Using Java Components in Oracle Forms Applications

An Oracle Technical White Paper
January 2000

ORACLE

INTRODUCTION

Oracle Forms Setver is an internet application development tool and runtime platform. Using a
unique, scaleable and highly optimized architecture, Oracle Forms Server enables you to develop and
deploy applications using thin client technology in a scaleable and efficient way without sacrificing
the capabilities of a rich user interface. Moving applications to the web no longer means you have to
downgrade the user interface - Oracle Forms Server supports all the rich user interface components
such as poplists, list-of-values, auto-reducing lists, etc. typically found and used in more traditional

desktop bound applications in Web based applications.

Oracle Forms Setrver 61 extends the richness and capabilities of the user interface by allowing you to
embed and use your own custom Java components in the application. This integration of Oracle
Forms Server 6i and custom Java code is achieved through the use of the Pluggable Java
Components (PJC) interface that has been exposed in the 61 release. Using the PJC interface it is
possible to incorporate off the shelf JavaBeans into an application, to modify the default behavior of
one of the standard Developer Java UI components, or to completely replace one of the standard
Developer Java Ul components with a custom Java component that displays and behaves in a

completely different way.

This paper focuses on how to build Pluggable Java Components (PJC) and to use them within

Oracle Forms Server 61. applications.

ORACLE FORMS SERVER ARCHITECTURE

Oracle Forms Server enables applications to be run as internet applications through the use of a
unique Java based client and application server architecture. This architecture employs the use of a
powerful application server to execute the application logic and a generic Oracle Forms Server Java
client that is able to render the user interface for any Oracle Forms application. The Oracle Forms
Server Java client facilitates the interaction between the end user and the application running on the
application server using an intelligent message passing mechanism which utilizes caching and

compression to reduce network traffic.

This paper will only address the relevant portions of the architecture as they pertain the use of PJCs

within Forms.

Using Java Components in Oracle Developer Applications 1
January 2000

Oracle Forms Java Client
Oracle Forms Server Client Manager
Engine/Message layer

andler.

‘Handler

'Handler

Figure 1: Oracle Forms Server Architecture

THE ORACLE FORMS SERVER JAVA CLIENT

The Oracle Forms Server Java client is a generic Java applet that is able to display the user interface
of any Oracle Forms application and respond to user interactions in a highly optimized manner. A
description of the user interface is transmitted from the Oracle Forms Server to the Oracle Forms
Server Java client when the application is first started and as it is run. The Oracle Forms Server Java
client renders itself in accordance with the user interface description contained in the messages. As
the user interacts with application, messages are passed back and forth between the Oracle Forms
Server Java client and the Oracle Forms Server using an intelligent synchronization mechanism. This
intelligent synchronization mechanism enables the messages that are being created by both the
Oracle Forms Server Java client and the Oracle Forms Server to be buffered and then transmitted as
a compressed bundle at appropriate synchronization points in the application. The messages are
cached on both the Oracle Forms Setver Java client and the Oracle Forms Server which enables only

the changes made to the messages to be passed rather than the entire message.

To provide this message buffering and caching capability, the Oracle Forms Server Java client
contains a sub component called the dispatcher that handles the receipt and transmission of all
messages between the Oracle Forms Server Java client and the Oracle Forms Server. The dispatcher
will receive messages sent to the client from the application running on the Oracle Forms Server and
then route those messages directly to the specified user interface component. The user interface

component will then interpret and act on the message. When a user interface component needs to

Using Java Components in Oracle Forms Applications 2
January 2000

send changed data or the details of an event occurrence to the running application on Oracle Forms
Setrver it does so by creating a message and handing it to the dispatcher. The dispatcher will place
the message into the message buffer and cache for storage and diffing until it is forwarded to the

server at an appropriate synchronization point.

ORACLE FORMS JAVA Ul COMPONENTS

Each Oracle Forms native Ul component has an equivalent representative in Java. This enables the
same application to be run in either client/server mode or in internet mode unchanged. The Java
representations of the Oracle Forms native UL components are created using the Java lightweight
component model. Using the lightweight component model means that the Oracle Forms Java Ul
components are rendered completely, rather than relying on the peer UI objects provided by the
windowing system of the client operating system. This means that the Oracle Forms Java Ul
components appear visually the same and have similar behavior across different client operating

systems.

Each Oracle Forms Java UI component is implemented using two different classes; a Handler class
and a View class. This two class representation is a variation of the standard Model-View-Controller
design (MVC) pattern but still adheres to the general goal of separating the data storage aspect from
the visual display aspect. In the Oracle Forms Server architecture the Handler class acts both as the

Model and Controller whilst the View class acts as the View.

The Handler class is responsible for both maintaining the current value of any data and controlling
the visual representation of the data. All server based interaction with the View class is conducted
through the Handler class. The Handler class may register itself as an event listener for events that
are generated by the View class. The Handler class itself interacts directly with the message

dispatcher to send and receive messages to and from the Oracle Forms Server.

The View class is singularly responsible for presenting the data to the user in some manner and
handling user input. The View class may allow the data to be changed by the user. This is
dependent on the type of UI component the View class is representing and the properties it has set.
The View class propagates any data changes made back to the Handler class using the Java event

model.

THE IVIEW INTERFACE

To enable the Handler class to interact with and control the View class, the View class implements a

Using Java Components in Oracle Forms Applications 3
January 2000

public interface; oracl e. forms. ui.|View This interface describes all of the methods the
Handler class uses to manage and interact with a View class including lifecycle, property

manipulation, event handling and component display methods.

