
 

 

    

Oracle Database In-Memory  
High Availability Best Practices 
O R A C L E  W H I T E  P A P E R   |  S E P T E M B E R  2 0 1 5  

 



 
 

 
 
1  |  ORACLE DATABASE IN-MEMORY, HIGH AVAILABILITY BEST PRACTICES 

Table of Contents  

 

Introduction 2 

Best Practices 2 

Apply Recommended Software Optimizations for Database In-Memory MAA 2 

Configure and Manage Connections for High Availability 2 

Oracle Database In-Memory in a RAC environment 3 

Best Practices for Using DUPLICATE and DUPLICATE ALL 4 

FAN Managed Services 4 

Session Parameter Settings 5 

Configure Tables for In-Memory Storage prior to Partition Exchanges 9 

Follow Standard MAA Best Practices 9 

MAA Outage Testing Using In-Memory Tables 9 

Outage Testing Matrix 9 

Conclusion 11 

References 11 

 

 

  



 

 
 
2  |   ORACLE DATABASE IN-MEMORY, HIGH AVAILABILITY BEST PRACTICES 

Introduction 

Oracle Database In-Memory (Database In-Memory) introduces dramatically better performance for 

analytic queries.  Because the In-Memory column store has been seamlessly integrated into Oracle 

Database, all of the high availability benefits that come from the Maximum Availability Architecture 

(MAA) are inherited when implementing Database In-Memory.  With generic MAA best practices as 

described in the HA documentation or MAA white papers located in www.oracle.com/goto/maa, Oracle 

Database In-Memory can be configured to tolerate instance and node failures, protect and repair from 

data corruptions quickly, to fail over in the case of cluster, database failures or disasters in a timely 

manner and to address various planned maintenance activities with near zero database downtime. 

This paper focuses on additional best practices to achieve high availability and high performance 

application services for Oracle Database In-Memory during planned maintenance activities and 

failures. 

Best Practices 
Adherence to the following best practices will result in a highly available In-Memory implementation: 

» Apply Recommended Software Optimizations for InMemory MAA 
» Configure and Manage Connections for High Availability 
» Duplicate In-Memory column store Across Nodes On Engineered Systems 
» Configure Tables to be In-Memory prior to Partition Exchanges 
» Follow Standard MAA Best Practices 

 

The best practices in this paper assume that you are implementing these recommendations on an Oracle Real 
Application Cluster (RAC) database.  Oracle RAC provides your application with cluster and database services 
needed to support high availability and is the foundation for the rest of the best practices described below. 

Apply Recommended Software Optimizations for Database In-Memory MAA 

Refer to My Oracle Support (MOS) 2045279.1 for the latest Database In-Memory MAA software prerequisites and 
recommendations.   

Configure and Manage Connections for High Availability 

A high availability strategy must include a way to notify client sessions when a cluster resource is no longer available 
or when a resource is back on-line.  Oracle provides Fast Application Notification (FAN) and Fast Connection 
Failover (FCF) features to quickly notify clients when an instance or database fails, starts up or changes database 
roles.  Furthermore, the use of a connection pool such as Oracle Universal Connection Pool (UCP) can provide 
additional features such as runtime load balancing and Application Continuity. 

 

 



 

 
 
3  |   ORACLE DATABASE IN-MEMORY, HIGH AVAILABILITY BEST PRACTICES 

Oracle Database In-Memory in a RAC environment 

Oracle Database In-Memory (Database In-Memory) enables data to be populated into memory in a new in-memory 
column format. It does this using an In-Memory column store (IM column store), which is a new component of the 
Oracle Database System Global Area (SGA), called the In-Memory Area. Data in the IM column store does not 
reside in the traditional row format used by the Oracle Database; instead it uses a new column format. Just as a 
tablespace on disk is made up of multiple extents, the IM column store is made up of multiple In-Memory 
Compression Units (IMCUs).  

Only objects with the INMEMORY attribute are populated into the IM column store. A table will be automatically 
loaded into the IM column store when the PRIORITY sub-clause of the INMEMORY attribute is set to any value 
other than NONE.  This will cause a table to be populated into memory immediately after the database instance 
starts. If the PRIORITY sub-clause is not specified it will default to NONE, meaning the object won’t be populated 
into the IM column store until it accessed for the first time.  

