

Automated Database Upgrades using
Oracle Active Data Guard and DBMS_ROLLING

Best Practices

O R A C L E W H I T E P A P E R | D E C E M B E R 2 0 1 7

Introduction 1

Concepts 2

Choosing a Database Upgrade Method 3

Using DBMS_ROLLING 4

INIT_PLAN 3

SET_PARAMETER 4

BUILD_PLAN 4

START_PLAN 4

SWITCHOVER 4

FINISH_PLAN 4

ROLLBACK_PLAN 4

DESTROY_PLAN 4

Process Flow 5

DBMS_ROLLING Phases and Downtime / Fallback Options 5

DBMS_ROLLING Process 7

Performing a DBMS_ROLLING upgrade: 7

Rolling Back a Rolling Upgrade 15

Appendix A 16

Appendix B 19

Appendix C 22

.

1 | AUTOMATED DATABASE UPGRADES USING ORACLE ACTIVE DATA GUARD AND DBMS_ROLLING

Introduction

Oracle Active Data Guard provides several new PL/SQL packages and DDL commands to automate the previous

manual steps of performing a database rolling upgrade to a new Oracle patch set, database release, or to perform other

planned maintenance. The process starts with a primary and physical standby database at the current version and ends

with both primary and physical standby database at the new version. The automation includes handling the switchover

of production to the new version. It also performs extensive validation at every step of the process. If problems are

encountered users can choose to either correct the error and resume the upgrade or roll back to the original state of the

configuration. It is implemented using the new DBMS_ROLLING PL/SQL package, which allows you to upgrade the

database software in an Oracle Data Guard configuration in a rolling manner. The Rolling Upgrade Using Oracle Active

Data Guard feature requires a license for the Oracle Active Data Guard option.

Using the package to perform rolling database version upgrades is not available until the current version of the

database is on the first patchset of Oracle Database 12c (12.1.0.2). This means that you must use the Transient Logical

Standby upgrade procedure when the current database version is 11g (release 1 or 2) or 12.1.0.1. However, you can

use the DBMS_ROLLING packages for other rolling maintenance such as:

» Adding partitioning to non-partitioned tables

» Changing BasicFiles LOBs to SecureFiles LOBs

» Changing XMLType stored as CLOB to XMLtype stored as binary XML

» Altering tables to be OLTP-compressed

The DBMS_ROLLING package is idempotent in that any procedure can be rerun after a failure and picks up from the

failing step.

2 | AUTOMATED DATABASE UPGRADES USING ORACLE ACTIVE DATA GUARD AND DBMS_ROLLING

Concepts

The rolling process splits databases into two groups, the LEADING group and the TRAILING group.

The LEADING group is defined as the first group of databases to have the maintenance performed. That is the ‘future primary’

database and those designated to protect the future primary in multiple standby configurations.

The TRAILING group is defined as the original primary and the standby databases designated to protect the original primary while the

LEADING group is going through maintenance.

Figure 1: Original configuration

Figure 1: Configuration after START_PLAN execution with LEADING and TRAILING groups

3 | AUTOMATED DATABASE UPGRADES USING ORACLE ACTIVE DATA GUARD AND DBMS_ROLLING

For example, in an upgrade the LEADING group would be upgraded to the new database version while the TRAILING group runs on

the old version of the database software.

This concept of groups provides robustness:

» It can handle failures during the rolling upgrade process. The original primary or the Trailing Group Master (TGM) database can fail.

You can initiate a regular failover operation to any other physical standby in the trailing group, and then designate the new primary

database as the TGM.

» It allows data protection of the Leading Group Master (LGM) that is, designated future primary) during the rolling upgrade process.

You can set up physical standbys for the LGM database, and thus protect it during the upgrade process and also achieve Zero Data

Loss protection after the upgrade. After the LGM has been successfully upgraded, a failure in the LGM can be accommodated by

failing over to any of its physical standby databases in the leading group. You can then designate the failover target database to take

over the role of the LGM.

In the simplest case (a single physical standby configuration) there would only be a TGM and LGM.

Choosing a Database Upgrade Method

Database upgrade means taking the database to a later major release, maintenance release, or patch set. The following Oracle

features are available to perform database upgrades:

» Upgrading with Database Upgrade Assistant (DBUA)

» Upgrading with Data Guard SQL Apply or Transient Logical Standby Database

» Upgrading with Oracle GoldenGate

The method you choose to perform database upgrades can vary depending on the following considerations:

» Downtime required to complete the upgrade

» Setup time and effort required before the downtime

» Temporary additional resources necessary (for example, disk space or CPU)

» Complexity of the steps allowed to complete the upgrade

The following table lists the methods that you can use for database upgrades, and recommends what method to use for particular

cases.

DATABASE UPGRADE METHODS

Upgrade Method Use This Method When...

Upgrading with Database

Upgrade Assistant (DBUA)

Recommended method when the maintenance window is sufficient or when data type constraints prohibit the use of the other

methods in this table.

Upgrading with Data Guard SQL

Apply or Transient Logical

Standby Database

DBUA cannot finish within the maintenance window and the database is not a candidate for Oracle RAC rolling patch upgrade.

Use a transient logical standby when the configuration has only a physical standby database.

Upgrading with Oracle

GoldenGate

Oracle GoldenGate is already used for complete database replication or when the database version predates Oracle 10g (the

minimum version for Oracle Data Guard database rolling upgrades), or when additional flexibility for replicating back to the

previous version is required (fast fallback option) or where zero downtime upgrades using multi-master replication is required.

Regardless of the upgrade method you use, you should follow the guidelines and recommendations provided in the Oracle Database

Upgrade Guide and its companion document, "Oracle 11gR2 Upgrade Companion" in My Oracle Support Note 785351.1 at

https://support.oracle.com/rs?type=doc&id=785351.1.

http://docs.oracle.com/database/121/HABPT/schedule_outage.htm#BABBGIHI
http://docs.oracle.com/database/121/HABPT/schedule_outage.htm#BABJDCBB
http://docs.oracle.com/database/121/HABPT/schedule_outage.htm#BABBEJID
http://docs.oracle.com/database/121/HABPT/schedule_outage.htm#BABBGIHI
http://docs.oracle.com/database/121/HABPT/schedule_outage.htm#BABBGIHI
http://docs.oracle.com/database/121/HABPT/schedule_outage.htm#BABJDCBB
http://docs.oracle.com/database/121/HABPT/schedule_outage.htm#BABJDCBB
http://docs.oracle.com/database/121/HABPT/schedule_outage.htm#BABJDCBB
http://docs.oracle.com/database/121/HABPT/schedule_outage.htm#BABBEJID
http://docs.oracle.com/database/121/HABPT/schedule_outage.htm#BABBEJID
http://docs.oracle.com/database/121/UPGRD/toc.htm
http://docs.oracle.com/database/121/UPGRD/toc.htm
https://support.oracle.com/rs?type=doc&id=785351.1

4 | AUTOMATED DATABASE UPGRADES USING ORACLE ACTIVE DATA GUARD AND DBMS_ROLLING

Using DBMS_ROLLING

The DBMS_ROLLING package consists of eight procedures that are listed in order of execution below:

INT_PLAN

Sets the target primary (LGM), identifies the databases in the configuration and initializes plan parameters to the defaults. All standby

databases are initial assigned the TRAILING group and must be manually changed with SET_PARAMETER. Query

DBA_ROLLING_PARAMETERS to view the values set by INIT_PLAN.