Any Java class that is to be used within the Oracle Forms Server Java client must provide an
implementation of this interface. All Oracle Forms Java Ul components implement this interface.
Because a Pluggable Java Component is just a different View class, it must also provide an

implementation of this interface.

Figure 2 contains the definition of the IView interface.

public void init(lHandl er handler);

This method is called immediately after the object is constructed. This method passes the object a
reference to it’s Handler and gives it a chance to perform any initialization that it requires.

public void destroy();

this method 1s called when the object is no longer required. This method gives the object a chance to
free up any system resources, that it holds.

public Object getProperty(PropertylDid);

This method returns the value of the requested property. Each View class must support the
properties listed in the following sections. If the requested property is not supported by this Object,
this method must return null.

public bool ean setProperty(PropertylD id, Object value);

This method sets the value of the specified property. Each View must support the properties listed
in the following sections. If the requested property is not supported by this Object, this method
must return false, otherwise it must return true.

public void addLi stener(C ass type, EventListener |istener);

This method adds a listener of the specified type. The types of Listener that each View type must
support is listed in the following sections.

public void renovelLi stener(C ass type, EventListener |istener);

This method removes a listener of the specified type. The types of Listener that each View type must
support is listed in the following sections.

public void paint (G aphics g);

In this method, the View must paint itself, using the AWT Graphics object provided. For subclasses
of Component, this method is called by the Component’s Container. For other Objects this method
will be called by the Object’s Handler

Using Java Components in Oracle Forms Applications 4
January 2000

public void repaint(Rectangle r);

In this method, the View must invalidate the rectangle provided. If the rectangle is null, the entire
object should be invalidated.

Figure 2: the | Vi ewinterface definition

COMPONENT PROPERTIES

Properties are used to specify the required behavior and state of a component. The behavioral
aspect defines how the object interacts with the running environment. An example of this is the
CAN_TAKE_FQOCUS property for a Textfield. If this is set to true then the component will be able to

accept the user input focus. If this is set to false then the component will not accept the focus.

Other properties can be specified to define and manipulate the state of the component. Using these
properties controls how the object displays. Examples of this type of properties would be properties
such as BACKGROUND_COLOR which would define how the component looked and FONT which

would specify the font used when the component displays text strings.

A subset of the property set exists that is common to all Oracle Forms Ul components. In addition
to this subset of common properties, each individual Ul component type has additional properties

that it supports that specify additional behavior and state for that specific component type.

An Oracle Forms Ul component must support the common set of properties as well as those

properties that are specific to the type of UI component it is.

Property values are manipulated through the use of a setter method. The values of properties are
inspected using a getter method. These conventions are taken from the JavaBean naming standard.
All Oracle Forms Java UI components allow the properties that are defined for it to be set and get.
This is done through the use of the set Property and get Property methods defined in the

I Vi ew interface.

Fach property registered for a Oracle Forms Java UI component is created and stored within the ID
class. This class, oracl e. forms. properties. | D stores a static instance of the property which

can be passed around and accessed from the different methods in the | Vi ewinterface.

The ID class contains a static r egi st er Pr operty method that allows developers to create and
register additional properties. When a new property is required by a PJC, the
I D. registerProperty method is invoked with the name of the new property as a parameter.

The r egi st er Property method will register the new property of the given name with the ID

Using Java Components in Oracle Forms Applications 5
January 2000

class and return a reference to it that can then be used within the Java class to identify the property at

a later point.

/**

* Forms property registration - used to set the clock face col or
*/

public static final ID p_FACE = ID.registerProperty("FACE");

Figure 3: Registering a new property

The name used to create the new property is used to identify the propetty from the PL/SQL
environment of Forms using the Forms built-ins, allowing it to be programmatically manipulated by

a running application.

SET_CUSTOM_ITEM_PROPERTY(‘CLOCK_BEAN_ITEM’, ‘FACE’, ‘WHITE");

Figure 4: Using new properties from PL/SQL

A reference to the ID class is passed to the set Property and get Property methods defined by
the IView class to identify which property is to be set and/or get on the Oracle Forms Java Ul
component. The set Property orget Property method performs the required actions to set or

get the property from the PJC.

/**

* Set the property referenced in pid to the Object value

*/
public boolean setProperty(ID pid, Object value)

/**

* Get the value of the property referenced in pid.

*/
public Object getProperty(ID pid)

Figure 5: The setProperty and getProperty methods

Using Java Components in Oracle Forms Applications 6
January 2000

When the new property is required to be set/get, the ID class identifying the additional property is
passed to the setProperty/getProperty method on the JavaBean or PJC just as if it were a default
property. This enables PJCs to be operate in exactly the same manner as the Oracle Forms Java Ul

components.

EVENTS

The Java event model is used by Oracle Forms Java UI components to inform their Handlers (and
other interested parties) when something of interest has occurred. The Oracle Forms Java Ul
component will act as the event source and will send (or fire) the event off to all event listeners. The
Handler (or other interested party) will act as an event listener and will receive (or handle) the event.
When an user event occurs, the Oracle Forms Java Ul component will fire the event on the event
listener by invoking a method on the listening object. This same event model is used by PJCs to

interact with their Handler classes.

