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Unleash High Availability Applications 
with Berkeley DB 

1. Introduction
Berkeley DB High Availability (BDB-HA) is a replicated, embedded database management system 

designed to provide applications fast, reliable, and scalable data management. Due to its 

implementation as an embedded library, BDB-HA is used in a large range of different configurations 

and environments. This paper presents the key characteristics of BDB-HA, discussing how best to use it 

to solve specific data management problems. We discuss the key technical trade-offs that an architect 

must consider when designing an application. 

BDB-HA builds upon the Berkeley DB Transactional Data Store (BDB-TDS) product. BDB-TDS is a library 

that links directly with an application to provide fast, reliable key-data storage. Applications use BDB-

TDS to create indexed databases, using one of hashed, btree, or record-number based structures. 

Multiple operations on databases and key/data pairs may be wrapped in transactions to provide the 

conventional transactional ACID properties of atomicity, consistency, isolation, and durability.  After an 

application or system failure, Berkeley DB's recovery mechanism restores the application's data to a 

consistent state. 

Berkeley DB uses write-ahead logging to provide transactional consistency. Before updates are applied 

directly to data, they are first written to a separate log file.  These log files provide the foundation of 

BDB-HA. As transactions commit, BDB-HA transmits log files from a designated master site to other 

sites in a replication group, which immediately apply the transaction, providing online data replication. 

The BDB-HA architecture supports single-writer, multiple-reader replication. This means that all 

database updates must be performed on a single site (the master), but replicas are available for read 

activity.  Should the master fail, one of the replicas must take over as master, and all writes will then be 

serviced by the new master.  

BDB-HA can be used to address three different application challenges: it provides rapid failover in 

situations where downtime is unacceptable, it provides read scalability by providing multiple read-only 

replicas, and it enables more efficient commit processing, allowing applications to provide durability by 

committing to the (fast) network, rather than to a (slow) disk. BDB-HA, however, does not assist 

applications that need write-scaling. Such applications will need to partition the data, running a BDB-

HA environment per partition. It also does not provide synchronization between BDB-HA and other 

databases. These last two issues are not addressed in this white paper. 

BDB-HA is appropriate in a wide range of environments from replication across a backplane to 

replication across the WAN.  We introduce four sample use cases here that demonstrate the range of 

applicability of BDB-HA. 
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 Small-scale LAN-based replication: Consider a data-center based service providing data for a 

local population, such as a corporate site.  Such a service might be implemented by a few 

servers, all residing in the same data center, communicating over a high-speed LAN. 

 

 World-wide data store: Alternately, consider a world-wide service provider that needs to store 

account information, accessible anywhere in the world.  This service might be implemented by 

a collection of servers, residing in different data centers, scattered around the globe, 

communicating via the Internet. 

 

 In-memory replication across a backplane: Imagine a massive network switch containing 

dozens of boards, each of which independently handles network requests.  The data for such a 

box could be stored in databases replicated across the switch's backplane. 

 

 Master/Slave: Finally, consider a simple installation to provide failover between a master and 

slave machine.  Such a 2-node configuration is possible using BDB, but it introduces interesting 

design challenges that will be discussed later in this paper. 

We will refer back to these use cases as we describe different features of BDB-HA, illustrating how the 

different scenarios demand different capabilities from the underlying data management system. 

Given the wide range of environments across which Berkeley DB replicates data, no single set of data 

management policies is appropriate. BDB-HA provides applications control over the degree of data 

consistency between the master and replicas, what constitutes transactional durability, how frequently 

participants interact, which meta-data structures are maintained in memory and on-disk and a wide 

range of other design decisions that will dictate the performance, robustness, and availability of the 

data. 

The goal of this paper is to introduce those decisions and provide designers a sufficiently in-depth 

understanding of the issues, enabling them to make decisions appropriate for a particular application. 

2. Terminology 
Throughout the rest of this paper, we will use the following terms to describe using Berkeley DB HA. 

Key/Data Pair: The basic unit of storage in Berkeley DB.  Keys are opaque byte strings used as primary 

indices.  Each key has another opaque byte string, the data, associated with it. 

Database: A collection of key/data pairs sharing an indexing structure.  This is a table in RDBMS 

terminology. 

Environment: A logical collection of Berkeley DB databases and their associated meta-data and 

infrastructure files.  A directory names an environment.  This is a database in RDBMS terminology. 
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Cursor: Represents a logical position in a database; used for iteration. 

Site: A machine or node participating in a replicated environment. 

Replication group: The collection of sites replicating a single environment. 

Master: The site in a replication group that is currently capable of accepting and processing application 

write requests. 

Replica: A non-master site in a replication group.  In the Berkeley DB documentation and APIs, these 

sites are referred to as clients. In this paper, we use the term replica to clearly differentiate sites 

running Berkeley DB database code from application agents making requests of the data store. 

Electable Peer: A site that is eligible to be elected master.  Some applications find it useful to replicate 

to sites for read access, but due to capacity or connectivity constraints do not want those sites to ever 

become masters.  Such sites are non-electable peers. 

Quorum: The number of sites necessary to reach a decision.  There are different sized quorums for 

different purposes, such as master election or acknowledging a successful write. 

Internal Initialization: The process of copying log files and databases to a replica when there are not 

enough logs available to bring the replica up-to-date. 

3. Designing your Application Architecture 
This section provides an overview of the key features of Berkeley DB that will most directly influence 

your application architecture. We begin by defining what we mean by "embedded data management" 

and what benefits this embedding provides to your application.  Next, we discuss the two replication 

APIs available for Berkeley DB. 

In most cases, applications will use the Replication Manager API, which provides a high-level, more 

convenient interface.   Next we talk about how the master site is determined.  In most cases, we 

encourage applications to use the Berkeley DB election mechanism, although it is also possible to 

integrate BDB-HA with other HA substrates.  Finally, we discuss how to design applications to integrate 

with BDB-HA's single-writer replication model. 

