Performance Collector for Oracle® Forms 6i

An Oracle® Technical White Paper
April 2001

ORACLE

INTRODUCTION

An Oracle® Forms application may require frequent user interaction and thus response time plays a
major role in determining the productivity of the Forms user. The 3-tiers of the Forms Server
architecture - the Forms Client, the Forms Server and the database server - are well designed to
provide minimum response time to the end user, however, due to the flexibility supported by
Forms in terms of user exits, libraries and program units the performance of a Forms application
depends in part on the Forms designer. The designer needs a tool or a technique to deliver an
application without performance flaws. Performance Collector, which appears as part of Oracle
Forms release 6i, is one of the features designed to support the application developer or
performance analyst in determining the time spent by a Forms application in each tier of the 3-tier

architecture.

BACKGROUND

A typical network infrastructure for using the Forms application is shown in Figure 1. In this, each
user action from the Forms Client is communicated to the Forms Server. The Forms Server
processes the user request and communicates the response back to the Forms Client. While

processing the user requests, the Forms Server might also communicate with the database server.

In further discussions in this paper, the duration for which a Forms user is using the Forms
application is termed as a session. A typical user session comprises a sequence of round trips
between the Forms Client and the Forms Server and between the Forms Server and the database

server as Figure 1 illustrates.

Client Forms Dratah ase
Server
Logon LE Proc 1
Idenu Query DE Proc 2
- Rl
Logoff DE Procn
Figure 1 : A Typical User Session with Forms Server
Forms Performance Collector 2

April 2001

Figure 2 illustrates a typical scenario. (The continuous lines indicate the communication between the

Forms Client and the Forms Server at the start and end of the user action. The dotted lines indicate

the communication between the Forms Server and the database server. The smaller dotted lines

between the Forms Client and Forms Server indicate the roundtrips between the Forms Client and

Forms Server, during the user action processing which is not explicitly known to the end user).

Client

User Action - Start

T

-]

User Action - End ™™

|

User Action - Start

1:CS, 11

11
les 21

(p-1)1
Pl

pl

tes12

Forms Server

1:Sd,ll

%ds,ll
=d,21

tds,21

tsd,ml‘

tds,ml

Figure 2 : Communication due to a User Action

Database Ser ver
iy
-
-y
A—f’/‘
i
o« -

m - roundtrips between
Fserver and DBserver

p - roundtrips between
Client and FServer

Forms Client for UserAction 1

ts11 | Instant at which the Forms Server receives the user action request from the

during roundtrips for UserAction 1

tespr | Instant at which the Forms Server receives the last packet from Forms Client

i =1,...m for UserAction 1

fsd,iz Instant at which the Forms Server sends request to the database server

server i =1,...m for UserAction 1

tdsiit Instant at which the Forms Server receives the response from the database

Forms Performance Collector

April 2001

tsckr | Instant at which the Form Server sends roundtrip packets to the Forms

Client k = 1,...p. for UserAction 1

tsepr | Instant at which the Form Server sends last response packet to the Forms

Client for UserAction 1

Tes12 | Instant at which the Form Server receives the NEXT User Action Request

from the Forms Client for UserAction 2

The illustration also helps in deriving the time spent during various parts of the transaction as

described below:

tes12- tsepr = Forms Client Processing Time + User Think Time (for User action 2) +

Network latency
tesit - tsei-yr = Forms Client Processing Time + Network latency , i= 2,...p
taski - tsakt = Processing Time at the database server + Network Latency k = 1,...m

Following the same approach, in User Action 1:

Si:z,...p(tcs,i 1- tse-1) = Forms Client Processing Time + p * Network latency
Sic i p(tseit - tesit) - Sk=o..k (taska - tsaxa) = Processing Time at the Forms Server

Sk=1..m (tdsk 1- tsax1) = Processing Time at the database server + m * Network Latency

where:

m = no. of roundtrips between the Forms Server and database server

p = no. of roundtrips between the Forms Server and Forms Client.

Forms Performance Collector uses the above approach to determine the timing components at the

3-tiers as illustrated further in this paper.

Forms Performance Collector 4
April 2001

FORMS PERFORMANCE COLLECTOR

Once enabled, the Performance Collector records time stamps in the log file whenever the Forms

application’s thread of execution enters or exits the Forms Server. The following are all of the

possible time stamp labels that can be recorded in the log file:

Recorded as

Description

FSERVER_START

Instant at which the Forms Server receives the Forms Client request

FSERVER_END

Instant at which the Forms Server sends a response to the Client

DBLOGON_START

Instant at which the Forms Server sends a logon request to the

database server.

DBLOGON_END

Instant at which the Forms Server receives the logon response

from the database server.

