
Using Oracle Forms with the
Tuxedo TP Monitor

An Oracle White Paper
April 2000

TABLE OF CONTENTS

1. Introduction..1

1.1 Oracle Forms Developer ..1

1.2 Oracle Forms Server ..2

1.3 Tuxedo ..2

2. The Interface..3

2.1 ATMI Interface ...3
2.1.1 ATMI Constants and Structures..3

2.1.1.1 Flags to Service Routines..3
2.1.1.2 Flags to tpreturn()...4
2.1.1.3 Flags to tpscmt() ...4
2.1.1.4 Flags to tpinit()...4
2.1.1.5 Flags to tpconvert()...4
2.1.1.6 Return Values from tpchkauth()......................................4
2.1.1.7 Maximum Length of a Tuxedo/T Identifier5
2.1.1.8 tpinit() Interface Structure ..5
2.1.1.9 Error Codes ..5
2.1.1.10 Conversational and Event Flags....................................6
2.1.1.11 Queued Messages Add-on...6
2.1.1.12 Structure Elements that are Valid - Set in Flags............6

2.1.2 ATMI Functions ...6

2.2 FML16 Interface..10
2.2.1 FML16 Constants and Structures......................................10

2.2.1.1 Constants..10
2.2.1.2 Operations for Fmodidx() ...11
2.2.1.3 Flags for Fvstof() ..11
2.2.1.4 Operations for Fstof ..11
2.2.1.5 Field Types...11
2.2.1.6 Field Id Constants...11
2.2.1.7 Field Error Codes ...12

2.2.2 FML16 Functions ...12
2.2.2.1 Function Variants ...12
2.2.2.2 Length Argument ...13
2.2.2.3 Field Identifier Mapping Functions...............................13
2.2.2.4 Buffer Allocation and Initialization14
2.2.2.5 Functions for Moving Fielded Buffers...........................14
2.2.2.6 Field Access and Modification15
2.2.2.7 Buffer Update Functions ...17
2.2.2.8 VIEWS Functions...17
2.2.2.9 Conversion Functions ...18
2.2.2.10 Indexing Functions ...20
2.2.2.11 Input/Output Functions...20
2.2.2.12 VIEW Conversion ..21
2.2.2.13 Utility Functions ...21

2.3 Additional Functions ...21
2.3.1 File I/O Functions...21
2.3.2 String Manipulation Functions ..22
2.3.3 Shutdown Function...22

3. A Demonstration ..23

3.1 Tuxedo bankapp ..23

3.2 Oracle Forms bankapp...24
3.2.1 Preparing the bankapp Client ...24
3.2.2 Running the bankapp Client..25

3.3 Client Development Tips ...26
3.3.1 Elements of the bankapp Client...26

3.3.1.1 bankapp Client PL/SQL Library26
3.3.1.2 bankapp Client PL/SQL Form.......................................30

4. Appendix ..33

4.1 What’s New in this Release?..33
4.1.1 Bug Fixes ..33
4.1.2 Current Limitations ...33

4.2 Frequently Asked Questions ..33
4.2.1 General ...33
4.2.2 Marketing...33

4.3 Additional Resources ...34
4.3.1 Oracle Forms..34

4.3.1.1 On-line Documentation ..34
4.3.1.2 White Papers ..34
4.3.1.3 Books ...34

4.3.2 Tuxedo and TP Monitors ...34
4.3.2.1 Documentation Set ...34
4.3.2.2 White Papers ..35
4.3.2.3 Books ...35
4.3.2.4 Web Pages ..35

Using Oracle Forms with the Tuxedo TP Monitor 1

Using Oracle Forms with the Tuxedo TP Monitor

1. Introduction
Oracle Forms Developer is an integrated tools suite for rapidly building sophisticated, complex,
enterprise-class Internet applications for professional users. Oracle Forms Server is a complete
application framework. It provides an extensible, optimized Java client; higher performance over
any network; and out-of-the-box scalability for Web deployment.

Oracle Forms Server is the recommended solution for Web deployment of Oracle Forms
applications. However, should you plan to deploy client/server applications in a three-tier
transaction processing (TP) monitor architecture, this paper provides information on the use of
Oracle Forms as a front-end development tool for the Tuxedo TP monitor. It also provides a brief
introduction to Oracle Forms Developer and Oracle Forms Server, and describes and provides an
example of the programmatic interface between Oracle Forms and Tuxedo, commonly referred to
as D2TX.

The following table summarizes which releases of Oracle Developer can interface with which
releases of Tuxedo.

Oracle Developer Release Tuxedo Release
Developer/2000 1.3.2 for Windows 95/NT 3.51
Developer/2000 1.5.x for Windows 95/NT 3.51
Developer/2000 1.6 for Windows 95/NT 3.51
Developer/2000 2.x for Windows 95/NT 3.51

Tuxedo 6.1 volume 2
Part Number: 701-001004-001 (CD)

Developer/2000 1.3.3 for Windows 3.11
Developer Release 6i for Windows 95/NT 4.0
Developer Release 6i for Solaris 2.5.1

Tuxedo 6.4
Part Number: 701-001002-005 (CD)

Table 1 - Oracle Developer / Tuxedo Release Compatibility Matrix

1.1 Oracle Forms Developer
Oracle Forms Developer is a productive development environment for building enterprise-class
Internet database applications. Use Forms Developer to rapidly build sophisticated applications for
viewing, changing, and adding information to your database. Forms Developer provides a set of
integrated builders that enable business developers to construct sophisticated database forms,
charts, and business logic rapidly with minimal effort. The Forms Developer application
development environment provides powerful declarative features, such as wizards, built-ins, and
drag-and-drop, to enable business developers to create fully functional applications from database
definitions with minimal coding in record time.

Using Oracle Forms with the Tuxedo TP Monitor 2

1.2 Oracle Forms Server
Oracle Forms Server is an optimized application server for deploying new and existing Oracle
Forms Developer applications to the Internet. Forms Server delivers the application infrastructure
and the event model to ensure that Internet-based applications automatically scale and perform over
any network. Forms Server built-in services include transaction management, record caching,
record locking, exception handling, and load balancing— all provided as part of the Forms Server
engine.

Note: Refer to Oracle Technology Network (http://technet.oracle.com/) for
additional white papers on Oracle Forms Server.

1.3 Tuxedo
Tuxedo is a transaction processing (TP) monitor that is available for UNIX, Netware, and
Windows NT operating systems on over thirty-five server hardware platforms. It supports
Macintosh, OS/2, and Windows operating systems as client platforms.

Using Oracle Forms with the Tuxedo TP Monitor 3

2. The Interface
Business developers can use Oracle Forms to build client/server applications against relational
databases. Tuxedo provides a public application programming interface (API) that allows
developers to write client/server applications based on their TP monitor software.

This interface presents the Tuxedo client API as PL/SQL functions and procedures, so that Oracle
Forms developers can create Tuxedo clients using PL/SQL. The PL/SQL library that contains the
equivalents of the Tuxedo API for the 32-bit Windows platform is called D2TX. D2TX registers
the Tuxedo client API as PL/SQL foreign functions, allowing the API to be accessed directly from
within PL/SQL code.

While Tuxedo’s public API is quite extensive, this version of the interface focuses only on
functions a client program would utilize. Specifically, this interface is an encapsulation of
Tuxedo’s Application-to-Transaction Manager Interface (ATMI) API, and the 16-bit version of the
Forms Manipulation Language API (FML16, or just FML). The details of exactly which constants,
procedures, and functions have been exposed in Oracle Forms are presented below.

2.1 ATMI Interface
The following tables show those elements of the Tuxedo ATMI interface that are exposed in Oracle
Forms.

2.1.1 ATMI Constants and Structures
The following tables indicate the mapping of C programming constructs in the Tuxedo header file
atmi.h to their equivalent definitions in the PL/SQL package “TUXDEF”.

2.1.1.1 Flags to Service Routines

“C” Constant PL/SQL Equivalent
#define TPNOBLOCK 0x00000001 tuxdef.TPNOBLOCK integer := 1
#define TPSIGSTRT 0x00000002 tuxdef.TPSIGSTRT integer := 2
#define TPNOREPLY 0x00000004 tuxdef.TPNOREPLY integer := 4
#define TPNOTRAN 0x00000008 tuxdef.TPNOTRAN integer := 8
#define TPTRAN 0x00000010 tuxdef.TPTRAN integer := 16
#define TPNOTIME 0x00000020 tuxdef.TPNOTIME integer := 32
#define TPABSOLUTE 0x00000040 tuxdef.TPABSOLUTE integer := 64
#define TPGETANY 0x00000080 tuxdef.TPGETANY integer := 128
#define TPNOCHANGE 0x00000100 tuxdef.TPNOCHANGE integer := 256
#define TPCONV 0x00000400 tuxdef.TPCONV integer := 1024
#define TPSENDONLY 0x00000800 tuxdef.TPSENDONLY integer := 2048
#define TPRECVONLY 0x00001000 tuxdef.TPRECVONLY integer := 4096
#define TPACK 0x00002000 tuxdef.TPACK integer := 8192

Using Oracle Forms with the Tuxedo TP Monitor 4

2.1.1.2 Flags to tpreturn()

“C” Constant PL/SQL Equivalent
#define TPFAIL 0x00000001 tuxdef.TPFAIL integer := 1
#define TPSUCCESS 0x00000002 tuxdef.TPSUCCESS integer := 2
#define TPEXIT 0x08000000 tuxdef.TPEXIT integer := 134217728

2.1.1.3 Flags to tpscmt()

“C” Constant PL/SQL Equivalent
#define TP_CMT_LOGGED 0x01 tuxdef.TP_CMT_LOGGED integer := 1
#define TP_COMT_COMPLETE 0x02 tuxdef.TP_CMT_COMPLETE integer := 2

2.1.1.4 Flags to tpinit()

“C” Constant PL/SQL Equivalent
#define TPU_MASK 0x00000007 tuxdef.TPU_MASK integer := 7
#define TPU_SIG 0x00000001 tuxdef.TPU_SIG integer := 1
#define TPU_DIP 0x00000002 tuxdef.TPU_DIP integer := 2
#define TPU_IGN 0x00000004 tuxdef.TPU_IGN integer := 4
#define TPSA_FASTPATH 0x00000008 tuxdef.TPSA_FASTPATH integer := 8
#define TPSA_PROTECTED 0x00000010 tuxdef.TPSA_PROTECTED integer := 16

2.1.1.5 Flags to tpconvert()

“C” Constant PL/SQL Equivalent
#define TPTOSTRING 0x40000000 tuxdef.TPTOSTRING integer := 1073741824
#define TPCONVCLTID 0x00000001 tuxdef.TPCONVCLTID integer := 1
#define TPCONVTRANID 0x00000002 tuxdef.TPCONVTRANID integer := 2
#define TPCONVXID 0x00000004 tuxdef.TPCONVXID integer := 4
#define TPCONVMAXSTR 256 tuxdef.TPCONVMAXSTR integer := 256

2.1.1.6 Return Values from tpchkauth()

“C” Constant PL/SQL Equivalent
#define TPNOAUTH 0 tuxdef.TPNOAUTH integer := 0
#define TPSYSAUTH 1 tuxdef.TPSYSAUTH integer := 1
#define TPAPPAUTH 2 tuxdef.TPAPPAUTH integer := 2