Embedding data management in your application 
We use the term "embedded" when talking about Berkeley DB to refer to the relationship between the 

application and the data management capabilities. Those capabilities, as realized by the Berkeley DB 

library, are embedded within the application; application users or administrators need not be aware of 

the existence of Berkeley DB, as Berkeley DB is used and administered directly from the application. 

Such an application may itself run on an embedded device, but it need not. It might run on a handheld 

device, on a desktop machine, or in a datacenter. In fact, Berkeley DB might provide storage-tier 
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functionality, being used as the storage engine for data management services to a family of 

applications. 

Embedded data management provides several benefits over the more traditional client-server 

architecture. First, applications can store and retrieve data in their native form, rather than translating 

to and from a different (e.g., relational) data model.  Applications can serialize structures or complex 

objects into Berkeley DB databases directly. 

Second, embedded data management requires no database administrator (DBA). Instead, applications 

incorporate database configuration and management directly into their own configuration and 

management, typically resulting in a few new knobs and settings for the application. 

Third, the end-user does not observe any separate database recovery phase. Instead, during 

application startup, the application can open and/or recover its databases by issuing API calls to the 

Berkeley DB library.  Similarly, when the application shuts down, it can shut down the database as well. 

Fourth, embedded data management frequently provides performance superior to that of traditional 

client/server architectures by avoiding interprocess communication overhead. 

Picking an API: Replication Manager or Base API 
Berkeley DB provides two different APIs for application developers. The Replication Manager is an 

easier-to-use, higher-level interface for developers, but dictates certain design decisions. The Base API 

exposes the full power of Berkeley DB, but requires that application developers write more code. If 

your deployment infrastructure matches the characteristics of the Replication Manager, it is the 

recommended API, and we strongly encourage you to use it. 

The Replication Manager is designed to facilitate quicker and easier application development. It 

accomplishes these goals in two ways: supplying standard communication infrastructure and thread 

management implementations and exposing configuration at a semantically higher level than the Base 

API. 

Factors Enabling the use of the Replication Manager 

On POSIX platforms, the Replication Manager uses pthreads; on Windows platforms, the Replication 

Manager uses Windows threads. If applications also use threads, they must use the matching thread 

mechanism. Furthermore, applications running platforms supporting neither pthreads nor Windows 

threads will have to use the Base API. The Replication Manager constrains applications to use TCP/IP 

sockets for the underlying communication infrastructure. The Base API relies on the application to 

supply a communication infrastructure.  

The Replication Manager can provide heartbeat capabilities, so that Berkeley DB automatically detects 

failed sites. Applications using the Base API that need this capability must provide it themselves. When 

the master site fails, the Replication Manager by default automatically holds an election to select a 
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new master, while in the Base API, the application may discover that it can no longer communicate 

with the master.  It is then up to the application to explicitly call for the election.  

Applications must manage the resources consumed by the Berkeley DB log by periodically removing 

older log files that are no longer needed. Berkeley DB has an automatic log reclamation feature to 

automate this process. The Replication Manager is integrated with this feature but the Base API is not. 

Replication Manager and Base API Comparison 

 REPLICATION MANAGER BASE API 

Threads Must use pthreads or Windows 
threads 

Any thread package 

Communication Protocol TCP/IP Any protocol 

Heartbeats Provided Application implements 

Elections Automatically invoked Application must invoke 

Log Reclamation Can use Berkeley DB automatic 
log reclamation 

Application must manage 

 

Configuration in Replication Manager versus Base API 

In the configuration space, the Replication Manager provides policy-based configuration, while the 

Base API tends to support configuration through explicit parameter settings. For example, the 

Replication Manager provides site management operations -- functions that add and remove sites from 

a group or return the list of sites in a group. The Base API provides no comparable functions -- instead, 

applications either have a priori knowledge of the participants in a replication group or they become 

aware of new sites via return codes from BDB-HA methods (e.g., the DB_REP_NEWSITE return from 

a call to DB_ENV->rep_process_message), and it is up to the application to use that information 

appropriately. 

Similarly, the Replication Manager provides configuration at a higher policy level while the Base API 

provides lower level mechanisms that require the application to implement its own policies. For 

example, on a transaction commit, applications can decide how many sites need to acknowledge the 

commit, before considering it durable. In the Replication Manager, that choice is expressed as an "Ack 

policy" where applications specify one of: ALL (must hear from all sites), ALL_AVAILABLE (must hear 

from all currently available sites), ALL_PEERS (must hear from all electable peers) NONE (commit 

immediately without waiting for any acknowledgements), ONE (must hear from a single site), 

ONE_PEER (must hear from a single electable peer), or QUORUM (must hear from sufficiently many 

sites to assure durability in the presence of any single failure). For example, in a replication group 

containing three nodes, the QUORUM policy would require the master to receive at least one 

acknowledgement to consider a transaction durable. Using the Base API, applications must explicitly 

know the number of sites participating in the group and the number from which it must receive 

acknowledgements in order to consider a transaction durable.  This decision is encapsulated in the 

rep_send function that the application specifies when it sets up its communication infrastructure. 
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In general, we encourage applications to use the Replication Manager, resorting to the Base API only 

when application needs dictate its use. 

Master selection: elected or designated? 

Both the Replication Manager and the Base API allow applications to explicitly designate a master site. 

We strongly suggest designers use elections unless your application is running on an HA substrate (e.g., 

Neverfail's Application Management Framework or IBM's FileNet P8 Systems) that already performs 

leader election. For example, in the in-memory use case where we are replicating across a backplane, 

there may be other HA services required, and it may be more appropriate to use a separate HA 

substrate for both Berkeley DB master election and those other services. However, in the absence of 

such constraints, Berkeley DB's election algorithm can be tuned to work in concert with master leases 

(discussed later in this paper) and other BDB techniques that ensure data and application consistency. 

Designating a new master runs the risk of data or transaction loss if a site that does not have the most 

up-to-date data is appointed master. 

