ORACLE

Migration to Unicode
Datatypes for
Multilingual Databases
and Applications

An Oracle White Paper
January 2005

Migration to Unicode Datatypes for Multilingual Databases and

Applications

INETOAUCTION ..ttt b et h et s et bt b e e bt b e st es et et e bt sb e e bt e bt en et e e nae st e b e 3
Unicode DatatyPe FEAUIEScc.ieiiieiiiieiieitieiteie ettt ettt stae st esseeseeseeneesseesseesseenseenseensensnenseens 3
Unicode Character Set ENCOING.oiiiiiiiiiiiiee ettt ettt e enee e 3
Character Length SEMANTICScc.oiuiiuiiiiieieeie ettt ettt ettt ettt et et et et ese st et enaeneesbeaneenea 4
INEEIOPETADIIIEY ...ttt ettt ettt et e e et e et e s se e seesseesbeesseesaeasaesseesseenseeneesneesneenseenns 4
Exception Handling for Data LOSScveoiiriieiieiecieciesieeie ettt e e 5
SQL Unicode String PrOCESSINEcc.ueiuieiieieiie ettt ettt ettt ettt et e ste et e ee st e saeeste e et eneeeneeeseenseenseenseenees 5
UnNICOAE Data INPUL ...eoeuviiiiieeiie ettt ettt e st e et e e beeesaeesaseeesseesaseeenseesnsaeenseesnseeanseesnseeenseenns 6
Unicode Data Input in Oracle Database 10Zccvevieriieiiieiieieiieieesie ettt saeesseese s 6
LAMITEATIONS ...ttt ettt b e bt bttt b et b e e bt ebees e st e et b e eb e bt es e st e e et nne st 7
DatabaSE MIGIATIONeeiietieieeie ettt ettt ettt et e et e et e e bt enteeaee e meees e e eae e st eneeeneeenseeaee s e eseenseenseemeesneeeneenneenes 8
Step 1. Choosing the Unicode Character Set..........o.coiiiiiieieieieieeeee ettt 8
Step 2. Identify Columns to be MIGratedccveiiieiieriieiieiieieceere ettt se e 9
Step 3. Considerations Before MIGrationcoocueruieriieiieiieiesiese ettt sseeaeenees 9
Step 4. SChEMA MIZIATIONc..ieutieiiieiieet ettt ettt ettt ettt et et e st e e bt eneeeseeeseesneasseeseeneeenseeneeeneans 10
Apply ‘Alter Table’ SQL COMMANGSccueiuieiieieiiiieiieie ettt eee e 10
Online Table REAETINITIONc..eiiiiiiitiitcieeeee ettt sttt 12
Comparison Between “Alter table” and “On-line Table Redefinition”.........c..cccoocevininiiiiiincncncnnene 14

Step 5. Post MIgration TasKS.......ccueeiiiiiiieiieie ettt ettt enee 14
Application Migration to Unicode DatatyPes........ceouerueriririeieieieeeeee ettt 16
PL/SQL APPLICALIONetiiiieiieiiete ettt ettt ettt ettesteeste e seessessaesseesseesseesseesseasseessesssesseeseenseenseansas 16
PL/SQL VATIADIES ...veiiiiiiiiiieiie ettt ettt ettt et e et e e et e e stbeeeabeessbeeeaseeeaseesaseesaseessseenasens 16
PL/SQL String LATETALeeueieiiieiieeiieeiee ettt ettt ettt et et e b ene e e enees 17
PL/SQL StriNg COMPATISOIeeueeuieuteteeteateeteeteeeeeesteeteeteeseeseeseensesseeseeseaseaseeneeseasesseaseeneaneesensensesseanes 18
PL/SQL Procedures/FUNCHONScoviiiiiiiiieectie ettt et et et eaae e ae e e e e aeeeareeeaseeeareeeaneeeanens 18
Length Semantics CRANZEccueiieiieiieieeie ettt e s et e s e esaeeseesseenseenseennes 19
SHANG FUNCLIONS ...ttt ettt ettt ettt e et e et e st e e teeaeeneesmeeeneessea st enseeneeeneenneans 19
CLOB t0 NCLOB MIZIAtION ...cuttiuitiiitiiieiteeteeit ettt sttt ettt ettt stee et et e esteestesbeesbeenbeenneeneeenees 22

OCT APPIICALION ...ttt ettt ettt e et etaeete e s te e beesseesseeseesseessseseesseesseesseesseesaesseesseenseenseannas 22
JDBC APPIICALION ..ottt ettt ettt ettt e st et e e seesseeseesaeesse e seenseenseenseensessaeeseenseenseenseenees 25
SUITIMATY ...ttt ettt ettt et e bt e bt e bt e ae e e m e e ea e e e st e s e enteemseenseeseeeseeseenseenseeneeeneeeneenneenee 28

Migration to Unicode Datatypes Page 2

Migration to Unicode Datatypes for Multilingual Databases and
Applications

Introduction

Unicode datatypes were introduced in Oracle9i. Unicode datatypes are supported through the SQL
NCHAR datatypes: NCHAR, NVARCHAR?2, and NCLOB. (In this paper, “Unicode datatypes” refers
to SQL NCHAR types.) SQL NCHAR datatypes have existed since Oracle8. However, in Oracle9i
forward, they have been redefined and their length semantics have been changed to meet customer
globalization requirements. Data stored in columns of SQL NCHAR datatypes are exclusively stored
in a Unicode encoding regardless of the database character set. These Unicode columns allow users to
store Unicode in a database, which may not use Unicode as the database character set. Therefore,
developers can build Unicode applications without dependence on the database character set. The
Unicode datatypes also make it easier for customers to incrementally migrate existing applications and
databases to support Unicode.

This paper consists of three parts. First, it briefly introduces the Unicode datatype features. It then
discusses the steps to migrate existing databases to make use of the Unicode datatypes and what the
considerations are about functionality and performance. The third part highlights the steps to migrate
applications to support Unicode datatypes and work with the database schema changes. Finally, it
concludes with a brief summary.

Unicode Datatype Features

The concept of the Unicode datatype, introduced in Oracle9i allows customers to support Unicode
columns in a non-Unicode database. This is a very powerful feature and is further enhanced by the
inter-operability between SQL NCHAR types and other datatypes. Users can store, process and
retrieve SQL NCHAR data the same as SQL CHAR data.

There are several major aspects for the new Unicode datatype features that will be discussed in
this section:
e Character set encoding

e Character length semantics
e Interoperability

e Data loss handling

® Unicode string processing

Unicode Character Set Encoding

Oracle9i and Oracle Database 10g support two Unicode encodings for the Unicode datatypes. The
Oracle characters set names are ALI6UTF16 and UTF8. When the database is first created
AL16UTF16 or UTF8 can be specified as the "national character set" parameter. When the
national character set is not specified, the default is AL1I6UTF16. For details on Unicode
encoding support, please refer to the Globalization Support Guide.

Migration to Unicode Datatypes Page 3

Supplementary Character is a Unicode encoded character having a Unicode code point between
U+10000 and U+10FFFF. In UTF-16 encoding, it is encoded with a surrogate pair that consists
of a sequence of two Unicode values, where the first value is a high-surrogate in the range
U+D800 through U+DBFF and the second is a low-surrogate in the range U+DCO00 through
U+DFFF.