Using Oracle Forms with the Tuxedo TP Monitor 5

2.1.1.7 Maximum Length of a Tuxedo/T Identifier

“C” Constant PL/SQL Equivalent
#define MAXTIDENT 30 tuxdef.MAXTIDENT integer := 30

2.1.1.8 tpinit() Interface Structure

“C” Structure PL/SQL Equivalent
struct tpinfo_t {
 char usrname[MAXTIDENT+2];
 char cltname[MAXTIDENT+2];
 char passwd [MAXTIDENT+2];
 char grpname[MAXTIDENT+2];
 long flags;
 long datalen;
 long data;
};
typedef struct tpinfo_t TPINIT;

type tuxdef.TPINIT is record (
 usrname VARCHAR2(30),
 cltname VARCHAR2(30),
 passwd VARCHAR2(30),
 grpname VARCHAR2(30),
 flags PLS_INTEGER,
 datalen PLS_INTEGER,
 data PLS_INTEGER
);

2.1.1.9 Error Codes

“C” Constant PL/SQL Equivalent
#define TPMINVAL 0 tuxdef.TPMINVAL integer := 0
#define TPEABORT 1 tuxdef.TPEABORT integer := 1
#define TPEBADDESC 2 tuxdef.TPEBADDESC integer := 2
#define TPEBLOCK 3 tuxdef.TPEBLOCK integer := 3
#define TPEINVAL 4 tuxdef.TPEINVAL integer := 4
#define TPELIMIT 5 tuxdef.TPELIMIT integer := 5
#define TPENOENT 6 tuxdef.TPENOENT integer := 6
#define TPEOS 7 tuxdef.TPEOS integer := 7
#define TPEPERM 8 tuxdef.TPEPERM integer := 8
#define TPEPROTO 9 tuxdef.TPEPROTO integer := 9
#define TPESVCERR 10 tuxdef.TPESVCERR integer := 10
#define TPESVCFAIL 11 tuxdef.TPESVCFAIL integer := 11
#define TPESYSTEM 12 tuxdef.TPESYSTEM integer := 12
#define TPETIME 13 tuxdef.TPETIME integer := 13
#define TPETRAN 14 tuxdef.TPETRAN integer := 14
#define TPGOTSIG 15 tuxdef.TPGOTSIG integer := 15
#define TPERMERR 16 tuxdef.TPERMERR integer := 16
#define TPEITYPE 17 tuxdef.TPEITYPE integer := 17
#define TPEOTYPE 18 tuxdef.TPEOTYPE integer := 18
#define TPERELEASE 19 tuxdef.TPERELEASE integer := 19
#define TPEHAZARD 20 tuxdef.TPEHAZARD integer := 20
#define TPEHEURISTIC 21 tuxdef.TPEHEURISTIC integer := 21
#define TPEEVENT 22 tuxdef.TPEEVENT integer := 22
#define TPEMATCH 23 tuxdef.TPEMATCH integer := 23
#define TPEDIAGNOSTIC 24 tuxdef.TPEDIAGNOSTIC integer := 24
#define TPEMIB 25 tuxdef.TPEMIB integer := 25
#define TPMAXVAL 26 tuxdef.TPMAXVAL integer := 26

Using Oracle Forms with the Tuxedo TP Monitor 6

2.1.1.10 Conversational and Event Flags

“C” Constant PL/SQL Equivalent
#define TPEV_DISCONIM 0x0001 tuxdef.TPEV_DISCONIM integer := 1
#define TPEV_SVCERR 0x0002 tuxdef.TPEV_SVCERR integer := 2
#define TPEV_SVCFAIL 0x0004 tuxdef.TPEV_SVCFAIL integer := 4
#define TPEV_SVCSUCC 0x0008 tuxdef.TPEV_SVCSUCC integer := 8
#define TPEV_SENDONLY 0x0020 tuxdef.TPSA_SENDONLY integer := 32

2.1.1.11 Queued Messages Add-on

“C” Constant PL/SQL Equivalent
#define TMQNAMELEN 15 tuxdef.TMQNAMELEN integer := 15
#define TMMSGIDLEN 32 tuxdef.TMMSGIDLEN integer := 32
#define TMCORRIDLEN 32 tuxdef.TMCORRIDLEN integer := 32

2.1.1.12 Structure Elements that are Valid - Set in Flags

“C” Constant PL/SQL Equivalent
#define TPNOFLAGS 0x00000 tuxdef.TPNOFLAGS integer := 0
#define TPQCORRID 0x00001 tuxdef.TPQCORRID integer := 1
#define TPQFAILUREQ 0x00002 tuxdef.TPQFAILUREQ integer := 2
#define TPQBEFOREMSGID0x00004 tuxdef.TPQBEFOREMSGID integer := 4
#define TPQGETBYMSGID 0x00008 tuxdef.TPQGETBYMSGID integer := 8
#define TPQMSGID 0x00010 tuxdef.TPQMSGID integer := 16
#define TPQPRIORITY 0x00020 tuxdef.TPQPRIORITY integer := 32
#define TPQTOP 0x00040 tuxdef.TPQTOP integer := 64
#define TPQWAIT 0x00080 tuxdef.TPQWAIT integer := 128
#define TPQREPLYQ 0x00100 tuxdef.TPQREPLYQ integer := 256
#define TPQTIME_ABS 0x00200 tuxdef.TPQTIME_ABS integer := 512
#define TPQTIME_REL 0x00400 tuxdef.TPQTIME_REL integer := 1024
#define TPQGETBYCORRID0x00800 tuxdef.TPQGETBYCORRID integer := 2048
#define TPQPEEK 0x01000 tuxdef.TPQPEEK integer := 4096

2.1.2 ATMI Functions
The following tables indicate the mapping of C function prototypes in the Tuxedo header file atmi.h
to the equivalent functions and procedures in the PL/SQL package “ATMI”.

These are the ATMI functions proper. They are presented here in alphabetical order.

“C” Function Prototype PL/SQL Equivalent
int tpabort (
 long flags
);

function ATMI.tpabort (
 flags in PLS_INTEGER
) return PLS_INTEGER;

int tpacall (
 char *svc,
 char *data,
 long len,
 long flags
);

function ATMI.tpacall (
 svc in out VARCHAR2,
 data in ORA_FFI.POINTERTYPE,
 len in PLS_INTEGER,
 flags in PLS_INTEGER
) return PLS_INTEGER;

Using Oracle Forms with the Tuxedo TP Monitor 7

“C” Function Prototype PL/SQL Equivalent
int tpadvertise (
 char *svcname,
 void (*func)(TPSVCINFO *)
);

Not a Tuxedo client function.

char *tpalloc (
 char *type,
 char *subtype,
 long size
);

function ATMI.tpalloc (
 type in out VARCHAR2,
 subtype in out VARCHAR2,
 size in PLS_INTEGER
) return ORA_FFI.POINTERTYPE;

int tpbegin (
 unsigned long timeout,
 long flags
);

function ATMI.tpbegin (
 timeout in PLS_INTEGER,
 flags in PLS_INTEGER
) return PLS_INTEGER;

int tpbroadcast (
 char *lmid,
 char *usrname,
 char *cltname,
 char *data,
 long len,
 long flags
);

function ATMI.tpbroadcast (
 lmid in out VARCHAR2,
 usrname in out VARCHAR2,
 cltname in out VARCHAR2,
 data in ORA_FFI.POINTERTYPE,
 len in PLS_INTEGER,
 flags in PLS_INTEGER
) return PLS_INTEGER;

int tpcall (
 char *svc,
 char *idata,
 long ilen,
 char **odata,
 long *olen,
 long flags
);

function ATMI.tpcall (
 svc in out VARCHAR2,
 idata in ORA_FFI.POINTERTYPE,
 ilen in PLS_INTEGER,
 odata in out ORA_FFI.POINTERTYPE,
 olen in out PLS_INTEGER,
 flags in PLS_INTEGER
) return PLS_INTEGER;

int tpcancel (
 int cd
);

function ATMI.tpcancel (
 cd in PLS_INTEGER
) return PLS_INTEGER;

int tpchkauth (
 void
);

function ATMI.tpchkauth
return PLS_INTEGER;

int tpchkunsol (
 void
);

function ATMI.tpchkunsol
return PLS_INTEGER;

int tpclose (
 void
);

Not a Tuxedo client function.

int tpcommit (
 long flags
);

function ATMI.tpcommit (
 flags in PLS_INTEGER
) return PLS_INTEGER;

int tpconnect (
 char *svc,
 char *data,
 long len,
 long flags
);

function ATMI.tpconnect (
 svc in out VARCHAR2,
 data in ORA_FFI.POINTERTYPE,
 len in PLS_INTEGER,
 flags in PLS_INTEGER
) return PLS_INTEGER;

int tpconvert (
 char *arg1,
 char *arg2,
 long arg3
);

Planned for a future release.

int tpdequeue (
 char *qspace,
 char *qname,
 TPQCTL *ctl,
 char **data,
 long *len,
 long flags
);

Planned for a future release.

int tpdiscon (
 int cd
);

function ATMI.tpdiscon (
 cd in PLS_INTEGER
) return PLS_INTEGER;

Using Oracle Forms with the Tuxedo TP Monitor 8

“C” Function Prototype PL/SQL Equivalent
int tpenqueue (
 char *qspace,
 char *qname,
 TPQCTL *ctl,
 char *data,
 long len,
 long flags
);

Planned for a future release.

void tpforward (
 char *svc,
 char *data,
 long len,
 long flags
);

Not a Tuxedo client function.

void tpfree (
 char *ptr
);

procedure ATMI.tpfree (
 ptr in ORA_FFI.POINTERTYPE
);

int tpgetlev (
 void
);

function ATMI.tpgetlev
return PLS_INTEGER;

int tpgetrply (
 int *cd,
 char **data,
 long *len,
 long flags
);

function ATMI.tpgetrply (
 cd in out PLS_INTEGER,
 data in out ORA_FFI.POINTERTYPE,
 len in out PLS_INTEGER,
 flags in PLS_INTEGER
) return PLS_INTEGER;

int tpgprio (
 void
);

function ATMI.tpgprio
return PLS_INTEGER;

int tpinit (
 TPINIT *tpinfo
);

Use the first variant if there is variable length string
data that needs to be forwarded to an application-
specific authentication service. Note that the length of
the variable length string data is calculated internally,
and that if an error is encountered, the error code is
returned in the argument tperrno.

function ATMI.tpinit (
 usrname in VARCHAR2,
 cltname in VARCHAR2,
 passwd in VARCHAR2,
 grpname in VARCHAR2,
 flags in PLS_INTEGER,
 data in out VARCHAR2,
 tperrno out PLS_INTEGER
) RETURN PLS_INTEGER;

function ATMI.tpinit (
 tpinfo in TUXDEF.TPINIT
) return PLS_INTEGER;

int tpnotify (
 CLIENTID *clientid,
 char *data,
 long len
 long flags
);

Not a Tuxedo client function.

int tpopen (
 void
);

Not a Tuxedo client function.

int tppost (
 char *eventname,
 char *data,
 long len,
 long flags
);

Planned for a future release.

