
Oracle9i Designer Migration Guide

Contents

Oracle9i
Designer
Migration
Guide
August 2002

Copyright © 2002, Oracle Corporation. All rights reserved.

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property laws.
Reverse engineering, disassembly or decompilation of the Programs, except to the extent required to
obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the US Government or anyone licensing or using the Programs on behalf
of the US Government, the following notice is applicable:

RESTRICTED RIGHTS NOTICE

Oracle9i Designer Migration Guide

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_ttl_9i-1.htm (1 of 2) [19/08/2002 16:05:19]

Programs delivered subject to the DOD FAR Supplement are "commercial computer software" and use,
duplication and disclosure of the Programs including documentation, shall be subject to the licensing
restrictions set forth in the applicable Oracle license agreement. Otherwise, Programs delivered subject to
the Federal Acquisition Regulations are "restricted computer software" and use, duplication and
disclosure of the Programs shall be subject to the restrictions in FAR 52.227-19, Commercial Computer
Software - Restricted Rights (June, 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City, CA
94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be licensee's responsibility to take all appropriate fail-safe, back up,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle disclaims liability for any damages caused by such use of the Programs.

Oracle is a registered trademark, and Oracle8i, Oracle9i, PL/SQL and SQL*Plus are trademarks or
registered trademarks of Oracle Corporation. Other names may be trademarks of their respective owners.

Next

Copyright © 2002, Oracle Corporation.

All Rights Reserved.
Contents

Oracle9i Designer Migration Guide

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_ttl_9i-1.htm (2 of 2) [19/08/2002 16:05:19]

Oracle9i Designer Migration Guide

Contents (summary table)
Part 1 Introduction, enhancements and new features Detailed contents

Part 2 Migrating the repository Detailed contents

Part 3 Generating and migrating existing database designs to Oracle9i
Designer

Detailed contents

Part 4 Migrating Generated Forms Applications to Oracle9i Designer Detailed contents

Part 5 Migrating Generated Web/PLSQL Applications to Oracle9i Designer Detailed contents

Appendix A PVCS/VM administration query Detailed contents

Appendix B Quick reference information Detailed contents

Detailed contents

Part 1 Introduction, enhancements and new
features
Chapter 1 Introduction

Benefits and reasons for migrations

Migration versus upgrade and migration scenarios

Scenario 1. Migrate, Regenerate All, No Redesign

Scenario 2. Migrate, Regenerate All, With Redesign

Scenario 3. Migrate, Regenerate Incrementally

Scenario 4. Migration only of developer components and database components

Scenario 5. Design Capture of database elements and developer components

Oracle9i Designer Migration Guide - Contents

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_toc_9i-1.htm (1 of 17) [19/08/2002 16:05:26]

Usage and benefits of a pilot migration

Chapter 2 What has changed in Designer?

Storage of structured elements

Storage of unstructured elements or files

Workareas

Containers

Version control

Overview

Version history

Checkin and checkout

Branching

Locking, comparing and merging

Version control tools

Configurations

Folder and file synchronization

System privileges

Access rights

Repository policies

Version control policies

Automatic branching

Automatic version labeling

Strict locking

File naming policy

Dependency policies

Short cuts versus shares

Chapter 3 A version enabled repository versus a non-versioned repository

Oracle9i Designer Migration Guide - Contents

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_toc_9i-1.htm (2 of 17) [19/08/2002 16:05:26]

Unversioned structured elements

Unversioned structured elements with unversioned folder/file support

Versioned structured elements with versioned folder/file support

Part 2 Migrating the repository
Chapter 1 Introduction

Chapter 2 Prerequisites and installation notes

Verify the client side and server side installation

Verification of the client side

Verification of the server side

Verification of the installation log files

"View objects" in the RAU

Prepare the Oracle Designer repository for migration

Public or private synonyms

Reevaluate the file registry settings

Chapter 3 Migrate structured data

Example of Headstart structured data

Migration strategies for structured data

Migrate an entire repository content

Migrate a sub-selection of application systems

Preparing (cleaning up) your 'old' repository content

Other hints and tips based on migration best practices

Problems during migration

Migration steps from an Oracle Designer 1.3.2 repository to Oracle Designer 6.0 repository

Unload Oracle Designer 1.3.2 user extensibility (optional)

Load Oracle Designer 1.3.2 user extensibility into Oracle Designer 6.0
(optional)

Oracle9i Designer Migration Guide - Contents

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_toc_9i-1.htm (3 of 17) [19/08/2002 16:05:26]

Migration via the Repository Administration Utility Upgrade tool

Migration via extracted application systems

Migration steps from an Oracle Designer 6.0 repository to Oracle9i Designer repository

Unload Oracle Designer 6.0 user extensibility (optional)

Load Oracle Designer 6.0 user extensibility into Oracle9i Designer (optional)

Launch the migration wizard

Check in structured elements

Verify the access rights

Check in structured objects

Post migration steps for structured data

Remove the suffix “(1)” from your migrated application system name

Translate (old) parent application systems to a nested container structure

Building a version tree for structured data

Build a version tree manually

Post migration steps for structured elements within a staged migration approach

Merge interim changes in structured elements

Verify the migrated structured data

Compute statistics

Reevaluate preference sets

Chapter 4 Migrate files from third party source control tools

Populate the file system with a baseline set of files

Get an overview of your third party source control tool repository

Clean up your third party source control tool repository

Determine a generic directory structure

Publish the baseline set of files on the file system

Populate the Oracle9i Designer repository

Oracle9i Designer Migration Guide - Contents

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_toc_9i-1.htm (4 of 17) [19/08/2002 16:05:26]

Apply (root) folder mapping

Upload of files

Checkin of files

Upload and check in sources and executables

Post migration steps for files stored in a third party source control tool

Building a version tree for files

Building a version tree immediately

Building your version tree in time

Summary of migration strategies for building a version tree for
files

Verify the migrated files

Verify the file existence

The existence of the appropriate number of additional versions
(version tree)

Compute statistics

Chapter 5 Migrate files that are stored on the file system

Populate the file system with a baseline set of files

Restructure the file system

Determination of a generic directory structure

Clean-up checklist

Populate the Oracle Designer repository

Post migration steps for files stored on the file system

Build a version tree for files

Building a version tree immediately

Building your version tree in time

Summary of migration strategies for files stored on the file system

Verify the migrated files

Oracle9i Designer Migration Guide - Contents

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_toc_9i-1.htm (5 of 17) [19/08/2002 16:05:26]

Verify the file existence

The existence of the appropriate number of additional versions
(version tree)

Compute statistics

Chapter 6 Reorganize a migrated Oracle9i Designer repository

Define workareas and configurations

Different folder mappings in the development workarea for each developer

Remove obsolete containers and other objects

Compute statistics

Chapter 7 Migrate users and assign access privileges

Classification of user groups and subsequent access rights

System repository access rights

Database system privileges

User migration scripts

Chapter 8 Synchronize the file system and the database with the repository content

File system synchronization

File synchronization options

Upload

Download

Synchronize

Checkin

Database synchronization

Synchronization add-ons

Chapter 9 A typical migration plan

Preparation

Trial migration

Oracle9i Designer Migration Guide - Contents

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_toc_9i-1.htm (6 of 17) [19/08/2002 16:05:26]

Hardware and software upgrades - Win32 clients

Hardware and software upgrades - DBMS server

Hardware and software upgrades - middle-tier

Redesign Configuration Management (CM) tasks and responsibilities

Redesign (CM) procedures and standards & guidelines

Configuration Management and Designer training

Migration

Rollout

Part 3 Generating and migrating existing database
designs to Oracle9i Designer
Chapter 1 Introduction

Scenario 1. Migrate, Regenerate All, No Redesign

Scenario 2. Migrate, Regenerate All, With Redesign

Chapter 2 New Database Features

Migrating from Designer 1.3.2

Design Editor

Database implementation

Database meta model of Oracle Designer 1.3.2

Database meta model since Oracle Designer 2.1.x

Obsoleteness of the create property

Usage of the batch generation and batch design capture

Database capture changes

Separate menu for generating administrative objects

Migrating from Designer 2.1.2 and/or Designer 6.0

Server Generator preferences – introduced in 6i

Oracle9i Designer Migration Guide - Contents

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_toc_9i-1.htm (7 of 17) [19/08/2002 16:05:26]

Database Generation notes and Server Generator generation tabs

General Generator Options

Obsolete options for Oracle9i Designer Database object generation
options

Oracle9i Designer Database Object generation options (target tab)

New Oracle9i Designer Database Object generation options
(Options button)

Table API changes

Dependency Analysis or what happened to summary table usages?

Chapter 3 General Migration issues

Migrating from 1.3.2

Multiple database implementations

Obsoleteness of the create property

Migrating from 2.1.2 or 6.0

Server Generator preference PARSER and consequences for the generated
syntax of PL/SQL definitions in combination with new pl/sql property Private
Declaration

Short-cut or reference strategy for database objects

Storage method of PL/SQL definitions

Usage of the dependency manager to bring forward the summary table usages

Chapter 4 Scenario 1: Migrate, Regenerate All, No Redesign

Migrating from 1.3.2

Migrating from Designer 2.1 or 6.0

Free format View DDL creation errors

Different handling of quotes in the column default property value

Differences in names for valid values constraints

Migrating from Designer 6i

Chapter 5 Migrate, Regenerate All with Redesign

Oracle9i Designer Migration Guide - Contents

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_toc_9i-1.htm (8 of 17) [19/08/2002 16:05:26]

Migrating from 1.3.2

Table Partitioning

Bitmap indexes

User Object Index Storage property: Index Type – at database implementation
level

User Object Index Storage property: Reverse or Nosort? – at database
implementation level

Global Index Partitions as a secondary element of User Object Index Storage –
at database implementation level

Local Index Partitions as a secondary element of User Object Index Storage –
at database implementation level

Database Trigger property: Fire When Propagated?

New column properties

Def Template/Library Object

Server Defaulted?

Server Derived?

Derivation Expression Type

Where/Validation type

View properties

Object type view property

Non-free format View property: Optimizer Hint Clause – also
applicable for Materialized Views

Base Table Locations: new database implementation secondary
element for views

Materialized view implementation independent properties

Updateable

Cluster

Materialized view implementation dependent properties

Oracle9i Designer Migration Guide - Contents

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_toc_9i-1.htm (9 of 17) [19/08/2002 16:05:26]

Deferrable constraints

Scope properties (global synonym name and scope) for each database
implementation object

New or changed Granted to Users or Roles properties

Create Synonym?

Execute?

Read?

Enqueu?

Dequeu?

Migrating from Designer 2.1 or 6.0

Index table only

Pct Theshold – at database implementation level

Overflow Tablespace– at database implementation level

Function Based indexes

Compute statistics for Indexes

Domain Key Constraints

Primary Key , Unique Key or Foreign Key column property:
Conversion Format Mask?

Foreign Key column property: Second Join Column?

Usage of the Deterministic? clause for PL/SQL functions

Object Types

Stage 1 - Create Oracle object types from the relational
tables/views

Stage 2 - Modify the default Oracle object types

Stage 3 - Create object views for the Oracle object types

Collection types

Object Tables

Oracle9i Designer Migration Guide - Contents

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_toc_9i-1.htm (10 of 17) [19/08/2002 16:05:26]

Object Views

Transformation Mapping Sets (visible in RON only)

Java definitions

Part 4 Migrating generated Forms applications to
Oracle9i Designer
Chapter 1 Introduction

Scenario 1. Migrate, Regenerate All, No Redesign

Scenario 2. Migrate, Regenerate All, With Redesign

Scenario 3. Migrate, Regenerate Incrementally

Scenario 4. Forms Migration Only

Scenario 5. Design Capture

Chapter 2 Designer 6i New Features

Migrating from Designer 1.3.2

Design Editor

Module Components

Form Logic in Designer

Preferences and the Object Library

TAPI (some logic can go in the server instead of in the form)

PL/SQL Libraries in Designer

Reports

Migrating from Designer 2.1.2

Migrating from Designer 6.0

LOV components

New Layout Features

Support for New Oracle Forms Features

Oracle9i Designer Migration Guide - Contents

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_toc_9i-1.htm (11 of 17) [19/08/2002 16:05:26]

Support for New Oracle8 Features

Chapter 3 General Migration Issues

Migrating from 1.3.2

Add System Folder to Designer 6i Workarea

Generating Context-Sensitive HTML Help

Module Implementation Name

Where/Validation Condition on Lookup Table Usages

Titling of First Block

Names of Lookup Items Changed

Display in LOV Property Lost

Long Item Names Truncated to 28 characters

LOV Tile lost during upgrade

Space Added below Spreadtable Horizontal Scrollbar

Review the setting of USEPKR

Menu Separators

Name Resolution in Forms 6i

Generating Reports

Migrating from 1.3.2, 2.1.2 or 6.0

Copy Where Clause of Lookup to LOV

Where Clause of LOV

Display Properties of LOV items

LOVs using Filter Before Query

New Possibility for LOV Buttons

Data Source Type = Query

Updateable Views

Views or Tables with No Primary Key

Oracle9i Designer Migration Guide - Contents

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_toc_9i-1.htm (12 of 17) [19/08/2002 16:05:26]

Views with Derived Columns

Check the width of generated buttons

Variety of Layout Differences

Chapter 4 Scenario 1: Migrate, Regenerate All, No Redesign

Migrating from 1.3.2

Upgrading existing Forms 4.5 template forms

Upgrade existing Forms 4.5 template menus

Upgrade Forms 4.5 Libraries

Attached OFG Libraries

Review use of the obsolete preferences and the setting of OLBOLD

Review Template Window Properties

Review the setting of STOOLB

Review use of color palettes

Review use of coordinate systems

Review the setting of MSGSFT

Review the setting of CANNTC

Regenerating the Application System

Migrating from 2.1.2

Upgrade Forms 5.0 Libraries

Regenerating the Application System

Migrating from 6.0

Regenerating the Application System

Chapter 5 Scenario 2: Migrate, Regenerate All, with Redesign

Migrating from 1.3.2

Object libraries

Application logic

Oracle9i Designer Migration Guide - Contents

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_toc_9i-1.htm (13 of 17) [19/08/2002 16:05:26]

Unbound Items

Action Items

Reusable module components

Native Form Builder tab canvases

Server API

Library generation

Templates cut down to size

Migrating from 2.1.2 or 6.0

Lookup Usages

Reusable LOV Components

Multi Region Blocks

Side By Side Blocks

Navigator Style Forms

Relative Tab Stops

Chapter 6 Scenario 3: Migrate, Regenerate Incrementally

Migrating from 1.3.2

Review use of color palettes

Toolbar vs. Smartbar

Dummy LOV Objects

Upgrading forms to Forms 9i

Regenerate Your Menu and Start Form

Upgrade Libraries to Forms or Reports 9i

Attached OFG Libraries

Name Resolution in 9i

Replace Designer 1.3.2 forms with Oracle9i Designer forms

Migrating from 2.1.2

Oracle9i Designer Migration Guide - Contents

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_toc_9i-1.htm (14 of 17) [19/08/2002 16:05:26]

Toolbar vs. Smartbar

Upgrading forms to Forms 9i

Regenerate Your Menu and Start Form

Upgrade Libraries to Forms or Reports 9i

Replace Designer 2.1.2 forms with Oracle9i Designer forms

Migrating from 6.0

Toolbar vs. Smartbar

Regenerate Your Menu and Start Form

Replace Designer 6.0 forms with Oracle9i Designer forms

Part 5 Migrating generated WEB/PLSQL
applications to Oracle9i Designer
Chapter 1. Introduction

Scenario 1. Migrate, Regenerate All, No Redesign

Scenario 2. Migrate, Regenerate All, With Redesign

Scenario 3. Migrate, Regenerate Incrementally

Scenario 4. Database Migration Only

Chapter 2. Oracle9i Designer New Features

Migrating from Designer 1.3.2

Design Editor

Module Components

Preferences

TAPI/Triggers

Migrating from Designer 2.1.2/6.0

LOV components

All_domains Table

Oracle9i Designer Migration Guide - Contents

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_toc_9i-1.htm (15 of 17) [19/08/2002 16:05:26]

Reusable Modules

Preferences

Multi-Row Screens

Oracle Portal portlets generation

Chapter 3. General Migration Issues

Migrating from 1.3.2, 2.1.x, 6.0

Perform a backup of your database schema that captures the Web-PL/SQL
components

Web PL/SQL Generator Libraries

Security

Application Server Choice

Chapter 4. Scenario 1: Migrate, Regenerate All, No Redesign

Migrating from 1.3.2

Module Level Security

Using Calls to Underlying Values

Return Links

Table APIs

Migrating from 2.1.2/6.0

Using Calls to Underlying Values

Table APIs

Chapter 5. Scenario 2: Migrate, Regenerate All, with Redesign

Migrating from 1.3.2

Security

Module Level Security

Return Links

Table APIs

Migrating from 2.1.2/6.0

Oracle9i Designer Migration Guide - Contents

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_toc_9i-1.htm (16 of 17) [19/08/2002 16:05:26]

Module Level Security

Multi-Row Components

Chapter 6. Scenario 3: Migrate, Regenerate INCREMENTALLY

Appendix A PVCS/VM administration query
PVCS/VM administration query

Appendix B Quick reference information
Repository Terminology quick reference information

Designer/Repository Tools quick reference information

Naming Standards quick reference information

Checkin and Checkout quick reference information

Prev Next

Copyright © 2002, Oracle Corporation.

All Rights Reserved.

Oracle9i Designer Migration Guide - Contents

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_toc_9i-1.htm (17 of 17) [19/08/2002 16:05:26]

Oracle9i Designer Migration Guide
Part 1. Introduction, enhancements and new features

Contents

Chapter 1 Introduction
This migration guide provides essential information for those who wish to migrate to Oracle9i Designer from
Oracle Designer 1.3.2, 2.0 or 6.0. A previously published guide covered migration to Oracle Designer 6i.
Migration from Oracle Designer 6i to Oracle9i Designer is unnecessary because certain 6i and 9i repositories are
compatible, as follows:

Designer/SCM 9i 9.0.2.0 has same repository level as 6i 4.2 (4.0.12.80.6)●

Designer/SCM 9i 9.0.2.1 has same repository level as 6i 4.3 (4.0.12.88.2)●

This means that if you wish to transfer from 6i to 9i:

from 6i 4.2 to 9.0.2.0 is a client change only, so no repository upgrade is required●

from 6i 4.2 to 9.0.2.1 requires a client change and repository upgrade●

from 6i 4.3 to 9.0.2.1 is a client change only, so no repository upgrade is required.●

Note that you cannot transfer from 6i 4.3 to 9.0.2.0 because 9.0.2.0 is a lower repository version level than 6i 4.3.

Benefits and reasons for migrations
Oracle9i Designer offers the following recent enhancements:

version control of repository objects●

workspace management (workareas)●

storage of text and binary files●

support for release management (via configurations)●

impact analysis tool (dependency analyzer)●

support for Oracle 9i, Oracle Reports 9i and Oracle Forms 9i●

support for repository management operations via an extended API●

support for repository management batch operations via a command line tool●

Note: At the time of writing, Oracle9i Designer is certified with Oracle database 81700 or higher, and with
Oracle9i patched to 9.0.1.2. See metalink.oracle.com for the latest situation.

Specifically, the option of version control of repository objects and related functionality (e.g. workspaces,
configurations and storage of file system) offers the following non-tangible benefits:

improvement of the functionality of the client generators (e.g. Oracle Forms 9i,) and server generators (e.g.
support for Oracle9i).

●

introduction of a configuration management solution that is fully supported with a standard Oracle tool set
(instead of a solution with a third party source control tool (e.g. PVCS/VM, ClearCase)

●

Oracle9i Designer Migration Guide Part 1

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part1_9i-1.htm (1 of 15) [19/08/2002 16:05:30]

http://metalink.oracle.com/

the availability of a single repository that captures structured elements and files during the complete
lifecycle. A single repository fully supports model-based development and deployment and therefore
improves the quality of the development and deployment process.

●

You could also identify the following tangible benefits as a result of adopting Oracle9i Designer:

More efficient method to detect, analyze and solve issues via rich impact analysis tools (Dependency
Manager)

●

More efficient effort to build and verify multiple releases●

More efficient method to merge different releases (compare and merge facilities)●

More efficient method for building delta scripts via accuracy of the repository and richer supporting tools
(DDL generator

●

Given this new functionality and benefits you may want to adopt Oracle9i Designer for one or more of the
following reasons:

Flexible and effective support of development of multiple releases simultaneously●

Effective prototyping tool – easy to create and store multiple alternatives via the version mechanism●

Synchronization between the logical and physical data model in Designer●

Synchronization between the database model implementation and the database definitions in Designer –
high quality of meta data

●

Usage of versions strings to effectively verify the database objects against the repository content●

Improvement of impact analysis capability - including the storage of column dependencies●

Improvement of functionality and performance of the creation/generation of database delta scripts●

Actualization of the current Designer tool stack to latest available technology.●

Cost effective access to resources for development and support (Oracle9i Designer/Developer 9i experts as
opposed to Designer 1.3.2/Developer 4.5 experts)

●

Provide a widely shared development and deployment environment●

Recognition of configuration management needs (multiple releases, release and build management)●

The above mentioned benefits, offered by the new functionality, can be attained only by migrating your structured
data (captured in application systems in previous releases of Oracle Designer) and/or files (captured in a third
party source control tool or on the file system) to Oracle9i Designer.

Migration versus upgrade and migration scenarios
The term migration refers not only to the upgrade of the client software and server side software. It also covers the
migration of the repository content, populating the repository with files and redesign of the migrated data.

Once your structured elements and files are in Oracle9i Designer (covered in the second part of the migration
guide) you can apply five (potentially) different migration scenarios to your Database elements, Developer
components (e.g. Forms, Reports, Menus and libraries) and WEB PL/SQL modules.

The migration scenarios listed below are described in detail (e.g. characteristics, steps, when to apply) in Part 3
(migration of database elements), Part 4 (migration of developer components) and Part 5 (migration of WEB
PL/SQL modules). Note however that in these parts a specific scenario may be skipped because of its complexity
and/or non-applicability.

Oracle9i Designer Migration Guide Part 1

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part1_9i-1.htm (2 of 15) [19/08/2002 16:05:30]

Scenario 1. Migrate, Regenerate All, No Redesign

In this scenario, you regenerate your entire application from Oracle9i Designer, including all database elements
(e.g. tables, views, PL/SQL definitions), Developer components (e.g. forms, libraries, menus, reports) and WEB
PL/SQL definitions.

Scenario 2. Migrate, Regenerate All, With Redesign

In this scenario, you regenerate your entire application from Oracle9i Designer, including all database elements
(e.g. tables, views, PL/SQL definitions), Developer components (e.g. forms, libraries, menus, reports) and WEB
PL/SQL definitions. As you regenerate each database element and/or module, you make use of new features as
appropriate.

Scenario 3. Migrate, Regenerate Incrementally

This is the most complex scenario. In this scenario, you migrate your application a little at a time, rather than all
at once. You begin by upgrading your database elements in the context of an Oracle9i database (basically do they
compile against an Oracle9i database?) then upgrading all of your forms, libraries, menus, libraries, etc. to
Oracle9i Developer at the client. You will then make the changes required to run forms, menus, etc. and database
elements generated from your previous release of Designer, alongside forms, menus, libraries, etc. and database
elements generated from Oracle9i Designer.

Scenario 4. Migration only of developer components and database
components

The first three scenarios all eventually require you to regenerate your application. Any post-generation
modifications are lost. If you heavily modified your application post-generation you might consider upgrading the
runtime environment to Forms 9i, upgrading your database elements to Oracle9i, and not upgrading both types to
Oracle9i Designer. This implies that all future maintenance has to be done manually in Developer. You could
however use Oracle Repository as your file source control tool by uploading all sources (including the generated
WEB PL/SQL code) into Oracle Repository.

Scenario 5. Design Capture of database elements and developer
components

If you heavily modified your application post-generation, and you would like to adopt (again) a 100% generation
strategy, you may want to consider using the Design Capture features of Oracle9i Designer.

Usage and benefits of a pilot migration
The introduction and usage of a (migrated) Oracle9i Designer repository will have significant effects on the
working method and writing method of the Oracle Designer repository participants. New configuration
management roles will be introduced and/or the task set of existing configuration management roles will change
significantly. Therefore you should consider organizing an Oracle9i Designer pilot project for the following
reasons:

Determination and verification of a migration strategy for migrating to the Oracle9i Designer repository and
an investigation of the need for (additional) migration utilities

●

Preparation of the participants for the new configuration management concepts●

Oracle9i Designer Migration Guide Part 1

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part1_9i-1.htm (3 of 15) [19/08/2002 16:05:30]

Creation of a preliminary set of configuration management standards and guidelines●

Determination of the database and hardware requirements of a database instance that will capture your
Oracle9i repository.

●

Chapter 2 What has changed in Designer?
This chapter describes enhancements found in Oracle9i Designer.

Storage of structured elements
A structured element is an element whose internal structure (secondary elements, references and properties) is
fully known to and understood by the repository infrastructure. The main categories of Structured Element Types
at this moment are the Oracle Designer element types (Entity, Business Function, Table Definition, etc.). In
addition, Oracle Repository has a small set of core element types of its own, such as Folder and Configuration.

Each Element has properties. Properties can be optional or mandatory, system maintained or fixed or updatable,
free text or bound by value domains. The properties come in three categories:

singular values of data type Number, Date or Varchar2 with a fixed maximum length●

multi line text fields with no fixed length●

references to other objects●

Most properties are specific to an element type. A small set of properties is generic: Name, Type, Version Label,
Audit properties and IRID. The IRID replaces the ID known from earlier releases. The IRID identifies the Object,
not just within its originating repository, but globally. The algorithm that derives the IRID (the SYS_GUID
function in Oracle 8) returns a value that is guaranteed not to be produced again, in any repository. You can
probably see the benefits this has for migrating data between repositories.

Storage of unstructured elements or files
All elements that have a structure that is unknown to the repository infrastructure is, somewhat strongly, labeled
Unstructured Element. Note that this term does not claim such elements are in fact without internal structure, it
merely states that the repository is unaware of that structure and therefore can only handle the element as a whole.
Note that even though the Dependency Parsers know enough about the structure of files such as FMB, RDF, OLB,
PL/SQL or Java to extract the dependency details, inside the repository these files are for the rest still managed as
singular, unstructured objects.

The ability to store Unstructured Elements or Files in the repository is one of the major changes in the repository
architecture. It is a change that will alter the role of the repository significantly. From now on all project
deliverables and system elements can be stored and managed inside the repository! All Run Time Objects
(executables), Sources, Meta-Sources (Templates, Designs, Models, Workshop Notes, User Interviews) and
Supporting Objects (Test plans, Project Plan, Standards and Guidelines), whether they are structured or
unstructured, can all be made part of the repository. And it is our strong recommendation that they all indeed are
stored and managed in the repository.

Files are stored as C(haracter) or B(inary) LOB (Large Binary Object) in the table I$SDD_FILES. Files are
created and updated through Uploading from any file system and can be extracted to any file system using the
Download operation. Upload and Download can be performed on single files, groups of files or entire nested

Oracle9i Designer Migration Guide Part 1

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part1_9i-1.htm (4 of 15) [19/08/2002 16:05:31]

directory structures, from the RON or the Command Line Tool (on Windows NT). You may Open a file by
double clicking it in the RON. Based on the link defined in the Windows Explorer (View, Options, Registered
File Types) and stored in the User Profile in the Windows Registry, the indicated tool is used to open (view, edit
or run) the indicated file. This allows every user to use his or her favorite editor for opening files from the
repository.

Files can be stored in compressed format. The compression and decompression is handled automatically by the
repository on upload and download respectively. The compression algorithm is very fast and helps reduce storage
space required for files to 2-10%. In the Repository File Registry is recorded which file types (by extension)
should be stored as Text (CLOB), Binary format (BLOB) or in compressed format (always Binary). Note that
Compare is available for Text Files and the binary files that are produced by Oracle Developer, such as FMB,
PLL, OLB and RDF.

Workareas
A workarea is a user's view of the repository objects on which he or she is working. Within a workarea, repository
data is further broken down into application systems and folders, which are known as containers.

In previous releases the systems modeling tools presented repository data in the context of a single application
system. In Oracle9i Designer, repository data is presented in the context of a workarea, enabling multiple
application systems and folders to be accessed from each tool.

From the familiar Navigator window, you now interact with the repository through a workarea, which is your own
particular view of the repository contents. If you create a workarea, you are the owner of that workarea, though
you can assign other users access rights to it. You must have access to at least one workarea before being able to
do any work in the repository.

Other repository users may make changes to objects that are visible in your workarea. These changes are not
immediately apparent to you in the Navigator window, so a workarea refresh mechanism is provided to bring the
display up to date with the latest changes. You can preview the effect on the Navigator window display of
refreshing a particular workarea, by listing the objects visible in the workarea that have been created, changed or
deleted since the last refresh.

The contents of a workarea are initially defined automatically by the application of rules. However, you can
manually override these rules and explicitly include any repository object in the workarea, or exclude any object
that is already there.

Containers
You now create a repository object in the context of a container, a logical subdivision of the repository. Two types
of container are supported in this release: application system (similar to that available in previous releases) and
folder (similar to a directory in a disk-based file system). A repository object is created as a child object of its
parent, or owning, container.

Version control

Oracle9i Designer Migration Guide Part 1

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part1_9i-1.htm (5 of 15) [19/08/2002 16:05:31]

Overview

A completely new system of version control of individual repository objects replaces the existing application
system level versioning available in previous releases. A checkout/checkin mechanism ensures that different users
do not overwrite each other's changes. Graphical tools are available to display the version history of an object, to
display object version details, and to display details of various version control events that have taken place for an
object.

A branching mechanism permits the development of multiple versions of a product simultaneously using the same
set of source files. Branches can be labeled for ease of identification.

Objects can be checked out with a lock, in which case no other user can perform a locked checkout of any
versions of the object on that particular branch. Other users can still check out unlocked versions of the object on
that branch, but they cannot check them back in on that branch until the original user has released the lock.

Objects can also be checked out unlocked, permitting other users to check out any version of that object without a
lock. In this situation, the first user to check the object back in is permitted to do so, whereas subsequent checkins
of the object must be merged with the latest version on that branch.

This release provides you with the ability to version and label your designs, for improved change control and
multi user access.

Version control is the process of maintaining multiple versions of software development objects and is the most
basic requirement for a software configuration management system.

Both repository and non-repository objects can be version-controlled in the common repository.

The repository manages all repository objects, as well as file system files and directories. This enables the
tracking of changes to the organization of the source data, as well as tracking the changes to the contents of
individual files.

Versions are organized into a version tree structure with branches. Branches have user-defined labels, typically
chosen to indicate their role in the development process. All objects can be identified by a system-generated
version number. Important versions can be assigned version labels by the user to indicate development milestones.

Version history

Each object in the repository is held as a set of snapshots (called object versions) of its state at certain points in
time. The object versions are linked together by associations that record how each object version evolved from its
predecessors. This web of associations, represented by the version tree, is called the version history of the object
and can show succession, branching and merging.

The version history associations also have a number of version control attributes, including:

a unique version identifier●

the identifier of the user who created the object●

the date and time the object was created●

the identifier of the user who changed the object●

the date and time the object was changed●

status of the object (for example checked out or checked in)●

a comment (a descriptive reason for checking in or checking out)●

Oracle9i Designer Migration Guide Part 1

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part1_9i-1.htm (6 of 15) [19/08/2002 16:05:31]

Checkin and checkout

Version control starts when an object is checked in. Objects that are checked in are write protected. The object
must be checked out before it can be modified.

The checkin and checkout process is initiated from the Repository Object Navigator, or from the Version History
Viewer utility or from the command line interface.

Only one version of an object can be included in a workarea and only one version of an object is visible through
the workarea view. However, the complete history of an object and all the events that occurred to it can be viewed
through tools provided by the repository.

Any file or folder in your file system, as well as repository objects, can be the subject of version control. You can
copy files and folders into the repository and copy them back to the file system. You can also synchronize your
file system with the repository at any time to ensure both are consistent.

When checking an object in or out you can provide notes to briefly describe the reason for the action.

Once the object is checked out, a copy of the object is moved into your workarea. Your workarea contains all the
checked out objects you are working with. When the object is checked out, the workarea is refreshed so that the
new object version appears in your version resolved view and can be edited by you.

You can undo a checkout but any changes you have made to the object are lost. The system administrator has the
privilege to cancel a checkout.

Branching

When checking in an object, you can decide if the changes are to be included in the branch from where the object
was checked out, or if the changes are to be represented on a new branch. Branch labels can provide some
meaning to the development strand, for example, as a set of changes related to bug fixes.

Many of the checkin options are available by default. For example the default action could be to create a new
branch, with a specified label. This default would apply to all objects checked in from your workarea. This could
enable all the changes made on a given set of objects to be queried from the repository and used in release
management or quality assurance procedures.

Locking, comparing and merging

During the checkout operation, the object can be locked so that no other users can check out a copy for editing. If
you choose not to lock the object, there is the possibility that when the time comes to check the object back in,
another user may have made changes in the interval. In these circumstances, and depending on who checks their
version in again first, the compare and merge tools have to be used to ascertain how to check the object back in.

The repository currently supports comparing and merging of three object types:

structured objects (standard repository objects)●

Oracle forms●

text files●

However, it is possible that your organization has added support for additional types.

Oracle9i Designer Migration Guide Part 1

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part1_9i-1.htm (7 of 15) [19/08/2002 16:05:31]

Version control tools

The following version control tools are provided:

Version History Viewer. Illustrates the version history for a chosen repository object in diagrammatic
form and allows you to perform version operations such as compare and merge.

●

Version Event Viewer. Provides detailed information about the check in and check out version operations
that have been performed for a chosen repository object. The information is provided in dialog box format.

●

The version control tools enable you to perform a number of tasks on both repository objects and file system
objects. These include:

checking in and checking out objects to create new object versions●

viewing the history of an object●

viewing the events that occurred to an object●

creating new version branches●

comparing object versions●

merging object versions●

mapping file systems to the repository●

viewing object version details●

The Version History Viewer and the Version Event Viewer are available from the Repository Object Navigator
and can also be used as standalone tools.

Configurations
A configuration is a collection of repository object versions that are related in some way that is significant to an
application. Usually a configuration represents all the object versions for a checkpoint in development or
component of an application, for example, all the object versions that make up a payroll application, or a screen
form used in that application.

Any set of specific object versions can be recorded as a configuration, rather like striping or labeling in some
configuration management systems. A specific object version that is included in a configuration is said to be a
member of that configuration.

For example, when the development of individual objects reaches the stage where you can build a particular
application, you need to specify exactly which version of each object is to be used for the build. The same applies
when assembling a set of objects to be used for a test or included in a patch release - the configuration defines
which versions of which objects are to be used.

Oracle9i Designer provides a configuration wizard (a predefined set of screen forms) that takes you through the
creation process step by step.

The configuration wizard allows you to create a new configuration (or a new version of an existing configuration)
containing, for example, all the latest object versions.

An object version that is included in a configuration is referred to as a member of that configuration. Members
can be added or removed as and when required. However, only checked in objects can be included in a
configuration. Each configuration is a repository object in itself, and can therefore be versioned.

To create a new configuration using the wizard, you start by entering the configuration name and description.

Oracle9i Designer Migration Guide Part 1

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part1_9i-1.htm (8 of 15) [19/08/2002 16:05:31]

You can base the configuration on:

a template file containing rules and configurations●

the contents of a workarea●

the latest versions of objects on a specific branch.●

You can also create a custom configuration.

You then add, remove or change the version of members as required.

If you choose to base the configuration on a template file, workarea or latest versions on a branch, you may then
refine it by adding or removing members or changing the versions of members. You can also add or remove
selected rules and configurations.

When you create a new version of an existing configuration you have all the features that are available when
creating a new configuration. In addition, you can simply refresh all existing members with the latest versions or
refine the existing configuration as required.

All external references are displayed, and you can include externally referenced object versions into your
configuration.

When you have completed your new configuration or new configuration version you can either save the
configuration only, or save it and check it in to version control. You can add checkin notes and specify a checkin
branch.

If you choose only to save the configuration you can edit it later without creating a new version.

Folder and file synchronization
When you upload a file, the system copies the file from the file system to the repository. Both copies can be
opened and edited independently, and this could lead to differences between the two copies of the same file.

Some means is necessary of ensuring that the two copies are kept up to date with each other. Oracle Repository
provides a synchronization mechanism that enables you to keep the repository copy up to date with the file system
copy or vice versa.

When you perform synchronization, the system checks whether any changes have been made to the repository
copy, the file system copy, or both.

The resulting actions are:

Repository copy Repository copy File system copy System Action

Unchanged Unchanged None

Unchanged Checked in Changed Displays dialog for
user intervention

Unchanged Checked out Changed Uploads copy from file
system

Changed Unchanged Downloads copy to file
system

Oracle9i Designer Migration Guide Part 1

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part1_9i-1.htm (9 of 15) [19/08/2002 16:05:31]

Changed Checked in Changed Displays dialog for
user intervention

Changed Checked out Changed Displays dialog for
user intervention

Files where the file system copy has been changed while the repository copy remained checked in are known as
"hijacked files". For these and other cases where a dialog is displayed for user intervention, you can choose to
upload the file system copy, download the repository copy, check the repository copy in or out and resynchronize,
or merge the two copies, resolving the differences one by one.

A few special cases are worth noting:

If you change the repository copy and subsequently delete the file system copy before saving the changes,
those changes are lost.

●

If you delete the repository copy but not the file system copy before synchronization, the repository copy
will reappear on synchronization. This is because in this case it is treated as a new file and uploaded
accordingly. The same applies if you exclude the repository copy from your workarea.

●

If you delete the repository copy but not the file system copy after the two have been synchronized,
subsequent synchronization operations offer you the choice of deleting or retaining the file system copy.
The same applies if you exclude the repository copy from your workarea.

●

System privileges
Repository owners and subordinate users need system privileges to use the repository. For example:

a repository owner needs system privileges to install a new repository●

a subordinate user needs system privileges to create database objects.●

You use the Check Requirements tool on the Repository Administration Utility to assign system privileges.

Note: Only the Oracle database administrator can assign system privileges.

Access rights
The functionality for repository user maintenance has been greatly extended. The repository owner can now
specify whether a particular subordinate user can perform certain repository management operations, such as
creation and deletion of workareas, or force delete or purge operations on repository objects. In addition, the
repository owner can control a subordinate user's access to individual repository tools, such as the Repository
Object Navigator or the Command Line Interface.

Repository policies
You can set repository-wide options that control certain aspects of:

version control●

file naming (case sensitivity)●

object dependencies●

Oracle9i Designer Migration Guide Part 1

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part1_9i-1.htm (10 of 15) [19/08/2002 16:05:31]

Version control policies

A user with the Set Policy system privilege can impose restrictions on the following versioning features:

branching●

version labeling●

locking●

By setting policies you can ensure that specific development branches are not populated with new object versions
at critical periods in development, for example during a build. It also ensures adherence to system-specified object
version labels.

Automatic branching

When an automatic branching policy is set, all checked out objects will check in to the default checkin branch set
for each workarea.

If a default checkin branch is not set for a workarea, object versions in that workarea will check in to the branch
they were checked out from.

Automatic version labeling

When automatic version labeling is set, the user is unable to specify a label for an object version on checkin. The
repository will automatically assign a label.

Strict locking

When strict locking policy is applied, users are forced to lock objects on checkout. Because two or more users
cannot apply locking to object versions on the same branch, a strict locking policy prevents concurrent
development of object versions on the same branch.

Without a strict locking policy in force, a user can choose whether or not to lock an object on checkout. In this
situation, locking does not prevent another user from checking out an unlocked copy of the same version. It only
prevents that user from checking in on the same branch until the locked version is checked in.

File naming policy

The case sensitive uniqueness policy ensures that case sensitivity is applied to the names of file system files and
their containers when these are created in the repository. When the policy is in force, for example, you are able to
create a file named "MyFile" and a different one named "myfile". When the policy is inactive, these two files
would be treated as the same file, so creation of the second one would not be allowed.

This policy is of particular use for files that are uploaded from a UNIX server, where case sensitivity is a feature
of file and directory names.

Dependency policies

Further options control whether object dependencies are copied by default when a repository object is either
versioned or copied. In either case the default can be overridden at the time of the operation.

Oracle9i Designer Migration Guide Part 1

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part1_9i-1.htm (11 of 15) [19/08/2002 16:05:31]

Short cuts versus shares
Shares as we know them in Oracle Designer 6.0 and before no longer exist. You are allowed to create references
to elements anywhere in the repository, provided these elements are owned by folders that you have select
privileges on. You do not need to create a share to the context folder. In the figure below Column Job in Table
Definition HRM/DESIGN/HSD_EMPLOYEES has a reference to a domain JOB TITLES that is owned by Folder
CORPORATE. This reference is created without sharing the domain to the HRM/DESIGN Folder. For those
amongst you who suffered from dummy and skeleton application systems: they are a thing of the past! Moving an
element from one folder to another will not create shares for referenced objects, as was the case for the transfer
operation in Oracle Designer 6.0.

The following shows that no share is required in order to have a reference to a domain in a different folder:

A valid question now would be: does this mean we do not have shares at all anymore? The answer is: well, no, but
we do have something very similar. And to overcome any ill feelings you may harbor against shares, this new
mechanism is called short cut. It is indeed very much like the File System Short Cut you may know from MS
Windows. And it offers some nifty features.

A short cut is a link between a Folder and an Element, with the ownership flag set to false. Short cuts are created
by dragging and dropping the element to the Folder (or Edit, Copy; Edit, Paste Reference). Select privileges are
required on the owning Folder and Update privileges on the target Folder. Links between a Folder and an Element
with the ownership flag set to true indicate the Owning Folder link. Note that you cannot create a short cut for a
Folder, only for individual Elements. Also note that a short cut applies to all versions of the element it is created
for. Creating a short cut from Folder HRM/PUBLIC to Table Definition HSD_DEPARTMENTS means: linking
every single version of HSD_DEPARTMENTS to HRM/PUBLIC.

In the context of a Folder, you will see all its owned Elements as well as its short cuts. That means that you can
see and reference elements without having to search and navigate through the entire repository. Furthermore, if
you click on the little hand icon or press F12, you will navigate directly to the source of the shortcut. New
(compared to shares in Oracle Designer 6.0) is the ability to edit-in-situ: if you have update privileges on the
Folder that owns the Element, you can directly update the Element short cut without having to navigate to the
owning Folder. Another step forward is the ability to copy a short cut. That means: you can drag & drop a short
cut to a Folder, thus creating a short cut to the same Element that the original short cut links to.

Oracle9i Designer Migration Guide Part 1

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part1_9i-1.htm (12 of 15) [19/08/2002 16:05:31]

Chapter 3 A version enabled repository
versus a non-versioned repository
You should realize that you can still use Oracle9i Designer as you always have before, i.e. use Oracle9i Designer
as your repository for non-versioned structured elements only. In time you may consider the storage of files as
well and finally enable the versioning of both element types. This chapter will provide you with an insight on how
to use Oracle9i Designer, and it provides an overview of the relevant chapters of Part 2 "Migrating the repository"
for each Oracle9i Designer mode.

Unversioned structured elements
If you do not want to version your elements - the reasoning on which to base your decision will be provided soon
- you simply should not enable the version option in the Repository Administration Utility just after a fresh
Oracle9i Designer installation. As long as the version option is not enabled you can store only "one version" of
each element, just like in previous Oracle Designer releases. In fact the version properties of each element will not
be populated, because you will never be able to check in an object. You will only commit your changes. Each
participant will use the GLOBAL_SHARED_WORKAREA.

In addition you should instruct your participants not to store any file in the repository. Note that there is no system
repository option available that can stop you from populating the repository with files.

You will typically use Oracle9i Designer in this specific mode in the following circumstances:

The size of your project is quite small (e.g. less than 10 participants)●

You have not yet reached the test phase. You are still in the strategy, analysis, design or build phase. You
do not need some kind of parallelism.

●

The number of files to manage are limited (e.g. less than 30)●

You still want to use your third party source tool to manage your files●

The following chapters of Part 2 "Migrating the repository" are relevant:

Chapter 1 "Introduction"●

Chapter 3 "Migrate structured data"●

Chapter 7 "Migrate users and assign access privileges"●

Chapter 9 "A typical migration plan"●

Obviously you may skip all sections in the above chapters that handle the versioning of data.

Unversioned structured elements with unversioned
folder/file support
If you do not want to enter the versioned world, but you do want to store files in addition to structured elements,
you also simply should not enable the version option in the Repository Administration Utility.

In addition you should provide your participants with guidelines on how to store files and folders in the
repository. More specifically you should set up a folder hierarchy with appropriate access rights. See also Chapter
7 and Chapter 8 of Part 2.

Oracle9i Designer Migration Guide Part 1

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part1_9i-1.htm (13 of 15) [19/08/2002 16:05:31]

You will typically use Oracle9i Designer in this specific mode - thus including the storage of unversioned files -
in the following circumstances:

The size of your project is quite small (e.g. less than 10 participants)●

You have not yet reached the test phase. You are still in the strategy, analysis, design or build phase. You
do not need some kind of parallelism

●

The number of files to manage are substantial (e.g. more than 30)●

You want to adopt a single repository approach and therefore you no longer want to use your third party
source tool to manage your files

●

The following chapters of Part 2 "Migrating the repository" are relevant:

Chapter 1 "Introduction"●

Chapter 3 "Migrate structured data"●

Chapter 4 "Migrate files from third party source control tools" or Chapter 5 "Migrate files that are stored on
the file system"

●

Chapter 7 "Migrate users and assign access privileges"●

Chapter 8 "Synchronize the file system and the database with the repository content" (specially the file
system synchronization)

●

Chapter 9 "A typical migration plan"●

Obviously you may skip all sections of the above chapters concerned with the versioning of data.

Versioned structured elements with versioned folder/file
support
If you would like to enter the versioned world, you simply enable the version option in the Repository
Administration Utility just after a fresh installation and you provide at least some users with the container access
right "version". See also Part 2, Chapter 7 "Migrate users and assign access rights".

You are likely to want to enter the versioned world for at least the following reasons:

Your application is already in production, you have to maintain it and at the same time you would like to
add new functionality and/or change existing functionality

●

You want to improve the quality of your deployment process by using a variety of impact analysis tools●

You have to develop and support multiple releases for multiple customers●

You have to develop your application in multiple languages●

You have to support some other kind of parallelism●

Developers are losing work because they are frequently overwriting each other's sources. In other words
there is a real need for workspace procedures.

●

You want to keep intermediate copies or versions of specific elements in the context of prototyping.●

Your migration efforts are more substantial. The following chapters of Part 2 "Migrating the repository" are
relevant:

Chapter 1 "Introduction"●

Chapter 3 "Migrate structured data"●

Chapter 4 "Migrate files from third party source control tools" or Chapter 5 "Migrate files that are stored on●

Oracle9i Designer Migration Guide Part 1

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part1_9i-1.htm (14 of 15) [19/08/2002 16:05:31]

the file system"

Chapter 6 "Reorganize a migrated Oracle9i Designer repository"●

Chapter 7 "Migrate users and assign access privileges"●

Chapter 8 "Synchronize the file system and the database with the repository content"●

Chapter 9 "A typical migration plan"●

Prev Next

Copyright © 2002, Oracle Corporation.

All Rights Reserved.
Contents

Oracle9i Designer Migration Guide Part 1

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part1_9i-1.htm (15 of 15) [19/08/2002 16:05:31]

Oracle9i Designer Migration Guide
Part 2. Migrating the repository

Contents

Chapter 1 Introduction
This second part provides different scenarios and related migration tools for the migration of structured data from
previous Oracle Designer releases, and the migration of files either from a source control system (e.g. PVCS/VM,
ClearCase) or the migration of files/folders directly from the file system. The different migration scenarios share
the following common structure:

Preparation1.

Migration of structured data2.

Migration of files3.

Reorganization steps4.

Migration of users and access privileges5.

Synchronizing the file system and database6.