The | Vi ew interface defines a generic method for handling the addition and removal event
listeners.. When a component wishes to be notified of events that are generated by the Oracle

Forms Java UI components, it registers as an EventListener with the component..

| Vi ew defines a single event listener registration method, addLi stener(Cl ass type,

Event Li stener |istener) that components use to register themselves to be notified of events
when they occur. The type of events that the event listener is listening for is indicated by the first
parameter. When this method is invoked the Oracle Forms Java UI component stores the listener
object in some internal storage object. When the event type for which the listener has registered
occurs, the component fires the event by invoking the appropriate method on all listeners that have

registered for that type of event.

| Vi ew defines a single event listener removal method, renoveli stener(Cl ass type,
Event Li stener |istener) that components use to remove themselves from being notified
when an event occurs. When this method is invoked the Oracle Forms Java Ul component removes

the listener object from the list of registered listeners it fires events on.

A common set of event listeners are used by all of the Oracle Forms Java Ul components and PJCs.
In addition to the common set of event listeners, additional event listeners which are specifically
related to the type of the UI component may need to be supported. For example, a Ul component
that is to be used as a Text Fi el d item should provide support Text Li st ener event listeners,
while a Ul component that is to be used as a CheckBox item should provide support for

It enli st ener event listeners.

Using Java Components in Oracle Forms Applications 7
January 2000

USING JAVABEANS IN ORACLE FORMS APPLICATIONS

Oracle Form Builder 6i enables you to integrate and use standard JavaBeans in your applications.
The JavaBean is instantiated by the Oracle Forms Server Java client at runtime which enables it to be
used by the application. A JavaBean is simply an unspecialized type of PJC. Unlike other PJCs (such

as a Button which knows about being pressed) the JavaBean has no assumed behavior.

A JavaBean is specified for use in the Form Builder using a new Forms item; BeanArea A
BeanArea item is a special instance of a custom item. A BeanArea item has a property,
Implementation Class. This property is used to specify the fully qualified name of the Java class that
the BeanArea item should instantiate. When the BeanArea has the implementation class specified,

the Form builder displays the JavaBean within the BeanAreaitem in the Layout Editor.

A JAVABEAN BECOMING A MANAGED COMPONENT

A JavaBean is a PJC which is of an unspecialized type. Like all other PJCs, in order to be able to be
managed and controlled by the Forms application, an implementation of the | Vi ew class must be
provided. This can be done directly by the JavaBean class itself or for the JavaBean through the use

of a helper class as outlined below:

* The JavaBean can implement the IView interface and provide implementations for each of the
methods defined within it. This suits situations where you are creating the JavaBeans from scratch
(or have access to the source code) and where the JavaBean will only ever be used in a Forms
environment. A convenience class has been provided to make this task easier. The
oracl e. forns. ui . VBean class provides an empty implementation of the IView interface.
You can detive the JavaBean from this class and provide additional method implementations
which overtide the default method implementations to customize the behavior.

* You provide a wrapper class can which acts as a broker between the JavaBean and Forms. The
wrapper class provides the implementation of IView using either of the two methods above and in
turn invokes the appropriate methods of the JavaBean when required. This situation is the most
suitable for the use of ‘off the shelf JavaBeans whete the source code is not available and the
JavaBean is intended for general use.

IMPLEMENTING THE | VI EWINTERFACE DIRECTLY

When you are creating or modifying a JavaBean for the express purpose of using it in a Forms

environment, then the JavaBean class itself may provide the implementation of the IView interface.

This can be achieved in the following two ways.

Using Java Components in Oracle Forms Applications 8
January 2000

Declaring that the class implements the IView interface when specifying the class name for the
JavaBean. This requires that a method implementation be provided for each of the methods defined

in the IView interface.

public class C ockW apper
i mpl enents oracle.forns.ui.lView

Figure 6: class definition implementing IView interface

Making the JavaBean a subclass of the or acl e. f or ms. ui . VBean class. The VBean class
provides an implementation of the IView interface. You only need to provide implementations of

methods where the default functionality is to be overriden.

public class C ockW apper
extends oracl e. forns. ui.Vbean

Figure 7: class definition using the VBean convenience class

By creating the class as a subclass of the VBean class the amount of work you are required to do to
provide an implementation of the | Vi ew interface is reduced since only those methods that need to
be overridden must be developed. This may not always be possible if the JavaBean itself is a

subclass of another class.

USING A JAVABEAN WRAPPER CLASS

If you wish to integrate an existing JavaBean into your application, the best way to approach this is
to create a simple wrapper class which acts as an intermediary between Forms and the JavaBean
itself. The wrapper class provides the glue to map the JavaBean to the Oracle Forms Setver Java
client. The wrapper class instantiates the JavaBean and provides the implementation of the IView
interface as requited. The wrapper class itself may directly implement the IView interface or it may
subclass from the VBean class and simply provide the required methods to override the default

implementations contained in the VBean class as discussed above.

The wrapper class acts as a delegation component by sitting between the Forms applet and the

JavaBean. When the wrapper class is initialized, the wrapper class creates and stores a reference to

Using Java Components in Oracle Forms Applications 9
January 2000

an instance of the JavaBean. The wrapper class provides the implementation of the getProperty and
setProperty method so that when Forms calls them to set a property on the JavaBean, the wrapper
class delegates the operation to the JavaBean by calling the appropriate getter and/or setter method

on the JavaBean.

The Java code snippet below shows the constructor for the wrapper class and the actions it performs

to create and add an instance of the JavaBean to the wrapper.