Using Oracle Forms with the Tuxedo TP Monitor 9

“C” Function Prototype PL/SQL Equivalent
char *tprealloc (
 char *ptr,
 long size
);

function ATMI.tprealloc (
 ptr in ORA_FFI.POINTERTYPE,
 size in PLS_INTEGER
) return ORA_FFI.POINTERTYPE;

int tprecv (
 int cd,
 char **data,
 long *len,
 long flags,
 long *revent
);

function ATMI.tprecv (
 cd in PLS_INTEGER,
 data in out ORA_FFI.POINTERTYPE,
 len in out PLS_INTEGER,
 flags in PLS_INTEGER,
 revent in out PLS_INTEGER
) return PLS_INTEGER;

int tpresume (
 TPTRANID *tranid,
 long flags
);

Planned for a future release.

void tpreturn (
 int rval,
 long rcode,
 char *data,
 long len,
 long flags
);

Not a Tuxedo client function.

int tpscmt (
 long flags
);

Planned for a future release.

int tpsend (
 int cd,
 char *data,
 long len,
 long flags,
 long *revent
);

function ATMI.tpsend (
 cd in PLS_INTEGER,
 data in ORA_FFI.POINTERTYPE,
 len in PLS_INTEGER,
 flags in PLS_INTEGER,
 revent in out PLS_INTEGER
) return PLS_INTEGER;

void tpservice (
 TPSVCINFO *svcinfo
);

Not a Tuxedo client function.

void (*tpsetunsol (void (*disp)
(char *data,
 long len,
 long flags))) (

 char *data,
 long len,
 long flags
);

Planned for a future release.

int tpsprio (
 int prio,
 long flags
);

function ATMI.tpsprio (
 prio in PLS_INTEGER,
 flags in PLS_INTEGER
) return PLS_INTEGER;

char *tpstrerror (
 int err
);

function ATMI.tpstrerror (
 err in PLS_INTEGER
) return VARCHAR2;

int tpsubscribe (
 char *eventexpr,
 char *filter,
 TPEVCTL *ctl,
 long flags
);

Planned for a future release.

int tpsuspend (
 TPTRANID *tranid,
 long flags
);

Planned for a future release.

void tpsvrdone (
 void
);

Not a Tuxedo client function.

int tpsvrinit (
 int argc,
 char **argv
);

Not a Tuxedo client function.

Using Oracle Forms with the Tuxedo TP Monitor 10

“C” Function Prototype PL/SQL Equivalent
int tpterm (
 void
);

function ATMI.tpterm
return PLS_INTEGER;

long tptypes (
 char *ptr,
 char *type,
 char *subtype
);

function ATMI.tptypes (
 ptr in ORA_FFI.POINTERTYPE,
 type in out VARCHAR2,
 subtype in out VARCHAR2
) return PLS_INTEGER;

int tpunadvertise (
 char *svcname
);

Not a Tuxedo client function.

int tpunsubscribe (
 long subscription,
 long flags
);

Planned for a future release.

While the following functions are not technically ATMI functions, their prototypes are in the
Tuxedo header file atmi.h.

“C” Function Prototype PL/SQL Equivalent
int gettperrno (
 void
);

function ATMI.gettperrno
return PLS_INTEGER;

long gettpurcode (
 void
);

function ATMI.gettpurcode
return PLS_INTEGER;

char *tuxgetenv (
 char *name
);

function D2TX.tuxgetenv (
 name in VARCHAR2
return VARCHAR2;

int tuxputenv (
 char *string
);

function D2TX.tuxputenv
 string in VARCHAR2
return PLS_INTEGER;

int tuxreadenv (
 char *file,
 char *label
);

function D2TX.tuxreadenv
 file in out VARCHAR2,
 label in out VARCHAR2
return PLS_INTEGER;

2.2 FML16 Interface
The following tables show those elements of the Tuxedo FML16 interface that are exposed in
Oracle Forms.

2.2.1 FML16 Constants and Structures
The following tables indicate the mapping of C programming constructs in the Tuxedo header file
fml.h to their equivalent definitions in the PL/SQL package “TUXDEF”.

2.2.1.1 Constants

“C” Constant PL/SQL Equivalent
#define MAXFBLEN 0xfffc tuxdef.MAXFBLEN integer := 65532
#define FSTDXINT 16 tuxdef.FSTDXINT integer := 16
#define FMAXNULLSIZE 2660 tuxdef.FMAXNULLSIZE integer := 2660
#define FVIEWCACHESIZE 10 tuxdef.MAXFBLEN integer := 10
#define FVIEWNAMESIZE 33 tuxdef.MAXFBLEN integer := 33

Using Oracle Forms with the Tuxedo TP Monitor 11

2.2.1.2 Operations for Fmodidx()

“C” Constant PL/SQL Equivalent
#define FADD 1 tuxdef.FADD integer := 1
#define FMLMOD 2 tuxdef.FMLMOD integer := 2
#define FDEL 3 tuxdef.FDEL integer := 3

2.2.1.3 Flags for Fvstof()

“C” Constant PL/SQL Equivalent
#define F_OFF 0 tuxdef.F_OFF integer := 0
#define F_OFFSET 1 tuxdef.F_OFFSET integer := 1
#define F_SIZE 2 tuxdef.F_SIZE integer := 2
#define F_PROP 4 tuxdef.F_PROP integer := 4
#define F_FTOS 8 tuxdef.F_FTOS integer := 8
#define F_STOF 16 tuxdef.F_STOF integer := 16
#define F_BOTH (F_STOF | F_FTOS) tuxdef.F_BOTH integer := 24
#define F_LENGTH 32 tuxdef.F_LENGTH integer := 32
#define F_COUNT 64 tuxdef.F_COUNT integer := 64
#define F_NONE 128 tuxdef.F_NONE integer := 128

2.2.1.4 Operations for Fstof

“C” Constant PL/SQL Equivalent
#define FUPDATE 1 tuxdef.FUPDATE integer := 1
#define FCONCAT 2 tuxdef.FCONCAT integer := 2
#define FJOIN 3 tuxdef.FJOIN integer := 3
#define FOJOIN 4 tuxdef.FOJOIN integer := 4

2.2.1.5 Field Types

“C” Constant PL/SQL Equivalent
#define FLD_SHORT 0 tuxdef.FLD_SHORT integer := 0
#define FLD_LONG 1 tuxdef.FLD_LONG integer := 1
#define FLD_CHAR 2 tuxdef.FLD_CHAR integer := 2
#define FLD_FLOAT 3 tuxdef.FLD_FLOAT integer := 3
#define FLD_DOUBLE 4 tuxdef.FLD_DOUBLE integer := 4
#define FLD_STRING 5 tuxdef.FLD_STRING integer := 5
#define FLD_CARRAY 6 tuxdef.FLD_CARRAY integer := 6

2.2.1.6 Field Id Constants

Using Oracle Forms with the Tuxedo TP Monitor 12

“C” Constant PL/SQL Equivalent
#define BADFLDID (FLDID)0 tuxdef.BADFLDID integer := 0
#define FIRSTFLDID (FLDID)0 tuxdef.FIRSTFLDID integer := 0

2.2.1.7 Field Error Codes

“C” Constant PL/SQL Equivalent
#define FMINVAL 0 tuxdef.FMINVAL integer := 0
#define FALIGNERR 1 tuxdef.FALIGNERR integer := 1
#define FNOTFLD 2 tuxdef.FNOTFLD integer := 2
#define FNOSPACE 3 tuxdef.FNOSPACE integer := 3
#define FNOTPRES 4 tuxdef.FNOTPRES integer := 4
#define FBADFLD 5 tuxdef.FBADFLD integer := 5
#define FTYPERR 6 tuxdef.FTYPERR integer := 6
#define FEUNIX 7 tuxdef.FEUNIX integer := 7
#define FBADNAME 8 tuxdef.FBADNAME integer := 8
#define FMALLOC 9 tuxdef.FMALLOC integer := 9
#define FSYNTAX 10 tuxdef.FSYNTAX integer := 10
#define FFTOPEN 11 tuxdef.FFTOPEN integer := 11
#define FFTSYNTAX 12 tuxdef.FFTSYNTAX integer := 12
#define FEINVAL 13 tuxdef.FEINVAL integer := 13
#define FBADTBL 14 tuxdef.FBADTBL integer := 14
#define FBADVIEW 15 tuxdef.FBADVIEW integer := 15
#define FVFSYNTAX 16 tuxdef.FVFSYNTAX integer := 16
#define FVFOPEN 17 tuxdef.FVFOPEN integer := 17
#define FBADACM 18 tuxdef.FBADACM integer := 18
#define FNOCNAME 19 tuxdef.FNOCNAME integer := 19
#define FMAXVAL 20 tuxdef.FMAXVAL integer := 20

2.2.2 FML16 Functions
The following tables indicate the mapping of C function prototypes in the Tuxedo header file fml.h
to the equivalent functions and procedures in the various FML PL/SQL packages. They are
presented in the order in which they appear in Chapter 5, “Field Manipulation Functions,” of the
Tuxedo FML Guide.

2.2.2.1 Function Variants

Some of these functions, for example fml.fchg(), are overloaded to support more than one
variable type for the argument that corresponds to the value of the field. The following table
indicates the appropriate use of PL/SQL variable types and overloaded functions based on the
field’s type, as specified in the Tuxedo field table file.

PL/SQL Variable Types Tuxedo FML Field Types
NUMBER short, long, float, double
VARCHAR2 char, string, carray

If the FML field type is short, long, float, or double, then use the PL/SQL variable type NUMBER

and the corresponding variant of an overloaded FML function. If the FML field type is char, string,

Using Oracle Forms with the Tuxedo TP Monitor 13

or carray, then use the PL/SQL variable type VARCHAR2 and the corresponding variant of an
overloaded FML function.

2.2.2.2 Length Argument

Some of these functions, for example fml.fget(), have an argument in which the length of the
receiving buffer is specified. There are two cases to consider:

1. If the field value will be returned as the FML field type short, long, float, or double, then the
input value of the length argument will be ignored. The actual length of the field value that
was written to the receiving buffer (PL/SQL variable) is still returned after the function has
executed.

2. If the field value will be returned as the FML field type string, char or carray, then two options
are available to the PL/SQL programmer:

• For the fastest response time, the input value of the length argument should be equal to the
maximum length of the VARCHAR2 variable that will receive the field value. For
example, if the variable that will receive the field value is declared as VARCHAR2(100),
then “100” should be used as the input value to the length argument.

 The actual length of the field value that was written to the receiving buffer (PL/SQL
variable) is still returned after the function has executed.

• If the input value of the length argument is specified to be (PL/SQL) NULL, then the
maximum length of the receiving buffer (PL/SQL variable) will be calculated, and,
consequently, the function will take longer to execute. The algorithm to determine the
maximum length of the receiving buffer (PL/SQL variable) has been optimized, and
choosing this option may not have an adverse impact on performance; however, it will
always be slower than specifying the length explicitly.

 The actual length of the field value that was written to the receiving buffer (PL/SQL
variable) is still returned after the function has executed.