Example: exec dbms_rolling.init_plan(‘standby’)

SET_PARAMETER

Used to change the parameters generated by INIT_PLAN. This would be used to change a standby to the LEADING group or set

appropriate timeouts for the process. See Oracle Appendix A for a full list of parameters and details.

Example: exec dbms_rolling.set_parameter(‘standby2’,’member’,’LEADING’);

BUILD_PLAN

Validates plan parameters and creates or modifies a rolling plan. Query DBA_ROLLING_PLAN for all steps generated by

BUILD_PLAN. BUILD_PLAN must be run before START_PLAN and must be re-run after parameter changes via SET_PARAMETER.

Example: exec dbms_rolling.build_plan;

START_PLAN

Starts the rolling operation and executes all steps of the START phase of the plan as described in DBA_ROLLING_PLAN including the

creating of guaranteed restore points on all databases which will be used during ROLLBACK or FINISH_PLAN operations .

Upon successful completion of START_PLAN the future primary database passed into INIT_PLAN will be a fully configured logical

standby and LEADING group master (LGM). Standby databases designated as LEADING group will be LEADING group standbys

(LGS) receiving redo from the LGM.

Example: exec dbms_rolling.start_plan;

SWITCHOVER

Executed on the TGM after maintenance is completed on the LEADING group. This procedure executes the switchover to the logical

standby LGM from the primary TGM. After completion of the switchover the LGM will be a primary database open read-write and the

TGM will be a mounted logical standby database.

Example: exec dbms_rolling.switchover;

FINISH_PLAN

Executing FINISH_PLAN converts the LGM to a physical standby database and flashes all TRAILING group databases to the

guaranteed restore point created in START_PLAN. Media recovery is then started and all redo from that SCN is applied from the LGM

thus synchronizing the databases.

Example: exec dbms_rolling.finish_plan;

5 | AUTOMATED DATABASE UPGRADES USING ORACLE ACTIVE DATA GUARD AND DBMS_ROLLING

ROLLBACK_PLAN

Restores the entire configuration back to the way it was prior to START_PLAN. This can only be called if SWITCHOVER has not been

executed since START_PLAN was called.

Example: exec dbms_rolling.rollback_plan;

DESTROY_PLAN

This procedure destroys any existing upgrade plan, its parameters, and all resources associated with a rolling operation.

Example: exec dbms_rolling.destroy_plan;

Process Flow

The following diagram depicts the process flow for the DBMS_ROLLING.

Figure 2. Process Flow

DBMS_ROLLING Phases and Downtime/Fallback Options

The following table describes the various phases of the DBMS_ROLLING process and any Recovery Time Objective (RTO) or

Recovery Point Objective (RPO) implications for that phase. In addition, fallback options are listed for each phase.

DBMS_ROLLING PHASES

DBMS_ROLLING Phase Action Performed
Service

Downtime
RPO, RTO Implications Fallback Options

6 | AUTOMATED DATABASE UPGRADES USING ORACLE ACTIVE DATA GUARD AND DBMS_ROLLING

Prerequisite Phase When upgrading from 11g or

12.1.0.1, query the

DBA_LOGSTDBY_UNSUPPORTED

(CDB_LOGSTDBY_UNSUPPORTED if

the primary is a container database)

view.

When upgrading from 12.1.0.2

query the

DBA_ROLLING_UNSUPPORTED

view.

If no rows are returned, proceed.

If rows are returned, decide to limit

application function or take full

downtime.

None None None required

dbms_rolling.init_plan Identifies the databases in the

configuration and initializes plan

parameters

None RPO not affected

RTO not affected

Execute

dbms_rolling.destroy_plan to

remove the initialized plan.

dbms_rolling.build_plan Validates plan parameters and

creates or modifies a rolling plan

None RPO not affected

RTO not affected

Execute

dbms_rolling.destroy_plan to

remove the plan build.

dbms_rolling.start_plan Starts the rolling operation and

executes all steps of the START

phase. Upon successful

completion of START_PLAN the

future primary database will be a

fully configured logical standby.

None RPO increases slightly during

bounce when converting

physical standby to a logical

standby

RTO:

• Increases to ~ 2 minutes as

the physical standby is

converted to a logical standby.

• Once converted RTO is less

than previous if failover to

logical standby is acceptable.

• RTO increases by ~ 3

minutes if we execute

dbms_rolling.rollback_plan

which converts logical standby

back into a physical standby.

• With additional trailing

physical standby RTO is

unaffected

Execute

dbms_rolling.rollback_plan

which restores the entire

configuration back to the way it

was prior to start_plan. This can

only be called if switchover has

not been executed since

start_plan was called.

Upgrade database Upgrade the database and its

installed options from 12.1.0.2 to

12.2.0.1 using Database Upgrade

Assistant (recommended) or

manually.

None RPO not affected

RTO:

• Prior to upgrading the logical

standby the RTO is not

affected.

• RTO increases after or during

upgrade as prior to a failover to

the logical standby the

database upgrade would need

to be flashed back. This

flashback adds 1 to 2 minutes

Fallback options:

• If upgrading with dbua then

flashback database to restore

point created prior to the

upgrade. Testing shows that the

flashback of an upgraded

database completes in about 30

seconds.

• If upgrading manually then the

restore point must be created

manually prior to the upgrade.

7 | AUTOMATED DATABASE UPGRADES USING ORACLE ACTIVE DATA GUARD AND DBMS_ROLLING

to the overall RTO

• With additional physical

standbys, the RTO is

unaffected

Flashback of an upgraded

database completes in about 30

seconds.

• Restore backup of database

that was taken just prior to

upgrade.

dbms_rolling.switchover Executed on the primary after the

upgrade has been completed on

the logical standby. This

procedure executes the switchover

from the logical standby to the

primary.

15 to 20

Seconds

RPO:

• Not affected prior to

switchover

• After the switchover any

update to the new primary

database results in growing

RPO

RTO:

• Increases by ~30 seconds

during the switchover process

• If the user decides to leave

the new logical standby at the

old version after the switchover

completes then RTO continues

to grow

• RTO also increases if user

decides to run downgrade on

new primary database

Fallback options:

• If no updates have been made

to the new 12.2.0.1 primary

then perform a switchover to

return the starting configuration

• If updates have occurred on

the new 12.2.0.1 primary the

fallback option is to run

downgrade scripts. This is a

zero data loss fallback but

comes with increased RTO

• Once updates start on the

new 12.2.0.1 primary then any

fallback options that involve the

standby will result in data loss.

Activate 12.1.0.2 logical

standby and redirect sessions

Startup standby

(originally the TGM) in

the 12.2.0.1 home

Shutdown the logical standby and

bring back to mount on 12.2.0.1

software.

None RPO increases slightly (15

seconds) during the bounce of

the standby

RTO increases slightly (15

seconds) during the bounce of

the standby

Fallback options:

• Restart standby on 12.1.0.2

software

dbms_rolling.finish_plan Executing FINISH_PLAN converts

the logical standby (former

primary) to a physical standby

database and flashes all trailing

group databases to the

guaranteed restore point created

in START_PLAN. Media recovery

is then started and all redo from

that scn is applied.