The preparation step basically involves the clean-up of your "original" elements and a fresh Oracle9i Designer
installation. Preparation should be followed by migrating your structured elements via the migration wizard. You
can then easily enter the versioned world by just checking in structured elements. By organizing the files
migration after the migration of structured elements you are able to integrate your files with the structured
elements - both types of elements will share the same root-container. The migration of both object types should be
succeeded by reorganization steps that involve a simple implementation of a promotion model via a combination
of workareas and configurations. The reorganized repository should then be made accessible to subordinate users.
Guidelines were given for creating subordinate users and the distribution of the appropriate access rights on the
previously mentioned objects. Finally a significant part of your repository content will ultimately populate your
databases and file systems. You can implement the file system synchronization within each workarea via the
folder mapping option and the database synchronization within each workarea via the DDL generator.

This second part is concluded with an example of a typical migration plan.

Chapter 2 Prerequisites and installation
notes
You must precede the migration of structured data and files by an installation of Oracle9i Designer on the client
side and a fresh repository installation on the server side in an Oracle8i or Oracle9i database instance.

The client and repository software is installed during installation of Oracle9iDS. The Oracle9iDS Installation
Guide contains recommendations for hardware on the client and server sides. Once installed, you have to
configure the repository in accordance with the Oracle9i SCM Repository Installation Guide.

This chapter contains guidelines for how to prepare a fresh Oracle9i Designer installation for migration.

Oracle9i Designer Migration Guide Part 2

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part2_9i-1.htm (1 of 66) [19/08/2002 16:05:50]

Consult Chapter 3 in Part 1 for guidelines about entering or staying away from the versioned world. If you want to
enter the versioned world you can enable element level versioning via the "Enable Version Support" option in the
Repository Administration Utility directly after the fresh repository installation. Note that you cannot disable the
versioning support option once you have enabled versioning, other than by creating a fresh Oracle9i Designer
repository.

Verify the client side and server side installation
The verification of a fresh Oracle9i Designer installation involves both the client side and server side.

Verification of the client side

All software is now installed by the Oracle9iDS installation process. There is no longer a custom installation
option.

Verification of the server side

There are two options available to verify the success of the Oracle9i Designer repository installation:

Verification of the installation log files●

The "View objects" option in the Oracle9i Designer RAU●

Verification of the installation log files

Verify the content of a fresh Oracle9i Designer installation log file, written to the
ORACLE_HOME\repadm61\logs directory after the installation.

"View objects" in the RAU

While connected as the Oracle9i Designer repository owner, open the Oracle9i Designer Repository
Administration Utility and launch the View Objects option to verify the server side installation. Sort the overview
on the status property. A successful Oracle9i Designer installation may not display the following values for the
status property of all objects:

Disabled●

Missing●

Invalid●

Obviously you could directly check if any of database objects of the Oracle9i Designer repository owner is
"invalid" via the status property of the view "user_objects".

Prepare the Oracle9i Designer repository for migration
You can "run" the Oracle9i Designer repository either in a 'non-versioned' mode or version enabled. Multiple
scenarios and criteria for versioning versus non-versioning are described in Chapter 3 of Part I: Version enabling
versus non-versioning.

Oracle9i Designer Migration Guide Part 2

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part2_9i-1.htm (2 of 66) [19/08/2002 16:05:50]

Skip the following activity if you do not want to enter the versioned world.

You can enable versioning via the Oracle9i Designer Repository Administration Utility (connected as the
Oracle9i Designer repository owner). Subsequently enable the versioning option from the options menu if you
would like to enter the versioned world.

Note that you cannot disable the version option once you have enabled versioning, other than by re-creating a
fresh Oracle9i Designer repository.

Public or private synonyms
You can "run" the Oracle9i Designer repository either with public or with private synonyms. The enabling or
disabling of private synonyms is available at the Repository Administration Utility, as depicted below.

The use of public synonyms is more productive - no more reconciles per user- and will occupy less space in the
system tablespace. You do not need to create more than 1500 private synonyms per user. Note however that the
use of public synonyms allows you to create only one Oracle9i Designer repository instance per database instance.

Reevaluate the file registry settings
Skip this section if you are not planning to load files in the repository.

Files in the repository can be stored as:

CLOB - Character Large Objects - Text file

BLOB - Binary Large Objects - Binary file

BLOB - Compressed

BLOB - Uncompressed

Oracle9i Designer Migration Guide Part 2

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part2_9i-1.htm (3 of 66) [19/08/2002 16:05:50]

A file will be stored as one of the above methods based on its extension. These extensions and the subsequent
storage method are stored persistently in a repository table - i$sdd_file_registry - that can be manuplated via the
utility menu option Edit File Registry. Through this menu option new file extensions can be added and/or existing
entries can be altered as illustrated below:

You should reevalute these file registry settings before the bulk loading of files from your third party source
control tool or file system to enforce a cost effective and efficient storage of files. You cannot alter the storage
method for a specific file and its subsequent versions once the file is uploaded in the repository. Any changes will
only have an effect on new files.

Chapter 3 Migrate structured data
The fresh Oracle9i Designer installation should be followed by a migration of your structured elements. The
following subjects for the migration of structured data are discussed:

An overview of the example of Headstart structured data●

An overview of different migration strategies for structured data●

Preparation steps●

Other hints and tips based on migration best practices of structured data●

Migration to an Oracle9i Designer repository (if applicable)●

Migration steps starting from an Oracle Designer 6.0 repository●

Post migration steps for structured data●

Verification of the migrated structured data●

A great part of the activities of migrating structured data is also applicable if you do not want to enter the

Oracle9i Designer Migration Guide Part 2

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part2_9i-1.htm (4 of 66) [19/08/2002 16:05:50]

versioned world. Any sections that are not applicable in a non-versioned repository will be announced in italic.

Example of Headstart structured data
The different migration scenerarios will be clarified using an abstract of 'Headstart 5.0.5' structured components
and files. It is assumed that the structured Headstart 5.0.5 components are captured in two (Oracle Designer 6.0)
application systems: HSD and QMS respectively, as illustrated below:

Migration strategies for structured data
There are two strategies for migrating the repository content to Oracle9i Designer:

Migrate an entire repository content in a single operation●

Migrate a sub-selection of application systems within a specific Oracle Designer 6.0 repository●

The first strategy loads and migrates all application systems into a fresh Oracle9i Designer repository.

The second strategy allows you to load and migrate one or more interrelated application systems. Non-selected
interrelated application systems will stay behind in an Oracle Designer 6.0 repository. These application systems
are candidates for migration at a later time.

Note that the Oracle9i Designer migration method has changed significantly. An Oracle Designer 6.0 repository
will not be upgraded to an Oracle9i Designer repository during the migration.

Oracle9i Designer Migration Guide Part 2

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part2_9i-1.htm (5 of 66) [19/08/2002 16:05:50]

The Oracle9i Designer repository content (or part of it) will be copied into a freshly installed (or already
populated) Oracle9i Designer repository. Note also that the migration is only supported starting from an Oracle
Designer 6.0 or Oracle Designer 2.1.2 repository - although it is highly recommended to update your Oracle
Designer 2.1.2 to the latest patch level (patch 7 of an Oracle Designer 6.0 repository) before launching the
migration wizard.

Migrate an entire repository content

There are several migration scenarios available to bring your structured objects forward to Oracle9i Designer.
This section will discuss a 'Big Bang' migration or the migration of an entire repository.

The 'Big Bang' migration approach is applicable in the following circumstances:

The structured elements in the application systems are closely interrelated. You cannot isolate a subset of
application systems because of its (many) interdependencies (also known as shares). In addition there are
strong relationships between the files captured in the third party source control tool and the structured data
in Oracle Designer.

●

The redesign activities - directly started after the migration - are applicable to all application systems
simultaneously.

●

Migrate a sub-selection of application systems

You may want to adopt a staged migration scenario in the following circumstances:

The Oracle9i Designer migration concerns a pilot or a test migration●

It may not be necessary to migrate all your application systems and all files in case of a pilot or an
evaluation of your migration scenario.

●

A coherent set of application systems will be migrated and subsequently redesigned in the Oracle9i
Designer environment. At the same time other application systems within previous Oracle Designer
repositories will or must stay behind.

●

This migration approach may not need to be complex if you choose mutual independent sets of
application systems for each migration. You can easily add new sets of application systems to your
Oracle9i Designer repository as long as they are mutually exclusive. However if there is any overlap
between your application systems your migration scenario will look like the following option. You
should try to avoid staged migration of highly interdependent application systems.

Support and therefore changes are needed on the "original" environment during the migration period of the
structured elements and files. These interim changes must also be brought forward to Oracle9i Designer.

This situation requires a second migration cycle - though on a smaller scale - specifically if you have to
migrate a substantial number of applications. In this second migration cycle you have bring forward both
changed structured elements and changed files from your "original" repositories to Oracle9i Designer. The
migration for both types will be based upon an isolation of the changes in the "original" repositories and an
isolation of the corresponding elements in Oracle9i Designer.

●

The necessary migration steps for the staged approach will be discussed later in this chapter. See "Post migration
steps for structured elements within a staged migration approach".

Oracle9i Designer Migration Guide Part 2

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part2_9i-1.htm (6 of 66) [19/08/2002 16:05:50]

Preparing (cleaning up) your 'old' repository content
A clean-up of your old Oracle Designer repositories should precede the actual migration. It will not only save time
during the migration but it will also limit future repository maintenance effort.

The following clean-up checklist is applicable to structured data:

Remove obsolete users.●

Remove unused application systems. Candidate unused application systems are skeleton applications with
no shares to 'actual' application systems or 'old' versioned application systems.

●

Remove obsolete objects and unshare unused objects.●

Consider the removal of User Defined Sets. Although User Defined Sets are still available in Oracle9i
Designer they will - by definition - not capture specific object versions. The object versions visible in a
User Defined Set may change over time. You should use configurations instead if you want to capture
specific object versions persistently like a change request.

●

Reconnect your application systems that receive shares from 'obsolete' application systems to actual
application systems. For example if HSD505 receives shares (e.g. preference sets) from QMS342, you
could reconnect to for example QMS505 or higher by archiving HSD505 only and immediately restore
HSD505 (as HSD505_copy) with the reconnect option to QMS505. Note that archiving the single
application system HSD505 will result in a skeleton share from QMS342 and that the reconnect option -
while restoring - allows you to reconnect the skeleton application to other application systems.

●

Remove unused diagrams (e.g. old versions) and diagrams that can be fully derived from the repository
content (e.g. Module diagrams).

●

Consolidate all other diagrams. The visual diagram information is stored separately from the structured
elements and their properties and may therefore not always be in sync. The consolidate option synchronizes
the diagram information with the information of the structured elements and their properties. To consolidate
a diagram in Release 2.x./6.0, open it and choose Edit > Consolidate > All.

●

Remove any parent/child relationships between application systems. There is no such thing as a
parent/child relationship in the context of Oracle9i Designer.

●

The application interdependencies - implemented by one or more shares between application systems - can be
very complex. It may not be very obvious how application systems are mutually dependent. The Quickscan
Analyzer utility of the Oracle Echo tool set is able to visualise the content and mutual dependencies between
application systems via an Entity Relationship Diagram. The tool depicts a repository content (or a sub-selection
of application systems) into a specific Quick Scan application system, an application system into an entity, object
types instances into attributes and shares into relationships. An example of a quickscan ERD is given below:

Oracle9i Designer Migration Guide Part 2

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part2_9i-1.htm (7 of 66) [19/08/2002 16:05:50]

Other hints and tips based on migration best practices
Below you will find a comprehensive overview of migration best practices of structured data based on Oracle
Designer migration - abstracted from Metalink between July 2000 and February 2001:

Apply the appropriate most recent patch levels to the target and destination repositories. You can find these
patches for Oracle Designer and Oracle Repository releases on Metalink.

●

Apply the same database character sets in the target and destination database that host the repositories.●

Preferably start the migration as the repository owner. Although the migration is supported as a subordinate
user, you need specific database access rights to successfully end the migration of one or more application
systems (see also the Oracle9i SCM Repository Installation Guide). In addition there is the issue of
application system ownership. The migration user will automatically become the application system owner.
He or she then needs to transfer that ownership to another - administrative - user. Your user management
and subsequent access rights can become extremely labor intensive if you introduce multiple application
system owners.

●

The migration should not be started from multiple workstations simultaneously. Once you start the
migration wizard on one workstation do not attempt to start another migration session on another
workstation until the first session is successfully completed.

●

Verify that you have the same tnsnames.ora running on your source and destination database node. Your
tnsnames.ora on your destination database node that hosts your Oracle9i Designer repository should be
equal to your tnsnames.ora on your Oracle9i Designer workstation. The wizard itself will create a database
link from the source Oracle Designer 6.0 repository to the target Oracle9i Designer repository. Note that the
process that creates this database link is executed on the database server and not on your workstation -
unless your source and destination database is running locally.

●

No manipulation of data should take place during the migration in the target and source repositories.●

If you are still using Designer 2.1.x, migrate your repository first to Oracle Designer 6.0 and apply the latest
Oracle Designer 6.0 patch level (Patch 7 was available in February 2002). There are several issues with
migrating from a Designer 2.1.x repository that were solved once moved forward to Designer 6.0.

●

Pilot a large volume set of application systems first. If you are planning to migrate a large volume of
application systems in an existing populated repository you should pilot this type of migration in a shadow
environment and examine the logging of the migration carefully if it does not complete successfully. As an
alternative to a shadow environment you could also choose to restore a pre-migration database backup if the
migration fails.

●

If you migrate user-defined report data from an Oracle Designer 6.0 repository, note that user-defined
reports, groups and parameters can be accessed only by a username that is identical to that of the user who
created them.

●

Note that specific migration best practices for database elements, Oracle Developer components (e.g. Forms,
Reports, Libraries and Menus) and WEB PL/SQL components are handled in parts 3, 4 and 5 of this migration
guide respectively.

Problems during migration

End of file on communication channel

Occasionally, the database connection is dropped during migration from a source repository on Oracle 8.0.4 or
8.0.5. The Oracle Error Number is 3113 and the message is 'End of file on communication channel'. This appears

Oracle9i Designer Migration Guide Part 2

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part2_9i-1.htm (8 of 66) [19/08/2002 16:05:50]

to be RDBMS related. The following suggestions may help to overcome the problem:

(a) Change the INIT.ORA parameter file for the source and target repository servers to increase the number of
open cursors (OPEN_CURSORS) to 3000

(b) Upgrade the source repository to Oracle server 8.0.5.2.1.

Should you still experience this problem, please contact Oracle Support.

Unable to allocate an extent of %s blocks from tablespace %s

During migration from 2.x or 6.0 to 9i the following error may be reported:

ORA-3232 unable to allocate an extent of %s blocks from tablespace %s

This is because a join of two tables required a sort operation that requested a temporary table segment. The size of
the segment requested was larger than the next extent of the temporary tablespace from which it was requested.

There are two possible solutions. The next extent of the temporary tablespace cited in the error can be increased,
or the request size can be reduced to fit within the next extent.

The preferred solution is to reduce the request size. To do this, examine the database INIT.ORA file (or query
SYS.V$PARAMETER) to determine your database block size. Usually this will be a multiple of 2K bytes, such
as 4096 or 8192. Then issue the SQL command:

select next_extent/db_block_size from user_tablespaces where tablespace_name =
'tablespace_name';

where db_block_size is the appropriate value and tablespace_name is the name given in the original error
message.

Take the value calculated and set the INIT.ORA parameter hash_multiblock_io_count to an equal or lesser value.
Then restart the database and restart the migration.

Migration steps from an Oracle Designer 1.3.2
repository to Oracle Designer 6.0 repository
You may skip this stage if you have already migrated to Oracle Designer 6.0.

The migration method for structured data is supported only if starting from an Oracle Designer 6.0 repository.
You have to apply the following migration steps if your current release of Oracle Designer is 1.3.2.

Load the user extensibility (if applicable)

Migrate via the Repository Administration Utility Upgrade tool or migrate via application system extracts.

Unload Oracle Designer 1.3.2 user extensibility (optional)

Obviously you can skip this activity if you have not defined any user extensibility or if you do not want to bring
forward the user extensibility into the Oracle9i Designer repository.

You first have to unload the Oracle Designer 1.3.2 user extensibility in order to keep your user extensibility. The
unload option is available from the Oracle Designer 1.3.2 Repository Administration Utility.

Oracle9i Designer Migration Guide Part 2

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part2_9i-1.htm (9 of 66) [19/08/2002 16:05:50]

Load Oracle Designer 1.3.2 user extensibility into Oracle Designer 6.0
(optional)

If you want to bring forward the user extensibility in the Oracle9i Designer repository you have to load the user
extensibility in a fresh Oracle Designer 6.0 repository before loading any application system. You have to load the
Oracle Designer 1.3.2 user extensibility into an Oracle Designer 6.0 repository only if you apply the migration
strategy via extracted application systems.

Migration via the Repository Administration Utility Upgrade tool

If you have chosen the "migrate entire repository content" migration strategy (see above), install the Oracle
Designer 6.0 client software and launch the Upgrade utility from the Oracle Designer 6.0 Repository
Administration Utility to bring your entire repository content forward to Oracle Designer 6.0.

Migration via extracted application systems

Use the application restore option (available in the Repository Object Navigator) if you have chosen the
sub-selection migration strategy (see above).

Note that you have to select a coherent set of application systems in order to circumvent skeleton application
systems. Note also that it requires additional migration effort if any changes are applied to the selected application
systems in the Oracle Designer 1.3.2 repository after the migration has taken place. You may use the freeze
application system option (as a rather rigid method) to prohibit any changes in the Oracle Designer 1.3.2
repository just after the migration.

You should verify the migration logging in the repadm60\log directory before moving on to the Oracle9i Designer
migration.

Migration steps from an Oracle Designer 6.0 repository
to Oracle9i Designer repository
Apply the following migration steps if your current release of Oracle Designer is 6.0:

Load the User Extensibility●

Launch the migration wizard●

Check in structured elements●

Unload Oracle Designer 6.0 user extensibility (optional)

Obviously you can skip this activity if you have not defined any user extensibility or if you do not want to bring
forward the user extensibility into the Oracle9i Designer repository

In order to keep your user extensibility you first have to unload the Oracle Designer 6.0 user extensibility. The
unload option is available from the Oracle Designer 6.0 RAU utility.

Oracle9i Designer Migration Guide Part 2

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part2_9i-1.htm (10 of 66) [19/08/2002 16:05:50]

Load Oracle Designer 6.0 user extensibility into Oracle9i Designer
(optional)

If you want to bring forward the user extensibility into the Oracle9i Designer repository you first have to load the
user extensibility in a fresh Oracle9i Designer repository before migrating any application system. You always
have to load the Oracle Designer 6.0 user extensibility into a fresh Oracle9i Designer repository for both
migration strategies.

Launch the migration wizard

Read the migration section of the Oracle9i SCM Repository Installation Guide before launching the migration
wizard.

The Oracle9i Designer migration method for structured elements has changed significantly. An Oracle Designer
6.0 repository will not be upgraded to an Oracle9i Designer repository during the migration. The Oracle Designer
6.0 repository content (or part of it) will be copied into a fresh installed (or already populated) Oracle9i Designer
repository.

It should be noted that the migration wizard will actually clean up your Oracle Designer 6.0 repository. The
migration wizard will for example correct invalid references, populate missing properties, update invalid
properties or force delete duplicate values. This cleanup is optimized for Oracle9i Designer. You should therefore
not reuse your Designer 6.0 repository for these application systems that are migrated to Oracle9i Designer. You
should use a target shadow Oracle Designer 6.0 repository if you are still planning to use Oracle Designer 6.0.

The migration wizard allows you to connect to an Oracle Designer 6.0 repository and subsequently select one or
more application systems. Apply the specific migration strategy as discussed before.

The wizard will verify if there are any incoming shares from other application systems that were not selected.
These application systems will be added to the selection in order to circumvent skeleton application systems. A
skeleton application system only captures the objects that are shared to one or more other application systems. It
does not contain all objects. The selection of a coherent set of application systems is extremely important. Note
that coherency is not only about receiving shares but also about outgoing shares. For example if you migrate the
single application QMS505 (1) first and secondly the application HSD505(1) you would receive QMS505(1)
again because of the incoming shares of QMS505 to HSD505. See the example of a quickscan ERD given in the
section "Preparing (cleaning up) your 'old' repository content", above. You should however not re-select an
application system that has already been (implicitly) migrated. In this example you should migrate HSD505 and
QMS505 as a set.

The wizard will populate a workarea called GLOBAL_SHARED_WORKAREA with the migrated data if your
repository is not version enabled.

The wizard will populate the migrated data in a new system generated workarea if your repository is (already)
version enabled. The name of that workarea will be based upon the connect string (e.g. WA_des60_ds6). You
should verify the Workarea rule of this system generated workarea. You should change this rule to your own
specifications if it contains the following rule INCLUDE_FOLDER(SYSTEM FOLDER{MAIN;LATEST}) and

Oracle9i Designer Migration Guide Part 2

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part2_9i-1.htm (11 of 66) [19/08/2002 16:05:50]

if you are planning to check in the structured elements. This specific rule will evaluate the content of the system
folder only after you have checked in your structured elements. It will not display your structured elements. You
will find more information about workarea and workarea rules in a paper by Lucas Jellema, called "Interior
Oracle9i Designer" published for the ODTUG2000 and in Chapter 6 "Reorganize a migrated Oracle9i Designer
repository". Note that you cannot reuse previously created workareas.

You can control, as in Oracle Designer 2.1.x and Oracle Designer 6.0, to a certain extent, the migration operation
while it is in progress. The migration operation is divided into a number of stages. You can pause and restart the
current stage, retry or skip a stage that failed, or abandon the whole operation.

The Control Status dialog box is displayed while the upgrade is in progress, and includes a number of buttons for
the different controls.

For example, if you ran out of extents in the rollback segment during an upgrade, you could pause the upgrade at
its current stage, allocate a larger rollback segment, then restart the upgrade from the stage where the failure
occurred.

It is highly recommended that you verify the content of the migration log files, written to the
ORACLE_HOME\repadm61\logs directory, during or after the migration.

Application systems are migrated as application systems suffixed with the application version number (e.g.
"HSD505 (1) or QMS505 (1)") and not as (root) folders. There is no option (yet) to transfer application systems as
(root) folders (or vice versa).

The Oracle9i Designer repository content may look as follows just after the migration of your structured data:

Oracle9i Designer Migration Guide Part 2

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part2_9i-1.htm (12 of 66) [19/08/2002 16:05:50]

Check in structured elements

If you do not want to enter the versioned world (yet) you may skip this activity.

The migration wizard groups all migrated application systems initially either in a default workarea called
GLOBAL_SHARED_WORKAREA or in a specific migration workarea (e.g. WA_DES6I_DES6I) if you have a
version enabled repository.

Oracle9i Designer Migration Guide Part 2

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part2_9i-1.htm (13 of 66) [19/08/2002 16:05:50]

Execute the following steps if you do want to enter the versioned world.

Verify the access rights of the repository owner against the workareas and the underlying containers.●

Check in all structured objects via the "List Checkouts" option●

Verify the access rights

Verify the access rights against the (default) workareas and migrated application systems of the Oracle9i Designer
repository owner. The Oracle9i Designer repository owner must have the version privilege for both objects in
order to check in the objects within the context of workareas. The following shows access rights against
workareas and application systems:

Note that you can select multiple workareas and application systems at the same time - via a discontinuous select -
to review and define the access rights for the specific user.

Check in structured objects

The migration wizard has loaded your structured elements in the repository, but it did not check in the objects.
The Oracle9i Designer Repository Object Navigator has an option to check in all non-versioned objects
simultaneously. This "List Checkouts…" option is available for each container via the right mouse button and will
launch the List CheckOuts Criteria dialog:

Oracle9i Designer Migration Guide Part 2

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part2_9i-1.htm (14 of 66) [19/08/2002 16:05:50]

In the context of migration you are only interested in a list of "non-versioned" objects.

Clicking the OK button will launch a window with all non-versioned objects for the highlighted container:

Oracle9i Designer Migration Guide Part 2

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part2_9i-1.htm (15 of 66) [19/08/2002 16:05:50]

You can check in only owned non-versioned objects. You cannot check in non-owned short-cuts. These objects
should not be highlighted in the list, while checking in all non-versioned objects.

It is very useful to apply the same checkin notes (e.g. "Initial creation") for all non-versioned objects in the
checkin windows, as illustrated below:

Oracle9i Designer Migration Guide Part 2

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part2_9i-1.htm (16 of 66) [19/08/2002 16:05:50]

You should realize that once you have checked in your first object(s) you actually have entered the versioned
world. From that moment on you cannot re-enter the non-versioned world - other than by recreating a fresh
Oracle9i Designer repository and re-starting the migration in a non-versioned mode. The checkin operation is an
irreversible action.

Checkingin of the subordinate non-versioned objects via the "List Checkouts" option does automatically imply a
checkin of the application system. Most likely you would like to apply your naming standard for application
systems or containers in general. For example, you could change the default migration application name "HSD505
(1)" into HST and "QMS505 (1)" into QMS just before the batch checkin of all subordinate objects. Note also that
you have to check out an object to apply any changes - including the name of the application system.

Post migration steps for structured data
This stage covers activities for structured data that are not handled by the migration wizard:

Remove the suffix “(1)” from your migrated application system name.●

Translate (old) parent application systems to a nested container structure.●

Build a version tree for structured data.●

Verify your migration result.●

Reevaluate preference sets.●

Oracle9i Designer Migration Guide Part 2

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part2_9i-1.htm (17 of 66) [19/08/2002 16:05:50]

Remove the suffix “(1)” from your migrated application system name

Remove the suffix “(1)” or any other version indication suffix from your migrated application system name. The
command line tool may not cope with suffixes appropriately.

Translate (old) parent application systems to a nested container structure

Skip this activity if you have not defined a hierarchy of application systems (also known as parent application
systems) in previous releases of Oracle Designer.

You should realize that the implementation of application systems hierarchies is quite different in Oracle9i
Designer to the implementation of application system hierarchies in releases of Oracle Designer before 6i.
Oracle9i Designer allows you to define a hierarchy of containers: application systems may contain other
application systems or folders. Folders may contain other folders or application systems. All containers - no
matter their position in the hierarchy - could contain subordinate objects (e.g. entities, tables) in Oracle9i Designer
as opposed to previous releases in Oracle Designer. In previous releases of Oracle Designer only subordinate
application systems could contain subordinate objects.

Reconsider therefore the application system hierarchy before and after the migration. Note that you should have
removed the parent/child relationship between application systems prior to migration.

Building a version tree for structured data

Skip this activity if you do not want to enter (yet) the versioned world or if you do not (yet) want to have multiple
object versions.

The only way to store multiple object versions in releases of Oracle Designer before 6i was by the creation of an
additional application system via archive/restore, or by versioning an application system. Within these additional
application systems you could store the same object (name) of the same type with a different definition. These
different object definitions represented another object version.

The migration wizard will not migrate these different object versions as a version tree. The migration wizard will
handle these object versions as totally different objects.

Build a version tree manually

The manual build of a version tree of structured elements comprises the following steps (see also the illustration
that follows):

Check out the context element (with the lowest version definition) from the default migration workarea
(e.g. QMS_MESASAGE_TXT [1.0]).

1.

Apply the changes manually based upon the definitions captured in QMS505_DEV (1)\
QMS_MESASAGE_TXT .

2.

Compare the two versions with the compare utility and verify this result with the Oracle Designer 1.3.2
environment. You can launch the compare prevision version utility directly via the checked out object.

3.

Check in the manually changed version of the object (e.g. QMS_MESASAGE_TXT [1.1]).4.

Repeat steps 1 to 4 until no more additional versions need to be built manually.

Oracle9i Designer Migration Guide Part 2

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part2_9i-1.htm (18 of 66) [19/08/2002 16:05:50]

Post migration steps for structured elements within a staged migration
approach

The next section will discus the merge steps for structured elements if you have adopted a staged migration
approach (as discussed in the section "Migrate a sub-selection of application system", above).

Merge interim changes in structured elements

Apply the following steps for structured elements to bring the interim changes forward in Oracle9i Designer.

Create a workarea called WA_<ddmmyyyy> with rule LATEST_BEFORE that represents a snapshot of
your repository just after the initial checkin of your structured elements (and files). Note that this workarea
also represents the content of your "original" repository before any interim changes have been applied. You
should not allow anyone to make any changes via this workarea.

1.

Isolate the changed structured elements in a User Defined Set in your non-9i repository.2.

Isolate the changed structured elements in a User Defined Set in your Oracle9i Designer repository.3.

Migrate all application systems which contain a specific User Defined Set to Oracle9i Designer via the
migration wizard.

4.

Check out (if possible) all objects that are associated with the specific User Defined Set in Oracle9i
Designer.

5.

If the object is already checked out then you have to merge the interim changes with the changes applied in
Oracle9i Designer.

6.

If the checked in object version is higher than the object version in WA_<ddmmyyyy> you also have to
merge the interim changes. In the following illustration, you have to merge the interim changes since the
interim changes are based upon version 1.1.

7.

Oracle9i Designer Migration Guide Part 2

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part2_9i-1.htm (19 of 66) [19/08/2002 16:05:50]

8. If the checked in object version equals the object version from WA_<ddmmyyyy> then you can bring all
interim changes forward in Oracle9i Designer.

Step 8 may be supported by the export/import method as described earlier in section Build a version tree for
structured elements via the export/import utility.

Step 6 or 7 (if applicable) must always take place manually. You can however effectively use the compare utility
between the latest version of the object and the similar object in the migrated application.

Verify the migrated structured data

Apply the following checklist for your migrated structured data:

All selected application systems in your Oracle Designer 6.0 repository should also be available in the
Oracle9i Designer repository.

●

All shares should be translated as "short cuts".●

Your version tree - if applicable - should be comparable with your "object versions" captured in diferent
application systems in previous releases of Oracle Designer.

●

Compute statistics

To avoid a degradation in repository performance, we recommend that you run the Compute Statistics utility
(available at the Oracle9i Designer RAU tab sheet) regularly, and especially after an operation that significantly
affects the size of the repository.

Note that the migration automatically launches a compute statistics stage. Therefore you do not have to run the
compute statistics directly after a migration.

In Oracle9i Designer, you can run the utility directly from the Repository Administration Utility window by
clicking the Compute Statistics button:

In most cases, we recommend using a higher figure than the default (e.g. 50%). However, if your repository has
large tables, it is especially important to use lower figures for the sample size, as higher figures will cause the
compute operation to take a long time to complete.

In addition it is highly recommended to implement a daily batch mechanism that computes the statistics of the
dynamic repository tables.

Oracle9i Designer Migration Guide Part 2

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part2_9i-1.htm (20 of 66) [19/08/2002 16:05:50]

Reevaluate preference sets

The handling of the preference sets reevaluation on application system level or lower for your Oracle Developer
and WEB PL/SQL components takes place in Part 4 and Part 5 of this guide respectively.

Chapter 4 Migrate files from third party
source control tools
The migration of files, stored in a third party source control tool, should typically start after the migration of the
structured elements. Only then are you able to integrate your files with the structured elements - both type of
elements will then share the same root-container.

The migration of files into Oracle9i Designer comprises the following steps:

Populate the file system with a baseline set of files●

Populate the Oracle9i Designer repository●

Skip this chapter if you have not stored your files in a third party source control tool. (e.g. PVCS/VM, ClearCase,
Visual Source Safe).

The migration of files stored in a third party source control tool will be clarified using an abstract of 'Headstart
5.0.5' files. It is assumed that the files are captured in two project databases in PVCS/VM : HST and QMS
respectively (as illustrated below).

PVCS/VM is a source control tool like ClearCase or VisualSource that supports the storage of multiple file
versions, workspace procedures and several other configuration management procedures.

Populate the file system with a baseline set of files
The migration of files will be based upon the file upload functionality in Oracle9i Designer. The migration
strategy of files will not be based upon an interpretation of the third party source control repository.

Oracle9i Designer Migration Guide Part 2

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part2_9i-1.htm (21 of 66) [19/08/2002 16:05:50]

The migration steps for files stored in a source control tool will be illustrated by using PVCS/VM as an example.
Note that you could apply the same migration strategy for files stored in other source control tools (e.g.
ClearCase, Visual Source Safe). Most likely these other tools have similar options available to publish your
repository content - via a specific filter - on the file system.

The publication of a baseline file set should typically be organised in the following stages:

Get an overview of your third party source control tool repository.●

Clean up your third party source control tool repository.●

Determine a generic directory structure.●

Publish the baseline set of files on the file system.●

Get an overview of your third party source control tool repository

Your third party source control may have several reports or options available to visualise the repository content of
file versions. Such an overview will effectively support you with the publication of a baseline set of files.

For example PVCS/VM offers an option to export the administrative information (e.g. projects, files, file versions,
group association with file versions) into an Oracle database. Subsequently you can build reports (using
SQL*Plus) to generate an overview of your PVCS/VM repository content that may look as follows:

PRJ Filename Develop Test Accept Prod

…

HST upg501.sql 1.0

HST announcement.doc 1.2 1.1 1.0 1.0

HST elcheapo.pl 1.0 1.0 1.0 1.0

…

QMS qmsolb50.olb 1.7 1.6 1.6 1.6

…

Note: Appendix A contains an example of a SQL query - based on the PVCS/VM administration tables - that has
generated the above report.

The above report is based upon the functionality in PVCS/VM that enables you to associate one or more
promotion groups - see report headers - to a specific file version. In PVCS/VM you can also associate one or more
release labels to a specific file version. You could generate a similar report with release numbers in the column
headers instead of promotion groups.

The PVCS/VM content for the file announcement.doc should look as follows:

Oracle9i Designer Migration Guide Part 2

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part2_9i-1.htm (22 of 66) [19/08/2002 16:05:50]

Note that the exported PVCS/VM administrative information is static. It does not reflect any changes after you
have exported the data from the PVCS/VM repository. You should therefore export the administrative data
multiple times if there are any cleanup activities based upon the first output - and that is most likely to happen.

Clean up your third party source control tool repository

The upload is an excellent opportunity to clean up your repository content of the third party source control tool.
You can apply the following clean-up checklist for files captured in third party source tools, using the overview,
as discussed in the previous section:

Remove unused containers and/or sub-containers. The equivalent of a container in PVCS/VM is called a
project database and a sub-container is called a project.

●

Remove obsolete files.●

Remove obsolete (interim) object versions. Candidate obsolete or interim file versions are file versions that
are not used or associated with a release or a promotion level.

●

Determine a generic directory structure

The upload will not only capture the files, but also the owning directories. You should therefore investigate the
content of the source control tool for each specific project (or any other root grouping vehicle) in terms of
(sub)folders and file types. Subsequently you can determine a generic directory structure based upon this
investigation.

Example: Your files in a specific project database could already been organized in a specific (nested) folder
structure (see the illustration below) or you could group your files in one or more sub-folders based upon the file
extension if your project database is not organized in sub-folders.

Oracle9i Designer Migration Guide Part 2

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part2_9i-1.htm (23 of 66) [19/08/2002 16:05:50]

The illustration above shows that a directory structure for HST and QMS is already available. If such a structure is
not yet available you could set up a directory structure based upon your file system structure HST and QMS
respectively.

Publish the baseline set of files on the file system

Your third party source control tool probably supports the functionality to publish a set of files of a specific
version based upon the promotion group association or a release label association. Specifically, this "get" option is
very effective for the migration of files. You can use this option to publish a baseline set of your files to a specific
destination directory structure. For example you could publish all your file versions that are associated with the
group 'development' (as shown in the dialog below) to the stage area 'f:\stage\hst\' or you could start to publish all
your file versions that are associated with version label 5.0.5. The "Get" option in the screen dump below will
publish all file versions and its owning folders and subfolders that are associated with the promotion group
"development" to directory f:\stage\hst .

Oracle9i Designer Migration Guide Part 2

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part2_9i-1.htm (24 of 66) [19/08/2002 16:05:50]

The window above depicts the promotion group association in PVCS/VM against file versions. The 1.1 version of
the elcheapo.doc file is associated with the promotion group "Development" while the 1.0 version of is associated
with "Production".

Note that if you want to bring forward multiple file versions (see the section "Building a version tree for files"),
you have to start with a baseline or lowest version in the publish step. Your baseline version will probably be
captured in the production environment. If you do not want to bring forward multiple file versions you have to
"get" and upload the latest file versions. These latest versions are probably associated with the "development"
promotion group.

Oracle9i Designer Migration Guide Part 2

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part2_9i-1.htm (25 of 66) [19/08/2002 16:05:50]

Your (populated) file system may look as follows after the (first) publish operation for project HST for the
sub-folder scripts.

Note that you may have to move your files after the publish operation to a specific sub-directory if you did not
organize your sources in a specific sub-folder structure beforehand. The move operation should typically be based
upon the output of your investigation to a generic directory (see also the section "Determine a generic directory
structure").

Your third party source control tool may also have publish options that are accessible from the command line
interface or via an API. For example PVCS/VM offers a GET option via a Command Line Interface in a 'DOS'
session that allows you to get a multiple set of file versions either based upon a release label or a promotion
group. Therefore you may prefer the Command Line Interface instead of the GUI interface to execute the publish
operation as a batch job.

Populate the Oracle9i Designer repository
In this activity you will populate the Oracle9i Designer repository with the (first) set of files. The populate
operation is divided into two steps:

Apply (root) folder mapping●

Upload the files - and check in if applicable●

Every insert, update or delete operation on the Oracle9i Designer repository must be executed within the context
of a specific workarea.

If you are not planning to enable the repository for versioning you have to use the default migration workarea
GLOBAL_SHARED_WORKAREA.

Otherwise you can use any workarea for the migration of files since you have the intention to check in the file
objects. Note that every checked in object can be accessed eventually in every workarea (depending on the
workarea rules).

Apply (root) folder mapping

The upload (and check-in of files if applicable) must be preceded by a folder mapping. The "Map Folder to the
File System" option is available for each root container - at the right mouse button for a specific root container.

This folder mapping option allows you to upload the file system content (directory and files) with the repository.
See below.

Oracle9i Designer Migration Guide Part 2

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part2_9i-1.htm (26 of 66) [19/08/2002 16:05:50]

For example the directory "f:\stage\hst\" will be mapped to the HST container and the directory "f:\stage\qms\"
will be mapped to the QMS container. See below.

Oracle9i Designer Migration Guide Part 2

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part2_9i-1.htm (27 of 66) [19/08/2002 16:05:50]

Note that the files - and their folders and subfolders - in the Headstart example will be uploaded (and checked in if
applicable) against the existing containers (e.g. HST and QMS). Obviously you could also bring the files forward
in other or new "to be created" containers.

Upload of files

The upload will actually store the files in the repository. In addition it will also bring all directories and
sub-directories forward if you have enabled the "Recurse into sub-directories" option (see the following dialog
box). It is therefore important that you have applied a generic folder structure, since that structure will be loaded
in the repository as well.

Checkin of files

Skip this section if you do not want to enter the versioned world.

If you want to check in your files, you can either combine the upload with a check-in or you can use the "list
checkouts…" option (as with the structured elements). The check-in of files will actually apply a version number
to the stored files.

Oracle9i Designer Migration Guide Part 2

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part2_9i-1.htm (28 of 66) [19/08/2002 16:05:50]

As with structured elements you should realise that once you have checked in your first file(s) you have actually
entered the versioned world. From that moment on you cannot re-enter the non-versioned world - other than by
re-creating a fresh Oracle9i Designer repository and re-starting the migration in a non-versioned mode. The
check-in operation is an irreversible action.

Note that you can verify the "check-in" status of all file elements (including folders) via the "list checkouts…"
option per root-container. Eventually this option should not feed back any file elements.

The container and sub-container structure for application system HST looks as follows after the upload and
check-in operation:

Upload and check in sources and executables

Next to the storage of structured elements you may consider the upload and check-in of the derived sources and
corresponding executables. For example you could also upload the derived Oracle Forms FMB source (e.g.
HSD0004F.FMB) and corresponding executable (e.g. HSD0004F.FMX) next to the migrated structured form
itself (Oracle Forms 60 module HSD0004F). In addition you could also upload multiple representations of your
sources and executables, for example Forms50 and Forms60. You can organise your multiple representation either
via different folders (e.g., demof50, demof60) or via the use of different labels.

Oracle9i Designer Migration Guide Part 2

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part2_9i-1.htm (29 of 66) [19/08/2002 16:05:50]

With all representations available in the repository you could instantly build your environment (via the download
option) from the repository content without the derivation (or generation) step from a structured format into a
derived source and executable. You can then gradually replace the source and the executable with the new
generated and compiled representation over time. Your Oracle9i Designer repository can act as a single point of
control just after the migration - it captures all your application objects necessary for a 'runtime' environment, as
below:

Post migration steps for files stored in a third party
source control tool
There are the following (possible) post migration steps for files:

Build a version tree for files●

Verify the migrated files●

Compute statistics●

Oracle9i Designer Migration Guide Part 2

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part2_9i-1.htm (30 of 66) [19/08/2002 16:05:50]

Building a version tree for files

It is quite easy to build a version tree for files stored in a third party source control tool (compared with structured
elements).

Skip this activity if you do not (yet) want to enter the versioned world or if you do not (yet) want to have multiple
object versions of files.

If you want to bring forward multiple file versions you have to start with a baseline or lowest version in the
publish step as discussed above. Obviously the version tree should be built starting from the lowest version.

If you are planning to build a version tree, you can build it either:

immediately, or●

in time.●

The build of a version tree for files should be based upon an overview as was presented in the section "Get an
overview of your third party source control tool repository", above. Such an overview of the third party source
control content, i.e. which file versions are available and with which promotion groups or release labels are these
file versions associated, is not only very productive, but also quality-effective for verification purposes.

Building a version tree immediately

In this activity you will bring one or more file versions forward immediately from your third party source control
tool to Oracle9i Designer.

Building a version tree (immediately) comprises the following task steps:

Check out the relevant file in Oracle9i Designer (with a lock) that has multiple versions in your third party
source control.

1.

Get the file from your third party source control (without a lock) and overwrite the file on the file system in
the prepared directory.

2.

Upload and check in the file in Oracle9i Designer.3.

These steps are illustrated below for the file Announcement.doc.

Repeat these steps for each file that needs multiple versions and for which no more versions are available in your
third party source control tool. For example file Announcement.doc has 3 versions (1.0, 1.1 and 1.2) and therefore
you have to repeat this activity twice.

Oracle9i Designer Migration Guide Part 2

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part2_9i-1.htm (31 of 66) [19/08/2002 16:05:50]

Building a version tree for files (immediately) should typically be performed by a developer. You therefore have
to give intermediate access to developers that are responsible for these post-migration activities. Consult Chapter
7 "Migrate users and assign access privileges" for guidelines on repository access rights to the repository itself, to
workareas and to containers.

Note that it is not necessary to run the compare utility after a build of another version. The build of another
version is not as complex as with structured objects. Note also that the Oracle9i Designer repository has not
implemented any kind of delta storage method while storing another file version. Another file version is just
stored completely. In addition you can store a file in the repository either compressed or uncompressed.

Finally note that the above scenario can be very time consuming if you have many files with many file versions.
You can then speed up the process by checking in only relevant file versions. For example only document1.doc
version 1.0 and version 1.2 are used, while document version 1.1 is not used anywhere anymore. In this specific
example you only need one extra activity to check in document1.doc version 1.2.

Building your version tree in time

During this activity you are building the version tree in time. You execute the check-out and check-in steps (as
described and illustrated in the previous paragraph) whenever you need an additional version of a file. Your third
party source control tool will be kept 'alive' (in read-only mode) as long as you need additional versions.

Oracle9i Designer Migration Guide Part 2

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part2_9i-1.htm (32 of 66) [19/08/2002 16:05:50]

If you apply this migration method, you will also start with the lowest available file version, since you are
eventually interested in the version tree. You can only build a version tree starting from the initial version.

You have to bring forward the additional file versions in the following circumstances:

Setup of another promotion environment that involves versions other than those already available in
Oracle9i Designer.

●

Setup of another release that involves versions other than those already available in Oracle9i Designer.●

The continuation of development of one or more object versions that are not yet available in Oracle9i
Designer.

●

Summary of migration strategies for building a version tree for files

Several options for building a version tree for files stored in a third party source control tool were described in the
previous paragraphs. The following strategies are relevant if you combine these options:

The build of a version tree for files is not yet planned.1.

The build of a version tree for all file versions will be built immediately.2.

The build of a version tree for only a limited number of file versions will be built immediately.3.

The build of a version tree for only a limited number of file versions will be built in time.4.

The table below presents an overview of these options, which baseline version (lowest or latest)
should be loaded initially and when you should choose for a specific strategy.

Build of
version tree?

Baseline version Multiple versions? Rationale

1 Not planned
(yet)

Latest Single Oracle9i Designer will not enter the
versioned world yet because (most)
projects are within development. In
addition there are only a limited
number of different versions

2 Immediately Lowest Multiple (all) The number of files and different
versions is limited or the migration
can and will be organized via batch
jobs (despite the large numbers of files
and versions). The investment in
collecting a batch utility for migrating
your files can very well be justified.

Note. A batch job for downloading the
files from PVCS/VM and
subsequently uploading the files into
Oracle9i Designer - to build the
version tree - can be based upon the
available Command Line Interface of
PVCS/VM and the Command Line
Interface of Oracle9i Designer
respectively.

Oracle9i Designer Migration Guide Part 2

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part2_9i-1.htm (33 of 66) [19/08/2002 16:05:50]

3 Immediately Lowest Multiple (limited
number)

There are only a few differences in
object versions between the different
environments and/or releases. The
build effort of version trees is
therefore limited.

4 In time Lowest Multiple (limited
number)

The number of different file versions
is substantial, but there is on the other
hand a time constraint on the
migration period.

Note that you can only select the most optimal strategy if you have full knowledge about the content of your third
party source control tool. Again the report presented in the section "Get an overview of your third party source
control tool repository", above, is a very productive way to support your strategy for building version trees.

Verify the migrated files

You can verify your migration effort for files for the following dimensions:

Verify the file existence●

The existence of the appropriate number of additional versions (version tree)●

Verify the file existence

The Oracle9i Designer repository should contain the same number of files as in the third party source control tool,
unless one or more files are deliberately not brought forward to the Oracle9i Designer repository.

You can use the Repository Object Navigator to view the file objects (see for example the illustration in
"Check-in of files", above) or even better you can use the API to produce a list of file objects for each
root-container.

The existence of the appropriate number of additional versions (version tree)

The Oracle9i Designer repository should contain the appropriate number of file versions (or version tree) as was
available in the third party source control tool.

Note that the exact number of file versions may deviate from the original number of file versions depending on
the specific migration strategy for building a version tree for files (see previous paragraph).

Note also that the version number itself may deviate from the file version number if you have not brought forward
all file versions and at the same time you have opted for the automatic numbering policy.

You can use the Version History Viewer (see below) to look up a version tree. Subsequently you can use the
report presented in "Building a version tree for files" to compare the result in Oracle9i Designer with the content
of your third party source control tool.

Oracle9i Designer Migration Guide Part 2

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part2_9i-1.htm (34 of 66) [19/08/2002 16:05:50]

Compute statistics

Now is a good time to rerun "Compute Statistics" since your repository content is expanded with file objects (and
maybe additional file versions). Running "Compute Statistics" will avoid a degradation in repository performance.

In Oracle9i Designer, you can run the utility directly from the Repository Administration Utility window by
clicking the Compute Statistics button:

Chapter 5 Migrate files that are stored on the
file system
The migration of files, stored on the file system, should typically start after the migration of the structured
elements. Only then are you able to integrate your files with the structured elements - both type of elements will
then share the same root-container.

The migration of files into Oracle9i Designer comprises the following steps:

Populate the file system with a baseline set of files●

Populate the Oracle9i Designer repository●

Skip this chapter if you have already migrated your files from a third party source control tool or you do not (yet)
have any files to migrate.

Oracle9i Designer Migration Guide Part 2

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part2_9i-1.htm (35 of 66) [19/08/2002 16:05:50]

The migration of files stored on the file system will be clarified using an abstract of 'Headstart 5.0.5' files. It is
assumed that the files are stored on the file system as depicted below:

Populate the file system with a baseline set of files
The migration of files will be based upon the file upload functionality in Oracle9i Designer.

The publication of a baseline file set should typically be organized in the following stages:

Restructure your file system content●

Publish the baseline set of files on the file system.●

Note that your file structure containing your candidate files could be stored on a local drive, a network drive or
even on a Unix file system. Obviously in the case of a Unix file system you should have installed certain software
(e.g. Samba) to make the Unix file system transparent - presented as a network drive - on your NT or
Windows95/98 workstation.