Each node in a RAC environment has its own In-Memory column store. By default, a table specified with the 
INMEMORY attribute is automatically distributed across all of the nodes in a cluster. How an object is distributed 
across the cluster is controlled by the DISTRIBUTE sub-clause. By default, Oracle decides the best way to distribute 
the object across the cluster given the type of partitioning used (if any). Ideally the data should be evenly distributed 
across the RAC nodes. If there is a data skew in your (sub)partitions, its recommend that you specify DISTRIBUTE 
BY ROWID RANGE to distribute by rowid ranges. 

Since data populated in-memory in a RAC environment is affinitized to a specific RAC node, parallel server 
processes must be employed to execute a query on each RAC node against the piece of the object that resides in 
that node’s IM column store. The query coordinator aggregates the results from each of the parallel server 
processes together before returning them to the end user’s session. In order to ensure the parallel server processes 
are distributed appropriately across the RAC cluster, you must use Automatic Degree of Parallelism (AutoDOP), so 
the query coordinator is aware of the data affinity or the data location.  

AutoDOP is enabled by setting the parallel_degree_policy parameter to AUTO.  With AutoDOP the optimizer 
automatically determines the degree of parallelism used for a query. This setting should not be confused with the 
table decoration or hints that permit you to manual specify the degree of parallelism for an object or a SQL 
statement.  

If a RAC node were to fail, a portion of the data will no longer be in-memory and will have to be read from the buffer 
cache, flash or disk. This can result in an increase in response times until the missing portion of the data can be 
populated into the In-Memory column stores on the remaining nodes. 

 When running on an Oracle Engineered System such as Exadata or SuperCluster and high availability with 
consistent response time expectations is paramount, tables should be mirrored in-memory across nodes to ensure 
that all of the data needed by an application is already stored in-memory and doesn’t need to be re-populated when 
a node goes down, leading to performance impact until data is repopulated in the surviving instances.   

To do this, simply specify the DUPLICATE sub-clause of the INMEMORY attribute as follows: 

SQL> ALTER TABLE customers INMEMORY PRIORITY NONE DUPLICATE ; 

This will ensure that a mirrored copy of each piece of the table (IMCU) will be stored in-memory on another node in 
the cluster. Note, PRIORITY NONE was specified in the above command using DUPLICATE to ensure that tables 
are only populated on demand via a triggering query and repopulation occurs on the desired node. 



 

 
 
4  |   ORACLE DATABASE IN-MEMORY, HIGH AVAILABILITY BEST PRACTICES 

 

To protect against multiple instance failures, it is possible to populate an object into the IM column store on each 
node in the cluster by specifying the DUPLICATE ALL sub-clause of the INMEMORY attribute. This will provide the 
highest level of redundancy and provide linear scalability, as queries will be able to execute completely within a 
single node.  

SQL> ALTER TABLE customers INMEMORY DUPLICATE ALL; 

This will ensure the table is duplicated across all nodes in a cluster and any DML made to the table will be 
simultaneously reflected in the IM column store on all nodes.  Since all IMCUs are available on all nodes, AutoDOP 
is no longer required to ensure affinity between the IMCUs and parallel slaves, so parallel_degree_policy can 
left at the default MANUAL.  The DUPLICATE ALL subclause also allows manual control of the degree of parallelism 
via hint or table property (including allowing the optimizer to decide) knowing that parallel slaves will always find an 
IMCU on the instance they are running against. 

 

Please note that the use of the DUPLICATE or DUPLICATE ALL sub clause on a non-Engineered system will not 
have any effect. 

 

Bes t Practices  for Us ing DUPLICATE and DUPLICATE ALL 

The best practices for using the DUPLICATE and DUPLICATE ALL options involve the use of FAN Managed 
Services and proper settings for session parameters. 

