
The Oracle Forms Java Importer
Technical White Paper
September 2001

The Oracle Forms Java Importer
Technical Note
September 2001

OVERVIEW

The Oracle Forms Developer and Oracle Forms Server product set provides a rich application

framework to build and deploy advanced business applications. With the tight integration these

product components have with the Oracle 8i Server products, the natural language of choice for

application development is Oracle PL/SQL. Oracle PL/SQL is Oracle Corporation’s procedural

language extension to SQL, the standard data access language for object-relational databases.

PL/SQL offers modern software engineering features such as data encapsulation, exception handling

and information hiding coupled with the absolute ease of access to data stored in Oracle 8i database

servers through the SQL standard language.

While Oracle PL/SQL is a powerful and productive development environment, it is sometimes

necessary to integrate Oracle Forms applications with other external application services and

providers. Usually these external applications are not written in Oracle PL/SQL so some form of

integration capability is required. Traditionally, the interfaces and libraries exposed by external

applications have usually been based on the C programming language. For these situations, the

existing Oracle Forms integration mechanism, ORA_FFI has proved more than sufficient

With the ever-increasing momentum of the Java movement within the IT industry, many

applications are now providing integration points in Java. Similarly, the number of standard Java

libraries for enterprise applications is continually growing.

With this shifting of the landscape towards Java, and being ever cognizant of the need to further

enhance the application integration capabilities of the Oracle Forms product set, a new feature, the

Java Importer, has been introduced. The Java Importer facilitates the invocation of business logic

written in Java from a Forms application.

Using the Java Importer, you can automatically generate PL/SQL packages and procedures that will

allow you to create and use Java objects directly in your forms applications, all via the PL/SQL

language facilities provided by Oracle Forms Developer and the runtime services provided by Oracle

Forms Server.

This document provides a description of the Java Importer feature and its functionality.

The Oracle Forms Java Importer
Technical Note
September 2001

3

THE JAVA IMPORTER

The Java Importer provides you with the facilities you need to create Forms applications that

incorporate functionality contained in external Java classes.

The Java Importer is the name given to a set of components that has been added to the Oracle

Forms Developer and Oracle Forms Server products. The Java Importer enables a Forms

application to call out to Java to make use of code contained within compiled Java classes. Using the

components of the Java Importer makes it possible to create PL/SQL packages for specified Java

classes within a Forms application and to instantiate, use, and destroy the Java object instances when

the Forms application is run.

COMPONENTS OF THE JAVA IMPORTER

The Java Importer consists of a set of components that together can be used to access Java classes

from Oracle Forms applications and perform operations on them. These components are:

• The Java Importer Tool, which allows a developer to select and specify which Java classes
they wish to access in their application.

• The Java Importer Generator, which creates PL/SQL packages that provide access to the
specified Java classes.

• The ORA_JAVA package, which provides a set of convenience functions that assist a
developer in working with the selected Java packages.

• The Oracle Forms Server JNI Bridge, which handles the low level interaction with the Java
classes at runtime.

 These Java Importer components include functionality that resides in both the Oracle Forms

Developer Builder and the Oracle Forms Server.

 THE JAVA IMPORTER AND ORACLE FORMS DEVELOPER

 Oracle Forms Developer is the development component of the Oracle Forms product set and is

used to build Oracle Forms applications.

The Oracle Forms Java Importer
Technical Note
September 2001

4

 The Java Importer Tool

 The Java Importer Tool is a new dialog in Oracle Forms Developer that provides you with a way to

select or specify the Java classes you wish to make use of in your Forms application. Once you have

selected the required Java classes, the Java Importer Tool calls the PL/SQL Generator to create a

PL/SQL package for each class you have selected. You will use this tool whenever you want to

provide access to a Java class to your application. The Java Importer Tool can be run multiple times

during a development session as new Java class access requirements are discovered; it is not

necessary to identify all the classes needed at once.

The Oracle Forms Java Importer
Technical Note
September 2001

5

 Figure [1] : The Java Importer Tool

The Oracle Forms Java Importer
Technical Note
September 2001

6

 The important sections of the Java Importer Tool for a developer to know are:

 [1] Class Browser

 The class browser lists all of the Java classes found on the CLASSPATH. The classes are ordered in

the same way that they are represented in the CLASSPATH. A tree view is used to list the classes in

a hierarchical format that corresponds to their package structures. The class hierarchy is navigated

by opening and closing the tree branches, which represent the package levels. Class selections are

made by clicking on the leaf nodes, which represent the actual Java classes. Multiple class selections

can be made at one time using the shift key in conjunction with the mouse.

