Globalization Support
Oracle Unicode database support

An Oracle White Paper
May 2005

ORACLE

Oracle Unicode database support

INErOAUCHION .o s 3
ReqUITEMENT ... s 3
What is UNICODE?ccooiiiiiiiiiiiiciiiisisesssiians 4
Supplementary Charactersccvvieuiininiciniiiiceeeens 4
Unicode ENcOdINGSccouviiiiiiiiiiiiiiiiciiiccccicscecenes 5
UTF-8 ENCOAINEG ...ttt 5
UCS-2 ENCOING .t 6
UTF-16 ENCOdINgGcvovviiiiiiiiiiiiiiciiicicicccsins 6
Unicode and Oracle ... 7
AL2AUTEESS ..ot 7
UTES o 8
UTTE ..o 8
ALB2UTES ..o 8
ALTOUTELO i 8
Common Questions and ANSWELS ...ccceuruevereirriruereeenirereereseeseseereseeseseesesenes 9
SUMMALY w.viiii e 13

Oracle Unicode database support Page 2

Oracle Unicode database support

INTRODUCTION

This paper helps customers to understand the relationship between the different
Unicode encodings and Oracle’s character sets. It also contains the answers to
some of most common questions regarding Oracle’s Unicode implementation. This
paper is the starting point for customers trying to find the right Unicode solution
for meeting their globalization needs.

REQUIREMENT

Dealing with many different languages in the same application or database has been
complicated and difficult for a long time. There is no single character set that
contains enough characters to deal with the requirements of day-to-day ebusiness
operations. For example, the European Union requires several different national
character sets just to cover all its languages. Even for a simple language like
English, the 7-bit ASCII character set cannot encode all the letters, punctuation,

and technical symbols in general use.

The problem with ASCII and other national character sets is that they are not
universal; they do not contain enough characters for handling multiple languages.
Most of the national character sets are created using ASCII as their base encoding;
while you can store combinations like English and French in the same character set,
there are some combinations that you can not store, such as German and Chinese,
Russian and Korean, or even Traditional Chinese and Simplified Chinese. There are
also potential conflicts between the character sets, because the same numeric code
value can be used to represent different characters, or the same character is

represented by different numeric code values in different character sets.

To overcome the limitations of existing character encodings, several organizations
began working on the creation of a global character set in the late 1980s. The need
for this became even greater with the development of the World Wide Web in the
mid-1990s. The Internet has changed how we do business today, with an emphasis
on the global market that has made a universal character set a major requirement.
The requirements of this global character set are that it needs to contain all major
living scripts, support legacy data and implementations, and be simple enough that
a single implementation of a product is sufficient for worldwide use. Additionally it

should also support multilingual users and organizations, conform to international

Oracle Unicode database support Page 3

standards, and enable the worldwide interchange of data. This global character set
exists and is in wide use; it’s called Unicode.

WHAT IS UNICODE?

Unicode is a universal encoded character set that allows you to store information
from any language. Unicode defines properties for each character, standardizes
script behavior, provides a standard algorithm for bi-directional text, and defines
cross-mappings to other standards. Unicode provides a unique code value for every

character, regardless of the platform, program, or language.

The Unicode standard primarily encodes scripts rather than languages. In many
cases, a single script may serve to write tens or even hundreds of languages (e.g. the
Latin script). In other cases only one language employs a patticular script (e.g.
Hangul).

Unicode defines codes for characters used in every major language written today.
Unicode covers all the languages that can be written in the following scripts: Latin;
Greek; Cyrillic; Armenian; Hebrew; Arabic; Syriac; Thaana; Devanagari; Bengali;
Gurmukhi; Oriya; Tamil; Telegu; Kannada; Malayalam; Sinhala; Thai; Lao; Tibetan;
Myanmar; Georgian; Hangul; Ethiopic; Cherokee; Canadian-Aboriginal Syllabics;
Ogham; Runic; Khmer; Mongolian; Han (Japanese, Chinese, Korean ideographs);
Hiragana; Katakana; Bopomofo and Yi.