 

FAN Managed Services 

FAN enabled clients and properly configured services are a key factor for minimizing impact to applications when 
planned or unplanned outages occur.  When using DUPLICATE or DUPLICATE ALL it is recommended to avoid 
application impact (“brownouts”) during repopulation by preventing client connections to the instance that has been 
restarted and will repopulate data. This is done by disabling and stopping the service for an instance that has gone 
down.  We refer to this as  “managed” connection service in this discussion and Table 1 below.  The steps needed 
to manage a service are: 

 
1. Use SRVCTL to stop and disable the services on the failed instance for analytic clients using In-Memory 

column store, e.g.: 
$ srvctl stop service –service prod_dbim_fan –database dbm –instance dbm1 

$ srvctl disable service -service prod_dbim_fan –database dbm –instance dbm1 

 
2. Perform maintenance on the instance or node 

 
3. Ensure the IM column store is being populated on the newly restarted instance and wait for all tables to be 

populated. Repopulation can be triggered by performing a full table scan against tables you marked with 
the In-Memory attribute. We refer to this query as a triggering query because it triggers the repopulation of 
the IM column store.  The session running the triggering query must have its parallel_instance_group set 
properly (see Table 1 and Session Parameter Settings below).   



 

 
 
5  |   ORACLE DATABASE IN-MEMORY, HIGH AVAILABILITY BEST PRACTICES 

You can monitor how many bytes of a table or partition have yet to be populated across instances with this 
query: 

 
SELECT v.inst_id, v.segment_name name, v.partition_name 
, v.populate_status status 
, v.bytes/1024/1024 bytes_mb 
, v.bytes_not_populated/1024/1024 bytes_not_pop_mb 
, (v.bytes-v.bytes_not_populated)/1024/1024 bytes_populated_mb 
FROM gv$im_segments v 
WHERE v.owner = '&owner_name' 
ORDER BY 1 

 

When using DUPLICATE ALL, the column “bytes_not_populated” will be zero when the segment is completely 
In-Memory  If using the DUPLICATE sub-clause, use the following query: 
 
SELECT v.segment_name name, v.partition_name,  
2*max(v.bytes)/1024/1024 tot_mirrored_bytes_mb 
, sum(v.bytes-v.bytes_not_populated)/1024/1024 tot_bytes_populated_mb 
FROM gv$im_segments v 
WHERE v.owner = '&owner_name' 
GROUP BY  v.segment_name, v.partition_name 
ORDER BY 1 

 
When the segments are entirely in-memory, you will see the TOT_MIRRORED_BYTES_MB column equal the 
TOT_BYTES_POPULATED_MB column. 

 
4. Use SRVCTL to enable and start the services using In-Memory on the newly restarted instance 

$ srvctl enable service -servcce imquery –database dbm –instance dbm1 

$ srvctl start service –service imquery –database dbm –instance dbm1 

 
5. Clients will begin using the new instances as their connection pools load balance or new connections are 

made 

 

Some of the above steps may be automated with scripts for convenience and efficiency. MOS note 1927000.1 
shows how to script a FAN callout in Oracle RAC environments to automatically disable a service when an instance 
or node goes down. 

 

Session Parameter Settings 
 
The DISTRIBUTE sub-clause affinitizes the data populated into the IM column store to a specific node, so 
parallel_degree_policy = AUTO must be set by sessions using parallel execution to ensure processes are sent to 
the appropriate node containing the data in-memory. This is true even if the DUPLICATE sub clause is specified. If 
the use of parallel_degree_policy=AUTO is acceptable to the application, then Oracle recommends the use of 
DUPLICATE because it reduces memory usage while still offering high availability. 

 The DUPLICATE ALL option populates complete copies of the data on each instance, so a session may have 
parallel_degree_policy set to MANUAL, LIMITED, or AUTO and still benefit from the In-Memory column store since 
the parallel execution processes will always find the data they need regardless of which node the parallel execution 
processes are running on.   

The parallel_instance_group parameter is used to control which instances participate in parallel execution. The 
service assigned to the parallel_instance_group parameter and used by the application’s sessions may be different 



 

 
 
6  |   ORACLE DATABASE IN-MEMORY, HIGH AVAILABILITY BEST PRACTICES 

than the one used for connections (the service referred to as a managed connection service as introduced in the 
previous section).  This is done to maintain proper affinity of parallel execution processes during repopulation.  See 
the table for specific recommendations on when to use different services for the connection and 
parallel_instance_group parameter. 