/**
* The constructor for the wapper class which instantiates the
* JavaBean conponent and adds it to the w apper container.

**/

public C ockW apper ()
{

try

{
nCl ock = new C ock();

nCl ock. set Vi si bl e(true);
nCl ock. set Enabl ed(true);
add("Center", (Conponent) nC ock) ;

Il

/1 start the clock running ...
Il

nCl ock. start();

/1

/'l register this wapper as a listener for the clock Al arns
/1

nCl ock. addAl ar nmLi st ener (t hi s);

}
cat ch(Exception e)

{
e.printStackTrace();

Figure 8: the ClockWrapper initialization tasks

Using Java Components in Oracle Forms Applications 10
January 2000

SETTING AND GETTING PROPERTIES ON THE JAVABEAN

The properties of the JavaBean will be controlled via the setProperty and getProperty' methods
defined in the IView interface and implemented by the JavaBean or the wrapper class. The
setProperty method will be invoked when a property on the JavaBean is to be modified or initially
set. When a running application needs to get the value of a JavaBean property then the getProperty
method will be invoked. The desired property will be specified as parameter to the setProperty or

getProperty of type ID.

When setProperty is invoked the method call will be passed two parameters; the first parameter of
type ID indicates the desired property that is to be set. The second parameter, of type Object
contains the value the desired property needs to be set to. The method call returns a boolean value
indicating the result of the desired operation. The value of the desired property is declared as an
object of type Object. The setProperty method implementation must cast this Object type to the

type required for the JavaBean property.

The setProperty method can determine what property is to be modified by using an if based
statement, comparing the input parameter property ID with the list of default and additionally

registered properties that it can handle.

public bool ean setProperty(ID pid, hject val ue)
{ bool ean result=true;
i f(pid == p_CLOCKRADI US)
nCl ock. set Radi us(| nt eger. parselnt ((String)val ue));
élse i f(pid == p_BACKGROUND)
nCl ock. set Col or ((mCl ock. BACKGROUND) ,
Utils.getColorFronttring((String)value));
else if(pid == p_FACE)
nCl ock. set Col or ((mCl ock. FACE)
Uils.getColorFronttring((String)value));

/1
/1 handl e other custom properties here
/1

! The getProperty method for BeanArea items is not available in Oracle Forms Server release 6.0.5. since there
is no PL/SQL built-in. It will be enabled from Oracle Forms Server Release 6.0.6 onwards with a
cotresponding PL/SQL built-in.

Using Java Components in Oracle Forms Applications 11
January 2000

return result;

Figure 9: setting JavaBean properties from the wrapper class

When getProperty is invoked the method call will be passed a single parameter of type ID which
indicates the property for which the value should be returned. The method call will return a value of
type Object which represents the value of the desited property on the JavaBean. If the JavaBean
property is a Java primitive such as in int, char, boolean, etc. then the getProperty method must

convert these to a reference type for return to the calling object.

/**

* Method in the IView interface that

* allows the value of a specific property to be set to a

* specific value by the Forns application when conmponent

* s required to be initialized.

* @aram pi d the properties value that is to be returned
* @eturn the value of the property that was specified

*/

public Cbject getProperty(lD pid)
{

bject result = null;

i f(pid == p_CLOCKRADI US)

result = new I nteger(nC ock. get Radi us());
}
el se

result = super.getProperty(pid);

return (Qbject)result;

Figure 10: getting JavaBean properties from the wrapper class

INVOKING JAVABEAN METHODS FROM FORMS

The invocation of methods contained in the JavaBean is achieved using a similar approach to setting
the properties of the JavaBean. Using the ID class, the methods are registered as properties with an
identifying name. The identifying name is used from the PL/SQL built-in to indicate to the
JavaBean that a specific method is to be invoked using the SET_CUSTOM_ITEM_PROPERTY
built-in. The setProperty method is called with the ID of the registered method. The setProperty

Using Java Components in Oracle Forms Applications 12
January 2000

method determines what JavaBean method to call based on the ID parameter.

The following Java code snippet shows the calling of a method on the JavaBean from the

setProperty method.

public bool ean setProperty(ID pid, hject val ue)
{ bool ean result=true;
el se if(pid == m CLOCKSTOP)
md ock. st op();
}él se if(pid == m CLOCKSTART)

nCl ock. start();
}

I/ handle other properties here

}

Figure 11: mapping JavaBean methods in the wrapper class

The following PL/SQL code snippet shows how to invoke the JavaBean method from Forms. The
PL/SQL built-in SET_CUSTOM_PROPERTY takes the name of the Forms item containing the

JavaBean, the character string representing the desired property and the value of the property.

SET_CUSTOM_ITEM_PROPERTY('CLOCK_BEAN_ITEM','CLOCKSTOP',0);

Figure 12: invoking JavaBean methods from PL/SQL

CONTROLLING THE JAVABEAN FROM FORMS

A JavaBean that is used in an Oracle Forms application can be programmatically controlled from the
application using the PL/SQL SET_CUSTOM | TEM _PROPERTY built-in. The built-in requires
you to specify the name of the property and the value to be assigned to that property. The built-in
uses the name that the additional property was registered with to identify the property to be set. The
built-in causes the set Property method to be invoked on the JavaBean with the matching | D

class for the property name and the value the property is to be assigned.