Applications that wish to use elections, but also want control over which sites are selected can use BDB 

node priorities to achieve this control (DB_ENV->rep_set_priority). Priorities are relative, so 

the application can assign values it deems appropriate. The Berkeley DB election algorithm will first 

select sites eligible to become master given the current state of the system and will then examine the 

priorities to select the site with the highest priority from those eligible sites.  Thus, priorities do not 

guarantee which site will be elected, but when possible, a higher priority site will be selected over a 

lower priority site.  For example, in either the WAN- or LAN-based scenarios it is common to have 

machines with different capabilities.  In most cases, it is desirable to have the master be one of the 

most powerful machines in system resources. 

Applications that cannot use elections and, instead, designate the master site must be sure to 

communicate this designation to all participants.  A site is started as the designated master via the 

DB_ENV->repmgr_start or DB_ENV->rep_start method with the flags parameter set to 

DB_REP_MASTER. Since all write requests must be directed to the master, it is important for any site 

that might initiate an update to know the identity of the current master. The recommended way to 

monitor this information is to use Berkeley DB's event notification.  Applications should call DB_ENV-

>set_event_notify to configure an event callback function. When that callback function receives 

events of type DB_EVENT_REP_NEWMASTER, the application will learn the identity of the current 

master.  The application can assume that site is still master until it receives another 

DB_EVENT_REP_NEWMASTER event or a DB_EVENT_REP_MASTER event, indicating that this site 

is the new master. 

Write Shipping 

Regardless of how a master site is selected, it is the application's responsibility to submit all database 

requests that modify the database (key/data pair insert, delete, overwrite and database create, 

rename, truncate, or remove) to the master. 

There are three main ways that an application might direct requests to the master: 
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1. Every site keeps track of the identity of the master site and directly communicates its requests 

to the master. 

2. The application introduces an intermediary dispatcher that directs requests to the master. 

3. Every participant uses the established communication infrastructure to transmit an application 

message to whatever site is the current master. 

There are fundamentally two different ways that applications architect their data management using 

BDB- HA, the integrated model and the data-tier model. 

In the integrated model, all the application logic runs on the same sites as the Berkeley DB logic.  Thus, 

the application logic that generates write requests resides on a site also running BDB-HA and using the 

event notification mechanism described above, sites can track the identity of the master (thus 

implementing option 1 above). Let's say that site R is a replica and site M is a master.  Now, let's say 

that the application logic on site R requires a database update.  Site R must, using an application 

communication layer, send a message to site M requesting that the master make the update. If, upon 

receiving and attempting to process the request, M discovers that it is no longer a master, M must 

reply to R with an error, indicating that R needs to determine the identity of the new master. Such 

errors should happen rarely. 

In the data-tier model, application logic runs on a set of sites separate from those managing the data 

and running Berkeley DB.  This architecture might arise in a three-tier architecture in the LAN or WAN 

scenarios where application logic runs in an AppServer running on one or more sites different from the 

collection of sites implementing the data tier.  In this scenario, we assume that BDB-HA runs on the 

data tier, but not on the application-servers. In this case, the typical solution is to implement a 

distributor that directs requests from the AppServer(s) to an appropriate data-tier site, thus 

implementing option 2. 

The distributor must keep track of the identity of the master and route all write requests to that 

master (it might also act as a load balancer, distributing read requests to the different nodes in an 

efficient manner). 

There are two standard ways to build the distributor. The distributor could, itself, be a BDB-HA replica 

that uses the BDB event notification to keep track of the master.  In this scenario, the distributor is 

frequently implemented as a non-electable replica. Alternately, the sites in the data-tier could 

explicitly notify the distributor of master changes.  In this scenario, the distributor does not need to 

participate in the replication group. 

Option 3 is implemented in the Replication Manager by sharing the Replication Manager’s internal 

message channels. An application does this by using DB_ENV->repmgr_channel to create a 

DB_CHANNEL and implementing a message handler at each site. A DB_CHANNEL can communicate 
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with the current master or another site. An application sends its own messages to a DB_CHANNEL 

asynchronously using DB_ENV->send_msg or synchronously using DB_ENV->send_request. 

Integrated applications using the Base API will find option 3 the simplest to implement and use, as 

described in this paragraph. The Base API replication communication infrastructure is implemented by 

a function provided by the application in the DB_ENV->set_rep_transport method.  The 

rep_send function parameter to that method is called by the Berkeley DB library to transmit BDB-HA 

messages.  In doing so, the function can bundle those messages however it sees fit.  In particular, it can 

tag messages as being BDB messages or application messages.  Application code is also responsible for 

receiving messages on this channel and calling DB_ENV->rep_process_message on those 

messages generated by BDB-HA. However, if the received message is an application message, it can be 

dispatched to application code capable of performing the requested operation and replying 

appropriately to the originator. 

4. Application Nuts and Bolts 

Configuring your Application 
Replicated applications must take care to configure both the replication system and the underlying 

transactional data store components, to provide appropriate reliability and durability guarantees. In 

this section, we focus on those transactional data store configuration options that interact most closely 

with replication. 

Transactions 
First, all replicated applications must use the transaction subsystem. Every update operation must be 

performed in the context of a transaction, although read-only operations need not be transactional. 

Since replicated applications are using the transaction system, designers should ensure that they have 

sized the transaction system appropriately. See, DB_ENV->set_tx_max, DB_ENV-

>set_timeout, DB_ENV->set_lk_max_lockers, DB_ENV->set_lk_max_locks, 

DB_ENV->set_lk_max_objects. Each site in the group is responsible for configuration. All sites 

must specify the same log file size and whether log files are on-disk or in-memory. 

Second, since replicated transactions obtain reliability through replication, it is often the case that sites 

participating in replication groups can weaken their local durability guarantees, letting log writes go to 

disk asynchronously rather than synchronously. For example, in the in-memory backplane use case, 

there is no persistent store to which to sync data. But even in the LAN- and WAN-based scenarios, if 

data is replicated sufficiently many times, it is frequently unnecessary to force data to disk on the 

master. See the documentation on DB_TXN_NOSYNC and DB_TXN_WRITE_NOSYNC. 