2.2.2.3 Field Identifier Mapping Functions

“C” Function Prototype PL/SQL Equivalent
FLDID Fldid (
 char *name
);

function FML.fldid (
 name in out VARCHAR2
) return PLS_INTEGER;

FLDOCC Fldno (
 FLDID fieldid
);

function FML.fldno (
 fieldid in PLS_INTEGER
) return PLS_INTEGER;

int Fldtype (
 FLDID fieldid
);

function FML.fldtype (
 fieldid in PLS_INTEGER
) return PLS_INTEGER;

FLDID Fmkfldid (
 int type,
 FLDID num
);

function FML.fmkfldid (
 type in PLS_INTEGER,
 num in PLS_INTEGER
) return PLS_INTEGER;

char *Fname (
 FLDID fieldid
);

function FML.fname (
 fieldid in PLS_INTEGER
) return VARCHAR2;

char *Ftype (
 FLDID fieldid
);

function FML.ftype (
 fieldid in PLS_INTEGER
) return VARCHAR2;

Using Oracle Forms with the Tuxedo TP Monitor 14

2.2.2.4 Buffer Allocation and Initialization

“C” Function Prototype PL/SQL Equivalent
FBFR *Falloc (
 FLDOCC F,
 FLDLEN V
);

function FML.falloc (
 f in PLS_INTEGER,
 v in PLS_INTEGER
) return ORA_FFI.POINTERTYPE;

int Ffree (
 FBFR *fbfr
);

function FML.ffree (
 fbfr in ORA_FFI.POINTERTYPE
) return PLS_INTEGER;

int Finit (
 FBFR *fbfr,
 FLDLEN buflen
);

function FML.finit (
 fbfr in ORA_FFI.POINTERTYPE,
 buflen in PLS_INTEGER)
) return PLS_INTEGER;

long Fneeded (
 FLDOCC F,
 FLDLEN V
);

function FML.fneeded (
 f in PLS_INTEGER,
 v in PLS_INTEGER
) return PLS_INTEGER;

FBFR *Frealloc (
 FBFR *fbfr,
 FLDOCC nf,
 FLDLEN nv
);

function FML.frealloc (
 fbfr in ORA_FFI.POINTERTYPE,
 nf in PLS_INTEGER,
 nv in PLS_INTEGER
) return ORA_FFI.POINTERTYPE;

long Fsizeof (
 FBFR *fbfr
);

function FML.fsizeof (
 fbfr in ORA_FFI.POINTERTYPE
) return PLS_INTEGER;

long Funused (
 FBFR *fbfr
);

function FML.funused (
 fbfr in ORA_FFI.POINTERTYPE
) return PLS_INTEGER;

long Fused (
 FBFR *fbfr
);

function FML.fused (
 fbfr in ORA_FFI.POINTERTYPE
) return PLS_INTEGER;

2.2.2.5 Functions for Moving Fielded Buffers

“C” Function Prototype PL/SQL Equivalent
int Fcpy (
 FBFR *dest,
 FBFR *src
);

function FML.fcpy (
 dest in ORA_FFI.POINTERTYPE,
 src in ORA_FFI.POINTERTYPE
) return PLS_INTEGER;

int Fmove (
 char *dest,
 FBFR *src
);

function FML.fmove (
 dest in ORA_FFI.POINTERTYPE,
 src in ORA_FFI.POINTERTYPE
) return PLS_INTEGER;

Using Oracle Forms with the Tuxedo TP Monitor 15

2.2.2.6 Field Access and Modification

“C” Function Prototype PL/SQL Equivalent
int Fadd (
 FBFR *fbfr,
 FLDID fieldid,
 char *value,
 FLDLEN len
);

function FML.fadd (
 fbfr in ORA_FFI.POINTERTYPE,
 fieldid in PLS_INTEGER,
 value in out VARCHAR2,
 len in PLS_INTEGER
) return PLS_INTEGER;

function FML.fadd (
 fbfr in ORA_FFI.POINTERTYPE,
 fieldid in PLS_INTEGER,
 value in NUMBER,
 len in PLS_INTEGER
) return PLS_INTEGER;

int Fappend (
 FBFR *fbfr,
 FLDID fieldid,
 char *value,
 FLDLEN len
);

Planned for a future release.

int Fchg (
 FBFR *fbfr,
 FLDID fieldid,
 FLDOCC oc,
 char *value,
 FLDLEN len
);

function FML.fchg (
 fbfr in ORA_FFI.POINTERTYPE,
 fieldid in PLS_INTEGER,
 oc in PLS_INTEGER,
 value in out VARCHAR2,
 len in PLS_INTEGER
) return PLS_INTEGER;

function FML.fchg (
 fbfr in ORA_FFI.POINTERTYPE,
 fieldid in PLS_INTEGER,
 oc in PLS_INTEGER,
 value in NUMBER,
 len in PLS_INTEGER
) return PLS_INTEGER;

int Fcmp (
 FBFR *fbfr1,
 FBFR *fbfr2
);

function FML.fcmp (
 fbfr1 in ORA_FFI.POINTERTYPE,
 fbfr2 in ORA_FFI.POINTERTYPE
) return PLS_INTEGER;

int Fdel (
 FBFR *fbfr,
 FLDID fieldid,
 FLDOCC oc
):

function FML.fdel (
 fbfr in ORA_FFI.POINTERTYPE,
 fieldid in PLS_INTEGER,
 oc in PLS_INTEGER
) return PLS_INTEGER;

int Fdelall (
 FBFR *fbfr,
 FLDID fieldid
):

function FML.fdelall (
 fbfr in ORA_FFI.POINTERTYPE,
 fieldid in PLS_INTEGER
) return PLS_INTEGER;

int Fdelete (
 FBFR *fbfr,
 FLDID *fieldid
);

function FML.fdelete (
 fbfr in out ORA_FFI.POINTERTYPE,
 fieldid in out PLS_INTEGER
) return PLS_INTEGER;

char *Ffind (
 FBFR *fbfr,
 FLDID fieldid,
 FLDOCC oc,
 FLDLEN *len
);

function FML.ffind (
 fbfr in ORA_FFI.POINTERTYPE,
 fieldid in PLS_INTEGER,
 oc in PLS_INTEGER,
 len in out PLS_INTEGER
) return ORA_FFI.POINTERTYPE;

char *Ffindlast (
 FBFR *fbfr,
 FLDID fieldid,
 FLDOCC *oc,
 FLDLEN *len
);

function FML.ffindlast (
 fbfr in ORA_FFI.POINTERTYPE,
 fieldid in PLS_INTEGER,
 oc in out PLS_INTEGER,
 len in out PLS_INTEGER
) return ORA_FFI.POINTERTYPE;

Using Oracle Forms with the Tuxedo TP Monitor 16

“C” Function Prototype PL/SQL Equivalent
FLDOCC Ffindocc (
 FBFR *fbfr,
 FLDID fieldid,
 char *value,
 FLDLEN len
);

function FML.ffindocc (
 fbfr in ORA_FFI.POINTERTYPE,
 fieldid in PLS_INTEGER,
 value in out VARCHAR2,
 len in PLS_INTEGER
) return PLS_INTEGER;

function FML.ffindocc (
 fbfr in ORA_FFI.POINTERTYPE,
 fieldid in PLS_INTEGER,
 value in NUMBER,
 len in PLS_INTEGER
) return PLS_INTEGER;

int Fget (
 FBFR *fbfr,
 FLDID fieldid,
 FLDOCC oc,
 char *value,
 FLDLEN *maxlen
);

function FML.fget (
 fbfr in ORA_FFI.POINTERTYPE,
 fieldid in PLS_INTEGER,
 oc in PLS_INTEGER,
 value in out VARCHAR2,
 maxlen in out PLS_INTEGER
) return PLS_INTEGER;

function FML.fget (
 fbfr in ORA_FFI.POINTERTYPE,
 fieldid in PLS_INTEGER,
 oc in PLS_INTEGER,
 value in out NUMBER,
 maxlen in out PLS_INTEGER
) return PLS_INTEGER;

char *Fgetalloc (
 FBFR *fbfr,
 FLDID fieldid,
 FLDOCC oc,
 FLDLEN *extralen
);

function FML.fgetalloc (
 fbfr in ORA_FFI.POINTERTYPE,
 fieldid in PLS_INTEGER,
 oc in PLS_INTEGER,
 extralen in out PLS_INTEGER
) return ORA_FFI.POINTERTYPE;

int Fgetlast (
 FBFR *fbfr,
 FLDID fieldid,
 FLDOCC *oc,
 char *value,
 FLDLEN *maxlen
);

function FML.fgetlast (
 fbfr in ORA_FFI.POINTERTYPE,
 fieldid in PLS_INTEGER,
 oc in out PLS_INTEGER,
 value in out VARCHAR2,
 maxlen in out PLS_INTEGER
) return PLS_INTEGER;

function FML.fgetlast (
 fbfr in ORA_FFI.POINTERTYPE,
 fieldid in PLS_INTEGER,
 oc in out PLS_INTEGER,
 value in NUMBER,
 maxlen in out PLS_INTEGER
) return PLS_INTEGER;

int Fnext (
 FBFR *fbfr,
 FLDID *fieldid,
 FLDOCC *oc,
 char *value,
 FLDLEN *len
);

function FML.fnext (
 fbfr in ORA_FFI.POINTERTYPE,
 fieldid in out PLS_INTEGER,
 oc in out PLS_INTEGER,
 value in ORA_FFI.POINTERTYPE,
 len in out PLS_INTEGER
) return PLS_INTEGER;

FLDOCC Fnum (
 FBFR *fbfr
);

function FML.fnum (
 fbfr in ORA_FFI.POINTERTYPE
) return PLS_INTEGER;

FLDOCC Foccur (
 FBFR *fbfr,
 FLDID *fieldid
);

function FML.foccur (
 fbfr in ORA_FFI.POINTERTYPE,
 fieldid in PLS_INTEGER
) return PLS_INTEGER;

int Fpres (
 FBFR *fbfr,
 FLDID fieldid,
 FLDOCC oc
);

function FML.fpres (
 fbfr in ORA_FFI.POINTERTYPE,
 fieldid in PLS_INTEGER,
 oc in PLS_INTEGER
) return PLS_INTEGER;

Using Oracle Forms with the Tuxedo TP Monitor 17

“C” Function Prototype PL/SQL Equivalent
long Fvall (
 FBFR *fbfr,
 FLDID fieldid,
 FLDOCC oc
);

function FML.fvall
 fbfr in ORA_FFI.POINTERTYPE,
 fieldid in PLS_INTEGER,
 oc in PLS_INTEGER
) return PLS_INTEGER;

char *Fvals (
 FBFR *fbfr,
 FLDID fieldid,
 FLDOCC oc
);

function FML.fvals (
 fbfr in ORA_FFI.POINTERTYPE,
 fieldid in PLS_INTEGER,
 oc in PLS_INTEGER
) return VARCHAR2;