Here is an example of creating a database with ALI6UTF16 as the NCHAR character set:

CREATE DATABASE mydb

MAXINSTANCES 1

MAXLOGHISTORY 1

MAXLOGFILES 5

MAXLOGMEMBERS 5

MAXDATAFILES 100

DATAFILE "/vobs/oracle/oradata/mynewdb/system01.dbf' SIZE 325M REUSE
CHARACTER SET al32utf8

NATIONAL CHARACTER SET AL16UTF16

LOGFILE GROUP 1 ("/vobs/oracle/oradata/mynewdb/redo01.log’) SIZE 100M,
GROUP 2 ("/vobs/oracle/oradata/mynewdb/redo02.log') SIZE 100M;

Character Length Semantics

Character length semantics was also introduced in Oracle9i. It measures characters based on
number of Unicode code units instead of number of bytes. - When it is based on the number of
bytes, it is called byte length semantics. A Unicode code unit is a 16-bit unit that is used to
represent a UCS2 code point or its equivalent in other character sets. It is the minimal bit
combination that can represent a unit of encoded text. It is equivalent to the length semantics for
Java strings. The advantages of character length semantics over byte semantics include lengths
close to visual length and portability across different character sets. While the default length
semantics for a database is BYTE, character length semantics is the only allowable length
semantics for SQL NCHAR types. It is not allowed to specify any ‘CHAR’ or ‘BYTE’

quantifiers for SQL NCHAR column definitions.

Example:

CREATE TABLE emp (
empno NUMBER(4),
ename NVARCHAR2(10),

job NVARCHAR2(9),
mgr NUMBER(4),
hiredate DATE,

SAL NUMBER(7,2),
deptno NUMBER(2)),

The ename column can hold up to 10 Unicode code units. When NCHAR character set is
AL16UTF16, its maximum byte length is 20 bytes. Otherwise, if the NCHAR character set is
UTEF8, the ename column would again hold up to 10 Unicode code units, but its maximum byte
length is 30 bytes.

Interoperability

When operations between SQL NCHAR types and other datatypes are necessary, users can either
apply explicit conversion functions or rely on the system to do implicit conversions.

Migration to Unicode Datatypes Page 4

e Explicit Conversion Functions

The explicit conversions are more visible and controllable. Users can control the conversion
direction. Oracle provides a wide range of conversion functions to meet customer
requirements. Some examples of the explicit conversion functions include TO NCHAR and
TO _DATE. (Refer to the SOL Reference for a complete list with detailed explanations).

e Implicit Conversion

Oracle supports implicit conversions between SQL NCHAR and SQL CHAR datatypes, as
well as between SQL NCHAR and other datatypes such as DATE, NUMBER, ROWID,
RAW and TIMESTAMP. Implicit conversion occurs whenever any operation happens
between different datatypes or the type of argument is different from the formal definition.
Such operations include SQL INSERT, UPDATE, and SELECT statements, assignment in
PL/SQL, comparison, concatenation in SQL or PL/SQL statements, and SQL functions The
implicit conversion makes migration to SQL NCHAR much easier. The following is an
example in which implicit conversion happens:

INSERT INTO emp VALUES (100, ‘Scott’, ‘Engineer’, 10, ‘06-05-2001", 50000, 5);

Both the 2™ and 3™ columns in the table emp, ename and job are defined as NVARCHAR2.
The literals ‘Scott’ and ‘Engineer’ are converted to NCHAR character set encoding (i.e.,
AL16UTF16) before the data is inserted into the table columns.

NOTE: Implicit conversion between CLOB and NCLOB is supported starting in Oracle
Database 10g.

Exception Handling for Data Loss

If the database and NCHAR character sets are different, implicit or explicit conversion between
SQL CHAR and SQL NCHAR types involves character set conversion. The only configuration
that does not involve character set conversion is when both the database and NCHAR character
sets are UTF8. This is not a common configuration and all the other cases will involve character
set conversion. In some cases when there is no corresponding mapping character in the
destination character set, a default replacement character will be used in the destination buffer and
data loss occurs. Users can choose whether to be alerted when this data loss happens by setting the
NLS parameter NLS NCHAR CONV_EXCP. The ORA-12713 error will be returned in case of
data loss if this parameter is set to TRUE. Its default value is FALSE; data loss will not be
reported by default. This session parameter can be specified for the whole RDBMS instance in the
init.ora parameter file or in the current user session by using the ALTER SESSION statement. It

can be dynamically changed during a session.

SQL Unicode String Processing

Besides the SQL explicit conversion functions’ support for NCHAR, Oracle has enhanced all the
SQL string functions to process NCHAR data. SQL NCHAR data can be passed to any SQL
functions the same way as SQL CHAR data. SQL functions with multiple string parameters can
take mixed SQL CHAR and SQL NCHAR parameters and convert them properly before
processing.

Migration to Unicode Datatypes Page 5

Example:
SELECT LENGTH (ename) from emp,
SELECT INSTR(ename, ‘SCOTT’, 1) from emp,

Unicode Data Input

The UNISTR and NCHR functions allow the user to input Unicode strings in an environment or
database that does not support Unicode. With the UNISTR function, the Unicode data can be
represented by ‘\’ followed by the UTF-16 code unit value of the character in hexadecimal format.
NCHR returns the Unicode character having the binary equivalent to a number in the national
character set.

Example:
INSERT INTO emp (empno, ename) VALUES (10, UNISTR(‘abc\1E05°)),

All the metadata in Oracle are represented and processed in database character set encoding. For
some cases in which a string literal needs to be specified in the metadata or query statement, the
literal data may belong to either SQL CHAR or SQL NCHAR datatypes. The UNISTR function
can be used to specify a string literal for SQL NCHAR datatypes that cannot be represented in the
database character set. The following is an example.

CREATE TABLE Dept_tab (

Deptno NUMBER(3),

Dname NVARCHAR2(15),

Loc NVARCHAR2(15),

CONSTRAINT Loc_checkl CHECK (loc IN (UNISTR(“\7533°),N'NEW YORK))),

The ASCIISTR function is the opposite of UNISTR. It takes as its argument a string in any
character set and returns an ASCII version of the string. Non-ASCII characters are converted to
the form \xxxx, where xxxx represents a UTF-16 code unit.

Unicode Data Input in Oracle Database 10g

One main purpose of the national character set is to allow you to add Unicode datatype columns
incrementally to a non-Unicode database instead of migrating the entire database to Unicode. In
prior releases to perform SQL DML using NCHAR literals you had to use either UNISTR, which
added complexity or the data had to be compatible with the database character set. Hence you
needed to have the entire database as Unicode in order for all literal data to be converted properly
to NCHAR columns. The NCHAR literal string support in Oracle Database 10g R2 allows you to
apply DML to specific data strings without having to use either UNISTR or converting to the
database character set.

The Oracle Database 10g R2 provides an environment variable

ORA NCHAR LITERAL REPLACE, which, when set to TRUE, allows DML statements to use
N-Quote (N") without any data loss. This means that multilingual data can be added without
restrictions such as having to provide hex Unicode values. The support for this feature is available
in SQL, PL/SQL, OCI, and JDBC.

U-Quote(U") is a new string literal for Unicode also available in Oracle Database 10g R2. This
string literal takes any character in hexadecimal format of its Unicode encoding such as
U'\1234" just like the string literal passed to UNISTR () function. This string literal is
converted into database NCHAR character set as NCHAR type. Because every character has a
corresponding Unicode encoding, all data is safely shipped to the server side without any loss.
The size limitation of U-Quote is 20K bytes and the error of size limitation is only given when it

Migration to Unicode Datatypes Page 6

is converted into NCHAR if it is over the NCHAR size limitation. . U’’ is independent of the
environment variable ORA NCHAR LITERAL REPLACE.

Limitations

SQL NCHAR types can be used almost the same as SQL CHAR types with the following
exception:

e Oracle Text does not support SQL NCHAR types.

Migration to Unicode Datatypes Page 7

Database Migration

Even though Oracle provides a rich set of features to make the migration process simpler and less
work, there are a number of issues that need to be taken care of during migration, ranging from
choosing the Unicode character set to schema migration. In this chapter, we will talk about the
detailed steps to migrate a database schema as well as some of the database features that can be used to
assist the migration process in each step.

