

What to expect from the Optimizer when upgrading from Oracle

Database 10g to 11g

Maria Colgan & Mohamed Zait

<Insert Picture Here>

Agenda

• Changes in behaviour

• SQL Plan Mangement

• Pre-upgrade checklist

• Post-upgrade checklist

• Correcting regressed SQL Statements• Correcting regressed SQL Statements

Changes in

behavior

Init.ora Parameters

Parameter Function In 10g In 11g

Optimizer_mode Cost-based Optimizer used
for all SQL Statements

All_rows All_rows

Optimizer_Dynamic_Sampling If no statistics on an object
automatically gathered at
parse

2 2

Optimizer_Secure_view_merging Additional security checks
before merging a view

True True
before merging a view

Optimizer_use_invisible_indexes Allows Optimizer to use an
invisible index as access
method

N/A False

Optimizer_use_pending_statistics Allows Optimizer to use an
pending statistics

N/A False

Optimizer_capture_SQL_plan_baselines Automatically captures
execution plans into SPM

N/A False

Optimizer_use_SQL_plan_baselines Optimizer uses any existing
SQL Plan Baseline

N/A True

New DBMS_STATS Subprograms

Subprogram Function In 10gR2 In 11g

Gather_System_Stats Gathers stats on CPU and IO
speed of H/W

Yes Yes

Gather_Dictionary_Stats Gathers stats on dictionary objects Yes Yes

Gather_Fixed_Object_Stats Gather stats on V$views Yes Yes

Publish_Pending_stats Pending stats allows stats to be
gather but not published immediate

N/A Yes
gather but not published immediate

Restore_Table_Stats Revert stats back to what they were
before

10.2.0.4 Yes

Diff_Table_Stats Compare stats for a table from two
different sources

10.2.0.4 Yes

Create_Extended_stats Gathers stats for a user specified

column group or an expression

N/A Yes

Set_Table_Perfs Sets stats preferences of a table N/A Yes

Automatic Statistics Gathering Job

• Introduced in 10g

• Gathers statistics on objects where
• Statistics are missing

• Statistics are stale

• In 10g its an Oracle Scheduler job
• Runs during maintenance window • Runs during maintenance window

• In 11g its an Autotask
• Runs during maintenance window

• Use DBMS_AUTO_TASK_ADMIN package to control job

New Features

• New Optimizations
– Group-by placement

– Enhanced join predicate push down

– Null-aware antijoin

• Adaptive Cursor Sharing (enhanced bind peeking)

• Extended Statistics

– Multi-column statistics (for correlation)

– Statistics on expressions

• Pending Statistics

Each new features could potentially change a plan

How can you maintain performance -> stability during upgrade?

SQL Plan Management

SQL Plan

Management

SQL Plan Management

Prior to 11g

• Unpredictable changes can happen to an execution plan

• Avoiding plan changes the only method to avoid performance
regression
– Lock Statistics to prevent them from changing

– Freezing an execution plan with a Stored Outline

• No mechanism for plans to evolve

Solution

• Optimizer automatically manages ‘execution plans’

• Only known and verified plans are used

• Plan changes are verified

• Only comparable or better plans are used going forward

SQL Plan Management is controlled plan performance

With SQL Plan Management

HJ

GB

Parse

• SQL statement is parsed for the first time and a plan is generated

• Check the log to see if this is a repeatable SQL statement

• Add SQL statement signature to the log and execute it

• Plan performance is still “verified by execution”

Execute Plan Acceptable

Statement log

HJ

With SQL Plan Management

• SQL statement is parsed again and a plan is generated

• Check log to see if this is a repeatable SQL statement

• Create a Plan history and use current plan as SQL plan baseline

• Plan performance is “verified by execution”

Parse
HJ

GB

Execute Plan Acceptable

Statement log

Plan history

HJ

HJ

GB

Plan baseline

HJ

With SQL Plan Management

• Something changes in the environment

• SQL statement is parsed again and a new plan is generated

• New plan is not the same as the baseline – new plan is not executed
but marked for verification