Using Java Components in Oracle Forms Applications 13
January 2000

The following code shows the use of the PL/SQL built-in, SET_CUSTOM | TEM PROPERTY to

change the value of the animation rate of the JavaBean.

SET_CUSTOM | TEM PROPERTY(‘CLOCK_WRAPPER_BEAN’, ‘FACE’,:FACE);

This results in the set Property method being invoked on the JavaBean wrapper. The
parameters passed to the method will be a reference to the property instance that was registered with
the name ‘FACE’ and a String representation of the value of the FACE item. The JavaBean
set Property implementation converts the Object parameter to the required type and invokes the

appropriate method on the JavaBean.

COMMUNICATING WITH FORMS FROM THE JAVABEAN

A JavaBean can communicate with a running Forms application by creating and dispatching custom
events. This is facilitated by a Forms application registering an event listener of type
Cust onli st ener with the JavaBean through the JavaBeans’ Handler class. The JavaBean must
provide support for this event listener if it is to fire events on the form (the VBean class provides
support for this) When a CustonEvent is created, it is used when invoking the
cust omAct i onPer f or med method on the tegistered Cust onmEvent listeners or when
invoking the di spat chCust omEvent provided by the VBean class.

To indicate to Forms which event has occurred, an additional property should be registered with the
ID class for each of the different events that the JavaBean will send back to Forms. The new ID

reference that represents the event is used when constructing a new Cust onEvent object.

JavaBeans pass data with the event back to forms via the Handler object. The Handler object
contains a Set Property method which the JavaBean uses to set values of any identified

properties. Any number of properties can be set on the Handler to return event data.

To notify the event listeners that an event has occurred, the VBean class provides a
di spat chCust onEvent method. This method invokes the customActi onPerf ormed
method on each of the event listeners that have registered with the JavaBean. If the | Vi ewinterface
is being implemented directly, the you must provide event listener registration and removal methods
for the Custonli stener class. A method to fire the event on each of the registered event

listeners is also required.

The following Java snippet of code shows the construction of a Cust omEvent. The Handler is

Using Java Components in Oracle Forms Applications 14
January 2000

populated with the event data dispacthed using the method supplied with the VBean class.

/**

* Method in the AlarnlLi stener interface that is
* called when an Alarmis fired on the O ock JavaBean.
* @aram ae the details of the alarmthat was fired

**/

public void al arnFired(Al arnEvent ae)
{

create the Forns customevent and set it to the alarmdate

-~~~

y

Cust onmEvent ce = new Cust onEvent (nHandl er, e_ ALARVFI RED) ;
nHandl er . set Property(p_ALARMII ME, ae. toString());
di spat chCust onEvent (ce) ;

~_—— S~~~

cat ch(Exception e)

e.printStackTrace();

}
}

Figure 13: Creating and Dispatching a Cust onEvent to Forms

When a CustonkEvent is fired from the JavaBean it causes the
WHEN_CUSTOM_ITEM_EVENT trigger on the BeanArea item in Forms that houses the
JavaBean to be raised. The name of the event is stored in the system variable
:SYSTEM.CUSTOM_ITEM_EVENT. The Event data sent by the JavaBean is available to the
Forms application via the PL/SQL built-ins GET_PARAMETER_LIST and
GET_PARAMETER_ATTR.

The PLSQL snippet code below shows the WHEN_CUSTOM_ITEM_EVENT trigger code used
to handle CustomEvents dispatched from a JavaBean. The associated event data is also extracted
from the CustomEvent. In this case the JavaBean is sending information about the mouse button

that was pressed.

PRCCEDURE handl eEvent | S
event Nane varchar2(20) := :systemcustom.itemevent;

event Val ues Par anLi st ;

Using Java Components in Oracle Forms Applications 15
January 2000

event Val ueType nunber;

tenpString varchar2(4000);

BEG N

IF (eventName = ‘ALARMFIRED’) then
eventValues =
get_parameter_list(:system.custom_item_event_parameters);

get_parameter_attr(eventValues,’ ALARMTIME’,eventValueType,temp
String);
displayAlert(‘Alarm Fired @ * || tempString);
END IF;

END;

Figure 14: handling Custom Events in PL/SQL

CREATING AND USING PLUGGABLE JAVA COMPONENTS

A PJC can be used in place of a default Oracle Forms Java UI component in an application and be
treated as if it were the original component. This type of PJC is of a specialized nature; it has
requirements it must meet such as the types of properties it supports and the event listeners it
operates with. The PJC is used as a replacement View class for a Forms item. This enables the
default functionality and behavior of the standard UI component type to be changed to suit the
application. This can be achieved through the modification of one of the Oracle Forms Java Ul

component through subclassing or by using a separate Java class.

The PJC when used in an application is treated in exactly the same manner as the default Oracle
Forms Java component. From the running application’s perspective, there is no change. All
interaction with the Oracle Forms Server and the Oracle Forms Setver Java client is handled as if the
PJC were a standard Oracle Forms Java Ul component. The running Forms application will pass
pass properties to the PJC via it’s Handler class which defines how the PJC should look and behave.

The PJC must raise events on the running Forms application via it’s Handler class when the user

Using Java Components in Oracle Forms Applications 16
January 2000

interacts with the application, for example, when a checkbox item value is changed.

SPECIFYING THE USE OF A PJC IN THE APPLICATION

Each Oracle Forms UI component has a property named Implementation Class. This property by
default has a value set to be the Oracle Forms UI Java class supplied with the product that represents
the specific item type. The default Implementation Class value is not displayed in the property
palette. To use a PJC, the Implementation Class property for an item should be set to the fully

qualified name of the PJC Java class that is to be used for that item.