None RPO increases slightly (15

seconds) during the bounce of

the standby

RTO:

• Increased RTO as the logical

standby is flashback to a

physical standby.

• RTO begins to decrease as

the physical standby begins

apply redo from the upgrade

process.

• Once all upgraded redo has

been applied and physical

standby is in sync with the

primary the RTO returns to

normal values.

Fallback options:

• If conversion of the logical

standby into a physical standby

fails then fallback option is to

reinstate the standby with a

new backup of the primary

database.

DBMS_ROLLING Process

The following section will provide a detailed example of how to perform an upgrade using DBMS_ROLLING.

1. DBMS_Rolling Process Pre-requisites

8 | AUTOMATED DATABASE UPGRADES USING ORACLE ACTIVE DATA GUARD AND DBMS_ROLLING

Before you perform a rolling upgrade, you should determine whether any of the tables involved contain data types that are unsupported

on logical standby databases. To do this, you query the DBA_ROLLING_UNSUPPORTED view.

A rolling upgrade performed using DBMS_ROLLING supports more object types than a manual rolling upgrade operation. For example,

only upgrades performed with DBMS_ROLLING support queue tables. Additionally, a rolling upgrade performed using

DBMS_ROLLING also supports more PL/SQL packages.

Refer to Appendix B for information on replication support in the context of rolling upgrades performed using the DBMS_ROLLING

package.

Note that when the dictionary build is executed, supplemental logging is enabled implicitly on the Primary (TGM). Supplemental logging

can affect database performance and should be assessed prior to performing a rolling upgrade to determine any impact. Also,

supplemental logging must be manually disabled once the upgrade procedure has completed.

From a Data Guard broker configuration the starting configuration looks like:

Configuration - db1

Protection Mode: MaxPerformance

Members:

db1 - Primary database

db1stby1 - Physical standby database

db1stby2 - Physical standby database

db1stby3 - Physical standby database

As a best practice we want a physical standby protecting the starting existing primary database and then another physical standby

protecting the standby that will eventually become the new primary database. To achieve this, the following redo route changes were

made to adjust the broker configuration:

edit database db1 set property redoroutes='(LOCAL : db1stby1 SYNC, db1stby2 ASYNC)';
edit database db1stby1 set property redoroutes='(LOCAL : db1 SYNC)';

edit database db1stby2 set property redoroutes='(db1 : db1stby3 ASYNC)';

edit database db1stby3 set property redoroutes='(LOCAL : db1stby2 SYNC)';

The broker configuration now looks like:

Configuration - db1

Protection Mode: MaxPerformance

Members:

db1 - Primary database

 db1stby1 - Physical standby database

 db1stby2 - Physical standby database

 db1stby3 - Physical standby database (receiving current redo)

Fast-Start Failover: DISABLED

This concept of groups provides robustness:

» It can handle failures during the rolling upgrade process. The original primary or the TGM database can fail. You can initiate a regular

failover operation to any other physical standby in the trailing group, and then designate the new primary database as the TGM.

» It allows data protection of the LGM (that is, designated future primary) during the rolling upgrade process. You can set up physical

standbys for the LGM database, and thus protect it during the upgrade process and also achieve Zero Data Loss after the upgrade.

9 | AUTOMATED DATABASE UPGRADES USING ORACLE ACTIVE DATA GUARD AND DBMS_ROLLING

After the LGM has been successfully upgraded, a failure in the LGM can be accommodated by failing over to any of its physical

standby databases. You can then designate the failover target database to take over the role of the LGM.

In the simplest case there would only be a TGM and LGM.

2. Performing DBMS_ROLLING Upgrade: Step-by-Step Process

1. Initialize the plan. Sets the target primary (LGM), identifies the databases in the configuration and initializes plan parameters

to the defaults. All standby databases are initial assigned the TRAILING group and must be manually changed with

SET_PARAMETER. Query DBA_ROLLING_PARAMETERS to view the values set by INIT_PLAN.

SQL> show parameter log_archive_config

NAME TYPE VALUE

------------------------------------ ----------- ------------------------------

log_archive_config string dg_config=(db1,db1stby1,db1stb

y2,db1stby3)

SQL> exec dbms_rolling.init_plan('db1stby11');

PL/SQL procedure successfully completed.

2. Display the parameters for the current plan build

SQL> col name format a30

SQL> col scope format a15

SQL> col curval format a30

SQL> set pages 999|

SQL> select scope, name, curval from dba_rolling_parameters order by scope, name;

SCOPE NAME CURVAL

--------------- ------------------------------ ------------------------------

db1 INVOLVEMENT FULL

db1 MEMBER NONE

db1stby1 INVOLVEMENT FULL

db1stby1 MEMBER TRAILING

db1stby2 INVOLVEMENT FULL

db1stby2 MEMBER TRAILING

db1stby3 INVOLVEMENT FULL

db1stby3 MEMBER TRAILING

ACTIVE_SESSIONS_TIMEOUT 3600

ACTIVE_SESSIONS_WAIT 0

BACKUP_CONTROLFILE rolling_change_backup.f

DICTIONARY_LOAD_TIMEOUT 3600

DICTIONARY_LOAD_WAIT 0

DICTIONARY_PLS_WAIT_INIT 300

DICTIONARY_PLS_WAIT_TIMEOUT 3600

EVENT_RECORDS 10000

FAILOVER 0

GRP_PREFIX DBMSRU_

IGNORE_BUILD_WARNINGS 1

IGNORE_LAST_ERROR 0

LAD_ENABLED_TIMEOUT 600

LOG_LEVEL INFO

READY_LGM_LAG_TIME 600

READY_LGM_LAG_TIMEOUT 60

READY_LGM_LAG_WAIT 0

SWITCH_LGM_LAG_TIME 600

SWITCH_LGM_LAG_TIMEOUT 60

SWITCH_LGM_LAG_WAIT 1

10 | AUTOMATED DATABASE UPGRADES USING ORACLE ACTIVE DATA GUARD AND DBMS_ROLLING

SWITCH_LGS_LAG_TIME 60

SWITCH_LGS_LAG_TIMEOUT 60

SWITCH_LGS_LAG_WAIT 0

UPDATED_LGS_TIMEOUT 10800

UPDATED_LGS_WAIT 1

UPDATED_TGS_TIMEOUT 10800

UPDATED_TGS_WAIT 1

35 rows selected.

3. Build the plan. Validates plan parameters and creates or modifies a rolling plan. Query DBA_ROLLING_PLAN for all steps

generated by BUILD_PLAN.BUILD_PLAN must be run before START_PLAN and must be re-run after parameter changes via

SET_PARAMETER.

SQL> exec dbms_rolling.build_plan;

PL/SQL procedure successfully completed.

4. Display the plan. DBA_ROLLING_PLAN displays the instructions which constitute the active upgrade plan. Each row in

DBA_ROLLING_PLAN identifies a specific instruction scheduled to execute at a specific database. Instructions are created as

a result of successful calls to the DBMS_ROLLING.BUILD_PLAN procedure. During execution, groups of instructions are

scheduled in batches to execute at remote databases. Groups of instructions are guaranteed to complete in BATCHID order.