Restructure the file system

The upload is an excellent opportunity to restructure your file system. It is highly recommended to use a staging
area - a separate directory structure - in order not to interfere with ongoing development, testing or even
production.

The restructure of the file system comprises the following stages:

Determination of a generic directory structure●

A clean-up of your file system●

Determination of a generic directory structure

The upload will not only capture the files, but also the owning directories. You should therefore investigate the
file system content for each specific root directory (e.g. HST, QMS) in terms of (sub)folders and file types.
Subsequently you can determine a generic directory structure based upon this investigation and create this generic
structure in the staging area.

Clean-up checklist

Consult the following checklist to limit the number of files for uploading.

Obsolete objects●

Temporary files●

Oracle9i Designer Migration Guide Part 2

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part2_9i-1.htm (36 of 66) [19/08/2002 16:05:50]

Compiled object versions●

Multiple instances●

"out of context" objects●

Applying the above checklist will result in an effective base line set, that you can upload and check in to Oracle9i
Designer.

It is assumed that the content in the staging area for HST and QMS, depicted at the beginning of this chapter, is
satisfactory (for example, no clean-up actions are necessary).

Populate the Oracle9i Designer repository
The procedure for populating the repository with files stored on the file system in Oracle9i Designer is the same
as for files stored in a third party source control tool, once you have populated the files in the staging area.

Consult therefore "Populate the Oracle9i Designer repository" in Chapter 4 for a complete overview of the
population steps.

Post migration steps for files stored on the file system
There are the following (possible) post-migration steps for files:

Build a version tree for files●

Verify the migrated files●

Compute statistics●

Build a version tree for files

Skip this activity if you do not (yet) want to enter the versioned world or if you do not (yet) want to have multiple
object versions of files.

Compared with the storage of files in a third party source control tool, it is much harder to build up a version tree
for files that are stored on the file system. It is more difficult to build an overview (see the illustration below)
because additional versions of a file must either be stored under a different name or at a different location.

If you want to bring forward multiple file versions, you have to start with a baseline or lowest version in the
publish step as discussed above. Obviously the version tree should be built starting from the lowest version.

The build of a version tree for files should be based upon an overview of your file system content, i.e. which file
versions are available in which specific directories.

Your overview may look as follows:

Dir Filename Version

…

HST announcement.doc

HST \hst\prd\doc\ announcement.doc 1.0

HST \hst\acc\doc\ announcement.doc 1.0

HST \hst\tst\doc\ announcement11.doc 1.1

Oracle9i Designer Migration Guide Part 2

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part2_9i-1.htm (37 of 66) [19/08/2002 16:05:50]

HST \hst\dev\doc\ announcement12.doc 1.2

…

QMS qmsolb50.olb

QMS \qms\prd\demof60\ qmsolb50.olb 1.6

QMS \qms\acc\demof60\ qmsolb50.olb 1.6

QMS \qms\tst\demof60\ qmsolb5016.olb 1.6

QMS \qms\dev\demof60\ qmsolb5017.olb 1.7

…

Probably the only way to build such an overview is to investigate the file content file-by-file, based on the
different file versions (either captured using another file name or in another location).

Building a version tree for files should typically be performed by a developer. You therefore have to give
intermediate access to developers that are responsible for these post-migration activities. Consult Chapter 7 for
guidelines on repository access rights to the repository itself, to workareas and to containers.

Note that it is not necessary to run the compare utility after a build of another version. The build of another
version is not as complex as with structured objects. Note also that the Oracle9i Designer repository does not
implement any kind of delta storage method while storing another file version. Another file version is just stored
completely. In addition you can store a file in the repository either compressed or uncompressed, to minimize the
size of your repository.

If you are planning to build a version tree for files, you can either build it:

immediately or●

in time.●

Building a version tree immediately

In this activity you will bring one or more file versions forward immediately from your file system to Oracle9i
Designer.

Building a version tree (immediately) comprises the following task steps:

Check out the relevant file in Oracle9i Designer (with a lock) that has multiple versions in your third party
source control.

1.

Copy the 'next version' to your work directory. You will deliberately overwrite the file on the file system in
your work directory. Note that you may have to rename the file if another version was captured with a
different name.

2.

Upload and check in the file in Oracle9i Designer.3.

These steps are illustrated below for the file Announcement.doc.

Oracle9i Designer Migration Guide Part 2

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part2_9i-1.htm (38 of 66) [19/08/2002 16:05:51]

Repeat these steps for each file that needs multiple versions and for which no more versions are available. For
example, file Announcement.doc has three versions (1.0, 1.1 and 1.2) and therefore you have to repeat this
activity twice.

Building your version tree in time

In this activity you will bring one or more file versions forward in time from your file system to Oracle9i
Designer.

Building a version tree (immediately) comprises the following task steps:

Check out the relevant file in Oracle9i Designer (with a lock) that has multiple versions in your third party
source control.

1.

Copy the 'next version' to your work directory. You will deliberately overwrite the file on the file system in
your work directory. Note that you may have to rename the file if another version was captured with a
different name.

2.

Upload and check in the file in Oracle9i Designer.3.

These steps are the same as for building a version tree immediately. Consult therefore also the illustration in
"Building a version tree immediately", above.

Oracle9i Designer Migration Guide Part 2

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part2_9i-1.htm (39 of 66) [19/08/2002 16:05:51]

Repeat these steps for each file that needs multiple versions and for which no more versions are available. For
example, file Announcement.doc has three versions (1.0, 1.1 and 1.2) and therefore you have to repeat this
activity twice.

Finally note that the above scenarios can be very time consuming if you have many files with many file versions.
You can speed up the process by checking in only relevant file versions. For example only Announcement.doc
version 1.0 and version 1.2 are used, while announcement.doc version 1.1 is not used anywhere anymore. You
only need one extra activity to check in Announcement.doc version 1.2.

Summary of migration strategies for files stored on the file system

Several options for building a version tree for files stored on the file system were described in the previous
paragraphs. The following strategies are relevant if you combine these options:

The build of a version tree for files is not yet planned.1.

The build of a version tree for all file versions will be built immediately.2.

The build of a version tree for only a limited number of file versions will be built immediately.3.

The build of a version tree for only a limited number of file versions will be built in time.4.

The table below presents an overview of these strategies, which baseline version (lowest or latest) should be
loaded initially and when you should choose a specific strategy.

Build of
version tree?

Baseline version Multiple versions? Rationale

1 Not planned
(yet)

Latest Single Oracle9i Designer will not enter the
versioned world yet because (most)
projects are within development. In
addition there are only a limited
number of different versions

2 Immediately Lowest Multiple (all) The number of files and different
versions is limited.

3 Immediately Lowest Multiple (limited
number)

There are only a few differences in
object versions captured in different
directories. The build effort of version
trees is therefore limited.

4 In time Lowest Multiple (limited
number)

The number of different file versions
is substantial, but it is too time
consuming to bring all versions
forward at once.

Note that you can only select the most optimal strategy if you have full knowledge about the content of your file
system. The report featured in "Building a version tree for files", above, is a very productive way to support your
strategy for building version trees for files.

Oracle9i Designer Migration Guide Part 2

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part2_9i-1.htm (40 of 66) [19/08/2002 16:05:51]

Verify the migrated files

You should verify your migration effort for files for:

the file existence●

the existence of the appropriate number of additional versions (version tree)●

Verify the file existence

The Oracle9i Designer repository should contain the same number of files as stored on the file system. Unless one
or more files are deliberately not brought forward to the Oracle9i Designer repository.

You can use the Repository Object Navigator to view the file objects (see for example the illustration in
"Check-in of files", above) or even better you can use the API to produce a list of file objects for each
root-container.

The existence of the appropriate number of additional versions (version tree)

The Oracle9i Designer repository should contain the appropriate number of file versions (or version tree) as was
available in the third party source control tool.

Note that the exact number of file versions may deviate from the original number of file versions depending on
the specific migration strategy for building a version tree for files (see previous section).

Note also that the version number itself may deviate from the file version number if you have not brought forward
all file versions and at the same time you have opted for the automatic numbering policy.

You can use the Version History Viewer (see below) to look up a version tree. Subsequently you can use the
report presented in "Building a version tree for files" to compare the result in Oracle9i Designer with the content
of your third party source control tool.

Oracle9i Designer Migration Guide Part 2

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part2_9i-1.htm (41 of 66) [19/08/2002 16:05:51]

Compute statistics

Now is a good time to rerun "Compute Statistics" because your repository content is expanded with file objects
(and maybe additional file versions). Running "Compute Statistics" will avoid a degradation in repository
performance.

In Oracle9i Designer, you can run the utility directly from the Repository Administration Utility window by
clicking the Compute Statistics button:

Chapter 6 Reorganize a migrated Oracle9i
Designer repository
The migration of structured elements and/or files should be followed by reorganisation activities. These
reorganization activities involve the implementation of a specific implementation of your promotion model.

The following subjects are discussed in detail:

Define workareas and configurations●

Remove obsolete elements●

Compute statistics●

There are only a limited number of reorganization options available in a non-versioned world. For example you
cannot create additional workareas next to the default 'GLOBAL_SHARED_WORKAREA'. You can only populate
checked in objects in another workarea, but there are no checked in objects in a non-versioned world. Also you
cannot create configurations since the configuration membership is based only upon checked in objects. Again no
objects are checked in in a non-versioned world. You can only (re)organize your repository through (nesting of)
containers in a non-versioned world.

You will find other and more comprehensive uses of workareas and configurations in a paper by Lucas Jellema
called "Interior Oracle9i Designer" for the ODTUG2000 conference.

Define workareas and configurations
A promotion model can be implemented with a combination of workareas and configurations. If you adopt this
specific implementation then basically all workareas - except the development workarea - will be based upon
configurations.

In this section we assume that your promotion model looks as follows:

Development

System test

System integration

Production

Oracle9i Designer Migration Guide Part 2

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part2_9i-1.htm (42 of 66) [19/08/2002 16:05:51]

Production fix

Obviously your promotion model may have more or fewer promotion levels.

In this specific promotion model implementation you will create workareas that represent promotion
environments. In addition you may want to restrict each workarea in each promotion environment to one or more
sub-systems. For example you will create a workarea for the development environment that contains the latest
folder content of folders HST and QMS. A workarea for the test environment will be applicable to the same
sub-systems, but it is based on different workarea rules. For example the workarea WA_TST_HSD represents the
test environment for HST and QMS and is based on base line and patch configurations of HST and QMS. The
term base line and patch configurations will be explained below.

The following workarea rules are applicable in the above described promotion model:

"LATEST(MAIN)" for the development workarea or "INCLUDE_FOLDER" if you break up your
repository in different areas

"INCLUDE_CONFIG" for example for the production or system test workarea

All non-development workareas will be based on configurations. You could classify two types of configurations:

A configuration representing a specific (full) release or base line of a specific root container (e.g.
HST_505).

A configuration representing a patch consisting of a limited number of configuration items owned by
a specific root container and applicable for a specific base line (e.g. HST_505_10).

Obviously you can create the non-development workareas only if you have defined one or more configurations.
You can create configurations (baselines and patches) via the configuration wizard.

You can either populate a configuration via a combination of rules - similar to the population of workareas - or
you can just select objects from the repository (see the illustration above). Configuration rules are evaluated once
and result in a set of specific object versions. The configuration rules are not saved as workarea rules are.

You should verify that your configurations not only include the structured elements but also the files (captured in
folders). You will use the folders and files inclusion later on to build (or synchronize) your file system in each of
your promotion environments (see Chapter 8).

With one or more configurations you are able to create your non development workareas with the workarera
wizard.

Oracle9i Designer Migration Guide Part 2

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part2_9i-1.htm (43 of 66) [19/08/2002 16:05:51]

"Base line" configurations can effectively be created via configuration rules, while "patch" configurations can be
created via selecting the individual object versions.

The order in which you specify the workarea rules is very important. The workarea rules are evaluated from top to
bottom. Another object version will not be evaluated whenever an object version is already populated by a 'higher'
order workarea rule.

Your workarea for a specific promotion environment should eventually include one or more baseline
configurations and/or one or more corresponding patch configurations of corresponding interrelated containers, as
illustrated above.

Omitting one or more configurations may result in an incomplete definition of your components. For example
your module definition will be incomplete if you omit the configuration that captures your preference sets that
were initially defined (in the development environment) against your module.

Note that your development workarea ('WA_DEV_HSD') has a much more dynamic character than your 'other'
workareas since your development workarea is based upon the 'simple' rule LATEST(MAIN) or
FOLDER_LATEST_CONTENT(HST{1.2}). Your development workarea is changed each time an object is
checked in. The 'other' workareas are only changed for each promotion. Each promotion results either in a
additional configuration and/or a change of the workarea definition.

Note that the Oracle9i Designer security model fully supports the implementation of promotions via workareas.
For example a developer may have write access on the container HST. At the same time he will probably have
only read access to workarea WA_PRD_HSD and only read access to folder c:\oap\hst\prd. He or she will never
be able to change the repository content in the production environment and will not be able to synchronize the file
system in the production environment.

The number of configurations will grow significantly during the life time of an application. You should therefore
adopt a naming standard for configurations that identifies at least the following components in the configuration
name: <root container name>_<base line release nr>_(<patch release>). For example HST_505_11 represents
patch 11 for base line 5.0.5 of container HST.

Different folder mappings in the development workarea
for each developer
You may skip this section if you do not (yet) want to enter the versioned world.

The above folder mappings for the development workarea should typically be defined by the project configuration

Oracle9i Designer Migration Guide Part 2

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part2_9i-1.htm (44 of 66) [19/08/2002 16:05:51]

manager - Chapter 7 gives a detailed description of this specific user group - who is responsible for the content of
the development environment in the repository and eventually on the file system.

Developers however should not adopt this specific folder mapping for each root container in the development
environment. They should adopt a private workspace for each container. These will not interfere with each other
when they use a private workspace for changing the files. This private workspace can either be set locally (e.g.
c:\work\hst) or on a share (e.g. f:\work\hst).

Note that the above "private" folder mapping is supported by Oracle9i Designer since the folder mapping is
uniquely defined per workarea, container and workstation. The folder mapping is saved in the registry node
HKEY_CURRENT_USER\Software\Oracle\FileSystem\… on each workstation.

Remove obsolete containers and other objects
Skip this activity if you do not (yet) want to enter the versioned world

In the previous tasks you may have created the following candidate obsolete objects:

workareas that support the migration process (e.g. WA_des6i_ora8i)●

additional application systems that captures additional object versions (e.g. HSD_TST)●

The initial workareas were replaced by workareas that support the development and deployment process (e.g.
WA_DEV_HSD, WA_TST_HSD).

The additional application systems (not checked in) are no longer necessary once you have built the version trees
of one or more structured objects and you have verified the differences via the compare utility.

You can remove these application systems via the delete application system option (available while clicking the
right mouse button). However, note that you have to follow a specific order to delete an application system
effectively. For instance you cannot delete an application system that has outgoing short-cuts.

Subsequently you can remove the 'migration' workareas. Note that all objects should be either checked in or
removed to successfully delete a workarea.

Note also that the Oracle9i Designer repository has adopted a wastebasket strategy. Deleted objects will appear in
the wastebasket. You should subsequently empty the wastebasket to definitely remove the objects from the
repository.

Compute statistics
Now is a good time to rerun the "Compute Statistics" since your repository content is reorganized (and cleaned
up). The "Compute Statistics" run will avoid a degradation in repository performance.

In Oracle9i Designer, you can run the utility directly from the Repository Administration Utility window by
clicking the Compute Statistics button:

Oracle9i Designer Migration Guide Part 2

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part2_9i-1.htm (45 of 66) [19/08/2002 16:05:51]

Chapter 7 Migrate users and assign access
privileges
Your Oracle9i Designer repository should by now contain different workareas, containers and sub-containers,
configurations and of course structured elements and files. These objects are however not yet accessible to
subordinate users. Guidelines for creating subordinate users and the distribution of the appropriate access rights
on the previously mentioned objects will be discussed in this section.

The concepts "workareas", "containers" and "configurations" are new for Oracle Designer 6i/Oracle9i Designer.
In addition there are new system repository access rights for subordinate repository users. Therefore users and
access rights are not migrated via the migration wizard. Subordinate users can be maintained in the Repository
Administration Utility.

The following subjects are covered in this chapter:

Classification of users in user groups●

Access rights per user group per repository, workarea, container and configuration●

A description of the Oracle9i Designer repository system access rights●

Database access rights for subordinate users●

Provided migration user scripts●

The system repository access rights, specific access rights to the GLOBAL_SHARED_WORKAREA and container
access rights are also valid in a non-versioned world. The configuration access rights are only meaningful in a
versioned world

Classification of user groups and subsequent access
rights
The table presented below combines the following dimensions:

Configuration Management Role (e.g. Developer, DBA)●

Tasks per role - in a specific environment (e.g. development, test, production)●

Access rights per workarea, container and configuration●

These user groups or roles may typically be represented in your organization to develop and deploy your (Oracle)
applications. Obviously one specific user could be associated with one or more user groups. Typically you could
reuse your access guidelines based on your user group classification.

Application life cycle tasks and subsequent access rights against workarea, containers and
configurations

Role Application life cycle tasks Workarea Container Configuration

 Development

Oracle9i Designer Migration Guide Part 2

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part2_9i-1.htm (46 of 66) [19/08/2002 16:05:51]

Security Manager Maintain the Development
environment (owner of
development workarea) in the
Oracle9i Designer repository -
via a personal key

Approve repository users in
the repository database
instance and send request to
DBA group for user creation

Create Orace9i Designer
repository development users
and associate system
repository access rights - via a
generic key (schema owner of
the Oracle repository)

Provides access rights - via
ROB roles - to the members
(e.g. PCM, Developers, DBA)
of the development domain
(development workarea)

SAIUDVCU
(1) Owner of
workarea

NA NA

Project
Configuration
Manager (PCM)/
Team leader (TL)

Plan, distribute and monitor
minor and major change
requests

Plan, distribute and monitor
bug-fixes

Maintain the directory
structure (owner of containers
in the repository) and provide
access rights to all
participants to the directories

Prepare changes for
deployment into major and
minor releases
(configurations)

Maintain configurations
(owner of configurations) and
provide access rights to all
participants to the
configurations

Define branch labels to

SxIUDVCU SAIUDV
(2) owner
of
containers

SAIUDV (3)
owner of
configurations

Oracle9i Designer Migration Guide Part 2

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part2_9i-1.htm (47 of 66) [19/08/2002 16:05:51]

support parallel development

Developer Check in and check out
elements and apply revision
information as a result of
change requests and bug fixes

Perform impact analysis - for
scooping purposes- leading to
the additional storage of
dependencies between
structured elements and files

Isolate elements into sets as a
result of minor and major
change requests and bug fixes

Maintain the application
database objects in the
development database

Maintain the application files
on the development file
system

Maintain the dependency
information

Purge insignificant object
versions

SxIUDVxx SxIUDV SxIUDV

DBA Create repository users on
request of SO and provide
database system access rights
in the repository database
instance

Create and maintain a
development database
instance

Create application specific
database administrative
elements (storages,
tablespaces) for the
development database

Prepare application specific
database implementation
properties (e.g. storages,
tablespaces) for the
development, test, acceptance
and production domain

SxIUDVxx SxIUDV SxIUDV

Oracle9i Designer Migration Guide Part 2

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part2_9i-1.htm (48 of 66) [19/08/2002 16:05:51]

Check in and check out
elements in the development
domain to apply specific
database implementation
properties

Review the generated and
adapted database
implementation scripts
(captured in configurations).
The review can only result in
a approval or disapproval of
the entire configuration. The
DBA should not modify the
content of the configuration

Approve or disapprove the
database implementation
scripts (captured in
configurations)

Quality Manager Look up the repository
content to monitor the usage
of CM standards and
guidelines

Sxxxxxxx Sxxxxxxx Sxxxxxxx

 Release Management
Preparation Workarea(s)

PCM/TL Owner of the personal release
management preparation
workarea

SAIUDVCU
(1) Owner of
workarea

NA NA

 Test

Security Manager Maintain the Test
environment carrier (owner of
test workarea) in the Oracle9i
Designer repository - via a
personal key

Create Oracle9i Designer
repository test users and
associate system repository
access rights - via a generic
key (schema owner of the
Oracle repository)

Provides access rights - via
ROB roles - to the members
of the test domain (test

SAIUDVCU
(1) Owner of
workarea

NA NA

Oracle9i Designer Migration Guide Part 2

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part2_9i-1.htm (49 of 66) [19/08/2002 16:05:51]

workarea)

Developer (as a
tester)

Accept (or refuse) major and
minor changes (packaged in
releases or configurations) in
the test domain

Bring change requests
(captured in releases) forward
to the test environment

Bring bug fixes (captured in
releases) forward to the test
environment

Build the application database
objects in the test database

Build the application files on
the test file system

Verifies the repository content
(what should be installed in
the test domain) with the
actual content on the file
system and database in the
test environment

SxxxxxCU Sxxxxxxx Sxxxxxxx

DBA Create and maintain a test
database instance

Create application specific
database administrative
elements (storages,
tablespaces) for the test
database

NA NA NA

Application
Support

Look up the content of the test
domain

Sxxxxxxx Sxxxxxxx Sxxxxxxx

Quality Manager Look up the repository
content to monitor the usage
of CM standards and
guidelines

Sxxxxxxx Sxxxxxxx Sxxxxxxx

 Production

Oracle9i Designer Migration Guide Part 2

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part2_9i-1.htm (50 of 66) [19/08/2002 16:05:51]

Security Manager Maintain the Production
environment carrier (owner of
production workarea) in the
Oracle9i Designer repository -
via a personal key

Create Oracle9i Designer
repository production users
and associate system
repository access rights - via a
generic key (schema owner of
the Oracle repository)

Provides access rights - via
 ROB roles - to the members
of the production domain
(production workarea)

SAIUDVCU
(1) Owner of
workarea

NA NA

Application
Support

Accept (or refuse) major and
minor changes (packaged in
releases or configurations) in
the productiont domain

Bring change requests
(captured in releases) forward
to the production environment

Build the application files on
the production file system

Verifies the repository content
(what should be installed in
the production domain) with
the actual content on the file
system in production
environment

SxxxxxCU Sxxxxxxx Sxxxxxxx

DBA Create and maintain a
production database instance

Create application specific
database administrative
elements (storages,
tablespaces) for the
production database

Build the database objects in
the production database

Sxxxxxxx Sxxxxxxx Sxxxxxxx

Oracle9i Designer Migration Guide Part 2

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part2_9i-1.htm (51 of 66) [19/08/2002 16:05:51]

Verify the repository content
(what should be installed in
the production domain) with
the actual content in the
production database

Developer Look up the content of the
production domain

Sxxxxxxx Sxxxxxxx Sxxxxxxx

PCM/TL Look up the content of the
production domain

Sxxxxxxx Sxxxxxxx Sxxxxxxx

The specific abbreviations for access rights against workareas, containers and configurations are explained in the
table below. Note however that not all access rights are applicable to each of these (administrative) elements. For
example "Compile" and "Update Spec" are only applicable in the context of workareas.

Table 2. Overview of access rights for workareas, folders and configurations

Access right Meaning

Select Select element(s)
Administrate Determine access rights for other users
Insert Insert element(s)
Update Update element(s) and object properties
Delete Delete element(s)
Version Version an element
Compile Refresh a workarea (workarea only)
Update Spec Change workarea rules (workarea only)

Note that you should also address the roles - and their derived access rights - that are involved with maintenance
of the Oracle9i Designer tool stack. The table presented below addresses these roles and subsequent tasks -
without the derived access rights.

Oracle Tool stack tasks

Role Task

Security Manager Set temporary password of the Designer repository owner for DBA to apply
repository patches

Quality Manager Design and implement migration strategies

Monitor the usage of Configuration Management (CM) standards and
guidelines in the repository

Maintain CM Handbook & Standards and guidelines

Distribute CM procedures

Oracle9i Designer Migration Guide Part 2

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part2_9i-1.htm (52 of 66) [19/08/2002 16:05:51]

Support
maintenance

Solve notifications (from first line support) via Oracle Customer Support

Notify the availability of new Maintenance releases and patches of Oracle9i
Designer (client side)

Forward Oracle9i Designer server patches to DBA group

First contact point Record all issues with the usage of Oracle9i Designer (first line of support)

Notify the issues to second line support

Desktop support Distribute new Oracle9i Designer versions and patches on NT client

DBA Distribute Oracle database software versions (base lines and patches)

Create Oracle9i Designer repository database objects (base lines and patches)
on the database server

Tune the Oracle9i Designer repository

The access rights against workareas, containers and even configurations can be (re)defined simultaneously - via a
discontinuous select - as illustrated below.

You can launch the above screen by first performing a discontinuous select of the workareas, containers and
configurations , subsequently choosing the grant access rights option - available on the file menu and define the
access rights for one or more users simultaneously.

Note that you have to set access rights for each root container and its sub-container(s). The container grant access
rights utility therefore has an option, called Recurse Sub-Containers, to set the same access rights for all
sub-containers.

Note also that the final access rights for a specific object (e.g. insert, select, delete or update of an entity, a table or
a module) are determined by an evaluation of both the access rights against the workarea and the container(s). For
example if an Oracle9i Designer repository user has select rights on the container HST and select, insert, update,
delete and version on the WA_DEV_HSD workarea, in the end he or she can only select any object within the
container HST (despite his or her extended access rights against the workarea).

Oracle9i Designer Migration Guide Part 2

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part2_9i-1.htm (53 of 66) [19/08/2002 16:05:51]

System repository access rights
The system repository access rights are significantly changed. You can define the following system repository
access rights for a specific user:

Abbreviation System Oracle9i Designer allowances

Management

WA Workareas

CFG Configurations

CTR Containers (Folders or application systems)

USR Users

BRL Branch Label

DPD Dependencies

REG Registration

Perform

SPY Set Policy

FRC Force

PRG Purge

GPR Global Purge

Connection

RON Repository Object Navigator

RAU Repository Administration utility

MTX Matrix Diagrammer

RPTL Reporting Tool

CLI Command Line Interface

VHV Version History Viewer

VEV Version EventViewer

MIG Migration wizard

Note that the following system repository access rights are applicable only in a versioned world: Containers,
Users, Dependencies, Registration, Force, Repository Object Navigator, Repository Administration Utility,
Matrix Diagrammer, Reporting Tool and Command Line Interface.

You could create another table that combines the above access rights and the earlier presented roles: system
repository access rights per role.

Oracle9i Designer Migration Guide Part 2

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part2_9i-1.htm (54 of 66) [19/08/2002 16:05:51]

Database system privileges
Any subordinate user - no matter what repository role - needs only the following system privileges on the
repository database instance:

Create Session●

Alter Session●

With the above database system privileges, any subordinate user can access all Oracle9i Designer tools and
diagrammers and populate the repository with (new) elements.

User migration scripts
Oracle9i Designer comes with two dynamic scripts that may support the user migration:

ckgenusr.sql - This sql script creates the database user script.●

ckgenprv.sql - This sql script sets a default set of the system repository access rights per user.●

You can find both scripts in the <oracle_home>\repadm61\utl directory. These scripts must be executed in the
source repository database instance while the results must be executed in the target repository database instance.

It should be clear that - after execution in the target repository - you need to revise the system repository access
rights for each user - depending on his or her role. Subsequently you must define the access rights per workarea,
container and configurations - based upon the classification presented above. The ckgenprv.sql script does not set
these latter access rights since they are new in Oracle9i Designer. Note also that both scripts may bring forward
obsolete users - users that were not removed in the source repository.

Chapter 8 Synchronize the file system and
the database with the repository content
In the previous steps you have populated and reorganized the repository and you have made it accessible in a
controlled way to subordinate users. A significant part of your repository content will ultimately populate your
databases and file systems. This chapter will discuss the options available to synchronize the file systems and the
databases with the repository content (see the illustration below). These synchronization options allow you to
adopt model-based development and deployment during the complete lifecycle. You can effectively use the
repository content as a reference model for all your promotion environments. You are able to rebuild your file
system and database in each environment on any specific moment. Moreover you will have a variety of impact
analysis tools available to solve the issues effectively in any environment since you can use any diagrammer and
the dependency analyzer in the context of any workarea.

Oracle9i Designer Migration Guide Part 2

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part2_9i-1.htm (55 of 66) [19/08/2002 16:05:51]

Both synchronizations will be discussed in detail in the following sections.

Effectively you can only synchronize the file system and database in the development environment (via the
GLOBAL_SHARED_WORKAREA) if you have not yet entered the versioned world, because you have only one
object version available.

File system synchronization
Each promotion environment for a specific application can be represented on the file system by a specific root
directory. For example the test environment for container HST can be represented by the directory f:\oap\hst\tst.
At the same time the directory f:\oap\hst\prd represents the production environment of HST. This allows you to
test the form HSD0002F version 2.0 without interference of version 1.0 of HSD0002f in production - captured
somewhere below f:\oap\hst\prd.

The synchronization of the file system with the repository content for each promotion environment is based upon
the folder mapping option.

Oracle9i Designer Migration Guide Part 2

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part2_9i-1.htm (56 of 66) [19/08/2002 16:05:51]

You are able to apply a different folder mapping for each workarea. Remember that each workarea was
representing a specific promotion environment. For example the folder mapping for container HST in the
development environment - within workarea WA_DEV_HSD - can de defined as f:\oap\hst\dev. While the folder
mapping for container HST in the test environment - within workarea WA_TST_HSD - can de defined as
f:\oap\hst\tst.

Once you have established the folder mappings for each container in each workarea you can use the download
option to actually synchronize the repository content with the file system. The download option extracts all files
from the repository and copies these files to the file system (illustrated below).

Note that the download option not only synchronizes the current directory but also all recursive directories.

Remember that most workareas (except the development workarea) were based upon one or more configurations.
Each workarea content change - as a result of configuration membership changes - should therefore be succeeded
by a synchronization step on the corresponding file system to keep the repository content in sync with the file
system.

File synchronization options

Oracle9i Designer has implemented the following options to communicate with the file system and the repository
in the context of files.

Upload●

Download●

Synchronize●

Check-in●

The meaning of these file options will be explained in detail in the following sections.

Upload

The upload option allows you to store files and/or folders in the repository from a specific operating system path -
either based upon the default folder mapping or session specific value.

Note that the upload option was used during the migration to populate the repository initially with files.

Download

Oracle9i Designer Migration Guide Part 2

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part2_9i-1.htm (57 of 66) [19/08/2002 16:05:51]

The download option allows you to publish files and/or folders from the repository from a specific folder path on
the operating system in a specific operating system path - either based upon the default folder mapping or session
specific value.

Note that the download option can be used to synchronize the repository content with the file system.

Synchronize

The synchronize option updates files in the repository with the contents of the corresponding files in a mapped file
system or vice versa, depending on which is the later version.

Checkin

The check-in option versions the (uploaded) file, i.e. the file is already stored in the repository and in addition it
will be populated with version information.

Note that the check-in action is applicable only in a versioned repository.

Database synchronization
Each promotion environment for a specific application can (preferably) be represented via a database schema in a
separate database instance. For example the database objects in the test environment for container HST in
workarea WA_TST_HSD can be represented by a schema owner HST_OWNER in a specific database instance
called HSTTEST. At the same time the database schema HST_OWNER in database instance HSTPROD can
represent the database objects in the production environment of HST in workarea WA_PRD_HSD in another
database instance. This allows you to test table HSD_PROJECTS version 2.0 in the test database instance without
interference of version 1.0 of HSD_PROJECTS in production - captured in a production database instance -
against the HST_OWNER schema owner.

The synchronization of the database with the repository content for each promotion environment can be
implemented via the DDL generator or even the DDL generator in batch - in the context of a specific workarea.
Note that the DDL generator not only generates "create database object" scripts but also reconcile scripts or
"database delta scripts" if you generate against a schema that already contains all or part of the application
database objects. Further note that Oracle 8i supports the "alter table drop column" statement. The database
synchronization in each database instance can therefore be supported to a great extent with the DDL generators in
each workarea, which makes it very attractive to adopt this promotion model.

The proposed promotion implementation model also supports the handling of database objects. For example a
developer may have write access on the container HST. At the same time he will probably have only read access
to workarea WA_PRD and only read access to schema HST_OWNER in the production database. He or she will
therefore never be able to change the database structure in the production environment.

Oracle9i Designer Migration Guide Part 2

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part2_9i-1.htm (58 of 66) [19/08/2002 16:05:51]

The above screenshot shows the DDL generator in the context of workarea WA_TST_HSD for the schema owner
HST_OWNER in a test database instance - via HSTTEST connect string. Note that you can run the DDL
generator for all database objects as well as for a sub-selection.

Synchronization add-ons
Both synchronizations (repository content versus file system and repository content versus database) can be
verified with the following add-ons: Keyword Expansion kit and CheckRelease.

Keyword Expansion Kit
"Keyword expansion" refers to functionality that acts upon objects that are being checked into the repository. The
keyword expansion utility will look for keywords in the checked in object. Supported keywords are expanded or
replaced with actual values of check-in parameters, such as author, version label, date and check-in notes. This is
functionality very common to most Source Code Control tools. It allows for complete identification of files
downloaded from the repository: through keyword expansion, every file can and should always contain the
appropriate Version Label assigned in the repository.

CheckRelease
The CheckRelease utility comprises a GUI (Oracle Forms Module) that allows you to confront the content of one
or more application systems (e.g. tables, views, files) in the context of a workarea with a build of these application
systems on a file system and database. It uses therefore one or more intermediate release tables that are populated
with repository information like the name, type and version number of the repository objects. This release table
content represents what should be built on the file system and database in a specific environment.

Both add-ons are available via the Supplement Option. Visit www.otn.oracle.com for more information about the

Oracle9i Designer Migration Guide Part 2

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part2_9i-1.htm (59 of 66) [19/08/2002 16:05:51]

Supplement Option (e.g. What it is, pricing and conditions).

Chapter 9 A typical migration plan
The previous chapters have given a technical insight in the migration efforts - represented by the blue Migration
square (the task before Roll-out) in the sheet below. As you can see in the sheet below there are many more tasks
to fulfill to finish an Oracle9i Designer migration project successfully. This chapter will give an overview of these
other migration tasks, their characteristics and their dependencies.

The introduction of Oracle9i Designer in your organization can effectively be organized via the following phases:

Preparation●

Trial migration●

Hardware and software upgrades Win32 clients●

Hardware and software upgrades DBMS server●

Hardware and software upgrades middle-tier●

Redesign Configuration Management (CM) tasks and responsibilities●

Redesign CM procedures and standards & guidelines●

CM and Oracle9i Designer training●

Migration●

Rollout●

Oracle9i Designer Migration Guide Part 2

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part2_9i-1.htm (60 of 66) [19/08/2002 16:05:51]

Preparation
The preparation stage should deliver your migration plan. Such a plan should cover the following decisions:

Big bang migration of structured elements or a stepwise migration●

Bring in files in the repository as well?●

Introduction Oracle8i/ Oracle9i functionality●

Migration strategy for database objects, Oracle Developer components and Web PL/SQL modules as
described in Parts 3, 4 and 5

●

Migration or implementation of business rules●

Scope of migration in the Configuration Management area●

Redistribution of tasks as a result of a different way and writing method●

It should also comprise:

Opportunities, Objectives & Scope●

A detailed task overview with resource usages●

Project organization●

Costs and benefits●

Note that a detailed task overview can be based on the overall tasks presented above.

Trial migration
A trial migration can be planned on separate hardware platforms - client, middletier and server - to evaluate the
repository size and performance aspects. In addition you can reuse the trial migration environment for
educational purposes, to develop your set of configuration management procedures and standards & guidelines,
and it can provide effective output for the subsequent hardware and software installation tasks on the client,
middle-tier and server platforms.

Hardware and software upgrades Win32 clients
Your current clients (Windows 98/NT/2000/XP) may not be sufficient in terms of disk space, processing capacity
and memory to run the Oracle9i Designer software and subsequent components like Developer. A hardware and
software upgrade may take some time, specifically if you have a significant number of win32 clients. In addition
you can prepare the automation of the software distribution of the Oracle9i Designer tool stack via for example
the Novell Application Launcher or other client distribution tools like SMS.

Hardware and software upgrades - DBMS server
The hardware and software upgrade of the database server covers - at least - the database instance for the Oracle9i
Designer repository. It could also cover the upgrade of the databases that capture your applications.

Oracle9i Designer is certified with 81700 or higher and Oracle9i patched to 9.0.1.2. Note that a database upgrade
can also implicate an upgrade of the operating system. Therefore not only the DBA department but also the
department that manages server platforms must be involved.

Oracle9i Designer Migration Guide Part 2

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part2_9i-1.htm (61 of 66) [19/08/2002 16:05:51]

Hardware and software upgrades - middle-tier
Oracle9i Forms and Oracle9i Reports - part of the Oracle Internet Development Suite (iDS) - do not support a
client/server architecture. It is therefore highly recommended that you introduce or update your middle-tier
platform with new software components - or an upgrade - to Oracle 9iAS. In addition to hardware upgrade issues,
it may also involve a new version of the underlying operating system. In addition - specifically if you introduce a
middle-tier - you must deal with management (support) and knowledge transfer of the middle-tier software. In
practice, this stage and the organizational impact proves to be the most underestimated.

Redesign Configuration Management (CM) tasks and
responsibilities
The introduction of Oracle9i Designer and the underlying repository brings along a new writing and working
method for a wide range of participants, since the repository will be used for development as well as deployment.
Your big challenge is to cover all the tasks (see also the matrices for application life cycle tasks and tool stack
maintenance tasks presented in Chapter 7 "Migrate users and assign access rights") in your specific organization.
This stage is perhaps the most challenging one of your entire migration project - so do not underestimate it.

Redesign Configuration Management procedures and
standards & guidelines
As soon as the redistribution of tasks and responsibilities is well under way you can start with the production of
the redesign of configuration management (CM) procedures and standards & guidelines.

You could try to produce a big fat configuration management handbook - that most likely at the end of the day
will only be consulted by you. You could also try to adopt a “less is more approach”, i.e. produce multiple Quick
Reference Cards that cover for example your CM procedures, CM Standards & Guidelines and tool support. You
could think of Quick Reference Cards candidates:

Repository Terminology●

Check-in and Check-out Quick Reference Card●

Overview of Designer/Repository Tools●

Naming Standards (workareas, configurations, ddl scripts)●

Database synchronization and DDL generation guidelines●

Guidelines for the use of the Database Design Transformer●

Management of Repository Access rights●

Setup of a parallel environment●

Setup of a bug-fix environment●

A few examples of the above listed Quick Reference Cards are presented in Appendix B.

Oracle9i Designer Migration Guide Part 2

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part2_9i-1.htm (62 of 66) [19/08/2002 16:05:51]

Configuration Management and Oracle9i Designer
training
An effective and productive migration and subsequently the effective usage of the Oracle9i Designer tool stack
and subsequent CM procedures relies heavily on well trained participants. By now it should be clear that not only
developers need training but also other participants, such as project configuration managers, application support
representatives and the security department that provides access to the repository.

An effective CM and Oracle9i Designer training plan therefore should be based on the profiles or roles as covered
in the matrices presented earlier. Therefore you cannot start the training task before the first results of the
redistribution task are available. Subsequently you should evaluate for each profile the need to cover one or more
of the following training subjects:

Oracle9i Designer new database features●

Oracle9i Designer Forms and Reports generation new features●

Oracle9i Designer WEB PL/SQL modules new features●

Oracle9i Designer new Configuration Management features●

Business Rule implementation via CDMRule Frame●

Oracle9i Designer Forms and Reports generation via Headstart●

Knowlegde transfer of one or more custom Configuration Management procedures - perhaps captured in
the Quick Reference Cards

●

Subsequently you can fill in the identified training needs per profile with a combination of standard
available courses and/or custom courses.

●

Migration
The technical migration aspects are already discussed in detail in the previous chapters of this part (Part 2). In
addition more specific migration details on an object-type-by-object-type basis will be provided in Parts 3, 4 and
5. The migration task can only start - as will be pointed out below - with skilled developers. Your migration start
date is therefore not only dependent of the hardware/software availability, but also on a skilled staff that can
perform one or migration activities.

The coherence between these different migration steps of structured elements and files in the different source
repositories and Oracle9i Designer repository and the inevitable parallel development as a result of these
migration steps can be visualized as follows:

Oracle9i Designer Migration Guide Part 2

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part2_9i-1.htm (63 of 66) [19/08/2002 16:05:51]

From top to bottom the following repositories are depicted:

PVCS/VM source repository for files - could also be another third party source control●

Designer 1.3.2 repository - source repository●

Designer 6.0 repository - intermediate repository●

Oracle9i Designer repository - target repository●

From left to right a time period is depicted - somewhere between 1 week and 3 months depending on the size,
number and complexity of the application systems and/or projects and not in the least on the specific migration
scenarios for the specific object types - as discussed in Parts 3, 4 and 5.

To explain the parallel development challenge you should start at the lower left corner in the Designer 1.3.2
repository and the third party repository (e.g. PVCS/VM repository) with a clean-up (depicted by the purple
arrows).

Parallel with the clean-up stage you can start with a fresh installation of Designer 6.0 - to capture intermediate
application systems - and Oracle9i Designer - to capture the target application systems and files (depicted by the
dark green arrows). If your application systems already live in Designer 6.0 you should replace all references to
Designer 1.3.2 with Designer 6.0 and you can skip the fresh installation of Designer 6.0. After the clean-up you
export a coherent set of application systems into the intermediate Designer 6.0 repository (depicted by the lower
vertical red arrow). At the same time you import this set back in the Designer 1.3.2 repository under different
application names. This set will be used as a snapshot of your migration start.

Oracle9i Designer Migration Guide Part 2

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part2_9i-1.htm (64 of 66) [19/08/2002 16:05:51]

Developers can continue with their work in Designer 1.3.2 although you should not encourage them to apply a lot
of changes, since these changes are by definition not captured in the imported set. In the intermediate Designer
6.0 repository, clean-up activities like re-connect share links can be picked up (depicted by the upper purple
arrow). As soon as these clean-up activities are finished you can launch the migration wizard in Oracle9i
Designer, connect to the Designer 6.0 repository and make the selection (depicted by the upper vertical red
arrow). The migration wizard will bring the application set forward in the Oracle9i Designer repository.
Subsequently you can freeze the application systems in Designer 6.0 (depicted by the yellow arrow) and start with
a check-in of the structured elements in Oracle9i Designer - to capture the fresh migration result (depicted by the
light green arrows). You could also leave them un-versioned and apply your migration scenarios for database
objects as described in Part 3.

While one or more of your developers is executing the database migration scenario you can start with the upload
of files on a project-by-project basis from the PVCS/VM repository as described in Chapter 4 (depicted by the
right upper - solid and dotted - vertical red arrows). You can close down each PVCS/VM project as soon as the
files are uploaded in the Oracle9i Designer repository (depicted by the dotted yellow arrows). The parallel
development time for files can be very short - less than a day - since you do not have to verify the generation
capability as with structured elements.

While the files from one or more PVCS/VM projects (or file system) are uploaded you should focus on finishing
the migration steps for database objects as described in Chapters 3 and 4 of Part 3 (depicted by the right light
green arrow - verify database objects). By now you should have reached the reorganization phase in your target
Oracle9i Designer repository. In this phase you will organize your repository in one or more development
workareas - containing the migrated application systems and files - and you will bring forward your subordinate
users with the appropriate access rights, see also Chapter 7 (depicted by the right light green arrow). With more
subordinate users - developers - you can start effectively with the migration scenarios for Development
components and WEB PL/SQL modules as described in Parts 4 and 5. In addition you may want to apply one of
the database new features migration steps as described in Chapter 5 of Part 3 (depicted by the brown arrow).

While applying these migration steps in the target repository you will also bring forward all the changes from the
source repository since the start of the migration. You could use the snapshot very effectively to narrow down the
exact changes since the start of the migration. As soon as you have brought forward the source repository changes
- manually - in the target repository you can close down the source repository application system (depicted by the
dotted blue arrow). The real challenge here is to close down the source repository application systems as quickly
as possible or to phrase it differently to minimize the parallel development period. Note that you must bring
forward more changes with a longer parallel development period. You can accomplish a short period by basically
bringing in as much “qualified” resources as you can to execute the migration scenarios of Parts 3, 4 and 5.

Rollout
Finally - after finishing the migration of structured elements and files as described in Part 2 and after finishing the
migration scenarios of Parts 3, 4 and 5 - you can roll out Oracle9i Designer to all participants that are involved in
development and deployment. Basically you are offering on-site support during first time Oracle9i Designer use
by all participants during this phase. The support activities must elaborate on the training effort. They should
definitely not replace the training courses. It turns out that the acceptance and effective usage of Oracle9i
Designer will speed up significantly if you can find enthusiastic and skilled representatives in each department.
These early adopters in each department can soon take over the support task and take care of wide effective usage
of the Oracle9i Designer tool.

Oracle9i Designer Migration Guide Part 2

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part2_9i-1.htm (65 of 66) [19/08/2002 16:05:51]

Prev Next

Copyright © 2002, Oracle Corporation.

All Rights Reserved.
Contents

Oracle9i Designer Migration Guide Part 2

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part2_9i-1.htm (66 of 66) [19/08/2002 16:05:51]

Oracle9i Designer Migration Guide
Part 3. Generating and migrating existing database designs to Oracle9i Designer

Contents

Chapter 1 Introduction
This part (Part 3) of the migration guide provides the information necessary for upgrading, to Oracle9i Designer,
the database definitions that you designed and generated using earlier releases of Oracle Designer.

Part 3 discusses database migration from the following earlier Designer releases:

1.3.2●

2.1.2●

6.0●

Part 3 assumes that you have already installed Oracle9i Designer and migrated your repository. (See instructions
in Part 2 of this Migration Guide.) Part 3 then explains steps you have to take so that you can:

generate your database design definitions from Oracle9i Designer and achieve the same generated results
you had from earlier releases, and

●

take advantage of new features that have been added to Oracle Designer since your previous release.●

Throughout the document, special mention is made of any migration issues known at the time of publication of
this document.

Note that this Part 3 fully replaces an earlier published database migration guide for Oracle Designer 2.1x/6.0 and
Designer 6i (October 2000).

Part 3 starts with an introduction (Chapter 1) that gives an overview of the possible migration scenarios for
database objects:

Scenario 1. Migrate, Regenerate All, No Redesign, and●

Scenario 2. Migrate, Regenerate All, With Redesign.●

Subsequently, Chapter 2 "New database features" describes all changes/new features since 1.3.2 with respect to
database design that you need to know to execute your migration steps for either scenario 1 or scenario 2. The
new features chapter is structured by specific Oracle Designer release: Migrating from Designer 1.3.2, Migrating
from Designer 2.1.x, etc.

Chapter 3 discusses general database migration issues, integration steps for database objects you always have to
consider despite your database scenario.

Chapter 4 "Scenario 1. Migrate, Regenerate All, No Redesign" describes the necessary regeneration steps for
scenario 1.

Chapter 5 "Scenario 2. Migrate, Regenerate All, With Redesign" describes in addition specific redesign steps for
database objects.

Note that Part 4 "Forms Migration" and Part 5 "Web PL/SQL migration" is organized with a similar structure.

Oracle9i Designer Migration Guide Part 3

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part3_9i-1.htm (1 of 39) [19/08/2002 16:05:58]

This part of the migration guide, for database objects, continues where the second part of the migration guide has
stopped. It is considered that you have completed all the steps from the second part: your Oracle9i Designer
repository contains freshly migrated structured objects (e.g. database objects) and files. Note that it does not
make any difference for this part if files and/or structured objects are checked in ("versioned") or just stored.

The database objects in Oracle9i Designer are compliant with Oracle8i, i.e. you are able to store, version,
generate and - partly - visualize all your database specifications in Oracle9i Designer into an Oracle8i database
and at the same time make use of specific Oracle8i functionality. Note that at the same time you are still able to
generate Oracle7 and Oracle8 syntax.

There is a lot more new functionality introduced in the Oracle 8i database, specifically if you are coming from
Oracle 7.3 (Oracle Designer 1.3.2 was compliant with Oracle 7.3).

For example Oracle 8.0 has introduced the following new features:

Partitioned Tables●

Partitioned Indexes●

Oracle Object Types●

Object Tables●

Object Views●

Oracle Collection Types●

Nested Tables●

Deferrable constraints.●

You could already define the above new database features in Oracle Designer 2.1.x /6.0.