SQL NCHAR types in Oracle9i and Oracle Database 10g are significantly different from the SQL
NCHAR types in Oracle8i. If there are SQL NCHAR columns in Oracle8i, they must be migrated to
Oracle9i NCHAR semantics when the database is upgraded to Oracle9i by running the migration
scripts that are included. Without migrating the old SQL NCHAR columns, they cannot be accessed in
an Oracle9i or Oracle Database 10g database server. This migration step is mandatory to bring the
database to a consistent state. The discussion in this article does not focus on such migration because
no major issues are expected. The more common migration scenario is to migrate SQL CHAR types
to SQL NCHAR types which will be discussed in more detail below.

Step 1. Choosing the Unicode Character Set

Both UTF-16 and UTF-8 can be chosen as the encoding format of the Unicode data types. This
enables the database server to support UTF-16 encoding natively. For those applications, which use
UTF-16 as the internal encoding, they can work with the database server more seamlessly and more
efficiently. The choice between UTF-16 and UTF-8 encoding allows data to be stored on disk more
efficiently as Asian and western customers can choose the encoding that is most efficient and compact
for their data.

How to pick the character set for Unicode depends on the data that the application is dealing with and
the nature of the application itself. Consider these factors:

e Space efficiency: UTF8 is more compact for data from English and European languages and less
compact for data from Asian languages. AL16UTF16 is more compact on data from Asian languages
and less compact for data from English and European languages. More compact data storage will
result in less memory usage and disk space savings and less disk /O, thus improving processing
speed.

e String processing speed: AL16UTF16 string processing is generally faster.

e Supplementary Characters Support: ALI6UTF16 supports supplementary characters while
UTFS8 does not support supplementary characters.

e JAVA or Windows Application: UTF-16 is the encoding form for Java strings and the Windows
environment. There is no conversion when NCHAR data is exchanged between the RDBMS and Java
strings.

A developer should consider the above factors when they decide which character set encoding to
choose for the Unicode datatypes. AL16UTF16 encoding is the default encoding. If the majority of
the data is not ASCII or the space requirement advantages of using UTF8 are not very strong,
AL16UTF16 is recommended over UTF8. Since UTF8 can be used as the database character set, the
requirement to use it in SQL NCHAR datatypes is not as strong as ALI6UTF16.

Migration to Unicode Datatypes Page 8

Step 2. Identify Columns to be Migrated

The Unicode datatypes allow users to do either partial or full migration to support Unicode depending
on customer needs. If only a limited number of columns are needed to support Unicode or you would
like to do a gradual migration to Unicode, then the Unicode datatypes should be used. To do a full
database migration requires all the character columns outside of the SYS and system schema to be
changed to SQL NCHAR datatypes. In this case, migrating the database character set to support UTF-
8 may be a better option than using Unicode datatypes.

There are various reasons that a user may want to partially migrate the database schema to Unicode
datatypes. One scenario is that there is no immediate need to do the full migration. Such need may
arise in the future. To migrate the whole application schema certainly involves more work and
possibly longer system downtime. In this case, it may be preferred to do incremental migrations, and
the Unicode datatype features can accomplish this. Often certain schemas correspond to certain
applications. Some of these applications are required to support multilingual data. Such requirements
may not be true for some other applications yet (even though there might be such requirement in the
future). Therefore there is no immediate need to migrate the corresponding schema. User can choose
to migrate the required schema’s first and migrate the remaining schema’s when there is such a
requirement.

Step 3. Considerations Before Migration

The following discusses some considerations before the actual migration is performed.

Constraints that are defined on the migrating columns may be violated if the new definition fails to
conform to the constraint's rule. For example, suppose a primary key constraint is defined on the
modified column. After the migration, it could happen that multiple different key values are converted
to the same key values. This is possible because the mapping between a native character set and
Unicode is not necessarily a one -to-one mapping and may be a multiple-to-one mapping. The byte
length of the modified column is also changed during migration due to data expansion or shrinking. If
the constraint involves the byte length of the column, it maybe violated as well. The solution is to
drop the constraint before migration. After the migration, whether the constraint should be activated
again depends on the specific user’s requirement and should be analyzed case by case.

For a column with a reference constraint to another table, both the original and the referenced tables
need to be migrated at the same time. A SQL NCHAR column cannot reference a SQL CHAR column
or vice versa because the corresponding columns in the dependent and referenced tables must use the
same datatype.

Maximum Column Sizes: The maximum allowable sizes for CHAR/NCHAR or
VARCHAR2/NVARCHAR?2 columns are 2000 and 4000 bytes. A single-byte character in a database
character set is mapped to a 2-byte character in ALI6UTF16 or even a 3-byte character in the UTF8
character set. Because of the possible data expansion, the maximum size limit may be broken after all
the character data is converted to Unicode. User should be aware of this possible violation of size
limit. Depending on the actual requirements, user may need to use NCLOB as the datatype instead.

Triggers that are defined on the columns that are modified to be Unicode datatypes may be activated
if specific triggering conditions occur. The conditions may include UPDATE, ALTER, CREATE, and
so on, depending on how the trigger is defined. Developers should be aware of these side effects and
may need to disable the trigger to avoid unexpected effects.

Partition: It is more complex to migrate partitioned columns to Unicode datatypes because a column’s
character encoding (and therefore the binary storage format) and length semantics will be likely
changed after migration. The partition based on the old binary storage format will no longer be valid.
The partitioned tables need to be repartitioned based on the new character set encoding and length

Migration to Unicode Datatypes Page 9

semantics. We recommend using the export and import utilities to migrate the partitioned tables
following the procedure below. Please consult the Database Utilities manual for more detailed
information about the export and import utilities.

1. Export the tables that are to be migrated.
2. Alter the column definitions to be Unicode datatypes.
3. Import the table data to the modified table.

The Character Set Scanner (CSSCAN) is specifically designed with database character set migration
in mind and can create a report which helps to estimate the time and effort required to migrate. In
most cases, any migration method should always begin with analysis of the reports that CSSCAN
produces. Specifically, one can set the source database character set to whatever is native and set the
target database character set to UTF8 or AL16UTF16 to simulate the migration from CHAR to
NCHAR. For more information on the Character Set Scanner, please refer to the Globalization
Support Guide.

Step 4. Schema migration

Before the application is migrated to Unicode datatypes, a user needs to consider schema migration.
Several approaches can be taken for schema migration. The following are the different approaches for
schema migration and the comparisons among them.

Apply ‘Alter Table’ SQL Commands

The ALTER TABLE statement can be used to change an existing SQL CHAR column to a SQL
NCHAR column or to add SQL NCHAR columns to existing tables. The user can also define
totally new tables with SQL NCHAR columns if needed. We will discuss the scenarios and
procedures suitable for each case.

e Does the new Unicode data to be added match the purpose of the existing SQL CHAR table
column? Do not try to put address information into an existing name field, for example.
Otherwise, if the new Unicode datatype is to support multilingual data that cannot be covered by
the existing database character set, consider migrating the existing SQL CHAR columns to SQL
NCHAR.

Example: A global company A originally focused business in West European and America. They
have a database with the WESISO8859P1 character set. The NCHAR character set is
AL16UTF16. An employee table is defined as follows:

emp (
empno NUMBER(4),
ename VARCHAR2(10),
job VARCHARZ2(9),
mgr NUMBER(4),
hiredate DATE,
SAL NUMBER(7,2),
deptno NUMBER(2)),

Company A expands to Asia and the new Asian employee information needs to be stored in the
database. The current database character set, WES8ISO8859P1, does not include Asian characters. The
Asian employee information cannot be stored in the existing emp.ename column. There is no need to
add additional columns to the emp table since the employee name data is not a new category. The best

Migration to Unicode Datatypes Page 10

solution is to alter the emp.ename column from VARCHAR2(10) to NVARCHAR2(10). This not
only solves the character set encoding issue but also changes the length semantics of the column from
10 bytes to 10 characters. Thus it avoids a potential truncation issue due to multibyte characters
needing more than 1 byte per character.