 When a class is selected, the fully qualified name of the class is added to the Import Class list field.

 The set of classes available for the Java Importer is determined when the Java Importer Tool is first

invoked. Subsequent invocations of the Java Importer Tool reuse the same set of classes. Classes

added to the CLASSPATH during an Oracle Forms Developer session will not be displayed in the

class browser unless the Oracle Forms Developer session is stopped and restarted. If classes are

added during an Oracle Forms Developer session and are accessible from the CLASSPATH, they

may be imported by manually entering the fully qualified name of the class in the Import Classes list

field.

 [2] Import Classes List

 The Import Classes list field displays the list of fully qualified classes that will be made accessible to

the Forms application when the Import button is pressed. The list of classes is populated via

selections made in the Class Browser or by directly entering the fully qualified class names of the

Java classes to be made available into the Import Classes list field. Multiple class names are

separated by the use of a semicolon.

 [3] Messages Display

 The Messages display is where the output of the PL/SQL Generator is sent. It displays the progress

as the PL/SQL generation is performed and the result of the generation phase, including the name

of the packages generated for each of the Java classes specified. It also displays any errors that occur

during the PL/SQL generation phase.

The Oracle Forms Java Importer
Technical Note
September 2001

7

 [4] Import Button

 The Import button starts the PL/SQL generation process for each of the Java classes specified in

the Import Classes list field.

 [5] Options Button

 The Options button displays a dialog that is used to set the PL/SQL generation options. These

options are described in the documentation that accompanies the Java Importer.

 The Java Importer PL/SQL Generator

 The Java Importer PL/SQL Generator performs the task of creating a PL/SQL package that

exposes the methods identified in the class via PL/SQL functions and procedures. A separate

PL/SQL package is created for each Java class you import. The generated PL/SQL packages are

the way in which you interact with the Java classes you specified with the Java Importer Tool.

 The PL/SQL Generator uses the reflection mechanism provided by the Java API to look inside a

Java class and extract all of the field and method information from the class. The method

information includes the name of the method, the return type, the method parameters and their type,

and the method modifier. The field information includes the existence and details of any class level

variables.

 The PL/SQL packages will, where possible, mimic the Java classes in terms of naming of the

variables, functions, and procedures. There are a number of situations where the Java names will be

slightly modified, for instance, in the case of PL/SQL reserved word conflicts. The documentation

accompanying the Java Importer contains a comprehensive discussion of the mechanics of name

conflict resolution.

 With the information extracted from the Java class, the PL/SQL Generator creates a PL/SQL

package specification and body that represents the Java class. A separate PL/SQL package will be

generated for every class you specify via the Java Importer Tool. The package specification contains

the list of the functions and procedures that map to the Java methods. The package body contains

PL/SQL code for each of the declared functions and procedures that perform the operations

required to invoke the method on the identified Java class

The Oracle Forms Java Importer
Technical Note
September 2001

8

 The algorithm for creating the entries in the PL/SQL package is as follows:

• For each public constructor in the class has, a PL/SQL function called new is created. If the
constructor has parameters, then the new function for that constructor has the same
parameters. The new function returns a new object of type ORA_JAVA.JOBJECT which
represents the newly instantiated Java object.

• For each public method with a return type of void, a PL/SQL procedure of the same name is
created. If the method has parameters, then the procedure has the same parameters. The
parameters will be typed using the mappings described in the documentation.

• For each public method with a return type that is not void, a PL/SQL function of the same
name is created. If the method has parameters, then the function has the same parameters.
The return type of the function will map directly to the return type of the Java method using
the type mappings described in the documentation.

• For each public, static variable defined in the Java class, a PL/SQL package variable is created
of the same name. When the PL/SQL package is first initialized, the value of the variable is
extracted from the Java class and the PL/SQL package variable is set. When a variable in a
Java class is declared as static and final then it becomes a constant.