DB _START Instant at which the Forms Server sends a query or other
request to the database server
DB_END Instant at which the Forms Server receives a query response

from the database server

DBLOGOFF_START

Instant at which the Forms Server sends a logoff request to

the database server

DBLOGOFF_END

Instant at which the Forms Server receives the logoff

response from the database server

Table 1. Forms Server Time Stamps

Forms Performance Collector
April 2001

Since time stamps are only recorded when the thread of execution for a Forms application either
enters or exits the Forms Server, the difference between two successive time stamp points represents
time spent in one of the 3-tiers. The interval of time spent in one tier is called a Within-Tier Event.
Within-Tier Events are grouped into 4 categories - Forms Server, Database, Network, and Client.
Note that Network and Client categories are actually the two subdivisions that make up the Forms
Client tier. The Network category does not include time spent on the network communicating

between the Forms Server and the database server.

Each Within-Tier Event is uniquely defined by an ordered pair of time stamps - the initial time
stamp and the final time stamp. For example, a FSPrelogon Within-Tier Event starts with a
FSERVER_START time stamp and ends with a DBLOGON_START time stamp. This
indicates that the thread of execution entered the Forms Server (in response to a user action on the
Forms Client), the Forms Server processed the request, then the thread of execution exited the
Forms Server and entered the database server in order to perform a database logon operation. To
be considered a FSPrelogon Within-Tier Event, DBLOGON_START must be the first time
stamp recorded after the FSERVER_START time stamp.

1. Forms Server Within-Tier Events

FSPreLogon FSERVER_START ® DBLOGON_START

Time spent in the Forms Server before a logon request is sent to the database server.

FSPostLogon DBLOGON_END ® FSERVER_END

Time spent in the Forms Server after the response to a logon request is received from the
database server.

FSPreDB FSERVER_START ® DB_START

Time spent in the Forms Server after processing a Forms Client request and before a query
is sent to the database server.

FSMidDB DB_END ® DB_START
Time spent in the Forms Server between successive queries to the database server. Arises
when query results are not deliverable in a single round trip between the Forms Server and

the database server.

FSPostDB DB_END ® FSERVER_END

Forms Performance Collector 6
April 2001

Time spent in the Forms Server after a query is sent to the database server and before

responding to the Forms Client.

PreLogoff FSERVER_START ® DBLOGOFF_START

Time spent in the Forms Server before a logoff request is sent to the database server.

PostLogoff DBLOGOFF_END ® FSERVER_END
Time spent in the Forms Server after the response to a logoff request is received from the

database server.
2. Database Within-Tier Events

DBLogon DBLOGON_START ® DBLOGON_END

Time spent in the database server and on the network processing a logon request.

DBLogoff DBLOGOFF_START ® DBLOGOFF_END

Time spent in the database server and on the network processing a logoff request.

DBProc DB_START ® DB_END

Time spent in the database server and on the network processing a database query.
3. Network Within-Tier Events

Network FSERVER_END ® FSERVER_START *
The duration between when the Forms Server sent a response to the Forms Client and the
next request was received from the Forms Client minus time spent either executing the

Forms Client or waiting for user input to the Forms Client.
4. Client Within-Tier Events

Network FSERVER_END ® FSERVER_START *
Time spent executing the Forms Client or waiting for the user input to the Forms Client.
Does not include time spent on the network communicating between Forms Client and

Forms Server.

The start and end timestamp point names, the Forms Server Event names and the Group names are

further used in this paper in discussing the reporting and output analysis of the performance data.

Forms Performance Collector 7
April 2001

USING THE FORMS PERFORMANCE COLLECTOR

The Performance Collector is built with the Forms Runtime Diagnostic (FRD) logging facility. The
Performance Collector collects time stamps at predefined points as previously explained and records
them in an ASCII output file. A PERL script is supplied to parse and report the data meaningfully
into HTML and optionally into a Comma Separated Value (CSV) file.

With understanding of the 3-tier architecture, Performance Collector’s breakdown of data into 4
categories (Forms Server, Database, Network, and Client), and the definitions of the Within-Tier
Events, discussed in the previous section, the data can be easily processed using any spreadsheet

application.

Using Performance Collector requires three steps :
1. Enabling performance collection
2. Reporting the data for analysis

3. Analyzing the output

ENABLING PERFORMANCE COLLECTION

Performance Collector is enabled by the command line option r ecor d=per f or nrance on the
Forms Client. Alternately, Performance Collector can be started by specifying r ecord=al | to
have both Performance Collector and Forms Runtime Diagnostics (FRD) data written to the log
file. The Performance Collector PERL script will extract only the Performance Collector data from

the resulting log file in either case.
Forms 3-tier Modes (Sockets, HTTP, Listener Servlet)
Include r ecor d=per f or mance as part of the ser ver Ar gs parameter in the HTML file:

<par am nanme="server Args” val ue = “nodul e=put _nodul e_nane_here
useri d=put _userid_here record=performnce

| og=put _file_name_here”>

Forms Performance Collector 8
April 2001

orinclude r ecor d=al | as part of the ser ver Ar gs parameter:

<par am nane=“server Args” val ue = “nodul e=put _nodul e_nane_here

useri d=put __userid_here record=all |og=put_file_name_here”>

The wuser actions and the timestamp details are written into the log file denoted by
put file_nane_here. If the log file name is not specified then a log file is created with a
unique name of the format perf _xxxx where xxxx is the process id of the Forms Server

process.
Forms Client/Server Mode

When running Performance Collector in Client/Server mode only the raw time stamp data will be
available. The PERL script is only supported for 3-tier modes. Since there is only the Forms Client in
Client/Server mode (Server referring to the database server) FSERVER_START and
FSERVER_END time stamps will not be recorded.