The following SQL command can be used to change table column definitions from SQL CHAR types
to SQL NCHAR types:

ALTER TABLE emp MODIFY (ename NVARCHAR2(10));

This ALTER TABLE command not only changes the column definition from SQL CHAR type to SQL
NCHAR type, but also converts all the data in the column from the database character set to the
NCHAR character set. Note that CLOB columns cannot be modified to be NCLOB using the ALTER
TABLE command. The online table redefinition feature can be used to change a column from CLOB
to NCLOB. Please refer to the section “Online Table Redefinition” for a detailed description.

If there are any indexes built on the migrating column, dropping the indexes can speed up the ALTER
TABLE command because indexes are updated when each row is updated.

NOTE: The maximum column lengths for NCHAR and NVARCHAR?2 are 2000 and 4000 bytes.
When the NCHAR character set is AL16UTF16, the maximum sizes for NCHAR and NVARCHAR2
columns are 1000 and 2000 characters, which are 2000 and 4000 bytes. If this size limit is violated
during migration, consider changing the column to NCLOB instead.

e If the new Unicode data has a different purpose than the original column was designed for, it is
not suitable for the existing SQL CHAR columns to hold the new Unicode data. It is not necessary to
create a whole new table just for the Unicode data. Consider whether it can be fit into any existing
table. For example, in some Asian countries, one's hometown or native place is important information,
but in this scenario, there is no existing column that can reflect this information. Then it is appropriate
to add an additional column of Unicode datatype to the existing emp table. The following SQL
command can be used to add a Unicode column to the emp table:

ALTER TABLE emp ADD (org NVARCHAR2(10));

The new table definition is following.

emp (
empno NUMBER(4),
ename VARCHAR2(10),
job VARCHAR2(9),
mgr NUMBER(4),
hiredate DATE,

SAL NUMBER(7,2),
deptno NUMBER(2),
org NVARCHAR2(10)),

e The Unicode columns are totally new and their purposes are much different from the existing SQL
CHAR columns. There is also some other information associated with the Unicode data. This
requires a new table with Unicode columns. For example, company A also needs to keep track of the
employee’s permanent address. The following command can be used to define a table with Unicode
columns:

CREATE TABLE addr (
empno NUMBER(4),
street NVARCHARZ2(50),
city NVARCHAR2(10),

Migration to Unicode Datatypes Page 11

state NVARCHAR2(10),
country NVARCHAR2(10),
zip NUMBER(6));

Online Table Redefinition

For a large table with a huge number of rows that need to be migrated to Unicode types, it takes
significant time to convert all the data in the column to Unicode. During this process, all the column
data will be unavailable for either read or update operations. The Oracle online table redefinition
feature can be used to significantly reduce the down time required to do the migration. Using this
feature, the table is accessible to DML during much of the migration process. It is locked in the
exclusive mode only during a very small window that is independent of the size of the table and the
complexity of the redefinition. The following are the steps to migrate to Unicode types using the
online table redefinition feature.

1. Verify that the table can be redefined online by invoking the
DBMS REDEFINITION.CAN REDEF TABLE () procedure. If the table is not a candidate for
online redefinition, this procedure raises an error indicating why the table cannot be redefined online.
For example, scott.emp table is being migrated.

EXECUTE DBMS REDEFINITION.CAN REDEF TABLE (‘scott’, ‘emp’);

2. Create an empty interim table (in the same schema as the table to be redefined) with SQL NCHAR
types as the desired attributes.

CREATE TABLE int_emp (
empno NUMBER(4),
ename NVARCHAR2(10),
job NVARCHARZ2(9),

mgr NUMBER(4),

hiredate DATE,

SAL NUMBER(7,2),

deptno NUMBER(2),

org NVARCHAR2(10)),

3. Start the redefinition process by calling
DBMS REDEFINITION.START REDEF TABLE () .

EXECUTE DBMS REDEFINITION.START REDEF TABLE('SCOTT',
'emp’,

'int_emp’,

'empno empno,
to_nchar(ename) ename,
to_nchar(job) job,

mgr mgr,

hiredate hiredate,

sal sal,

deptno deptno,
to_nchar(org) org');

The way to change CLOB to NCLOB columns using redefinition is very similar. The difference is

that, in the above redefinition statement, the corresponding explicit conversion function should be
TO _NCLOB, instead of TO_NCHAR.

Migration to Unicode Datatypes Page 12

4. Create any triggers, indexes, grants and constraints on the interim table. Any referential
constraints involving the interim table (that is, the interim table is either a parent or a child table of the
referential constraint) must be created disabled. Until the redefinition process is either completed or
aborted, any trigger defined on the interim table will not execute.

5. Optionally, synchronize the interim table int emp. Before FINISH REDEF TABLE is called,
if a large number of DML operations have been applied on the original table, the interim table should
be periodically synchronized with the original table by executing the SYNC INTERIM TABLE
procedure. This reduces the time taken by FINISH REDEF TABLE () to complete the redefinition
process.

EXECUTE DBMS_REDEFINITION. SYNC_INTERIM_TABLE ('scott', 'emp',
"int emp');

6. Execute the DBMS REDEFINITION.FINISH REDEF TABLE () procedure to complete the
redefinition of the table.

EXECUTE DBMS REDEFINITION.FINISH REDEF TABLE(scott’, ‘emp’, ‘int_ emp’);
As a result of this procedure, the following are applied to the original table.

e The original table is redefined such that it has all the attributes, indexes, constraints, grants and
triggers of the interim table.

e The referential constraints involving the interim table now involve the post redefined table and are
enabled.

7. Drop the interim table
DROP TABLE int_emp,
The end result of the above redefinition procedures is:

e The original table is migrated to Unicode columns.

e The triggers, grants, indexes and constraints defined on the interim table after
START REDEF TABLE () and before FINISH REDEF TABLE () are now defined on the
post-redefined table. Any referential constraints involving the interim table before the redefinition
process was finished now involve the post-redefinition table and are enabled.

e Any indexes, triggers, grants and constraints defined on the original table (prior to redefinition)
are transferred to the interim table and are dropped when the user drops the interim table. Any
referential constraints involving the original table before the redefinition now involve the interim
table and are disabled.

e Any PL/SQL procedures and cursors defined on the original table (prior to redefinition) are
invalidated. They are automatically revalidated (this revalidation can fail if the shape of the table
was changed as a result of the redefinition process) whenever they are used next.

NOTE: There are a number of restrictions that apply to online table redefinition. Please refer to the
Database Administrator's Guide for detailed information.

Example for CLOB Schema Migration

The following is an example of migrating CLOB columns to NCLOB columns. Please note the
difference in the column mapping specification. TO_NCLOB is used to map the original CLOB
column to the NCLOB column.

Migration to Unicode Datatypes Page 13

CREATE TABLE Ib (anum NUMBER PRIMARY KEY, Ib CLOB);
CREATE TABLE int lob (nl NUMBER PRIMARY KEY, nlb NCLOB);

EXECUTE DBMS_REDEFINITION.CAN REDEF TABLE('Scott', 'Ib");

EXECUTE DBMS_REDEFINITION.START REDEF TABLE('Scott’, 'Ib’, 'int_lob', 'anum nl1,
TO_NCLOB(Ib) nib');

EXECUTE DBMS_REDEFINITION.SYNC INTERIM TABLE('Scott’, 'Ib’, 'int_lob’);
EXECUTE DBMS_REDEFINITION.FINISH REDEF TABLE('Scott’, 'Ib', 'int_lob");

DROP TABLE int lob;

By using the online table redefinition, the down time of the table is reduced. This assumes that there
are minimal DML operations on the original table before the redefinition is finally completed. The
speed for DML operations on the original table before redefinition process is completed is a little
slower.

Comparison Between “Alter table” and “On-line Table Redefinition”

Both the ALTER TABLE command and on-line table redefinition can change a column’s definition.
Each one has its advantage in certain scenarios.