Third, many transactional applications use the Berkeley DB automatic log reclamation feature (using 

DB_ENV->log_set_config(DB_LOG_AUTO_REMOVE)). Replication Manager applications are 

free to use this feature because the Replication Manager prevents removal of log files still needed by 
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any site in the replication group. However, most Base API applications should not do so, because the 

Base API does not prevent removal of log files needed by other sites. This makes it less likely that sites 

can synchronize with a master without copying all the databases and log files. However, an application 

that does not perform automatic log reclamation will have to provide its own manual log reclamation 

process to avoid having log files consume too much disk space. Replicated applications can safely 

remove log files from the master site when all replicas have received the log records in those logs. 

Most Base API applications simply enforce a policy to save several most recent log files. Unless 

transactions are quite long, spanning multiple log files, this approach is usually sufficient to ensure that 

replicas can restart without having to copy all the databases and log files. 

Applications that want finer control over their log files typically have a monitoring process on the 

master that periodically asks replicas to report the results of running the log_archive utility, which 

produces a list of log files eligible for removing.  The monitor then instructs all the sites that it is safe to 

remove the intersection of the set of log files returned by each site. 

In-Memory Execution 
As described in the backplane use case, another option available to replicated applications is to run 

with some or all of their data and meta-data in memory. Since replicas keep identical copies of the 

data, losing a fully in-memory site does not mean losing all the data, because it persists on another 

site.  

There are four different types of data, each of which may be maintained in main memory: 

1. replication meta-data,  

2. application databases, 

3. the shared memory pool, and 

4. log files. 

When all four of these types of data are configured to reside in memory, the application runs without 

any persistent storage. However, it is possible to pick and choose which types of data are only in 

memory and which are on persistent storage. 

Applications can configure replication to store its meta-data in-memory using the DB_ENV-

>rep_set_config method specifying DB_REP_CONF_INMEM. 

Creating application databases in main memory is easy -- simply use a NULL file name, with non-null 

database names. 

Single process applications can place the memory pool in-memory by specifying the DB_PRIVATE 

value to the flags argument to DB_ENV->open. Alternatively, an application can specify the 

DB_SYSTEM_MEM value to the flags parameter of DB_ENV->open so multiple processes can share 
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an in-memory memory pool. DB_PRIVATE causes Berkeley DB to allocate regions in heap space, thus 

restricting the application to a single-process. DB_SYSTEM_MEM causes Berkeley DB to allocate 

regions in System V shared memory segments. Although using DB_SYSTEM_MEM requires creation of 

a Berkeley DB environment "file," this file need not persist across operating system reboots; it can be 

stored in a memory-based file system. It serves as a mechanism to allow multiple processes to share 

the same shared memory key, so that if applications crash, but the operating system remains up, 

applications can still clean up the shared memory segments managed by the operating system. 

Finally, applications can use DB_ENV->log_set_config(DB_LOG_IN_MEMORY) to tell Berkeley 

DB  to write log files into memory buffers rather than saving them on disk. 

Applications using in-memory logs still need to perform routine checkpoints. While checkpoints 

traditionally cause data to be written to disk, in the context of in-memory logging, checkpointing 

ensures that we always have a current mapping from database names to log file identifiers, which is 

crucial for correct operation. Furthermore, the Berkeley DB log buffer, configured via the DB_ENV-

>set_lg_bsize, must be large enough to hold all log records up to and including a checkpoint.  

Thus, the checkpoint interval and log buffer size are tightly coupled.  For this reason, we suggest that 

applications invoke checkpoints after a specified amount of log data has been written.  This is 

accomplished by specifying a non-0 value for the kbyte parameter to the DB_ENV-

>txn_checkpoint method. 

Placing each of these types of data in main memory leads to different limitations. When the replication 

meta-data is stored in-memory, it is possible to lose a recently committed transaction in extremely 

rare circumstances when sites are repeatedly crashing and restarting. When databases are stored in-

memory, a site coming up after a crash will need to copy all the databases from another site. 

When database logs are stored in-memory, sites cannot run recovery and will also need to copy 

databases from another site after failure. 

Transactional Consistency 
Transactions provide the ACID properties of atomicity, consistency, isolation, and durability.  Atomicity 

means that for a given set of operations grouped in a transaction, either all the operations complete or 

none of them do.  Consistency means that a transaction moves the data from one consistent state to 

another.  Isolation means that each transaction runs as if there were no other transactions running 

concurrently in the system, and durability means that once a commit returns, the transaction is 

guaranteed to persist, even in the presence of failure. 

On a single machine, these semantics are easy to understand and interpret, but in a replicated 

environment, things become more complicated. For example, while a transaction might be durable on 

a single site, if that site crashes, and another site that never saw that transaction takes over, then from 

the point of view of the replication group, the transaction was not durable. Berkeley DB's transactional 

data store product allows applications to trade off durability guarantees for performance; BDB-HA also 

provides applications additional flexibility to make such trade-offs. 
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The degree of synchronization that an application enforces between a master and the replicas 

determines the precise consistency semantics that an application will experience. On one extreme, 

using the Base API, an application could write a transport function that does not return from 

processing a permanent log record until all the sites in the replication group have acknowledged 

receipt and application of the record (comparable to the Replication Manager's 

DB_REPMGR_ACKS_ALL policy except that the Replication Manager only waits up to a time limit for 

acknowledgements). This ensures that the master never considers a transaction committed until it is 

also committed at all the replicas. This policy might be feasible in the LAN-based or backplane use 

cases, but is undoubtedly totally unacceptable in the WAN-based scenario. While providing strong 

consistency, this approach suffers a potentially significant delay during commit processing and means 

that forward progress stalls in the presence of any site failures. This extreme approach is practically 

never used in practice. 