2.2.2.7 Buffer Update Functions

“C” Function Prototype PL/SQL Equivalent
int Fconcat (
 FBFR *dest,
 FBFR *src
);

function FML.fconcat (
 dest in ORA_FFI.POINTERTYPE,
 src in ORA_FFI.POINTERTYPE
) return PLS_INTEGER;

int Fjoin (
 FBFR *dest,
 FBFR *src
);

function FML.fjoin (
 dest in ORA_FFI.POINTERTYPE,
 src in ORA_FFI.POINTERTYPE
) return PLS_INTEGER;

int Fojoin (
 FBFR *dest,
 FBFR *src
);

function FML.fojoin (
 dest in ORA_FFI.POINTERTYPE,
 src in ORA_FFI.POINTERTYPE
) return PLS_INTEGER;

int Fproj (
 FBFR *fbfr,
 FLDID *fieldid
);

function FML.fproj (
 fbfr in out ORA_FFI.POINTERTYPE,
 fieldid in out PLS_INTEGER
) return PLS_INTEGER;

int Fprojcpy (
 FBFR *dest,
 FBFR *src,
 FLDID *fieldid
);

function FML.fprojcpy (
 dest in out ORA_FFI.POINTERTYPE,
 src in out ORA_FFI.POINTERTYPE,
 fieldid in out PLS_INTEGER
) return PLS_INTEGER;

int Fupdate (
 FBFR *dest,
 FBFR *src
);

function FML.fupdate (
 dest in ORA_FFI.POINTERTYPE,
 src in ORA_FFI.POINTERTYPE
) return PLS_INTEGER;

2.2.2.8 VIEWS Functions

“C” Function Prototype PL/SQL Equivalent
int Fvftos (
 FBFR *fbfr,
 char *cstruct,
 char *view
);

function FML_VIEWS.fvftos (
 fbfr in ORA_FFI.POINTERTYPE,
 cstruct in ORA_FFI.POINTERTYPE,
 view in out VARCHAR2
) return PLS_INTEGER;

int Fvnull (
 char *cstruct,
 char *cname,
 FLDOCC oc,
 char *view
);

function FML_VIEWS.fvnull (
 cstruct in ORA_FFI.POINTERTYPE,
 cname in out VARCHAR2,
 oc in PLS_INTEGER,
 view in out VARCHAR2
) return PLS_INTEGER;

int Fvopt (
 char *cname,
 int option,
 char *view
);

function FML_VIEWS.fvopt (
 cname in out VARCHAR2,
 option in PLS_INTEGER,
 view in out VARCHAR2
) return PLS_INTEGER;

int Fvselinit (
 char *cstruct,
 char *cname,
 char *view
);

function FML_VIEWS.fvselinit (
 cstruct in ORA_FFI.POINTERTYPE,
 cname in out VARCHAR2,
 view in out VARCHAR2
) return PLS_INTEGER;

Using Oracle Forms with the Tuxedo TP Monitor 18

“C” Function Prototype PL/SQL Equivalent
int Fvsinit (
 char *cstruct,
 char *view
);

function FML_VIEWS.fvsinit (
 cstruct in ORA_FFI.POINTERTYPE,
 view in out VARCHAR2
) return PLS_INTEGER;

int Fvstof (
 FBFR *fbfr,
 char *cstruct,
 int mode,
 char *view
);

function FML_VIEWS.fvstof (
 fbfr in ORA_FFI.POINTERTYPE,
 cstruct in ORA_FFI.POINTERTYPE,
 mode in PLS_INTEGER,
 view in out VARCHAR2
) return PLS_INTEGER;

2.2.2.9 Conversion Functions

“C” Function Prototype PL/SQL Equivalent
int CFadd (
 FBFR *fbfr,
 FLDID fieldid,
 char *value,
 FLDLEN len,
 int type
);

function FML_CONV1.cfadd (
 fbfr in ORA_FFI.POINTERTYPE,
 fieldid in PLS_INTEGER,
 value in out VARCHAR2,
 len in PLS_INTEGER,
 type in PLS_INTEGER
) return PLS_INTEGER;

function FML_CONV1.cfadd (
 fbfr in ORA_FFI.POINTERTYPE,
 fieldid in PLS_INTEGER,
 value in NUMBER,
 len in PLS_INTEGER,
 type in PLS_INTEGER
) return PLS_INTEGER;

int CFchg (
 FBFR *fbfr,
 FLDID fieldid,
 FLDOCC oc,
 char *value,
 FLDLEN len,
 int type
);

function FML_CONV1.cfchg (
 fbfr in ORA_FFI.POINTERTYPE,
 fieldid in PLS_INTEGER,
 oc in PLS_INTEGER,
 value in out VARCHAR2,
 len in PLS_INTEGER,
 type in PLS_INTEGER
) return PLS_INTEGER;

function FML_CONV1.cfchg (
 fbfr in ORA_FFI.POINTERTYPE,
 fieldid in PLS_INTEGER,
 oc in PLS_INTEGER,
 value in NUMBER,
 len in PLS_INTEGER,
 type in PLS_INTEGER
) return PLS_INTEGER;

char *CFfind (
 FBFR *fbfr,
 FLDID fieldid,
 FLDOCC oc,
 FLDLEN *len,
 int type
);

function FML_CONV1.cffind (
 fbfr in ORA_FFI.POINTERTYPE,
 fieldid in PLS_INTEGER,
 oc in PLS_INTEGER,
 len in out PLS_INTEGER,
 type in PLS_INTEGER
) return ORA_FFI.POINTERTYPE;

Using Oracle Forms with the Tuxedo TP Monitor 19

“C” Function Prototype PL/SQL Equivalent
FLDOCC CFfindocc (
 FBFR *fbfr,
 FLDID fieldid,
 char *value,
 FLDLEN len
 int type
);

function FML_CONV2.cffindocc (
 fbfr in ORA_FFI.POINTERTYPE,
 fieldid in PLS_INTEGER,
 value in out VARCHAR2,
 len in PLS_INTEGER,
 type in PLS_INTEGER
) return PLS_INTEGER;

function FML_CONV2.cffindocc (
 fbfr in ORA_FFI.POINTERTYPE,
 fieldid in PLS_INTEGER,
 value in NUMBER,
 len in PLS_INTEGER,
 type in PLS_INTEGER
) return PLS_INTEGER;

int CFget (
 FBFR *fbfr,
 FLDID fieldid,
 FLDOCC oc,
 char *buf,
 FLDLEN *len,
 int type
);

function FML_CONV2.cfget (
 fbfr in ORA_FFI.POINTERTYPE,
 fieldid in PLS_INTEGER,
 oc in PLS_INTEGER,
 buf in out VARCHAR2,
 len in out PLS_INTEGER,
 type in PLS_INTEGER
) return PLS_INTEGER;

function FML_CONV2.cfget (
 fbfr in ORA_FFI.POINTERTYPE,
 fieldid in PLS_INTEGER,
 oc in PLS_INTEGER,
 buf in out NUMBER,
 len in out PLS_INTEGER,
 type in PLS_INTEGER
) return PLS_INTEGER;

char *CFgetalloc (
 FBFR *fbfr,
 FLDID fieldid,
 FLDOCC oc,
 int type,
 FLDLEN *extralen
);

function FML_CONV2.cfgetalloc (
 fbfr in ORA_FFI.POINTERTYPE,
 fieldid in PLS_INTEGER,
 oc in PLS_INTEGER,
 int in PLS_INTEGER,
 extralen in out PLS_INTEGER
) return ORA_FFI.POINTERTYPE;

int Fadds (
 FBFR *fbfr,
 FLDID fieldid,
 char *value
);

function FML_CONVSTR.fadds (
 fbfr in ORA_FFI.POINTERTYPE,
 fieldid in PLS_INTEGER,
 value in out VARCHAR2
) return PLS_INTEGER;

int Fchgs (
 FBFR *fbfr,
 FLDID fieldid,
 FLDOCC oc,
 char *value
);

function FML_CONVSTR.fchgs (
 fbfr in ORA_FFI.POINTERTYPE,
 fieldid in PLS_INTEGER,
 oc in PLS_INTEGER,
 value in out VARCHAR2
) return PLS_INTEGER;

char *Ffinds (
 FBFR *fbfr,
 FLDID fieldid,
 FLDOCC oc
);

function FML_CONVSTR.ffinds (
 fbfr in ORA_FFI.POINTERTYPE,
 fieldid in PLS_INTEGER,
 oc in PLS_INTEGER
) return VARCHAR2;

int Fgets (
 FBFR *fbfr,
 FLDID fieldid,
 FLDOCC oc,
 char *buf
);

function FML_CONVSTR.fgets (
 fbfr in ORA_FFI.POINTERTYPE,
 fieldid in PLS_INTEGER,
 oc in PLS_INTEGER,
 buf in out VARCHAR2
) return PLS_INTEGER;

Using Oracle Forms with the Tuxedo TP Monitor 20

“C” Function Prototype PL/SQL Equivalent
char *Fgetsa (
 FBFR *fbfr,
 FLDID fieldid,
 FLDOCC oc,
 FLDLEN *extra
);

function FML_CONVSTR.fgetsa (
 fbfr in ORA_FFI.POINTERTYPE,
 fieldid in PLS_INTEGER,
 oc in PLS_INTEGER,
 extra in out PLS_INTEGER
) return VARCHAR2;

char *Ftypcvt (
 FLDLEN *tolen,
 int totype,
 char *fromval,
 int fromtype,
 FLDLEN fromlen
);

function FML_UTIL.ftypcvt (
 tolen in out PLS_INTEGER,
 totype in PLS_INTEGER,
 fromval in ORA_FFI.POINTERTYPE,
 fromtype in PLS_INTEGER,
 fromlen in PLS_INTEGER
) return ORA_FFI.POINTERTYPE;

2.2.2.10 Indexing Functions

“C” Function Prototype PL/SQL Equivalent
long Fidxused (
 FBFR *fbfr
);

function FML_INDEX.fidxused (
 fbfr in ORA_FFI.POINTERTYPE
) return PLS_INTEGER;

int Findex (
 FBFR *fbfr,
 FLDOCC intvl
);

function FML_INDEX.findex (
 fbfr in ORA_FFI.POINTERTYPE,
 intvl in PLS_INTEGER
) return PLS_INTEGER;

int Frstrindex (
 FBFR *fbfr,
 FLDOCC numidx
);

function FML_INDEX.frstrindex (
 fbfr in ORA_FFI.POINTERTYPE,
 numidx in PLS_INTEGER
) return PLS_INTEGER;

FLDOCC Funindex (
 FBFR *fbfr
);

function FML_INDEX.funindex (
 fbfr in ORA_FFI.POINTERTYPE
) return PLS_INTEGER;

2.2.2.11 Input/Output Functions

“C” Function Prototype PL/SQL Equivalent
long Fchksum (
 FBFR *fbfr
);

function FML_IO.fchksum (
 fbfr in ORA_FFI.POINTERTYPE
) return PLS_INTEGER;

int Fextread (
 FBFR *fbfr,
 FILE *iop
);

function FML_IO.fextread (
 fbfr in ORA_FFI.POINTERTYPE,
 iop in ORA_FFI.POINTERTYPE
) return PLS_INTEGER;

int Ffprint (
 FBFR *fbfr,
 FILE *iop
);

function FML_IO.ffprint (
 fbfr in ORA_FFI.POINTERTYPE,
 iop in ORA_FFI.POINTERTYPE
) return PLS_INTEGER;

int Fprint (
 FBFR *fbfr
);

function FML_IO.fprint (
 fbfr in ORA_FFI.POINTERTYPE
) return PLS_INTEGER;

int Fread (
 FBFR *fbfr,
 FILE *iop
);

function FML_IO.fread (
 fbfr in ORA_FFI.POINTERTYPE,
 iop in ORA_FFI.POINTERTYPE
) return PLS_INTEGER;

Using Oracle Forms with the Tuxedo TP Monitor 21

“C” Function Prototype PL/SQL Equivalent
int Fwrite (
 FBFR *fbfr,
 FILE *iop
);

function FML_IO.fwrite (
 fbfr in ORA_FFI.POINTERTYPE,
 iop in ORA_FFI.POINTERTYPE
) return PLS_INTEGER;

2.2.2.12 VIEW Conversion

“C” Function Prototype PL/SQL Equivalent
int Fcodeset (
 char *translation_table
);

Planned for a future release.

long Fvstot (
 char *cstruct,
 char *trecord,
 long treclen,
 char *viewname
);

Planned for a future release.

long Fvttos (
 char *cstruct,
 char *trecord,
 char *viewname
);

Planned for a future release.