PLUGGABLE JAVA COMPONENTS REQUIREMENTS

All PJCs that replace standard Oracle Forms Java UI components act in place of the native control
that they replace. The PJC is treated in exactly the same manner as the standard Oracle Forms UI
Java component. As was discussed in earlier sections, in order to be a PJC, an implementation of the
IView interface must be provided and it must support a defined set of properties and event listeners

that are specific to the type of user interface item it is being used for.

PROPERTIES

As with the JavaBean implementation, all PJCs must also provide support for the setting and getting
of properties. The setting and getting of the properties ate done through the set Property and
get Pr operty methods defined in the | Vi ew interface.

The properties a PJC must provide support for are very specific to the type of user interface item the
PJC 1s to become when it is deployed in an Oracle Forms Server application. The Oracle Forms
online documentation accessible from the Oracle Forms Builder contains the definitive list of the

properties supported for each user interface item.

EVENTS

For PJCs, events are very important since this is the way that it communicates with the running
Forms application on Oracle Forms Server via its Handler class. The Oracle Forms Server Java
client uses that standard Java event model; event listeners register interest in the events that a class
generates. When an event occurs, the class informs each of the listeners that have registered interest
via the invocation of a known method. The Handler registers as a listener for events it is interested

in observing with the View class, in this case a PJC .

Using Java Components in Oracle Forms Applications 17
January 2000

The View class must provide methods to allow for the registration and removal of event listeners.
The Handler class calls the addLi st ener method to notify the class that it is interested in an
event type and it calls the renoveli st ener method to notify the class that it is no longer

interested in the event type.

The addLi st ener and renoveLi stener methods are generic listener methods. They
provide a reference to the class which is to be registered as a listener and also a reference to the type
of events the listener is interested. This enables the PJC to have multiple listeners of different types

to registered for different event types.

The types of events a PJC must provide support for are very specific type the type of user interface
item the PJC is to become when it is deployed in an Oracle Forms Server application. For example,
an Oracle Forms checkbox item will register a listener of type Item with the View class. If a PJC is
to be used as a checkbox item, it must provide support for listeners of type Item and must notify the
registered listeners when an ItemSelected event occurs. The Oracle Forms online documentation
accessible from the Oracle Forms Builder contains the list of events supported for each user

interface item.

/**

* Method in the IView interface that
* allows a |istener object to be registered to listen
* for events that occur of a certain type specified
* by the type paraneter.
* @aramtype the type of the Listener that is being registered
* @aramlistener the object to be registered as the |istener
*/
public void addLi stener(C ass type, EventListener listener)
{
if (type == IltenListener.class)
this.addltenli stener((ltenlistener)listener);
el se
super. addLi stener (type, listener);

Figure 15: Handling Listener Registration in a PJC

CREATING PLUGGABLE JAVA COMPONENTS

There are two ways a Java you can create a PJC for use within Oracle Forms applications. You can

Using Java Components in Oracle Forms Applications 18
January 2000

customize the functionality of one of the standard Oracle Forms Java UI components through the
use of subclassing or you can create a completely custom PJC by providing an implementation of the

IView interface and support for the necessary properties and events.

CREATING PJCs vIA SUBCLASSING

When you wish to modify the behavior of a native Oracle Forms Java UI component then this can
be achieved by creating a new PJC as a subclass of the component you wish to modify. Through the
use of subclassing, the PJC will inherit all of the behaviors and properties of the native component.
It is then able to modify them by providing different implementations of the methods from the

superclass.

All of the Oracle Forms Java Ul components may be subclassed. The Oracle Forms Java UI

components are all prefixed with the letter YV’ as seen in Figure 16.

ORACLE FORMS JAVA UI CLASSES

oracl e. forns. ui . Vbean
oracle.forms. ui.VButton
oracl e. forns. ui . Vcheckbox
oracl e. forms. ui . VConmboBox
oracle.formns. ui.Vlnmage

oracl e. forns. ui . VPopLi st
oracl e. forns. ui . VRadi oButt on
oracle. forns. ui. VRadi oG oup
oracl e. forns. ui . VText Area
oracle.forms.ui.VTextField

oracl e.forns. ui. VTLi st

Figure 16: Oracle Forms Java Ul Classes

To modify the behavior of the native Oracle Forms Java Ul component, the PJC provides alternate

implementations of the methods in the native component.

An example of a PJC that uses subclassing is where a Web style rollover button is desired to be used

Using Java Components in Oracle Forms Applications 19
January 2000

within an Oracle Forms Server application. The Oracle Forms Java UI Button component provides
support for displaying an image on a button but it does not provide the support to have the image
change when the mouse moves on and off of the button. For this example, a new class
Rol | over But t on would be created as a subclass of the or acl e. f or ns. ui . VBut t on class.
The Rol | over But t t on class would inherit all of the default behavior from the VBUt t on class.
Additional functionality would be provided in the class to detect the mouse moving over the button
component using the MouseLi st ener interface and to change the image which was being

displayed on the button.