ALTER TABLE command:
a. Easy to use.
b. Fewer restrictions.

On-line table redefinition:

a) Better performance. On-line table redefinition is generally faster than the ALTER TABLE
command.

b) Can migrate several columns at one time.

C) Table available for DDL during most of the migration process.

d) Avoids table fragmentation which leads to space saving and faster access.
€) Works for CLOB to NCLOB migration.

Step 5. Post Migration Tasks

Some actions need to be taken to recover migrated database schema to its original state. Also, the
result of schema migration may have other effects that indirectly affect associated applications. The
user should pay attention to these effects and take appropriate actions to prevent them.

Index: When the table columns are changed from SQL CHAR types to Unicode datatypes by the
ALTER TABLE MODIFY command, the index built on top of it will be changed automatically by the
database system. However, this also slows down performance for the ALTER TABLE command. If
indexes are dropped before the ALTER TABLE command is issued, they should be recreated after
migration.

Constraints that are disabled before migration need to be re-enabled after migration.
Triggers that are disabled before migration should be enabled again after migration.
Replication: If the columns that are migrated to Unicode types are replicated across several sites,

the data changes due to migration will be propagated to different sites either synchronously or
asynchronously depending on the replication definition.

Migration to Unicode Datatypes Page 14

Binary Order: The migration from SQL CHAR column to Unicode datatype involves character set
conversion if database and NCHAR have different character sets. The binary order of the same data in
a different character set encoding may be different, potentially effecting applications that rely on this
order.

Migration to Unicode Datatypes Page 15

Application Migration to Unicode Datatypes

Oracle provides a comprehensive set of database access interfaces that can be used by applications in a
middle tier or client. All the major access interfaces support Unicode datatypes at various levels. This
chapter talks about how to migrate existing applications to support Unicode data types. We will focus
on three popular database access interfaces and environments: PL/SQL, OCI and JDBC.

The implicit conversion between SQL NCHAR types and other Oracle datatypes including the SQL
CHAR types significantly reduces the workload to migrate to Unicode datatypes. If the application
relies on implicit conversion for handling the operations between SQL CHAR and SQL NCHAR, only
minor changes are needed to make the application adapt to the newly added SQL NCHAR columns or
tables. If all the Unicode columns are converted from SQL CHAR columns and no new Unicode
column is added to existing schema, theoretically no change is necessary to make the existing
application run with Unicode datatypes for the existing data. However, when new Unicode data is
added that may not be covered by the database character set, then application migration is required to
avoid possible data loss. Also, in order to make the application run more efficiently with Unicode
data, some practice of code modifications will benefit performance as well. Here we will give some
guidelines for migration to Unicode datatypes. They can make migration easier and result in better
performance.

PL/SQL Application

User should pay attention to several things during migration for PL/SQL applications. They are
discussed in the following subsections.

PL/SQL Variables

There are several types of data or PL/SQL variables that will be processed in the PL/SQL
environment. One type of variable is used to hold and process data that interact with database
table columns. Such variables include the following categories:

a. To hold data retrieved from database or to be inserted into database columns.

b. To interact with database table columns in operations such as comparison, concatenation, and
SQL functions.

C. To interact with variables in category a. and b.

PL/SQL variables in the above categories should be synchronized with the database columns that
they interact with. For a database that is fully migrated to Unicode datatypes, these variables
should be defined as SQL NCHAR types. For a database that is partially migrated to Unicode, the
user should be careful and be aware of the datatypes of table columns. %TYPE and %ROWTYPE
syntax can be used to make such PL/SQL variables synchronous with database columns. Here is
an example of how to use this syntax:

DECLARE

my_ename NVARCHAR2(10),

my_job emp.job%TYPE;

BEGIN

SELECT ename, job INTO my_ename, my_job FROM emp where ename="SCOTT";
END;

The synchronization between PL/SQL variables and database columns or between PL/SQL
variables is not mandatory since implicit conversion between CHAR and NCHAR can
automatically convert them if necessary. However, we recommend that the user always follow the
above guideline to avoid the following consequences

Migration to Unicode Datatypes Page 16

1. Data loss. When data in SQL NCHAR columns are selected into SQL CHAR PL/SQL
variables, or SQL NCHAR variables are inserted into SQL CHAR database columns, or SQL
NCHAR variables are assigned to SQL CHAR variables, data loss could happen if the database
character set is only a subset of the NCHAR character set.

2. Performance overhead. The conversion between SQL CHAR and SQL NCHAR can
introduce some performance overhead. Synchronization can eliminate such kind of overhead.

Another category of PL/SQL variables are those that are related to metadata, (such as user name,
password, tables, views, procedures, functions, types, and columns) and SQL statements. They are
stored and processed in the database as SQL CHAR types. Therefore, there is no need to migrate
PL/SQL variables in this category. Migrating them to SQL NCHAR types will introduce
unnecessary conversions and performance overhead since they will be eventually converted back to
SQL CHAR types using the native database encoding.

EXAMPLE:
DECLARE
sql_command VARCHAR2(100);

sql_command :="INSERT INTO ' || tabName || ' (coll, col2, col3) VALUES(:varl, :var2, :var3)",
dbms_sql.parse(sqlCursor, sqlCommand, dbms_sql.v7);
dbms_sql.bind variable(sqlCursor, ":varl', varVal);

The above example shows that there is no need to migrate the SQL command variable to a Unicode
datatype.

Some PL/SQL variables do not interact with the database either directly or indirectly. These variables
can be defined as either SQL NCHAR types or SQL CHAR types depending on whether the data is
defined in the database character set.

DECLARE
varl VARCHAR2(10),
var2 VARCHAR2(20),

PL/SQL String Literal

To indicate whether a string literal is a SQL NCHAR type, character ‘N’ can be placed in front of
the string literal. The ‘N’ prefix is not mandatory. User could omit the ‘N’ and rely on implicit
conversion to convert the literal into a SQL NCHAR type if necessary. The string literal
embedded in PL/SQL programs may or may not interact with SQL NCHAR types. For string
literals that interact with SQL NCHAR variables, it is recommended to prefix the letter ‘N’ before
the single quote of a string literal to indicate that the literal is NCHAR type. The result is that the
literal is converted to the NCHAR character set encoding and treated the same as SQL NCHAR
data at compile time. Otherwise the literal is treated as a CHAR type at compile time and
converted to NCHAR at run time each time the statement is executed. This can save conversion
overhead if the literal is in a loop or the containing procedure is invoked multiple times. For
example:

Migration to Unicode Datatypes Page 17

DECLARE
name NVARCHAR(2000),
BEGIN
FORIiIN .. 2000 LOOP
name := name || N *;
END LOOP;
END;

PL/SQL String Comparison

For comparison operations between SQL CHAR and SQL NCHAR types in SQL queries, implicit
conversion always converts from SQL CHAR to SQL NCHAR type to avoid data loss. The
comparison could be between two database columns or between a database column and a literal or
results from a SQL function or query. If data loss will not happen, the user can apply an explicit
conversion function to convert the side with the lesser number of conversions. This is true for all
such SQL queries that can be embedded in PL/SQL, OCI or any other development environment.
Example:

tab_a (col a VARCHA2(100),) has I million rows

table tab_b (col b NVARCHAR2(100),) has 100 rows

select col_a from tab_a, tab_b where tab_a.col_ a = TO_CHAR(tab_b.col _b);

The explicit conversion converts col_b from Unicode type to VARCHAR?2 type, resulting in only
100 conversions. If relying on implicit conversion, col_a will be converted to Unicode type,
resulting in 1 million conversions.