• For each public variable defined in the Java class, a get function and a set procedure may be
created to allow for the extraction and setting of the variable’s value. The get function and set
procedure are only created if the create get/set option is checked in the Java Importer option
setting. The function and procedure will be named in accordance with the JavaBean naming
convention, where the set procedure will be represented as setVariableName where
VariableName is the name of the variable. Similarly, the get function will be represented as
getVariableName where VariableName is the name of the variable.

 The PL/SQL Generator performs type translations when it is generating the PL/SQL packages

from the Java methods. Some examples of this type translation are:

• Parameters or return types that are specified as a Java String in the specified Java class are
always mapped to PL/SQL varchar2 types in the generated PL/SQL package.

• A non primitive, non java.lang.String parameter or return type is always mapped to an
ORA_JAVA.JOBJECT type in the generated PL/SQL package.

 For a more details on the type translation that occurs at PL/SQL package generation time, please

consult the accompanying documentation for the Java Importer.

 Class and Instance Methods

 The Java Importer enables you to work with both class (static) and instance methods of objects.

Using the “new” functions in the generated PL/SQL packages, you can create instances of Java

The Oracle Forms Java Importer
Technical Note
September 2001

9

classes and obtain references to those instances. Once you have a reference to an object returned

from the new operation it is possible to perform operations on that specific object instance while it

is still valid.

 When you wish to invoke a method on a specific object that you have previously created, you pass

the reference to the instance of the object to the instance methods in the PL/SQL package that

corresponds with the Java class of the object. The desired method will be executed on the specific

object instance you pass in as a parameter to the PL/SQL function or stored procedure.

 PL/SQL functions and procedures that represent instance methods always take an initial parameter

of type ORA_JAVA.JOBJECT that represents the actual object instance that methods should be

executed on.

 PL/SQL functions and procedures that represent class methods do not require an instance object as

a parameter.

 For example the Java String class contains a number of class methods that perform conversion of

primitive Java types into a String representation. These methods do not operate on a specific

instance of a String object but work generally on the String class. An example of this is the

valueOf method that returns a String representation from a scalar value.

 The String class also contains instance methods that operate on a specific instance of a String object.

An example of this is the length method that returns the length of a specific String object.

 public final class String

{

. . .

public static String valueOf(int i);

. . .

public int length();

. . .

}

 Figure [2]: Snippet of Java String class definition

 The PL/SQL Generator would create the following PL/SQL functions for these Java methods in

the String class.

The Oracle Forms Java Importer
Technical Note
September 2001

10

 PACKAGE STRING_ is

 FUNCTION valueOf(a0 NUMBER) RETURN VARCHAR2;

. . .

FUNCTION length(obj ORA_JAVA.JOBJECT) RETURN NUMBER;

 END;

 Figure [3]: Snippet of PL/SQL package spec for String

 The valueOf PL/SQL function represents a Java class method and, as such, it does not require a

parameter of type ORA_JAVA.JOBJECT to indicate the specific object instance on which it should

invoke the valueOf method.

 On the other hand, the length PL/SQL function represents an instance method. This requires that

it be passed a reference to the actual instance of the String object on which that the length method

should be invoked.

 The Java Importer ORA_JAVA Package

 To assist with the use of the Java Importer, a new package, ORA_JAVA is provided. This package

provides a set of convenience built-ins that enable you to work with the Java Importer and the

generated PL/SQL of an imported Java class.

 The ORA_JAVA package provides convenience built-ins in the following areas:

• New PL/SQL type definitions

• Array creation and manipulation

• Runtime errors

• Java Exceptions thrown in accessed code

• Java object persistence

 New PL/SQL Type Definitions

 The ORA_JAVA package introduces two new data-types that can be used in your applications when

working with the Java Importer.

The Oracle Forms Java Importer
Technical Note
September 2001

11

 ORA_JAVA.JOBJECT is a new data-type that is designed to store references to Java objects. Any

time you create a Java object instance via the new function in a Java Importer generated PL/SQL

package, you need to store the result in a variable of type JOBJECT. The JOBJECT data-type can

be used in conjunction with the ORA_JAVA packages’ persistence functions, described in the

“Lifetime of Java Object” section, to manage the lifetime of the Java object instance.

 ORA_JAVA.JARRAY is a new data-type that is designed to store references to Java arrays. Any

time you create an array using the array built-ins in the ORA_JAVA package, you must store the

result in a variable of type JARRAY. The JARRAY object is used to store all arrays, irrespective of

the data type of the array elements. The JARRAY data-type is a subtype of the JOBJECT data-type

and as such can be used with the persistence functions to control the lifetime of the array.