On the other extreme, a master could consider a transaction successfully committed once it has 

committed on the master and sent the message to the replicas (comparable to the Replication 

Manager's DB_REPMGR_ACKS_NONE policy). This provides the best responsiveness to the 

application, but it runs the risk that an update on the master could be lost if it and some of the replicas 

crash at the wrong point in time. 

Most applications choose some point in between these two extremes. In these intermediate cases, the 

system sets some number of sites from which it insists upon receiving an acknowledgement before 

considering a transaction durable. The number of sites required to guarantee that a committed 

transaction is never undone is called a quorum. 

Berkeley DB allows applications to specify quorums for different behaviors: write/commit, consistent 

reads (via master leases) and elections. Write and election quorums provide the guarantee that 

committed updates are never lost, while read quorums, as implemented via Berkeley DB master 

leases, provide a way to ensure that reads on a master site never return data that has not been 

replicated sufficiently to guarantee its durability. 

Quorums 
First, we discuss write quorums and then discuss the interaction between write quorums and election 

quorums in the next section. We conclude with a discussion of master leases. 

Quorums on Writing 

If applications want to make guarantees about the durability of their transactions in the face of node 

failures, then masters will want to receive acknowledgements from some minimum number of replicas 

before considering a transaction to be durable. Using the Replication Manager framework, applications 

can specify DB_REPMGR_ACKS_QUORUM to the DB_ENV->repmgr_set_ack_policy method 

to indicate that the master should not consider a transaction to be durably replicated until it has 

received responses from sufficiently many sites (at least half of the electable peers). If the master 

receives insufficient acknowledgements, the Replication Manager generates a 
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DB_EVENT_REP_PERM_FAILED event. Selecting a policy requiring fewer than the quorum runs the 

risk of losing updates after a master crashes (even after the master comes back up, the update will be 

undone when the old master synchronizes with a new master that never got the update). 

Applications using the Base API implement write quorums by coordinating code in the rep_send 

function specified in the DB_ENV->set_rep_transport method and with logic in their 

application's message processing loop. The send function must block until it knows that the message 

processing loop has processed sufficiently many acknowledgements from the replicas. In this case, 

replicas must notify masters when they have successfully applied log records by sending an explicit 

acknowledgement when a call to DB_ENV->rep_process_message returns DB_REP_ISPERM. 

If DB_ENV->rep_process_message returns DB_REP_NOTPERM, the replica has not applied the 

current log record and therefore, has not committed the transaction. In this case, the replica should 

not transmit an acknowledgement to the master, but it should record the Log Sequence Number (LSN) 

of the log record that was not successfully applied. When the replica later receives a return code of 

DB_REP_ISPERM, this confirms both that the current log record and transaction have been 

committed and that all transactions with earlier LSNs have also been successfully committed. At this 

point, the replica can send acknowledgements to the master for all earlier transactions. 

Quorums on Elections 

To guarantee that we never lose updates, we need to make sure that once we've returned success 

from transaction commit on the master, under no circumstances will the application continue in a 

manner where that transaction has not completed. This means that the transaction must persist in the 

presence of master crashes and network partitions. Ensuring this requires tight coupling of write 

quorums and election quorums. An election quorum determines how many votes a site needs in order 

to become master. 

In the Replication Manager framework, applications do not explicitly participate in elections; BDB-HA 

does this automatically. In this case, the election quorum is set to greater than half of the electable 

peers in the group, unless we have a two-site replication group (the master/slave scenario). In that 

exceptional condition, there is an option to permit election of a master with a single vote, since we 

assume that an election happens because the master has failed, and there is only one site remaining. 

However, this means that in the presence of a network partition between the master and slave, both 

sites could function independently as masters. 

In the Base API, the election quorum is specified as the nvotes parameter to the DB_ENV-

>rep_elect method. To guarantee persistence, we must ensure that when the master fails, any site 

that can be elected has received the latest successfully committed transaction. 

The most common approach to ensuring that updates are never lost requires two things: 

1. commits be successfully processed by at least half of the electable peers and 

2. elections require that more than half of electable peers cast votes. 
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These two conditions guarantee that at least one site has both received the latest committed 

transaction and participated in the election. 

It is always possible for applications to require more than the minimum number of acknowledgements 

and in fact, it might simplify coding in cases where acknowledgement delays are not a problem (e.g., 

the LAN-based case).  

Quorums on Reading/Master Leases 

So far, we have discussed consistency only with respect to writes. However, some applications require 

both read consistency and read durability, which is the guarantee that a value read is both up-to-date 

and will persist, even in the presence of failure. For example, consider a user management service 

implemented across the WAN.  It would be confusing for a user to change his password but then have 

the new password rejected, because the login attempt was processed by a replica that had not yet 

received the password modification. The formal way to guarantee consistency on reads is to introduce 

a read quorum, just like the write quorum, and require that at least half of the sites return the same 

value. As expected, such an approach can introduce intolerable latencies, especially in a WAN-based 

scenario. 

Instead most systems use a read quorum of 1, obtaining a value from a single site. However, even if 

you ensure that the read is performed at the master, additional care is required to guarantee that the 

value read at the master will persist after a master failure. Applications that need such strong read 

guarantees should use Berkeley DB master leases as well as directing those reads to the master. 

Applications turn on master leases using the DB_ENV->rep_set_config method with the 

DB_REP_CONF_LEASE argument. A master lease is a promise by a replica not to participate in an 

election until the lease expires. If the master is directed to honor master leases, then it promises not to 

respond to a read request unless it holds leases from a majority of the replicas. The result is that the 

system guarantees that no new master will be elected while another site still believes that it is the 

master. When used in conjunction with a majority write quorum, master leases guarantee both that 

data read on the master is current and will persist, even in the presence of failures. 

Weaker forms of consistency 
Unsurprisingly, consistency and performance trade off against each other. Waiting for multiple sites to 

acknowledge a commit inevitably introduces a delay, but it strengthens the consistency model.  

Similarly, using master leases provides strong guarantees, but can introduce delays when reading and 

before an election.  This latter delay can make recovery after a master failure potentially slower. 