PL/SQL Procedures/Functions

PL/SQL procedures/functions that only support SQL CHAR types need to be migrated to support
both SQL NCHAR and SQL CHAR types. Without migrating to support Unicode types, Unicode
data passed to the PL/SQL procedures as SQL NCHAR types will be implicitly converted to SQL
CHAR types first. Data loss may happen if some of the Unicode data cannot be mapped to the
database character set. There are three ways to support SQL NCHAR types in PL/SQL
procedures.

e Convert the arguments and return types of the PL/SQL procedures/functions as well as the

local variables from SQL CHAR to SQL NCHAR types. The following is an example.

FUNCTION get _str(cur IN NVARCHAR?,
old IN NVARCHAR?,
new IN NVARCHAR?2)
RETURN NVARCHAR? IS
local var NVARCHARZ2(10),
BEGIN
local var := cur;

Even though the above PL/SQL procedure is defined using SQL NCHAR types, it can work for
both SQL CHAR and SQL NCHAR datatypes. At run time, if arguments of SQL CHAR types
are passed in, implicit conversion can automatically convert SQL CHAR data to SQL NCHAR
types. As aresult, some performance overhead is introduced.

e ANY CS can be used to declare the datatype of a parameter to a procedure/function for
CHAR/VARCHARZ2/CLOB type. It indicates that the parameter inherits its character set
(which determines whether it’s a SQL CHAR or SQL NCHAR type) from the actual
argument value at run time. %CHARSET can copy the character set of a parameter or

Migration to Unicode Datatypes Page 18

variable declared with a character set name ANY CS. It can be applied to the name of an
earlier parameter in the same parameter list to indicate that the parameter being declared must
be passed with the same character set as the earlier parameter. It can also be used to declare
local variables to indicate that this variable is in the same character set as the parameter
passed in or the same character set as another character type variable. By using ANY CS and
%CHARSET, one PL/SQL procedure/function can support both SQL CHAR and SQL
NCHAR types. At the same time, variables can be guaranteed to be the same character set as
each other. This reduces the number of character set conversions for operations between SQL
CHAR and SQL NCHAR types.

FUNCTION get str(cur IN VARCHAR2 CHARACTER SET ANY_CS,
old IN VARCHAR2 CHARACTER SET cur%CHARSET,
new IN VARCHAR?2 CHARACTER SET cur%CHARSET)
RETURN VARCHAR2 CHARACTER SET cur% CHARSET IS
local var VARCHAR2(10) CHARACTER SET cur%CHARSET;
BEGIN

e Define a separate procedure/function for SQL NCHAR types. This can be used if there are
only a small number of procedure/functions that need to be redefined.

Length Semantics Change

Character length semantics is the only length semantics of the Unicode datatypes. PL/SQL
applications need to make adjustments for this semantics change. For the PL/SQL variables that
are made synchronous with database columns, the length semantics is made synchronous at the
same time. This means that if the variable is determined to be SQL NCHAR types based on
%TYPE or %ROWTYPE syntax, its length semantics is automatically character length semantics.
The parameter list in the PL/SQL procedure specification does not have any length constraints.
So the length semantics is not an issue for PL/SQL procedures. At run time, when SQL NCHAR
data is passed down to the procedure, the parameter’s length semantics is implicitly character
length semantics.

String Functions

In PL/SQL applications, some length related SQL or PL/SQL internal functions are used for
various purposes. Some of these functions are based on number of bytes, such as LENGTHB,
SUBSTRB, and INSTRB. Some other functions are based on number of characters such as
LENGTH, SUBSTR, INSTR or LENGTH2, SUBSTR2 and INSTR2 (refer to the SOL Reference).
After the PL/SQL variables and procedures are migrated to Unicode datatypes, the internal
functions that operate on them should also be migrated at the same time. These internal functions
are used for various purposes. They need to be examined and migrated properly. Here is a brief
summary of their usage.

I. In most cases, the character-based functions are used for both single-byte and multibyte data.
They already understand character length semantics, so there is no need to do anything for

them.

II. The byte-based functions are used in the following scenarios.

® Check the existence of multibyte characters by checking if the byte length is equal to
character length.

Migration to Unicode Datatypes Page 19

DECLARE
context NVARCHAR2(10);

if length(context) |= lengthb(context) then...
END;

Since context is now Unicode type, this checking always fails for ALI6UTF16 encoding because
all characters must be at least two bytes long. Such conditional checking should be removed.

e Check if the input string is less than a limit that is number of bytes. The SQL functions
should be changed to character-based, and the meaning of the corresponding limit is changed
to number of characters.

If lengthb(context) > 10 then raise context_too_long;
change to:
If length(context) > 10 then raise context_too_long;

e Use of byte length as loop boundaries to process every byte in the string. The processing can
be changed to character by character and the byte-based function should be changed to a
character-based function.

DECLARE
buffer NVARCHAR2(200),
val NUMBER;
BEGIN
FOR i IN 1 .. LENGTHB(buffer) LOOP
val := ASCII(SUBSTRB (buffer, i, 1)),

END LOOP;
END;

The LOOP statement should be changed to:
FORiIN 1.. LENGTH (buffer) LOOP
val := ASCII(SUBSTR (buffer, i, 1));

The original PL/SQL program only works for a single-byte character set. After the application is
migrated to support Unicode datatypes, changes must be made to make it work properly. Single
byte in ALI6UTF16 encoding does not carry any meaning. Only two-byte code units are
meaningful. The function should be changed to be same length semantics as the variables.
Therefore LENGTHB and SUBSTRB should be changed to LENGTH and SUBSTR.

e The byte position of a string has special meaning. The byte position can be changed to a
character position.

DECLARE

colon NUMBER;

doc_info NVARCHAR2(200);
node_id NUMBER;

BEGIN

colon := INSTRB(doc_info, ‘:’);

Migration to Unicode Datatypes Page 20

node_id := to_number(SUBSTRB(doc_info, 1, colon-1));
END;

The last two lines should be changed to:
colon := INSTR(doc_info, *:°);
node_id := to_number(SUBSTR(doc_info, 1, colon-1));

INSTRB and SUBSTRB need to be changed to INSTR and SUBSTR because the operand
doc_info is defined as NVARCHAR?2, which always has character semantics.

e Make sure a string fits in another variable. The length semantics of the function should be
made consistent with the destination variable definition.

DECLARE
MSG NVARCHAR2(2000);

BEGIN
MSG := substrb(MSG)||" (|| TOK_NAM)|'="|| TOK_VALY||")",1,2000);

change to:
MSG := substr(MSG||" ("||TOK_NAM||'="||TOK_VALI|")",1,2000);

SUBSTRB should be changed to SUBSTR because MSG is defined as character length semantics.
SUBSTRB can result in truncation in the middle of a character.

Based on the above usage scenarios, the conclusion is that the byte-based functions operating on SQL
NCHAR types should be changed to character-based functions.

III. SQL Functions of different length semantics.

Oracle provides length related SQL functions to meet varying application environments.
They are distinguished by the character or number attached to the function’s name, such as
SUBSTR, SUBSTRB, SUBSTR2, SUBSTR4 and SUBSTRC. The following are the major
differences between them and also apply to LENGTH, LENGTHB, LENGTH2, LENGTH4,
LENGTHC and INSTR, INSTRB, INSTR2, INSTR4, INSTRC.

SUBSTR calculates lengths in character units as defined by the character set of the datatypes.
For example, AL32UTFS is calculated in UCS4 code units. UTF8 and AL16UTF16 are in
UCS2 code units. Therefore, supplementary characters will be counted as one character in
AL32UTF8 and two characters in ALI6UTF16. Also, this means that SUBSTR may use
different character units for VARCHAR and NVARCHAR since the character sets will likely
be different. If consistency is important it may be better to use SUBSTR2 or SUBSTR4 to
force all semantic calculations to UCS2 or UCS4 respectively.

SUBSTRB calculates length in bytes.

SUBSTR2 calculates lengths in UCS2 code units, which is compliant with Java strings and
Windows client environments. Supplementary characters count as two code units.