SQL> col instid format 999

col target format a10

col phase format a10

col description format a65

set lines 99

set pages 999

SELECT instid, target, phase, description FROM DBA_ROLLING_PLAN;

INSTID TARGET PHASE DESCRIPTION

------ ---------- ---------- ---

--

1 db1 START Verify database is a primary

2 db1 START Verify MAXIMUM PROTECTION is disabled

3 db1stby1 START Verify database is a physical standby

4 db1stby1 START Verify physical standby is mounted

5 db1stby2 START Verify database is a physical standby

6 db1stby2 START Verify physical standby is mounted

7 db1stby3 START Verify database is a physical standby

8 db1stby3 START Verify physical standby is mounted

9 db1 START Verify server parameter file exists and is modifiable

10 db1stby1 START Verify server parameter file exists and is modifiable

11 db1stby2 START Verify server parameter file exists and is modifiable

12 db1stby3 START Verify server parameter file exists and is modifiable

13 db1 START Verify Data Guard Broker configuration is disabled

14 db1stby1 START Verify Data Guard Broker configuration is disabled

15 db1stby2 START Verify Data Guard Broker configuration is disabled

16 db1stby3 START Verify Data Guard Broker configuration is disabled

17 db1 START Verify flashback database is enabled

18 db1 START Verify available flashback restore points

19 db1stby1 START Verify flashback database is enabled

20 db1stby1 START Verify available flashback restore points

21 db1stby2 START Verify flashback database is enabled

22 db1stby2 START Verify available flashback restore points

23 db1stby3 START Verify flashback database is enabled

24 db1stby3 START Verify available flashback restore points

11 | AUTOMATED DATABASE UPGRADES USING ORACLE ACTIVE DATA GUARD AND DBMS_ROLLING

25 db1stby1 START Stop media recovery

26 db1stby2 START Stop media recovery

27 db1stby3 START Stop media recovery

28 db1stby1 START Drop guaranteed restore point DBMSRU_INITIAL

29 db1stby1 START Create guaranteed restore point DBMSRU_INITIAL

30 db1stby2 START Drop guaranteed restore point DBMSRU_INITIAL

31 db1stby2 START Create guaranteed restore point DBMSRU_INITIAL

32 db1stby3 START Drop guaranteed restore point DBMSRU_INITIAL

33 db1stby3 START Create guaranteed restore point DBMSRU_INITIAL

34 db1 START Drop guaranteed restore point DBMSRU_INITIAL

35 db1 START Create guaranteed restore point DBMSRU_INITIAL

36 db1stby1 START Start media recovery

37 db1stby1 START Verify media recovery is running

38 db1stby2 START Start media recovery

39 db1stby2 START Verify media recovery is running

40 db1stby3 START Start media recovery

41 db1stby3 START Verify media recovery is running

42 db1 START Verify user_dump_dest has been specified

43 db1 START Backup control file to rolling_change_backup.f

44 db1stby1 START Verify user_dump_dest has been specified

45 db1stby1 START Backup control file to rolling_change_backup.f

46 db1stby2 START Verify user_dump_dest has been specified

47 db1stby2 START Backup control file to rolling_change_backup.f

48 db1stby3 START Verify user_dump_dest has been specified

49 db1stby3 START Backup control file to rolling_change_backup.f

50 db1 START Get current redo branch of the primary database

51 db1stby1 START Wait until recovery is active on the primary's redo branch

52 db1stby1 START Stop media recovery

53 db1 START Execute dbms_logstdby.build

54 db1stby1 START Convert into a transient logical standby

55 db1stby1 START Open database

56 db1stby1 START Get redo branch of transient logical standby

57 db1stby1 START Get reset scn of transient logical redo branch

58 db1stby1 START Configure logical standby parameters

59 db1stby1 START Start logical standby apply

60 db1stby1 START Enable compatibility advance despite presence of GRPs

61 db1 START Log pre-switchover instructions to events table

62 db1stby1 START Record start of user upgrade of db1stby1

63 db1stby1 SWITCH Verify database is in OPENRW mode

64 db1stby1 SWITCH Record completion of user upgrade of db1stby1

65 db1stby1 SWITCH Scan LADs for presence of db1 destination

66 db1stby1 SWITCH Scan LADs for presence of db1stby2 destination

67 db1stby1 SWITCH Scan LADs for presence of db1stby3 destination

68 db1stby1 SWITCH Test if db1 is reachable using configured TNS service

69 db1stby1 SWITCH Test if db1stby2 is reachable using configured TNS service

70 db1stby1 SWITCH Test if db1stby3 is reachable using configured TNS service

71 db1 SWITCH Enable log file archival to db1stby1

72 db1stby1 SWITCH Start logical standby apply

73 db1stby1 SWITCH Archive all current online redo logs

74 db1stby1 SWITCH Wait until apply lag has fallen below 600 seconds

75 db1 SWITCH Log post-switchover instructions to events table

76 db1 SWITCH Switch database to a logical standby

77 db1stby1 SWITCH Wait until end-of-redo has been applied

78 db1stby2 SWITCH Wait until end-of-redo has been applied

79 db1stby3 SWITCH Wait until end-of-redo has been applied

80 db1 SWITCH Disable log file archival to db1stby2

81 db1 SWITCH Disable log file archival to db1stby3

82 db1 SWITCH Archive all current online redo logs

83 db1stby1 SWITCH Switch database to a primary

84 db1 SWITCH Enable compatibility advance despite presence of GRPs

85 db1stby2 SWITCH Enable compatibility advance despite presence of GRPs

86 db1stby3 SWITCH Enable compatibility advance despite presence of GRPs

87 db1stby2 SWITCH Stop media recovery

88 db1stby3 SWITCH Stop media recovery

89 db1 SWITCH Synchronize plan with new primary

90 db1 FINISH Verify only a single instance is active

12 | AUTOMATED DATABASE UPGRADES USING ORACLE ACTIVE DATA GUARD AND DBMS_ROLLING

91 db1 FINISH Verify database is mounted

92 db1 FINISH Flashback database

93 db1 FINISH Convert into a physical standby

94 db1stby2 FINISH Verify database is mounted

95 db1stby2 FINISH Flashback database

96 db1stby3 FINISH Verify database is mounted

97 db1stby3 FINISH Flashback database

98 db1stby1 FINISH Verify database is open

99 db1stby1 FINISH Save the DBID of the new primary

100 db1stby1 FINISH Save the logminer session start scn

101 db1 FINISH Wait until transient logical redo branch has been registered

102 db1stby2 FINISH Wait until transient logical redo branch has been registered

103 db1stby3 FINISH Wait until transient logical redo branch has been registered

104 db1 FINISH Start media recovery

105 db1stby2 FINISH Start media recovery

106 db1stby3 FINISH Start media recovery

107 db1 FINISH Wait until apply/recovery has started on the transient branch

108 db1stby2 FINISH Wait until apply/recovery has started on the transient branch

109 db1stby3 FINISH Wait until apply/recovery has started on the transient branch

110 db1 FINISH Wait until upgrade redo has been fully recovered

111 db1stby2 FINISH Wait until upgrade redo has been fully recovered

112 db1stby3 FINISH Wait until upgrade redo has been fully recovered

113 db1 FINISH Prevent compatibility advance if GRPs are present

114 db1stby1 FINISH Prevent compatibility advance if GRPs are present

115 db1stby2 FINISH Prevent compatibility advance if GRPs are present

116 db1stby3 FINISH Prevent compatibility advance if GRPs are present

117 db1 FINISH Drop guaranteed restore point DBMSRU_INITIAL

118 db1stby1 FINISH Drop guaranteed restore point DBMSRU_INITIAL

119 db1stby2 FINISH Drop guaranteed restore point DBMSRU_INITIAL

120 db1stby3 FINISH Drop guaranteed restore point DBMSRU_INITIAL

120 rows selected.