Oracle 8i (aka release 8.1.6 or above) has introduced for example - on top of Oracle 8.0 - the following (sub-set
of) new features:

Index-only Tables●

function-based indexes●

Java in the database●

advanced queuing●

compute statistics option for indexes●

deterministic clause for PL/SQL functions.●

Note that advanced queuing was already available in Oracle 8 (Enterprise Edition). However, you could not
document queue definitions directly in Oracle Designer 2.1/6.0, let alone generate code to populate the queues.

All these new features are available somewhere in new database objects (e.g. object views) and/or in the
properties of existing database objects in the Oracle Repository, either on the primary level (e.g. Table properties)
or on the secondary level (column properties). You should be aware that these new features are not automatically
enabled by the migration wizards of Oracle Designer 6.0 and Oracle9i Designer.

Your migration activities for database objects to Oracle 8i may be ranked in the following categories:

Update the freshly migrated database objects by adding references and/or associations, change default
values or set specific values.

●

Add new relational and object database object definitions.●

Replace existing relational definitions by object definitions.●

Oracle9i Designer Migration Guide Part 3

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part3_9i-1.htm (2 of 39) [19/08/2002 16:05:58]

This part (Part 3) of the migration guide for database objects focuses specifically on the first category of
post-migration changes. If your category of changes is more like the second and/or third category then at least
the following sections from the Oracle 8i documentation provide valuable support:

Oracle 8i Concepts, Part No. A76965-01●

Oracle 8i Application Developer's Guide - Object Relational Features, Part No. A76976-01●

Oracle 8i Data Warehouse Guide, Part No. A76994-01●

Oracle 8i Enterprise JavaBeans and CORBA Developer's guide, Part No. A81356-01●

Oracle 8i Java Developer's Guide, Part No. A81353-01.●

For more Oracle 9i new object-relational-xml features, see the overall PDF index document index.pdf in the root
directory of the Oracle 9i documentation.

Assuming that your database migration is likely of the first category (update the freshly migrated database
objects by adding references and/or associations, change default values or set specific values), the following
migration scenarios are possible in bringing your Designer-generated applications forward into Oracle9i
Designer:

Scenario 1. Migrate, Regenerate All, No Redesign●

Scenario 2. Migrate, Regenerate All, With Redesign●

Note however that there are general database migration steps, steps you always have to apply despite your source
Designer version. These generic steps are discussed in Chapter 3 "General database migration issues".

Scenario 1. Migrate, Regenerate All, No Redesign
In this scenario, you will regenerate all database definitions of your entire application from Oracle9i Designer
The goal of this scenario is to be able to generate your application out of Oracle9i Designer and achieve the same
results you got when generating out of your previous Designer release. No attempt is made to redesign your
existing application to make use of new relational features available in Oracle9i Designer.

This scenario has the following characteristics:

Scenario 1 is fast and requires minimal changes in the database definitions within your application's Oracle
Designer repository

●

Scenario 1 does not take advantage of any new relational features in Oracle9i Designer. It is merely a
'technical' upgrade.

●

This scenario is appropriate when:

your application is already in production●

your application is stable, no major functional modifications are expected●

maintenance is limited to simple bug fixing●

your physical database definitions are 100% derived from - or 100% generated from - the Designer
repository, or post-generation modifications are minor.

●

Scenario 2. Migrate, Regenerate All, With Redesign
In this scenario, you will regenerate all database definitions of your entire application from Oracle9i Designer. As
you regenerate each database definition, you will make use of new relational features as appropriate.

Oracle9i Designer Migration Guide Part 3

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part3_9i-1.htm (3 of 39) [19/08/2002 16:05:58]

The goal of this scenario is to take advantage of the new features available in Oracle9i Designer. As with
Scenario 1, you want to be able to generate your database definitions and get the same database structure from
your previous release of Designer. However, several new database features have been added to Designer to
improve performance (e.g. function based indexes) or functionality (e.g. multiple database implementations).

This scenario has the following characteristics:

Scenario 2 requires modifications in several database definitions, and is therefore more time-consuming●

Scenario 2 fully leverages the new database features in Oracle9i Designer.●

This scenario is appropriate when:

your application is still in development●

your application is in production, but major functional modifications are to be made, or expected●

your application requires modifications that can only be implemented using new functionality in Oracle9i
Designer.

●

Note that all scenarios result in an actual usage of Oracle 9i and Oracle9i Designer and therefore you will be
optimally served by Oracle Support on your Oracle tool stack.

Chapter 2 New Database Features
Depending on which Designer release you are coming from, many features of Oracle9i Designer may be new to
you.

This chapter presents a brief overview of new features that are of particular interest when migrating your
database design from previous Designer releases. It is by no means an exhaustive list of all new features, and it
does not try to explain each new feature in detail. Rather, it introduces the relevant features and points you to
where you can find more information in the Oracle9i Designer online help.

The terminology of the different database element types is varied among the different Designer releases. The
following table gives an overview of a subset of the available database object types in Oracle Designer 1.3.2,
Oracle Designer 2.1.x/6.0 and Oracle9i Designer.

Database objects since Oracle Designer 1.3.2
Oracle Designer 1.3.2 Oracle Designer 2.1.2/6.0 Oracle9i Designer

 TABLE TABLE TABLE DEF.
 VIEW VIEW VIEW DEF.
 SNAPSHOT SNAPSHOT MAT.VIEW DEF.
 SEQUENCE SEQUENCE SEQUENCE DEF.
 CLUSTER DEF. CLUSTER DEF. CLUSTER DEF.
 PL/SQL MODULE PL/SQL DEF. PL/SQL DEF.
 <NA> OBJ. TYPE OBJ. TYPE
 <NA> COLL. TYPE COLL. TYPE
 <NA> OBJ. TABLE OBJ. TABLE DEF.
 <NA> OBJ. VIEW OBJ. VIEW DEF.
 <NA> <NA> JAVA DEF.
 <NA> <NA> QUEUE DEF.
 <NA> <NA> QUEUE TABLE DEF.

Note that you could not define all properties of Object Tables and Object Views in Oracle Designer 2.1.x/6.0.

Oracle9i Designer Migration Guide Part 3

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part3_9i-1.htm (4 of 39) [19/08/2002 16:05:58]

This chapter is organized by Designer release. You should begin reading at the section for your "from" Designer
release, and then continue reading the sections for any later releases. For example, if you are migrating from
Designer 1.3.2, you need to read all four sections below. If you are migrating from Designer 2.1.2, you may skip
the section on Designer 1.3.2 and read the sections for Designer 2.1.2 and 6.0.

Migrating from Designer 1.3.2
The following new Oracle9i Designer database features are applicable if you are migrating from Designer 1.3.2:

Design Editor●

Database implementation●

Obsoleteness of the create property●

Usage of the batch generation and batch design capture●

Database capture changes (previously known as "reverse engineering")●

Separate menu for generating administrative objects●

Design Editor

The functionality provided by individual Designer Release 1 design level tools is now incorporated into a single
tool called the Design Editor. Each of the Designer Release 1 tools maps onto a Design Editor component. It is
essential that you understand how to use the Design Editor before beginning your migration.

Release 1.x tool Release 2.x Design Editor components

RON Design Editor Navigator

The Design Editor Navigator is a key component within the
Design Editor. It is similar to the RON, but contains only
objects specific to the design phase.

You can use drag and drop, instead of clicking on menu
options or toolbar buttons, to perform a wide range of
tasks. For example, you can create a server model diagram
from one or more table definitions by dragging the tables
from the Design Editor Navigator component onto the
worksurface.

In addition, the database definitions within the Design
Editor Navigator are spread across three DE tabs:

Server Model - contains all “pure” database definitions like
table definition properties (alias) columns, constraints and
triggers

DB Admin - handles the database implementation
properties of existing data database definitions like storage,
tablespaces and access rights

Distribution - handles typical database distribution aspects
like nodes, replication and (public) database links

Oracle9i Designer Migration Guide Part 3

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part3_9i-1.htm (5 of 39) [19/08/2002 16:05:58]

Note that at the same time all DDL generators are removed
from the RON. You have to use the DE to generate DDL
scripts.

RON Property Palette Design Editor Property Palettes and Property Dialog boxes

When you create and edit Repository definitions in the
Design Editor, you can use either Property Dialog boxes
(new for Release 2) or Property Palettes.

Property Dialog boxes are wizard-style elements that walk
you through complex tasks. They are especially useful
when creating whole new tables and columns as they walk
you through all of the required tasks in order. They are
also useful as a tool for learning Designer.

Property Palettes provide you with a direct way of
entering/editing information for all of the properties that
exist for an object. Property palettes are the quickest way
of setting properties for existing objects, because all
properties are displayed in a single palette.

Server Model Diagrammer Server Model Diagrams

Server Model Diagrams are created by dragging one or
more tables from the Design Editor Navigator to the
worksurface.

Preferences Navigator Preferences Palette

Preference values are set using the Preference Palette
within the Design Editor. Note that you can define Server
Generator preferences only at application level.

Module Logic Navigator Logic Editor

You can directly launch the module logic navigator - using
the right mouse button option Edit logic - for a PL/SQL
function, package or procedure. As a result a separate text
editor is launched to add or modify the PL/SQL code.

Module Structure
Diagrammer

Module Network/ PL/SQL Composition viewer

A module network viewer enables you to display module
networks horizontally in the Design Editor Navigator. This
allows you to clearly see the relationships between the
PL/SQL modules in a network.

For more information about the Design Editor, see also the Design Editor online help topic “Features added in
previous releases”.

Oracle9i Designer Migration Guide Part 3

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part3_9i-1.htm (6 of 39) [19/08/2002 16:05:58]

Database implementation

Designer 2.1.x has introduced a significant change in the meta-model for database objects also known as database
implementation. To fully understand the significance of this change, first a description of the meta model of
database objects in Designer 1.3.2 will be given, followed by a description of the database meta-model of
Designer 2.1.x and above.

Database meta model of Oracle Designer 1.3.2

In Oracle Designer 1.3.2 - in the context of database implementation - the following elements were defined as
Primary Access Elements:

Database●

User●

Group (database roles)●

Relation definition (database implementation properties)●

Tablespace●

Rollback segment●

Storage definition.●

At the same time the following elements were defined as Secondary Access Elements or association:

Database objects grants for users●

Database objects grants for roles.●

The above database elements and their category (PAC or SAC) are depicted in the figure below: Database meta
model in Oracle Designer 1.3.2.

Database meta model since Oracle Designer 2.1.x

Since Oracle Designer 2.1x (and therefore also in Oracle9i Designer) only the following elements are defined as

Oracle9i Designer Migration Guide Part 3

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part3_9i-1.htm (7 of 39) [19/08/2002 16:05:58]

Primary Access Elements - within the context of database implementation:

Database●

Storage definition.●

At the same time, the following elements are defined as Secondary Access Elements or associations:

User●

Group●

Relation definition implementation (database implementation properties)●

Database objects privileges for users or groups●

Tablespace●

Rollback segment.●

The above database elements and their category (PAC or SAC) are depicted in the figure below: Database
implementation meta model in Oracle9i Designer.

Note that this meta model change was introduced in Oracle Designer 2.1.

This significant meta model change (most database implementation elements and their properties are now defined
in the context of a database) has the following consequences:

Uniqueness. The above listed secondary access elements (and/or associations) are unique only within the
context of a specific database. For example the user 'Scott' can exist within the context of database1 and

●

Oracle9i Designer Migration Guide Part 3

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part3_9i-1.htm (8 of 39) [19/08/2002 16:05:58]

also within the context of database2.

Check-out and check-in context. Any change to the database properties and/or to its secondary access
elements or associations must be preceded with a check-out, if you have an enabled repository version of
the database. The check-in/check-out context is extensive since there are so many secondary database
implementation properties. For example a change in a relation definition implementation property like a
storage clause must be preceded within a check-out of the owning database.

●

Short-cuts (aka shares). You cannot short-cut (or share) a secondary access element, or association,
separately. You can only short-cut primary access elements: the database and storage definitions. As a
consequence, if you short-cut the database you also implicitly short-cut its secondary elements and
associations without the possibility to reference these secondary elements individually.

●

Post-migration database objects steps consequences. The migration wizard of Designer 2.1/6.0 will create
specific migration database definitions like a R2_UPGRADE_DATABASE database and a database user
R2_UPGRADE_USER. We will deal with these steps in Chapter 3 "General Migration Issues".

●

Note that the above mentioned consequences were also, to a certain extent, applicable to Oracle Designer
2.1/6.0. In these previous Oracle Designer releases you should replace check-in and check-out context with
'working context' and short-cuts with shares.

In Oracle9i Designer it is no longer necessary to share an element from another container (application system)
first and then reference the shared element in the context container. You can reference an element from another
container immediately as long as it is 'visible' in the same workarea. In addition you can make the referenced
elements more 'visible' by creating short-cuts in the context container for these elements. Another advantage of
creating short-cuts is that you "publish" the previously defined elements. It will most certainly stop you from
creating a duplicate element.

Note also that the “migration wizard” of Designer 2.1.x and/or Designer 6.0 translates your data model to specific
database implementations. These specific translations are described in detail in the next chapter.

Obsoleteness of the Create? property

The Create? property for each primary database object is no longer available, since Oracle Designer 2.1.x. For
example you could use this property as a logical removal indicator. Instead of physically removing a specific
database element you could set the create property to “No”. Similar behavior in Oracle9i Designer is available
using database implementation (see also Chapter 2 “General database migration issues”).

Note that the Create? property on a secondary level like columns and constraints is transformed into the
Complete? property. The migration wizard brings the Create? property value forward into the Complete?
property value. Subsequently the Database Object Generator will not generate the syntax for secondary elements
with a Complete? property set to 'No'.

Use of batch generation and batch design capture

Oracle Designer 2.1.x has introduced a batch utility for database object generation and design capturing that is
available from the Tools menu (Tools > Batch Generate and Tools > Batch Design Capture).

These batch generators could be applicable in the following circumstances:

To create a persistent set of database objects in a specific workarea stored in one or more gbu files.●

To generate DDL files for a persistent set of database objects on a different location and/or on a different
point in time.

●

Oracle9i Designer Migration Guide Part 3

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part3_9i-1.htm (9 of 39) [19/08/2002 16:05:58]

Batch generation for database objects comprises the following steps:

Choose your specific workarea in the Design Editor (File Menu; Change Workarea)1.

Launch the Batch Generate menu from the Tools menu.2.

Choose your container within a specific workarea.3.

Choose the group of objects you would like to generate for a specific session. The following groups within
the context of database objects are available: Server Model (SRM); Database Administration (DBA);
Module Component API (MAPI); Table API (TAPI); Reference Code (RF).

4.

Enable/disable the runtime Database Object Generator options (if applicable) (see Chapter 2 "New
Database features", section "Server Generator Options").

5.

Highlight a specific user within the context of a specific database.6.

Select your database objects.7.

Save the generation details to a specific 'Database Generation Batch' file with for example the following
naming standard <Workarea name>_<container>_SRM/DBA/MAPI/TAPI/RF_<database selection
indication> .gbu, e.g. WA_DEVELOPMENT_QMS_SRM_SEL1.gbu. Note that the 'gbu' files only
contain parameters, i.e. no database syntax.

Repeat steps 4 to 8 until no more groups are necessary.

8.

Collect all 'gbu' files.9.

Run dwzrun61 from the command line multiple times, for example from a different location, for each
group using the specific 'gbu' file to generate all your different kinds of database objects.

10.

You have to re-run the batch generator for database objects each time in the following circumstances:

different Database Object Generator options●

different set of database objects.●

Note that you do not have to re-run the batch generator (regenerate the gbu files) for database objects if one or
more database object definitions are changed since it does not contain any syntax.

Database capture changes

Reverse engineering is called database capture since Designer 2.1.x. Database capture offers the following new
functionality:

General capture preferences and preferences for capturing specific database object types (e.g. views,
PL/SQL definitions).

●

Views and PL/SQL definitions can now be captured as declarative definitions instead of free-format text.●

In addition, since Designer 6i, there is a set of General Capture preferences:

[RECCOM] Capture Comments●

[RECGRT] Capture Grants ●

[RECSYN] Capture Synonyms●

[DTAPIT] Capture TAPI Generated Triggers with Tables●

Note that the design capture of database objects may need to be preceded with a check-out of matching objects in
a versioned repository.

Oracle9i Designer Migration Guide Part 3

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part3_9i-1.htm (10 of 39) [19/08/2002 16:05:58]

Separate menu for generating administrative objects

Oracle9i Designer has a separate tab (introduced in 2.1x) for generating administrative database objects (e.g.
Databases, tablespaces). In Oracle Designer 1.3.2 part of these administrative database objects could explicitly
(e.g. roles) and implicitly (e.g. database links) be generated from the DDL generator.

The Server Generator for database administrative elements supports - explicitly - the generation of the following
administrative elements:

Databases●

Database links●

Directories●

Profiles●

Replication Groups●

Roles●

Rollback Segments●

Tablespaces●

Users.●

Migrating from Designer 2.1.2 and/or Designer 6.0
The following new Oracle9i Designer database features are applicable if you are migrating from Designer 2.1.x
or above:

Server Generator preferences - introduced in 6i●

Database Generation notes and Server Generator generation tabs●

Overview of Table API changes●

Dependency Analysis - what happened to summary table usages? - introduced in 6i●

Server Generator preferences - introduced in 6i

Designer 6i introduced preferences for the Server Generator. These preferences are however only applicable at
application level. You cannot set Server Generator preferences for one or more specific database objects.

The following general Server Generator preferences categories are applicable - available via the Server Generator
Product Flavor:

General ●

Generation - General●

Generation -TAPI and view●

Design capture preferences for tables, views, materialized views, PL/SQL definitions, Oracle object types●

Reconcile report preferences●

For a detailed overview of Server Generator preferences see the Preference Navigator and the online help.

Oracle9i Designer Migration Guide Part 3

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part3_9i-1.htm (11 of 39) [19/08/2002 16:05:58]

Database Generation notes and Server Generator generation tabs

Database generation - implemented via a variety of “Tabbed” windows - is significantly changed since Designer
1.3.2 and some minor changes were introduced since Designer 2.1.x. This section discusses the following
Database Generation subjects:

General Generator Options●

Obsolete Database Generation options●

New or changed database object generation options●

General Generator Options

Specific general Generator Options that previously were defined as preferences are now available as options
accessible from the Design Editor.

You can launch the General Generator Options Windows (see below) from the menu Options > Generate Options
> General in order to modify these general settings.

The fields on the above dialog are explained below.

Scope of Code Control Table

The Scope of Code Control and Scope of Reference Code are no longer preferences but settings that you can
modify via the General Generator Options dialog (see above). The following scopes are valid for Code Controls:

Oracle9i Designer Migration Guide Part 3

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part3_9i-1.htm (12 of 39) [19/08/2002 16:05:58]

Container Wide Table●

Single Table●

Table for each Code Control (new).●

The following scopes are valid for References Codes - no changes:

Container Wide Table●

Single Table.●

The 'create table' syntax for the Reference Code Table and the 'insert into ..' statements for the allowable values
for reference codes can be generated via the Database Object Generation tab (see below).

Tablespace Of Reference Code Table

You can add to the 'create table' syntax for the Reference Code Table the preferred tablespace by adding here the
tablespace name, e.g. QMS_STATIC_TS.

Obsolete options for Oracle9i Designer Database object generation options

The following Oracle Designer 1.3.2 DDL options are no longer available in Oracle9i Designer:

Overwrite files. All files are automatically overwritten, there is no warning if the files already exist.●

Comment syntax. All comment in the DDL files starts by default with '—'.●

Oracle9i Designer Database Object generation options (target tab)

This section will discuss the options on the target tab of the Generate Server Model Implementations dialog
(opened from the Generate menu by selecting Generate > Generate Database from Server Model).

Oracle9i Designer Migration Guide Part 3

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part3_9i-1.htm (13 of 39) [19/08/2002 16:05:58]

DDL files only option

The Database Object Generator will generate the 'full' DDL files if you enable the 'DDL files only' option. It
ignores any existing database definition for a given schema.

Database option

If you enable the database option, then the Server Generator generates DDL scripts to create (or alter) database
objects directly against a schema in an Oracle database, using a Net8 connection (using the username, password
and connect string). Note that a separate reconcile option is no longer available (since Oracle Designer 2.1.x).
You will receive a reconcile file called <pre-fix>.lis automatically that contains a full reconcile report between
the Oracle9i Designer definition and the database for the given schema name.

In this mode the Database Object Generator will create specific DDL files based upon existing database
definitions for the given schema name. For example if the table already exists but not a specific column, then an
'alter table add column …' statement is generated. If you would like the full 'create table …' definition you
should choose the 'DDL files only' option.

Stop on error

Indicates whether DDL generation (and execution) should be terminated if an error is detected.

Upload generated files to repository

You can use this option only when the chosen directory - in the directory field - is mapped to the repository and
the directory does not already contain downloaded DDL files that are read-only. Note that the files are not saved

Oracle9i Designer Migration Guide Part 3

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part3_9i-1.htm (14 of 39) [19/08/2002 16:05:58]

in the repository if the directory is not mapped. You should careful consider the enabling of an automatic file
upload after generation since you cannot control individual files and the DDL generator may stop because of
existing read-only files.

New Oracle9i Designer Database Object generation options (Options button)

This section will discuss the fields on the Database Generator Options dialog, opened by clicking the Options
button on the Generate Server Model Implementations dialog.

Generate Indexes

Indicates whether indexes defined against table/cluster/materialized view definitions are to be generated when the
table, cluster or materialized view is generated. Note that you can no longer select specific indexes as in Oracle
Designer 1.3.2.

Generate Integrity Constraints

Indicates whether integrity constraints defined against a table are to be generated when the table definition is
generated, i.e. primary key constraints, unique key constraints, foreign key constraints and check constraints.

To prevent constraints from being generated when a table is generated, uncheck this option.

Automatic Creation of REF_CODES

Indicates whether reference code tables containing domain/column allowable values are to be generated
automatically. A create table block in the '.tab' file for the reference codes and a separate insert script

Oracle9i Designer Migration Guide Part 3

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part3_9i-1.htm (15 of 39) [19/08/2002 16:05:58]

(<pre-fix>.avt) with the reference code allowable values is generated if you enable the automatic creation of
REF_CODES.

Foreign Key Generation Requires Join Table

Indicates whether one or both of the tables involved in a foreign key must be selected for it to be generated.
Uncheck this option if you want all foreign keys definitions, independent of your context.

Note that if you previously relied on foreign keys always being generated when generating to file - despite your
selection - you will need to uncheck this option.

Generate Triggers

Indicates whether triggers defined against table definitions are to be generated, when the table is generated.

Note that you can no longer select specific listed triggers as in Oracle Designer 1.3.2. You could however
enable/disable specific triggers via the "Complete?" property of a trigger. Trigger syntax will not be generated if
you disable the "Complete?" property.

Generate Grants and Synonyms for Users and Roles

Indicates whether any GRANT privileges and SYNONYMS defined for an object are to be generated to other
users and roles. If a privilege has been granted for a user or role in another schema, a CREATE SYNONYM
statement is generated for the object so that the object can be uniquely identified across different schemas. Note
that you cannot select specific user grants and role grants as in Oracle Designer 1.3.2 from this Server Generator
TAB. Note also that you can generate separately the 'create role syntax' and 'create user syntax' from the
Generate Database Administration Objects utility.

Assign Objects to Replication Code

Indicates whether statements to associate database objects with a predefined replication group are to be
generated.

If the target for generation is a database, the objects will be created in the replication group on the database. If
the target for generation is a DDL script file, statements are generated to place the objects in the replication
group.

Note that the replication group itself is generated using the Generate Database Administration Objects utility (see
below).

Table API changes

The Table API creates a set of application-specific PL/SQL API packages that provide insert, update, delete and
lock procedures for each application table. In addition it validates the data provided by the calling application
and generates default values when appropriate before the table is modified or inserted. Note that a table API -
with limited functionality - was already available in Oracle Designer 1.3.2 as part of the Webserver Generator.

The Table API in Oracle9i Designer covers the following functionality:

validates constraints

validates arcs❍

validates allowable values in reference code tables❍

validates allowable values in domain tables❍

●

auto-generates the following column values:●

Oracle9i Designer Migration Guide Part 3

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part3_9i-1.htm (16 of 39) [19/08/2002 16:05:58]

unique and sequential values for columns that derive their values from a sequence definition❍

pre-defined default values❍

derived values❍

change history information for AutoGen Type columns such as Created by, Modified by, etc.❍

converts column values to uppercase●

maintains journaling information●

maintains denormalized columns●

Note that the above overview does not distinguish between API functionality introduced in Designer 2.1 and 6.0
and that introduced in Designer 6i.

You can also add your own TABLE API logic before or after a specific DML operation. The Oracle9i Designer
meta model captures the full event model of database logic - introduced in Designer 2.1.x. There are in addition
to the table API table API triggers to complete server logic. You can generate the table API and table API
triggers via the Generate table API menu.

Note that CDMruleframe (part of the Headstart Utilities) makes extensive usage of the TABLE API and the
option to add specific application logic. For more information about CDMruleframe see www.otn.oracle.com.

Dependency Analysis or what happened to summary table usages?

Since Designer 6i a Dependency Manager tool has been introduced that allows you to store (additional)
dependencies between structured elements and files and vice versa in a complete separate table structure -
separate from the “normal” table structure for structured elements like tables, views, PL/SQL definitions, etc.
Note that you also store dependencies between structured database elements only (like tables and pl/sql
definitions) or dependencies between files only (like install scripts) and files that contain the syntax of a
package. In general, dependency analysis gives you more control of your development and deployment
environment by allowing you to efficiently manage your application development and release environment,
thereby ensuring higher quality software.

You could ask yourself "Why do I need additional dependency information for database objects? They are
already stored in a structured way, aren't they?". Yes they are, but not all dependencies are stored atomically.
The table usage for PL/SQL definitions and the database object usage for files are examples of this.

As a consequence of the introduction of the Dependency Manager, summary table usages for PL/SQL modules
(and other modules like Forms or Reports) are no longer available and you have to realize that the Oracle9i
Designer migration wizard does not bring forward previously stored summary table usages as dependencies. For
example, you have to rebuild the dependencies for packages - previously stored in the summary table usages -
via the dependency manager. You will however receive much more dependency information than table usages
only (e.g. procedure and function calls).

For more detailed information you can consult the online help for the Dependency Manager

Oracle9i Designer Migration Guide Part 3

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part3_9i-1.htm (17 of 39) [19/08/2002 16:05:58]

Chapter 3 General Migration issues
There are a number of actions you must take regardless of which migration scenario you choose.

This chapter is organized by Designer release. You should begin reading at the section for your "from" Designer
release, and then continue reading the sections for any later releases. For example, if you are migrating from
Designer 1.3.2, you need to read all sections below. If you are migrating from Designer 2.1.2, you may skip the
section on Designer 1.3.2 and read the sections for Designer 2.1.2 and 6.0.

Migrating from 1.3.2
This section covers general database migration issues when migrating from Designer Release 1.3.2. If you are
migrating from a later release, you may skip this section.

Multiple database implementations

Oracle Designer 2.1.x has introduced a distinction between database implementation independent properties and
dependent properties of database objects - see also chapter 2 of this part (Part 3). All database implementation
dependent properties are defined within the context of a database against a specific schema (e.g. the storage
definition property of table implementation).

At the same time, all database implementation independent properties are - still - defined against the database
objects (e.g. the alias property of a table).

This distinction between database implementation dependent and independent database properties allows you to
define multiple implementations of the same database object. For example, you could introduce a schema in a
specific database that represents a 'light' table implementation (test purposes) with associated tablespaces and
(small) storage definitions. At the same time you could define another schema in another database that represents
a 'production' table implementation with much larger tablespaces and storage definitions. Such a distinction was
not available in Oracle Designer 1.3.2.

The migration wizard from Oracle Designer 2.1.x (or Oracle Designer 6.0) creates for each database object a
database implementation. It creates a specific database (R2_UPGRADE_DATABASE) and a specific user
(R2_UPGRADE_USER) during the migration process. The R2_UPGRADE_DATABASE will contain all
existing users and a special user called R2_UPGRADE_USER. Subsequently the user R2_UPGRADE_USER
within the existing database(s) contains one or more database objects and the associated database implementation
properties if you have defined one or more database implementation properties in Oracle Designer 1.3.2.

We highly recommend that you reevaluate this migration result with respect to databases and database schemas.
For example you could rename the migration database name R2_UPGRADE_DATABASE - or add another
database - to a more meaningful name, reflecting the data collection within that database. Subsequently you could
rename the upgrade user R2_UPGRADE_USER - or add another schema - within the database to a more
meaningful schema name, reflecting the database elements owned by that schema.

These actions should take place at the 'DB admin' tab in the Design Editor. Subsequently you can create another
database implementation - by creating a database schema in another database - if you need an additional database
implementation for a specific database object.

It is however not necessary to create databases in Oracle9i Designer for each (promotion) database. The database
implementation properties in each promotion database may not necessarily be different. For example the storage

Oracle9i Designer Migration Guide Part 3

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part3_9i-1.htm (18 of 39) [19/08/2002 16:05:58]

clause for a specific table in the test database may be the same as in the acceptance database.

Note that you can still generate a 'skeleton' DDL script - a script without database implementation syntax - from
the 'Server Model' tab in the Design Editor. Such a 'skeleton' script does not contain database implementation
properties as tablespaces or storage clauses and may be useful for development purposes.

Obsoleteness of the Create? property

The Create? property for primary database objects (e.g. tables, views) has been removed while the create property
at the secondary level (e.g. constraints, columns) is brought forward in the “Complete?” property. With the latter
set to 'N' you circumvent the DDL creation of this secondary element.

You may adopt the following strategy for primary database objects to simulate a Designer 1.3.2 behavior with
respect to the Create? property for primary database objects. First associate all database objects with a database
schema or user within the context of a specific database. Secondly get a list of all database objects with the create
property set to 'N' from your Designer 1.3.2 repository. Thirdly remove these database implementations from
your database user. Subsequently generate only in the context of the DB admin tab - thus database
implementations only. Note that this strategy has the disadvantage that your generated DDL will always contain
implementation syntax like references to tablespaces and/or storage clauses.

Migrating from 2.1.2 or 6.0
This section covers general migration issues when migrating from Designer Release 2.1.2 or 6.0. These issues
can also affect migrations from 1.3.2. The upgrade from these two releases is the same. If you are migrating
from a later release, you may skip this section.

Server Generator preference PARSER and consequences for the
generated syntax of PL/SQL definitions in combination with new pl/sql
property Private Declaration

Oracle9i Designer comes with a set of server generator preferences - at application level only - as was already
mentioned before. One of the Server Generator preferences - PARSER at the “Generation general” node -
influences the generated syntax significantly by adding for example “BEGIN”, “END” and “DECLARE” strings
in the PL/SQL code. The default value of this preference is set to "‘N" and this works fine for all free format
PL/SQL definitions (packages, procedures, functions and triggers) - see also the section below about PL/SQL
definitions and their storage methods. However if you have one or more PL/SQL definitions stored with the
structured or non-free format method, then the PARSER Server Generator preference should be set to 'Y' and in
addition you may have to move (parts of) PL/SQL code - specifically the declaration section - from the PL/SQL
block property to the new Private Declaration property.

For example the correct trigger syntax is generated if you set the preference PARSER value to 'N' and if you
move the following lines in the PL/SQL block property to the Private Declaration property:

l_rowid rowid := qms_rowid_queue.qms_get_rowid;

 l_empno qms_emp.empno%type;

 l_mgrno qms_emp.mgr%type;

 l_job qms_emp.job%type;

 cursor c_emp (p_rowid in rowid) is

 select emp.empno

Oracle9i Designer Migration Guide Part 3

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part3_9i-1.htm (19 of 39) [19/08/2002 16:05:58]

 ,emp.mgr

 ,emp.job

 from qms_emp emp

 where emp.rowid = p_rowid;

These lines together with the remainder in the PL/SQL block property is constructed by the DDL generator as:

PROMPT Creating Trigger 'QMS_EMP_AS'

CREATE OR REPLACE TRIGGER QMS_EMP_AS

 AFTER DELETE OR INSERT OR UPDATE

 ON QMS_EMP

DECLARE-- PL/SQL Specification

l_rowid rowid := qms_rowid_queue.qms_get_rowid;

 l_empno qms_emp.empno%type;

 l_mgrno qms_emp.mgr%type;

 l_job qms_emp.job%type;

 cursor c_emp (p_rowid in rowid) is

 select emp.empno

 ,emp.mgr

 ,emp.job

 from qms_emp emp

 where emp.rowid = p_rowid;

-- PL/SQL Block

begin

 while l_rowid is not null loop

 begin

 open c_emp(l_rowid);

 fetch c_emp

 into l_empno

 ,l_mgrno

 ,l_job;

 close c_emp;

 end;

 if inserting or updating then

 if not qms_has_job_mgr(l_mgrno) then

 /* raise error stating the employee is not a real manager */

 raise_application_error(-20000,'QMS-00049');

 end if;

 end if;

 if updating and l_job <> 'MANAGER' then

 if not qms_manage_emp(l_empno) then

Oracle9i Designer Migration Guide Part 3

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part3_9i-1.htm (20 of 39) [19/08/2002 16:05:58]

 /* raise error stating the job cannot be changed because

 the employee still manages some employee */

 raise_application_error(-20000,'QMS-00050');

 end if;

 end if;

 l_rowid:=qms_rowid_queue.qms_get_rowid;

 end loop;

 qms_rowid_queue.qms_clear_array;

exception

 when others then

 qms_rowid_queue.qms_clear_array;

 raise;

end;

/

Short-cut or reference strategy for database objects

The scope of short-cutting or referencing a database in Oracle9i Designer - previously known as sharing - has
become much wider than sharing/referencing a database in Oracle Designer 1.3.2. Short-cutting a database in
Oracle9i Designer not only implicates a single database short-cut but also a short-cut of all its secondary elements
and associations.

In Oracle Designer 1.3.2 you could share a single database - captured in a single application system - with
multiple other application systems indicating that all these application systems are implemented in a single
database. Your generic share model could like this:

Oracle9i Designer Migration Guide Part 3

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part3_9i-1.htm (21 of 39) [19/08/2002 16:05:58]

In the above example only one database is defined and shared out to the other application systems. At the same
time the entity DEPARTMENT and the table DEPARTMENTS is shared with another application system. More
specifically, application APPDEPT owns table DEPT and shares this table with APPEMP, that owns table EMP
and receives the shared table DEPT. In addition table EMP has a foreign key to DEPT. Both applications
receive a database share from application APPDES2000. This application provides only shares. The share
model described above reflects that database objects from APPDEPT and APPDEPT are implemented in the
same database. Moreover sharing DES2000 across these application systems was the only way to enforce the
generation of the foreign key syntax for EMP with DEPT via the DDL generator since the foreign key definition
is defined within the context of two applications. You could not generate the foreign key syntax if EMP and
DEPT did not share the same database. This behavior is no longer implemented in Oracle9i Designer. A foreign
key relation between table EMP and the shared table DEPT is enough to generate the foreign key syntax.

If you decide to keep this share model - or short-cut model in Oracle9i Designer - then all database
implementation properties for database DES2000 are owned by application APPDES2000. If you want specific
database implementation deviations for table EMP - e.g. another storage clause - then either you must create a
local database in APPEMP or you must create another database in application APPDES2000.

You can keep the short-cut model described above if you exactly want to reflect the database situation in
Oracle9i Designer and at the same time accept that all database implementation properties are owned by
application APPDES2000.

You can circumvent the above situation by creating a local database in each application - each could have the
same database name - and subsequently define the database implementations locally as opposed to centrally.
You are however highly recommended to implement this specific database implementation model in Oracle
Designer 1.3.2 before starting the migration steps as described in Part 2 of this migration guide. You could use
Oracle Echo to reorganize your database properties effectively. Oracle Echo is a consultancy tool that you can
use for reorganization purposes that comes with a consultancy service called 'repository reorganization services'.
You can contact your local Consultancy Sales Representative for more information about this service and other
Oracle Designer/Repository related services.

Storage method of PL/SQL definitions

PL/SQL definitions - introduced in Oracle Designer 2.1.x. and known as PL/SQL Modules in Designer 1.3.2 -
can be stored in the repository in the following ways:

Non free format - semi-structured. This method is automatically chosen if you capture one or more
PL/SQL definitions from the database. The following PL/SQL PAC and SAC elements and their properties
are used to store PL/SQL definitions semi-structured:

PL/SQL definition, property package specification: it contains only comment, the specification
syntax is determined by the program units and their arguments

❍

PL/SQL definition, property private declaration: it contains the private part of package body,
function or procedure

❍

PL/SQL definition, property PL/SQL block: it contains the PL/SQL text for functions and
procedures

❍

PL/SQL definition, property pragma restrictions: it is based upon pragma restrictions in package
specification

❍

Sub-program units: they are based upon functions and procedure sections in the package body❍

Arguments: they are based upon parameters in functions and procedures.❍

●

Note that program data is not recognized separately, but populated in the private declaration section

Oracle9i Designer Migration Guide Part 3

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part3_9i-1.htm (22 of 39) [19/08/2002 16:05:58]

and also that there is no separate property for the pragma 'autonomous transaction'. The pragma
'autonomous transaction' must be defined within the private declaration section.

Non free format - fully structured. The PL/SQL definition is further broken down - manually - into the
following elements - on top of the semi-structured method:

Sub-program units of type cursor❍

Program data - or local variables. ❍

●

Free format. The PL/SQL definition is stored unstructured in one or more text items. For example the
package specification is stored in the text item PL/SQL specification and the package body in the text item
PL/SQL block.

●

In an uploaded file or files. As two separate files that contain the PL/SQL definition of the package
specification (e.g. ECHO_UTIL.pks) and another file containing the package body (e.g. ECHO_UTIL.pkb)
of the package ECHO_UTIL or as a single file containing specification and body.

●

The following table gives an overview of the advantages and disadvantages of the above mentioned PL/SQL
definition storing methods:

Dimension Semi-structured a/d Structured a/d Free format a/d As file(s) a/d

Dependencies Run
Dependency
Analyzer for
additional
usages (e.g.
tables, views)

+ Run
Dependency
Analyzer for
additional
usages (e.g.
tables, views)

+ All
dependencies
via
Dependency
Analyzer

- All
dependencies
via
Dependency
Analyzer

-

Multi user yes, multiple
developers can
build or change
the package
components

+ yes, multiple
developers can
build or change
the package
components

+ no, only one
developer can
build or change
the package

- no, only one
developer can
build or change
the package

-

Reusability Partly reusable
components

+/- e.g. Functions,
Procedure,
Cursors

+ No reusability - No reusability -

Editor via the Design
Editor on - less
multiple places

+/- via the Design
Editor on
multiple places
in different
formats

- via Design
Editor either in
text items
PL/SQL block
and/or
specification

+ No usage of
Design Editor.
You do not
have to edit the
package on
multiple
places, but
directly in a
text editor

+

Productiveness Little more
productive in
build phase

+ Probably less,
changes must
be defined
declarative

- Little more
productive in
build phase

+ Most
productive in
the build phase

+

Oracle9i Designer Migration Guide Part 3

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part3_9i-1.htm (23 of 39) [19/08/2002 16:05:58]

CDMRule
frame
integration

Structured
integration.
You could
include
generated
CDMrule
PL/SQL
definitions in
text items and
CDMrule could
include custom
PL/SQL
definitions

+ Structured
integration.
You could call
generated
CDMrule
PL/SQL
definitions and
CDMrule
could call
custom
PL/SQL
definitions

+ Non structured
integration.
You could
include
generated
CDMrule
PL/SQL
definitions in
text items and
CDMrule
could include
custom
PL/SQL
definitions

- Non structured
integration.
You could
include
generated
CDMrule
PL/SQL
definitions in
text items and
CDMrule
could include
custom
PL/SQL
definitions

-

Compilation Generates
separate files.
Compilation of
body only is an
option

+ Generates
separate files.
Compilation of
body only is an
option

+ Generates
separate files.
Compilation of
body only is an
option

+ Compilation of
body only if
necessary

+

Usage of
Headstart
utilities

Full usage of
Headstart
utilities

+ Full usage + Limited usage
of Headstart
utilities

- No usage of
Headstart
utilities

-

Implementation
properties (e.g.
grants to users
and/or roles)

Structured
storage of
implementation
properties

+ Structured
storage of
implementation
properties

+ Structured
storage of
implementation
properties

+ Additional
effort to store
implementation
properties like
access rights

-

Usage of
pragma
autonomous
transaction
[see note
below]

in Private
Declaration
text property

+ in Private
Declaration
text property

 In one or more
PL/SQL blocks
in the package
body

+ In one or more
PL/SQL blocks
in the package
body

+

Migration
effort

A move of
PL/SQL blocks
to private
declaration
property

- A move of
PL/SQL blocks
to private
declaration
property

- No migration
effort

++ Capture in one
or more files
and
subsequently
uploaded

+

Note: The usage of the pragma autonomous transaction is very useful, for example for error handling. You can
commit your log and error messages to a specific table independent of the state of your main transaction (failure
or success).

As can be seen from the last row or dimension in the above table the migration effort will vary for each of the
described storage methods for PL/SQL definition. There is almost no migration effort involved if your PL/SQL

Oracle9i Designer Migration Guide Part 3

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part3_9i-1.htm (24 of 39) [19/08/2002 16:05:58]

definitions were stored as free format, while most effort is involved with the structured or semi structured format.

In previous Designer releases there was a strong tendency to use the structured or semi-structured format - the
latter is still the default during design capture. With the introduction of the Dependency Manager there is less
need for (semi)-structured format. The impact analysis based on files is almost as rich as the (semi)-structured
format. Note however that the file format does not support the structured storage (and generation of grant scripts)
of access rights against PL/SQL definitions .

Usage of the dependency manager to bring forward the summary table
usages

The summary table usages are replaced by the output of the Dependency Manager as can also be seen from the
table presented above - in the row dependencies. You therefore have to parse all dependencies for all database
objects - including PL/SQL definitions - after a migration to Oracle9i Designer - to retrieve similar functionality.
Note that you can parse dependencies for an entire container and its content or even for an entire workarea.

Chapter 4 Scenario 1: Migrate, Regenerate
All, No Redesign
In this scenario, you will regenerate your database objects from Oracle9i Designer.

The goal of this scenario is to be able to generate your database objects out of Oracle9i Designer and achieve the
same results you got when generating out of your previous Designer release. No attempt is made to redesign
your existing application to make use of new features available in Oracle9i Designer.

This chapter assumes that you already have performed all the actions against the database objects described in
Chapter 3 "General Migration Issues".

Migrating from 1.3.2
This section covers migrating from Designer Release 1.3.2. If you are migrating from a later release, you may
skip this section.

There are no known specific migration issues arising from Designer 1.3.2. - provided that you have applied the
steps described in the sections "Migrating from 1.3.2" and "Migrating from 2.1.2 or 6.0" in the General Migration
Issues chapter of this part.

Migrating from Designer 2.1 or 6.0
First perform all the steps described in the section "Migrating from 2.1.2 or 6.0" in the General Migration Issues
chapter of this part.

Secondly evaluate the following identified migration issues with respect to database objects coming from
Designer 2.1 or 6.0.

Oracle9i Designer Migration Guide Part 3

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part3_9i-1.htm (25 of 39) [19/08/2002 16:05:58]

Free format View DDL creation errors

The DDL of free format defined views - and materialized free format views - may result in syntax errors like a
missing "from" clause. You can correct the view definition - and therefore ultimately the DDL syntax - by
reevaluating the view select text property. Next to the “select” lines, add the “from” and the “where” clause.

Different handling of quotes in the column default property value

The behavior of the DDL generator with respect to default column values is changed when quotes are used
around the default property value,e.g. ‘Y’, ‘N’. If you want to keep the literal string (including the quotes) in the
generated DDL you have to set the next column property Default value type to “literal”. The DDL generator
generates the following syntax:

… ,JOB VARCHAR2(9) DEFAULT '''P''' NOT NULL

…

If you do not want the quotes you have to set the next column property Default value type to “Database function
call”.

The DDL generator generates then the following syntax:

…

,JOB VARCHAR2(9) DEFAULT 'P' NOT NULL

…

Note that migration wizard set this “Default value type” property default to literal.

Differences in names for valid values constraints

The database object generator shows a different behavior in generating valid values constraints. It generates for
each valid value constraint a separate check constraint - this behavior was introduced in Designer 2.1.2. - and it
generates a unique constraint name for each DDL session - introduced in Designer 6i. A valid value constraint
for example can be enforced via a domain with allowable values.

This new behavior will most likely result in a recreation of the valid value constraints each time you generate
DDL syntax against an existing schema that already contains all or part of the database objects (provided
obviously that these database objects contain valid values). Note that this DDL behavior is persistent despite any
changes in the valid values.

There are two ways to circumvent this behavior and as a result get more control over these kinds of constraints:

1. Create custom explicit check constraints in the repository with the same check syntax as the generated
constraint. Note that you then have to revaluate these custom constraints each time the valid values are altered.
Note also that you have to disable the following database object generation option: “Generate valid value
constraints”.

2. Use the CDM Ruleframe framework to propagate these valid value constraints as separate CDM ruleframe
business rules. You also have to disable the “Generate valid value constraints” database object generation option.
You can find more information about the CDM ruleframe framework for enforcing business rules on OTN
(www.otn.oracle.com)

Oracle9i Designer Migration Guide Part 3

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part3_9i-1.htm (26 of 39) [19/08/2002 16:05:58]

http://www.otn.oracle.com/

Chapter 5 Migrate, Regenerate All with
Redesign
In this scenario, you will regenerate your relational and object type database objects from Oracle9i Designer. You
will use the new Oracle 9i database features provided by Oracle9i Designer. As you regenerate each database
object, you will make use of new features as appropriate.

The goal of this scenario is to take advantage of the new database features available in Oracle9i Designer. As
with Scenario 1, you want to be able to generate your application and get the same database layer you got from
your previous release of Designer. However, many new features have been added to Designer to make more use
of Oracle9i enhancements.

This chapter is organized by Designer release. You should begin reading at the section for your "from" Designer
release, and then continue reading the sections for any later releases. For example, if you are migrating from
Designer 1.3.2, you need to read all the sections below. If you are migrating from Designer 2.1.2, you may skip
the section on Designer 1.3.2 and read the sections for Designer 2.1.2 and 6.0.

Note that the enhancement or redesign steps in this Chapter must be preceded or accompanied by the actions in
Chapter 3 and Chapter 4.

You should also note that most of the new features (e.g. partition key entries, table partitions) may not be visible
for existing table implementations - for a specific migrated database. These implementations are introduced in
Oracle8 or later and your database 'Oracle Version' property is probably still set to Oracle7. However you can
make these specific properties and/or entries visible by changing the 'Oracle Version' database property to Oracle
8i or Oracle 9i.

Migrating from 1.3.2
This section covers migration from Designer Release 1.3.2. If you are migrating from a later release, you may
skip this section.

The following new Oracle9i subjects - already introduced in Oracle 8 - are discussed:

Table and index partitioning●

Bitmap and reverse indexes●

Global and local indexes●

New database triggers properties●

New column properties●

New view database implementation dependent and independent properties●

New materialized view database implementation dependent and independent properties●

Deferrable constraints●

Scope properties●

New grant properties to roles or users●

Note that almost all the above listed improvements do not require any structural change and can therefore be
classified as cost effective.

Oracle9i Designer Migration Guide Part 3

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part3_9i-1.htm (27 of 39) [19/08/2002 16:05:58]

Table Partitioning

Partitioning physically divides your table in horizontal pieces on different locations to boost performance,
making use of multiple reads/writes. It is dependent on your frequently used access paths which columns are
candidates for partition keys. For example suppose table EMP of Oracle (50,000 employees!) is frequently
accessed on LAND_OF_ORIGINATION then that column is a fine partition key candidate. In general you
should try to use columns that hold static values since the row is stored initially on a specific physical location.
You should try to avoid a table reorganization as a result of an uneven distribution of rows among the partitions.
You can find the following secondary table partitioning properties at the implementation level - provided that
your database version is set to Oracle8 or higher:

Table partitions. Tables can be decomposed into smaller pieces called partitions. Partitions are particularly
useful where tables have grown so big that they have become difficult to manage. Each table partition
definition that is recorded in the repository represents a partition into which a table is to be divided on a
database. You can influence the physical storage of the partitions via the “Value Less Than” property. For
example appropriate values for this property could be (A-F, G-M, etc.) for the starting alphanumeric
character of the LAND_OF_ORIGINATION column in the Oracle EMP example.