SUBSTR4 calculates lengths in UCS4 code units. Supplementary characters count as one
code unit.

Migration to Unicode Datatypes Page 21

SUBSTRC calculates lengths in Unicode complete characters. Supplementary characters and
composite characters are counted as one character.

CLOB to NCLOB Migration

All the above discussions apply to migration from CLOB to NCLOB as well. Implicit conversion
is supported between CLOB and NCLOB in Oracle Database 10g. However in Oracle9i and in
general best practice, TO_NCLOB or TO_CLOB SQL functions should use explicit operations
between them. Any operation attempting to rely on implicit conversion will result in a
compilation error in Oracle9i. In the following example, TO NCLOB is used.

DECLARE
alb CLOB;
nlb NCLOB;
BEGIN
nlb := CONCAT(nlb, TO_NCLOB(alb));

OCI Application

There are no separate external OCI types for SQL NCHAR types. The external OCI types for
SQL NCHAR are the same as those for SQL CHAR types. OCI supports Unicode datatypes through
the OCI attribute OCI_ATTR _CHARSET FORM for bind/define buffers. The values for this
parameter are SQLCS IMPLICIT (indicates database character set ID) and SQLCS NCHAR
(indicates national character set ID). When OCI ATTR CHARSET FORM is set to
SQLCS NCHAR, data will be converted to/from NCHAR character set on server from/to NCHAR
character set setting on client. When OCI_ATTR _CHARSET FORM is set to SQLCS_CHAR, the
data in define/bind buffer is converted from/to the database character set on client side. Below, we list
each OCI usage scenario and describe how OCI applications should be migrated in each case.

e OClI in a totally Unicode application: We recommend using OCIEnvNIsCreate to specify the SQL
CHAR and SQL NCHAR character set as UTF-16. When OCI_UTF16ID is specified for both SQL
CHAR and SQL NCHAR all of the character data in UTF-16 encoding regardless of the NLS LANG
setting. This includes all of the metadata as well as user data. When OCI application retrieves data
from columns of SQL NCHAR into a define buffer, or when it inserts data into SQL NCHAR columns
from bind buffers, OCIAttrSet should be called to set OCI ATTR_CHARSET FORM attributes
associated with the define/bind buffers. Without setting the OCI_ATTR _CHARSET FORM attribute
to be SQLCS NCHAR, all the data in bind buffers are converted to the database character set by OCI
before they are sent to the database server. If the database character set is only a subset of the
NCHAR character set, data loss might happen when the eventual destination of the data are columns
of the SQL NCHAR datatypes. Such data loss can be avoided by setting
OCI_ATTR _CHARSET FORM attribute to SQLCS NCHAR.

OCIEnvNIsCreate for Unicode programming:

OCIEnvNIsCreate(envhpp, OCI DEFAULT, ..., OCI UTF16ID ,0CI UTF16ID),

OCI_ATTR _CHARSET FORM attribute can be set by the following function.

Migration to Unicode Datatypes Page 22

ubl charsetfm = SOLCS NCHAR;
OCIAttrSet((dvoid *)bindp, (ub4) OCI_HTYPE BIND, (dvoid *)&charsetfm, (ub4) 0,
(ub4) OCI_ATTR_CHARSET FORM, errhp));

e OCI in other applications: There are different types of OCI applications that work with data from
SQL NCHAR columns. Such applications may be an end user application involving some user
interaction, or it can be a middle tier application such as a gateway that only lets data pass through and
does not do any data processing. It can also be an application that does data processing. In each case,
we recommend that the user set the OCI_ ATTR CHARSET FORM attribute to SQLCS NCHAR if
the column which the client buffer is associated with is SQL NCHAR type and set
OCI_ATTR CHARSET FORM attribute to SQLCS IMPLICIT if the column is SQL CHAR type
(this is the default case, so user does not need to set anything). The reasons are twofold.

— This avoids data loss if database character set is only a subset of NCHAR character set.

— Once this attribute is set to be the same character set form as the database column, data in
define/bind buffer will be converted to the proper character set on client rather than doing the
conversion on the server side. This can reduce the server workload.

e CLOB to NCLOB migration in OCI: The migration from CLOB to NCLOB is similar to the
migration from other SQL CHAR to SQL NCHAR datatypes. Implicit conversion is not supported
between CLOB and NCLOB in Oracle9i. The user must set the OCI ATTR CHARSET FORM
attribute correctly according to the type of the target table column. Otherwise, an error will be
returned. Note in Oracle Database 10g onward implicit conversion between CLOB and NCLOB is
supported so an error would not be returned. Since handling the NCLOB type is much different from
NCHAR/NVARCHAR?2, here we list an example to demonstrate how to code for a NCLOB
application.

The following example is based on table FOO (A4 INT, C NCLOB,).

char *insstmt = (char *)"INSERT INTO FOO (A4, C) VALUES (1, :1),;"
char *selstmt = (char *)"SELECT C FROM FOO WHERE A = 1";
ubl buff MAXBUFLEN];

ubl *rbuf;

ub4 blen = 0;

ub4 loblen = 0;

OCILobLocator *clob;

if (OCIDescriptorAlloc((dvoid *) envhp, (dvoid **) &clob,
(ub4)OCI DTYPE LOB, (size_t) 0, (dvoid **) 0))
{
return OCI_ERROR;

/

if (OCIStmtPrepare(stmthp, errhp, insstmt, (ub4)strlen((char *)insstmt),
(ub4) OCI NTV SYNTAX, (ub4) OCI_ DEFAULT))

s
t

return OCI_ERROR;
/

memset((void *) buf, (int) 'A’, (size_t) MAXBUFLEN),
if (OCIBindByPos(stmthp, &bndhp[0], errhp, (ub4) 1,

(dvoid *) buf; (sb4) inputlen,
SQLT CHR,

Migration to Unicode Datatypes Page 23

(dvoid *) 0, (ub2 *)0, (ub2 *)0,
(ub4) 0, (ub4 *) 0, (ub4) OCI_DATA_AT EXEC))

s
t

return OCI_ERROR;
/

if (OClAttrSet((dvoid *) bindp, (ub4) OCI_HTYPE_BIND,
(dvoid *) SOLCS_NCHAR, (ub4) 0,
(ub4) OCI_ATTR _CHARSET FORM, errhp))
{
return OCI_ERROR;

/

retval = OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
(OClISnapshot*®) 0, (OCISnapshot™) 0,
(ub4) OCI_DEFAULT);

/** The following statements may not be needed for this example.
But just in case the character set and id are needed in other scenarios. **/

if (OCILobCharSetld(envhp, errhp, clob, &csid))

{
return OCI_ERROR;

/

if (OCILobCharSetForm(envhp, errhp, clob, &csform))

{
DISCARD printf("FAILED: OCILobCharSetForm()\n");
report_error(errhp);

/

if (OCIStmtPrepare(stmthp, errhp, selstmt, (ub4)strlen((char *)selstmt),
(ub4) OCI_NTV SYNTAX, (ub4) OCI DEFAULT))

{
return OCI_ERROR;

/

if (OCIStmtExecute(svchp, stmthp, errhp, (ub4) 0, (ub4) 0,
(OCISnapshot*) 0, (OCISnapshot*) 0,
(ub4) OCI_DEFAULT))

{
return OCI_ERROR;

/

if (OCIDefineByPos(stmthp, &dfnhp, errhp, (ub4) 1,
(dvoid *) &clob, (sb4) -1,
SOLT CLOB, (dvoid *) 0,
(ub2 *) 0,(ub2 *) 0, (ub4) OCI_DEFAULT))
{
return OCI_ERROR;

/

if (OCIAttrSet((dvoid *) bindp, (ub4) OCI_HTYPE_BIND,
(dvoid *) &csform, (ub4) 0,
(ub4) OCI_ATTR CHARSET FORM, errhp))

Migration to Unicode Datatypes Page 24

{

return OCI_ERROR;