The columns in this view display the following information:

» INSTID - The Instruction ID, which is the order in which the instruction is to be performed. Instructions are typically performed

in groups.

» PHASE - Every instruction in the upgrade plan is associated with a particular phase. A phase is a logical grouping of

instructions which is performed by a procedure in the DBMS_ROLLING PL/SQL package. When a DBMS_ROLLING

procedure is invoked, all of the associated instructions in the upgrade plan for that phase are executed. Possible phases are

as follows:

o START: Consists of activities related to setup such as taking restore points, instantiation of the transient logical standby

database, and configuration of LGS databases. Activities in this phase are initiated when you call the

DBMS_ROLLING.START_PLAN procedure.

o SWITCH: Consists of activities related to the switchover of the transient logical standby into the new primary database.

Activities in this phase are initiated when you call the DBMS_ROLLING.SWITCHOVER procedure.

o FINISH: Consists of activities related to configuring standby databases for recovery of the upgrade redo. Activities in this

phase are initiated when you call the DBMS_ROLLING.FINISH_PLAN procedure.

▪ EXEC_STATUS - The overall status of the instruction.

▪ PROGRESS - The progress of an instruction's execution. A value of REQUESTING indicates an instruction is being

transmitted to a target database for execution. A value of EXECUTING indicates the instruction is actively being

executed. A value of REPLYING indicates completion information is being returned.

▪ DESCRIPTION - The specific operation that is scheduled to be performed.

▪ TARGET - The site at which a given instruction will be performed.

▪ EXEC_INFO - Additional contextual information related to the instruction.

Upgrade plans need to be revised after any change to the rolling upgrade or database configuration. A configuration change
could include any of the following:

13 | AUTOMATED DATABASE UPGRADES USING ORACLE ACTIVE DATA GUARD AND DBMS_ROLLING

o init.ora parameter file changes at any of the databases participating in the rolling upgrade

o database role changes as a result of failover events

o rolling upgrade parameter changes

To revise an active upgrade plan, you simply call the BUILD_PLAN procedure again. In some cases, the BUILD_PLAN
procedure may raise an error if a given change cannot be accepted. For example, setting the ACTIVE_SESSIONS_WAIT

parameter will have no effect if the switchover has already occurred.

It is recommended that you call the BUILD_PLAN procedure to process a group of parameter changes rather than
processing parameters individually.

The following example demonstrates how to configure the plan to wait for the apply lag to fall below 60 seconds before
switching over to the future primary:

DBMS_ROLLING.SET_PARAMETER('SWITCH_LGM_LAG_WAIT', '1');

DBMS_ROLLING.SET_PARAMETER('SWITCH_LGM_LAG_TIME', '60');

The following example demonstrates resetting the LOG_LEVEL global parameter back to its default value.

DBMS_ROLLING.SET_PARAMETER (

 name=>'LOG_LEVEL',

 value=>NULL);

5. Run start plan. Starts the rolling operation and executes all steps of the START phase of the plan as described in

DBA_ROLLING_PLAN including the creating of guaranteed restore points on all databases which will be used during

ROLLBACK or FINISH_PLAN operations. Upon successful completion of START_PLAN the future primary database passed

into INIT_PLAN will be a fully configured logical standby and LEADING group master (LGM). Standby databases designated

as LEADING group will be LEADING group standbys (LGS) receiving

redo from the LGM.

SQL> exec dbms_rolling.start_plan

PL/SQL procedure successfully completed.

Dictionary build times on EBS R12.2.5 from the EBS bench mark kit, a full install, took approximately 70 seconds. More than

the number of objects the biggest driver of the build time is the following:

"DBMS_LOGSTDBY.BUILD waits for all transactions (including distributed transactions) that are active at the time of the

procedure invocation to complete before returning."

So long running transactions could hold up the completion. The good news is I have seen no application impact from a

dictionary build and it is done online.

In addition, when dictionary build is performed the following command is performed implicitly: alter database add

supplemental log data (primary key, unique index) columns. Prior to start_plan being ran the database started with the

following status:

SQL> select SUPPLEMENTAL_LOG_DATA_MIN,SUPPLEMENTAL_LOG_DATA_PK,SUPPLEMENTAL_LOG_DATA_UI from

v$database;

SUPPLEME SUP SUP

-------- --- ---

NO NO NO

14 | AUTOMATED DATABASE UPGRADES USING ORACLE ACTIVE DATA GUARD AND DBMS_ROLLING

After start_plan has finished the status changes to:

SQL> select SUPPLEMENTAL_LOG_DATA_MIN,SUPPLEMENTAL_LOG_DATA_PK,SUPPLEMENTAL_LOG_DATA_UI from

v$database;

SUPPLEME SUP SUP

-------- --- ---

IMPLICIT YES YES

Note that once the DBMS_ROLLING process completes supplemental logging will still be enabled and will need to be

disabled manually.

6. Perform upgrade on the standby (now a logical standby) using the Database Upgrade Assistant (dbua) or your preferred

method. Follow the Upgrade Guide for upgrading your database.

SQL> exec dbms_rolling.switchover;

PL/SQL procedure successfully completed.

7. The former primary is now a logical standby/ former standby is now a primary

SQL> select database_role,open_mode from v$database;

DATABASE_ROLE OPEN_MODE

---------------- --------------------

LOGICAL STANDBY READ WRITE

SQL> select database_role,open_mode from v$database;

DATABASE_ROLE OPEN_MODE

---------------- --------------------

PRIMARY READ WRITE

8. Start the former primary instance under the new home.

SQL> shutdown immediate

Database closed.

Database dismounted.

ORACLE instance shut down.

SQL> exit

9. Copy init.ora and password file to the new ORACLE_HOME/dbs and applicable tnsnames.ora descriptors to the proper

tnsnames.ora file under the new home. Set the environment to use the new home and mount the standby instance.

SQL> startup mount

ORACLE instance started.

Total System Global Area 2.5770E+10 bytes

Fixed Size 6870952 bytes

Variable Size 3422554200 bytes

Database Buffers 2.2012E+10 bytes

Redo Buffers 328671232 bytes

Database mounted.

15 | AUTOMATED DATABASE UPGRADES USING ORACLE ACTIVE DATA GUARD AND DBMS_ROLLING

10. On the new primary execute DBMS_ROLLING.FINISH_PLAN in order to convert the new standby to a physical standby, flash

it back and roll it forward(see dba_rolling_plan for all steps executed by finish_plan)

SQL> exec dbms_rolling.finish_plan;

PL/SQL procedure successfully completed.