NL

NL

GB

Parse

Statement log

Plan history

HJ

GB

Plan baseline

HJ

GB

NL

NL

With SQL Plan Management

• Something changes in the environment

• SQL statement is parsed again and a new plan is generated

• New plan is not the same as the baseline – new plan is not executed
but marked for verification

• Execute known plan baseline - plan performance is “verify by history”

Parse
HJ

GB

Execute
Plan Acceptable

HJ

Statement log

Plan history

HJ

GB

Plan baseline

HJ

GB

NL

NL

Verifying the new plan

• Non-baseline plans will not be used until verified

• DBA can verify plan at any time

Invoke or schedule

verification

Optimizer

checks if new

plan is as good

as or better

than old plan
DBA

Statement log

Plan history

HJ

GB

Plan baselineGB

NL

NL

Statement log

Plan
history

HJ

HJ

GB

Plan baseline

GB

NL

NL

Plans which perform as good as or

better than original plan are added to

the plan baseline

GB

NL

Plans which don’t

perform as good as

the original plan

stay in the plan

history and are

marked

unaccepted

NL

NL

HJ

SQL Plan Management – the details

• Controlled by two init.ora parameter

– optimizer_capture_sql_plan_baselines

• Controls auto-capture of SQL plan baselines for repeatable stmts

• Set to FALSE by default in 11gR1

– optimizer_use_sql_plan_baselines

• Controls the use of existing SQL plan baselines by the optimizer• Controls the use of existing SQL plan baselines by the optimizer

• Set to TRUE by default in 11gR1

• Monitoring SPM

– Dictionary view DBA_SQL_PLAN_BASELINE

– Via the SQL Plan Control in EM DBControl

• Managing SPM

– PL/SQL package DBMS_SPM or via SQL Plan Control in EM DBControl

– Requires the ‘administer sql management object’ privilege

SPM Plan Capture – Bulk

• From SQL Tuning Set (STS)
– Captures plan details for a (critical) set of SQL Statement in STS

– Load these plans into SPM as baseline plans

• From Stored Outlines
– Migrate previously created Stored Outlines to SQL plan baselines

• From Cursor Cache
– Load plans from the cursor cache into SPM as baseline plans– Load plans from the cursor cache into SPM as baseline plans

• Filters can be specified (SQL_ID, Module name, schema)

• From staging table
– SQL plan baselines can be captured on another system

– Exported via a table (similar to statistics) and imported locally

– Plan are “unpacked” from the table and loaded into SPM

Pre-Upgrade Steps

Pre-Upgrade Step

• Testing on the new Database Release
– Use hardware identical to product

– Use a copy of the ‘live’ data from product

– Ensure all important queries and reports are tested

– Capture all necessary performance information during tests

– Ensure comparable test results are available for your current – Ensure comparable test results are available for your current
Oracle release

• Capture current 10g execution plans
– Using SQL Performance Analyzer

– Using Stored Outlines

– Using SQL Tuning Sets

– Using exported SQL plan baselines

Testing on the new database release

Removing old Optimizer hints

• If there are hints for every aspect of the execution plan
the plan won’t change between releases (Stored Outline)

• Partial hints that worked in one release may not work in
another

• Test all SQL stmts with hints on the new release using • Test all SQL stmts with hints on the new release using
the parameter _optimizer_ignore_hints=TRUE