/

if (OCIStmtFetch(stmthp, errhp, (ub4) 1, (ub2) OCI_ FETCH NEXT,

s
t

(ub4) OCI_DEFAULT))

return OCI_ERROR;

}

/* OCILobGetLength returns the lob length in number of characters */
if (OCILobGetLength(svchp, errhp, locator, &loblen))

{

return OCI_ERROR;

/

/** Maximum number of bytes per character is 4. The character length multiplied

by the maximum number of bytes per character can guarantee the retrieved data
fits in the buffer **/

#define MAX BYTE LEN 4
blen = loblen*MAX BYTE LEN;

rbuf = (ubl *)malloc(blen);
memset((void *) rbuf, (int) \0', (size_t) blen);

if (OCILobRead(svchp, errhp, locator, &amtp, (ub4) pos, (dvoid *) rbuf,

s
t

(ub4) loblen, (dvoid *)0,
(sb4 (*)(dvoid *, CONST dvoid *, ub4, ubl)) 0,
(ub2) 0, (ubl) SOLCS NCHAR))

report_error(errhp);

/

else

s
t

if (mememp((const void *) rbuf, (const void *) rbuf2, (size_ t)MAXBUFLEN))
DISCARD printf("FAILED: OCILobRead(); buffers differ\n");

else

DISCARD printf("PASSED: OCILobRead(), buffers equal\n");

/

JDBC Application

In JDBC, there are no separate, corresponding datatypes or classes defined for SQL NCHAR types. It
uses the same classes and methods to access SQL NCHAR datatypes as SQL CHAR datatypes. So the
usage of SQL NCHAR datatypes is similar to that of the SQL CHAR datatypes. The following are the
major differences in dealing with SQL CHAR and SQL NCHAR types.

a.

When a JDBC program binds data, it must call setFormOfUse() method to specify that the
data is bound for SQL NCHAR datatypes. This is similar to the OCIAttrSet function that can
set the character set form attribute. There are two valid values for the character set form:
FORM_CHAR and FORM_ NCHAR. FORM CHAR is the default value. If
FORM_NCHAR is set as the form of use, JDBC driver will represent the data in the national
character set of the server internally. FORM NCHAR should be used for all buffers
corresponding to SQL NCHAR datatypes on the server. The following code demonstrates
how to access SQL NCHAR data.

Migration to Unicode Datatypes Page 25

int empno = 12345,

String ename = "WFF2A\uFF4F\uFF45";

String job = “Engineer”;

oracle.jdbc.OraclePreparedStatement pstmt = (oracle.jdbc.OraclePreparedStatement)
conn.prepareStatement("INSERT INTO emp (empno, ename, job) VALUES(?, ?, ?)");

pstmt.setFormOfUse(2, FORM _NCHAR);
pstmt.setFormOfUse(3, FORM _NCHAR),

pstmt.setlnt(1, 1),
pstmt.setString(2, ename),
pstmt.setString(3, job),
pstmt.execute();
pstmt.close();

NOTE: The setFormOfUse must be called before setString to get proper results.

The oracle.sql.CHAR class is designed for both SQL CHAR and SQL NCHAR datatypes
embedded in an Oracle object type. It is used by Oracle JDBC in handling and converting
character data. One of the key attributes of a CHAR object is the character set that defines
the encoding of the character data in the object. It must be specified when a CHAR object is
created. When a CHAR object is created for SQL NCHAR datatypes, the database national
character set of the server should be used. If it is for SQL CHAR datatypes, one of
US7ASCII, WESISO8859P1 or UTF8 should be used depending on the database character
set. Please refer to the JDBC manual for detailed information about CHAR objects. The
following is an example to create CHAR object for SQL NCHAR datatypes.

int oracleld = CharacterSet. ALI6UTF16_CHARSET, // Character set ID for
ALI6UTF16

CharacterSet mycharset = CharacterSet.make(oracleld);
String mystring = "WwFFA0";

CHAR mychar = new CHAR(mystring, mycharset);

c. CLOB to NCLOB migration for JDBC applications

Similarly, the user needs to set the character set form attribute to FORM_NCHAR for the data
that is targeted toward NCLOB columns. Implicit conversion is not supported between
CLOB and NCLOB in Oracle9i. Without setting this attribute to be the same character set
form as the target CLOB/NCLOB column, an error will be returned in Oracle9i. Note in
Oracle Database 10g onward implicit conversion between CLOB and NCLOB is supported so
an error would not be returned, but the implicit conversion may have a performance impact.
The following is an example of how to code against NCLOB columns in JDBC applications.

The following example is based on table definition
clob_table (v2 VARCHAR?2 (30), ncb NCLOB).

Connection conn;
try {
OraclePreparedStatement pstmt =
(oracle.jdbc.OraclePreparedStatement) conn.prepareStatement
("insert into clob_table values (?, ?)");

Migration to Unicode Datatypes Page 26

pstmt.setFormOfUse(2, OraclePreparedStatement. FORM_NCHAR);

pstmt.setString (1, "one");
pstmt.setString (2, "wFF10WFF11\uFF12\uFF13\uFF14");
pstmt.execute ();

/

ResultSet rset = stmt.executeQuery ("select * from clob_table where v2
= 'one' for update");

if (rset.next ())

oracle.jdbc2.Clob clob = ((OracleResultSet)rset).getClob (2);
show("getLength() = "+clob.length());

String str = clob.getSubString(1,5);
String data = "uFF41\uFF42\uFF43\uFF44\uFF45";
((CLOB)clob).putString(1, data);

}

To summarize for JDBC application migration, because the JAVA internal string encoding is
UTF-16, not much needs to be done to support Unicode datatypes besides the above two
scenarios. When variables are bound to SQL NCHAR datatypes, the form of use attribute needs
to be set to FORM_NCHAR. Also when a CHAR object is created, the database NCHAR
character set should be supplied.

Migration to Unicode Datatypes Page 27

Summary

This paper discussed migration steps to support Unicode datatypes for both the database and
applications. Unicode datatypes allow the user to do incremental migration to Unicode. The issues
such as the criteria to pick Unicode character set, methods to migrate to Unicode schema and some
important things for user to note are discussed in the database migration.

Implicit conversion between SQL CHAR and SQL NCHAR types significantly reduces the workload
to migrate applications to Unicode datatypes. However, to avoid data loss and achieve the best
performance for the migrated applications, users need to follow some guidelines. Based on the
discussion in the application migration, when SQL NCHAR columns are accessed from client or
middle tire applications, special settings should be made to access them as SQL NCHAR types by
setting character form attribute or synchronizing with the database columns using %TYPE or
%ROWTYPE syntax. This avoids data loss. The key to achieving the best performance is to
minimize the operations between SQL NCHAR and SQL CHAR types as much as possible.
Application developers should try to avoid the scenario where operations between mixed datatypes are
required. When operations are not avoidable, the user can follow the above guidelines to reduce the
number of conversions.

ORACLE

Migration to Unicode Datatypes for Multilingual Databases and Applications
January 2005

Author: Gary Chen

Contributing Authors: Barry Trute

Oracle Corporation

World Headquarters

500 Oracle Parkway
Redwood Shores, CA 94065
US.A.

Worldwide Inquiries:
Phone: +1.650.506.7000
Fax: +1.650.506.7200
oracle.com

Copyright © 2005, Oracle. All rights reserved.

This document is provided for information purposes only and the
contents hereof are subject to change without notice.

This document is not warranted to be error-free, nor subject to any
other warranties or conditions, whether expressed orally or implied

in law, including implied warranties and conditions of merchantability
or fitness for a particular purpose. We specifically disclaim any

liability with respect to this document and no contractual obligations
are formed either directly or indirectly by this document. This document
may not be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without our prior written permission.
Oracle, JD Edwards, and PeopleSoft are registered trademarks of
Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

Migration to Unicode Datatypes Page 28