PJCs that are created as subclasses of Oracle Forms Java UI components do not need to provide
support for all of the properties that are utilized by the item type since this has already been
implemented by the parent class. If the PJC needs to override some of the default behavior that
occurs when a specific property is set then the PJC can provide an implementation of the
set Property method and intercept the setting of the property. The developer need only provide
an implementation for the specific property they wish to work with and can implement whatever
functionality is required. The developer does not need to provide an implementation for each of the
propeties. A PJC should call the Set Property property method of the super class to handle the

properties in which it is not interested in.

/**
** |Inplenmentation of IViewinterface
** @aramid - property to be set.
** @aram val ue - value of the property id.
** @eturn - true(if the property could be set)
** @Bee | View
*/
publ i c bool ean setProperty(ID pid, Object val ue)
{
bool ean success = true;
if (pid == 1MGCGE_NAME_OFF)
{
m mageNaneOf f = (String) val ue;
| oadl mage(OFF, ml nageNaneOr f) ;
}
else if (pid == | MAGE_NAME_ON)
{
m mageNanmeOn = (String)val ue;
Using Java Components in Oracle Forms Applications 20

January 2000

| oadl mage(QON, nl nageNaneOn) ;
}

/1 let VButton class handle all other properties
el se

{

success = super.setProperty(pid, value);

}

return success;

Figure 17: Setting Properties in the PJC

CREATING CusTtoM PJCs

In addition to modifying the behavior of existing Oracle Forms Java UI components, you can create
PJCs that have no relation to any existing component and look and operate in any way that you want.
You can create an entirely new style of View class that suits your particular applications
requirements and have it operate within the application as a native control. The PJC will be of a

specific Forms Ul item type, such as a Checkbox, Textfield, etc.

In this case, you are entirely responsible for managing the interactions between the PJC and its
Handler class, since there is no default behavior inherited from a parent class which can be utilized.
The PJC must provide a full implementation of the IView interface. The PJC must operate within
the standard Forms model of setting and getting of properties and of notifying the handler when
events occur using the standard event model. The list of properties and events that must be

supported by the PJC are determined by the type of Ul item the PJC is replacing.

An example of a custom PJC is the case of an image style CheckBox, where the states of the
CheckBox are represented by images rather than the standard box with a cross in it. The custom
CheckBox PJC provides functionality to display an image, to detect mouse clicks and to swap the
image when the mouse is clicked on the image area. The custom checkbox PJC needs to support the
properties used by the native Oracle Forms Java CheckBox item. These properties would define the
look and initial state of the checkbox item. The custom CheckBox PJC also needs to notify the
Handler class when the state of the item was changed. For the CheckBox type of UI component,
the Handler class registers ItemListeners with the PJC. The PJC invokes the itemStateChanged

method on the registered ItemListener classes when the checkbox state is changed.

The code snippet in Figure 18 shows the event handler that is called when the mouse is clicked over

Using Java Components in Oracle Forms Applications 21
January 2000

the image. As a result of the mouse being pressed, the fireltemListeners method is called.

/**

* Private class to handl e the nouse clicks on the PJC

* \When the nouse is clicked, the itenstate is 'flipped

* to the other state and the ItenLi steners are notified via the
* fireltenli steners nethod

*

*/

cl ass MyMouseAdapt er

ext ends MouseAdapt er

{
/**
* Override the nouse clicked nethod to flip the itenstate
* and fire the itemlisteners
* @armnme the nouse event that occurred
*/
public void noused icked(java. awt.event. MouseEvent ne)
{
flipltenState();
fireltenlisteners();
b
}

Figure 18: Handling moused events in a PJC

The code snippet in Figure 19 shows the code used to notify the ItemListeners that have registered
interest in Item events that an event has occurred. The ItemListeners will have been registered by
the Handler class and by notifying the ItemListener the Handler will effectively be notified that a
state change has occured. This change will be sent to the application running on Oracle Forms

Server.

/**

* Notify all reigstered itemistener objects that an item
* event has occured.

*
* @arame the itemevent that is sent to registered |istener
*/

public void fireltenLi steners()

{

Using Java Components in Oracle Forms Applications 22
January 2000

I tenli stener |istener;
Enuner ati on enum
Vect or cl one;
ItenEvent ie = new
ItemEvent (this,0,this,|tenEvent. | TEM STATE CHANGED) ;

synchroni zed(t hi s)

{

clone = (Vector)nltenLi steners. clone();

}

enum = cl one. el enent s();

whi | e(enum hasMor eEl enent s())

{

listener = (ltenListener)enum nextEl ement () ;
listener.itenttateChanged(ie);

Figure 19: Firing events on the item listeners

DEPLOYING APPLICATIONS USING JAVA COMPONENTS

All Java classes that are used in an Oracle Forms Server application must be downloaded to the
running browser before they can be instantiated. If you are using Oracle JInitiator then the JAR
caching feature stores downloaded JAR files on the actual client to avoid the download when next
the JAR file is referenced. This means that the PJCs used within a Forms application must also be

available for download from the same place as the Oracle Forms Server classes.

The Oracle Forms Server Java classes are stored in JAR files. These JAR files are specified in the
ARCHIVE tag in the HTML page that is used to launch the application.

To deploy your PJCs there are really only two options. The first option is to place the classes that
make up the PJC in the physical directory that is mapped to the CODEBASE virtual directory.
When the classloader tries to load the classes you have specified it will check the CODEBASE
directory. If the classes are found there, it will load them from over the network into the client. The
second option is to put all of the classes that make up the PJC into a JAR file and then specify the
name of the JAR file in the ARCHIVE tag along with the Oracle Forms Server JAR files. The class
loader will load all the classes from the JAR files specified before the application is run. If you are

performing actions such as accessing the local file system from the PJC then it will need to be signed

Using Java Components in Oracle Forms Applications 23
January 2000

and the Java signing model will only sign JAR files and not individual class files.