It also includes punctuation marks, diacritics, mathematical symbols, technical
symbols, musical symbols, arrows, dingbats, and so forth. In all, the Unicode
Standard (as of version 4.0) provides support for over 96,382 characters from the
wotld's alphabets, ideograph sets, and symbol collections.

Many software and hardware vendors have adopted the Unicode standard. Many
operating systems and browsers now support Unicode. Unicode is required by
modern standards such as XML, Java, JavaScript, LDAP, CORBA 3.0, WML etc. It
is also synchronized with the ISO/TEC 10646 standard. For more information,
please refer to the Unicode Standard official web site:

http://www.unicode.org/unicode/standard/standard.html

Supplementary Characters

The initial version of Unicode used a 2-byte encoding format; by using 16 bits for
every code point, a total of 65,536 characters could be represented. This is not
sufficient to represent all characters currently in use worldwide. For example, the
Chinese speaking community alone uses over 55,000 characters. For languages like
Chinese, Japanese and Korean there are still tens of thousands of ideograms that
are not yet encoded. And even though many of these ate rarely used characters,

they are still present in documents that need to be preserved electronically.

Oracle Unicode database support Page 4

To meet this requirement, the Unicode Standard defines supplementary characters.
The standard allocates 2048 code points in two groups of 1024 to be used in pairs
to represent additional characters. By taking a pair of code points (also known as
surrogate pairs), drawing one from each group of 1024 to represent a single
character, an additional 1,048,576 characters can be defined. The first batch of the
supplementary characters, 44,944 of them was added in the Unicode standard 3.1.
This introduced more complexity into the Unicode standard, but the complexity is

still far less than managing a large number of different encoding schemes.

Unicode Encodings

As with many technologies, Unicode has more than one implementation standard.
Here are the common Unicode encoding formats, i.c. ways in which characters are

represented by binary codes.

e UTF-8
e UCS-2
e UTF-16

Converting between the different Unicode encoding formats is a simple bit-wise
operation that is defined in the Unicode standard. This conversion is algorithm

based, so an expensive mapping table is unnecessary.
UTF-8 Encoding

UTF-8 is the 8-bit encoding of Unicode. It is a variable-width encoding and also a
strict superset of 7-bit ASCII. A strict superset means that each and every character
in 7-bit ASCII is available in UTF-8 with the same corresponding codepoint value.
One Unicode character can be 1 byte, 2 bytes, 3 bytes or 4 bytes in this encoding.
Characters from the European scripts are represented in either 1 or 2 bytes;
characters from most Asian scripts are represented in 3 bytes, while supplementary

characters are represented in 4 bytes.

UTF-8 is the Unicode encoding used on UNIX platforms, HTMIL and most

Internet browsers.
The main benefits of UTF-8 are: -

e More compact storage requirement for European scripts. Since UTF-8 is a
strict superset of 7-bit ASCII, in general European data will occupy less storage

on disk and in memory.

e Hase of migration. Since 7-bit ASCII data remains the same in UTF-8, data
conversion effort between ASCII based character set and UTF-8 are reduced
significantly.

Oracle Unicode database support Page 5

UCS-2 Encoding

UCS-2 encoding is a fixed width 16-bit encoding of Unicode, where each character
is 2 bytes in size regardless of the script. UCS-2 is the Unicode encoding used by
Java and Microsoft Windows NT 4.0. UCS-2 can support Unicode characters
defined up to Unicode standard 3.0 only, so there is no support for supplementary

characters.
The main benefits of UCS-2 are: -

e More compact storage requirement for Asian scripts, because every character is

represented in 2 bytes.
e String processing will be faster because all characters are of the same width.

e Better compatibility with Java and Microsoft clients

UTF-16 Encoding

UTF-16 encoding is the 16-bit encoding of Unicode. UTF-16 is basically an
extension of UCS-2, providing support for the new supplementary characters

defined in Unicode 3.1 as pairs of UCS-2 code points.

One Unicode character can be 2 bytes or 4 bytes in this encoding. Characters from
both European (including ASCII) and most Asian scripts are represented in 2 bytes.
Supplementary characters are represented in 4 bytes. UTF-16 is the main Unicode
encoding used by Microsoft Windows 2000, XP and 2003.