 

TABLE 1: CONFIGURATION SETTINGS FOR DUPLICATE / DUPLICATE ALL 

Duplicate 
mode 

Parallel 
degree 
policy 

Table or 
Query DOP 
setting 

Parallel 
instance 
group service 
used by the 
application 

Parallel 
instance 
group service 
used during 
repopulation 

Benefits 

DUPLICATE AUTO AUTO* Including all 
instances and 
different from 
connection 
service 

Including all 
instances and 
different from the 
connection 
service 

» Negligible impact for 
single instance failure 

» Maximizes IM capacity 

DUPLICATE LIMITED or 
MANUAL NOT RECOMMENDED – NO PQ AFFINITIZATION POSSIBLE 

DUPLICATE ALL AUTO, 
LIMITED, or 
MANUAL 

AUTO or 
MANUAL 

Same as the 
“managed” 
connection 
service 

Including all 
instances and 
different from the 
connection 
service 

» Tolerates multiple 
instance failures 

» Allows use of 
parallel_degree_policy = 
LIMITED or MANUAL 

 

*When the parameter parallel_degree_policy is set to AUTO no table or query DOP should be set. The Optimizer 
should have full control over the DOP used. 

 
A couple of examples will illustrate the recommendations in the table above (both examples assume the use of RAC 
on a Full-Rack Exadata Engineered System): 

 
1. Using DUPLICATE on an Exadata Full-Rack System 
» Managed connection service uses prod_dbim_fan service 

•  Application clients connect with this service; the service is altered during outages by a custom script (as 
discussed earlier) to ensure clients don’t connect to an instance that went down. The service is altered 
when the instance is available again and repopulation on the restarted instance is finished. 

• The service is configured to send connections to any of the eight database nodes unless there is an 
outage. Immediately after an outage, the managed connection service disables and stops the service for 
the failed instance.  In-flight queries may be affected, but new connections will use the remaining 
instances enabled for the service. 

• Two copies of IMCU are present across the eight instances since tables placed in the IM column store are 
set to use the DUPLICATE option. This permits better use of memory for In-Memory objects. 

 
 
 



 

 
 
7  |   ORACLE DATABASE IN-MEMORY, HIGH AVAILABILITY BEST PRACTICES 

» Repopulation service uses prod_dbim service 

• This is defined to include all eight instances in the cluster; they all participate in parallel queries; this 
service is not changed during outages.  

• To repopulate the IM column store, a session will have the parallel_instance_group value of 
prod_dbim when executing the triggering query on the newly restarted instance once it has become 
available. This will cause the IM column store to be repopulated on the restarted instance such that it 
contains the same IMCUs it had before the crash (adjusting for changes that may have occurred since). 

 
» The application uses the following for its database sessions: 

• parallel_degree_policy= AUTO (required with DUPLICATE to affinitize slaves to IMCUs) 

• parallel_instance_group = prod_dbim (differs from service used by clients to connect) 
 

» The managed connection service will be enabled and started for the restarted instance once its IM column 
store is repopulated. 

 
» Connections will resume on the newly started instance once the connection service is enabled and started. 

 

The illustration below uses numbers to represent IMCUs.  IMCUs with the same number represent copies of each 
other. Notice that there is a primary and secondary copy of each IMCU in the cluster but Oracle can read from either 
side of the mirror at any time. 

 
This shows clients connecting with the "prod_im_fan" service that is managed so that a failed instance is disabled from the service.   

The application uses the "prod_dbim" service for parallel_instance_group parameter.   

A session executing the triggering query to repopulate a failed instance's IM column store will also use the "prod_dbim" service. 

The application MUST set parallel_degree_policy=AUTO to ensure parallel execution processes are affinitized to instances 
properly. 