11. Primary is mounted with apply running

SQL> select database_role,open_mode from v$database;

DATABASE_ROLE OPEN_MODE

---------------- --------------------

PHYSICAL STANDBY MOUNTED

SQL> select status from v$managed_standby where process='MRP0';

STATUS

APPLYING_LOG

3. Post DBMS_ROLLING Upgrade Tasks :

Note that once the DBMS_ROLLING process completes supplemental logging will still be enabled and will need to be disabled

manually. To disable supplemental logging run the following command:

ALTER DATABASE ADD SUPPLEMENTAL LOG DATA (PRIMARY KEY) COLUMNS;

ALTER DATABASE ADD SUPPLEMENTAL LOG DATA (UNIQUE) COLUMNS;

ALTER DATABASE DROP SUPPLEMENTAL LOG DATA (PRIMARY KEY) COLUMNS;

ALTER DATABASE DROP SUPPLEMENTAL LOG DATA (UNIQUE) COLUMNS;

ALTER DATABASE DROP SUPPLEMENTAL LOG DATA;

Rolling Back a Rolling Upgrade

To roll back a rolling upgrade procedure, you can call the DBMS_ROLLING.ROLLBACK_PLAN procedure, as follows:

DBMS_ROLLING.ROLLBACK_PLAN;

The ROLLBACK_PLAN procedure has the following requirements:

» The ROLLBACK_PLAN procedure can only be called if the DBMS_ROLLING.SWITCHOVER procedure has not been previously

called.

» Before you can use the ROLLBACK_PLAN procedure you must set the transient logical standby database back to a mounted state

because a flashback database is imminent.

» If the Oracle Database software was already upgraded, then you must restart the resultant physical standbys on the older version,

and start media recovery.

16 | AUTOMATED DATABASE UPGRADES USING ORACLE ACTIVE DATA GUARD AND DBMS_ROLLING

Appendix A

VALID VALUES FOR DBMS_ROLLING.SET_PARAMETER PROCEDURE

Parameter Name Global? Description Default

ACTIVE_SESSIONS_TIMEOUT Yes The maximum amount of time in seconds to

enforce ACTIVE_SESSIONS_WAIT before halting the rolling upgrade.

This parameter is only valid if ACTIVE_SESSIONS_WAIT is set to 1.

3600

ACTIVE_SESSIONS_WAIT Yes Whether the switchover operation will wait for active sessions to finish.

If set to 1, the SWITCHOVER procedure waits for active sessions to

compete. If set to 0, the SWITCHOVER procedure kills active sessions to

expedite the switchover.

0

BACKUP_CONTROLFILE Yes File name of the backup control file that is created during a rolling

upgrade.

rolling_change_backup.f

DGBROKER Yes Use Data Guard broker for managing apply, recovery, and log archive
destinations.

1 if broker is enabled, 0
otherwise.

DICTIONARY_LOAD_TIMEOUT Yes The maximum amount of time in seconds to

enforce DICTIONARY_LOAD_WAIT before halting the rolling upgrade.

This parameter is only valid if DICTIONARY_LOAD_WAIT is set to 1.

3600

DICTIONARY_LOAD_WAIT Yes Whether the instantiation of the transient logical standby will include a

wait for the complete loading of the data dictionary snapshot in redo. If

set to 1, then the START_PLAN procedure will not return until the

dictionary has been completely loaded. If set to 0, then

the START_PLAN procedure will only verify that the loading of the

dictionary has started.

0

DICTIONARY_PLS_WAIT_INIT Yes The time in seconds to wait in between attempts to quiesce PL/SQL

activity in order to write the data dictionary to redo.

300

DICTIONARY_PLS_WAIT_TIMEOUT Yes The maximum amount of time in seconds to attempt to quiesce PL/SQL

activity in order to write the data dictionary to redo.

3600

EVENT_RECORDS Yes The maximum number of records to permit in DBA_ROLLING_EVENTS 10000

FAILOVER Yes Automatically attempt to adjust the upgrade plan as a result of a failover

event. This parameter resets its value to 0 upon completion of a

subsequent call to BUILD_PLAN.

0

GRP_PREFIX n/a Execution of procedures in DBMS_ROLLING results in a number of

Guaranteed Restore Points (GRP) taken in various databases

participating in the Data Guard configuration. All such GRPs have the

same prefix in their names. You can use this parameter to override the

default prefix.

DBMSRU

IGNORE_BUILD_WARNINGS Yes Ignore warnings which would otherwise raise exceptions during

execution of the BUILD_PLAN procedure.

1

IGNORE_LAST_ERROR Yes Ignore last encountered error upon startup of next rolling operation. This

parameter resets its value to 0 upon invocation of a procedure call which

resumes the rolling upgrade.

0

LAD_ENABLED_TIMEOUT Yes The maximum time in seconds to wait for a recently enabled log archive

destination to reach a VALID state.

600

LOG_LEVEL Yes Logging level for the DBS_ROLLING PL/SQL package. A value

of INFO results in the logging of errors and relevant non-fatal warnings.

A value of FULL results in the logging of all events.

INFO

17 | AUTOMATED DATABASE UPGRADES USING ORACLE ACTIVE DATA GUARD AND DBMS_ROLLING

MEMBER No The upgrade group in which the specified database is a member.

A value of LEADING indicates that the standby is a member of the

leading upgrade group. As such, it is a standby of the Leading Group

Master (LGM). The LGM is the database which is converted into the

transient logical standby, and which becomes the new primary after the

switchover.

A value of TRAILING indicates that the standby is a member of the

trailing upgrade group. As such, it is a standby of the Trailing Group

Master (TGM). The TGM is the original primary database.

LEADING

READY_LGM_LAG_TIME Yes The apply lag time in seconds associated with

the READY_LGM_LAG_WAIT parameter.

600

READY_LGM_LAG_TIMEOUT Yes The maximum amount of time in seconds to

enforce READY_LGM_LAG_WAIT before halting the rolling upgrade.

This parameter is only valid if READY_LGM_LAG_WAIT is set to 1.

60

READY_LGM_LAG_WAIT Yes Whether the START_PLAN procedure will wait for the apply lag on the

leading group master to fall below READY_LGM_LAG_TIME seconds

before returning control back to the user. If set to 1, the wait is

performed. If set to 0, the wait is not performed.

0

SWITCH_LGM_LAG_TIME Yes The apply lag time in seconds associated with

the SWITCH_LGM_LAG_WAIT parameter.

600

SWITCH_LGM_LAG_TIMEOUT Yes The maximum amount of time in seconds to

enforce SWITCH_LGM_LAG_WAIT before halting the rolling upgrade.

This parameter is only valid if SWITCH_LGM_LAG_WAIT is set to 1.

60

SWITCH_LGM_LAG_WAIT Yes Whether the SWITCHOVER procedure will wait for the apply lag on the

leading group master to fall below SWITCH_LGM_LAG_TIME seconds

before initiating the switchover. If set to 1, the wait is performed. If set

to 0, the wait is not performed.

1

SWITCH_LGS_LAG_TIME Yes The apply lag time in seconds associated with

the SWITCH_LGS_LAG_WAIT parameter.

60

SWITCH_LGS_LAG_TIMEOUT Yes The maximum amount of time in seconds to

enforce SWITCH_LGS_LAG_WAIT before halting the rolling upgrade.

This parameter is only valid if SWITCH_LGS_LAG_WAIT is set to 1.

60

SWITCH_LGS_LAG_WAIT Yes Whether the SWITCHOVER procedure will wait for the apply lag on the

leading group standbys to fall below SWITCH_LGS_LAG_TIMEseconds

before initiating the switchover. If set to 1, the wait is performed. If set

to 0, the wait is not performed.