The benefits of UTF-16 are: -

e More compact storage requirement for Asian scripts. Since the majority of the
commonly used Asian characters are represented in 2 bytes in UTF-16
(whereas the same characters require 3 bytes each in UTT-8), UTF-16 will

occupy less storage on disk and in memory.

e Better compatibility with Java and Microsoft clients.

Figure 1 shows some characters and their character codes in UTF-8, UCS-2 and
UTF-16 encodings. The last character is a treble clef (a music symbol), a
supplementary character that has been added to the Unicode 3.1 standard.

Oracle Unicode database support Page 6

s UTE-8 UCS-2 UTE16
A 41 0041 0041
c 63 0063 0063
/E C3 86 00C6 00C6
O C3 B6 00F6 00F6
& DA B2 06B2 06B2
E E4 BA 9C 4E9C 4E9C
2 FO 9D 84 9F N/A D834 DDIE

UNICODE AND ORACLE

Oracle started supporting Unicode as a database character set in Oracle7. Here is a
summary of the Unicode character sets supported in Oracle.

AL24UTFESS 7.2-8; UTEF-8 1.1

UTF8 80-10g | UTE-8 211
3.02
UTFE 80-10g | UTF-8 211
3.02
AL32UTF8 | 9i-10¢ | UTF-8 3.0 (9iR1)
3.1 (9iR2)
3.2 (10gR1)
4.0 (10gR2)
ALIGUTF16 | 9i—10¢ | UTF-16 | 3.0 9iR1) N Y+
3.1 (9iR2)
3.2 (10gR1)
4.0 (10R2)

Y*

Kl KR X

I RDBMS 8.0.x to 8.1.6
2 RDBMS 8.1.7 to 9/R2
* Oracle97 and Oracle Database 10g only

AL24UTFFSS

AL24UTFFESS was the first Unicode character set supported by Oracle. It was
introduced in Oracle RDBMS 7.2 as a Unicode database character set.
AL24UTFESS is an acronym for the multi-byte Unicode character encoding
scheme UTF-FSS. The AL24UTFESS encoding scheme was based on the Unicode
standard 1.1, which is now obsolete. AL24UTTFESS has been desupported in

Oracle Unicode database support Page 7

Oracle9i. The migration path for an existing AL24UTFESS database is to upgrade
to UTES prior to upgrading to Oracle9s.

UTF8
UTF8 was the UTF-8 encoded character set in Oracle 8 and 87. This was the first

character set that broke the standard Oracle naming convention of
<Language><bit size><encoding> (following the convention, this character set
should have been called AL24UTF8 where AL stands for All Languages).

It was thought at the time that this was going to be the final UTF-8 encoded
character set in Oracle. It followed the Unicode standard version 2.1 between
Oracle 8.0 and 8.1.6, and was upgraded to Unicode version 3.0 in both 8.1.7 and 9z
To maintain compatibility with existing installations, this character set will remain at

Unicode version 3.0 in future Oracle releases.

Although specific supplementary characters were not assigned to Unicode until
version 3.1, the allocation for these characters were already defined in version 3.0.
So if supplementary characters are inserted in a UTFS database, it will not corrupt
the actual data inside the database. They will be treated as two separate undefined
characters occupying 6 bytes in storage. Oracle recommends that customers switch

to AL32UTFS8 or AL16UTF16 for full supplementary character support.

UTFE

This is the UTF8 database character set for the EBCDIC platforms. It has the same
properties as UTF8 on ASCII based platforms.

This EBCDIC Unicode transformation format is documented in Unicode
Technical Report #16 - UTF-EBCDIC. A list of current Unicode Technical
Reports can be found on http://www.unicode.org/unicode/reports/

AL32UTF8

This is the UTF-8 encoded character set introduced in Oracle97 AL32UTES is the
database character set that supports the latest version of the Unicode Standard; it
also provides support for the newly defined supplementary characters. All
supplementary characters are stored as 4 bytes.