– Chance are the SQL stmts will perform better without any hints

Capturing Plans using SPA

Plan History

HJ

GB

HJ

Oracle Database 11g
O_F_E=10

Regressing

statements

Before

change

HJ

GB

HJ

No plan

regressions

Oracle Database 10g

HJ

GB

HJ Well

tuned

plans

HJ

GB

HJ

HJ

GB

HJ

O_F_E=11
After

change

regressions

optimizer_features_enable

SQL

Performance

Analyzer

Capturing Plans using Stored outlines

4. Upgrade

to 11g

Oracle Database 11g

Oracle Database 11g

No plan

regressions

HJ

GB

HJ

5. Migrate Stored Outlines

into SPM

Plan History

HJ

GB

HJ

OH Schema

HJ

GB

HJ

Oracle Database 9 or 10g

OH Schema

HJ

GB

HJ

CREATE_STORED_OUTLINES=true

CREATE_STORED_OUTLINES=false

to 11g

1. Begin

with

2. Run all SQL in the

Application and auto

create a Stored Outline

for each one

3. After Store

Outlines are

captured

Capturing Plans using SQL Tuning Set

Plan History

Database Upgrade

Oracle Database 11g

No plan

regressions

HJ

GB

HJ

3. Bulk load plans into
SPM

HJ

GB

HJ

Oracle Database 11g

Well tuned

plan

Oracle Database 10g

1. Create STS for
critical statements

2. Upgrade
to 11gDBA

HJ

GB

HJ

Capturing Plans Using an 11g test environment

Production Database 11g

No plan

regressions

HJ

GB

HJ

4. Import staging

table

Plan History

HJ

GB

HJ

5. Unpack baselines

into SPM

Development / Test Database 11g

Well tuned

plan

Baseline

plans

staging table

HJ

GB

HJ

DBA

Plan History

HJ

GB

HJ1. Create

baselines from

tuned stmts

2. Create staging

table & pack

baselines into it

3. Export staging

table

Post-Upgrade Steps

Post-upgrade Steps

• Load SPM with 10g plans
– From a STS create in Oracle Database 10gR2

– From Stored Outlines

– From SQL Tuning Set

– From a staging table

– From the Cursor Cache

• Manage Optimizer Statistics

SQL Plan Management - general upgrade strategy

Plan History

HJ

GB

HJ

Oracle Database 11g
O_F_E=101. Set OFE to

previous release

HJ

GB

HJ

No plan

regressions

2. Run all SQL in the

Application and auto

load SQL Plan Baselines

with 10g plan
HJ

GB

NL

5. 11g plan queue

3. Auto Capture 10g

plans

regressions

• Seeding the SQL Plan Baselines with 10g plans No plan change on upgrade

• After all SQL Plan Baselines are populated switch Optimizer_Features_Enable to 11g

• new 11g plans will only be used after they have been verified

O_F_E=11
4. After

plans are

loaded

change

OFE to 11
optimizer_features_enable

5. 11g plan queue

for verification

What to do with statistics after upgrade

• Use last known 10g stats until system is stable

• Switch on incremental statistics for partitioned tables
– DBMS_STATS.SET_GLOBAL_PREFS('INCREMENTAL','TRUE');

• Temporarily switch on pending statistics
– DBMS_STATS.SET_GLOBAL_PREFS(‘PENDING’,’TRUE’);– DBMS_STATS.SET_GLOBAL_PREFS(‘PENDING’,’TRUE’);

• Gather 11g statistics
– DBMS_STATS.GATHER_TABLE_STATS(‘sh’,’SALES’);

• Test your critical SQL statement with the pending stats
– Alter session set optimizer_use_pending_statistics=TRUE;

• When proven publish the 11g statistics
– DBMS_STATS.PUBLISH_PENDING_STATS();

Correcting

Regressed SQL

Statements

Correcting Regressed SQL Statement

Load plans
from a SQL
Tuning Set

Load plans
from the
Cursor
Cache

Load plans
from Stored
Outlines

Load plans
from a
staging
table

Cursor Cache
Stage table

Upgrade Demo

Correcting Regressed SQL Statement

Load plans
from a SQL
Tuning Set

Load plans
from the
Cursor
Cache

Load plans
from Stored
Outlines

Load plans
from a
staging
table

Load a
hinted

execution
plan

Cursor

Cache

Stage table

For More Information

search.oracle.com

Upgrading Optimizer

or
http://www.oracle.com/technology/products/bi/db/11g/pdf/twp_upgrading_10g_to_11g_what_to_expect_from_optimizer.pdf

The preceding is intended to outline our general
product direction. It is intended for information
purposes only, and may not be incorporated into any
contract. It is not a commitment to deliver any
material, code, or functionality, and should not be
relied upon in making purchasing decisions.relied upon in making purchasing decisions.
The development, release, and timing of any
features or functionality described for Oracle’s
products remains at the sole discretion of Oracle.