 

2. Using DUPLICATE ALL on an Exadata Full-Rack System 
 

» Each node will contain a copy of all IMCUs since In-Memory tables are set to use the DUPLICATE ALL 
option.  This means that more memory is used but the cluster will tolerate the loss of more than one node 
without performance impact to the application. It will also permit the application to use 
parallel_degree_policy  set to MANUAL, instead of AUTO, if this is needed. 
 



 

 
 
8  |   ORACLE DATABASE IN-MEMORY, HIGH AVAILABILITY BEST PRACTICES 

» Managed connection service uses prod_dbim_fan service 

• Application clients connect with this service; the service is altered during outages to ensure clients don’t 
connect to an instance that went down until after repopulation is finished as in the previous example. After 
an instance failure, the managed connection service disables and stops the service from running on the 
failed instance.  In-flight queries may be affected, but new connections will use the remaining instances 
that have a mirror copy of the failed instance’s IMCUs. 

• The application uses parallel_instance_group set to the managed connection service so parallel 
execution processes will not be spawned on the newly restarted instance during repopulation. 

 
» Repopulation service uses prod_dbim service 

• This contains all instances desired to participate in parallel queries; this service is not changed during 
outages.To repopulate the IM column store, a session with the parallel_instance_group value of 
prod_dbim executes a triggering query on the newly restarted instance that is now available again.  This 
service includes all instances including the one that needs to be repopulated.   The application continues 
to use the managed connection service for its parallel_instance_group (prod_dbim_fan) to 
ensure parallel execution processes are affinitized to IMCUs on available instances during repopulation. 
 

» The application uses the following for its database sessions: 

• parallel_degree_policy = AUTO or MANUAL 

• Query or table DOP setting can be AUTO or MANUAL 

• parallel_instance_group = prod_dbim_fan (notice this is the same as the connection service) 
 
The managed connection service will be enabled and started for the newly restarted instance once its IM column 
store is repopulated. Connections will resume on the newly started instance. 
 
The illustration below uses numbers to represent IMCUs.  IMCUs with the same number represent copies of each 
other. Notice each node has a complete set of IMCUs. 
 

 
This shows clients connecting with the "prod_im_fan" service that is managed so that a failed instance is disabled from the service.   

The application uses the "prod_dbim_fan" service for the parallel_instance_group parameter to ensure parallel execution processes 
don't try to run on an instance that is repopulating.   

The application may set parallel_degree_policy=AUTO, MANUAL, or LIMITED 

A session executing the triggering query to repopulate a failed instance's IM column store will use the "prod_dbim" service 

 



 

 
 
9  |   ORACLE DATABASE IN-MEMORY, HIGH AVAILABILITY BEST PRACTICES 

If you aren’t using Engineered Systems you will not benefit from the In-Memory high availability features provided by 
DUPLICATE or DUPLICATE ALL but you can obtain performance and capacity benefits using parallel query when 
you set parallel_degree_policy to AUTO on a RAC system. 

 

Configure Tables for In-Memory Storage prior to Partition Exchanges 

Database In-Memory works at the partition level, not just at the table level.  When performing partition exchanges, it 
is recommended to first specify the In-Memory attribute on the non-partitioned table to be exchanged into the 
partitioned table and ensure it is populated into the IM column store.  When the partition is exchanged, the data will 
already be in in-memory and usable without waiting for its data to be populated.  You can exchange a partition in a 
table populated into the IM column store at any time without needing to quiesce the workload just as you have been 
able to do with a non-In-Memory table in the past.  In the example command below, you would first alter the 
standalone table, lineorder_tab, to have its in-memory attributes set, ensure it is populated in-memory, and then use 
the following command to do the partition exchange operation: 

ALTER TABLE lineorder EXCHANGE PARTITION p1 WITH TABLE lineorder_tab; 

 

 

Follow Standard MAA Best Practices 

The best practices listed above are to be applied in addition to the MAA best practices that are already published in 
the High Availability Best Practice documentation and other MAA papers found on OTN at 
www.oracle.com/goto/maa. 

 
MAA Outage Testing Using In-Memory Tables 

Outage Testing Matrix 

The following matrix lists various outage scenarios that were tested for clients using In-Memory tables and the 
observed impacts to the client application. 