AL16UTF16

This is the first UTF-16 encoded character set in Oracle. It was introduced in
Oracle97 as the default national character set and continues to be in Oracle
Database 10g. The National character set determines the character set of the SQL
NCHAR datatypes NCHAR, NVARCHAR2 and NCLOB), whereas the database
character set governs the encoding of the SQL CHAR datatypes (CHAR,
VARCHAR2, LONG, CLOB).

Oracle Unicode database support Page 8

ALT6UTF16 is the national character set that supports the latest version of the
Unicode Standard (4.0); it also provides support to the newly defined

supplementary characters. All supplementary characters are stored as 4 bytes.

COMMON QUESTIONS AND ANSWERS

Is there a down side to Unicode?

Although Unicode offers many benefits, there are some tradeoffs that come with its
use. For example, if your data can be represented in a single byte character set,
then use of the UTF-16 encoding format will double the storage requirements.
Customers currently storing double byte Asian characters who migrate to UTF-8
will see storage requirements expand from 2 bytes per character to 3 bytes per
character, an increase of 50%. In both cases the data expansion will increase the
amount of data passed across the network, maintained in memory etc. The rate of
data expansion can be reduced significantly by choosing the most appropriate

Unicode encoding, depending on your language requirements.

Multi byte character sets such as Unicode can also impose some performance
overhead in string manipulations. This is due to the nature of multi byte encoding;
since the number of bytes required to represent a character varies in size, the
character-processing algorithm needs to look ahead to determine where character

boundaries lie.

Oracle works on improving the performance of Unicode with every database
release. Generally, a Unicode database will provide nearly the same performance as
a single-byte database for the same release. Performance will be impacted more on
a Unicode database than on a single-byte database in environments where PL/SQL
string-manipulation functions are heavily used. If you are already running with a
multi byte database character set, the performance of your database after migrating

to Unicode should be the same or better.
When should Unicode be used?

Oracle recommends using Unicode for all new system deployment. Migrating
legacy systems to Unicode is also recommended. Deploying your systems today in
Unicode offers many advantages in usability, compatibility, and extensibility.

Even if you don't need to support multilingual data today or have any requirement
for Unicode, it is still likely to be the best choice for a new system in the long run
and will ultimately save you time and money and give you competitive advantages.

Should I deploy Unicode using Unicode database or Unicode datatype?

You can create a Unicode database that allows you to store UTF-8 encoded
characters as SQL CHAR datatypes (CHAR, VARCHAR2, CLOB, and LONG). If
you prefer to implement Unicode support incrementally or you only need to

support multilingual data in selective columns, you can store Unicode data in SQL

Oracle Unicode database support Page 9

NCHAR datatypes NCHAR, NVARCHAR?2, and NCLOB). The SQL. NCHAR
datatypes ate called Unicode datatypes because they are used for storing Unicode
data only.

There are many factors in determining the most appropriate Unicode solution to
meet your business needs. Under some circumstances it may be beneficial to deploy
both a Unicode database with Unicode datatypes in one database. For a detailed
discussion on this topic, please refer to, Supporting Multilingnal Databases with Unicode
in the Oracle Database 10g Globalization Support Guide.

Can I store Unicode data using NCHAR prior to Oracle9i?

No, the SQL. NCHAR datatypes in Oracle8 and Oracle8i were designed to support
fixed-width Asian character sets. They were introduced to provide higher

performance processing of Asian character data. Examples of these character sets

are: - JAI6EUCFIXED, JA16SJISFIXED, ZHT32EUCFIXED etc.

No Unicode character set is supported as the national character set prior to
Oracle9i.

Which Unicode encoding should I pick for supporting Unicode datatype?

For a detailed discussion on this topic, please refer to, Supporting Multilingual
Databases with Unicode in the Oracle Database 10g Globalization Support Guide.

What is the best way to migrate my existing columns to the Unicode
datatype?

This topic is covered in the white paper “Migration to Unicode Datatypes for
Multilingual Databases and Applications” available on OTN.

http://www.oracle.com/technology/tech/globalization/index.html

What is the difference between UCS-2 and UTF-16?