●

Partitioning key entries. A partition key entry defines the usage of a particular column in the partitioning
key of a table or an index. Each partitioning key can be based on one column only. Partition key entries are
stored against table implementations or index storages in the repository. They can be created for global
index storage definitions, but not local index storage definitions.

●

The migration wizard does not add a Partition Key Entry nor does it define table partitions for a specific table
implementation.

Bitmap indexes

Bitmap indexes are widely used in data warehousing applications, which have large amounts of data and ad hoc
queries but a low level of concurrent transactions. For such applications, bitmap indexing provides:

Reduced response time for large classes of ad hoc queries●

A substantial reduction of space usage compared to other indexing techniques●

Dramatic performance gains even on hardware with a relatively small number of CPUs or small amount of
memory

●

Very efficient maintenance during parallel DML and loads●

Fully indexing a large table with a traditional B-tree index can be prohibitively expensive in terms of space
because the indexes can be several times larger than the data in the table. Bitmap indexes are typically only a
fraction of the size of the indexed data in the table. Bitmap indexes can substantially improve performance of
queries with the following characteristics:

The WHERE clause contains multiple predicates on low- or medium-cardinality columns. ●

The individual predicates on these low- or medium-cardinality columns select a large number of rows. ●

Bitmap indexes have been created on some or all of these low- or medium-cardinality columns. ●

The tables being queried contain many rows.●

You could transform any non-bitmap (and non-unique) index that fulfills the above criteria into a bitmap index
by changing the index type into a bitmap.

Oracle9i Designer Migration Guide Part 3

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part3_9i-1.htm (28 of 39) [19/08/2002 16:05:58]

User Object Index Storage property: Index Type - at database
implementation level

Indicates whether the storage details are for a local or global index. An Oracle7 index is equivalent to an Oracle8
global index

A B-tree index on a partitioned table can be local or global. Global indexes must be fully rebuilt after a direct
load, which can be very costly when loading a relatively small number of rows into a large table. For this reason,
it is strongly recommended that indexes on partitioned tables should be defined as local indexes unless there is a
well-justified performance requirement for a global index. Bitmap indexes on partitioned tables are always
local. See also "Table Partitioning", above, for further details.

This property does not receive any value through the migration wizard.

User Object Index Storage property: Reverse or Nosort? - at database
implementation level

Indicates whether Reverse or Nosort options are to be used for this index.

One cause of sorting is the creation of indexes. Creating an index for a table involves sorting all rows in the table
based on the values of the indexed columns. Oracle also allows you to create indexes without sorting. If the
rows in the table are loaded in ascending order, then you can create the index faster without sorting.

Presorting your data and loading it in order may not always be the fastest way to load a table. Specifically, if you
have a single-CPU computer, you should if possible sort your data before loading. Then create the index with the
NOSORT clause.

Creating a REVERSE key index, compared to a standard index, reverses the bytes of each column indexed
(except the rowid) while keeping the column order. Such an arrangement can help avoid performance
degradation in an Oracle Parallel Server environment where modifications to the index are concentrated on a
small set of leaf blocks. By reversing the keys of the index, the insertions become distributed across all leaf keys
in the index.

This property does not receive any value through the migration wizard.

Global Index Partitions as a secondary element of User Object Index
Storage - at database implementation level

A global index partition represents a partition into which an index has been divided. The index partition can have
different physical characteristics to the index; for example, it can be stored in a different tablespace and can have
its own storage parameters.

The partitioning of a global index is completely independent of the partitioning of its associated table. A global
index is partitioned based on its own specific partition key, which is not necessarily the same as the partition key
of the table.

In a global partitioned index, the keys in a particular index partition may refer to rows stored in more than one
underlying table partition or sub-partition. A global index can only be range-partitioned, but it can be defined on
any type of partitioned table.

A global index is created by specifying the GLOBAL attribute.

Oracle9i Designer Migration Guide Part 3

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part3_9i-1.htm (29 of 39) [19/08/2002 16:05:58]

A global partitioned index contains a single B-tree with entries for all rows in all partitions. Each index partition
may contain keys that refer to many different partitions or sub-partitions in the table. See also Chapter 11
"Partitioned Tables and Indexes" in Oracle 8i Concepts.

The migration wizard does not add a Global Index Partition for each table implementation.

Local Index Partitions as a secondary element of User Object Index
Storage - at database implementation level

A local index partition represents a partition into which an index has been divided. The index partition can have
different physical characteristics to the index, for example, it can be stored in a different tablespace and can have
its own storage parameters.

Each local index partition has exactly the same number of partitions (with exactly the same "VALUE LESS
THAN" boundaries) as the number of partitions that have been defined for the table. The tablespace and the
storage parameters for a local index partition do not have to be the same as those used for the table partitions.

In a local index, all keys in a particular index partition refer only to rows stored in a single underlying table
partition. A local index is created by specifying the LOCAL attribute.

Oracle constructs the local index so that it is equipartitioned with the underlying table. Oracle partitions the
index on the same columns as the underlying table, creates the same number of partitions or subpartitions, and
gives them the same partition bounds as corresponding partitions of the underlying table.

Local indexes have the following advantages:

Only one index partition needs to be rebuilt when a maintenance operation other than SPLIT PARTITION
or ADD PARTITION is performed on an underlying table partition.

●

The duration of a partition maintenance operation remains proportional to partition size if the partitioned
table has only local indexes.

●

Local indexes support partition independence. ●

Local indexes support smooth roll-out of old data and roll-in of new data in historical tables.●

See also Chapter 11 "Partitioned Tables and Indexes", in Oracle 8i Concepts.

The migration wizard does not add a Local Index Partition for each table implementation.

Database Trigger property: Fire When Propagated?

Indicates whether or not the trigger is to fire when the data has been propagated, for example, in a multi-master
replication environment or with views (instead of triggers). Here the trigger code would perform the validation
of the rows being modified and, if valid, propagate the changes to the underlying tables.

New column properties

Def Template/Library Object

The name of an object in a template or object library. This property will be populated within the context of a
module - like a display property - each time it is referenced in a module and subsequently used by the Oracle
Forms Generator. You could for example define a trigger on the double mouse-click behind this library object.

Enable this column property by referencing an item from your object library.

Oracle9i Designer Migration Guide Part 3

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part3_9i-1.htm (30 of 39) [19/08/2002 16:05:58]

Server Defaulted?

Indicates whether a default value should be supplied by application logic residing on the database server if no
value is supplied by a client side application. This tells the generator it should requery the row after insert/update
to display the server derived data. The migration wizard sets the value of this property to ‘N’.

Server Derived?

Indicates whether the column's value is derived on the database server, via a database trigger, and therefore
should not be set or provided by the client side. The table API will generate server API code for an
auto-generated column (e.g. Date Created, User Created) if this property is enabled. The migration wizard sets
the value of this property to ‘N’.

Derivation Expression Type

Indicates the type of derivation expression (e.g. null, function call, SQL expression) that is used to specify the
column value. Obviously you have to provide a specific value for this property if you have defined a derivation
expression. The migration wizard does not set a specific value.

Where/Validation type

Indicates whether the Where/Validation condition property defines a Function Call or a SQL Expression.
Obviously you have to provide a specific value for this property if you have defined a where validation
expression. The migration wizard does not set a specific value

View properties

Object type view property

Identifies the Oracle object type on which the object view is to be based. For an existing object view definition,
this property can be changed to reference a different object type. However you cannot change an object view
into a relational view by removing the object type reference from this property. You cannot reference an object
type from an existing relational view. Use the utility 'Create Oracle Object Type' to migrate existing relational
views definitions. See also the section "Oracle Object Types".

Non-free format View property: Optimizer Hint Clause - also applicable for Materialized Views

A hint clause to be used where the view is defined declaratively. The optimizer uses the hint to choose an
execution plan for the SQL statement. You should add an optimizer hint clause if you specifically want to use the
rule-based optimizer. The default behavior of a database is the usage of the cost-base optimizer based upon the
computed statistics. The migration wizard does not set a specific value.

Base Table Locations: new database implementation secondary element for views

Create a base table location if the underlying table, view or materialized view is implemented in a different
schema. This is because the Database Object Generator must be told which underlying objects it is to use when
creating a view or materialized view on a database.

For example, if view B is based on table A, then you can use a base table location if the latter is to be
implemented for a different user.

Oracle9i Designer Migration Guide Part 3

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part3_9i-1.htm (31 of 39) [19/08/2002 16:05:58]

By default, views and materialized views are implemented in the same schema as the element on which they are
based. Where this is the case, base table locations are not required

Materialized view implementation independent properties

Updateable

Indicates whether the materialized view can be updated, i.e., whether INSERT, UPDATE and DELETE
statements can be performed on the materialized view. Only simple materialized views can be updated.

A materialized view is always synchronized with its source via a materialized view refresh (or a refresh of the
surrounding refresh group). You may consider making or allowing these changes to be made to the data in a
materialized view:

intermediate (part) synchronization of the materialized view on specific DML operations on the source●

direct specific changes on the materialized view (for example in a replicated environment).●

The following default migration value is applicable: 'No'.

Cluster

The name of the cluster in which the materialized view exists. It is used to place a materialized view on a cluster
if the same grouping of columns are frequently selected from a table or tables.

Materialized view implementation dependent properties

The following materialized view implementation dependent properties must be reevaluated:

Materialised view log properties. Materialized view log properties for a table implementation●

Cached. Specifies whether the block retrieved for this materialized view is placed at the most recently used
end of the Last Recently Used (LRU) list. When set to Not Cached, retrieved blocks are placed at the least
recently used end of the LRU. Placing the data at the most recently used end can improve performance. It
is useful to set this property to Cached for small lookup tables

●

Materialized View Group. The name of a set of materialized views on the same database (but not
necessarily in the same schema on that database) that are to be refreshed at the same time and at the same
interval. The definition specified for Materialized View Group is the definition that would apply to a
Refresh Group. A Materialized View Group is the counterpart of a Master Replication Group.

●

Build Type. Identifies whether the materialized view is to be populated immediately after executing the
DDL, or whether it is to be deferred.

●

Query Rewrite? Identifies whether the materialized view is eligible to be used for query rewrite. Valid
values: Null, Disable, Enabled

●

Deferrable constraints

You can defer constraints for validity until the end of the transaction. A constraint is deferred if the system
checks that it is satisfied only on commit. If a deferred constraint is violated, then commit causes the transaction
to roll back.

If a constraint is immediate (not deferred), then it is checked at the end of each statement. If it is violated, the
statement is rolled back immediately.

Oracle9i Designer Migration Guide Part 3

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part3_9i-1.htm (32 of 39) [19/08/2002 16:05:58]

If a constraint causes an action (for example, delete cascade), that action is always taken as part of the statement
that caused it, whether the constraint is deferred or immediate.

You can enable the defer status of a constraint by applying one of the following values for the constraint “Defer
Status” property:

Initially deferred. The constraint is deferrable and, by default, checked at the end of the transaction.●

Initially immediate. The constraint is deferrable and, by default, checked at the end of each DML
statement.

●

The Migration Wizard brings the Not Deferred status value forward.

If you are using CDMrule frame or are planning to use it you should only use non-deferrable constraints. For
more information about CDMrule frame see www.otn.oracle.com.

Scope properties (global synonym name and scope) for each database
implementation object

Each implementation of a database object (e.g. table, view, sequence) has received the following additional scope
properties:

Global Synonym Name. The name to be used by the Database Object Generator when creating synonyms
for this object. Default Migration value: null

●

Scope. The scope of visibility of the database object (Database or World). This is used by the Database
Object Generator when database links and synonyms need to be created. Default Migration value:
Database

●

New or changed Granted to Users or Roles properties

Create Synonym?

Indicates whether a synonym is automatically created by the Database Object Generator when the database object
is in a different schema to the user or role. This property receives by default a 'No' string from the migration
wizard.

Execute?

Indicates that the EXECUTE privilege is granted to the user or role. Not applicable for tables. This property
receives by default a 'No' string from the migration wizard.

Read?

Indicates that the READ privilege is granted to the user or role.

The Read privilege provides secured access to the files stored in the operating system directory to which the
directory object serves as a pointer.

The directory object contains the full pathname of the operating system directory where the files reside. Because
the files are actually stored outside the database, Oracle server processes also need to have appropriate file
permissions on the file system server. Granting object privileges on the directory database object to individual
database users, rather than on the operating system, allows Oracle to enforce security during file operations. This
property receives by default a 'No' string from the migration wizard.

Oracle9i Designer Migration Guide Part 3

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part3_9i-1.htm (33 of 39) [19/08/2002 16:05:58]

http://www.otn.oracle.com/

Enqueu?

Indicates that the ENQUEUE privilege is granted to the user or role. This privilege applies only to queue
implementations. This property receives by default a 'No' string from the migration wizard.

Dequeu?

Indicates that the DEQUEUE privilege is granted to the user or role. This privilege applies only to queue
implementations. This property receives by default a 'No' string from the migration wizard.

Migrating from Designer 2.1 or 6.0
This section covers some database migration issues when migrating from Designer Release 6.0.

The following new Oracle9i new database features - already introduced in Oracle 8i - will be discussed:

Index tables only●

Function based indexes●

Compute statistics for indexes●

Domain key constraints●

Deterministic clauses for PL/SQL definitions●

Object types●

Java definitions●

Note that the introduction of object types and Java definitions involves a substantial structural change and are
therefore less cost effective than the other Oracle9i new features.

Index table only

Typically large tables with only a small number of columns like intersection tables are candidates for
index-organized only.

You can change a “normal” table to an index organized table by enabling the table property Index-organized?.
Note that the migration wizard does not enable this specific table property.

Pct Theshold - at database implementation level

Used in the case of an 'index only table' to specify a percentage of the block size. This property does not receive
any value from the migration wizard.

Overflow Tablespace- at database implementation level

Used in the case of an 'index only table' to specify the name of the tablespace that is used for overflow purposes.
This property does not receive any value from the migration wizard.

Function Based indexes

Function based indexes are introduced in Oracle8i and are a very cost effective means of boosting your
application performance without changing the underlying database structure.

Oracle9i Designer Migration Guide Part 3

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part3_9i-1.htm (34 of 39) [19/08/2002 16:05:58]

You can define function based indexes at the index entry level (e.g. column level) and define the function
expression in the “Index Function” property like upper(ename). In addition you should set the “type” property to
“function based” as opposed to “column based”.

Compute statistics for Indexes

Indicates whether statistics are to be collected on creation of the index. Typically you would set this value to 'yes'
in the context of migration since all tables will contain data. Re-creation of the indexes will then automatically
lead to the collection of statistics. Note that the migration wizard disables this property by default.

Domain Key Constraints

Oracle Designer 6i introduced a new SAC (secondary element) for tables called Domain Key Constraints.

Domain key constraints allow you to model domains using a table other than the predefined one normally used
by Oracle Designer.

A domain key constraint allows a generated application to access a specific range of domain values, from a table
containing multiple domains. The domain key constraint specifies that values entered in the domain key columns
do not conflict with a predefined range of acceptable values.

You may want to do this for several reasons, e.g., you may already have a domain table that you would like to
design-capture and continue to use, or you may want more control over how domain values are shown within a
model.

You add a domain key constraint for a specific table as a new secondary constraint type next to the ‘normal’
constraints like foreign key or check constraints.

Primary Key, Unique Key or Foreign Key column property: Conversion Format Mask?

The format to be used when a date or number column is joined to a VARCHAR2 column in a domain table. If a
format is not specified here, the application generators use a set of rules to define the format. Note that this
property is not used by the Database Object Generator. It applies only to key components of domain key
constraints

Foreign Key column property: Second Join Column?

The name of a column in the join table that is the derivation for all or part of this foreign key.

Usage of the Deterministic? clause for PL/SQL functions

Allows the system to use a saved copy of the function's return result - Functions only - if such a copy is
available. The saved copy could come from a materialized view, a function based index, or a redundant call to
the same function in the same SQL statement.

The Query optimizer can choose whether to use a saved copy or re-call the function. The function should
reliably return the same result value whenever it is called with the same values for its arguments. Therefore do
not define the function to use package variables or to access the database in any way that might effect the
function's return result, because the results of doing so will not be captured if the system chooses not to call the
function

You can simply make use of the deterministic feature by enabling the Deterministic? property for PL/SQL

Oracle9i Designer Migration Guide Part 3

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part3_9i-1.htm (35 of 39) [19/08/2002 16:05:58]

functions.

Object Types

Oracle object types (aka user-defined types) provide a way of creating user-defined datatypes for the Oracle8i
database server. These datatypes can be used in addition to the built-in datatypes provided by the server.

You could use Oracle object types:

to define a datatype of a column in a relational table●

to create a table based on a specific Oracle object type, i.e. an object table●

as part of the definition of another Oracle object type, i.e. as an attribute of the new Oracle object type.●

Oracle object types can be considered as templates for creating instances of objects. Typically, the objects have a
set of common attributes and methods (operations), and may be structured in a hierarchy.

Use the Create Oracle Object Type and Create Object View utilities to migrate a server model based on a
relational table design to an object design.

There are three key stages to migrating a relational design:

Create Oracle object types from the relational tables/views●

Modify the default Oracle object type definitions●

Create object views for the Oracle object types●

Stage 1 - Create Oracle object types from the relational tables/views

The first stage is to build Oracle object type definitions based on the structure of the relational table/views in your
current server model.

The utility - first item on the Utility menu in the Design Editor - creates an Oracle object type for each selected
table/view. It also creates an Oracle object type attribute for each non-foreign key column and a REF attribute
for each foreign key. Note that for REF attributes to be correctly mapped to Oracle object types, both
tables/views referenced by the foreign key need to be selected.

Note that the utility also creates a set of mapping elements to record the relationship between the relational
table/columns and the Oracle object type/attributes. This mapping is only visible in the RON (see below). This
mapping information is used when the Oracle object types are used to implement object views for the relational
table/views (see Stage 3).

Stage 2 - Modify the default Oracle object types

Once you have created a set of Oracle object types based on your relational tables/views, you can review your
design from an object-orientated perspective. In this stage you will typically introduce further Oracle8 database
server features.

For example:

Migrate a set of attributes to new embedded Oracle object type●

Change REF attributes to collections of VARRAY or nested table●

Change attributes to REF attributes●

Add/delete attributes (and column mappings).●

Oracle9i Designer Migration Guide Part 3

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part3_9i-1.htm (36 of 39) [19/08/2002 16:05:58]

Stage 3 - Create object views for the Oracle object types

Finally, you can build object view definitions based on the Oracle object type definitions and their mappings to
relational table/views.

The utility - second item on the Utility menu in the Design Editor - creates an object view for each Oracle object
type you select, together with the required SQL statements to construct the object rows from the underlying
relational tables. It also creates OIDs from the underlying relational tables primary/unique key.

There are no new properties for the primary and secondary implementation independent properties of Oracle
Object Types and there are no specific implementation dependent properties for Oracle Objects Types.

Collection types

Oracle collection types are used to define datatypes. They provide support for collections of similar items, and
can be implemented as either of the following:

Nested tables - These are useful where referential integrity is required and are suited to master-detail and
one-to-many relationships. Nested tables can have attributes but no methods.

●

VARRAYs - These are useful for providing quick access to small or uniform-sized collections of objects in
a table. VARRAYs do not have methods or attributes.

●

An example of when you could use a collection type is for managing orders and their associated order lines. The
orders would be stored in a top-level outer table, while the order lines could be stored in a nested table or
VARRAY. The nested table or VARRAY is recorded as a column (on a relational table) or an attribute (on an
object relational table) on the outer table. This column/attribute embeds the collection type within the outer table
and is designed to hold the order lines for each order.

Typically nested tables are used when there is no limit on the potential number of items to be stored. Conversely,
VARRAYs always have a maximum number of elements, that is defined by the user.

Nested tables and VARRAYs cannot be referenced directly, but they can be referenced indirectly via the outer
table.

Object Tables

Object tables are based on Oracle object types. The objects that are stored in each row of the table are uniquely
identified by a system-generated identifier, called an object identifier. This object identifier is maintained
automatically by the database.

Object Views

Object views allow you to retrieve, update, insert and delete relational data as if they were stored as objects. This
allows you to use the object oriented features of the Oracle 8i database server with existing relational data. If you
want to build an object view that is based on an existing relational table or view, you can use the Create
ObjectView utility (see above).

Transformation Mapping Sets (visible in RON only)

A transformation mapping set represents the overall 'collective' mapping for transformation from one level to
another (for example, from the type model to the server model). It is made up of the individual mappings of pairs
of specified elements.

Oracle9i Designer Migration Guide Part 3

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part3_9i-1.htm (37 of 39) [19/08/2002 16:05:58]

There are three transformation types:

Entitity Object to Relational BC4J mapping●

Entity Object to Relational Mapping●

Relational to Object Relational mapping●

The last mapping type is created automatically by the utilities 'Create Oracle Object Type' and/or 'Create Object
View'.

Java definitions

Oracle Designer 6i introduced the option to store Java Definitions in a structured way. It supports the following
Java Definitions:

Source Definitions●

Class Definitions●

Resource Definitions●

If you use this structured method for Java Definitions in Oracle9i Designer you will not be able to use the
JDeveloper 9i IE optimally. However you could also store the Java Definitions as text files in the Oracle9i
Designer repository. Adopting the file approach you will use the Oracle9i Designer repository basically as a
Source Control Tool to manage the Java files, its versions, its releases and its dependencies. In addition, the
Oracle9i Designer repository will control the revision data and will keep track of a change history and the lock of
a file when it is in use by a developer.

The following subjects for storing Java Definitions as files will be handled:

Organization of Oracle9i Designer repository for storing Java files●

Interactions between the Oracle9i Designer / Repository 9i and JDeveloper 9i●

Dependency analysis for Java files●

Organization of Oracle9i Designer repository for storing Java files

Oracle9i Designer will be used as the repository to manage all Java files and its versions. Within Oracle9i
Designer, files will be stored in a folder structure that matches the Java package structure. Thus, a Java package -
package names preferably in lowercase! - will also be visible in the Oracle9i Designer environment.

Interactions between the Oracle9i Designer / Repository 9i and JDeveloper 9i

A significant amount of effort is spent in the integration between the Repository 9i and JDeveloper 9i based on
the assumption that all JDeveloper 9i components (e.g. Java files, XML files) are stored as files in the repository,
rather than structured objects. This tight integration - together with the Oracle9i Designer capability of storing
structured database objects - makes Oracle9i Designer/Repository 9i/JDeveloper 9i an effective and productive
development and deployment tool stack.

Dependency analysis for Java files

You could enrich the repository with dependency information for Java files by analyzing your Java files via the
Dependency Manager for dependencies with other files and structured objects (e.g. table usage). See also the
section about dependency analysis.

Oracle9i Designer Migration Guide Part 3

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part3_9i-1.htm (38 of 39) [19/08/2002 16:05:58]

Prev Next

Copyright © 2002, Oracle Corporation.

All Rights Reserved.
Contents

Oracle9i Designer Migration Guide Part 3

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part3_9i-1.htm (39 of 39) [19/08/2002 16:05:58]

Oracle9i Designer Migration Guide
Part 4. Migrating generated Forms applications to Oracle9i Designer

Contents

Chapter 1 Introduction
This migration guide provides the information necessary for upgrading Forms Applications that were designed and generated using
earlier releases of Designer to Oracle9i Designer.

The document discusses migration from the following earlier releases:

1.3.2●

2.1.2●

6.0●

This document assumes that you have already installed Oracle9i Designer and migrated your repository. (See the instructions in Part
2 of this Migration Guide.) The document then explains steps that you have to take so that you can:

Generate your application from Oracle9i Designer and achieve the same generated results you had from earlier releases, and●

Take advantage of new features that have been added to Designer since your previous release.●

Throughout the document, special mention is made of any migration issues known at the time of publication of this document.

There are a number of migration scenarios that are possible in bringing your Designer generated applications forward into Oracle9i
Designer.

Scenario 1. Migrate, Regenerate All, No Redesign
In this scenario, you will regenerate your entire application from Oracle9i Designer, including all forms, libraries, menus and reports.
However, you will continue to use your existing template forms and object libraries.

The goal of this scenario is to be able to generate your application out of Oracle9i Designer and achieve the same results you got
when generating out of your previous Designer release. No attempt is made to redesign your existing application to make use of new
features available in Oracle9i Designer.

This scenario has the following characteristics:

It is fast and requires minimal changes in the application definition in the Oracle Designer repository●

It uses your existing templates and libraries, upgraded to Forms 9i. Any customizations made to the templates and libraries are
preserved.

●

It does not take advantage of any new features in Oracle9i Designer. It is merely a 'technical' upgrade.●

This scenario is appropriate when:

Your application is already in production.●

Your application is stable, no major functional modifications are expected.●

Maintenance is limited to simple bug fixing.●

Your application is 100% generated, or post-generation modifications are minor.●

Scenario 2. Migrate, Regenerate All, With Redesign
In this scenario, you will regenerate your entire application from Oracle9i Designer, including all forms, libraries, menus and reports.
As you regenerate each module, you will make use of new features as appropriate.

The goal of this scenario is to take advantage of the new features available in Oracle9i Designer. As with Scenario 1, you want to be
able to generate your application and get the same user interface you got from your previous release of Designer. However, many

Oracle9i Designer Migration Guide Part 4

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part4_9i-1.htm (1 of 44) [19/08/2002 16:06:05]

new features have been added to Designer to make achieving the desired result easier. Many features that were difficult or impossible
to generate with earlier releases of Designer are now supported. Thus, in one pass, you can eliminate post generation modifications
and difficult constructs that were used only to work around limitations of earlier releases of Designer.

This scenario has the following characteristics:

Any customizations made to the templates need to be applied to the Oracle9i Designer versions.●

It requires modifications in many module definitions, and is therefore more time-consuming●

It fully leverages the new features in Oracle9i Designer.●

This scenario is appropriate when:

Your application is still in development.●

Your application is in production, but major functional modifications are to be made, or are expected.●

Your application requires modifications that can only be implemented using the new functionality in Designer.●

Your application has been heavily modified post-generation, but the majority of the modifications are no longer needed due to
the new functionality in Designer.

●

Scenario 3. Migrate, Regenerate Incrementally
This is the most complex scenario. In this scenario, you will migrate your application a little at a time, rather than all at once. You
will begin by upgrading all of your forms, libraries, menus and reports to Forms 9i. You will then make the changes required to run
forms generated from your previous release of Designer alongside forms generated from Oracle9i Designer. Finally, over some
arbitrarily long period of time, you will regenerate all of your modules out of Oracle9i Designer.

The goal of this scenario is to allow you to regenerate your whole application, taking into account new features, but in such a way
that you do not have to migrate your entire application in one go. This means you will be able to move the deployed application to
the new tool stack before you have completely migrated every form. Thus, you can continue with bug fixes and new development in
parallel with the continuing migration effort.

This scenario has the following characteristics:

It requires you to do work to allow old and new generated forms to run side by side. This is extra work that is not required for
Scenarios 1 and 2, and that will eventually be discarded. Thus, the total effort required is greater.

●

It allows you to perform a phased migration. You can take advantage of the new Designer features right away, without the
need to regenerate all your forms at once.

●

This scenario is appropriate when:

Your application is in production, but major functional modifications are to be made, or are expected.●

Your application requires modifications which can only be implemented using new functionality in Designer●

Your application is too large to migrate in one ‘big bang'.●

Scenario 4. Forms Migration Only
The first three scenarios all eventually require you to regenerate your application. Any post-generation modifications will be lost. If
you heavily modified your application post-generation, and the characteristics of Scenario 1 apply to your situation, you might
consider only upgrading the runtime environment to Forms 9i, and not upgrading to Oracle9i Designer. This implies that all future
maintenance has to be done manually in Developer.

This part of the migration guide does not cover a 'Forms only' migration. For information on migrating Forms to 9i, see the Oracle
Technology Network at http://otn.oracle.com/products/forms and select ‘Migration’ under ‘Oracle Forms Technical Information’.

Note that, even though you may choose not to use Oracle9i Designer for continued form generation, you may still use Oracle9i
Designer to maintain your database definitions. You may also choose to use the Software Configuration Management features of
Oracle9i Designer to manage your application source code (.fmb, .mmb, .pll and .rdf files).

For information on Software Configuration Management with Oracle9i Designer, see the Oracle Technology Network at
http://otn.oracle.com/products/repository .

Oracle9i Designer Migration Guide Part 4

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part4_9i-1.htm (2 of 44) [19/08/2002 16:06:05]

http://otn.oracle.com/products/forms
http://otn.oracle.com/products/repository

Scenario 5. Design Capture
If you heavily modified your application post-generation, and the characteristics of Scenario 2 apply, you may want to consider using
the Design Capture features of Oracle9i Designer.

This part of the migration guide does not cover Design Capture. For information on Design Capture, see the Oracle Designer online
help.

Chapter 2 Oracle9i Designer New Features
Depending on which Designer release you are coming from, many features of Oracle9i Designer may be new to you.

This chapter presents a brief overview of new features that are of particular interest when migrating a generated forms application. It
is by no means an exhaustive list of all new features, and it does not try to explain each new feature in detail. Rather, it introduces the
relevant features and points you to where you can find more information in the Oracle9i Designer online help.

This chapter is organized by Designer release. You should begin reading at the section for your "from" Designer release, and then
continue reading the sections for any later releases. For example, if you are migrating from Designer 1.3.2, you need to read all the
sections below. If you are migrating from Designer 2.1.2, you may skip the section on Designer 1.3.2 and read the sections for
Designer 2.1.2 and 6.0.

Migrating from Designer 1.3.2
This section describes new features added in release 2.1.2. If you are already at release 2.1.2 or higher, skip this section.

Design Editor

The functionality provided by individual Release 1 design level tools is now incorporated into a single tool called the Design Editor.
Each of the Release 1 tools maps onto a Design Editor component. It is essential that you understand how to use the Design Editor
before beginning your migration.

Release 1.x tool Release 2.x Design Editor components

RON Design Editor Navigator

The Design Editor Navigator is a key component within the
Design Editor. It is similar to the RON, but contains only
objects specific to the design phase.

You can use drag and drop, instead of clicking on menu
options or toolbar buttons, to perform a wide range of
tasks. For example, you can create a module diagram from
a module definition by dragging the module from the
Design Editor Navigator component onto the worksurface.
You can also drag existing Repository definitions from the
Navigator onto the diagrams.

Most of the tasks that can be performed using other Design
Editor components can also be performed from the Design
Editor Navigator.

Oracle9i Designer Migration Guide Part 4

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part4_9i-1.htm (3 of 44) [19/08/2002 16:06:05]

RON Property Palette Design Editor Property Palettes and Property Dialog boxes

When you create and edit repository definitions in the
Design Editor, you can use either Property Dialog boxes
(new for Release 2) or Property Palettes.

Property Dialog boxes are wizard-style elements that walk
you through complex tasks. They are especially useful
when creating whole new modules or module components
as they walk you through all of the required tasks in order.
They are also useful as a tool for learning Designer.

Property Palettes provide you with a direct way of
entering/editing information for all of the properties that
exist for an object. Property palettes are the quickest way
of setting properties for existing objects, because all
properties are displayed in a single palette.

Module Diagrammer Module Diagrams

Module Diagrams are created by dragging a module from
the Design Editor Navigator to the worksurface.

Preferences Navigator Preferences Palette

Preference values are set using the Preference Palette
within the Design Editor. Some behaviors that used to be
governed by preferences (for example Item Group
Orientation) are now properties in the associated object’s
property palette. Many new preferences have been added.

Module Logic Navigator Logic Editor

In previous releases you could define server-side
procedural logic by recording PL/SQL functions, packages
and procedures. In this release you can also record
'application logic’ which corresponds to Form Level, Block
Level and Item Level Triggers in Forms.

Module Structure
Diagrammer

Module Network/ PL/SQL Composition viewer

A module network viewer enables you to display module
networks horizontally in the Design Editor Navigator. This
allows you to clearly see the relationships between the
modules in a network.

Module Components

The structure of a module changed after Designer 1.3.2. Modules are now broken down into module components. Each module
component consists of one base table usage and zero or more lookup table usages.

Module components can also contain so-called unbound items that are items that are not part of the base or lookup tables. This
eliminates the need for secondary column usages.

Module components can also be designated as ‘re-usable’. This means that a single module component can be included in multiple
modules.

Oracle9i Designer Migration Guide Part 4

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part4_9i-1.htm (4 of 44) [19/08/2002 16:06:05]

Form Logic in Designer

One of the most important changes in Designer is the ability to record form level, block level and item level triggers in Designer.
Each module, module component and item has a node for adding application logic. This can consist of one or more pl/sql code
segments. Designer lets you intersperse your custom code segments before, between, after and instead of code segments that
Designer itself will generate.

Preferences and the Object Library

Form Builder has introduced the new concept of the object library. An object library is the collection of forms objects into a file that
uses the .olb suffix. Objects from the object library can be subclassed into forms. Thus, the object is a sort of super template.
Designer allows you to use the object library for subclassing into generated forms. Designer comes with a pre-defined object library
that contains a number of objects recognized and used by Form Generator. You can also extend this object library to add your own
objects.

Designer still uses (and provides) a template form, but this template form now works very closely with the object library.

Designer also provides a utility for building an object library from a maintenance form. This form has a name like [designer
home]\bin\fm2libxx.exe where xx is the major Designer release number. There is also a .txt document that explains how to use the
utility.

See the Form Builder online help for information about how to use the object library.

The object library can now govern many of the settings and behaviors that used to be governed by preferences. Thus, many of the old
preferences are now obsolete. See the Design Editor online help about preferences for information on which preferences are now
obsolete.

TAPI (some logic can go in the server instead of in the form)

Designer now allows you to generate a table API that acts as a server-side wrapper for your tables to enforce business logic.
Essentially, this boils down to one pl/sql package per table. The PL/SQL package is stored in the database. Each table has database
triggers that invoke the TAPI.

Logic that used to be placed in your form can now be placed in the TAPI. For example:

Populating a primary key from a sequence●

Populating audit columns●

Populating default values●

Validating dynamic domains●

Simple business rule validation●

Generated forms use the new ‘Returning’ clause to refresh data generated by the TAPI into the form record buffer.

See the Designer online documentation for more details about the TAPI.

PL/SQL Libraries in Designer

Library generation is a major new feature in this release. Features of the new Library Generator are:

Generation of library modules (.pll files) from repository library module definitions (either as a separate operation or during
generation of a module to which it is attached).

●

Design capture of existing library modules into the repository.●

Reports

The module component, a new Repository object, provides a container for the tables, columns, and derived items that Report
Generator uses to generate a query. A module component contains one base table usage. It also may contain one or more lookup
table usages and two new types of table usages:

subquery table usages●

single-row SQL aggregate table usages.●

Oracle9i Designer Migration Guide Part 4

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part4_9i-1.htm (5 of 44) [19/08/2002 16:06:05]

In this release, groups are generated from the Item Groups that are defined in the module component. In addition, some of the
properties that control group generation are now item group properties. For example, you can define a layout style for each break
item group.

In this release, Report Generator provides a simpler interface for defining break groups in Group Left (Break) reports. To define the
"break" column or columns, create a new break item group and add the break columns to it.

To define the column values that you want to display in a generated report, you define a new type of repository object, a bound item.

You can now add Oracle Developer Report Builder report triggers and named routines directly to Oracle Designer repository
objects.

This release includes a new type of repository object for defining navigation between report modules or between a report module and
another type of module: the Navigation Action Item.

You can now generate a matrix report from a single module component. In previous releases, you could only generate a matrix report
from three base table usages (module components): one for each of the matrix groups.

There is now a distinction between two types of summaries:

Computed summaries, which are calculated on the client●

SQL Aggregate summaries, which are calculated on the server●

There is now a distinction between three types of derived items:

SQL Expressions, which are evaluated on the server●

Client Side Functions, which are evaluated on the client●

Server Side Functions, which are evaluated on the server●

Reports on the Web

In the previous release of Report Generator, you generated a report for Web output by attaching the CGWEBP.RDF (PDF) or
CGWEBH.RDF (HTML) template to the report module. This release of Report Generator includes a new preference, DSPFMT, for
specifying the type of report output.

In this release, you can generate HTMLCSS output to support cascading style sheets.

In the previous release of Report Generator, the CGWEB.pll library contained PL/SQL code for generating Web functionality such as
hypertext links and tags. The library was attached to the default template report. In this release, Report Generator generates calls to
Report Builder SRW built-in procedures instead of calls to procedures in the CGWEB.pll library. The CGWEB.pll library is no
longer necessary and is therefore no longer attached to the default template report. However, CGWEB.pll is still supplied with this
release of Report Generator to support generation of report modules that have been upgraded from the previous release. To attach
CGWEB.pll to reports generated using this release of Report Generator either set MODLIB to CGWEB.pll or use Report Builder to
attach CGWEB.pll to the template report.

Report Queries

In this release, Report Generator does not automatically generate a parameter that specifies the START WITH clause for treewalk
links. To specify the START WITH clause and other treewalk link properties, use the table usage repository properties.

This release includes a new type of table usage: the subquery table usage. The subquery table usage enables you to explicitly define a
subquery. In previous releases, you created subqueries by defining a table usage and hiding all the items (detailed column usages) in
that table usage. In this release, you simply select the parent table usage and define a new table usage, specifying "Subquery" as the
type. Use the WHERE clause property of the subquery table usage to define the restriction that you want the subquery to apply. This
release also provides a more direct way of adding the NOT operator to reverse the logic of the query. Instead of setting a preference
(ANNOTR), reverse the logic by setting the 'Not Exist?' Repository table usage property.

The new preference DETLNK controls how Report Generator creates the link between master and detail rows and enables you to use
correlated subqueries to increase network efficiency.

You can now retrieve all rows from two or more tables by defining a SQL query set. When you define a SQL query set, Report
Generator adds the UNION operator to the generated query to return all rows from all SELECT statements.

In this release, Report Generator adds all bound items to the generated SELECT list. In previous releases, if you specified that a

Oracle9i Designer Migration Guide Part 4

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part4_9i-1.htm (6 of 44) [19/08/2002 16:06:05]

detailed column usage should not be displayed on the generated report, Report Generator removed the column from the SELECT list.
You do not need to define bound items for foreign key columns unless you want to generate a field for the foreign key column.
Report Generator adds the foreign key column to the SELECT list when needed to join module components or table usages.

Report Parameter Forms

If you create parameters in the report module definition, the parameter form is created whenever you run the generated report. Report
Generator no longer supports parameter form generation, parameter form templates, or parameter form layout preferences.

Domain validation of parameters is now controlled on the server. For more information, refer to 'About reference code tables' in the
Server Generator on-line help.

Template Definition Files

This release of Report Generator supports template definition files (TDFs), which are new in Oracle Developer Report Builder 3.0. If
you upgrade report modules from previous releases of Oracle Designer, Report Generator automatically converts RDF templates to
TDF format.

The close integration between Report Generator and Report Builder templates also means that some of the customization via
preference settings and post-generation modifications is now consolidated. For example, spacing between labels, fields, and groups
can now be set using Template properties.

In the previous release of Report Generator you were able to add default boilerplate object keywords to your layout model template
and apply formatting styles to these objects. This was to allow generated objects in the report to inherit the format that you applied to
the boilerplate object. In this release, the font and visual attributes can be specified in the template definition file.

Removed boilerplate object keywords How to customize in Release 2
CG$M1 and CG$M2 Combined into one object CG$MT
CG$BUTTON Use the repository item properties width

and height
CG$SIZING Use the Report Builder with the Layout

Model open
CG$DCU_GRP_FRM Use the Template properties in the

Oracle Designer Item Group Style/Title
sections

CG$HEADER Use the Template properties in the
Frames section of the Layout Model
Body

CG$PARAMETER This functionality is not supported in this
release

CG$PROMPT Use the Template properties in the
Field/Labels Headings section of the
Layout Model Body

CG$FIELD Use the Template properties in the Fields
section of the Layout Model Body

CG$US Use the Report Builder Layout Editor to
create a field in the Report Builder
template, and set the source to be a
column that is of datatype char (e.g.,
DESNAME). Add the following Report
built-in function call to the Format
Trigger: srw.set_field_char (0, user)

Migrating from Designer 2.1.2
This section describes new features added for release 6.0. If you are already at release 6.0 or higher, skip this section.

The biggest change for Form Generation in moving from Designer 2.1.2 to Designer 6.0 was the change from Forms 5 to Forms 6.
There were a few minor changes in addition to this:

Oracle9i Designer Migration Guide Part 4

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part4_9i-1.htm (7 of 44) [19/08/2002 16:06:05]

generation of bean area items containing Java Beans●

generation of custom (java) user interface components (which includes support for the Oracle Look and Feel)●

full screen menu generation no longer supported.●

Migrating from Designer 6.0
This section describes new features added for release 6i.

LOV components

The new repository LOV element simplifies the process of LOV generation by decoupling LOVs from lookup table usages. This not
only makes it easier to define LOVs, it also enables you to:

define multiple LOVs for the same block●

reuse the same LOV in multiple blocks and multiple forms●

define LOVs for unbound items.●

New Layout Features

This release includes a number of new layout features. Some of these new features can cause changes to the layout of your migrated
applications.

There are a number of new layout styles available:

support for the splitting of blocks across multiple canvases by generating multi-region blocks, and also the design capture of
multi-region blocks

●

support for the placing of blocks beside each other on the same canvas●

generation of navigator style forms (to provide a user interface similar to that of the Design Editor) and navigator style items.●

You can now generate spreadtables onto tab canvases.

This release introduced relative tab stops (as distinct from absolute tab stops in previous releases) as a means to position and align
items and item groups. Your migrated applications will continue to use the old absolute tab stops unless you specifically change
them to use the new relative tab stops.

Enhancements have been added to layout functionality, including:

Specification of real units when setting the decoration preferences.●

Extra line above decoration options for the preferences BLKDEC, CONDEC, GRPDEC, OFADEC, RADDEC, STBDEC.●

Using BLKSBP, you can position a block scrollbar to the right or left of the multi-record area within a block instead of to the
right or left edge of the block itself.

●

In multi-record blocks in which the lines do not wrap, Form Generator now positions a summary item below the item it
summarizes (instead of repeating the summary item for each displayed row).

●

If a module component's Width property was not explicitly set, Form Generator reduces the width of the generated block to
optimize side-by-side block layout by removing any unused space to the right of the rightmost item.

●

The new LAYFRA preference gives you the option to generate frames instead of graphic objects/text as decoration.●

Increased coverage for the preferences ITMPPE and ITMMPW to allow expansion of other types of generated text as well as
item prompts.

●

You can now display values from a lookup table in a combo box, as well as in a text list or a poplist.●

Support for New Oracle Forms Features

Enhancements have been added to support native Oracle Forms features, including:

Native Oracle Forms tooltip support for generated items using ITMTIP.●

Generation of Oracle Forms display items is now supported, along with a corresponding new standard source object called
CGSO$DISPLAY_ITEM.

●

Generation of Oracle Forms hierarchical tree items is now supported, along with a corresponding new standard source object●

Oracle9i Designer Migration Guide Part 4

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part4_9i-1.htm (8 of 44) [19/08/2002 16:06:05]

called CGSO$HTREE.

Generation of mirror items from unbound items.●

Placing all generated code into a generated module library attached to the generated form rather than into the generated form
itself using the new PGULIB preference.

●

Support for New Oracle8 Features

Enhancements have been added to support new Oracle8 features available in Oracle Forms, including:

Use of the Oracle8 RETURNING clause when inserting or updating records, enabling the form to populate a base table item
with the value returned from a derived column without having to requery the database.

●

Chapter 3 General Migration Issues
There are a number of actions you must take regardless of which migration scenario you choose.

This chapter is organized by Designer release. You should begin reading at the section for your "from" Designer release, and then
continue reading the sections for any later releases. For example, if you are migrating from Designer 1.3.2, you need to read all
sections below. If you are migrating from Designer 2.1.2, you may skip the section on Designer 1.3.2 and read the sections for
Designer 2.1.2 and 6.0.

Migrating from 1.3.2
This section covers general migration issues when migrating from Designer 1.3.2. If you are migrating from a later release, you may
skip this section.

Add System Folder to Oracle9i Designer Workarea

If your migrated modules have '*******' in the Language property, it means that they are referencing the language from another
folder, usually the System Folder. If this happens, modify your workarea to include the System Folder.

Generating Context-Sensitive HTML Help

When application systems are upgraded to Oracle9i Designer, the Help Context Id Prefix is nullified for all Repository objects. The
ID's are cleared because Oracle9i Designer uses a different format for the help IDs (see bug 656392).

If you have context-sensitive online help, you must generate the Help file(s) before you start generating the forms! By
generating the Help file(s), new Context IDs are generated.

Module Implementation Name

In earlier releases, Form Generator derived the name of generated source and executable files from the module's Short Name property
and ignored a module's Implementation Name property. MS Help Generator did use the module's Implementation Name property
and required that its value was six characters or less.

It is therefore quite likely that a module developed using Oracle Designer 1.3.2 has its Short Name property and Implementation
Name property set to two different values.

In Oracle9i Designer, Form Generator uses a module's Implementation Name property to derive the name of generated source and
executable files. The (HTML) Help Generator continues to use a module's Implementation Name property, but the six-character limit
has been removed.

This may be an issue where:

You have added code in one module to call another module (i.e. if user code or template code in a generated form calls another
generated executable).

●

The called module's Implementation Name and Short Name properties are different.●

If you generate the called module in Oracle9i Designer, the call will fail because the called executable will have a different name to

Oracle9i Designer Migration Guide Part 4

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part4_9i-1.htm (9 of 44) [19/08/2002 16:06:05]

that expected in the code.

Change the Implementation Name property of every form and menu module to the value of the module's Short Name property.●

Where/Validation Condition on Lookup Table Usages

In version 1.3, the where/validation condition on Lookup Table Usages could be used to restrict the allowable foreign key values.
The where validation condition entered was applied in three places:

in the LOV record group query to restrict the records displayed in the LOV●

in the WHEN-VALIDATE-ITEM trigger on the foreign key column(s), to make sure the restriction was also applied when the
value was entered manually without using the LOV

●

in the POST-QUERY (or POST-CHANGE in case of a hidden FK column) trigger to apply the restriction to existing rows●

However, using the same where clause for the POST-QUERY places a limitation on the use of foreign keys. With this schema, you
cannot create a relationship where all lookup rows are valid on existing records, but only some subset of the lookups can be used
when creating a new record.

To address this issue, many developers specified sophisticated conditions in the WHERE/Validation Condition property.

In Oracle9i Designer, the WHERE/Validation condition property has been replaced with two properties to handle the two different
operations:

The Lookup validation WHERE Clause property is used to restrict the value in the LOV and validate values entered directly
into a field.

●

The Where Clause of Query property is used to restrict the existing records returned by querying the block.●

On upgrade, both the 'Lookup validation Where Clause' property and the 'Where Clause of Query' property are populated with the
value of the Designer 1.3.2 'Where/Validation Condition' property. If you have included sophisticated conditions in the
Where/Validation Condition property of lookup table usages to avoid inappropriate constraint violation messages, these are unlikely
to be suitable for the new Where Clause of Query property.

You will probably need to clear the ‘Where Clause of Query’ property on lookup table usages after upgrading. You may also need to
clear it on base table usages, though only if it is related to the old LOV (i.e. the base table usage may also have its own valid where
clause that you don't want to delete).

In addition to splitting the 'Where/Validation Clause', the implementation of the 'Where Clause of Query' no longer uses the
POST-QUERY or POST-CHANGE trigger. The 'Where Clause of Query' on the lookup table usage is now added as a sub-select to
the 'Where Clause' of the base table block in the generated form. This is a much better implementation, as you no longer get an error
message when querying an existing record that violates the restriction. A side effect of the implementation is that if you have used
system variables in the old 'Where Clause' and you fail to clear the 'Where Clause of Query' property, your form will fail to compile
as references to System variables are not allowed in the block 'Where Clause'.

Titling of First Block

Preference PAGTFB governs the titling of the first block on a page. This preference did not work when set to Yes in version 1.3. In
version 9i the preference works fine, which means that if the value is set to Yes, and you generate the form again with version 9i, the
layout will be different from the 1.3 generation as the block title will appear now.