2.2.2.13 Utility Functions

While the following two functions are not technically FML functions, their prototypes are in the
Tuxedo header file fml.h.

“C” Function Prototype PL/SQL Equivalent
int getFerror (
 void
);

function FML_UTIL.getFerror
return PLS_INTEGER;

char *Fstrerror (
 int err
);

function FML_UTIL.fstrerror (
 err in PLS_INTEGER
) return VARCHAR2;

2.3 Additional Functions
Oracle provides several other functions that may prove useful when developing applications with
this interface.

2.3.1 File I/O Functions

“C” Function Prototype PL/SQL Equivalent
int fclose (
 FILE *stream
);

function FML_IO.fclose (
 stream in ORA_FFI.POINTERTYPE
) return PLS_INTEGER;

Using Oracle Forms with the Tuxedo TP Monitor 22

“C” Function Prototype PL/SQL Equivalent
FILE *fopen (
 char *filename,
 char *mode
);

function FML_IO.fopen (
 filename in out VARCHAR2,
 mode in out VARCHAR2
) return ORA_FFI.POINTERTYPE;

2.3.2 String Manipulation Functions
These functions may prove particularly useful when the Tuxedo application uses string buffers
rather than the other buffer types. They can also be used whenever PL/SQL variables of type
ORA_FFI.POINTERTYPE and VARCHAR2 need to be converted from one type to the other.

“C” Function Prototype PL/SQL Equivalent
None. function D2TX.getstr (

 ptr in ORA_FFI.POINTERTYPE
) return VARCHAR2;

char *strcpy (
 char *dest,
 const char *src
);

function D2TX.strcpy (
 dest in out VARCHAR2,
 src in ORA_FFI.POINTERTYPE
) return VARCHAR2;

function D2TX.strcpy (
 dest in ORA_FFI.POINTERTYPE,
 src in out VARCHAR2
) return VARCHAR2;

2.3.3 Shutdown Function
This function unloads the interface dynamic-link library (d2txnn.dll) or shared object (d2txnn.so).
The recommended place to use it is in the form’s POST-FORM trigger (see Section 3.3.1.2,
“bankapp Client PL/SQL Form,” below).

“C” Function Prototype PL/SQL Equivalent
None. procedure D2TX.shutdown;

Using Oracle Forms with the Tuxedo TP Monitor 23

3. A Demonstration
The Tuxedo product is shipped with an example bank application (bankapp) to act as a working
example of a Tuxedo-based client/server system. To demonstrate the interface software, the
bankapp client was rewritten in PL/SQL using Oracle Forms. Prior to running the Oracle Forms
bankapp client, it is necessary to install, configure, and run the Tuxedo product and bankapp
application.

This section briefly describes how to prepare and run the native Tuxedo bankapp application and
the Oracle Forms bankapp client. It offers some guidelines for developing Tuxedo clients with
Oracle Forms.

3.1 Tuxedo bankapp
While it is beyond the scope of this white paper to act as the definitive guide to the installation,
configuration, and execution of the Tuxedo bankapp, the following steps are provided as a guide for
those who are new to Tuxedo. You will find the detailed information necessary to successfully
complete this process in Tuxedo’s documentation. You may find further assistance from Tuxedo’s
technical support organization.

Briefly, the steps to install, configure, and execute the Tuxedo bankapp are:

1. Install the Tuxedo product software on the server machine.

 For more information, refer to the BEA Tuxedo System 6 Installation Guide. Pay particular
attention to the section titled “Operating System Configuration.”

2. Optionally, create a Tuxedo administration account on the server machine (although, in
practice, just about any existing account will do). This account will be executing Tuxedo
bankapp server software.

3. Build and run the simple application that Tuxedo provides (simpapp) to minimally verify the
installation. In simpapp, a software client requests a simple service, and the service returns the
result. Note that both of these programs execute on the server machine.

 This is described in the BEA Tuxedo System 6 Installation Guide, as well as Chapter 1 of the
TUXEDO Application Development Guide.

4. Build and run the bank application that Tuxedo provides (bankapp) as a more sophisticated
example of an application layered on top of Tuxedo. Both the client and server programs
execute on the server machine.

 It is very likely that you will need to adjust the operating system tunable parameters. This
means that you will also have to reboot the server machine. Refer to the Tuxedo System 6
Installation Guide for help with the tunable parameters.

 You can find additional information about bankapp in the TUXEDO Application Development
Guide. There is another useful document, Exploring TUXEDO Using the bankapp Demo
Program, written by C. Cash Perkins, and dated 12/7/95. The latter takes some of the mystery
out of getting the bankapp programs to work.

 Once bankapp is up and running, create a new bank account and make some deposits and
withdrawals. If you like, use the example account number “20020.” You can use this account

Using Oracle Forms with the Tuxedo TP Monitor 24

later to verify that the Oracle Forms bankapp client works as well as the Tuxedo bankapp
client.

5. Install the Tuxedo software on the client machine.

 This is fairly straightforward. See the BEA Tuxedo System 6 Installation Guide for more
information. It is important that the Tuxedo libraries are accessible from the system path. To
accomplish this on Windows95, add the following two lines in the file AUTOEXEC.BAT.
The value of TUXDIR should reflect the path where Tuxedo was installed on the client
machine.

 SET TUXDIR=C:\tuxedo\6.4\ws\win32
 SET PATH=%PATH%;%TUXDIR%\bin\

 For Windows NT 4.0, open the Control Panel, then open the System Properties dialog box and
select the Environment tab to set these environment variables.

 On a UNIX operating system, this can be done with something like the following two lines of
C shell code. Again, the value of TUXDIR should reflect the path where Tuxedo was installed
on the client machine.

 setenv TUXDIR /tuxedo\6.4
 setenv LD_LIBRARY_PATH ${LD_LIBRARY_PATH}:${TUXDIR}/lib

Note: Failure to ensure that the Tuxedo dynamic-link libraries or shared
objects are on the system path will result in the inability to open the D2TX
dynamic-link library or shared object when running a form that uses D2TX.

6. Build and run the bankapp client software on the client machine. The bankapp client and
bankapp server programs now run on different machines. This exercise verifies that there is
connectivity between machines, and that the Tuxedo software has been installed correctly on
both machines. Use the new bank account that you created earlier.

 In a sense, this last step is the crux of the process. The document Exploring TUXEDO Using
the bankapp Demo Program is very useful here, as are the log files, in the event that the
bankapp client does not work correctly. A call to Tuxedo technical support might also be
necessary.

3.2 Oracle Forms bankapp
Once the native Tuxedo bankapp is up and running correctly over the network, on separate client
and server machines, the interface software (D2TX) can be demonstrated by running the Oracle
Forms bankapp client.

3.2.1 Preparing the bankapp Client
The following table contains the names of the files that are appropriate for this version of the
interface.

File Name Description
bankapp.fmb bankapp form module binary file - This is the Oracle Forms bankapp client.
bankapp.pll bankapp PL/SQL library module binary file - This contains the bankapp utilities,

and the abstraction of the bankapp client services, written in PL/SQL.

Using Oracle Forms with the Tuxedo TP Monitor 25

File Name Description
d2tx.pll Oracle Forms - Tuxedo PL/SQL library module binary file - This contains the

PL/SQL versions of the Tuxedo program elements (ATMI and FML16 APIs)
that are exposed in Oracle Forms.

d2txnn.dll Oracle Forms - Tuxedo dynamic-link library - This contains those Tuxedo
program elements that could not be encapsulated directly in PL/SQL. This file
is automatically installed in the %ORACLE_HOME%\bin directory for the 32-
bit Windows OS platforms.

d2txnn.so Oracle Forms - Tuxedo shared object - This contains those Tuxedo program
elements that could not be encapsulated directly in PL/SQL. This file is
automatically installed in the ${ORACLE_HOME}\bin directory for the UNIX
OS platforms.

Table 2 - Descriptions of Product Files

To prepare the Oracle Forms bankapp client, use the Oracle Installer to install the interface
software (Oracle Forms Open Interfaces → Tuxedo Interface).

3.2.2 Running the bankapp Client
Assuming that Oracle Forms and D2TX have been successfully installed on the client machine,
take the following steps to run the Oracle Forms bankapp client on the client machine:

1. Make sure that the correct version of Tuxedo/Workstation (/WS) is installed on the client
machine. This is specified in the table in Section 1, “Introduction,” on page 1.

2. Verify that the Tuxedo libraries (DLLs or shared objects) are accessible from the system path.
Refer to Step 5 of Section 3.1, “Tuxedo bankapp,” on page 23 for more details.

3. Ensure that the Tuxedo bankapp servers are running on the server machine. Ideally, they
haven’t been shut down since Tuxedo bankapp client was last run. Please refer to Step 4 of
Section 3.1, “Tuxedo bankapp,” on page 23 for more details.

4. On the 32-bit Windows OS platforms, open the Form Builder and run the bankapp Form
module binary file (BANKAPP.FMB).

 On a UNIX OS platform, run the C shell script “fbankapp”. This will automatically run the
Oracle Forms bankapp client.

5. When the form (Oracle Forms bankapp client) comes up, click the Connect button.

 This is the most likely point where any problems with the demo may arise. These could include
the inability to find the D2TX DLL or shared objects, or the inability to communicate with the
Tuxedo bankapp servers. These problems will be displayed in the Forms message line, and
logged in the file D2TX_ERR.LOG in the Form Builder or Forms Runtime working directory.
You can minimize potential problems by making sure in advance that the native Tuxedo
bankapp client can run successfully on the client machine.

6. Once the connection has been made, it is possible to use the radio buttons in the right-hand
pane to process transactions. This should behave just as the native Tuxedo bankapp client did,
except that now, it’s implemented as an Oracle form. This is a good time to use the new
account number that you created earlier.

7. Press the button labeled “Exit” to leave the Oracle Forms bankapp client.

Using Oracle Forms with the Tuxedo TP Monitor 26

3.3 Client Development Tips
This section offers some tips for developing Tuxedo clients with Oracle Forms, using the Oracle
Forms bankapp client as an example.