UCS-2 is a fixed width Unicode encoding where each Unicode character is
represented in 2 bytes. UTTF-16 is a strict superset of UCS-2. It supports
supplementary characters (surrogate pairs requiring 4 bytes per character) as
defined in the latest Unicode standard.

Why is ALI6UTFI16 not available as a database character set?

The database character set is used to identify and to hold SQL, SQL metadata, and
PL/SQL source code. It must have either single byte EBCDIC or single byte 7-bit
ASCII as a subset, whichever is native to the deployment platform. Therefore, it is
not possible to use a fixed-width, multi byte character set (such as UTF-16) as the

database character set.

What is the difference between UTF-8, UTF8 and AL32UTF8?

UTF-8 is a variable-width Unicode encoding and also a strict superset of 7-bit
ASCII. One Unicode character can be 1 byte, 2 bytes, 3 bytes or 4 bytes in UTF-8.
UTEFS8 (without the dash) is the name of the Oracle character set introduced in

Oracle Unicode database support Page 10

Oracle 8.0 that follows the UTF-8 encoding. UTT8 supports UTF-8 encoding up to
Unicode standard 3.0 only. AL32UTES is the Oracle Unicode character set that

supports the supplementary characters defined in the latest Unicode standard.

Why didn’t Oracle upgrade the definition of UTFS in Oracledi to support
supplementary characters, instead of creating yet another UTF-8 character

set?

UTF8 was originally designed back in Oracle8.0, when there was no concept of

supplementary characters, and so has a maximum of 3 bytes per character.

If the definition of UTT8 were changed in Oracle97 it would cause backward
compatibility issues with pre-Oracle9i clients running on the old UTF8 definitions.

Will I need to change my Unicode database character set again in the next
major release of Oracle?

This depends greatly on the future direction of the Unicode Standard. With the
introduction of the surrogate pairs, over 1 million additional characters can be
defined as supplementary characters. This should be enough to cover all the
languages of the World and no significant architecture changes are expected in

future versions of the Unicode Standard.

Our plan is to enhance AL32UTES8 and AL16UTF16 as necessary to support future

versions of the Unicode standard.
Are supplementary characters common for day-to-day use?

The majority of the 45-thousand+ Supplementary characters are the rarely used
CJK (Chinese, Japanese and Korean) characters; the remaining characters are
Gothic, Old Italic, Musical and Mathematical symbols. Depending on the languages
that you need to support and the nature of your application, these characters may
not be very common for general day-to-day use. However it may be difficult to
prevent users from inserting these characters once they become commonly

available on their operating systems.

What happens to the supplementary characters that get inserted into a UTF§
database?

They will be treated as two separate undefined UTFS8 characters occupying 6 bytes
of storage. Although supplementary characters can be stored and retrieved in a
UTFS8 database, manipulation of these characters may yield unexpected results. It
can also cause problems when communicating with other technology stacks such as
Java, HTML etc, since 6 byte UTF8 characters are not recognized as an official
UTF-8 encoding. (You may be able to work around this by setting the client
NLS_LANG character set to AL32UTFES, so that the 6 byte format will get
converted to the 4 byte format.)

This supplementary character transformation format is documented in Unicode
Technical Report #26 - Compatibility Encoding Scheme for UTF-16: 8-Bit (CESU-

Oracle Unicode database support Page 11

8). A list of current Unicode Technical Reports is found on
http://www.unicode.org/unicode/reports/

Oracle recommends that customers switch to AL32UTF8 or AL16UTF16 for full
supplementary character support.

How I can upgrade from UTF8 to AL32UTF8?

AL32UTEFS is a strict character set superset of UTES, you can do this by issuing the
ALTER DATABASE CHARACTER SET command in Oracle97 or by running
the CSALTER. Script in Oracle10g. However, in the unlikely event of having 6 byte
UTFS8 supplementary characters in your UTE8 database, you will need to do an
export and import of those data to convert the 6 byte supplementary characters
into the 4 byte UTF-8 format.

As of today, most of the known operating systems do not yet provide support for
the input and output of supplementary characters. It is therefore unlikely that any 6
bytes representation of supplementary characters will be present in current
databases. This may change once support for the supplementary characters

becomes widely available.