Names of Lookup Items Changed

In Designer 1.3.2, the user could not control the name assigned to lookup items in the generated form. The generator typically
determined the item name by prefixing the column name with DSP_. In Oracle9i Designer, the user is able to explicitly set the name
of lookup items, and the default is set to L_<column name>. But, the migration from Designer 1.3.2 to Oracle9i Designer sets the
lookup item names to the new style names, rather than the old style names. Thus, if you have any PL/SQL code in your libraries that
refers to lookup items, the code will now be incorrect.

You will need to either:

update the lookup names (where necessary) in Oracle9i Designer to the old names, or●

update the PL/SQL code to use the new names.●

Oracle9i Designer Migration Guide Part 4

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part4_9i-1.htm (10 of 44) [19/08/2002 16:06:05]

Display in LOV Property Lost

In migrating from Designer 1.3.2 to Designer 6.0, the Display in LOV property is lost for all items except the FK item. Since this is
lost in 6.0, it is also not present in 9i.

You can either:

Correct the lookup column usages in Designer 6.0 before migrating to Oracle9i Designer, or●

Correct the LOV components in Oracle9i Designer.●

Long Item Names Truncated to 28 characters

If a column usage name was longer than 28 characters in Designer 1.3.2, it will be truncated in Oracle9i Designer. If you have
written pl/sql code in your modules that uses the long column name, it will no longer compile.

You will need to either:

update the column names (where necessary) in Oracle9i Designer to the old names, or●

update the PL/SQL code to use the new names.●

LOV Tile lost during upgrade

The LOV title is lost during the upgrade from Designer 1.3.2 to Designer 6.0. Since this is lost in 6.0, it is also not present in 9i.

You will have to manually add the title back to each LOV.

Space Added below Spreadtable Horizontal Scrollbar

In Designer 1.3.2, if you set SPRSBH=1, there was no vertical space below the horizontal scrollbar for a spreadtable. In this release,
there is always at least one line of vertical space below the scrollbar. There is no workaround. This has been logged as bug
#1781417.

Review the setting of USEPKR

In earlier releases, if the AUTOQY preference was set to Yes:

Form Generator generated a POST-FORM trigger to save the primary key of the current row into a global variable upon exit
from a form.

●

If the first block of a generated form is not insertable, Form Generator generated a WHEN-NEW-FORM-INSTANCE trigger
that uses the value of the global variable to query the base table of the block.

●

In Designer 9i, the USEPKR preference replaces AUTOQY and the requirements for the first block have changed. If you set
USEPKR to Query, the first block in the generated form must be query only (i.e. it must not be insertable or updatable). If you set
USEPKR to All, the first block can be insertable and/or updatable.

So Form Generator will no longer generate auto-queried forms where the first block must not be insertable but can be updatable.

If it is acceptable for the first block to be query-only (i.e. Not insertable or updatable), set USEPKR to Query.●

If the first block must be updatable, set USEPKR to All. Be aware that blocks that previously did not meet the conditions for
AUTOQY (i.e. blocks that are insertable) will also be autoqueried.

●

Menu Separators

You generate menu separators by defining a module with the Language set to null. During the upgrade process, the module language
is defaulted to ‘Developer/2000 Forms’. Therefore, you must clear the Language property again for the menu separator modules
before you generate the menu.

Name Resolution in Forms 9i

Strange behavior may occur whenever you have a routine in one .pll library that calls a routine in another .pll library. It does not
occur when the routine in the .pll library is called directly from the form.

Oracle9i Designer Migration Guide Part 4

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part4_9i-1.htm (11 of 44) [19/08/2002 16:06:05]

This is actually a Forms migration issue, rather than a Designer issue. However, since Designer 1.3.2 required extensive use of pl/sql
libraries for application code, you are likely to run into this issue, so we will discuss it here.

With Forms 4.5, you could define a program unit in one library, and then override it by creating a program unit of the same name in a
second library and adding the second library before the first library in the list of attached libraries.

For example, suppose you created a library, general_form_handler.pll with a procedure initialize_form. This procedure calls a
number of standard routines that are stored in core_routines.pll.

You attach core_routines.pll to general_form_handler.pll, and you attach general_form_handler.pll to your generater template form so
that it is automatically attached to all generated forms.

Now, suppose in myform4, you want to customize the procedure init_block from core_routines.pll. With Forms 4.5, you could
simply do the following.

When you called initialize_form from myform1, 2 or 3, it would call init_block from core_routines.pll. When you called
initialize_form from myform4, it would call init_block from form4.pll.

This worked because form4.pll is placed ‘on top of’ core_routines.pll in myform4’s list of attached libraries. Internally, this happens
because, in Forms 4.5, every time a call is made to a procedure, a new ‘search’ for a procedure with that name is executed, finding the
one closest to the form. This process is called 'Name Resolution'.

In Forms 9i (and all forms versions 5.0 and higher), the algorithm for name resolution has changed to improve performance. When a
library procedure calls another library procedure for the first time, name resolution is performed, and the program unit that is called is
cached in memory. The next time the same call is made, it uses the cached routine.

In our example, this results in seemingly strange behavior at runtime. If the user runs the application and opens myform4 first, and
then later opens myform1, 2 or 3, then all of the forms will use the version of init_block from form4.pll. On the other hand, if the
user opens myform1, 2 or 3 first, and then opens myform4, all of the forms will use the version of init_block from core_routines.pll.
The behavior of all forms depends on which version of init_block was opened first.

There are two workarounds for this problem.

Copy the chain of calling program unit(s) to the module specific library, even if you do not want to customize these program
units.

●

Since name resolution is always performed for routines that are called directly from a form, myform1, 2 and 3 will call
initialize_form from general_form_handler.pll and myform4 will call initialize_form from form4.pll. Then, since these two versions
of initialize_form are not the same 'calling' routine, name resolution will be performed again, and each version of initialize_form will
call its own init_block. Thus, each form will correctly call its own version of both initialize_form and init_block.

This is the preferred workaround, but not always feasible if the program unit being customized is called from various places.

Oracle9i Designer Migration Guide Part 4

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part4_9i-1.htm (12 of 44) [19/08/2002 16:06:05]

Copy the calling program unit (initialize_form) to the module specific library. Copy and rename the program unit you want to
customize. Modify the calling program unit to call the renamed version of this program unit.

●

For migration scenarios 1 and 3, where the original libraries continue to be used in the migrated application, you are more likely to
run into this behavior.

Generating Reports

The report generation process has changed dramatically. Report Generator now leverages the powerful new features in Reports 9i,
including the new concept of a report template file (.tdf extension).

Report templates allow you to define standard layout settings, like font, font size, margins between frames, labels and fields, etc.
Refer to the Report Builder online help for more information.

With the introduction of report templates, many layout preferences have become obsolete. These preferences have been removed
from Report Generator. Refer to the Report Generator online help for a complete list of new, modified and removed report generator
preferences.

As a consequence, you cannot use the old report generator template, since it contains a number of boilerplate objects that are no
longer supported, and relies on a number of layout preferences that have been removed. You should create new report templates from
scratch, or use the ones supplied with Oracle9i Designer.

Reports with Item Groups

The Layout Format of an item group used to be inherited from the module component in which it was contained. Now, the module
component and item group can each have a Layout Format. This means that for all item groups that have the Layout Format set to
'Standard', you should change the item group's Layout Format to match the value of the Layout Style of its module component.

Money Items

The display datatype Money is no longer supported. You will have to set the Format Mask property to get the money format you
like.

Reports with Across Style Layout

If the module component layout style is set to 'Across', and you have defined an item group within the module component, you should
make the following changes to the definition of the item group.

Set the item group's Layout Style to Across●

Set the item group's Break Style to Across●

Review the setting of PARNME

This preference is used when naming parameters for generated reports. Set it to Null to ensure that generated parameter names are
the same as the names defined in the repository.

Migrating from 1.3.2, 2.1.2 or 6.0
This section covers general migration issues when migrating from Designer 2.1.2 or Designer 6.0. These issues can also affect
migrations from Designer 1.3.2. The upgrade from these two releases is the same.

Oracle9i Designer Migration Guide Part 4

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part4_9i-1.htm (13 of 44) [19/08/2002 16:06:05]

Copy Where Clause of Lookup to LOV

The Designer migration fails to copy the where clause on the lookup table usage to the list of values. You will have to copy this
manually wherever you have used such a where clause.

Where Clause of LOV

If you have a where clause in an LOV, and that where clause references more than one column, the generated record group query will
be generated incorrectly. The first column references the LOV's table usage alias while subsequent columns reference the item in the
form.

Example: the where clause… REL_TYPE='S' and NAME like 'F%'

This is generated into:

SELECT REL1.ID ID,

 REL1.NAME NAME,

 REL1.DEL_STREET DEL_STREET,

 REL1.DEL_CITY DEL_CITY,

 REL1.REL_TYPE REL_TYPE

 FROM CLR_RELATIONS REL1

 WHERE /* CG$LOVI_WC_START REL 10 */

 (REL1.REL_TYPE='S' and :REL.NAME like 'F%')

 /* CG$LOVI_WC_END REL 10 */

Workaround: You must explicitly enter the table alias in front of the column names. In the example above, this would be :

REL1.REL_TYPE='S' and REL1.NAME like 'F%'

This has been recorded as bug #1422339.

Display Properties of LOV items

The Designer migration fails to copy the display properties from the lookup table usage to the list of values column usages. You will
have to copy these manually.

Further, the migration includes the primary key column in the LOV column usages, and sets the Display Property = Yes. Unless you
want the primary key visible as the first item in the LOV, you must change this display property to No.

LOVs using Filter Before Query

The old Forms bug which causes a runtime error when using aliases in the select clause of an LOV that has Filter Before Query set to
Yes has returned in Forms 6i. This has been logged as Forms bug #1347776.

You must repair all LOVs that have Filter Before Display? = Yes.

Determine which field will be the first displayed field in the generated LOV.●

In the LOV component in Oracle9i Designer, change the Name property of the column usage to match exactly its associated
column name. (Usually, remove the L_<alias>_ from the beginning of the Name.)

●

New Possibility for LOV Buttons

Designer now lets you define a runtime webforms paramater in your registry.dat file which causes a field with an LOV to display a
'…' in the field body when the user places the cursor in the field. Thus, you are no longer required to generate LOV buttons to give
the users a visual clue that an LOV exists.

If you want to take advantage of this, you will need to change preference LOVBUT to No. In the registry.dat file, set parameter:
app.ui.lovButtons=true

Oracle9i Designer Migration Guide Part 4

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part4_9i-1.htm (14 of 44) [19/08/2002 16:06:05]

Data Source Type = Query

There is a problem using Datasource Type = Query with a module component which includes a Lookup. When you use this
Datasource Type, Designer generates a post-query trigger to retrieve the lookup data. The problem shows up at runtime when you
query more records than will display on the screen, go to the last record displayed on the screen, and then attempt to go to the next
record.

At this point, running through the web-browser, the form locks. Running client server, the form closes.

When the post-query trigger is fired, Forms also fires the on-lock trigger to lock the record. It does this because, with this datasource
type, it thinks that the lookup field is a base table field. For some reason, on all records that did not show on the first screenful of
records, Forms is unable to obtain a lock on the record and returns FRM-40654. At this point, the form hangs or exits.

With this datasource type, it is not necessary to generate a post-query trigger. The lookup information is already being retrieved as
part of the base table query.

Solution: Either do not use this datasource type or you will have to do a post-generation change to remove the post-query trigger
generated by Designer.

This has been recorded as bug #1351904.

Updateable Views

Form Generator has changed how it handles views. Forms based on views can now retrieve server-generated values from the
database without any extra coding. In order to support this, Form Generator now requires that if a view usage is updateable, the
associated view must have a primary key defined in Designer.

To avoid this problem, add a primary key to all your views.

Views or Tables with No Primary Key

If you have a module component based on a view or table that does not have a primary key, you must set the NXTKEY preference to
No. If you don't, you will get a compile error on the form. Alternatively, you can add a dummy primary key to the table or view.

Views with Derived Columns

You can create a column on a view from an expression (such as the concatenation of two columns). However, the view column will
be generated with a default width of 4000 on the database. If you then use this column in an LOV, the generated record group will
not compile. A column in a record group is limited to a width of 2000.

Check the width of generated buttons

In earlier releases, Form Generator used two different sizing algorithms when determining the dimensions of generated items and
buttons.

In Oracle9i Designer, Form Generator uses the same algorithm to size both items and buttons. As a result, buttons are generated with
slightly smaller dimensions.

The change in dimensions will be particularly noticable where the generated application contains large buttons, and the button label
occupies the entire button face.

If changed button dimensions are unacceptable, increase the Width property of the repository item from which the button was
generated.

Variety of Layout Differences

This issue cannot be assessed until after you have followed your chosen migration scenario and begun generating forms. However, it
is included in the ‘General Migration Issues’ chapter since the same issues apply regardless of which migration path you choose.

Once you start generating your forms from Oracle9i Designer you will notice a variety of problems with layout. Depending on your
forms, the following issues may or may not cause problems for you.

Oracle9i Designer Migration Guide Part 4

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part4_9i-1.htm (15 of 44) [19/08/2002 16:06:05]

Due to the addition of Relative Tab Stops and Side by Side canvases, Designer has changed its algorithm for determining the
width and height of a generated canvas and the blocks it contains. In previous releases, if the Module Component's height and
width were set to null, Form Generator set the width to the value in preference PAGCWD, and set the height just large enough
to contain all the data (up to a maximum set in preference PAGCHT). Now, the algorithm is much more complex. (See the
Designer online help for all the details.) If you leave the height and width null, you will not get the same layout you got from
earlier releases. Chances are, the generated canvases and blocks will be larger. So, where we used to advise that you always
leave the module component Height and Width properties blank, it is better now to fill them in. Designer no longer just uses
the values you key in. It now calculates a good fit height and width from these values.

●

In previous releases, if you had a module component that was narrower than the canvas and you set the block justification
preference to CENTER, the data in the module component would be centered in the module component and the module
component itself would be centered on the content canvas. In this release, Form Generator centers the data in the module
component, but unfortunately it left-justifies the module component on the canvas. If you want a block centered, you will have
to explicitly set the block width to the same value as the canvas width in order to get the block contents centered on the canvas.

●

Designer has changed how it handles multi-line text display. If the field width is too large for the canvas, it used to expand the
canvas. Now it shrinks the multi-line text item. You will have to adjust your item sizes accordingly.

●

Tab handling has changed considerably with the introduction of relative tabs and changing the Horizontal vs. Vertical item
group property from a preference to a property. You may find you have to revisit your tab definitions.

●

A multi-record block with an overflow right may need to have the number of rows reduced so that the multi-row section is not
taller than the overflow section.

●

Oracle9i Designer has changed its functionality regarding the handling of scrollbars on a multi-record block whose data is
placed on tabbed item groups. In the previous release, there was no scrollbar on these screens. Designer now displays a
scrollbar on the context canvas next to the tabbed canvases.

●

Designer has changed its algorithm for calculating item widths. In general, the widths of items being generated are slightly
different.

●

Designer has changed how it determines the width of action items. Be aware that action item button width may not generate
correctly.

●

Chapter 4 Scenario 1: Migrate, Regenerate All, No
Redesign
In this scenario, you will regenerate your entire application from Oracle9i Designer, including all forms, libraries, menus and reports.
However, you will use your existing template form(s) and object libraries (if applicable).

The goal of this scenario is to be able to generate your application out of Oracle9i Designer and achieve the same results you got
when generating out of your previous Designer release. No attempt is made to redesign your existing application to make use of new
features available in Oracle9i Designer.

This chapter assumes that you have performed all the actions described in Chapter 3, General Migration Issues.

Migrating from 1.3.2
This section covers migrating from Designer 1.3.2. If you are migrating from a later release, you may skip this section.

Upgrading existing Forms 4.5 template forms

A number of changes to template forms created with Developer/2000 (Forms 4.5) are necessary before Form Generator 6i can use
them:

If a template visual attribute's Background Color property is set to Arrows, it must be set to None.●

Add comment CGAP$TES_SEQUENCE_BEFORE to each template trigger. This comment is needed because it is now
possible to sequence template trigger code either before or after the code that will be generated into the trigger by Forms
Generator.

●

Add comment CGAP$TNR to each template program unit.●

The template form must be upgraded from Forms 4.5 to Forms 6i.●

Oracle9i Designer Migration Guide Part 4

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part4_9i-1.htm (16 of 44) [19/08/2002 16:06:05]

Oracle Designer supplies a utility to perform these changes.

Read the PFRMxx.txt file in <oracle_home>\cgenfxx or <oracle_home>\bin.●

Run the PFRMxx utility to upgrade Forms 4.5 templates for use with Form Generator in Oracle9i Designer.●

You must run this utility for all template forms as well as referenced forms. You can do this in batch by creating a .bat file containing
the following line of code once for each form to be upgraded.

pfrmxx -i <input>.fmb -o <output>.fmb ChVisAt(arrows%none) AddTrg(CGAP$TES_SEQUENCE_BEFORE)

Review the Designer online help topics ‘…Release 1.x style…’ to determine any changes you may need to make to your template
form before generating.

Upgrade existing Forms 4.5 template menus

You cannot use the PFRMxx utility to upgrade template menus.

Open and save each template menu module using Form Builder 6i●

Upgrade Forms 4.5 Libraries

Upgrading the libraries is straightforward. To upgrade manually, you open the library in Form Builder 9i (or Report Builder 9i).
Form Builder will automatically start converting PL/SQL version to PL/SQL version 2. During this PL/SQL conversion you will be
asked to confirm certain conversion operations. You can safely press the 'Convert All' button if you are prompted for such a
conversion operation.

You can also create a .bat file to perform this upgrade in batch mode. Include the following line of code once for each library to be
upgraded.

ifcmpxx module=<library>.pll userid=<user>/<pass>@<connect> module_type=LIBRARY Logon=YES Batch=Yes upgrade=YES
version=45 build=No window_state=Minimize

Attached OFG Libraries

Designer release 1.3.2 attached a number of OFG libraries to generated forms. You may also have attached some of those libraries to
your custom PL/SQL libraries.

The Form Generator does not use these libraries anymore. Form Generator now uses a new, renamed version for each of these
libraries.

Designer 1.3.2
Library

Oracle9i Designer
Library

OFG4BSL OFGBSL

OFG4CALL OFGCALL

OFG4HPL OFGHPL

OFG4MES OFGMES

OFG4MNL OFGMNL

OFG4TEL OFGTEL

You must ensure the program units in the new libraries (which still have the same names as the old version) are used at runtime
instead of the old versions.

When you regenerate your forms from Oracle9i Designer, they will automatically get the new libraries attached.

However, if you attached the OFG4… libraries to your pl/sql libraries you will have to correct each library manually.

De-attach the obsolete OFG4… libraries from all libraries●

Attach the new OFG… libraries●

Oracle9i Designer Migration Guide Part 4

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part4_9i-1.htm (17 of 44) [19/08/2002 16:06:05]

Review use of the obsolete preferences and the setting of OLBOLD

This preference enables you to specify that Form Generator is to continue to use preferences made obsolete by the support for object
libraries.

The obsolete preferences are:

Preference Equivalent object library object property

AUTOHP Display Hint Automatically

BLKVSB Show Vertical Scroll Bar

COLSEC Enforce Column Security

IMGBEV Image Item – Bevel

IMGCMP Image Item - Compression Quality

IMGDHT Image Item – Height

IMGDWD Image Item – Width

IMGHSB Image Item - Show Horizontal Scroll Bar

IMGQLT Image Item - Display Quality

IMGSZS Image Item - Sizing Style

IMGVSB Image Item - Show Vertical Scroll Bar

LOVNAV Push Button - Keyboard Navigable

TXTBEV Text Item – Bevel

WINCLO Window - Close Allowed

WINDLG Window - Window Style

WINFHT Window - Height

WINFIX Window – Resize Allowed

WINFWD Window – Width

WINFXP Window – X Position

WINFYP Window – Y Position

WINHSB Window – Show Horizontal Scrollbar

WINICN Window - Icon Filename

WINICO Window - Minimize Allowed

WINICT Window - Minimized Title

WINMOV Window - Move Allowed

WINVSB Window - Show Vertical Scrollbar

WINZOO Window - Maximize Allowed

Note that the default setting of OLBOLD is No, so you will have to change this preference if you want to continue using the obsolete

Oracle9i Designer Migration Guide Part 4

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part4_9i-1.htm (18 of 44) [19/08/2002 16:06:05]

preferences. Also note that the OLBOLD preference is provided for backwards compatibility only. This preference and the obsolete
preferences will be removed in future releases of Form Generator.

Review Template Window Properties

Check if your old templates have windows which have 'Primary Canvas', 'Horizontal Toolbar' or 'Vertical Toolbar' properties set
explicitly to Null instead of inheriting null from the factory settings. (A small green box is displayed to the left of the property
name.) If so, re-inherit these properties. (The small green box will change to a bullet.)

Review the setting of STOOLB

This preference enables you to specify the name and extension (in the fomat myobjlib.olb) of a default object library. The value of
STOOLB is used as the default in the Object Library Name field on the Generate Form dialog box.

Since you have decided not to use an object library (by choosing this migration scenario), you must set STOOLB to null.

Review use of color palettes

When generating a form, Form Generator determines which color palette to give the generated form as follows:

If a template form is being used, Form Generator gives the generated form the template form's color palette.●

If a template form is not being used, Form Generator gives the generated form the default Form Builder color palette.●

In earlier releases, the template forms supplied with Form Generator did not use the default Form Builder template. Instead, they
used a color palette similar to that used in Oracle Applications forms.

In this release, the shipped template forms supplied with Form Generator have been given the default Form Builder color palette. If
you compare a form generated using the old templates and a form generated using the new templates you will notice significant color
differences.

However, the earlier template forms are still supplied (as .fmb files with names beginning with OFG4) to enable you to continue
using the non-default color palette.

If you have used one of the template forms supplied with Form Generator to generate forms, continue to use the same template form.

Note: If you intend to use an object library as well as the template form you used in earlier versions, be aware that the objects in the
shipped object libraries supplied in this release were created in forms that had the default Form Builder color palette. To generate
forms using both an object library and a template form, make sure objects in the object library were originally created in a form with
the same color palette as the template form. For more information, refer to the online help topic 'Notes on color palettes and Form
Generator'.

Review use of coordinate systems

Form Generator applies the coordinate system and the default character cell specified for the template form to the generated form.

Note: If you intend to use an object library during generation as well as the template form you used in an earlier version, there is an
issue you must be aware of:

If the object library contains objects that are subclassed or copied into the generated form, the generated objects might be sized
incorrectly. This situation occurs where objects in the object library were originally created in forms with a different
co-ordinate system to that of the template form.

●

To ensure generated objects are sized correctly, make sure any object library objects that will be copied or subclassed into the
generated form (e.g CGSO$LOVBUT) are created in a form with the same coordinate system as the template form you are
using.

●

Review the setting of MSGSFT

In earlier releases, you could use MSGSFT to specify a form-level procedure for displaying soft-coded messages for use instead of
the standard Forms message handling procedures.

In Oracle9i Designer, MSGSFT specifies the name of a package. Form Generator is supplied with a suitable message-handling
package called CG$FORM_ERRORS in the ofgtel.pll library. If you specify a package other than CG$FORM_ERRORS, the

Oracle9i Designer Migration Guide Part 4

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part4_9i-1.htm (19 of 44) [19/08/2002 16:06:05]

package you specify must contain the following three program units:

a procedure called PUSH●

a function called MSGGETTEXT●

a procedure called RAISE_FAILURE.●

There are also other naming conventions and parameter requirements you must follow if you decide to specify a package other than
CG$FORM_ERRORS. For these reasons, we recommend you copy CG$FORM_ERRORS and then modify the copy. For more
information, refer to the help topic 'About customizing the CG$FORM_ERRORS package'.

Refer to the help system to find out more about the requirements for a suitable message-handling package.

Review the setting of CANNTC

In earlier releases, you could use Form Generator to generate stacked item groups onto different stacked canvases displayed in the
same area on a form. Only one of the stacked canvases is visible at any one time. Users of the generated form select which stacked
canvas to display using a control poplist. This was an effective alternative implementation to Form Builder's native implementation
of tab canvases.

In Oracle9i Designer, Form Generator enables you to generate a native Form Builder tab canvas with a number of tab pages. Each
tab page contains a stacked item group.

Form Generator continues to support the alternative implementation (using stacked canvases and an item group), and uses the
CANNTC preference to determine whether to generate native Form Builder tab canvases or the alternative implementation.
However, the default setting of CANNTC (Yes) indicates that Form Generator is to generate native tab canvases.

Note that native tab canvases require more vertical space. If the increased vertical space required by tab canavases is not available,
set CANNTC to No.

Regenerating the Application System

In the Preferences Editor, at the application level, change the preferences STFFMB and STMMMB to the names of your (upgraded)
form and menu templates.

Use the Batch Generation option under the Tools menu in the Design Editor to generate your application.

You must generate the following object types.

Libraries (if you have Design Captured them)●

Menus●

Forms●

Reports●

Migrating from 2.1.2
This section covers general migration issues when migrating from Designer 2.1.2. If you are migrating from a later release, you may
skip this section.

First perform all the steps described in the section 'Migrating from 2.1.2 or 6.0' in the Chapter 3 "General Migration Issues", earlier in
this part.

Upgrade Forms 5.0 Libraries

Upgrading the libraries is straightforward. To upgrade manually, perform the following steps.

Open the library in Form Builder 9i (or Report Builder 9i)●

Choose Program -> Compile -> All●

Save●

You can also create a .bat file to perform this upgrade by including the following line of code once for each library.

Oracle9i Designer Migration Guide Part 4

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part4_9i-1.htm (20 of 44) [19/08/2002 16:06:05]

ifcmpxx module=<library>.pll userid=<user>/<pass>@<connect> module_type=LIBRARY Logon=YES Batch=Yes build=No
window_state=Minimize

Regenerating the Application System

In the Preferences Editor, at the application level, change the preferences STFFMB and STMMMB to the names of your old form and
menu templates.

Use the Batch Generation option under the Tools menu in the Design Editor to generate your application.

You must generate the following object types.

Libraries (if you have design captured them)●

Menus●

Forms●

Reports.●

Migrating from 6.0
This section covers general migration issues when migrating from Designer Release 6.0. If you are migrating from a later release,
you may skip this section.

First perform all the steps described in the section 'Migrating from 2.1.2 or 6.0' in Chapter 3 "General Migration Issues", earlier in
this document.

Regenerating the Application System

In the Preferences Editor, at the application level, change the preferences STFFMB and STMMMB to the names of your old form and
menu templates.

Use the Batch Generation option under the Tools menu in the Design Editor to generate your application.

You must generate the following object types:

Libraries●

Menus●

Forms●

Reports.●

Chapter 5 Scenario 2: Migrate, Regenerate All, with
Redesign
In this scenario, you will regenerate your entire application from Oracle9i Designer, including all forms, libraries, menus and reports.
You will use the new templates and object library provided by Oracle9i Designer. As you regenerate each module, you will make use
of new features as appropriate.

The goal of this scenario is to take advantage of the new features available in Oracle9i Designer. As with Scenario 1, you want to be
able to generate your application and get the same user interface you got from your previous release of Designer. However, many
new features have been added to Designer to make achieving the desired result easier. Many features that were difficult or impossible
to generate with earlier releases of Designer are now supported. Thus, in one pass, you can eliminate post generation modifications
and difficult constructs that were used only to work around limitations of earlier releases of Designer.

This chapter is organized by Designer release. You should begin reading at the section for your "from" Designer release, and then
continue reading the sections for any later releases. For example, if you are migrating from Designer 1.3.2, you need to read all the
sections below. If you are migrating from Designer 2.1.2, you may skip the section on Designer 1.3.2 and read the sections for
Designer 2.1.2 and 6.0.

Oracle9i Designer Migration Guide Part 4

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part4_9i-1.htm (21 of 44) [19/08/2002 16:06:05]

Migrating from 1.3.2
This section covers migration from Designer 1.3.2. If you are migrating from a later release, you may skip this section.

Object libraries

To take full advantage of the the new features of Oracle9i Designer, you must use an Object Library. You can use the default object
library provided with Designer, create an object library from your old reference form, or use a combination of the two.

Benefits

Object libraries are a new feature in Oracle Developer and are used by Form Generator in Oracle Designer. In earlier versions of
Form Generator, much of the functionality provided by object libraries was available using preferences and objects defined in
templates.

Since Oracle Designer Release 2, Form Generator has been able to use source objects in the object library to set the properties of
generated objects. This method is more flexible since you can change object properties in the object library and propagate those
changes to subclassed objects in generated forms simply by recompiling the forms (i.e. you do not have to generate the forms again).
We strongly recommend you make use of the flexibility offered by object libraries to set and maintain standards in the applications
you generate.

About object libraries

An Oracle Developer object library is a container for reusable objects. Object libraries enable you to:

reuse an object in many forms●

apply standards to existing objects.●

You can copy both objects and subclass objects from object libraries.

Object libraries are the recommended method for subclassing objects. Changes made to a source object in an object library can be
propagated to any objects subclassed from that object by recompiling the appropriate forms.

About subclassed objects

A subclassed object is similar to a copied object, except that a subclassed object maintains a link to its source object.

Subclassing objects is an efficient way to reuse objects and enforce standards. A subclassed object automatically inherits any changes
that have been made to the source object when you recompile a module containing it.

Object libraries are the recommended method for subclassing objects, since it is convenient to keep the source of subclassed objects
separately. Changes made to properties of a source object in an object library can be propagated to any objects subclassed from that
object by subsequently recompiling the appropriate forms.

Note: If you make changes to a subclassed object property that has been inherited from a source object, subsequently recompiling
the form will not modify the changed property. Changing the subclassed property removes the link between that property and the
source object. However, the link between unchanged subclassed properties and the source object remains in force.

Form Generator and object libraries

When you generate forms using Form Generator, you can specify that Form Generator creates generated objects by either copying or
subclassing from properties of source objects in an object library specified by the STOOLB preference.

You will typically want generated objects to inherit their properties from source objects, although you can direct Form Generator to
use preference settings or repository information instead. But because source objects have all the properties of generated objects,
using source objects enables you to set generated object properties that cannot be set using preferences or repository information.

Object libraries used by Form Generator can contain two types of source object:

standard source objects●

implementation source objects.●

Standard source objects

Oracle9i Designer Migration Guide Part 4

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part4_9i-1.htm (22 of 44) [19/08/2002 16:06:06]

A standard source object is an object in the object library that Form Generator is programmed to recognize and use when creating a
particular type of generated object. Form Generator uses the names of standard source objects to determine which to use during
generation. Standard source objects have names prefixed with CGSO$. The rest of the object's name indicates the generated objects
for which it can be the source. For example, the CGSO$CHECK_BOX standard source object is the source object for generated
check boxes. You can find a complete list of standard source objects in the Designer online help as well as in the default object
library shipped with Designer.

Implementation source objects

An implementation source object is an object that can be used to override a standard source object. You can explicitly direct the
Form Generator to use an implementation source object (instead of a standard source object) when generating a particular object.
You use the repository object definition's Template/Library Object property to specify the implementation source object that Form
Generator is to use.

You can specify two types of implementation source object:

user-defined implementation source objects, which you have created and named yourself●

shipped implementation source objects, which provide default Oracle Developer functionality and which have names prefixed
with CGAI$.

●

User-defined implementation source objects

You can add your own implementation source objects for any type of object. When creating a user-defined implementation source
object, we recommend you do not give it a name that begins with CGSO$ or CGAI$.

If Form Generator copies or subclasses properties of a generated block from an object library block, any items belonging to the object
library block are also included in the generated form. If such an item has a name that begins CGAI$, Form Generator places the item
below other items in the generated block and beside buttons generated from action items defined for the module component. For
more information, refer to the help topic 'Items copied or subclassed from items in object library blocks'.

Shipped implementation source objects

The shipped object library ofgstnd1.olb contains a number of implementation source objects that provide default Oracle Developer
functionality. The names of these implementation source objects begin with CGAI$. You can specify one of these implementation
source objects for the object Form Generator to use when generating:

an action item●

an unbound item with a Display Type of Button.●

Note: This same functionality was provided in earlier versions of Form Generator by CG$ button items in the template. Although
the CG$ button item method continues to be supported in this release, we recommend you use CGAI$ implementation source objects
instead.

For a list of the shipped implementation source objects and the equivalent CG$ template button items, refer to the help topic
'Alphabetical list of shipped implementation source objects'.

Creating an object library using the FM2LIBxx utility

Creating an Object Library the Hard Way

To create an object library using only Form Builder, you would have to perform the following steps:

Create an empty object library (.olb file).●

Create a dummy form (.fmb file).●

Add objects to the dummy form.●

Drag and drop the objects into the object library.●

Discard the dummy form.●

To maintain the object library, you would have to perform the following steps:

Open the object library.●

Create a dummy form.●

Oracle9i Designer Migration Guide Part 4

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part4_9i-1.htm (23 of 44) [19/08/2002 16:06:06]

Drag and drop the object you wish to modify from the object library to the dummy form.●

Make the desired changes.●

Drag and drop the object back to the object library.●

Discard the dummy form.●

This method has a number of disadvantages. First, the process itself is cumbersome and error prone. Much worse though is the fact
that if you have objects that are subclassed amongst themselves, then when you drag them out and back into the object library for
maintenance, all the subclassing is lost.

Creating an Object Library the Easy Way

Designer supplies a utility called FM2LIBxx (where xx is the Designer version number) that will automatically create an object
library from a form.

This utility enables you to create and maintain source objects in forms. Essentially, you create an 'object library maintenance' form
which includes everything you want to have in your object library. This form is not discarded, but kept as part of your template set.
Whenever you need to modify your object library, you make the changes in this maintenance form.

You use the FM2LIBxx utility to generate the object library .olb file from the maintenance form.

There are several advantages to this approach, including:

Ease of maintenance - you do not have to drag objects into a form module for editing and then drag them back into the object
library.

●

Subclassing information is retained when editing objects - subclassing information is lost when you drag objects into an object
library from a form module for editing.

●

For more information about using the FM2LIBxx utility, refer to the file fm2libxx.txt in the <ORACLE_HOME>\CGENFxx
directory.

Object libraries and earlier versions of Form Generator

Object libraries, obsolete preferences, and OLBOLD

In previous versions, Form Generator used a number of preferences to set object properties. For example, you might have set the
IMGBEV preference to determine the style of the border surrounding images.

The support for object libraries has resulted in a number of preferences becoming obsolete. For a full list of obsolete preferences,
refer to the online help topic 'Alphabetical list of obsolete preferences and the equivalent object library properties'.

We strongly recommend you do not use the obsolete preferences. However, to ensure backwards-compatability, you can set the
OLBOLD preference to specify that Form Generator continues to use these preferences instead of properties in the object library.

Note: The OLBOLD preference and the obsolete preferences will be removed in future releases of Form Generator.

Object libraries and CG$ template objects

In previous versions, Form Generator used a number of objects from the template form to control properties of generated objects.

In Oracle Designer Release 2, Form Generator continues to use CG$ template objects as in previous releases - with one exception.
When creating an LOV indicator button, Form Generator first searches the object library for a standard source object called
CGSO$LOV_BUT and uses that instead of a CG$LB template object if one has been defined.

Note: It is likely that CG$ template objects will be replaced by object library functionality in future releases of Form Generator.

Object libraries and CG$ template button items

In previous versions, Form Generator used a number of CG$ template button items from the template form to provide default Form
Builder functionality.

In this release, Form Generator continues to use CG$ template button items. However, equivalent functionality is also available
through the use of shipped implementation source objects (prefixed CGAI$) in the object library. For a list of the shipped
implementation source objects and the equivalent CG$ template button items, refer to the help topic 'Alphabetical list of shipped

Oracle9i Designer Migration Guide Part 4

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part4_9i-1.htm (24 of 44) [19/08/2002 16:06:06]

implementation source objects'.

Note that the behavior of Form Generator with regard to shipped implementation source objects and CG$ template button items is
slightly different. If a template contains CG$ template buttons, every form generated with that template contains those CG$ template
buttons. To include the same functionality in every generated form using CGAI$ objects, either explicitly specify implementation
source objects for individual unbound items in every module (potentially difficult to maintain and not recommended), or follow the
instructions below to generate a common control block:

Create a reusable module component.●

Create an unbound item for each generated item you want in the control block.●

Set the Template/Library Object property for each unbound item to the appropriate CGAI$ implementation source object.●

Include the reusable module component as the first or last component in every module.●

Object libraries and Generator named visual attributes

In previous versions, Form Generator applied a number of Generator named visual attributes (NVAs) from the template form to
generated objects.

In this release, Form Generator can use the properties of standard source objects in the object library to set the properties of generated
objects in much the same way as using Generator NVAs. This method is more flexible since you can change object properties in the
object library and propagate those changes to subclassed objects in generated forms simply by recompiling the forms. We strongly
recommend you make use of the flexibility offered by object libraries to set and maintain standards in the applications you generate.

However, to ensure backwards-compatability, Form Generator continues to use Generator NVAs on objects that have not been
subclassed or copied from an object library as follows:

If an implementation object in the object library has been specified for an object, use this if it exists.●

If an implementation object has been specified and it does not exist, or if no implementation object has been specified, use an
appropriate standard source object from the object library.

●

If no appropriate standard source object exists in the object library, apply the appropriate visual attribute from the template
form.

●

Note: Generator NVAs will be removed in future releases of Form Generator.

Object libraries and generated items' widths, lengths, and formats

In previous versions, if information about an item's width, length, and format were not recorded in the repository (either against the
column definition or the item definition), Form Generator obtained this information from a number of preferences (prefixed TXT).

In this release, if information about an item's width, length, and format are not recorded in the repository, Form Generator obtains this
information from source objects in the object library. Form Generator uses the corresponding TXT preferences only if no appropriate
source object exists in the object library, or if an appropriate source object exists but the relevent property has not been set.

Standard source objects and object libraries

During generation, Form Generator analyzes each object it creates to determine which standard source object it expects to use in the
object library. Form Generator can use a standard source object from an object library during generation providing the standard
source object:

has one of the recognized names●

is of the correct object type.●

Form Generator uses the names of standard source objects to determine which to use during generation. Standard source objects have
names prefixed with CGSO$. The rest of the object's name indicates the generated objects for which it can be the source. For
example, the CGSO$CHECK_BOX standard source object is the source object for generated check boxes. For a list of the
recognized names of standard source objects, refer to the online help topic 'Alphabetical list of standard source objects and object
types'.

The standard source objects are arranged in a predefined hierarchy. If Form Generator does not find the expected standard source
object, it searches the object library for the parent of the standard source object and uses that instead. For a graphical representation
of the standard source object hierarchy, refer to the online help topic 'Hierarchy of standard source objects'.

Oracle9i Designer Migration Guide Part 4

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part4_9i-1.htm (25 of 44) [19/08/2002 16:06:06]

Standard source object suffixes

In some cases, you can further refine the standard source objects from which Form Generator obtains properties for generated objects
by adding the suffixes below to the standard source object name:

Order Suffix Use if generated object will be a...

1 _MR ...multi-record block, or an item in a multi-record block

2 _CT ...control block (i.e. the module component contains only
unbound items)

3 _DO ...display only item

4 _MD ...mandatory item

You can use the above suffixes individually or in combination. Form Generator will use the most appropriate standard source item,
according to the order of precedence indicated.

Form Generator first searches the object library for a standard source object name containing all of the applicable suffixes. If no such
standard source object exists, Form Generator searches the object library for the standard source object name that contains the
greatest number of appropriate suffixes. If two or more standard source objects contain the same number of appropriate source
objects, Form Generator uses the one containing the suffixes highest in the order of precedence (see table above).

Note that Form Generator ignores a standard source object if any of the suffixes are not applicable.

Examples

Example 1: Form Generator is going to create a display-only check box in a multi-record block.

Form Generator searches the object library for each of the following objects, in the order shown:

CGSO$CHECK_BOX_MR_DO

CGSO$CHECK_BOX_MR

CGSO$CHECK_BOX_DO

CGSO$CHECK_BOX

CGSO$DEFAULT_ITEM_MR_DO

CGSO$DEFAULT_ITEM_MR

CGSO$DEFAULT_ITEM_DO

CGSO$DEFAULT_ITEM

As soon as Form Generator finds one of these objects, it subclasses or copies the object into the generated form and abandons the
search. If Form Generator fails to find any of these standard source objects, it creates a check box item using default item properties.

Example 2: The object library contains the following objects:

CGSO$CHAR_MD_DO

CGSO$CHAR_MR

CGSO$CHAR_DO

CGSO$CHAR

Form Generator is generating a form from a module that contains a display-only character item in a multi-record block. Form
Generator subclasses or copies the CGSO$CHAR_MR standard source object into the generated form because:

the _MD suffix in CGSO$CHAR_MD_DO is inappropriate●

the _DO suffix in CGSO$CHAR_DO is lower in the suffix order of precedence than _MR.●

Example 3: The object library contains the following objects:

CGSO$DATE_MR

CGSO$CHAR_MR_MD

CGSO$CHAR_DO

Oracle9i Designer Migration Guide Part 4

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part4_9i-1.htm (26 of 44) [19/08/2002 16:06:06]

CGSO$DEFAULT_ITEM

Form Generator is generating a form from a module that contains a mandatory data item in a single record block. Form Generator
subclasses or copies the CGSO$DEFAULT_ITEM standard source object into the generated form because:

the _MR suffix in CGSO$DATE_MR is inappropriate●

the only occurrences of CGSO$CHAR (i.e. the parent of CGSO$DATE) have inappropriate suffixes (_MR_MD and _DO).●

If the object library had contained a standard source object called CGSO$CHAR, or failing that an object called
CGSO$DEFAULT_ITEM_MD, Form Generator would have used these objects instead.

Current Record Indicator and the Object Library

If you want to use the Current Record Indicator in your forms, you must create a Visual Attribute called CG$CURRENT_RECORD
in your object library. This is not included in the Designer default object library, so you will need to add it.

Application logic

Benefits

The ability to record client-side code or 'application logic' in the repository is a new feature in Oracle Designer since release 1.3.2.

In earlier releases, you could include your own code in generated applications only by entering code for template objects or in
attached libraries. This method was cumbersome and prone to error.

In this release, not only can you enter the code in the repository but you can also:

specify which events in the generated application cause the code to execute●

specify whether your code executes before, after, or instead of code created by Form Generator.●

Storing the code within the repository also enables you to make use of Oracle Designer's dependency analysis features to assess the
impact of proposed changes.

About application logic

'Application logic' is the name given both to code created by the Form Generator and to code you enter by hand. Application logic
comprises event code (code that executes in response to particular events) and named routines (code that is called by event code).

There are different types of application logic:

Generated application logic - event code and named routines created by Form Generator.●

User-modified generated application logic - event code and named routines created by Form Generator and subsequently
modified by the user (and optionally captured into the repository).

●

User application logic - event code and named routines defined by the user in the repository.●

Object library (OL) application logic - event code and named routines for particular objects that are copied into the generated
application from a specified object library during generation.

●

Template application logic - form-level event code and named routines that are copied into the generated application from a
template during generation.

●

You can record application logic at the module level, the module component level and the item level.

In Form Builder, event code is implemented as trigger code. Event code segments are individual pieces of trigger code. A named
routine becomes a program unit held at module level or in an attached library, or on the server.

Where to enter application logic

The answer to this question depends on the complexity of the code involved. If the code is very simple (a few lines of code), then
you can enter the code directly in the event logic in the form module. However, if the code is complex, we recommend you include
as little code in the generated form as possible. In practice, this means including event code in the form that simply calls procedures
on the server or in an attached library. This strategy offers several advantages:

Maintaining generated applications is easier because code on the server or in a library can be modified without recompiling
generated forms.

●

Oracle9i Designer Migration Guide Part 4

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part4_9i-1.htm (27 of 44) [19/08/2002 16:06:06]

In the case of server-side procedures, network traffic is minimized and performance improved.●

It promotes reusability, since the same code can be used by different forms.●

It reduces the size of .fmx.●

The recommended scenario is shown in the diagram below.

We recommend that named routines that require database access (where the code includes SQL commands) be placed in stored
procedures on the server and not in an attached library.

Where to enter event code

If the event code (or calls to code stored on the server or in an attached library) is to be included in every form:

Enter block level and item level event code in an object library.●

Enter form level event code in the template form.●

If event code is to be included in a single form or in some but not all forms, enter the event code in the repository against the required
modules, module components and items.

Where to enter named routines

In a typical client server environment, we recommend you create named routines (e.g. procedures) either on the server or in a library
attached to the generated form. These named routines are then called by the event code incorporated in the generated form from the
repository, an object library or the template.

If the named routines are to be held on the server:

Enter the named routine in the Oracle Designer repository using the Logic Editor, and then run the Server Generator to create
the named routines on the server.

●

Enter the named routines manually in a text file, and then run the text file using SQL*Plus.●

If the named routines are to be held in an attached library:

Enter the named routines in a library manually using Form Builder and attach the library to the template form.●

Enter the named routines as application logic in a repository module of type Library, link the repository module to one or more
modules of language Oracle Developer Forms (or Oracle Developer Reports) in a module network, and use Library Generator
to generate the library module.

●

Capturing application logic from Form Builder applications

Oracle9i Designer Migration Guide Part 4

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part4_9i-1.htm (28 of 44) [19/08/2002 16:06:06]

You can capture (or 'reverse engineer') application logic into the repository from:

Forms you did not generate using Form Generator●

Forms you did generate using Form Generator and subsequently modified using Form Builder●

PLL modules (which can now be stored in Designer).●

During design capture, any user application logic or user modified generated application logic is captured into the repository.
However, Form Generator uses comments in the code to identify and ignore:

generated application logic●

template application logic●

object library application logic.●

Where a trigger is captured, the execution style property of the corresponding event is set to the same value.

Note that BEGIN and END; statements must appear on separate lines.

About generated application logic

What is generated application logic?

Generated application logic is the code generated by Form Generator each time a form is generated. Generated application logic is
not held in the repository.

If the form has already been generated, any existing generated application logic is overwritten.

Generated application logic comprises:

generated code groups●

generated named routines.●

Although generated application logic is not stored in the repository, generated code groups are represented in the Design Navigator
window. This enables you to sequence user code groups and user-modified generated code groups before and after generated code
groups.

Note that generated named routines are not represented in the Design Navigator window.

What are generated code groups?

Generated code groups are the standard sections of trigger code (and any called program units) generated by Form Generator.

Generated code groups are identified by a unique comment (e.g. /*CGRI$CHECK_ON_DELETE*/). If the generated form is
captured into the repository, these comments will enable Form Generator to identify the code as generated application logic.
Generated application logic is not captured into the repository during design capture.

For a list of generated code groups, refer to the following help topics:

"Form Generator code groups (grouped alphabetically)"●

"Form Generator code groups (grouped by functionality)".●

What are generated named routines?

Generated named routines are the standard program units created at module level by Form Generator.

About user-modified generated application logic

Using Form Builder, you can modify the application logic that Form Generator has generated.

To prevent user-modified generated application logic from being overwritten if the form is generated again, you must capture the
application logic into the repository.

Capturing the user-modified generated application logic into the repository enables you to generate the form again, incorporating the
changes you have made in Form Builder.

Oracle9i Designer Migration Guide Part 4

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part4_9i-1.htm (29 of 44) [19/08/2002 16:06:06]

About user application logic

User application logic is both:

code you enter into the repository using the Design Editor and the Logic Editor●

code you enter using Form Builder and then capture into the repository.●

When you enter user application logic, you specify it as being one of the following:

A named routine, which is generated as a Form Builder program unit and called from triggers or other program units●

An event code segment, which is generated as Form Builder trigger code●

About OLB application logic

Object Library (OLB) application logic is code (event code and named routines) associated with objects in the object library that is
added to blocks and items created during form generation.

When Form Generator includes an object from the object library in a generated form, any code associated with that object is also
included in the generated form.

About template application logic

Template application logic is the name given to named routines or event code (program units or form level triggers) that you create in
the template form. You might create template application logic to perform a common function that you want in all the forms you
generate.

Form Generator copies program units from the template form straight into the generated form.

Form Generator copies form level trigger code from the template into the generated form. Form Generator uses comments in the
template trigger code to determine whether to sequence it before or after generated code and user code for the same trigger.