 Array Creation and Manipulation

 The Java Importer supports the use of arrays that are fully interoperable with Java arrays. The

ORA_JAVA.JARRAY type is used to store references to created arrays. The ORA_JAVA.JARRAY

type is a subtype of a ORA_JAVA.JOBJECT, so arrays can be persisted in the same manner as all

other Java objects using the global reference functions.

 Arrays can be created of any Java scalar type or of the java.lang.Object type. The ORA_JAVA

package contains built-ins that allow you to create arrays of a specific type and of a designated length.

Arrays can be returned from function calls in the generated PL/SQL packages.

 The values of the elements of an array can be set using the provided

ORA_JAVA.SET_<type>_ARRAY_ELEMENT built-ins.

 The values of the elements of an array can be retrieved using the provided

ORA_JAVA.GET_<type>_ARRAY_ELEMENT built-ins.

 Another convenient array built-in is the ARRAY_LENGTH function that returns the maximum

length of a specified array. This built-in is commonly used when an array object is returned from a

Java method call and the length of the array is unknown.

 Java Importer Runtime Errors

 When Oracle Forms Server is working with the JVM, it is possible that errors may occur. Some

examples of the types of errors that may occur are: the JVM could not be initialized for some reason

The Oracle Forms Java Importer
Technical Note
September 2001

12

when an attempt was made to perform the task, or perhaps an array index that is specified for an

ORA_JAVA.JARRAY variable is out of bounds. The documentation for the Java Importer provides

a full list of reportable runtime errors.

 When an error of this type occurs, it indicates that an error has happened within the Oracle Forms

Server runtime process as it has attempted to perform an operation with the JVM. This causes a

PL/SQL exception of type ORA_JAVA.JAVA_ERROR to be thrown, indicating that an

unexpected result occurred. This PL/SQL exception can be detected using the standard PL/SQL

exception handling mechanism. If you wish to obtain more information about which exact error

occurred, the ORA_JAVA.LAST_ERROR function will return the runtime error information as a

PL/SQL VARCHAR2.

 Handling Java Exceptions from PL/SQL Code

 The Java programming language uses the concept of exceptions to indicate that something has gone

amiss when the program is executing. These types of exceptions are best thought of as something

going wrong in the Java code itself. For example, attempting to invoke a method on an object that

has not been instantiated will throw a java.lang.NullPointerException.

 In Java parlance, exceptions are “thrown” when an abnormal condition is met. Similarly, exceptions

are “caught” when code exists within an application that can recover from the abnormal condition.

 The ORA_JAVA package provides you with the capability to work with these Java exceptions as

they are thrown in the Java code that is called from your Forms application. When a Java exception

is thrown inside the Java code as it is being executed, Oracle Forms Server will detect this and will

raise a PL/SQL exception called ORA_JAVA.EXCEPTION_THROWN. This PL/SQL exception

can be detected using the standard PL/SQL exception handling mechanism. The built-in

ORA_JAVA.LAST_EXCEPTION can then be used to obtain a reference to the actual Java

exception object that was thrown in the Java code. You should note that the built-in returns a

reference to the actual Java exception object that was thrown. You can use this exception object just

as you would any other Java object you had created.

 The code snippet in Figure [4] demonstrates how to work with Java exceptions. The ORA_JAVA.

EXCEPTION_THROWN PL/SQL exception is handled in the PL/SQL block. When this

exception is detected, the actual Java exception is assigned to a local object. Using this object and

The Oracle Forms Java Importer
Technical Note
September 2001

13

the imported java.lang.Exception package, the getMessage Java method is invoked on the exception

object to display the actual error that was detected.

 DECLARE
exc ora_java.jobject;

. . .

BEGIN

[do some operations]

EXCEPTION

WHEN ORA_JAVA.EXCEPTION_THROWN THEN

exc := ORA_JAVA.LAST_EXCEPTION;

MESSAGE(Exception.getMessage(exc));

ORA_JAVA.CLEAR_EXCEPTION;

END;

 Figure [4: Handling Java Exceptions in PL/SQL

 Java Object Persistence

 The ORA_JAVA package provides two built-ins that allow you to explicitly control the persistence

of any Java objects you create. By default, any Java object that you create is valid only for the

duration of the program unit you create it in. Once the program unit has completed, the Java objects

are freed by the JVM. Using the persistence functions in the ORA_JAVA package, you can mark an

object you create as global, which means that the object will not be freed by the JVM when the

program unit ends. The object will remain valid until you explicitly unmark it as a global which

allows the JVM to free the object when the next round of garbage collection runs.