0

UPDATED_LGS_TIMEOUT Yes The maximum amount of time in seconds to

enforce UPDATED_LGS_WAIT before halting the rolling upgrade. This

parameter is only valid if UPDATED_LGS_WAIT is set to 1.

10800

UPDATED_LGS_WAIT Yes Whether the SWITCHOVER procedure will wait for the leading group

standbys to complete recovery of all upgrade redo before initiating the

switchover. If set to 1, the wait is performed. If set to 0, the wait is not

performed

1

UPDATED_TGS_TIMEOUT Yes The maximum amount of time in seconds to

enforce UPDATED_TGS_WAIT before halting the rolling upgrade. This

parameter is only valid if UPDATED_TGS_WAIT is set to 1.

10800

18 | AUTOMATED DATABASE UPGRADES USING ORACLE ACTIVE DATA GUARD AND DBMS_ROLLING

UPDATED_TGS_WAIT Yes Whether the FINISH_PLAN procedure will wait for the trailing group

standbys to complete recovery of all upgrade redo before returning

control to the user. If set to 1, the wait is performed. If set to 0, the wait

is not performed.

1

19 | AUTOMATED DATABASE UPGRADES USING ORACLE ACTIVE DATA GUARD AND DBMS_ROLLING

Appendix B

The following is a list of unsupported data types in the context of rolling upgrades performed using the DBMS_ROLLING package.

Unsuported datatypes as of 12.2.0.1:

Tables with columns of the following types are not supported by Logical Standby.

1. Nested Tables

2. Identity Columns

3. ROWID

4. BFILE

5. Temporal Validity columns

6. PKREF

7. PKOID

8. SDO_RDF_TRIPLE_S

Unsupported partitioning/table organizations methods:

Tables that are partitioned with the following methods are not supported by Logical Standby:

1. Reference partitioning

2. System partitioning

DBA_LOGSTDBY_NOT_UNIQUE

The DBA_LOGSTDBY_NOT_UNIQUE view displays all tables that have no primary and no non-null unique indexes. If these tables

also have out-of-line columns, e.g. LOB, XML, etc. the table should not be replicated as data divergence will likely occur. Replication of

tables without indexes will likely cause table scans/performance issues during replication.

Tables without Scalars:

Tables with only LONG, LONG RAW, LOB (CLOB/BLOB), XML, ADT, VARRAY or BFILE columns (or some mix thereof) are not

supported as these types cannot be used to identify a row during replication.

NON-replicated schemas:

The following schemas are automatically skipped by Logical Standby.

ANONYMOUS APPQOSSYS AUDSYS
BI CTXSYS DBSFWUSER
DBSNMP DIP DMSYS
DVF DVSYS EXDSYS
EXFSYS GGSYS GSMADMIN_INTERNAL
GSMCATUSER GSMUSER LBACSYS
MDSYS MGMT_VIEW MTSSYS

ODM ODM_MTR OJVMSYS
OLAPSYS ORACLE_OCM ORDDATA
ORDPLUGINS ORDSYS OUTLN
REMOTE_SCHEDULER_AGENT SI_INFORMTN_SCHEMA SPATIAL_CSW_ADMIN
SPATIAL_CSW_ADMIN_USR SPATIAL_WFS_ADMIN SPATIAL_WFS_ADMIN_USR
SYS SYS$UMF SYSBACKUP
SYSDG SYSKM SYSMAN
SYSRAC SYSTEM TSMSYS
WKPROXY WKSYS WK_TEST
WMSYS XDB XS$NULL

20 | AUTOMATED DATABASE UPGRADES USING ORACLE ACTIVE DATA GUARD AND DBMS_ROLLING

 XTISYS

Specific DDLs not Replicated

Various DDLS are not replicated and are listed below.

This list includes (among other things) DDLs to the following objects:

 DATABASE
 PLUGGABLE DATABASE
 CONTROL FILE
 SPFILE/PFILE
 DISK GROUP
 SNAPSHOT
 SUMMARY
 DATABASE LINK
 RECYCLE BIN

 RESTORE POINT
 ASSEMBLY
 FLASHBACK ARCHIVE

System Generated Names:

System generated names can be a problem as logical replication may result in different names. Thus, DDLs issued for objects with

system generated names will typically fail to replicate. (DDLs on system generated indexes are common)

Edition Based Redefinition

Basic support for edition based operations exists, however EBR typically depends upon on-line DDL execution. On-line DDL

operations introduced in RDBMS 11.x and 12.x such as ALTER TABLE ADD COLUMN are not supported as on-line operations during

rolling upgrade (or any time supplemental logging is enabled). Instead these operations are silently downgraded to a blocking model

which prevents on-line execution.

Application Containers

Support for basic replication of application containers exists, but users may not execute any application INSTALL, UPGRADE or

PATCH operations during the rolling upgrade.

Procedures Pragma-ed as UNSUPPORTED:

PL/SQL marked with pragma UNSUPPORTED will stop SQL apply at the point of procedure invocation so that manual intervention can

be taken.