Form Generator also copies form-level sub-classed triggers into the generated form. In this case, note that Form Generator is unable
to modify the sub-classed trigger code. Therefore, any functionality Form Generator would have added to the trigger had it been
non-sub-classed is not included in the generated form.

Unbound Items

In Designer 1.3.2, if you wanted to create a non-base table item you used a concept called Secondary Column Usages. This release of
Designer allows you to create Unbound Items, a much more flexible implementation of non-base table items.

Unbound items are items that exist within a module component, but are not associated with any table usage. You can define the type,
placement and display, as well as application logic, for unbound items. You can also define an LOV against an unbound item.

Your Secondary Column Usages will be automatically migrated to unbound items. However, they will retain the old (ugly) names
from 1.3.2. Consider renaming the unbound items to more descriptive names. Be aware however, that any code referencing the old
names will need to be updated to use the new names.

Action Items

Action items are a shortcut method of creating buttons in your application. There are two types of action items:

Navigation Action Items – used to navigate to other blocks in the same form or to navigate to other forms●

Custom Action Items – used to generate all other button items.●

Navigation action items are quick and easy to create and the code for the WHEN-BUTTON-PRESSED trigger is automatically
generated.

However, action items are always displayed on the bottom of the current window. Designer does not provide a mechanism for
specifying where you want the action item placed on the screen. If you want to control where the buttons are placed, you can:

Write a PRE-FORM trigger that explicitly sets the x and y coordinates of the generated buttons.●

Use an Unbound Item with display type Button instead (and write your own WHEN-BUTTON-PRESSED trigger).●

You should replace all buttons that were generated as secondary column usages with either unbound items or action items.

Oracle9i Designer Migration Guide Part 4

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part4_9i-1.htm (30 of 44) [19/08/2002 16:06:06]

Again, you can rename the action items to more descriptive names. You will need to update any code that references the old names.

Reusable module components

Benefits

In previous releases, the only way to copy part of one module to a new module was to copy the complete module, delete those
elements that you did not want, and then use the remainder as the basis for the new module.

In this release, you can simply specify that a module component be made reusable. Making a module component reusable
encapsulates the properties, preferences and event code. You can then include this reusable component in any number of modules.

Reusing module components in this way increases developer productivity and encourages consistency. The modules that use the
reusable component automatically inherit all changes that you make to the reusable component, its application logic, and its
associated preferences.

Reusable module components are an ideal way of defining control blocks to help give generated forms a common look and feel. For
example, placing standard Form Builder functionality in a common control block at the top of every form presents users with a
consistent interface.

Native Form Builder tab canvases

Benefits

Screen real estate on which to lay out the items that comprise an application is often severely limited, either by the physical size of
the screen or by the number of fields that have to be displayed. Users frequently have to navigate through many screens to enter
information.

In previous releases, a number of strategies were available to increase the virtual size of the screen:

Multiple content canvases●

Multiple stacked canvases●

Spread tables●

Different stacked canvases displayed in the same area on a form and accessed via a poplist.●

In this release, Form Generator can generate native Form Builder tab canvases, each containing two or more tab pages.

Native Form Builder tab canvases have standard Windows look-and-feel and an intuitive behavior. They can form an integral part of
your screen layout strategy.

About tab canvases and tab pages

What is a tab canvas?

A tab canvas enables you to group and display a large amount of related information on a single, dynamic canvas object. Like
stacked canvases, tab canvases are displayed on top of a content canvas, partly obscuring it.

A tab canvas is made up of one or more tab pages. Tab pages each display a subset of the information displayed on the entire tab
canvas.

What are tab pages?

Oracle9i Designer Migration Guide Part 4

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part4_9i-1.htm (31 of 44) [19/08/2002 16:06:06]

A tab canvas can have many tab pages, and must have at least one. Think of tab pages as the folders in a filing system. Each
individual tab page (folder) has a labeled tab that developers and end users click to access the page. You click the labeled tab to
display the page at the front of the tab canvas, thereby obscuring any other page(s).

Each tab page occupies an equal amount of space on the tab canvas, roughly equal to the size of the canvas itself. This layering of
related canvas sections enables you to display more information on a single canvas.

Tab pages are sub-objects of a tab canvas. Like the canvas to which it is attached, each tab page has properties.

About generated tab canvases and tab pages

What are generated native Form Builder tab canvases?

Form Generator generates a native Form Builder tab canvas and tab pages on which to place:

Generated blocks, if two or more repository module components have their Placement properties set to New tab canvas page●

Generated stacked item groups, if two or more repository item groups in a module component have their Stacked property set
to Yes.

●

If the above conditions are met and CANNTC is set to Yes, Form Generator places each block generated from a module component
and each stacked item group onto different tab pages.

On selection of a tab label, the corresponding tab page is displayed and the cursor navigates to the first enterable item on that tab
page. When users navigate to an item on a tab page that is not currently displayed (by pressing the [Next Item] key), the appropriate
tab page is displayed.

An alternative implementation in earlier releases

In earlier releases, Form Generator enabled you to generate similar functionality using stacked item groups placed onto different
stacked canvases displayed in the same area on a form. The different stacked canvases could be accessed via a poplist.

You might have existing module designs that include this alternative implementation. The CANNTC preference enables you either to
make use of the new Form Generator functionality to place the stacked item groups on the native Form Builder tab canvases, or to
continue to place the groups on stacked canvases.

Notes on the use of tab canvases for displaying blocks

Note the following when generating tab canvases to display blocks:

A tab canvas (and its tab pages) generated from module components will appear at the position of the first module component
that has its Placement property set to New Tab Canvas Page. It is your responsibility to make sure that blocks in the resulting
form do not appear to users to be out of sequence.

●

A content canvas can contain only one tab canvas generated from module components.●

If a generated form contains multiple content canvases, each content canvas can contain one tab canvas generated from module
components.

●

All block layout preferences apply to blocks generated onto tab pages.●

If the block you are generating onto a tab canvas page contains stacked item groups that are themselves to be generated onto a
native Form Builder tab canvas, the first item in the block must not be in one of the stacked item groups. The first item must be
placed on the underlying tab canvas page.

●

The label for a tab canvas page is derived from the title given to the first block displayed on that tab canvas page. If you do not
want both the label and the block title to appear on the tab canvas page, set POPTFB to No to prevent the block title being
displayed (if the first block on a tab canvas page is the first block on the content canvas, use PAGTFB).

●

If you set the X Position and Y Position properties of the first module component to be placed on the first tab canvas page,
Form Generator will use those properties to position the generated tab canvas on the underlying content canvas.

●

If the first block in a content canvas is generated onto a tab canvas and you set the Width and Height properties of the module
component from which that block was generated, Form Generator will use the dimensions you specified as dimensions for the
underlying content canvas.

●

By default, Form Generator determines the dimensions of a generated tab canvas as follows:

Form Generator determines the width of a generated tab canvas from the width of the underlying content canvas.●

Oracle9i Designer Migration Guide Part 4

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part4_9i-1.htm (32 of 44) [19/08/2002 16:06:06]

Form Generator determines the height of a generated tab canvas from the height of the highest block placed on a tab canvas
page.

●

However, you can override the default dimensions of a generated tab canvas using module component Width and Height properties.
If you do use the Width and Height properties, Form Generator determines the dimensions of a generated tab canvas as follows:

Form Generator determines the width of a generated tab canvas either from the largest Width property specified for any module
component placed on a tab canvas page or from the width of the widest block to be displayed on a tab canvas page, whichever
is the greater.

●

Form Generator determines the height of a generated tab canvas either from the largest Height property specified for any
module component placed on a tab canvas page or from the height of the highest block to be displayed on a tab canvas page,
whichever is the greater.

●

Notes on the use of tab canvases for displaying stacked item groups

Note the following when generating tab canvases to display stacked item groups:

A block cannot contain more than one tab canvas displaying stacked item groups.●

Tab canvases displaying stacked item groups can be laid out within blocks that are themselves displayed on tab canvases (for
more information, refer to "Examples of blocks generated onto tab canvases/tab pages" in the Designer online help).

●

Tab canvases displaying stacked item groups cannot appear on other stacked canvases (including spreadtables and overflow
context areas).

●

A tab canvas displaying stacked item groups cannot contain items from more than one block.●

To ensure items in stacked item groups on a tab canvas in a detail block are synchronized with a master block (on a different
canvas), set the BSCSCP preference to Window or Form.

●

If all the items in a detail block are in stacked item groups on tab pages on a tab canvas, Form Generator creates a block
context area above the tab canvas for any context items from the master block (for more information, refer to "Block context
area and block context item generation" in the Designer online help).

●

Server API

In this release, you can base a generated block on a procedure stored on the server and pass a PL/SQL table of records between the
block and the procedure. It is the procedure that queries and performs DML on the base table. Basing a generated block containing
lookup items on stored procedures is significantly more efficient in terms of network traffic than the other options outlined above.
An Oracle Designer utility enables you to create suitable server-side procedures on which to base blocks by generating the Server API
from table and module component definitions in the repository.

What is the Server API?

The Server API provides a powerful and easy-to-use PL/SQL interface that generated client applications can call to perform queries
and DML operations on base tables in the Oracle Server.

The Oracle Designer Server Generator is the tool to use to generate the Server API.

The Server API is made up of:

the Module Component API (comprising procedures to perform queries on the tables used by a generated application, and calls
to Table API procedures to perform DML operations on those tables).

●

the Table API (comprising procedures to perform inserts, updates, deletions and locks on the tables used by a generated
application).

●

If you specify Procedure as the query datasource for a generated block, the block is populated by a procedure in the Module
Component API (this procedure is referred to as a 'module handler') that passes a PL/SQL table of records to the generated form.

Similarly, if you specify Procedure as the DML datasource for a generated block, a table of records is passed from the block back to
the module handler on the server, which in turn calls a procedure in the Table API (this procedure is referred to as a 'table handler') to
update the base table.

If you intend to base a generated block on a server-side procedure generated as part of the Server API, you must generate the API
before you attempt to run the generated form.

Oracle9i Designer Migration Guide Part 4

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part4_9i-1.htm (33 of 44) [19/08/2002 16:06:06]

Library generation

A new addition to the Oracle Designer toolset is the Library Generator. Using Library Generator, you can:

generate Oracle Developer library modules from module definitions recorded in the Oracle Designer repository●

capture existing Oracle Developer library modules into the Oracle Designer repository.●

When generating library modules, you can run Library Generator in one of two ways:

To generate specific library modules, you can run Library Generator standalone.●

When using Form Generator or Report Generator to generate an Oracle Developer module, you can run Library Generator
automatically to generate any attached library modules.

●

All Oracle Developer modules can use a generated library module, unless the generated library includes calls to language-specific
built-ins. If the generated library does include calls to such built-ins, Library Generator uses the appropriate Oracle Developer
compiler to compile the library.

Note that it is the repository module's Language property that Library Generator uses to determine which Oracle Developer compiler
to use. It is your responsibility to ensure that:

the repository module's Language property is appropriate for the built-ins called in the module●

built-ins from different languages are not called by the same library module●

the compiler from the appropriate Oracle Developer component is available (for generating and capturing repository modules
of Language Oracle Developer Common Library, both the Oracle Developer Form Builder and the Oracle Developer Report
Builder compilers are suitable)

●

Module Specific Libraries

You will need to re-evaluate all of your module specific libraries that you created for forms generated from Designer 1.3.2. In many
cases, the logic will no longer be necessary at all because of new features that have been added to Designer. In other cases, the logic
may be so simple that you choose to record it as application logic in the form module itself, rather than having a separate library.

Where you do still require a separate library, you should capture the library into Designer. You can attach the library module to its
related form module using the module network link, or you can continue to use the MODLIB preference if you like.

Templates cut down to size

In earlier releases, template forms were often the only mechanism for:

controlling properties of generated objects●

including generator objects and user code in generated forms.●

In this release, application logic and object libraries provide powerful alternatives to the existing template technology. In many cases,
these alternatives are more efficient since:

Using object library objects enables you to change the properties of objects in a generated form simply by changing the
properties of source objects and recompiling the form. It is not necessary to generate the form again.

●

Recording application logic in the repository enables you to specify when code is to execute, and to make use of Oracle
Designer's dependency analysis features to assess the impact of proposed changes.

●

As you take advantage of other new features in Oracle Designer, you should also consider how those new features enable you to
move functionality from the template and into object libraries and application logic.

However, continue to use template forms for:

functionality requiring control blocks (e.g. toolbars, calendar widgets)●

form level code and objects (e.g. alerts, object groups, popup menus) that you want in multiple forms●

setting the character cell size and the coordinate system of generated forms●

defining the color palette used in generated forms●

attaching libraries to multiple generated forms (note that although this method is quicker than using repository module
networks, you will not have access to Oracle Designer's impact analysis features)

●

defining current record visual attributes●

Oracle9i Designer Migration Guide Part 4

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part4_9i-1.htm (34 of 44) [19/08/2002 16:06:06]

property classes.●

Migrating from 2.1.2 or 6.0
This section covers general migration issues when migrating from Designer 6.0.

Lookup Usages

In Designer 1.3.2, you used a lookup table usage to create both lookup items on the main canvas as well as to generate a Forms LOV.
In this release of Designer, the concepts of lookup usages and LOVs have been separated.

The lookup table usage now has only one purpose - to display values from a lookup table on the canvas. These lookup items can be
enterable, queriable and sortable.

You can attach a List of Values to base table column usage, a lookup column usage, or an unbound item. The only requirement is
that the item must be explicitly defined as Insertable and/or Updateable.

See the next section for information on creating a list of values.

LOV generation

The new repository LOV element simplifies the process of LOV generation by decoupling LOVs from lookup table usages. This not
only makes it easier to define LOVs, it also enables you to:

define multiple LOVs for the same block●

reuse the same LOV in multiple blocks and multiple forms●

define LOVs for unbound items.●

Native Oracle Forms LOVs

Using Form Generator you can generate Oracle Forms LOVs to populate two kinds of generated text items:

Items generated from repository bound or unbound item definitions that are explicitly associated with repository LOV
definitions.

●

In this case, the generated LOV is always based on a query. The generated LOV will be available for those items
explicitly associated with the repository LOV definition. You can specify which values are returned from the LOV to
the form and which items in the form are populated with the returned values. In addition, you can specify different
LOVs to use for querying information and for entering information.

You can associate LOV definitions with both foreign key bound items and non-foreign key bound items. If you
associate an LOV definition with a foreign key item in a base table usage, the lookup table at the other end of the foreign
key might be the same as the LOV base table usage. If this is the case, note that:

You do not have to define a module component lookup table usage of the lookup table as well.❍

If you do define a module component lookup table usage of the lookup table as well, the module component lookup table
usage's 'Where Clause of Query' property and 'Validation Where Clause' property will be used to restrict the values in the
LOV when querying data and entering data respectively.

❍

The repository LOV definitions you create can be either specific to a single module or reusable by multiple modules.

Items generated from repository bound or unbound item definitions for which allowable values have been recorded.●

In this case, the generated LOV can either be based on a static record group hard coded into the generated form or on a
query record group populated dynamically by a query on a reference code table. For more information about reference
code tables, refer to "Reference code table generation" in the Designer online help.

Lists of Values forms

By default, Form Generator generates native Oracle Forms LOV objects. However, you can also create a list of values form. This is
a separate form that behaves like a list of values. It is called whenever the user presses the list of values button. It can return data to
the calling form. The advantage of a list of values form is that the user can perform complex queries to find the requested records. It
is also much better when a large number of records needs to be displayed.

Oracle9i Designer Migration Guide Part 4

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part4_9i-1.htm (35 of 44) [19/08/2002 16:06:06]

To create a list of values form, you create a form module in Designer and set its Layout Format property to LOV, using the FKLOVT
preference.

To call a list of values form, specify the form you want to call using the DVLOVF and DVHLVF preferences in the calling form.

Poplists

You can use repository LOV definitions to generate poplist, text list and combo box items by associating a repository LOV definition
with an item that has its Display Type property set to Poplist, Text list or Combo box.

Reusable LOV Components

Oracle9i Designer also allows you to create reusable LOV components that can then be included in any form module.

Multi Region Blocks

Most blocks you generate will be single region blocks. Single region blocks are based on a single table and comprise one rectangular
layout region that cannot be split across different canvases or windows. You generate a single region block from a single module
component.

In some cases, you will want to generate multi-region blocks. As with single region blocks, a multi-region block is based on a single
table. However, a multi-region block comprises a number of different rectangular layout regions. The layout regions in a multi-region
block can be placed on:

different places on the same canvas●

different canvases in the same window●

different canvases in different windows.●

You generate a multi-region block by defining:

a primary module component with one base table usage and (optionally) one or more lookup table usages●

one or more module sub-components, each with a usage of the same base table as the primary module component, and
(optionally) each with one or more lookup table usages.

●

Form Generator creates a rectangular layout region for the primary module component and for each module sub-component.
Although they contain items based on columns from the same table, the different layout regions can display different numbers of
rows. The data in different regions in a multi-region block is always synchronized (i.e. the regions all display data for the same
current record).

You can create bound items based on the same columns as bound items in the primary module component (or any other module
sub-component). Note that Form Generator will generate second and subsequent items as mirror items. Also note the standard source
objects for these mirror items will be the same as for the first bound item (i.e. not CGSO$CONTEXT, which is the usual standard
source object for mirror items).

Side By Side Blocks

By default, Form Generator places the second and subsequent blocks on the same canvas below the previous blocks on that canvas.
Use a module component's Placement property and Right of Component property to place a block beside a previous block instead of
below it.

When you create a new module component, it is automatically placed in a new window and on a different canvas. To generate two
blocks side-by-side on the same canvas, you must first include the corresponding module components in the same window and on the
same canvas.

To place a block beside a previous block on the same canvas:

Set the module component's Placement property to Right of.●

Set the module component's Right of Component property to the name of a previous module component.●

Oracle9i Designer Migration Guide Part 4

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part4_9i-1.htm (36 of 44) [19/08/2002 16:06:06]

Navigator Style Forms

A navigator style form enables users to quickly navigate through hierarchical data to locate a particular record and comprises:

a hierarchical tree item in a navigator window●

one or more detail windows in which record details can be viewed and edited.●

The look and feel of the expanding and collapsing tree is similar to the tree in the Design Editor's navigator window.

You can use Form Generator to generate a navigator style form by setting a module's Layout Format property to Navigator.

Form Generator generates the first block in the form on a new content canvas into a new window (the navigator window) and creates
an item in the block of type Hierarchical Tree (note that the window, canvas, block and item are not modeled in the repository).

All blocks and records in the generated form are represented as nodes in the hierarchical tree item. When the form is opened, the
navigator window displays all master blocks in the form as unexpanded 'block nodes'. If the user expands one of the block nodes, the
records in the block appear as 'record nodes'. If the master block is linked to one or more detail blocks, each record node can be
expanded to display a block node for the detail block(s). If the user expands the detail block node, the records in the detail block
appear as record nodes.

At any point, the user can select a record node and view or edit that record in the corresponding block in a separate detail window.

You can also include buttons on vertical and horizontal toolbars in the navigator window to provide extra functionality. For example,
you might want to include buttons to expand all nodes and collapse all nodes.

See the Oracle Designer online help for more information about generator Navigator Style Forms.

Relative Tab Stops

Form Generator enables you to specify the points at which Form Generator is to position the starts and ends of items and their
prompts. These points are referred to as tab stops.

In this release of Designer, there are now two kinds of tab stop:

Absolute tab stops (old style - tab stop positions are specified in character cells and items are placed at those positions)●

Relative tab stops (new style - items sharing the same tab stop are positioned relative to each other).●

Note that the use of absolute tab stops and relative tab stops are mutually exclusive.

Relative tab stops are numeric values that enable you to position and align items and item groups relative to each other (i.e. next to
each other or below each other). Using relative tab stops also enables you to explicitly specify that you want a particular item or item
group to appear on a new line.

You set relative tab stops for both items and item groups using either or both of the following relative tab stop properties:

Start Tab Stop property●

End Tab Stop property●

If you specify relative tab stops, during generation Form Generator horizontally positions items/item groups so that any items/item
groups with the same relative tab values are vertically aligned below one another. The Start Tab Stop property and the End Tab Stop
property determine whether it is the left hand edge, the right hand edge, or both edges of the item/item group that are aligned.

In addition, an item's Align Prompt property enables you to vertically align the starts of prompts of items that are vertically aligned
(note that Form Generator might ignore this property to optimize the use of space).

When using relative tab stops, you can set the Tab Stop Scope property of a container object (i.e. an item group or module
component) to align:

items within an item group with items outside the item group●

items within one module component with items in another module component.●

For detailed illustrations of how to use relative tab stops, refer to the online help topic 'Examples of the use of relative tab stops'.

Notes on the use of relative tab stops

Note the following when using relative tab stops:

Oracle9i Designer Migration Guide Part 4

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part4_9i-1.htm (37 of 44) [19/08/2002 16:06:06]

In general, Form Generator uses relative tab stops only if relative tab stops have been defined and the Tab Stop Scope property
of an item group or module component is set to Self or Parent. Form Generator also uses relative tab stops to position items in
an item group with its Tab Stop Scope property set to None if the object that contains the item group (i.e. a module component
or another item group) has its Tab Stop Scope property set to Self or Parent. In this case, Form Generator positions items as if
the item group's Tab Stop Scope property was set to Self.

●

Items are always sequenced (for navigation purposes) according to the value of their Usage Sequence property. Relative tab
stops are sequenced in their numeric order. If the relative tab setting of the next item in the usage sequence is lower than the
relative tab setting of the previous item, Form Generator places the next item on a new line and aligns it appropriately.

●

The interaction between relative tab stops and the BLKVFL preference is complex. For more information, refer to "Notes on
relative tab stops and BLKVFL" in the Designer online help.

●

We recommend you increase the numbers for relative tab stops in increments to allow for the subsequent insertion of new tab
stops between existing ones.

●

Post prompts cannot be aligned using relative tab stops.●

If you have specified relative tab stops, Form Generator increases the width of the canvas sufficiently to display all the items
and item groups. In other words, block overflow does not occur.

●

Chapter 6 Scenario 3: Migrate, Regenerate
Incrementally
This is the most complex scenario. In this scenario, you will migrate your application a little at a time, rather than all at once.

You will begin by upgrading all of your forms, libraries, menus and reports to Forms 9i. ●

You will then make the changes required to run forms generated from your previous release of Designer alongside forms
generated from Oracle9i Designer.

●

Finally, over some arbitrarily long period of time, you will regenerate all of your modules out of Oracle9i Designer.●

The goal of this scenario is to allow you to regenerate your whole application, taking into account new features, but in such a way
that you do not have to migrate your entire application in one go. This means you will be able to move the deployed application to
the new tool stack before you have completely migrated every form. Thus, you can continue with bug fixes and new development in
parallel with the continuing migration effort.

Migrating from 1.3.2
This section covers general migration issues when migrating from Designer Release 1.3.2. If you are migrating from a later release,
you may skip this section.

Review use of color palettes

When generating a form, Form Generator determines which color palette to give the generated form as follows:

If a template form is being used, Form Generator gives the generated form the template form's color palette.●

If a template form is not being used, Form Generator gives the generated form the default Form Builder color palette.●

In earlier releases, the template forms supplied with Form Generator did not use the default Form Builder template. Instead, they
used a color palette similar to that used in Oracle Applications forms.

In this release, the shipped template forms supplied with Form Generator have been given the default Form Builder color palette.

The color palette consists of a grid, 38 colors wide by 6 colors high. The primary problems are caused in the first 14 columns of the
grid. The remainder of the grid is very slightly different, but only noticable to the most discerning eye.

Designer 1.3.2, Custom Color Palette, first 14 columns

Black White r0g0b0 r40g0b0 r55g0b0 r70g0b0 r85g0b0 r100g0b0 r0g0b40 r40g0b40 r55g0b40 r70g0b40 r85g0b40 r100g0b40

Oracle9i Designer Migration Guide Part 4

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part4_9i-1.htm (38 of 44) [19/08/2002 16:06:06]

Control Blue r0g40b0 r40g40b0 r55g40b0 r70g40b0 r85g40b0 r100g40b0 r0g40b40 r40g40b40 r55g40b40 r70g40b40 r85g40b40 r100g40b40

Button Magenta r0g55b0 r40g55b0 r55g55b0 r70g55b0 r85g55b0 r100g55b0 r0g55b40 r40g55b40 r55g55b40 r70g55b40 r85g55b40 r100g55b40

Canvas Red r0g70b0 r40g70b0 r55g70b0 r70g70b0 r85g70b0 r100g70b0 r0g70b40 r40g70b40 r55g70b40 r70g70b40 r85g70b40 r100g70b40

Gray Cyan r0g85b0 r40g85b0 r55g85b0 r70g85b0 r85g85b0 r100g85b0 r0g85b40 r40g85b40 r55g85b40 r70g85b40 r85g85b40 r100g85b40

Yellow Green r0g100b0 r40g100b0 r55g100b0 r70g100b0 r85g100b0 r100g100b0 r0g100b40 r40g100b40 r55g100b40 r70g100b40 r85g100b40 r100g100b40

Oracle9i Designer, Default Forms Color Palette, first 14 columns

Black White Green Darkgreen Gray96 Gray92 Gray88 Gray84 r0g0b0 r25g0b0 r50g0b0 r75g0b0 r88g0b0 r100g0b0

Gray Darkgray Cyan Darkcyan Gray80 Gray76 Gray72 Gray68 r0g25b0 r25g25b0 r50g25b0 r75g25b0 r88g25b0 r100g25b0

Red Darkred Blue Darkblue Gray64 Gray60 Gray56 Gray52 r0g50b0 r25g50b0 r50g50b0 r75g50b0 r88g50b0 r100g50b0

Yellow Darkyellow Magenta Darkmagenta Gray48 Gray44 Gray40 Gray36 r0g75b0 r25g75b0 r50g75b0 r75g75b0 r88g75b0 r100g75b0

Custom1 Custom2 Custom3 Custom4 Gray32 Gray28 Gray24 Gray20 r0g88b0 r25g88b0 r50g88b0 r75g88b0 r88g88b0 r100g88b0

Custom5 Custom6 Custom7 Custom8 Gray16 Gray12 Gray8 Gray4 r0g100b0 r25g100b0 r50g100b0 r75g100b0 r88g100b0 r100g100b0

Using both color palettes in the same application causes problems, because the color palette is loaded with the first form and then not
reloaded. So, since your start form will be re-generated with the new color palette, all of your forms will use the new color palette.

Unfortunately, the colors are mapped by their position in the color palette, not by the actual color name. Thus, when one of your old
forms uses a color, it is actually just using whichever color is in that position in the color palette.

So, given the two color palettes above:

If the old form asks for… It actually gets…

Black Black

White White

Control Gray

Button Red

Red Darkyellow

Cyan Custom2

To further complicate matters, with Webforms, you don't have to specify colors in your forms at all. You can set all of your colors to
'undefined' or to the keyword 'automatic' in your object library. Then, you can pass a runtime parameter to the Forms60 Server that
specifies the Look and Feel (Oracle or Generic) and the desired colorscheme. (There are 8 pre-defined color schemes.) At runtime,
all items whose color is 'undefined' or 'automatic' will automatically be rendered with the proper colors for the selected colorscheme.

Unfortunately, the item prompts in the old forms that were generated by Designer 1.3.2 are generated as boilerplate and not using the
prompt property. This means they will not be automatically changed at runtime.

Changing the Color Palette

You basically have two options to solve this problem:

Modify the old forms to use the new color palette.●

Modify the new template form to use the old custom color palette.●

To be able to change the color palette of an .fmb, Form Builder needs to be opened in a special ‘mode’. To do this, launch Form
Builder, navigate to Tools > Preferences, and set ‘Color Mode’ to ‘editable’. Now close Form Builder, and open it again (this step is
necessary).

Export the color palette you want to use to a file:

Oracle9i Designer Migration Guide Part 4

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part4_9i-1.htm (39 of 44) [19/08/2002 16:06:06]

Open a form which has the color palette that you want to use.●

Open the layout editor by double-clicking on a canvas (it doesn't matter which one)●

Choose File > Export > Color Palette. (If this option is grayed out, you have not successfully changed the “Color Mode” of
Forms Builder.) Save the color palette to your file system. The file should have the extension '.pal'.

●

Import the color palette into the form(s) you want to change:

Open the form whose color palette you want to change.●

Open the layout editor by double-clicking on a canvas (it doesn’t matter which one).●

Navigate to File > Import > Color Palette. (If this option is grayed out, you have not successfully changed the “Color Mode” of
Forms Builder.)

●

Choose “File” as Data Source, and click “Browse” to locate the color palette you exported.●

Click OK.●

With your old forms, you will have to import the color palette into each form individually even if you used a reference form, because
the color palette is not inherited from a reference form.

Unfortunately, we still have one more problem to overcome.

You have successfully installed the new color palette. If you look at the "Foreground Color" and "Background Color" properties for
any given item, they appear to have the right values because the color names are correct. But, internally they are STILL pointing to
the old position of that color in the color palette.

Even trickier is the fact that if you click on the LOV button next to the color value, the correct color in the color palette is highlighted,
but internally it is STILL pointing to the wrong color.

The only way to correct this inconsistent state is to go to the property palette of the visual attribute used on the item, go to the
"Background Color" and "Foreground Color" properties, first select any other color, and then change the color back to its original
value. Now, not only the color name but also the underlying index value will point to the "true" color in the new color palette.

The bad news is that you need to do this for ALL explicit color references. If you used a reference form to define visual
attributes, and then used these visual attributes in your old template form, you only have to do this for each visual attribute in
the reference form. However, if the visual attributes were directly in the template form, or if you set the colors directly in the
template form, then you will have to open each form and 'fix' every color reference.

●

Two exceptions are the colors "white" and "black". It is not necessary to 'fix' these colors, because they were not relocated
between the two palettes.

●

Another exception is the color "canvas". Since this color doesn't exist in the new color palette, all occurrences of "canvas"
must be replaced with the color "gray".

●

What this all boils down to is this:

Unless your old application is very small and you don't mind a lot of tedious work, you are going to have to continue to use the
old custom color palette in your newly generated forms

●

You probably won't be able to use the automatic color schemes with the new Oracle Look and Feel●

Toolbar vs. Smartbar

The Oracle9i Designer menu template makes use of the Smartbar feature of Forms. The toolbar is now defined declaratively in the
menu rather than in every form.

In your old forms, you will now see both the Smartbar and the old toolbar canvas.

You have two options:

Remove the toolbar block and canvas from your old forms.●

If you used a reference form with Designer 1.3.2, you can easily remove the toolbar block and canvas from all your
forms by removing it from the reference form and then recompiling new .fmx files.

If your toolbar block and canvas were directly in the 1.3.2 template form, then you would have to open each generated
form and remove them.

Remove the Smartbar from the new menu template and add a toolbar block and canvas to the new form template (subclassed●

Oracle9i Designer Migration Guide Part 4

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part4_9i-1.htm (40 of 44) [19/08/2002 16:06:06]

from the object library of course).

To remove the Smartbar from the new menu template, you simply change the 'Visible in Horizontal Menu' property to 'No' for each
item where it currently is set to 'Yes'.

You can copy your old toolbar block and canvas to your new template form.

Dummy LOV Objects

For modules that call an LOV module (not a native Forms LOV), the Generator creates a dummy LOV object named
CGxx$DUMMY_LOV and a corresponding Record Group object with the same name.

In Forms generated from Designer 1.3.2, the record group will have a Column Specification with one dummy column, also named
CGxx$DUMMY_LOV, of type character, length = 1, with a default value of (again) CGxx$DUMMY_LOV.

Notice that the default value is longer than the length of the column. This now causes a compile error in forms. To resolve this, you
must either clear the default value in the Column Specification of the record group or increase its length to 14.

Unfortunately, this has to be done manually.

Upgrading forms to Forms 9i

You must upgrade all your existing forms to Forms 9i. You can use the Forms compiler to perform this upgrade.

ifcmpxx module= myform userid= scott/tiger upgrade=YES Logon=YES Batch=YES build=Yes Window_state=Minimize

You can run this in batch by creating a .bat file containing the above line of code once for each form to be upgraded.

Regenerate Your Menu and Start Form

You will need to re-generate your menu(s) and start form. This ensures that all your forms run in the context of your new application.

Upgrade Libraries to Forms or Reports 9i

Upgrading the libraries is straightforward. To upgrade manually, you open the library in Form Builder 9i (or Report Builder 9i).
Form Builder will automatically start converting PL/SQL version to PL/SQL version 2. During this PL/SQL conversion it will ask
you to confirm certain conversion operations. You can safely press the 'Convert All' button if you are prompted for such a conversion
operation.

You can also create a .bat file to perform this upgrade in batch. Include the following line of code once for each library to be
upgraded.

ifcmpxx module=<library>.pll userid=<user>/<pass>@<connect> module_type=LIBRARY Logon=YES Batch=Yes upgrade=YES
version=45 build=No window_state=Minimize

Attached OFG Libraries

Designer release 1.3.2 attached a number of OFG libraries to generated forms. You may also have attached some of those libraries to
your custom PL/SQL libraries.

Form Generator does not use these libraries anymore. Form Generator now uses a new, renamed version for each of these libraries.

Designer 1.3.2
Library

Oracle9i Designer
Library

OFG4BSL OFGBSL

OFG4CALL OFGCALL

OFG4HPL OFGHPL

OFG4MES OFGMES

Oracle9i Designer Migration Guide Part 4

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part4_9i-1.htm (41 of 44) [19/08/2002 16:06:06]

OFG4MNL OFGMNL

OFG4TEL OFGTEL

 OFGNAVL

 OFGTAB

 OFGTREEN

You must make both sets of libraries available in your runtime environment. The old forms will continue to run with the old libraries
until they have been upgraded.

When you regenerate your forms from Oracle9i Designer, they will automatically get the new libraries attached.

However, if you attached the OFG4… libraries to your pl/sql libraries you will have to upgrade each library manually.

De-attach the obsolete OFG4… libraries from all libraries●

Attach the new OFG… libraries●

Name Resolution in 9i

Carefully read the section 'Name Resolution in 9i' in the Chapter 3 "General Migration Issues". It is highly likely you will run into
these issues described there if your application has generic library routines that are overridden in module specific libraries.

Replace Designer 1.3.2 forms with Oracle9i Designer forms

This step can be performed on a form-by-form basis. The actions required depend on the type of module. Refer to the chapters on
'General Migration Issues' and 'Scenario 2' for detailed information on regenerating your forms.

If you have a form that calls another form, you should replace both forms at the same time.

Once all forms have been replaced, you can remove the old OFG4… libraries from your runtime environment as well as any other old
libraries, reference forms, and templates.

Migrating from 2.1.2
This section covers general migration issues when migrating from Designer Release 2.1.2. If you are migrating from a later release,
you may skip this section.

Toolbar vs. Smartbar

The Oracle9i Designer menu template makes use of the Smartbar feature of Forms. The toolbar is now defined declaratively in the
menu rather than in every form.

In your old forms, you will now see both the Smartbar and the old toolbar canvas.

You have two options:

Remove the toolbar block and canvas from your old forms.●

If you used an object library with Designer 2.1.2, you can easily remove the toolbar block and canvas from all your
forms by removing it from the object library and then recompiling new .fmx files.

If your toolbar block and canvas were directly in the 2.1.2 template form, then you would have to open each generated
form and remove it.

Remove the Smartbar from the new menu template and add a toolbar block and canvas to the new form template (subclassed
from the object library of course).

●

To remove the Smartbar from the new menu template, you simply change the 'Visible in Horizontal Menu' property to 'No' for each
item where it currently is set to 'Yes'.

Oracle9i Designer Migration Guide Part 4

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part4_9i-1.htm (42 of 44) [19/08/2002 16:06:06]

You can copy your old toolbar block and canvas to your new template form.

Upgrading forms to Forms 9i

You must upgrade all your existing 5.0 forms to Forms 9i. You can use the Forms compiler to perform this upgrade.

ifcmpxx module= myform userid= scott/tiger upgrade=YES Logon=YES Batch=YES build=Yes Window_state=Minimize

You can run this in batch by creating a .bat file containing the above line of code once for each form to be upgraded.

Regenerate Your Menu and Start Form

You will need to re-generate your menu(s) and start form. This ensures that all your forms run in the context of your new application.

Upgrade Libraries to Forms or Reports 9i

Upgrading the libraries is straightforward. To upgrade manually, you open the library in Form Builder 9i (or Report Builder 9i).
Form Builder will automatically start converting PL/SQL version to PL/SQL version 2. During this PL/SQL conversion it will ask
you to confirm certain conversion operations. You can safely press the 'Convert All' button if you are prompted for such a conversion
operation.

You can also create a .bat file to perform this upgrade in batch. Include the following line of code once for each library to be
upgraded.

ifcmpxx module=<library>.pll userid=<user>/<pass>@<connect> module_type=LIBRARY Logon=YES Batch=Yes upgrade=YES
version=50 build=No window_state=Minimize

Replace Designer 2.1.2 forms with Oracle9i Designer forms

This step can be performed on a form-by-form basis. The actions required depend on the type of module. Refer to the chapters on
'General Migration Issues' and 'Scenario 2' for detailed information on regenerating your forms.

If you have a form that calls another form, you should replace both forms at the same time.

Once all forms have been replaced, you can remove the old OFG4… libraries from your runtime environment as well as any other old
libraries, reference forms, and templates.

Migrating from 6.0
This section covers general migration issues when migrating from Designer Release 6.0.

Toolbar vs. Smartbar

The Oracle9i Designer menu template makes use of the Smartbar feature of Forms. The toolbar is now defined declaratively in the
menu rather than in every form.

In your old forms, you will now see both the Smartbar and the old toolbar canvas.

You have two options:

Remove the toolbar block and canvas from your old forms.●

If you used an object library with Designer 6.0, you can easily remove the toolbar block and canvas from all your forms
by removing it from the object library and then recompiling new .fmx files.

If your toolbar block and canvas were directly in the 6.0 template form, then you would have to open each generated
form and remove it.

Remove the Smartbar from the new menu template and add a toolbar block and canvas to the new form template (subclassed
from the object library of course).

●

To remove the Smartbar from the new menu template, you simply change the 'Visible in Horizontal Menu' property to 'No' for each
item where it currently is set to 'Yes'.

Oracle9i Designer Migration Guide Part 4

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part4_9i-1.htm (43 of 44) [19/08/2002 16:06:06]

You can copy your old toolbar block and canvas to your new template form.

Regenerate Your Menu and Start Form

You will need to regenerate your menu(s) and start form. This ensures that all your forms run in the context of your new application.

Replace Designer 6.0 forms with Oracle9i Designer forms

This step can be performed on a form-by-form basis. The actions required depend on the type of module. Refer to the chapters on
'General Migration Issues' and 'Scenario 2' for detailed information on regenerating your forms.

If you have a form that calls another form, you should replace both forms at the same time.

Once all forms have been replaced, you can remove the old OFG4… libraries from your runtime environment as well as any other old
libraries, reference forms, and templates.

Prev Next

Copyright © 2002, Oracle Corporation.

All Rights Reserved.
Contents

Oracle9i Designer Migration Guide Part 4

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part4_9i-1.htm (44 of 44) [19/08/2002 16:06:06]

Oracle9i Designer Migration Guide
Part 5. Migrating generated Web/PLSQL applications to Oracle9i Designer

Contents

Chapter 1 Introduction
This migration guide provides the information necessary for upgrading Web/PLSQL Applications that
were designed and generated using earlier releases of Designer to Oracle9i Designer.

The document discusses migration from the following earlier releases:

1.3.2●

2.1.2●

6.0●

This document assumes that you have already installed Oracle9i Designer and migrated your repository.
(See instructions in Part 2 of this Migration Guide.) The document then explains steps you have to take
so that you can:

generate your application from Oracle9i Designer and achieve the same generated results you had
from earlier releases, and

●

take advantage of new features that have been added to Designer since your previous release.●

Throughout the document, special mention is made of any migration issues known at the time of
publication of this document.

There are a number of migration scenarios that are possible in bringing your Designer-generated Web
PL/SQL application forward into Oracle9i Designer.

Scenario 1. Migrate, Regenerate All, No Redesign
In this scenario, you will regenerate all of your Web/PLSQL application from Oracle9i Designer.

The goal of this scenario is to be able to generate your Web/PLSQL application out of Oracle9i Designer
and achieve the same results you got when generating out of your previous Designer release. No attempt
is made to redesign your existing Web/PLSQL application to make use of new features available in
Oracle9i Designer.

This scenario has the following characteristics:

If you have minimal post-generation changes, scenario 1 is fast and requires minimal changes in
the Web/PLSQL application definition in the Oracle Designer repository.

●

Scenario 1 uses your existing module definitions and any custom framesets or templates without
changes.

●

Oracle9i Designer Migration Guide Part 5

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part5_9i-1.htm (1 of 16) [19/08/2002 16:06:10]

Scenario 1 does not take advantage of many new Web/PLSQL features in Oracle9i Designer. It is
merely a 'technical' upgrade. Some new features will be implemented as part of this upgrade.

●

This scenario is appropriate when:

Your application is already in production.●

Your application is stable, no major functional modifications are expected.●

Maintenance is limited to simple bug fixing.●

Your application is 100% generated, or post-generation modifications are minor.●

Scenario 2. Migrate, Regenerate All, With Redesign
In this scenario, you will regenerate your entire Web/PLSQL application from Oracle9i Designer. As
you regenerate each Web/PLSQL module, you will make use of new features as appropriate.

The goal of this scenario is to take advantage of the new Web/PLSQL features available in Oracle9i
Designer. As with Scenario 1, you want to be able to generate your Web/PLSQL application and get the
same user interface you got from your previous release of Designer. However, many new Web/PLSQL
features have been added to Designer to make achieving the desired result easier. Many features that
were difficult or impossible to generate with earlier releases of Designer are now supported. Thus, in
one pass, you can eliminate post generation modifications and difficult constructs that were used only to
work around limitations of earlier releases of Designer.

This scenario has the following characteristics:

Scenario 2 requires a review of security implementation.●

Scenario 2 requires modifications in many module definitions, and is therefore more
time-consuming.

●

Scenario 2 fully leverages the new Web/PLSQL features in Oracle9i Designer.●

This scenario is appropriate when:

Your application is still in development.●

Your application is in production, but major functional modifications are to be made, or expected.●

Your application requires modifications (e.g. security) which can only be implemented using new
functionality in Designer.

●

Your application has been heavily modified post-generation, but the majority of the modifications
are no longer needed due to the new Web/PLSQL functionality in Designer.

●

Scenario 3. Migrate, Regenerate Incrementally
This is the most complex scenario. In this scenario, you will migrate your application a little at a time,
rather than all at once. You will begin by migrating your application to a 8i Database in a schema
specific way, or create a database link and appropriate synonyms to your new database schema. You will
then make the changes required to run the application generated from your previous release of Designer
alongside Web/PLSQL applications generated from Oracle9i Designer. Finally, over some arbitrarily

Oracle9i Designer Migration Guide Part 5

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part5_9i-1.htm (2 of 16) [19/08/2002 16:06:10]

long period of time, you will regenerate all of your modules out of Oracle9i Designer.

The goal of this scenario is to allow you to regenerate your whole application, taking into account new
features, but in such a way that you do not have to migrate your entire application in one go. This means
you will be able to move the deployed application to the new tool stack before you have completely
migrated every module. Thus, you can continue with bug fixes and new development in parallel with the
continuing migration effort.

This scenario has the following characteristics:

Scenario 3 allows you to perform a phased migration. You can take advantage of the new
Designer features right away, without the need to regenerate all your modules at once.

●

This scenario is appropriate when:

Your application is in production, but major functional modifications are to be made, or expected.●

Your application requires modifications (e.g. security) which can only be implemented using new
functionality in Designer.

●

Your application is too large to migrate in one ‘big-bang’.●

Scenario 4. Database Migration Only
The first three scenarios all eventually require you to regenerate your application. Any post-generation
modifications will be lost. If you heavily modified your application post-generation, and the
characteristics of Scenario 1 apply to your situation, you might consider only upgrading the database
environment to 9i, and not upgrading to Oracle9i Designer. This implies that all future maintenance has
to be done manually in PL/SQL.

This migration guide does not cover 9i database migration. It will, however, discuss modifications that
will allow you to continue to run your generated Web/PLSQL modules alongside other applications. For
information on migrating to a 9i database, see Part 3 of this migration guide.

Note that, even though you may choose not to use Oracle9i Designer for continued module generation,
you may still use Oracle9i Designer to maintain your database definitions. You may also choose to use
the Software Configuration Management features of Oracle9i Designer to manage your application
source code. In that case you could bring in the previously generated and adapted packages as files in the
repository and maintain these files for future enhancements and/or fixes. Note that in addition you can
parse these packages - stored as files - for dependencies with the Dependency Manager for impact
analysis.

For information on Software Configuration Management with Oracle9i Designer, see the Oracle
Technology Network at http://otn.oracle.com/products/repository.

Note that all scenarios result in an actual usage of Oracle9i and Oracle9i Designer and therefore you will
be optimally serviced by Oracle Support on your Oracle tool stack, i.e., you do not need to implement
costly workarounds, you can simply profit from regularly released patches.

Oracle9i Designer Migration Guide Part 5

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part5_9i-1.htm (3 of 16) [19/08/2002 16:06:10]

http://otn.oracle.com/products/repository

Chapter 2 Oracle9i Designer New
Features
Depending on which Designer release you are coming from, many Web/PLSQL features of Oracle9i
Designer may be new to you.

This chapter presents a brief overview of new features that are of particular interest when migrating a
generated Web/PLSQL application. It is by no means an exhaustive list of all new features, and it does
not try to explain each new feature in detail. Rather, it introduces the relevant features, and points you to
where you can find more information in the Oracle9i Designer online help. These new features may be
referenced in the appropriate migration steps of the following chapters.

This chapter is organized by Designer release. You should begin reading at the section for your "from"
Designer release, and then continue reading the sections for any later releases. For example, if you are
migrating from Designer 1.3.2, you need to read all four sections below. If you are migrating from
Designer 2.1.2, you may skip the section on Designer 1.3.2 and read the sections for Designer 2.1.2 and
6.0.

Migrating from Designer 1.3.2

Design Editor

See Part 4, Chapter 3 of this migration guide for a general overview of these new features.

Module Components

See Part 4, Chapter 3 of this migration guide for a general overview of these new features.

Preferences

Oracle9i Designer has added many new preferences. These preferences allow for greater flexibility in
layout and provide for new methods of security.

TAPI/Triggers

Designer 1.3.2 introduced the concept of a Table API (TAPI) specifically for the WebServer Generator.
The WebSever Generator used the TAPI to do any inserts, updates or deletes (and some selects) against a
table. The TAPI auto-generated primary keys associated with sequences and audit columns, and allowed
you to place your own specific code within the TAPI. The TAPI was not used with any other Designer
generator. Beginning with Designer 2.1.2, the TAPIs became an integral part with other generators and
were associated with table triggers, causing the TAPI code to be run during any insert, update or delete.
Oracle9i Designer has additional custom code placement options within the TAPI and auto-generates
more functionality, including enforcing arcs, etc.

Oracle9i Designer Migration Guide Part 5

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part5_9i-1.htm (4 of 16) [19/08/2002 16:06:10]

Migrating from Designer 2.1.2/6.0
This section describes migrating from Designer 2.1.2 or 6.0.

LOV components

Oracle9i Designer departs from the use of lookup table usages to drive LOVs. LOVs can now be created
as specific, reusable components and attached to an element. This provides for more flexibility and the
ability to drive the LOV from a custom query. This is particularly helpful in the WebServer Generator in
that it allows you to better define the look of Poplist type LOVs.

All_domains Table

Before Oracle Designer 6i, the CG_REF_CODES table provided the only structured reusable table for
multiple lookup types. This limited its usefulness to only lookups that fit within the column structure of
CG_REF_CODES. The All Domains table feature extends this type of functionality to a table that can
be custom designed to meet the needs of your application. Coupled with Reusable LOV components this
becomes a very powerful new feature.

Reusable Modules

Reusable Modules allow you to define a module with base table usages, associated lookups, etc., and to
reuse this definition in multiple generated modules. This provides enhanced standardization.

Preferences

Oracle9i Designer adds substantially to the preferences available for WebServer Generator modules.
These preferences provide better control over layout and provide the ability to maintain “context”
between modules. Because the web is stateless, information that may have been available in a previous
module in the hierarchy may not be available in the current module. The Master Context section of the
generator preferences provides a way to ensure context is available to subsequent modules. Please see
the Oracle9i Designer online help for more information on new preferences.