The default policies implemented by the Replication Manager provide a strong consistency model. 

Applications that want to optimize for performance above consistency can select a different set of 

options. When using the Replication Manager, applications enforce weaker semantics by changing the 

acknowledgement policy via the DB_ENV->repmgr_set_ack_policy method.  When the 

ack_policy is set to one of DB_REPMGR_ACKS_ALL, DB_REPMGR_ACKS_ALL_AVAILABLE, 

DB_REPMGR_ACKS_ALL_PEERS, or DB_REPMGR_ACKS_QUORUM, Berkeley DB enforces the 
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strong semantics described above.  Weaker policies, such as DB_REPMGR_ACKS_NONE, 

DB_REPMGR_ACKS_ONE, and DB_REPMGR_ACKS_ONE_PEER, provide transactionally consistent 

behavior at the replicas as well as in-order updates (i.e., a replica will never reflect the updates of a 

later transaction without reflecting the updates of all previously committed transactions). However, 

with these weaker semantics, it is possible for the system to lose transactions after a master failure. 

Eventual consistency is a specific, weaker consistency model in which no instantaneous guarantees are 

made, but which claims that when no updates occur for a long period of time, eventually all the 

updates will propagate through the system and all the replicas will be consistent.   By default, BDB-HA 

provides eventual consistency with any acknowledgement policy. Even if the system ends up in a state 

with multiple masters (for example, after a network partition), when the partition is resolved, 

participants will synchronize to a shared view of the data. However, in this scenario, it is still possible 

for a master to commit transactions that may later be undone (for example, when a partition is 

resolved). 

When BDB-HA uses master leases an application can never have two masters both applying updates to 

the database.  The leases on an old master that becomes partitioned will eventually expire and no new 

master will be elected before that expiration time. Once the old master's leases expire, it will be 

unable to apply updates and when it becomes reconnected with the rest of the group, it will receive a 

DB_REP_DUPMASTER error. In this configuration, the group will be eventually consistent, and each site 

will always see updates applied in the same order, which is a slightly stronger guarantee than is 

typically provided by eventually consistent systems. 

Maintaining Group Membership 
Enforcing varying forms of consistency requires that an application know the size of its quorums; 

knowing the size of the quorum requires knowing the number of participants in a replication group. 

While the Replication Manager tracks group membership automatically, applications using the Base 

API manage this information manually. 

In the Base API, applications that wish to user Berkeley DB to dynamically manage group membership 

can do so by tracking DB_REP_NEWSITE return values from DB_ENV->rep_process_message. 

When an application gets a DB_REP_NEWSITE return code, it should compare the identity of the site 

against its current list of known sites.  If the site is already known, no further action is necessary. 

However, if the application learns of a new site, it should establish a communication channel to that 

new site and map a locally unique environment ID to that site and communication channel. It should 

also update the number of sites participating in the replication group and its quorum requirements 

using the DB_ENV->rep_set_nsites method. 

When a site determines that it should remove a site from its group, it should also update its participant 

information accordingly. Such changes in group membership and quorum requirements, in particular, 

must be handled with great care. If a quorum value is increased prematurely (before a site is fully 

ready to participate in the system), then the system might block waiting for acknowledgements that 
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are not yet available. However, if the quorum is not updated when the new site begins participating, 

Berkeley DB can treat updates as persistent in the face of application failure, without having received 

sufficiently many acknowledgement. 

5. Special Case: Two-Site Replication Groups 
Commonly, applications use Berkeley DB to implement conventional master/slave backup.  In BDB-HA 

terminology, this is a 2-site replication group. While such a configuration is possible, there are certain 

limitations of which developers should be aware. 

A failover is when the backup assumes master responsibilities in the event of a master failure. In order 

to allow failover, the system must ignore election quorums, allowing only a single site (exactly half the 

total sites) to declare itself master. In this case, a network partition can cause both sites to believe they 

are master. When the network partition is resolved, new transactions committed on one of these 

masters are rolled back and are therefore not durable. 

By default the Replication Manager enforces the election quorum in a 2-site replication group. This 

behavior is known as 2SITE_STRICT because it requires both sites to be available to elect a new master. 

This prevents duplicate masters in the event of a network partition and ensures that committed 

transactions are durable. However, failover cannot occur if the master site crashes, leaving the 

replication group unavailable for write operations until the master site restarts. 

Master/slave applications that require failover can turn off 2SITE_STRICT behavior using the DB_ENV-

>rep_set_config method with the which parameter set to DB_REP_CONF_2SITE_STRICT 

and the onoff parameter set to 0. Applications that turn off 2SITE_STRICT behavior are likely to roll 

back some transactions committed during a network partition. 

Preferred master mode is another option for master/slave applications. One site is designated the 

preferred master and automatically assumes the role of master as much of the time as possible. 

Preferred master mode provides better availability than 2SITE_STRICT behavior because it allows 

failover. It provides more predictable durability than turning off 2SITE_STRICT behavior because it 

never rolls back transactions committed on the preferred master site. To use preferred master mode, 

the master site specifies DB_REP_CONF_PREFMAS_MASTER and the backup site specifies 

DB_REP_CONF_PREFMAS_CLIENT using the DB_ENV->rep_set_config method. 

 

6. What is Happening Under the Covers 
While developing your application, it is frequently useful to understand the different types of activities 

that might be happening in a replication group, so you can build your application to respond 

appropriately. The information in this section will be most helpful to you while you are building your 

application, but it may not be necessary in early phases as you design your application. 
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During most of your application's functioning, replication should be reasonably invisible, and the 

application can largely ignore it. However, there are certain times when your application may 

experience unexpected stalls or error returns or receive an event notification, and it's useful to 

understand how those happen and what an application should do about them. In particular, if your 

application implements any kind of timeout mechanism, it will be important for your application to 

understand when Berkeley DB internal processing might trigger an application timeout. 