Schema Package Procedure Pragma

SYS DBMS_REDEFINITION ABORT_UPDATE PRAGMA UNSUPPORTED

SYS DBMS_REDEFINITION EXECUTE_UPDATE PRAGMA UNSUPPORTED

XDB DBMS_XDBZ ADD_APPLICATION_PRINCIPAL PRAGMA UNSUPPORTED w/ COMMIT

XDB DBMS_XDBZ CHANGE_APPLICATION_MEMBERSHIP PRAGMA UNSUPPORTED w/ COMMIT

XDB DBMS_XDBZ DELETE_APPLICATION_PRINCIPAL PRAGMA UNSUPPORTED w/ COMMIT

XDB DBMS_XDBZ SET_APPLICATION_PRINCIPAL PRAGMA UNSUPPORTED w/ COMMIT

XDB DBMS_XDB_ADMIN CREATENONCEKEY PRAGMA UNSUPPORTED w/ COMMIT

XDB DBMS_XDB_ADMIN INSTALLDEFAULTWALLET PRAGMA UNSUPPORTED w/ COMMIT

21 | AUTOMATED DATABASE UPGRADES USING ORACLE ACTIVE DATA GUARD AND DBMS_ROLLING

XDB DBMS_XDB_ADMIN MOVEXDB_TABLESPACE PRAGMA UNSUPPORTED w/ COMMIT

XDB DBMS_XDB_ADMIN REBUILDHIERARCHICALINDEX PRAGMA UNSUPPORTED w/ COMMIT

XDB DBMS_XDB_CONFIG ADDAUTHENTICATIONMAPPING PRAGMA UNSUPPORTED w/ COMMIT

XDB DBMS_XDB_CONFIG ADDAUTHENTICATIONMETHOD PRAGMA UNSUPPORTED w/ COMMIT

XDB DBMS_XDB_CONFIG ADDTRUSTMAPPING PRAGMA UNSUPPORTED w/ COMMIT

XDB DBMS_XDB_CONFIG ADDTRUSTSCHEME PRAGMA UNSUPPORTED w/ COMMIT

XDB DBMS_XDB_CONFIG CLEARHTTPDIGESTS PRAGMA UNSUPPORTED w/ COMMIT

XDB DBMS_XDB_CONFIG DELETEAUTHENTICATIONMAPPING PRAGMA UNSUPPORTED w/ COMMIT

XDB DBMS_XDB_CONFIG DELETEAUTHENTICATIONMETHOD PRAGMA UNSUPPORTED w/ COMMIT

XDB DBMS_XDB_CONFIG DELETETRUSTMAPPING PRAGMA UNSUPPORTED w/ COMMIT

XDB DBMS_XDB_CONFIG DELETETRUSTSCHEME PRAGMA UNSUPPORTED w/ COMMIT

XDB DBMS_XDB_CONFIG ENABLECUSTOMAUTHENTICATION PRAGMA UNSUPPORTED w/ COMMIT

XDB DBMS_XDB_CONFIG ENABLECUSTOMTRUST PRAGMA UNSUPPORTED w/ COMMIT

XDB DBMS_XDB_CONFIG ENABLEDIGESTAUTHENTICATION PRAGMA UNSUPPORTED w/ COMMIT

XDB DBMS_XDB_CONFIG ISGLOBALPORTENABLED PRAGMA UNSUPPORTED w/ COMMIT

XDB DBMS_XDB_CONFIG SETDYNAMICGROUPSTORE PRAGMA UNSUPPORTED w/ COMMIT

XDB DBMS_XDB_CONFIG SETGLOBALPORTENABLED PRAGMA UNSUPPORTED w/ COMMIT

XDB DBMS_XDB_CONFIG SETHTTPCONFIGREALM PRAGMA UNSUPPORTED w/ COMMIT

XDB DBMS_XMLINDEX DROPPARAMETER PRAGMA UNSUPPORTED w/ COMMIT

XDB DBMS_XMLINDEX MODIFYPARAMETER PRAGMA UNSUPPORTED w/ COMMIT

XDB DBMS_XMLINDEX REGISTERPARAMETER PRAGMA UNSUPPORTED w/ COMMIT

XDB DBMS_XMLSCHEMA COPYEVOLVE PRAGMA UNSUPPORTED w/ COMMIT

22 | AUTOMATED DATABASE UPGRADES USING ORACLE ACTIVE DATA GUARD AND DBMS_ROLLING

Appendix C

The following views are used to determine the status prior to, during, and after a DBMS_ROLLING upgrade process:

DBA_ROLLING_DATABASES

DBA_ROLLING_DATABASES lists all the databases eligible for configuration with rolling operations.

DBA_ROLLING_EVENTS

DBA_ROLLING_EVENTS lists all the events reported from the DBMS_ROLLING PL/SQL package.

DBA_ROLLING_PARAMETERS

DBA_ROLLING_PARAMETERS lists the available parameters of the DBMS_ROLLING PL/SQL package.

DBA_ROLLING_PLAN

DBA_ROLLING_PLAN displays the instructions which constitute the active upgrade plan. Each row in DBA_ROLLING_PLAN identifies

a specific instruction scheduled to execute at a specific database. Instructions are created as a result of successful calls to the

DBMS_ROLLING.BUILD_PLAN procedure.

During execution, groups of instructions are scheduled in batches to execute at remote databases. Groups of instructions are

guaranteed to complete in BATCHID order.

DBA_ROLLING_STATISTICS

DBA_ROLLING_STATISTICS provides a list of rolling operation statistics.

DBA_ROLLING_STATUS

DBA_ROLLING_STATUS displays the overall status of the rolling operation.

DBA_ROLLING_UNSUPPORTED

DBA_ROLLING_UNSUPPORTED displays the schemas, tables, and columns in those tables that contain unsupported data types for a

rolling upgrade operation for a logical standby database using the DBMS_ROLLING PL/SQL package. Use this view before you

perform a rolling upgrade using DBMS_ROLLING to determine what is unsupported.

23 | AUTOMATED DATABASE UPGRADES USING ORACLE ACTIVE DATA GUARD AND DBMS_ROLLING

APPENDIX D

Cloud Database Upgrade Use Case:

» Specific for CDBs

» Small planned maintenance window (e.g. 1 hour) with service termination after 15 minutes. Recommend planned maintenance

window that has least amount of workload and with zero long running transactions and batch.

» Service downtime less than 1 minute for initial switchover (part of any uptime SLA)

» 30 minutes post switchover evaluation phase

» Service downtime less than 1 minute if switchback to original primary required (not part of any uptime SLA)

» Simple rollback after 30 minutes validation and switchback. Estimated 5 minutes. (not part of any uptime SLA since application

performance testing and pre-validation were a prerequisite for the customer prior to the upgrade)

» Any downtime due to database failures resulting in database failover options is still part of the uptime SLA.

Why DBMS_ROLLING over Oracle GoldenGate for database upgrade use case?

» Significantly simpler due to built-in automation and checks

» Data type restrictions are essentially the same as GoldenGate

» Ability to leverage existing standby database which eliminates additional storage or system resource requirements. Standby

database will be a very common managed cloud implementations.

» Ability to integrate with additional standby databases.

Advantages of GoldenGate specific for database upgrade use case

» Fallback to previous release without data loss

Considerations for both GG and DBMS_ROLLING solutions

» Data type and API restrictions

» Data Lags for certain workloads may be a concern. Performance tuning for certain transactions (e.g. batch) can be challenging

» Both GG and DBMS_ROLLING solution will benefit from additional standby database

Oracle Corporation, World Headquarters Worldwide Inquiries

500 Oracle Parkway Phone: +1.650.506.7000

Redwood Shores, CA 94065, USA Fax: +1.650.506.7200

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. This document is provided for information purposes only, and the
contents hereof are subject to change without notice. This document is not warranted to be error-free, nor subject to any other
warranties or conditions, whether expressed orally or implied in law, including implied warranties and conditions of merchantability or
fitness for a particular purpose. We specifically disclaim any liability with respect to this document, and no contractual obligations are
formed either directly or indirectly by this document. This document may not be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without our prior written permission.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and
are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are
trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group. 0615

Active Data Guard DBMS Rolling MAA Best Practices
December 2017
Author: Michael T Smith
Contributing Authors:

C O N N E C T W I T H U S

blogs.oracle.com/oracle

facebook.com/oracle

twitter.com/oracle

oracle.com

	Introduction 1
	Concepts 2
	Choosing a Database Upgrade Method 3
	Using DBMS_ROLLING 4
	INIT_PLAN 3
	SET_PARAMETER 4
	BUILD_PLAN 4
	START_PLAN 4
	SWITCHOVER 4
	FINISH_PLAN 4
	ROLLBACK_PLAN 4
	DESTROY_PLAN 4
	Process Flow 5
	DBMS_ROLLING Phases and Downtime / Fallback Options 5
	DBMS_ROLLING Process 7
	Performing a DBMS_ROLLING upgrade: 7
	Rolling Back a Rolling Upgrade 15
	Appendix A 16
	Appendix B 19
	Appendix C 22
	Introduction
	Concepts
	Choosing a Database Upgrade Method
	Using DBMS_ROLLING
	INT_PLAN
	SET_PARAMETER
	BUILD_PLAN
	START_PLAN
	SWITCHOVER
	FINISH_PLAN
	ROLLBACK_PLAN
	DESTROY_PLAN

	Process Flow
	The following diagram depicts the process flow for the DBMS_ROLLING.

	DBMS_ROLLING Phases and Downtime/Fallback Options
	DBMS_ROLLING Process
	Rolling Back a Rolling Upgrade
	Appendix A
	Appendix B
	Appendix C
	APPENDIX D