3.3.1 Elements of the bankapp Client
Before delving into the specific tips, become familiar with the elements of the Oracle Forms
bankapp client. The easiest way to do this is to load it into the Form Builder, keeping in mind that
there are two sets of source code that will be reviewed: the source code associated with the Oracle
Forms bankapp client form, and the source code that resides in the Oracle Forms bankapp client
PL/SQL library.

3.3.1.1 bankapp Client PL/SQL Library

To take a look at the source code in the bankapp client PL/SQL library, start Form Builder and
open the PL/SQL library, BANKAPP.PLL. Expand the Program Units to find the following
PL/SQL program units:

PL/SQL Program Unit Description
BANKDEF (Package Spec) Defines exceptions and variables for global use.
BANKSVCS (Package Spec) Specifies the interface for the BANKSVCS PL/SQL package,

which comprises eight application-level services.
BANKSVCS (Package Body) Implements the previous specification. These bank services

are built on top of the bank utilities that are provided in the
PL/SQL package BANKUTL.

BANKUTL (Package Spec) Specifies the interface for the BANKUTL PL/SQL package,
which comprises ten bank utility procedures and functions.

BANKUTL (Package Body) Implements the previous specification. These bank utilities are
built on top of the ATMI and FML PL/SQL packages that
compose the Oracle Forms - Tuxedo PL/SQL library
(D2TX.PLL).

Table 3 - Descriptions of bankapp PL/SQL Library Program Units

Note that the bankapp client is implemented in layers. The bankapp client (form) is built on top of
the bank services; the bank services are built on top of the bank utilities; and the bank utilities are
built on top of the PL/SQL versions of the Tuxedo client program elements (ATMI and FML16
APIs). Figure 3 illustrates the layers that are involved

Using Oracle Forms with the Tuxedo TP Monitor 27

®

Oracle Forms - Tuxedo Architecture
… from the client-side perspective

Form

Application-specific PL/SQL Library

Oracle Forms - Tuxedo Interface

Tuxedo Cient-side

Screens & Alerts
Navigation & Data format validation

PL/SQL abstractions of services…
connect_teller, deposit, withdraw...

tpBegin, tpCall (PL/SQL)

tpBegin, tpCall (C)

Application Services
connect_teller, deposit, withdraw...

User Interface
(Client Tier)

Client-side Abstraction for
Application Services

Provided By Oracle

Provided by BEA Systems

Middle Tier (and beyond)

Figure 3 - Oracle Forms - Tuxedo Client Architecture

Alternatively, the Bank Services can be appreciated in their programmatic form. Below is the
corresponding PL/SQL package specification. Note that the functions reflect some of the bank’s
business activities.

package BANKSVCS is

-- Copyright (C) Oracle Corporation 1996, 1998.
-- All Rights Reserved, Worldwide.

 procedure CONNECT_TELLER (errmsg in out varchar2);

 procedure DISCONNECT (errmsg in out varchar2);

 procedure INQUIRY (account_id in out pls_integer,
 balance in out number,
 errmsg in out varchar2);

 procedure DEPOSIT (account_id in out pls_integer,
 amount in out number,
 balance in out number,
 errmsg in out varchar2);

 procedure WITHDRAW (account_id in out pls_integer,
 amount in out number,
 balance in out number,
 errmsg in out varchar2);

 procedure TRANSFER (from_acct in out pls_integer,
 to_acct in out pls_integer,
 amount in out number,
 from_bal in out number,
 to_bal in out number,
 errmsg in out varchar2);

 procedure OPEN (lastname in out varchar2,
 firstname in out varchar2,
 midinitial in out varchar2,
 address in out varchar2,
 ssn in out varchar2,
 phone in out varchar2,
 initbalance in out number,
 accttype in out varchar2,
 branchid in out pls_integer,

Using Oracle Forms with the Tuxedo TP Monitor 28

 account_id in out pls_integer,
 openbalance in out number,
 errmsg in out varchar2);

 procedure CLOSE (account_id in out pls_integer,
 balance in out number,
 errmsg in out varchar2);
end;

Similarly, the Bank Utilities are presented below in their PL/SQL package specification form.
package BANKUTL is

-- Copyright (C) Oracle Corporation 1996, 1998.
-- All Rights Reserved, Worldwide.

 procedure COMPOSE_ERROR (fbfr in out ora_ffi.pointertype,
 errmsg in out varchar2);

 function ALLOC_MEM (memtyp in varchar2,
 memsize in pls_integer) return ora_ffi.pointertype;

 procedure FREE_MEM (pointer in out ora_ffi.pointertype);

 procedure SET_VALUE (fbfr in out ora_ffi.pointertype,
 fldname in out varchar2,
 instance in pls_integer,
 value in out pls_integer);

 procedure SET_VALUE (fbfr in out ora_ffi.pointertype,
 fldname in out varchar2,
 instance in pls_integer,
 value in out varchar2);

 function GET_DOLLAR (fbfr in out ora_ffi.pointertype,
 fname in out varchar2,
 instance in pls_integer) return number;

 function GET_NUMBER (fbfr in out ora_ffi.pointertype,
 fname in out varchar2,
 instance in pls_integer) return number;

 function CALL_SERVICE (svcname in out varchar2,
 fbfr in out ora_ffi.pointertype,
 buflen in out pls_integer) return pls_integer;

 procedure BEGIN_TRAN;

 procedure COMMIT_TRAN;

end;

• Tip #1 - Abstract the services into PL/SQL packages

Although the Oracle Forms/Tuxedo interface makes PL/SQL versions of the Tuxedo client
program elements available, they are generally too low-level for building Tuxedo clients
(forms) directly. Abstract the higher-level services, and implement them in a PL/SQL
package. Consider including a layer of “utility functions.” The PL/SQL packages can
reside in one or more libraries.

Another benefit of this approach is that the utility functions can be reused by other bank
applications, enabling quicker development times as well as supporting customer-specific
processing standards.

• Tip #2 - Special considerations for tpcall()

One of the bank utility functions is called CALL_SERVICE()in the BANKUTL Package
Body. Note that CALL_SERVICE()calls tpcall(). The comment is helpful, but the

Using Oracle Forms with the Tuxedo TP Monitor 29

situation merits a closer look. The function is reproduced below so that you may refer to it
in this discussion.

-- Note for CALL_SERVICE:
--
-- To be sure that we can catch a reallocation of fbfr by tpcall, we
-- don't use the passed-in fbfr. Another problem is that we'd like
-- to raise an exception on failure, however we'd lose the pointer to
-- the reallocated fbfr, since the OUT var won't go back to the caller...
-- So instead, we return an error, and the simplest thing for the
-- caller to do is wrap CALL_SERVICE in a begin/end block, and raise the
-- TPM_FAILURE exception themselves. This is gross, but typical of some
-- of the trickiness inherent in keeping two very different languages
-- (C and PL/SQL) in sync with each other.
--
function CALL_SERVICE (svcname in out varchar2,
 fbfr in out ora_ffi.pointertype,
 buflen in out pls_integer)
return pls_integer is
 fbfr1 ora_ffi.pointertype := fbfr;
 fbfr2 ora_ffi.pointertype := fbfr;
 flags pls_integer := tuxdef.TPSIGRSTRT;
 retlen pls_integer := 0;
begin

 ret := atmi.tpcall (svcname, fbfr1, buflen, fbfr2, retlen, flags);

 --
 -- If the return length is non-zero, it means that reallocation
 -- occurred, and we have to set the buffer and length to the
 -- new address and size.
 --
 if retlen != 0 then
 fbfr := fbfr2;
 buflen := retlen;
 end if;

 if ret = -1 then
 if atmi.gettperrno = TUXDEF.TPESVCFAIL then
 bankdef.errcat := 'SERVICE';
 else
 bankdef.errcat := 'TP';
 end if;
 bankdef.errtyp := 'TPCALL';
 end if;

 return (ret);
end;

There are two issues here. The first is that atmi.tpcall() may reallocate the fielded buffer, for
example, to increase the size of the fielded buffer so as to contain the data from the reply. Distinct
pointer variables (fbfr, fbfr1, and fbfr2) are used to preclude any confusion.

The second issue is how to handle an error returned by atmi.tpcall() and not lose the pointer
to the fielded buffer (fbfr). This pointer is needed so that the calling program can free the fielded
buffer if an error is detected. The solution is apparent from the comment and the code,
nevertheless, it is instructive to see how the error is handled by the calling routine. The procedure,
OPEN(), in the BANKSVCS PL/SQL package, is just such a calling routine. It is reproduced
below.

-- Globals useful for all services
--
fbfr ora_ffi.pointertype; -- Fielded Buffer Pointer
buflen pls_integer := 1024; -- Fielded buffer length
ret pls_integer; -- Tuxedo return code
numbuf varchar2(40); -- Buffer for numeric conversions

procedure OPEN (lastname in out varchar2,
 firstname in out varchar2,
 midinitial in out varchar2,
 address in out varchar2,

Using Oracle Forms with the Tuxedo TP Monitor 30

 ssn in out varchar2,
 phone in out varchar2,
 initbalance in out number,
 accttype in out varchar2,
 branchid in out pls_integer,
 account_id in out pls_integer,
 openbalance in out number,
 errmsg in out varchar2) is
begin
 errmsg := null;
 numbuf := TO_CHAR(initbalance);
 fbfr := bankutl.alloc_mem (FMLSTR, buflen);

 bankutl.set_value (fbfr, FNM_LAST_NAME, 0, lastname);
 bankutl.set_value (fbfr, FNM_FIRST_NAME, 0, firstname);
 bankutl.set_value (fbfr, FNM_MID_INIT, 0, midinitial);
 bankutl.set_value (fbfr, FNM_SSN, 0, ssn);
 bankutl.set_value (fbfr, FNM_ADDRESS, 0, address);
 bankutl.set_value (fbfr, FNM_PHONE, 0, phone);
 bankutl.set_value (fbfr, FNM_ACCT_TYPE, 0, accttype);
 bankutl.set_value (fbfr, FNM_BRANCH_ID, 0, branchid);
 bankutl.set_value (fbfr, FNM_SAMOUNT, 0, numbuf);
 bankutl.begin_tran;
 begin
 if bankutl.call_service (SVC_OPEN, fbfr, buflen) = -1 then
 raise bankdef.TPM_FAILURE;
 end if;
 end;
 bankutl.commit_tran;
 openbalance := bankutl.get_dollar (fbfr, FNM_SBALANCE, 0);
 account_id := bankutl.get_number (fbfr, FNM_ACCOUNT_ID, 0);
 bankutl.free_mem (fbfr);
exception
 when bankdef.ALLOCATION_FAILURE then
 bankutl.compose_error (fbfr, errmsg);
 when bankdef.TPM_FAILURE then
 bankutl.compose_error (fbfr, errmsg);
 bankutl.free_mem (fbfr);
 ret := atmi.tpabort(0);
end;

Note the begin/end block in the middle of the procedure to raise the exception. The exception
handler further below frees the fielded buffer and aborts the transaction by directly using an ATMI
call, atmi.tpabort().

Although atmi.tpabort() was called directly, it could just as easily have been wrapped by a
bank utility function, similar to bankutl.begin_tran() or bankutl.commit_tran(); not
doing so technically violates the layered approach recommended earlier.