We begin by outlining the different activities in which replication applications participate. We present a 

high level overview of what happens during each of these processes, so that the following error 

returns, events, and stalling opportunities make sense within a global framework. 

Starting up a replication application 
Applications make an explicit call to turn on replication; DB_ENV->repmgr_start for the 

Replication Manager and DB_ENV->rep_start for the Base API. Although a site may explicitly 

designate itself to be either a master or replica (client), we encourage developers to have sites call 

DB_ENV->repmgr_start with DB_REP_ELECTION or DB_ENV->rep_start with 

DB_REP_CLIENT, allowing the normal election mechanism to select a master. 

 When an environment starts up replication, Berkeley DB will block any other threads using the 

Berkeley DB library until startup completes. This is necessary to avoid other threads using the library 

when it is in an inconsistent state, either with respect to its status (master or replica), the state of the 

database, or any other form of processing. When a site starts up as a replica, it will perform internal 

cleanup and initialization (aborting prepared but not yet committed transactions and initializing client 

state temporary databases) and then announce its entry into the system. At that point, the site will not 

know the identity of the master, until a master announces itself. 

If a site calls DB_ENV->repmgr_start or DB_ENV->rep_start with DB_REP_MASTER to 

declare itself a master, then it will initialize its state and announce itself as a master to any replicas it 

knows about. 

Electing a master 

In the absence of a master, the Replication Manager will hold an election to find a master. Applications 

using the Base API will need to call the DB_ENV->rep_elect method to trigger an election. The 

BDB-HA election code implements the Paxos consensus algorithm using the following five phases. 

Phase 0: Short Circuit Elections 

First, if a site that thinks it is a master is told to hold an election, it attempts to short circuit the election 

by declaring itself master. 

Phase 1: Election Initialization 

If the site is not a master, it initializes the election. In doing so, the site determines the expected 

number of sites from which it should receive votes and it initializes its internal state to be in a new 

election. 
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Phase 2: Master Lease Timeout 

If master leases are configured, the site has to wait for its current lease to expire before holding an 

election. This wait will be perceived by the application as a delay, whose duration is dependent upon 

the lease timeout value specified by the DB_ENV->rep_set_timeout method using 

DB_REP_LEASE_TIMEOUT. 

Phase 3: Voting 

Next, we transition into a state where we ignore all incoming log records until the election terminates, 

and we begin participating in the election. We participate by incrementing our election generation 

number and record and transmit our vote, which consists of our identity, generation number, current 

end-of-log, and our site election priority. We then wait to receive votes. This wait may also be 

perceived by the application; its duration is determined by the election timeout value, configured by 

the DB_ENV->rep_set_timeout method using DB_REP_ELECTION_TIMEOUT. While we are 

waiting, we accumulate votes from other sites. Each time we receive a vote, we record the site that we 

currently believe should be the next master, according to the contents of each vote. If we receive votes 

from all participating sites before our timeout expires, we move on to the next phase. 

Phase 4: Picking a New Master 

If we have received enough votes, then we declare our current master designee the winner, and send a 

message to that site, indicating that we are voting for it. 

If we have not received enough votes to vote for a master, we still transmit a vote to our desired 

master, but we do not update all our internal state to reflect the new master. In either case, we then 

wait for a master to declare itself. 

During an election, all participating sites might experience delays, because writes will not progress 

while log records are being ignored (starting at the beginning of phase 3).  However, read requests can 

progress as normal. 

Failing over to a new master 
When a master fails or the replicas are unable to communicate with the master, the remaining replicas 

need to select a new master. The Replication Manager will automatically detect master failure and 

initiate an election. Applications using the Base API must detect master failure and explicitly initiate an 

election. Each site will go through the steps outlined above, and then, having learned the identity of a 

new master, each replica will participate in a synchronization exchange with that master before 

resuming normal processing. This synchronization process requires that the library block all Berkeley 

DB operations. Any in-progress transactions or operations will be allowed to complete, but no new 

operations will be allowed to begin until the site is synchronized with the master. Once again, this 

could be perceived as an application delay, whose duration is determined by how active the system 

has been (in terms of writes) and the length of time between a master failure and a successful election. 

Restarting after a site failure 
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After a site fails (regardless of whether it was a replica or master), startup is similar to starting up the 

application. First the application should open its environment and run recovery as it would normally 

do. Then it should start replication, following the steps outlined in the section on Application startup. 

Unexpected Error Returns 
In the presence of replication, there are several new error codes that can be returned from any 

Berkeley DB API call.  We list those error returns here, explaining what they mean and what an 

application should do about them. 

DB_REP_HANDLE_DEAD: The DB handle used for this call is no longer valid, due to a change in 

master and corresponding log synchronization. The application should close the handle immediately 

and reopen the database. 

DB_REP_LEASE_EXPIRED: The system is configured to use master leases and the requested 

operation could not be performed, because the master's lease had expired.  The application should 

optionally delay and then retry the operation. 

DB_REP_LOCKOUT:  The replication system is synchronizing with a new master.  The application 

should wait and then retry the operation. 

DB_REP_UNAVAIL: When using the Replication Manager, this is returned when a site is unable to 

join the replication group during startup because a master site is unavailable or there are insufficient 

replicas available to acknowledge the new site. Replication Manager applications should retry starting 

up after a delay. When using the Base API, this is returned when a site is unable to communicate with a 

master.  Base API applications should normally call an election. 

When using the Base API, the application provides a message processing loop that receives messages 

from the communication infrastructure, calling DB_ENV->rep_process_message on each BDB 

message.  The error returns from DB_ENV->rep_process_message provide information about 

what is happening inside the BDB library, indicating what actions an application must take. These error 

returns are listed below. 

DB_REP_DUPMASTER: BDB has detected that multiple sites are acting as masters.  Any master 

receiving this message should immediately change to a replica, calling DB_ENV->rep_start with 

the DB_REP_CLIENT flag. 

DB_REP_HOLDELECTION: Some site in the group initiated an election. If a replica receives this 

return, it too should initiate an election using the DB_ENV->rep_elect method.  A master should 

never observe a DB_REP_HOLDELECTION return value. 