MAA OUTAGE MATRIX WITH IN-MEMORY TABLES 

Outage Outage Simulation Process Application Impact and Observations 

Planned DB Node 
Maintenance 

1. Start workload with all 
instances having pre-loaded the 
In-Memory column store 

2. Stop service normally on an  
instance 

3. Disable service for the affected 
instance 

4. Ensure all connections moved 
to instances on other nodes 

5. Shutdown instance or node 

6. Perform maintenance on node 

7. Restart instance or node 

8. Run query to load In-Memory 
column store for restarted 

• Minimal impacts to the application in Oracle RAC during 
reconfiguration (if the maintenance calls for the instance to be 
stopped and restarted) 

 

http://www.oracle.com/goto/maa�


 

 
 
10  |   ORACLE DATABASE IN-MEMORY, HIGH AVAILABILITY BEST PRACTICES 

instance 

9. Wait for all tables to load In-
Memory on affected instance 

10. Enable service for affected 
instance 

11. Start service for affect instance 

12. Observe clients using the 
restarted instance 

Stop Service FORCE  1. Ensure the application is 
configured for Application 
Continuity and application is 
able to trap and retry after 
ORA-12805 or ORA-40 errors 

2. Start workload 

3. Stop service FORCE on an 
instance 

4. Start service on again on the 
instance 

5. Observe load returns to the 
restarted service over time 

• Brief response time spike at time of failure due to: 

• Termination of query 

• Re-run / replay of query when application continuity is used 

• No need to re-load the In-Memory column store since the 
instance did not fail or get restarted 

 

Database Instance 
Failure 

1. Ensure application is able to 
trap and retry ORA-12805 or 
ORA-40 after errors 

2. Start workload 

3. Kill SMON on one instance 

4. Immediately disable the service 
for the affected instance 

5. Wait for instance to restart 

6. Run queries to force In-
Memory tables to load – wait 
until tables are loaded 

7. Enable the service back on the 
affected instance 

8. Observe load returns to the 
restarted instance over time 

• Brief response time spike at time of failure due to: 

• Termination of query 

• Oracle RAC reconfiguration 

• Re-run / replay of query when application continuity is 
used 

• Brief response time spike when the failed instance rejoins the 
cluster 

Database Node 
Failure 

1. Ensure application is able to 
trap and retry ORA-12805 or 
ORA-40 after errors 

2. Start workload 

3. Remove power from the 
database node 

4. Immediately disable the service 
for the affected instance 

5. Power on and wait for instance 
to be restarted 

6. Run queries to force In-
Memory tables to load – wait 
until tables are loaded 

7. Enable the service back on the 
affected instance 

8. Observe load returns to the 
restarted instance over time 

• Brief response time spike at time of failure due to: 

• Termination of query 

• Oracle RAC MISCOUNT delay (1 min typically); This 
wait is reduced to a few seconds on Engineered 
Systems at 12.1.0.2 BP7 or higher 

• Oracle RAC reconfiguration 

• Re-run / replay of query when application continuity is 
used 

• Brief response time spike when the failed instance rejoins the 
cluster 



 

 
 
11  |   ORACLE DATABASE IN-MEMORY, HIGH AVAILABILITY BEST PRACTICES 

Database Failure 

Data Guard Failover 
1. Start workload 

2. Ensure service is disabled on 
the standby database (and 
enabled on the primary) 

3. Shutdown abort ALL nodes in 
the cluster 

4. Wait for standby database to 
open 

5. Run queries to force In-
Memory tables to load – wait 
until tables are loaded 

6. Enable the service on the new 
primary database 

7. Observe load is occurring on 
the new primary database 

• Response time spike at time of failure due to: 

• Termination of query 

• Standby Open 

• Load of In-Memory tables in cache 

• Re-run  / replay of query when application continuity is 
used 

Note:The business and the administrator have to weigh the 
trade-offs between very fast database and application recovery 
time objective (RTO) when you allow clients and applications to 
connect immediately after the database starts up as primary VS 
longer downtime or RTO when waiting for the in-Memory tables 
to be pre-loaded before allowing application to connect.    The 
latter ensures the fast in-memory query response immediately 
after connecting to the new primary database. 