 To mark an object as a global reference, use the ORA_JAVA.NEW_GLOBAL_REF. This built-in

takes the object you wish to make global as a parameter and returns a new object that is the global

version of the original object. Since PL/SQL does not have global variables, you will need to store

the returned global object in a package variable so that its value is kept.

 To unmark an object as a global reference, use the ORA_JAVA.DELETE_GLOBAL_REF. This

built-in takes the global object as a parameter and removes it as a global reference.

 Using these built-ins changes that way that objects are managed by the JVM. You should take care

that for any long-running process, you delete any global references you have created when you no

longer have any use for them. Accumulating large numbers of global references without removing

The Oracle Forms Java Importer
Technical Note
September 2001

14

them will increase the memory consumption of the JVM and will affect the scalability of your

application.

 A more detailed explanation of this process is given in the “Lifetime of Java Objects” section in this

document.

 THE JAVA IMPORTER AND ORACLE FORMS SERVER

 Oracle Forms Server is the server side component of the Oracle Forms product set and it is used to

run the Forms applications that have been developed in a thin client, network-oriented manner.

Oracle Forms Server is responsible for three things: managing the lifecycle of a forms session for an

end user, executing the application logic contained in a Forms module, and maintaining the

transactional state of any data used in the application with an Oracle 8i database.

 For the Java Importer feature, the functionality of Oracle Forms Server has been extended to

provide facilities for the interaction with a standard Java runtime engine – the Java Virtual Machine

(JVM). This coupling of Oracle Forms Server and JVM environments is achieved through the use of

the Java Native Interface. The Java Native Interface (JNI) is a standard programming interface for

writing Java native methods and embedding the Java virtual machine into native applications [1].

 Using JNI, Oracle Forms Server can create an instance of a JVM when required, create instances of

specified Java classes, invoke methods on Java objects, destroy Java objects it has created, and

shutdown the JVM when the application exits.

 A set of functions to interface directly with the JNI has been added to Oracle Forms Server. A

PL/SQL package has been created to provide PL/SQL access to these new runtime functions. This

package, named JNI, is used to facilitate the calling into Java via JNI from the Forms PL/SQL

environment.

 Coding in JNI is a low-level operation and fortunately, is not required to access Java classes from

Oracle Forms Server. As described earlier, the PL/SQL Generator provided within Oracle Forms

Developer generates the code required to interact with a specified Java class. The code that is

generated makes use of the JNI package to perform all the operations required to instantiate objects,

use, and destroy objects of the underlying the Java class. The JNI package is not intended for direct

use by you as a developer and does not appear in the list of Built-in packages in Oracle Forms

The Oracle Forms Java Importer
Technical Note
September 2001

15

Developer.

 It is beneficial to understand what is happening under the covers when the generated PL/SQL

packages are run. The code snippet in Figure [5] is a function that represents one of the

constructors for the java.lang.String class that has been imported into an Oracle Forms application

by the Java Importer Tool. This constructor takes a String object as its parameter and creates a new

String object based on it. The JNI package is used to perform the lookup of the class-id associated

with the java.lang.String class, perform the lookup of the initialization method for the String object

that takes a String object as its argument, create an argument list to pass to the initialization method,

and finally to construct an instance of the String class and return it to calling the program.

 -- Constructor for signature (Ljava/lang/String;)V

FUNCTION new(a0 VARCHAR2) RETURN ORA_JAVA.JOBJECT IS

BEGIN

cls := JNI.GET_CLASS('java/lang/String');

mid :=JNI.GET_METHOD(FALSE, cls, '<init>',

'(Ljava/lang/String;)V');

args := JNI.CREATE_ARG_LIST(1);

JNI.ADD_STRING_ARG(args, a0);

RETURN (JNI.NEW_OBJECT(cls, mid, args))

END;

 Figure [5]: Code snippet of the generated package body for java.lang.String

 You can see that there are many steps required to perform this relatively simple operation of creating

a new String object. The PL/SQL Generator insulates you from having to write the code to

accomplish all of these steps and provides real value in terms of productivity for you as a busy

developer.

