12.2 or more recent  

Add the following to the <default_parameters> section of the oraaccess.xml file: 

The <wallet_location> path should be the name of the directory containing the wallet.  

Other parameters may be set in the ons section of oraaccess.xml, including <hosts>, <max_connections>, and 

<subscription_wait_timeout>.  

Drivers that support native event setting controls may omit the <events> section and use the driver setting instead. 

By default, application connections to the database will succeed even if ONS fails. This allows the application to continue running. 

To validate your initial ONS configuration, you can force an Oracle error to be thrown when an application attempts to connect to 

the database but ONS isn't working. Add a section to oraaccess.xml at the same level as <ons>. This should be used for 

diagnostic purposes only: 

<fan> 

   <subscription_failure_action> 

       error 

   </subscription_failure_action> 

</fan> 

 

Place the oraaccess.xml file in the same directory as the tnsnames.ora and sqlnet.ora network files. For example, when 

using Oracle Instant Client these files might be in the default directory network/admin. Alternatively, all network configuration 

files can be put in another accessible directory. Then set the environment variable TNS_ADMIN to that directory name.  

ODP.Net Managed provider 

<default_parameters> 

      (Other settings may be present in this section) 

   <events> 

      true 

   </events> 

   <ons> 

      <auto_config>true</auto_config> 

      <wallet_location>/my_path/onswallet</wallet_location>        

   </ons> 

</default_parameters> 

pds.setONSConfiguration(“nodes=primary-scanhost:6200,secondary-

scanhost:6200\nwalletfile=/replace_this_with_host_path/onswallet\nwalletpassword=myWa

lletPassword”); 



 

22 WHITE PAPER / Continuous Availability 

Use the application.config file to specify ONS configuration and wallet location. For example: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

<oracle.manageddataaccess.client> 

    <version number="*"> 

      <onsConfig mode="remote"> 

        <settings> 

          <setting name="Protocol" value="TCPS" /> 

          <setting name="WALLET_LOCATION" value="C:\myPath\ONS_SSLWallet" /> 

        </settings> 

        <ons database="atp01db"> 

          <add name="nodeList" value="racNode1:6205,racNode2:6205,racNode3:6205" /> 

        </ons> 

      </onsConfig> 

    </version> 

</oracle.manageddataaccess.client> 



 

23 WHITE PAPER / Continuous Availability 

 

APPENDIX: ADDITIONAL TECHNICAL RESOURCES FROM THE ORACLE LIBRARY 

FAST APPLICATION NOTIFICATION 

http://www.oracle.com/technetwork/database/options/clustering/applicationcontinuity/learnmore/fastapplicationnotification1

2c-2538999.pdf 

EMBEDDING UCP WITH JAVA APPLICATION SERVERS 

WLS UCP Datasource,  https://blogs.oracle.com/weblogicserver/wls-ucp-datasource 

Design and Deploy WebSphere, IBM Liberty Applications for Planned, Unplanned Database Downtimes and Runtime 

Load Balancing with UCP (http://www.oracle.com/technetwork/database/application-development/planned-unplanned-rlb-

ucp-WebSphere, IBM Liberty-2409214.pdf) 

Reactive programming in microservices with MicroProfile on Open Liberty 19.0.0.4 

(https://openliberty.io/blog/2019/04/26/reactive-microservices-microprofile-19004.html#oracle) 

Design and deploy Tomcat Applications for Planned, Unplanned Database Downtimes and Runtime Load Balancing with 

UCP (http://www.oracle.com/technetwork/database/application-development/planned-unplanned-rlb-ucp-tomcat-

2265175.pdf). 

Using Universal Connection Pool with WildFly (JBoss) AS (https://blogs.oracle.com/dev2dev/using-universal-connection-

pooling-ucp-with-WildFly (JBoss)-as) 

APPLICATION CONTINUITY 

Application Continuity for Oracle 12c 

(http://www.oracle.com/technetwork/database/options/clustering/applicationcontinuity/overview/application-continuity-wp-

12c-1966213.pdf) 

Ensuring Application Continuity (https://docs.oracle.com/en/database/oracle/oracle-database/18/racad/ensuring-

application-continuity.html#GUID-C1EF6BDA-5F90-448F-A1E2-DC15AD5CFE75) 

TRANSPARENT APPLICATION CONTINUITY 

https://docs.oracle.com/en/database/oracle/oracle-database/18/adfns/high-availability.html#GUID-96599425-9BDA-483C-

9BA2-4A4D13013A37 

TRANSACTION GUARD 

Transaction Guard (http://www.oracle.com/technetwork/database/database-cloud/private/transaction-guard-wp-12c-

1966209.pdf) 

http://www.oracle.com/technetwork/database/options/clustering/applicationcontinuity/learnmore/fastapplicationnotification12c-2538999.pdf
http://www.oracle.com/technetwork/database/options/clustering/applicationcontinuity/learnmore/fastapplicationnotification12c-2538999.pdf


  

 

ORACLE CORPORATION 

Worldwide Headquarters 

500 Oracle Parkway, Redwood Shores, CA 94065 USA 

Worldwide Inquiries 

TELE + 1.650.506.7000    + 1.800.ORACLE1  

FAX + 1.650.506.7200  

oracle.com  

CONNECT WITH US 

Call +1.800.ORACLE1 or visit oracle.com. Outside North America, find your local office at oracle.com/contact.  

 blogs.oracle.com/oracle  facebook.com/oracle  twitter.com/oracle 

 

Copyright © 2020, Oracle and/or its affiliates. All rights reserved. This document is provided for information purposes only, and the contents hereof are 

subject to change without notice. This document is not warranted to be error-free, nor subject to any other warranties or conditions, whether expressed 

orally or implied in law, including implied warranties and conditions of merchantability or fitness for a particular purpose. We specifically disclaim any 

liability with respect to this document, and no contractual obligations are formed either directly or indirectly by this document. This document may not be 

reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, without our prior written permission.  

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. 

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or 

registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks 

of Advanced Micro Devices. UNIX is a registered trademark of The Open Group. 0920 

White Paper Title Continuous Availability: Best Practices for Applications Using Autonomous Database - Dedicated 

May 2019 

Authors: Troy Anthony and Carol Colrain 

Contributors: Lawrence To, Ian Cookson, Hector Pujol, Hairong Qin 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://www.oracle.com/
http://www.oracle.com/contact