3.3.1.2 bankapp Client PL/SQL Form

There is a non-trivial amount of code, primarily to support the various triggers in the bankapp client
PL/SQL form, that is not in the bankapp client PL/SQL library. To explore the source code in the
bankapp client PL/SQL form, use the Object Navigator in Form Builder to open the bankapp Form
module binary file, BANKAPP.FMB. Expand the BANKAPP node to reveal the form’s object
hierarchy. The first objects of interest are the Triggers. Expand “Triggers” to view the three
triggers that were customized for the bankapp client form. To see the PL/SQL code behind each
trigger, double-click on the trigger icon. The trigger’s code appears in the PL/SQL Editor.

Read the comments in each of the triggers. Note that the POST-FORM trigger calls an interface
layer function, d2tx.shutdown(), directly. The ON-LOGON trigger contains nothing more
that a null statement. This is to prevent Oracle Forms from executing its default logon processing,
which wouldn’t make any sense in the context of a TP monitor.

• Tip #3 - Consider the Forms built-in triggers

Using Oracle Forms with the Tuxedo TP Monitor 31

When you build an application, Oracle Forms’ built-in triggers must be taken into account,
particularly when the form (client) will be not be interfacing directly with an Oracle data
source, as is the case with Tuxedo. In many cases, the default processing will have to be
suppressed, as was the case with the ON-LOGON transactional trigger discussed above.
But in many instances, these triggers also provide a convenient location to place code that
will interact appropriately with the TP monitor.

Continuing with the tour of the bankapp client form, the next objects of interest are the Data
Blocks. Expand the “Data Blocks” node to see the three data blocks in this form. Data Blocks
provide a mechanism for grouping related items into a functional unit for storing, displaying, and
manipulating records. These data blocks correspond to the three screens the form displays at one
time or another.

Of particular interest is the trigger code associated with each button. To illustrate the point, the
code for the WHEN-BUTTON-PRESSED trigger under the item called “VERB,” under the data
block called “ACTIONS,” is listed below. “VERB” is a generic reference for the OK button that
appears at the bottom of the “ACTIONS” screen. Depending on exactly what the action is, the
trigger code calls the appropriate bank service routine, for example, banksvcs.inquiry().
This is another illustration of the form layer relying on routines from the bankapp client PL/SQL
library.

-- Copyright (C) Oracle Corporation 1996, 1998.
-- All Rights Reserved, Worldwide.

declare
 balance1 number;
 balance2 number;
 account1 pls_integer := :actions.account1;
 account2 pls_integer := :actions.account2;
 amount number := :actions.amount;
 action varchar2(20) := :bank_svcs.services;
 errmsg varchar2(250);
 discard number;
 item1 varchar2(30) := null;
 item2 varchar2(30) := null;

begin
 --
 -- Call the appropriate service for the current action
 -- (We also use this block to display initial balance after
 -- creation so if the action is OPEN then we just go back to
 -- the main block)
 --
 if (action = 'OPEN_ACCT') then
 go_block ('bank_svcs');
 return;
 elsif (action = 'INQUIRY') then
 banksvcs.inquiry (account1, balance1, errmsg);
 :actions.balance1 := balance1;
 elsif (action = 'DEPOSIT') then
 banksvcs.deposit (account1, amount, balance1, errmsg);
 :actions.balance1 := balance1;
 elsif (action = 'WITHDRAW') then
 banksvcs.withdraw (account1, amount, balance1, errmsg);
 :actions.balance1 := balance1;
 elsif (action = 'CLOSE_ACCT') then
 banksvcs.close (account1, balance1, errmsg);
 :actions.balance1 := balance1;
 elsif (action = 'TRANSFER') then
 banksvcs.transfer (account1, account2, amount, balance1, balance2, errmsg);
 :actions.balance1 := balance1;
 :actions.balance2 := balance2;
 item1 := 'actions.bal2_label';
 item2 := 'actions.balance2';
 null;

Using Oracle Forms with the Tuxedo TP Monitor 32

 else
 errmsg := 'INTERNAL ERROR: Unknown transaction type';
 end if;

 -- If the service returned an error, display it
 --
 if (errmsg is not null) then
 hideitem ('actions.bal1_label');
 hideitem ('actions.balance1');
 hideitem (item1);
 hideitem (item2);
 synchronize;
 set_alert_property ('ERRORMSG', ALERT_MESSAGE_TEXT, errmsg);
 discard := show_alert ('ERRORMSG');
 else
 showitem ('actions.bal1_label');
 showitem ('actions.balance1');
 showitem (item1);
 showitem (item2);
 end if;
end;

In the Object Navigator, move down to the node called “Canvases.” Expand this node, then
double-click a canvas icon to see how a screen will appear when the form is running.

Finally, expand the Program Units node to see the PL/SQL functions and procedures that are
associated with this form. Since these routines are really only specific to this particular form, they
are found here rather than in the Oracle Forms bankapp client PL/SQL library.

Using Oracle Forms with the Tuxedo TP Monitor 33

4. Appendix

4.1 What’s New in this Release?

4.1.1 Bug Fixes
This section highlights the improvements that are featured in this release.

• Bug #1201146
Minor improvements and updates were made to this white paper.

4.1.2 Current Limitations
• Asynchronous ATMI client functions are not supported in this release.

4.2 Frequently Asked Questions
This section answers some questions related to the Oracle Forms/Tuxedo Interface.

4.2.1 General
• Isn’t there some other interface between Oracle and Tuxedo?

Yes, there is, but it’s a little different from this one. That interface is between an Oracle
database and Tuxedo using the standard XA protocol. The Oracle database fulfills the role
of the data management service on the resource server (third tier), while the Oracle
Forms/Tuxedo Interface enables the development of Tuxedo clients for the desktop (the first
tier). These interfaces are complementary.

There’s even a demo of this that also uses bankapp. It shows an Oracle database (Oracle7)
acting as the database for the bankapp, rather than using the internal data structures that are
shipped with bankapp. This demo uses the data dependent routing feature of the Tuxedo
system. For more information about this database interface or its demo, see the draft white
paper INTEGRATING THE TUXEDO SYSTEM WITH ORACLE 7 RDBMS, dated 17
April 1995. It should be available from BEA Systems.

4.2.2 Marketing
• Are other interfaces available or planned for more recent releases of Tuxedo?

This interface is with Tuxedo System Release 6.4. Interfaces supporting more recent
releases of Tuxedo can be expected if the market demands them.

• Will there be an interface of FML32 available at some point?

Yes, if there is enough demand from the marketplace to justify the effort.

• What TP monitor interfaces are available or planned for Oracle Forms?

Oracle Corporation developed a prototype with a similar interface with Digital Equipment
Corporation’s ACMS Desktop. NCR Corporation (http://www.ncr.com/) has developed an
interface between Oracle Forms and their TP monitor, TOP END, which is available from
NCR.

Using Oracle Forms with the Tuxedo TP Monitor 34

4.3 Additional Resources
There are many other resources available to aid in the understanding of this interface, as well as its
constituent and enabling technologies.

4.3.1 Oracle Forms
The following additional resources are available for Oracle Forms:

4.3.1.1 On-line Documentation

• There is a wealth of knowledge in the Oracle Forms on-line documentation. Of particular
interest would be the sections that discuss the PL/SQL interface to foreign functions and
transactional triggers. These can both be found in the Form Builder online help index
(Foreign functions, Transactional Triggers).

• The Procedure Builder online help has an entire node devoted to calling functions in
dynamic libraries under the heading “Building and Running a Program Unit,” as well as a
detailed description of the ORA_FFI (foreign function interface) built-in package in the
PL/SQL Reference.

4.3.1.2 White Papers

• Additional white papers are available from the Oracle Technology Network
(http://technet.oracle.com/). Contact your Oracle Corporation Sales Representative or
Consultant for more information about these resources.

4.3.1.3 Books

• Feuerstein, Steven, with Bill Pribyl. ORACLE PL/SQL Programming, 2nd Edition.
Sebastopol, CA: O’Reilly & Associates, Inc., October 1997. ISBN: 1565923359. A very
rich tome covering just about everything anyone would want to know about PL/SQL.

4.3.2 Tuxedo and TP Monitors
The following additional resources are available for Tuxedo:

4.3.2.1 Documentation Set

• Of course, the BEA TUXEDO System 6 Installation Guide is essential to getting started.
Pay particular attention to the sections devoted to configuring the operating system, and the
data sheet for the operating system under which Tuxedo will run; it is almost guaranteed
that at least some of the kernel-tunable parameters will have to be adjusted to get bankapp
to work correctly.

The remainder of Tuxedo’s product documentation is installed with the product as HTML
documents. The following Tuxedo documents are the most relevant to this interface.

• Refer to the /Workstation Guide for information about how to bring up Tuxedo’s bankapp
client on the client machine, and for information on how to design and write Tuxedo clients.

• The Application Developer’s Guide contains information about how to develop a Tuxedo
application, using the bankapp as an example.

Using Oracle Forms with the Tuxedo TP Monitor 35

• Everything you wanted to know about Tuxedo’s Form Manipulation Language is in the
FML Programmer’s Guide.

• For more programming information, refer to the Programmer’s Guide, especially Chapter
2, “Writing Client Programs.”

• The Reference Manual: Section 3C contains detailed descriptions for the ATMI C functions
and the Reference Manual: Section 3FML contains detailed descriptions for the FML C
functions.

4.3.2.2 White Papers

• Programming a Distributed Application is a good description of the four communication
techniques available to programmers using Tuxedo to write distributed applications. This is
available from BEA Systems.

• Exploring TUXEDO Using the bankapp Demo Program, written by C. Cash Perkins, and
dated 12/7/95, is a good resource for understanding how to get bankapp to run. This is also
available from BEA Systems.

4.3.2.3 Books

• Grey, Jim and Reuter, Andreas. Transaction Processing: Concepts and Techniques.
Morgan Kaufmann Publishers, 1993. ISBN 1-55860-190-2. This book is widely
considered to be the authoritative reference book for TP systems.

• Hall, Carl L. Building Client/Server Applications using Tuxedo. John Wiley & Sons, Inc.,
1993. ISBN 0-471-12958-5.

• Primatesta, Fulvio. Tuxedo: An Open Approach to OLTP. Prentice Hall, 1995. ISBN
0-13-101833-7

4.3.2.4 Web Pages

• The URL for Tuxedo information is http://www.beasys.com.

Using Oracle Forms with the Tuxedo TP Monitor

April 2000

Copyright © Oracle Corporation 2000

All Rights Reserved Printed in the U.S.A.

This document is provided for informational purposes

only and the information herein is subject to change

without notice. Please report any errors herein to

Oracle Corporation. Oracle Corporation does not

provide any warranties covering and specifically

disclaims any liability in connection with this document.

Oracle is a registered trademark and Enabling the

Information Age, Oracle7, Oracle8 and Oracle 8i are trademarks of

Oracle Corporation.

Oracle Corporation

World Headquarters

500 Oracle Parkway

Redwood Shores, CA 94065

U.S.A.

Worldwide Inquiries:

650.506.7000

Fax 650.506.7200

Copyright © Oracle Corporation 2000

All Rights Reserved

Printed in the U.S.A.