To assist you in determining whether you have any 6 byte supplementary characters
in your UTF8 database, your data can be verified by using the character set scanner.
Please refer to, Character Set Scanner Utilities in the Oracle Database Globalization
Support Guide.

Why was AL24UTFFSS desupported in Oracle9i?

AL24UTFFESS was introduced with Oracle7 as the Unicode character set
supporting UTF-8 encoding scheme based on the Unicode standard 1.1, which is

now obsolete.

In OracleYi, the supported Unicode database Character sets are AL32UTE8 and
UTTF8, which support the Unicode standard 3.0. The migration path for existing
AL24UTFESS database is to upgrade to UTFS prior to upgrading to Oracle9s.

Can I use the ALTER DATABASE CHARACTER SET command to
migrate from AL24UTFFSS to UTFS in Oracle8?

No. Unicode standard 2.0 or greater is not backward compatible with Unicode
standard 1.1 because the code values for the Korean Hangul characters defined in
Unicode standard 1.1 were relocated in later versions. A new Unicode database
character set (UTT8) was created in Oracle8 to support this change as defined in
Unicode standard 2.1.

The export and import utilities will handle the data conversions between the
different Unicode standard versions supported in AL24UTFFSS and UTF8. To
assist you in determining whether you have any Hangul characters in your
AL24UTFESS database, Oracle recommends verifying your data by using the
Character Set Scanner. Please refer to, Character Set Scanner Utilities in the Oracle

Database Globalization Support Guide.

Oracle Unicode database support Page 12

What about the migration from ALZ4UTFFSS to AL32UTFS8?

Since AL24UTFFSS is not a valid database character set in Oracle97 and above, the
migration path is to upgrade to UTEFS in Oracle8/ prior to upgrading to
AL32UTFS.

Alternatively this can be achieved by importing a AL24UTFFSS .dmp file from
your eatlier releases into a AL32UTFS database.

Can my pre-Oracle9i database client software communicate with the 2 new
Unicode character sets AL32UTF8 & ALI6UTF16?

There ate interoperability issues that can affect Oracle8/87 clients connecting to
newer databases using these character sets. As these character sets do not exist in
Oracle8/8, applications need client side patches in order to make sense of data
stored using AL32UTF8 (CHAR, VARCHAR2, CLOB, LONG columns) and
AL16UTF16 NCHAR, NVARCHAR2, NCLOB) in Oracle97 and above.

Please contact Oracle Support Services to find out if patches are available for your

particular platform and version.

SUMMARY

Unicode support has been available to Oracle customers for a long time. Starting in
Oracle9, Oracle adds to the already extensive Unicode features by providing
support for the 2 most popular encoding forms of Unicode UTF-8 and UTF-16.
Two new Unicode character sets were added to provide support for the
Supplementary characters introduced in the Unicode standard version 3.1. Unicode
standard version 4.0 is now supported in Oracle Database 10g.

As the Unicode standard has evolved, Oracle has consistently enhanced our
products to comply with the latest requirements. With each release of the database,
new Unicode features are introduced to provide comprehensive coverage for

meeting our customers globalization needs.

Oracle Unicode database support Page 13

ORACLE

White Paper Oracle Unicode database Support
May 2005

Author: Simon Law

Contributing Authors:

Oracle Corporation

World Headquarters

500 Oracle Parkway
Redwood Shores, CA 94065
US.A.

Worldwide Inquiries:
Phone: +1.650.506.7000
Fax: +1.650.506.7200
oracle.com

Copyright © 2005, Oracle. All rights reserved.

This document is provided for information purposes only and the
contents hereof are subject to change without notice.

This document is not warranted to be error-free, nor subject to any
other warranties or conditions, whether expressed orally or implied

in law, including implied warranties and conditions of merchantability
or fitness for a particular purpose. We specifically disclaim any

liability with respect to this document and no contractual obligations
are formed either directly or indirectly by this document. This document
may not be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without our prior written permission.
Oracle, JD Edwards, and PeopleSoft are registered trademarks of
Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