 JAVA IMPORTER LIFECYCLE CONSIDERATIONS

 This section contains information concerning the lifecycle of the various elements of the Java

Importer including the Java Virtual Machine started and the Java objects used by the running Forms

application. A good understanding of this information will assist you in making productive use of

the Java Importer feature in your Forms applications.

The Oracle Forms Java Importer
Technical Note
September 2001

16

 The Java Virtual Machine

 When an Oracle Forms application calls into Java via the Java Importer functionality, a dedicated

Java Virtual Machine is created and attached to the Oracle Forms Server runtime process. The JVM

is created only when a call is made to a Java class via the Java Importer. If the Java Importer feature

is not used in your applications, a JVM is never started by the Oracle Forms Server runtime process.

 Lifetime of Java Objects

 The process of calling Java classes from Oracle Forms Server at runtime is governed by the standard

JNI specification. JNI provides facilities to enable the execution of Java code in a JVM from native

methods. In our case, the native method is the Oracle Forms Server runtime process that is

executing the Oracle Forms application.

 The JNI specification asserts that any objects created by a native method during the JNI session will

be valid for the duration of the native method. Following from this, objects created during the

native method’s execution will be freed automatically when the native method completes and exits.

 In the context of the Java Importer, the Oracle Forms Server runtime process is the native method

that starts the JVM. The Oracle Forms Server runtime process will only stop when the Forms

applications that are being executed by the end user are finished. Given this, the standard behavior

of the JNI specification would mean that any objects created through the use of the Java Importer

would never be removed from memory while the Oracle Forms Server runtime process is still active.

This would cause the memory consumption of the Oracle Forms Server runtime process to increase

over time and defeats the automatic memory management feature of Java.

 To overcome this issue, the Java Importer utilizes a feature introduced with JDK 1.2 that allows for

local frames to be created when working with JNI. A JNI local frame can be thought of as an

isolated workspace that can be programmatically controlled via functions in JNI. Objects created

within a JNI local frame are freed when the local frame is destroyed.

 Oracle Forms Server creates a JNI local frame when a PL/SQL trigger unit is first executed and then

destroys the local frame when the PL/SQL trigger unit ends. When a new object is created during

the execution of a PL/SQL trigger, the object reference is created in the PL/SQL trigger’s local

frame. Conversely, when the PL/SQL trigger unit ends, the local frame is destroyed and all objects

The Oracle Forms Java Importer
Technical Note
September 2001

17

created within that local frame are freed.

 This programmed behavior causes the default lifetime of an object to be equivalent of that of the

PL/SQL trigger unit that created it.

 Controlling the Lifetime of Java Objects

 It may be desirable at times to extend the lifetime of Java objects beyond the scope of the PL/SQL

trigger unit that created them. To facilitate this, the ORA_JAVA built-ins NEW_GLOBAL_REF

and DELETE_GLOBAL_REF can be used. These built-ins mark the specified Java object as global

in the JVM. This results in them not being freed when the local frame in which they were created is

destroyed.

 When an object is marked as global through the use of the ORA_JAVA.NEW_GLOBAL_REF, it

will exist in memory as a valid object until it is explicitly marked as not global through the use of the

ORA_JAVA.DELETE_GLOBAL_REF. If an object is marked as global and never subsequently

marked as not global it will never be freed from memory until the Oracle Forms Server runtime

instance is stopped and the JVM is shutdown.

 Java objects that are created through the constructors are stored as PL/SQL variables of type

ORA_JAVA.JOBJECT. If a Java object is to be made persistent through the use of the

NEW_GLOBAL_REF, then the PL/SQL variable that holds the reference must also exist beyond

the lifetime of a local program unit. PL/SQL package variables should be used to store references to

persistent Java objects.

 For example, consider the case where a Java Vector object is to be used to collate data from several

different locations in Forms application code. To do this, we need to:

• Create an instance of the Java object using the generated Vector PL/SQL package.

• Create a global reference from the Java object and store it in a package variable.

• Use the package variable whenever we want to reference the original Java Vector object to
add an element to the Vector object.

• Destroy the global reference when it is not longer necessary to access the Vector object.