Please note the following regarding the above tests: 

» The test application was configured to use the UCP connection pool in 12.1.0.2 
» The remaining nodes had sufficient CPU and memory capacity to take on the load from the instance that 

was shut down for maintenance. If this is not the case in your environment, you will need to leverage 
Oracle’s Resource Management features and accept an impact to your performance SLAs. 
 

Conclusion 
Oracle Database In-Memory provides game-changing performance improvements while retaining the reliability and 
high availability benefits of the Oracle Database.  Implementing the best practices found in this paper will help you 
maximize availability when implementing Database In-Memory. 

References 
Oracle Technology Network: Oracle Database In-Memory Page: 
http://www.oracle.com/us/products/database/options/database-in-memory/overview/index.html 

Oracle Database In-Memory Blog, https://blogs.oracle.com/In-Memory/tags/rac 

Shell Script to Automatically Disable a Service Based on FAN Events, http://support.oracle.com, MOS note ID 
1927000.1 

Graceful Application Switchover in RAC with No Application Interruption, http://support.oracle.com, MOS note ID 
1593712.1 

Client and Application Failover Validation Matrix, http://support.oracle.com, MOS note ID 1617163.1 

Client Failover Best Practices for Highly Available Oracle Databases - Oracle Database 12c, 
http://www.oracle.com/technetwork/database/features/availability/oracle-database-maa-best-practices-155386.html 

 

 

http://www.oracle.com/us/products/database/options/database-in-memory/overview/index.html�
http://www.oracle.com/technetwork/database/features/availability/oracle-database-maa-best-practices-155386.html�


 
 

 

  

 

 

Oracle Corporation, World Headquarters  Worldwide Inquiries 
500 Oracle Parkway Phone: +1.650.506.7000 
Redwood Shores, CA 94065, USA Fax: +1.650.506.7200 

 

 

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. This document is provided for information purposes only, and the 
contents hereof are subject to change without notice. This document is not warranted to be error-free, nor subject to any other 
warranties or conditions, whether expressed orally or implied in law, including implied warranties and conditions of merchantability or 
fitness for a particular purpose. We specifically disclaim any liability with respect to this document, and no contractual obligations are 
formed either directly or indirectly by this document. This document may not be reproduced or transmitted in any form or by any 
means, electronic or mechanical, for any purpose, without our prior written permission.  
 
Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. 
 
Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and 
are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are 
trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group. 0615 
 
Oracle Database In-Memory: High Availability Best Practices 
September 2015 
Author: Hector Pujol 
Contributing Authors:  Maria Colgan; Richard Exley;  Andy Rivenes; Lawrence To  

 

 
 

 
 

Connect with us 

 blogs.oracle.com/oracle 

 facebook.com/oracle 

 twitter.com/oracle 

 oracle.com 


	Table of Contents
	Introduction 2
	Best Practices 2
	Apply Recommended Software Optimizations for Database In-Memory MAA 2
	Configure and Manage Connections for High Availability 2
	Oracle Database In-Memory in a RAC environment 3
	Best Practices for Using DUPLICATE and DUPLICATE ALL 4
	FAN Managed Services 4
	Session Parameter Settings 5

	Configure Tables for In-Memory Storage prior to Partition Exchanges 9
	Follow Standard MAA Best Practices 9
	MAA Outage Testing Using In-Memory Tables 9
	Outage Testing Matrix 9
	Conclusion 11
	References 11
	Introduction
	Best Practices
	Apply Recommended Software Optimizations for Database In-Memory MAA
	Configure and Manage Connections for High Availability
	Oracle Database In-Memory in a RAC environment
	Best Practices for Using DUPLICATE and DUPLICATE ALL
	FAN Managed Services
	Session Parameter Settings

	Configure Tables for In-Memory Storage prior to Partition Exchanges
	Follow Standard MAA Best Practices

	MAA Outage Testing Using In-Memory Tables
	Outage Testing Matrix

	Conclusion
	References