The easiest way to work with PJCs during development and testing is to place them into the
CODEBASE directory. The classes must be stored in a directory structure that reflects the package

definition of the class.

TIPS AND TRICKS

You will find that creating PJCs and JavaBeans and using them in Oracle Forms applications is
relatively straight forward once you have read the online documentation and have taken a look at
some of the samples that ship with the product. This section contains some little tips and tricks that
I have used during my investigations that might provide some additional help for you as you embark

on the road to Ul freedom.

USEFUL TIPS

e Try to develop as much of the PJC as possible as a standalone component. This will allow you
test and fine tune the component without introducing another layer of potential problems on top.
Once you have the component faitly well developed and tested then create the additional
code/components/wrappers required to run it in an Form application.

* Use copious amounts of trace writes to help track what is going on. There is no currently no way
from the Form Builder to debug a PJC once inserted into an application. Using trace writes from
the Java class itself is the easiest way to determine what is happening. Also having some form of
class variable which can be set to turn debugging on and off in the code saves a lot of code
scrubbing once the class is complete. Logging to a persistent file can also be quite helpful if you
are generating a lot of debug messages.

* When debugging your PJCs, run the Forms application using the appletviewer or a certified
browser which allows the viewing of the Java console. This will let you see the debugging
statements you have in the code. If you run the Form from the Form Builder using the ‘Run Web
Preview’ button then you will not see the messages that are written out since there is no standard
out.

* Put all code that you regularly use into a common class that can be used from any PJC. This will
save you a lot of rework. Things that are good to reuse are the debugging routines, type
convetsion routines, etc.

* Type conversion can be a difficult process since the known property values that are set by Forms
are mapped to their Java equivalents by the Handler but custom properties registered via the
ID.registerProperty() method are not automatically mapped. The setProperty method received the
property value as an Object. If you are getting type casting exceptions, using the toString()
method on the Object to help pinpoint the type of the Object.

* Check the exceptions that are thrown very carefully for hints as to where the problem lies.

Using Java Components in Oracle Forms Applications 24
January 2000

Remember that the default Oracle Forms Java UI components all work so if there’s a problem it’s
usually somewhere in your code.

* The Oracle Forms Server Java class libraries such as f60all.jar have been signed to allow them to
run in a trusted mode. Any additional PJCs that you write and include in your applications will not
be trusted and therefore run inside of the Java sandbox. If you wish to escape the sandbox to do
things such as access the client filesystem then you will need to put your classes in a JAR file and
sign it. The client machines will need to install the certificate you use in the signing process in
order to verify the integrity of your signed JAR file.

* The IHandler class which is passed to the init method implements the java.applet. AppletStub
interface. This class can be used to get access to things such as the document base and code base
virtual directories and to generally do applet types of things.

e Take a look at JDeveloper 3.0 which contains a PJC wizard to assist in the construction of Oracle
Forms Server 61 PJCs. This wizard provides information about the properties that are available to
the different Oracle Forms Java UI components and creates skeleton code methods to perform
the accessing of the selected properties.

* Keep it as simple as is possible. Try to keep the environment as simple as you can make it whilst
you are developing and debugging your Java code.

CHANGES IN THE ORACLE FORMS 6/ RELEASE

As this paper was being completed, Oracle Forms Server 6/ was being finalized. This section

contains some additional details of the changes made in the 6/ release with respect to PJCs.

* The ID class now contains a getName() method which returns the actual name of the property
that was used at property registration time. This is a very handy method to use when debugging
code to see which properties are being accessed.

* There are a few new built-ins that allow for the manipulation of PJCs at runtime. The new built-
ins will now allow for the getting of custom properties (in addition to the setting of them) from
JavaBeans and PJCs and will allow for the setting and getting of custom properties on standard
PJCs when they are used as replacement items for the default Oracle Forms Java UI components.
With the initial release of Oracle Forms Server 6.0 , any additional properties that were registered
by a PJC could not be set nor get. Likewise, for JavaBeans running inside of the BeanArea in the
initial release of Oracle Forms Server 6.0, properties could only be accessed via a set method and
not a get method.

The new builtins are labelled set_custom_property and get_custom_property. Please consult the
Oracle Forms online documentation in the 67 release for more information on these built-ins and
how to use them.

Using Java Components in Oracle Forms Applications 25
January 2000

ORACLE

Oracle Corporation

World Headquarters

500 Oracle Parkway
Redwood Shores, CA 94065
U.S.A.

Worldwide Inquiries:
+1.650.506.7000

Fax +1.650.506.7200
http://www.oracle.com/

Copyright © Oracle Corporation 1999
All Rights Reserved

This document is provided for informational purposes only, and
the information herein is subject to change without notice.
Please report any errors herein to Oracle Corporation. Oracle
Corporation does not provide any warranties covering and
specifically disclaims any liability in connection with this
document.

Oracle is a registered trademark, and Oracle8 i, Oracle8, PL/SQL,
and Oracle Expert are trademarks of Oracle Corporation. All

other company and product names mentioned are used for
identification purposes only and may be trademarks of their
respective owners.

Using Java Components in Oracle Forms Applications
January 2000