The PL/SQL code to perform this may look like the code snippets contained in Figure [6] and

Figure [7].

The Oracle Forms Java Importer
Technical Note
September 2001

18

PACKAGE globals AS

vec ora_java.jobject;

END;

Figure [6]: PL/SQL package to store global references

DECLARE

vec ora_java.jobject;

BEGIN

vec := Vector.new;

globals.vec := ORA_JAVA.NEW_GLOBAL_REF(vec);

END;

Figure [7]: PL/SQL trigger unit creating a persistent object

BEGIN

. . .

Vector.add (globals.vec,’some data’);

. . .

END;

Figure[8]: PL/SQL trigger unit accessing persistent object to add data

Using the NEW_GLOBAL_REF and DELETE_GLOBAL_REF are the only ways to manage the

persistence of the Java object in the JNI space. Creating a PL/SQL package variable and assigning it

the value returned from a constructor in a PL/SQL Generated package will not make the object

persistent. If an invalid object is used with a function or procedure in a PL/SQL generated package

that represents an instance method, this will cause the JNI operation to crash and may result in the

corruption and stoppage of the Oracle Forms Server runtime process.

The golden rule is that if you wish to make use of a Java object instance beyond the scope of the

PL/SQL trigger unit in which it is created, you must make it persistent by using the

NEW_GLOBAL_REF built-in. It is equally important that you remember to delete the global

references when they are no longer required so that the long-term impact on memory consumption

of your objects is managed by the JVM.

The Oracle Forms Java Importer
Technical Note
September 2001

19

WHEN TO USE JAVA CODE

The Java importer makes it simple to quickly integrate Java calls into your Forms applications,

however, we recommend that you exercise caution with regards to when and where you leverage Java

functions in this way.

Imported Java code can raise some issues of performance and maintenance which should be

considered when deciding to use the functionality.

1. Memory: Each connected processes that calls imported Java code will have to instanciate it’s

own Java Virtual Machine (JVM) to run the imported Java code. Although the operating system

will ensure that much of the memory required for this is actually shared, there is going to be a

memory overhead for each and every runtime process that calls into Java code.

2. Execution performance: The Java Native Interface (JNI) layer that is used to communicate from

the C based Forms engine and PL/SQL to the Java code is a bottleneck. Although delays caused

by the JNI layer are small, and will not be noticed in operations such as sending an Email via Java

Mail, the delays could add up to a significant amount if you attempted to use Java code to replace

default Forms functionality. Examples of this might be to attempt to replace the default Forms

Block functionality with calls out to Enterprise Java Beans (EJB) or Business Components for

Java (BC4J). As a result of this we recommend that you don’t try and attempt to replace large

portions of default Forms functionality with imported code.

3. Maintenance: We recommend that you only use Java code where you are attempting to carry out

and operation that can only be done in Java. If it is possible to carry out the same task using

PL/SQL then your maintenance burden will be reduced if you continue to implement in

PL/SQL. If you do implement a function in Java you will have to maintain both the Java code

itself and the Forms interface to that code.

SUMMARY

The Java Importer provides you with the powerful ability to create Forms applications that utilize

Java code contained in standard, compiled Java class libraries. The Java Importer automates the

generation of PL/SQL functions and procedures to allow you to invoke Java methods on Java

objects you create. A convenience package that contains built-ins that assists you with the

The Oracle Forms Java Importer
Technical Note
September 2001

20

interoperation with Java objects is provided to speed up the development process. Finally, the Java

Importer completely manages the lifecycle of the Java objects you use in your application with

mechanisms to give you explicit control over the objects as you require it.

Oracle Corporation
World Headquarters
500 Oracle Parkway
Redwood Shores, CA 94065
U.S.A.

Worldwide Inquiries:
+1.650.506.7000
Fax +1.650.506.7200
http://www.oracle.com/

Copyright © Oracle Corporation 2000,2001
All Rights Reserved

This document is provided for informational purposes only, and
the information herein is subject to change without notice.
Please report any errors herein to Oracle Corporation. Oracle
Corporation does not provide any warranties covering and
specifically disclaims any liability in connection with this
document.

Oracle is a registered trademark, and Oracle8i, Oracle8, PL/SQL,
and Oracle Forms are trademarks of Oracle Corporation. All
other company and product names mentioned are used for
identification purposes only and may be trademarks of their
respective owners.