DB_REP_IGNORE: Applications may get this return when they expect specific return values (e.g., 

DB_REP_ISPERM, DB_REP_NOTPERM), none of which are appropriate for the call in question, but 

where the behavior does not constitute an error case. The application should do nothing in response to 

this message, continuing as if the message had never been received. 
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DB_REP_ISPERM: This value is returned on replicas, indicating that the records processed by the 

current call have been persistently applied to the local environment. In most cases, the application 

need not do anything special. However, this is the only way that Base API applications learn that a 

transaction has been made persistent, so the replica may need to send an acknowledgement, 

containing the LSN returned, to the master. 

DB_REP_JOIN_FAILURE: This return value indicates that a replication site needed to reinitialize its 

databases and logs from a master, but had been configured to disallow automatic initialization.  In this 

case, the application should take whatever steps necessary to secure a copy of the database and logs. 

DB_REP_NEWSITE: This return indicates that the library has learned of the existence of a 

(potentially) new member of a replication group. The application should update its group membership 

data appropriately. 

DB_REP_NOTPERM: This return indicates that although a record that needs to be persistent was 

processed, it has not yet been made persistent.  The application may want to record the LSN of the 

record that was not able to be made permanent, so it knows that the associated transaction is not yet 

permanently committed.  When the site receives a later DB_REP_ISPERM return value with a larger 

LSN, it then knows that this operation has also been made persistent. 

Replication events 
In addition to error returns, applications are encouraged to configure a callback function for event 

notification by calling DB_ENV->set_event_notify. The following events are the most 

commonly handled events particular to the replication subsystem. 

DB_EVENT_REP_CLIENT: The local site is now a replication client (replica). The application should 

update its state appropriately. 

DB_EVENT_REP_ELECTED: The local site has just won an election.  Applications using the Base API 

should call DB_ENV->rep_start to reconfigure the environment as a master.  Applications using 

the Replication Manager need only update their application state to reflect their role as a master. 

DB_EVENT_REP_MASTER: This event is received after a site has completed initialization as a master 

site.  The application should ensure that it knows that it is a master, but should not have to make any 

other calls into the Berkeley DB library. 

DB_EVENT_REP_NEWMASTER: This event indicates that a new master has been selected and 

provides the identity of that new master.  The application should update its state to reflect the new 

master site. 

DB_EVENT_REP_PERM_FAILED: This event occurs only when using the Replication Manager. It 

indicates that the master did not receive enough acknowledgements to ensure a transaction's 

durability.  The operation has been flushed to the master's log, but if the master crashes, the 
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transaction may not persist. The application may want to store the LSN of the failed operation for later 

use, so it can keep track of which transactions are not yet permanently durable. 

DB_EVENT_REP_STARTUP_DONE:  The site has completed synchronization with the master and is 

now processing live log records.  The application may want to update its state to reflect that it has 

completed synchronization. 

Stalls 
Applications might also experience unexpectedly long delays in some cases that will be noticed by 

applications that configure timeouts in some way. 

On replicas, stalls can happen during startup, during elections, during synchronization with a master, 

and while a site is initializing its databases from a master (a special form of synchronization). 

If an application experiences an application timeout, it may first wish to determine if BDB-HA 

processing caused the timeout. If the application has been receiving events, it might already be aware 

of the potential for a stall. If the application has no expectation that it is in a state that might stall, it 

can use the DB_ENV->rep_stat method and examine the st_election_status field to 

determine if the site is currently involved in an election. It can examine the 

st_startup_complete field to determine if the site is delayed in starting up or synchronizing with 

a new master. 

If none of those conditions explains the delay, then the application should assume that something 

other than Berkeley DB is responsible for the delay. 

In general, the master site should not experience stalls.  Individual operations may block awaiting 

responses from a suitable number of peers, but other threads should continue to make forward 

progress. Similarly, threads may block due to contention on transactional locks, but this behavior is no 

different from existing transactional applications. Berkeley DB does delay the completion of checkpoint 

operations to allow replicas to synchronize their caches without causing long delays; an application 

might perceive this as a stall if it notices that a checkpoint takes a long time to complete.  If this delay is 

problematic, the application can shorten it by calling DB_ENV-

>rep_set_timeout(DB_REP_CHECKPOINT_DELAY) with a delay value shorter than the 

default 30 seconds. 

 Internal initialization 
While attempting to synchronize with a master, a replica might learn that the master no longer has the 

necessary log files. In that case, the replica will attempt to copy the existing databases and subsequent 

log files from the master. This reinitialization of a replica is a potentially long-running sequence of 

operations. The replica first requests a list of databases from the master. That list contains a 

description of each database and the number of pages in that database. The replica then proceeds to 

request from the master all the pages of each file. Once all the database pages have been transmitted, 

the replica then requests all newly written log records so that it can apply any transactions that 
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completed after the backup began. Once all the databases and log files have been transferred, the 

replica runs recovery and synchronizes with the master. 

If applications do not want such database copying to happen automatically (perhaps because the 

application has a high bandwidth channel it can use to copy the needed data), the application can 

disable automatic initialization using the DB_ENV->rep_set_config method with the 

DB_REP_CONF_AUTOINIT value. 

However, if the application permits automatic initialization, it must be prepared to observe potentially 

long periods of unresponsiveness on a replica while it obtains copies of its database and log files. 

Internal initializations are most likely after a replica has been down for a long time, or if an application 

managing its own log reclamation removes a log file before all sites in the replication group is finished 

with it. 

Becoming a master 
When a site becomes a master, it becomes responsible for applying all updates. Therefore, when a 

master receives a DB_EVENT_REP_MASTER, the application must assume responsibility for handling 

database update requests. 

7. Conclusion 
Berkeley DB High Availability provides fast, reliable, and scalable data management, embedded within 

an application. It is highly configurable, providing an effective data management solution for devices, 

data-centers, and wide-area distribution.  

 