Multi-Row Screens

Oracle9i Designer will generate multi-row screens to provide inserts, updates and deletes across multiple
rows. This is determined at the module level.

Oracle Portal portlets generation
You are now able to generate more functional Oracle Portal portlets. Please see the Oracle9i Designer
online help for more information on this feature.

Oracle9i Designer Migration Guide Part 5

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part5_9i-1.htm (5 of 16) [19/08/2002 16:06:10]

Chapter 3 General Migration Issues
This section will review issues that may arise with migrating from any previous release of Designer to
Oracle9i Designer. The following sections will deal with specifics of each release. For completeness,
you may wish to read the sections regarding earlier releases than your own.

There are a number of actions you must take regardless of which migration scenario you choose.

This chapter is organized by Designer release. You should begin reading at the section for your "from"
Designer release, and then continue reading the sections for any later releases. For example, if you are
migrating from Designer 1.3.2, you need to read all sections below. If you are migrating from Designer
2.1.2, you may skip the section on Designer 1.3.2 and read the sections for Designer 2.1.2 and 6.0.

Migrating from 1.3.2, 2.1.x, 6.0
This section covers general migration issues when migrating from Designer Release 1.3.2, 2.1.x and 6.0.

Perform a backup of your database schema that captures the
Web-PL/SQL components

In all cases perform a complete backup of your database and export of any affected schemas.

Web PL/SQL Generator Libraries

You will need to upgrade the associated libraries for the Web PL/SQL generator (wsgl, wsglm,
cg$errors, etc.). Because you will be regenerating all components, there is no need to run the existing
version of these packages alongside the new versions. In other scenarios you will be required to maintain
both sets of packages.

WSGLM is often modified to provide messages tuned to your applications. Any changes to your
existing WSGLM will need to be re-applied to the Oracle9i Designer WSGLM package.

Occasionally changes might have been made to other library packages. Some of these changes may need
to be reapplied, where others may not be needed due to new functionality within the product. For
example, Designer 1.3.2 matched case on queries. The dynamic build_where_clause could be modified
to overcome this. In Oracle9i Designer there is an option to perform case insensitive queries (the default
is case insensitive).

Depending upon the number of existing applications, you might have multiple copies of the WSGL
libraries. By default, Oracle9i Designer will install these libraries in one location (schema). If the
schema has sufficient privileges, the installation will grant execute on these libraries to public and create
public synonyms. In some cases you may prefer to have multiple copies of the libraries for use by
different application systems. This can be done by installing the copies in separate schemas and pointing
the application schemas to the appropriate library schema by use of private synonyms.

Oracle9i Designer Migration Guide Part 5

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part5_9i-1.htm (6 of 16) [19/08/2002 16:06:10]

Security

Designer 1.3.2 and 2.1.2/6.0 were typically run using either the Oracle Application Server PL/SQL
cartridge or the WebDB listener. In both cases you had two methods of configuring the database login to
run the generated PL/SQL components:

single user login, and1.

database authentication (provide a basic authentication login screen and login to the database with
the supplied username and password).

2.

In Oracle9i Designer, there are new security features that should be considered. In Scenario 1 we assume
that you will use your existing access and security methods. The new features are discussed in Chapter 5
"Migrate, Regenerate All with Redesign".

Regardless of which scenario you adopt, you will need a good understanding of your existing access and
security mechanism. At a minimum you should determine your DAD settings and note any schemas and
roles that are associated with securing your existing PL/SQL packages that comprise Web PL/SQL
modules.

Web PL/SQL Generator uses a checksum routine to secure access to specific records. Regardless or the
version of Designer, it is a good idea to change the function WSGL.CHECKSUM slightly so that your
checksum is different than the default shipped. The easiest method is to change the mod number in the
function, WSGL.CHECKSUM, from 4294967296 to some other large number. As you will be installing
a new version of the libraries, specifically WSGL, previous changes to WSGL.CHECKSUM must be
reapplied.

Application Server Choice

Designer 1.3.2, and 2.1.2/6.0 WebServer Generator applications were typically run with the OAS
PL/SQL Cartridge or the WebDB Listener.

Although you can continue to use your existing Application Server, Oracle9i Designer applications are
likely to be run with Oracle 9i Application Server using MODPLSQL. In general, the configuration of
web pl/sql modules is very similar.

The DAD configuration information can be found in the file
$ORACLE_HOME/Apache/modplsql/cfg/wdbsvr.app. Beginning with Oracle 9iAS
1.0.2.2 the DAD password is encrypted within this file. The browser interface to configure this file is
found at
http://yourmachine:port/pls/admin_/gateway.htm where your machine is the machine name where Oracle
9iAS is installed.

After installing Oracle 9iAS, make a copy of the file $ORACLE_HOME/Apache/Apache/conf/httpd.conf

Modify this file and change the line

defaultType text/ascii

to

Oracle9i Designer Migration Guide Part 5

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part5_9i-1.htm (7 of 16) [19/08/2002 16:06:10]

defaultType text/html

The application server will then treat unknown content type as html. On rare occasions, with
defaultType set to text/ascii, the html code generated by Designer WebServer Generator will be
displayed as ascii text rather than an html page.

Chapter 4 Scenario 1: Migrate,
Regenerate All, No Redesign
In this scenario, you regenerate your entire application from Oracle9i Designer, including all
Web/PLSQL, libraries, menus and reports.

The goal of this scenario is to be able to generate your application out of Oracle9i Designer and achieve
the same results you got when generating out of your previous Designer release. No attempt is made to
redesign your existing application to make use of new features available in Oracle9i Designer.

This chapter is organized by Designer release. You should begin reading at the section for your "from"
Designer release, and then continue reading the sections for any later releases. For example, if you are
migrating from Designer 1.3.2, you need to read all sections below. If you are migrating from Designer
2.1.2, you may skip the section on Designer 1.3.2 and read the sections for Designer 2.1.2 and 6.0.

This chapter assumes that you have performed all the actions described in Chapter 3, General Migration
Scenarios.

Migrating from 1.3.2
In most cases, migrating your 1.3.2 application to 9i will go smoothly. There are four specific areas that
may cause difficulty: module level security (z_chk), using calls to underlying values, return links and
Table APIs.

Module Level Security

Designer WebServer Generator modules use “Query, List, Detail”. A user is first presented with a Query
Screen, then a list of items that match the criteria, and ultimately a detail screen that typically allows
update. In many cases, the list screen will always be limited by a fixed where clause in the module.
Releases of Designer 2.1.2 onwards implement a security check to ensure that users do not access the
detail screen directly by changing the URL. Designer uses a checksum value (Z_CHK) to enforce this.
Every link on the list screen has Z_CHK=#####. The detail page checks to see that this checksum value
is correct.

If you have defined your own method of calling a component based upon the URL, you will need to
modify these calls to implement Z_CHK or turn off Z_CHK. You can turn off Z_CHK by setting the
preference SECECS (Enforce URL Checksums) to No. Please see the Oracle9i Designer online help for
specific information about how to call wsgl.checksum to implement Z_CHK from your own code.

Oracle9i Designer Migration Guide Part 5

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part5_9i-1.htm (8 of 16) [19/08/2002 16:06:10]

Note: It is a good idea to change the function WSGL.CHECKSUM slightly so that your checksum
differs from the default shipped. The easiest method is to change the mod number in the package
(4294967296) to some other large number.

Using Calls to Underlying Values

In all releases of Designer you could reference values from routines placed in the user text area. This
was not explicitly stated in release 1.3.2 and there were no APIs or standards given for doing so. Hence,
calls made to these underlying values, by use of form_val.field_name, etc., will likely fail in the migrated
application. Oracle9i Designer specifies the use of these values. Please see the Oracle9i Designer online
help for more information on accessing these values.

Return Links

Designer 2.1.2 onwards provides return links to allow the user to select a link to return to previous
modules in the hierarchy. Because this was not available in earlier releases, the existing application may
have coded return links in the user text area. You can turn off return links with the preference MODBRL
(Build Return Hyperlinks).

Table APIs

Designer 1.3.2 required Table APIs (TAPIs) only for WebServer Generator applications. With Oracle9i
Designer the default is to have all transactions run the logic present within a TAPI. Hence, any code that
is currently in the TAPIs will be run for all transactions regardless of the application. This is
implemented through the use of table level triggers. You can disable this feature by deselecting the
Generate Table API Triggers checkbox in the Generate Table API Definitions dialog box during
generation. Other types of applications, however, may wish to make use of the TAPIs, hence it is a
better practice to move any code specific to Web PL/SQL modules out of the TAPIs and into the
modules themselves. Oracle9i Designer has many new trigger points within the module to accept this
code.

Migrating from 2.1.2/6.0
In most cases, migrating your 2.1.2/6.0 application to Oracle9i Designer will go smoothly. There are two
specific areas that may cause difficulty: using calls to underlying values, and table APIs.

Using Calls to Underlying Values

In all releases of Designer you could reference values from routines placed in the user text area. In many
cases the format of calls or local access to these underlying values may have changed; calls made to these
underlying values, by use of form_val.field_name, etc., will likely fail in the migrated application.
Oracle9i Designer specifies the use of these values. Please see the Oracle9i Designer online help for
more information about accessing these values.

Additionally, Oracle9i Designer provides a preference for bringing master level information into detail

Oracle9i Designer Migration Guide Part 5

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part5_9i-1.htm (9 of 16) [19/08/2002 16:06:10]

blocks of a module. These preferences can be found in the Master Context area of the Web PL/SQL
Generator preferences.

Table APIs

Designer 2.1.2/6.0 virtually insisted that you install triggers that implemented the TAPIs for all
transactions. Oracle9i Designer allows you to bypass generation of these triggers. In general it will not
affect your Web PL/SQL applications if you do not generate these triggers. It may, however, allow the
data to become inconsistent with what is expected from your application. Before deselecting the Table
API Triggers checkbox in the Generate Table API Definitions dialog box during generation, consider
carefully the affect of not having the TAPIs fire for all transactions .

Chapter 5 Scenario 2: Migrate,
Regenerate All, with Redesign
In this scenario, you regenerate your entire application from Oracle9i Designer, including all
Web/PLSQL, libraries, menus and reports. As you regenerate each module, you make use of new
features as appropriate.

The goal of this scenario is to take advantage of the new features available in Oracle9i Designer. As with
Scenario 1, you want to be able to generate your application and get the same user interface you got from
your previous release of Designer. However, many new features have been added to Designer to make
achieving the desired result easier. Many features that were difficult or impossible to generate with
earlier releases of Designer are now supported. Thus, in one pass, you can eliminate post generation
modifications and difficult constructs that were used only to work around limitations of earlier releases
of Designer.

This chapter assumes that you have already performed all the actions described in Chapter 3 "General
Migration Issues" and that you have evaluated the steps in the previous chapter, "Scenario 1 Migrate,
Regenerate All, No Redesign".

This chapter is organized by Designer release. You should begin reading at the section for your "from"
Designer release, and then continue reading the sections for any later releases. For example, if you are
migrating from Designer 1.3.2, you need to read all the sections below. If you are migrating from
Designer 2.1.2, you may skip the section on Designer 1.3.2 and read the sections for Designer 2.1.2 and
6.0.

Migrating from 1.3.2
Please review Chapter 4 "Scenario 1: Migrate, Regenerate All, No Redesign", because this also applies
to this section.

Oracle9i Designer Migration Guide Part 5

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part5_9i-1.htm (10 of 16) [19/08/2002 16:06:10]

Security

This section is an extension of the security section in Chapter 3 "General migration issues".

Designer 1.3.2 and 2.1.2/6.0 were typically run using either the Oracle Application Server PL/SQL
cartridge or the WebDB listener. In both cases you had two methods of configuring the database login to
run the generated PL/SQL components:

single user login, and1.

database authentication (provide a basic authentication login screen and login in to the database
with the supplied username and password).

2.

The first scenario, single user login, may have been extended to have multiple Database Access
Descriptors (DADs) that pointed to specific database schemas.

The second scenario, database authentication, allowed the user to log in to the database as a specific
database user. Grants to specific PL/SQL components could then be made to a role, which would in turn
be granted to the database users.

Oracle9i Designer Migration Guide Part 5

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part5_9i-1.htm (11 of 16) [19/08/2002 16:06:10]

In Oracle9i Designer, there is a new security feature that should be considered. The preference SECPKG
(Security Package Name) allows you to specify a PL/SQL package that will determine the users' ability
to use a component. (Please see the Oracle9i Designer online help for details of SECPKG.) By using
SECPKG you can simplify your deployment architecture to that shown below.

You can now grant execute on all PL/SQL components to PUBLIC. Your custom developed SECPKG
package will return a true if the user is allowed to run the component, based upon your own criteria.

Note: You can continue to run the generated application exactly as you did before, making use of the
default SECPKG which always returns true.

If you are using WebServer Generator in the same database instance as Oracle Portal, you can use all of
the Portal user and group features. You must run the Portal script PROVSYNS.SQL for the schema that
contains your SECPKG package. You can then reference the Portal lightweight user name with a call to
the Portal API wwctx_api.get_user. Additional Group and User API information is available within the
Portal PDK (http://portalstudio.oracle.com).

In Scenario 1 we discussed four areas of concern: module level security (z_chk), using calls to
underlying values, return links and table APIs. While these areas of concern remain, they also provide
enhancements that may allow you to reduce the need for post-generation changes or custom code within
the user text areas.

Module Level Security

Oracle Designer Web PL/SQL Generator modules use “Query, List, Detail.” A user is first presented
with a Query Screen, then a list of items that match the criteria, and ultimately a detail screen that
typically allows update. In many cases, the list screen will always be limited by a fixed where clause in
the module. Designer 2.1.2 and forward implement a security check to ensure that users do not access

Oracle9i Designer Migration Guide Part 5

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part5_9i-1.htm (12 of 16) [19/08/2002 16:06:10]

http://portalstudio.oracle.com/

the detail screen directly by changing the URL. Designer uses a checksum value (Z_CHK) to enforce
this. Every link on the list screen has Z_CHK=#####. The detail page checks to see that this checksum
value is correct.

In the previous scenario we discussed how to turn off this feature to provide the same functionality as
your existing application. In this scenario we will discuss how to make use of this feature.

In Designer 1.3.2 you may have “tricked” the generator into using a view instead of a base table, thereby
not allowing the user access to the underlying data in the table. With Z_CHK this trick is no longer
necessary. By setting the generator preference SECECS (Enforce URL Checksums) to Yes the generated
module will ensure that users only have access to the detail screen via the record list. (Please see
Scenario 1 for more details.) Additionally, if you wish to access any detail records from other modules
you will need to make use of the wsglm.checksum routine. Please see the Oracle9i Designer online help
for more information regarding wsglm.checksum.

Return Links

In Designer 1.3.2 navigation links were largely the responsibility of the developer. Designer 2.1.2
forwards provides links to components higher in the module hierarchy.

Table APIs

Table APIs were introduced in Designer 1.3.2 specifically for the Web PL/SQL generator. From 2.1.2
forward TAPIs are an integral part of the overall system. TAPIs have been extended to allow additional
points of access to add custom code. TAPIs automatically generate code to provide denormalization and
enforcement of constraints such as arcs, domain based keys (CG_REF_CODES and ALL_DOMAINS),
etc.

Migrating from 2.1.2/6.0
Please review Scenario 1: Migrate, Regenerate All, No Redesign, because this also applies to this
section.

Module Level Security

Designer 2.1.2 left security largely up to the developer. Security was generally implemented by creating
a schema that either owned the pl/sql packages that make up the Web generator module or had specific
grants to those packages. Another option was to create roles with grants to pl/sql packages and
ultimately grant those roles to users. In either case, the security was left to the DBA to developed and
was limited to granting access to pl/sql via database grants.

Oracle9i Designer provides a mechanism to define your own security policy. This policy is still
implemented across the whole module, but it allows you to code the decision of access in any way you
choose. Every procedure that is callable from a web browser first calls the package defined in the
preference SECPKG, passing in the package name. The default SECPKG always returns true. By
coding your own SECPKG routine you can base access on anything you like - it is not limited to

Oracle9i Designer Migration Guide Part 5

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part5_9i-1.htm (13 of 16) [19/08/2002 16:06:10]

database grants. Perhaps some modules should only be run after normal business hours, simply return
false when called between 8 and 5. Additionally, when SECPKG returns false, nothing is returned to the
browser. This allows you to code your own access error screen. You also have the ability to log invalid
(or valid) attempts to run a module. Each call to a module component initiates a call to your security
routine, giving an access point to log information regarding the module.

When the generator installs the module component, it will call a procedure, add_package_resp, in the
package defined in the preference SECPKG, passing in the value of SECRES (Default Responsibilities)
and all PLSQL Packages that make up the module. Your procedure, add_package_resp, can then insert
these values into a table that will later be used to determine whether a user can run the package.

Multi-Row Components

Designer Web PL/SQL components in version 1.3.2 were limited to insert, update and delete a single
row at a time. Oracle9i Designer now provides the ability to insert, update and delete multiple rows in a
single html screen. Forms that were of type List/Form should be reviewed to determine if the new
multi-row format will improve the user interface.

Oracle Portal portlets generation
Oracle9i Designer provides new functionality to integrate with Oracle Portal. Oracle9i Designer will
generate the wrappers required to present the screens as portlets within Oracle Portal. Because Oracle
Portal and Designer Web PL/SQL generator modules both use Oracle 9i Application Server’s modplsql,
great synergy can exist between these technologies.

If you are using WebServer Generator in the same database instance as Oracle Portal, you can use all of
the Portal user and group features. You must run the Portal script PROVSYNS.SQL for the schema that
contains your SECPKG package. You can then reference the Portal lightweight user name with a call to
the Portal API wwctx_api.get_user. Additional Group and User API information is available within the
Portal PDK (http://portalstudio.oracle.com). By using the PDK you can determine what groups a user
belongs to and map these groups to Designer Modules.

Oracle Portal provides great flexibility in navigation and presentation. By generating Portlet wrappers,
you can place Designer modules on tabbed portal pages. Portal modules can be integrated on the same
pages as Oracle Portal components such as menus, reports and charts.

Chapter 6 Scenario 3: Migrate,
Regenerate INCREMENTALLY
This is the most complex scenario. In this scenario, you migrate your application a little at a time, rather
than all at once. You begin by upgrading all of your Designer repository to an Oracle9i Designer
repository. You then make the changes required to run Web/PLSQL generated from your previous
release of Designer alongside Web/PLSQL generated from Oracle9i Designer. Finally, over some
arbitrarily long period of time, you regenerate all of your modules out of Oracle9i Designer.

Oracle9i Designer Migration Guide Part 5

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part5_9i-1.htm (14 of 16) [19/08/2002 16:06:10]

http://portalstudio.oracle.com/

The goal of this scenario is to allow you to regenerate your whole application, taking into account new
features, but in such a way that you do not have to migrate your entire application in one go. This means
you will be able to move the deployed application to the new tool stack before you have completely
migrated every form. Thus, you can continue with bug fixes and new development in parallel with the
continuing migration effort.

The basic method that allows you to run multiple versions at the same time is the same regardless of the
versions. You should read all of Chapter 3 and Chapter 4 before attempting this solution. You should
back up any schemas that hold database objects, wsgl libraries and application components prior to
attempting to reconfigure the system to allow multiple versions to run side by side.

The key to this method is segregating the different versions into their own schemas. Typically all of the
database objects and the Web PL/SQL components might have resided in a single database schema.

In order to run your existing application alongside the new Oracle9i Designer application components
you will need to first migrate your existing application and associated Web PL/SQL generator libraries to
a separate schema. In all cases you will need to grant select, insert, update, and delete on all database
tables (including CG_REF_CODES) and sequences that are used by your modules. These grants must be
granted directly, not via a role. Depending upon the version that you are migrating from, you may need
to create synonyms to point to the database objects (Designer 6i introduced the ability to define the
database object schema within the generator preferences. Earlier releases require synonyms.)

After moving all existing application components to a new schema as described above, the system should
work precisely as it had previously.

Next, you can install the Oracle9i Designer Web PL/SQL generator libraries. This can be done in the
object owner schema or in a separate schema. For the purposes of this document we will assume that
these libraries are in a separate schema.

Again, the original application should be tested at this point to ensure that it continues to run properly.
The table APIs should be installed next. In Oracle9i Designer, TAPIs are intended to be usable by
transactions other than Web PL/SQL modules. If you only intend to use TAPIs for Web modules, the
TAPIs can be placed in the schema in the diagram above. We will assume that you will use TAPIs
throughout and hence will place the TAPIs in the object owner schema. In so doing, you must grant
execute on the TAPIs to the schema.

You can now migrate individual components to Oracle9i Designer and install them into the schema. Any
logic placed in the TAPIs will be run for all transactions, including transactions from earlier Web
PL/SQL modules.

Designer Web PL/SQL modules do not preface calls to the components with the schema name. Hence,
depending upon your application server configuration, you will likely need to create public synonyms for
all of the packages associated with your applications. This requires that your module names be unique
across schemas.

While this configuration is the most complicated, it is based upon sound database techniques and can be
accomplished. Many specific scenarios will require a more complex scheme than that described above.

Oracle9i Designer Migration Guide Part 5

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part5_9i-1.htm (15 of 16) [19/08/2002 16:06:10]

Prev Next

Copyright © 2002, Oracle Corporation.

All Rights Reserved.
Contents

Oracle9i Designer Migration Guide Part 5

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_part5_9i-1.htm (16 of 16) [19/08/2002 16:06:10]

Oracle9i Designer Migration Guide
Appendix A

Contents

PVCS/VM administration query
select distinct obj.vmproject project

, obj.workfile workfile

, obj_d.revision Develop

, obj_t.revision Test

, obj_a.revision Accept

, obj_p.revision Prod

from (select log1.vmproject

 , log1.workfile

 , grp1.revision

 from solvctgrps grp1

 , solvctlogs log1

 where grp1.archiveid = log1.archiveid

 and grp1.vmproject = log1.vmproject

 and (grp1.groupname = 'develop'

 or grp1.groupname = 'test'

 or grp1.groupname = 'accept'

 or grp1.groupname = 'prod'

)

) obj

, (select log2.workfile

 , grp2.revision

 from solvctgrps grp2

 , solvctlogs log2

 where grp2.archiveid = log2.archiveid

 and grp2.vmproject = log2.vmproject

 and grp2.groupname = 'develop'

) obj_d

, (select log3.workfile

Oracle9i Designer Migration Guide Appendix A

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_appendix-a_9i-1.htm (1 of 2) [19/08/2002 16:06:14]

 , grp3.revision

 from solvctgrps grp3

 , solvctlogs log3

 where grp3.archiveid = log3.archiveid

 and grp3.vmproject = log3.vmproject

 and grp3.groupname = 'test'

) obj_t

, (select log4.workfile

 , grp4.revision

 from solvctgrps grp4

 , solvctlogs log4

 where grp4.archiveid = log4.archiveid

 and grp4.vmproject = log4.vmproject

 and grp4.groupname = 'accept'

) obj_a

, (select log5.workfile

 , grp5.revision

 from solvctgrps grp5

 , solvctlogs log5

 where grp5.archiveid = log5.archiveid

 and grp5.vmproject = log5.vmproject

 and grp5.groupname = 'prod'

) obj_p

where obj.workfile = obj_d.workfile(+)

AND obj.workfile = obj_t.workfile(+)

AND obj.workfile = obj_a.workfile(+)

AND obj.workfile = obj_p.workfile(+)

order by obj.workfile

 n /

Prev Next

Copyright © 2002, Oracle Corporation.

All Rights Reserved.
Contents

Oracle9i Designer Migration Guide Appendix A

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_appendix-a_9i-1.htm (2 of 2) [19/08/2002 16:06:14]

Oracle9i Designer Migration Guide
Appendix B. Quick reference information

Contents

Repository Terminology quick reference
information

Application (Container)
A type of Container that groups Structured Elements with a logical affinity to each other. This affinity
may be data related (that is, all data elements for <App System Cluster>) or function related. An
Application may container Folders to hold related File Elements and Documents (that is, ins and ddl).

Application Item
A type of Configuration Item that is the direct source for an application executable element (that is,
Module Definition, Report Source File). These generate out as Developer, PL/SQL, etc. source or are
extracted “as is”.

Application System Cluster
A group of application systems that are strongly interrelated. For example a set of entities and tables
from application system CORE is referenced by the application systems SALES and STOCK. You
would typically group these application systems in a single workarea.

Base line configuration or release
A base line configuration - or base line release - represents a full set of object definitions for a specific
system. For example base line configuration <App System> 3 represents release 3 of system <App
System> and contains all elements within <App System> that should be deployed for release 3.

Branch
Branches are sequences of object versions that have their starting point at a particular version in an
existing branch, but evolve independently. All the versions together create a version tree. A version tree
always has a MAIN branch, and may also have sub-branches. Branching enables you to develop multiple
versions of a product simultaneously (parallel development) using the same set of source files.

Oracle9i Designer Migration Guide Appendix B

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_appendix-b_9i-1.htm (1 of 17) [19/08/2002 16:06:16]

When you check in an object for the first time, it is always added to the default MAIN branch. If the
repository policy specifies an alternative branch to check in to for the first time, two versions are created,
one on MAIN and the other on the specified alternative branch.

Checkin
The checkin option versions an uploaded file/folder or a saved structured element. For example, the file
or folder is already stored in the repository and in addition it will be enhanced with version information
and you will be able to view the file/folder/structured element in another workarea. Note that another
version of an element can only be created via a checkin operation.

Checkout
Repository elements can be manipulated only when they are checked out (or unversioned). You therefore
first have to check out a checked in element before you can apply changes. The checkout action starts
with the creation of a duplicate of the element. This allows you to perform an undo checkout operation.
As a result you will fall back on the original, checked in element version.

Configuration
A configuration is another means to isolate only one version of one or more repository elements. The
content of a configuration is fully static, in contrast to workareas. Like any other element you can version
configuration. This version capability of configurations can be used to associate configurations with a
workarea or, to put it differently, to base a workarea on one or more configurations. Another
application of the configuration version capability is the storage of an original element set in the “first”
version of the configuration. Within the next version all corresponding derived elements (ddl files) are
stored.

Configuration Item
The product of a task, or a deliverable for the project, which is placed under Configuration Management.

Container
A grouping of items for the purpose of usage, access, or extraction. Within the Oracle Repository
containers can be Applications (for example, DMO, Headstart) or Folders (for example, ins, ddl).
Containers should not be confused with Workareas (see below). Workareas are a means of presenting
containers and their contents.

Oracle9i Designer Migration Guide Appendix B

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_appendix-b_9i-1.htm (2 of 17) [19/08/2002 16:06:16]

Data Content Item
A type of Configuration Item that is the direct source for the initiation of a database schema element (that
is, seed data script). These are extracted “as is” for use.

Data Management Item
A type of Configuration Item that is the direct source for the restructuring, conversion, or initiation of a
database schema element (that is, restructure table script). These are extracted “as is” for use.

Data Structure Item
A type of Configuration Item that is the direct source for a database schema element or a database
schema logic element (that is, Table or View Definition). These generate out as DDL scripts.

Database Schema
A database schema is a user in the database. Each database element like a table or view (expect a role) is
owned by a database schema.

Database Synchronization
Database Synchronization refers to the state of database definitions in the repository versus its mapped
database objects in the database within a database schema. There can be a mismatch between these
two, since there are (within the context of a workarea) two database representations, one in the
repository and one in the database. The database synchronization status can be checked with the
CheckRelease Form (see CheckRelease QRC).

Database User
See database schema. Note that each database user can access its own database objects - obviously. In
addition a database user can access database elements of other users - or schema’s - via a mechanism of
grants and synonyms.

Document (Item)
Any type of Configuration Item which is part of the supporting description an application system’s
architecture, environment, usage, or its general definition.

Oracle9i Designer Migration Guide Appendix B

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_appendix-b_9i-1.htm (3 of 17) [19/08/2002 16:06:16]

Download
The download option allows you to publish files and/or folders from the repository to a specific folder
path on the operating system - either based on the default folder mapping or session specific value. The
download will prompt you if the file already exists on the file system.

Edit Workarea Rule Specification
The content of a workarea is primarily determined by workarea rules (see above). You need a specific
workarea access right (Update Spec) to change the workarea rules for a workarea. This Update Spec
policy is given only to a PCM. This Update Spec right must be distributed in combination with the
Refresh or Compile right (see below).

Element
Any type of Configuration Item (see above), intermediate item (not under configuration control),
executable item (for deployment), or other component which is associated with the development and
deployment of the application system that is being constructed or maintained. An element can be either
structured or unstructured (file).

Environment
A specific set of elements drawn from across each of the technology layers. An environment is identified
as being for a particular promotion state or purpose, such as application development or application
deployment. An environment will include a specific Baseline Configuration, a directory structure
containing source and executable programs, a specific database schema containing data structures and
data content, and an accessible toolset.

File Element
A type of Application Element which may or may not have been originally sourced from Designer, but
whose current source is the file system representation, (for example, a report with post-generation
changes, or data conversion scripts written by hand).

File Synchronization
File Synchronization (not to be confused with the synchronization option, see above) refers to the state of
files in the repository versus its mapped files on the file system. There can be a mismatch between these
two, since there are (within the context of a workarea) two file representations, one in the repository and
one on the file system. The file synchronization status can be checked with the CheckRelease Form (see
CheckRelease QRC).

Oracle9i Designer Migration Guide Appendix B

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_appendix-b_9i-1.htm (4 of 17) [19/08/2002 16:06:16]

Folder (Container)
A type of Container that groups File Elements with a logical affinity to each other. They may be related
by usage, project phase focus, or other criteria. Top level Folders are usually created as children of
Applications and may contain other Folders in turn. A standard set of Folders has been identified for
general use in all Applications (that is, ins and ddl).

Folder Mapping
Folders - containers for files - in the repository can be mapped against directories on the file system via
the folder mapping option (available for root containers only). This mapping - stored locally in the
registry - is reused while downloading and uploading files (see below).

Item
See Configuration Item.

Item Type
The classification of an Item based on its definition, characteristics, or use (see below).

(CM) Repository
A storage system which contains a copy of all the items under Configuration Management control, and
also contains the information that relates those items to each other and to project deliverables. This
facility is provided by the Oracle Repository, which is implemented as a specific database schema, that
underlies the Oracle Designer toolset. The CM repository contains for example all <App System>
entities, tables, views and files and subsequent versions.

Root Container
A root container (application system or folder) is the starting point of a container structure like a root
directory on the file system.

Partial configuration
A partial configuration contains only a limited set of object definitions for a specific release. A partial
configuration can be associated with a single registered enhancement request (“Change Request”) or with
a bundle of registered enhancement requests. For example partial configuration <App
System>_20013011 represents enhancement request <App System>_20013011 for system <App
System> and contains only objects that are associated with this enhancement request.

Oracle9i Designer Migration Guide Appendix B

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_appendix-b_9i-1.htm (5 of 17) [19/08/2002 16:06:16]

Refresh a Workarea
The refresh or compile option of a workarea (another specific workarea access right) reevaluates the
content of a workarea based upon the workarea rules, without changing the workarea rules themselves.
The end-result (pointers) is stored in the workarea table.

Requery a workarea
The requery does not reevaluate the workarea rules, but takes the persistent workarea table content as a
given and requeries all primary and secondary elements, associations and properties.

Sandbox Workarea
A sandbox - or playground - workarea can be used for the preparation of releases or to experiment with
workarea rules. The use of a separate workarea during the preparation of a release circumvents the
interference with ongoing development and testing activities.

Specific Workarea Operations
The following operations can be executed against a workarea:

Change the workarea rules or edit workarea rule specification.●

Refresh a workarea.●

Requery a workarea.●

Structured Element
A type of Application Element that is defined wholly within the Designer toolset and is then generated
out from there for use in the application system (that is, Entity, Table Definitions, View Definitions)

Synchronization
The synchronization option (files only) compares the repository content with the underlying file system,
for a specific directory tree. Subsequently it will suggest uploads and downloads for file mismatches.
This option will however be rarely used because files are downloaded or uploaded on a individual basis
during checkin and checkout procedures (see Checkin and Checkout QRC).

Oracle9i Designer Migration Guide Appendix B

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_appendix-b_9i-1.htm (6 of 17) [19/08/2002 16:06:16]

Target or destination file system
The target or destination file system is the environment on the file system level that will receive the files
for a specific system (DMO) captured in a specific release.

Target or destination database schema
The target or destination database schema is the schema in the database (in the specific target database
instance) that captures the database objects of one or more systems (for example, <App System>, OHL)
of a specific release (or configuration).

Target or destination workarea
The target or destination workarea is the environment in the repository that will receive the release,
captured in a configuration. The target or destination workarea, given the (D)TAP model, could be Test
(for example, <App System>_TST_REL<release nr>), Acceptance test (for example, <App
System>_ACC) or Production workarea (<App System>_PRD).

Tip Version
The latest object version of a branch.

Upload
The upload option allows you to store files and/or folders in the repository from a specific file system
path, either based on the default folder mapping or session specific value. Note that an upload does not
check in the element. That is, no version properties are added and you cannot view a stored file/folder in
another workarea.

Verification of the Synchronization between the
Repository versus File and Database
The CheckRelease Form reports about the synchronization status of repository elements versus its file
representatives on the file system and its database representatives in the database (see also CheckRelease
QRC).

Version
The rendering of an item which incorporates all of its revised content starting from a given point (that is,
from a previous version).

Oracle9i Designer Migration Guide Appendix B

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_appendix-b_9i-1.htm (7 of 17) [19/08/2002 16:06:16]

Workarea
A workarea serves as an access vehicle or environment to the repository content. Within a workarea you
can see (and manipulate with appropriate access rights) only one version of one or more objects, grouped
in a container structure. A workarea therefore provides a version resolved access mechanism to the
repository elements. A workarea only contains pointers to the full definition of the element - it does not
capture the full element definition.

The content of a workarea can change over time, for example via checkin and checkout actions. That is, a
workarea content is dynamic. Almost all Oracle SCM and Oracle Designer tools (except the repository
object navigator) - allow you to access the repository elements only in the context of a workarea. That is,
you cannot access the Design Editor in the context of a configuration.

Note that there is, luckily, no need to version a workarea. You cannot therefore version a workarea.

Workarea rules
The content of a workarea is primarily determined by workarea rules. A workarea can contain multiple
workarea rules (for example, LATEST(MAIN), INCLUDE_FOLDER(<App System>)) that are
evaluated one by one (from top to bottom). The evaluation result (pointers to the full element definition)
is subsequently stored in a persistent way (in a workarea table).

Designer/Repository Tools Quick
Reference Information

Repository Object Navigator (RON)
The RON or Repository Object Navigator provides a tree-navigational interface to the repository
elements (structured elements and files). Subsequently the RON hosts all configuration management
functionality like the manipulation of workareas, configurations and branches, file manipulation, and
merge utilities.

Design Editor (DE)
The DE or Design Editor also provides a tree-navigational interface and a graphical interface to the
structured design repository elements like tables, views and sequences. In addition, it hosts the DDL
generators. Note that these generators are no longer available in the RON.

Oracle9i Designer Migration Guide Appendix B

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_appendix-b_9i-1.htm (8 of 17) [19/08/2002 16:06:16]

Version History Viewer (VHV)
The Version History Viewer displays a graphical interface of all versions of a specific element. You can
launch the VHV from the RON or DE.

Version Event Viewer (VEV)
The Version Event Viewer displays a character-based interface of all versions' history information (for
example, checkin/checkout notes, the owner of the changes, when changes took place) of a specific
element. You can launch the VEV from the RON or DE.

Element Compare Tool
The element compare tool displays a detailed overview of the differences between two element versions.
You can launch the element compare tool either from the RON or DE.

Element set compare tool
The element set compare tool displays an overview of the element set differences, differences in version
numbers, for example the differences in element set memberships of two workareas or configurations.

You can launch the element set compare tool only from the RON.

Element merge tool
The element merge tool merges differences between two object versions on different branches on a
conflict by conflict basis. For example you can merge object version 1.2.1.1 into MAIN branch label 1.4
resulting in version 1.5.

You can launch the merge tool from the VHV.

Merge Wizard
The merge wizard allows you to perform a merge for a set of elements.

For example you can merge all elements checked in on a specific branch (for example, <App
System>_REL1) into the corresponding elements in the workarea that captures the MAIN branch (for
example, <App System Cluster>_DEV).

You can launch the merge wizard from the RON.

Oracle9i Designer Migration Guide Appendix B

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_appendix-b_9i-1.htm (9 of 17) [19/08/2002 16:06:16]

Naming Standards quick reference
information

Release nr [x]
For example, 10.

The format of a release nr is indicated with x where x represents the major component. A release can
contain all objects of an application system (baseline release) or it can contain only the changed and
added objects introduced in a specific release (increment). Note that releases are implemented by
configurations and that you could have multiple versions of configurations (see below).

Version nr [1.y]
For example, 1.1

The format of the version number of a single object is indicated with 1.y where y represents any major or
minor change.

Branch Version nr [1.y.1.z]
For example, 1.1.1.1

The format of a branch version number of a single object is indicated with 1.y.1.z where ‘y’ and ‘z’
represent any major or minor change.

<App System Cluster>_DEV workarea
Workarea that captures the latest versions of all objects of one or more strongly interrelated application
systems, for example MARKETING_DEV. The default checkin branch is equal to MAIN.

<App System Cluster>_SB<sequence nr>
Workarea to prepare a specific release or to try out different workarea rules with a stack of
configurations. SB stands for sand box (play ground). There is no default checkin branch and there are no
database schemas associated with this workarea.

Oracle9i Designer Migration Guide Appendix B

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_appendix-b_9i-1.htm (10 of 17) [19/08/2002 16:06:16]

<App System Cluster>_ACC
Workarea that captures one or more application systems of a specific release and/or application system
patches that has reached the acceptance test status. There is no default checkin branch (by definition).

<App System Cluster>_PRD
Workarea that captures one or more application systems of a specific release (and/or application system
patches) that has reached the production status. There is no default checkin branch (by definition).

<App System Cluster>_PRDFIX
Workarea that fixes incidents on one or more <App System> release that has reached the production
status. The default checkin branch is equal to <App System>_REL_<release nr>.

MAIN Branch
Branch label for the MAIN branch

<App System>_REL<release nr> Branch
Branch label that captures the latest version of a specific <App System > release (for example <App
System Cluster>_REL10).

<App System>_PRDFIX_REL<release nr> Branch
Branch label that captures the latest version of all production fixes of a specific <App System > release
(for example <App System >_PRDFIX_REL10).

<App System>_REL<release nr> Configuration
Base line configuration for <App System> that contains a full set of all database elements or all changed
and introduced elements (increment) (for example <App System>_REL10).

Note that you have to create a new baseline release if you remove elements from the <App System>.

<App System>_REL<release nr>FIX<sequence nr>
Configuration
Patch configuration for <App System> that contains all elements that are solved for one or more fixes in

Oracle9i Designer Migration Guide Appendix B

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_appendix-b_9i-1.htm (11 of 17) [19/08/2002 16:06:16]

the context of a specific release (for example <App System >_REL10FIX1).

<App System>REL<release nr>.<ext> DDL script
Baseline DDL scripts belonging to a specific release of an application (for example <App
System>REL10.sql, <App System>REL10.tab).

For a list of possible values of the <ext> see below.

<App System>REL<release nr>.sql DDL script
Overall DDL script, derived from the generated baseline scripts for a specific application system. The
<release> part stands for the target release.

<App System><short name table>.ins Seed data
script
Seed data script for a specific table within a specific application system.

<App System>REL<release nr>FIX<sequence
nr>.sql DDL script
Overall DDL script, derived from the generated delta script(s), for a specific fix (or fixes) in the context
of a specific release. <App System>REL10FIX1.sql

<App System>_OWNER Database Schema
Specific database schema that captures the database objects of a specific application system.

ins Folder
Sub-Folder that captures the database install (DDL) scripts.

ddl Folder
Sub-Folder that captures the packages stored as files (for example *.pck) and the overall release delta
script that is transferred to Application Services.

Oracle9i Designer Migration Guide Appendix B

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_appendix-b_9i-1.htm (12 of 17) [19/08/2002 16:06:16]

<SID Name> Database Instance
System Identifier (SID) of the Oracle database.

Checkin and Checkout Quick Reference
Information

Guidelines for Checkout and Checkin notes
Always fill in the checkout and checkin text box in English.1.

Provide references, when applicable, to the corresponding “Change Request” numbers.2.

Reuse the checkout text while checking in and subsequently update the checkin text with actual
revision information.

3.

Never perform an undo checkout against containers (application systems or folders) because you
are not in control of the checkout context, other developers may have added or removed elements.

4.

The context of a checkin should be equal to the change request context. That is, do not leave the
element in a checked out status after you have finished your “Change Request” changes for a
specific element.

5.

Always add the revision keyword string to the structured design element of file (see Revision
keyword guidelines).

6.

Check in an element only if the element is complete and if the generated DDL syntax can be
compiled or created without any errors. A table is complete if it contains all secondary elements
(for example, columns, constraints, triggers, synonyms).

7.

Checkout checklist for existing structured elements
and files

Consult the members of the partial configuration - representing the “Change Request”.1.

Verify the checked-in status of the element - for structured elements and files only. Consult section
Request Check-list for a checked-in status of a checked-out element if the element is already
checked-out.

2.

Verify the appropriate version level on the branch - via the VHV. In most cases you would like to
check-out the tip version.

3.

Request for a refresh or recompile of the context workarea - ask the PCM) if you do not view the
tip (or latest) version on the branch..

4.

Verify the correctness of the folder mapping against the root-container (files only). Note that
folder mapping of a root container is unique within the context of a workarea. Your folder
mapping for the root container should be mapped to a private workspace on the file system (for

5.

Oracle9i Designer Migration Guide Appendix B

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_appendix-b_9i-1.htm (13 of 17) [19/08/2002 16:06:17]

example g:\ work\bck)

Check-out the specific element - either in the RON or DE - and provide check-out notes, see also
section Guidelines for Check-out and Check-in notes - above. Note that you can only use the RON
to check-out files

6.

Check-out associated elements that also need to be modified, for example the entity at the other
end of the relation.

7.

Checkin checklist for folders, structured elements
or files

Check out the owning container, if the owning container is not already checked out, for new
elements only.

1.

Add the revision keyword string, for new elements only (see Revision keyword guidelines).2.

Check the access rights, for new folders only. Note that only a PCM is allowed to create folders.3.

Create your new file with content (files only) on the file system before a checkin.4.

Check the completeness of the elements (for example, attributes, unique identifiers, columns,
constraints).

5.

Check in the element and provide checkin notes (see "Guidelines for checkout and checkin notes",
above). Subsequently consult that information if you need to merge the structured element or file,
for non-containers elements only . Or consult "Merge guidelines for containers" if you need to
merge the container, for containers only.
Note that you can only use the RON to check in files and/or containers.

6.

Synchronize the corresponding database schema via the DDL generator, for tables, views and
secondary database elements only (that is, triggers, indexes) (see also Database synchronization
QRC).

7.

Update and check in the partial configuration by adding specific versions of the new structured
elements/files or changed versions of already populated structured elements. Note that you should
always include the owning container of the element.

8.

Analyze dependencies with the Dependency Manager. Note that the Dependency Manager is only
applicable for design objects like tables, views and seed data scripts.

9.

Request checklist for a checked in status of a
checked out element

Determine the owner of the checked out element (for structured elements and files only) via the
VEV.

1.

Do ONE of the following:2.

Postpone your changes until a checked in status is reached by the owner of the checkout.●

Request a checked in status, on the default checkin branch, of the element in the near future. This
is likely to happen if the owner is nearly finished or can postpone his or her changes. Note that you

●

Oracle9i Designer Migration Guide Appendix B

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_appendix-b_9i-1.htm (14 of 17) [19/08/2002 16:06:17]

may deal (and therefore agree) with an undefined status of the element if the owner was not
finished yet.

Request for a checked in status on another branch if the owner agrees that his or her changes must
be merged eventually on the default checked in branch.

●

Ask permission of the PCM to undo the checkout of the element if the owner is not available. Note
that with this operation all ongoing changes are lost.

●

Enforce a checkin on the default checkin branch thereby accepting an undefined status of the
element, if the owner is (still) not available.

●

Enforce a checkin on another branch (after consulting the PCM) if the owner is (still) not
available.

●

Note that the above operations cannot be enforced by Oracle9i Designer. Every developer is able to
execute each of the listed actions, since every developer has the version right and they all share the same
workarea.

Revision keyword guidelines
The repository supports the following revision keywords:

$Re’||’vision:::xxxxxxxxxxx$ (aka revision)●

$Au’||’thor::xxxxxxxxxxxxxxxxx$●

$Da’||’te::xxxxxxxxxxxxxxxxxx$●

$Wo’||’rkfile::xxxxxxxxxxxxxxxxxxxxx$●

Note that you should not use the string ‘||’ on the specific location. This string is added here to
circumvent the expansion when this specific QRC document is checked in to the repository.

You should always add the “revision” keyword string, on a specific location/property, into new design
elements and files. Use the following overview for the specific location:

Table - comment property●

View - comment property●

File - in the header, prefixed with a comment tokens when used in a SQL script or Shell script●

Note that you can copy/paste an existing revision keyword string for the exact syntax from existing
tables/views/files. The version string is automatically updated after the checkin operation.

Removal checklist for folders, structured elements
or files

Verify the checkin status of the structured element, file or folders. Only checked in elements may
be removed.

1.

Verify the dependencies, usages and inclusions (via the RON and the dependency analyzer) of the
element.

2.

Oracle9i Designer Migration Guide Appendix B

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_appendix-b_9i-1.htm (15 of 17) [19/08/2002 16:06:17]

Determine the appropriate delete order based on your dependency investigation.3.

Check out the owning the container with checkout notes, if not already checked out.4.

Remove the element(s).5.

Merge guidelines for structured elements and files

Perform a merge to the MAIN branch each time you are planning to cut a new release from MAIN.1.

Find the candidate merge elements, for a specific user, on a specific branch via the ROB search
utility by providing a value for the following fields - on the several search ROB TABS for
example:

Workarea: [Basic]

Branch Label : [Version]

Checked In By: [Version]

Check State: “Checked in” [Version].

Note that you may find too many merge candidates, since you do not need to merge if the tip of the
branch is already merged into the MAIN branch. The latter can be visualized via the ROB Version
History Viewer. You could also try to narrow down the search result by translating the “merge of
the tip version into the MAIN branch” condition into an “additional where clause” field on the

2.

Oracle9i Designer Migration Guide Appendix B

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_appendix-b_9i-1.htm (16 of 17) [19/08/2002 16:06:17]

[Advanced] search TAB.

Highlight the TARGET workarea where you will execute the merge.3.

Highlight the candidate merge object, check it out and launch the VHV.4.

Abandon the merge whenever the source or the target tip version is already checked out, indicated
by the blue color, and start a request for a checked in status (see "Request checklist for a checked
in status of a checked out element") to enforce a checkin status.

5.

Mark within the VHV the checked out version, move your cursor to the source object version and
launch the option “merge to mark”. The Merge dialogue or wizard tries to suggest a default change
on a specific branch for every conflict. This default is indicated with an enabling of a specific
version. Subsequently you can perform an automatic merge if every conflict (or difference) is
associated with a default. Therefore you may have to manually interfere whenever the wizard
cannot make a specific choice for a particular difference.

6.

Save the merge operation. The merge itself does not automatically create a new version.7.

Verify the merge result with a compare of the source object version with the target (merged) object
version and make additional changes if necessary.

8.

Check in the target (merged) object version.9.

Consider a merge to other branches of the object.10.

Merge guidelines for containers
The merge steps for containers are more or less equal to the merge guidelines of structured elements and
files.

However, you will only be confronted with differences of folder memberships (see step 6 of the "Merge
guidelines for structured elements and files").

Prev Next

Copyright © 2002, Oracle Corporation.

All Rights Reserved.
Contents

Oracle9i Designer Migration Guide Appendix B

file:///I|/9i-1_migration-guide/migration_guide_vpp/mg_appendix-b_9i-1.htm (17 of 17) [19/08/2002 16:06:17]

	Oracle9i Designer Migration Guide
	Title and legal notices
	Contents listing
	Part 1
	Part 2
	Part 3
	Part 4
	Part 5
	Appendix A
	Appendix B