REPORTING THE DATA FOR ANALYSIS

The data collected by the Performance Collector is processed using a PERL script to produce
meaningful reports for analysis. Perl 5 (or a newer version), available on the web for free download,
can be used to run the PERL script. The PERL script accepts the recorded log file, the optional
output CSV file name, and the OS (operating system) on which the Forms Server was running when
the performance data was collected. The output includes HTML files and optionally a CSV file,

viewable with a spreadsheet application.
To analyze the data :

Locate the PERL script f 60par se. pl in the following directory :

<O acl e_Hone>\ f or ns60\ Per |

Run the Perl script: using the following command :

perl f60parse.pl -input=infile [-output=ofile] [-o0s=n|u]

where;

i nfil e = Data log file recorded while running the application

of i | e = Optional CSV file

Forms Performance Collector 9
April 2001

By default, the results are written in HTML format to six different files - index.html, summary.html,
runtime.html, detailed.html, detailed2.html, event.html, glossary.html Index.html is the first HTML

page you should look at and will contain links to the five other HTML files.

0S = operating system, can be either n or u

ANALYZING THE OUTPUT

Log File Output

The raw data output is contained

#H### CTI ME STARTS HERE
2 - MODULEL: EMP. EMPNO. 166935470
MENU DEFAULT Query eXecute

TSE
TSE
TSE
TSE
TSE
TSE

FSERVER START -1 4577 166935470
DB _START 0 0 166935480

DB END O 0 166935480

DB_START 0 0 166935480

DB END 0 0 166935480

FSERVER END -1 0 166935530

CTI ME STARTS HERE
3 - MODULEL: EMP. EMPNO. 166936902
MENU DEFAULT Record Next

TSE
TSE
TSE
TSE
TSE
TSE

FSERVER _START -1 1342 166936902
DB_START 0 0 166936902

DB_END O O 166936902

DB_START 0 0 166936902

DB_END O O 166936902

FSERVER END -1 0 166936902

HTML Output

The HTML report allows the performance data to be viewed with any standard web browser.
Index.html is the starting point and the table of contents for the HTML presentation. Most terms

used in the HTML pages are hyperlinked to glossary.html which contains a list of useful definitions.

Forms Performance Collector

April 2001

P s b Peaaimsanoe Coll eobor Snalysis - Betsape

Ao EC Wew G0 Commoricatoe Hal

*

iiﬂ’i&&ﬁﬂi@iﬁ

Fomud Reload Hame Saprdy Melscape Pint Gapnily Shop o
Mlmum |7 weehal @ Coende T Rato D) Pecple | velbwPager T Donrosd [Chanek

B

Forms 61 Performance Collector Analysis

Susemary Ligt of Teey Actiers

Dietaded List of Mer Actiome

Plafforen Co anen sl Brantines Detaily
Estracted Tl.m:stﬂg Diats

W ithin- Tier Evert Tiefinitions

Lilegzany

Dot Fie

ol Eocmark: Do Sl N e FR oE |

Figure 3 : Index.html

H= r s B Pedinrmance Dollector Bnabyss - Metscape o0
Fim [t Gaw o Coneriator Help
11 « 3 ’& & o S & @ &
frogodt Fnoed Home Samch Netbcme P Smcuriy Bhup o
Hlmlep B wetbsd Bl Cobnde Bl Ande [Pocgs Bl YebwPoges [Dambood 24 Channck
e
Agtien 3 MENU Eecerd Next
Taer Acting Timine Breakdras By 'I'm
; Tetal Tlne :
i in mallivecomds Yotz Time (%) J
Hetwodk: 30000 2. 187
| Cherk Tame 1392 000 TE12
GrandTatal [1372 000 [160.000
Usor Action Tiwing Erealdews Widhin Tims
Witkdn- Tier Tatal Tize Min Tine Bbax Tans Aovg Timne
Event Cowrt im malEveconds Tutal Titew {%a) b mnillizeeends i el econds i il S seeonds
FEPreDE 1 [o0 0000 Jouo0n B0 0,000
DREROC & el A] Q.00 (il o0
FibhdDE 1 0040 KLang 0000 e 0.00d
F8PestDE 1 el oLaing Q.00 (il 000
Hetwoct: 1 20,000 2187 {30,000 0000 30 o
2 beot Tape 1 11342000 Arrg13 113420080 1343, 00 134% (i)
{GrandTatal 11372.000 101 G000
) =
| = | [Cooirerh Cone = E &

Figure 4 : Detailed.html

Detailed.html presents two views of every user action - time spent in each tier and time spent in each
Within-Tier Event. Statistics like the minimum, maximum, and average time per Within-Tier Event

per user action are also displayed.

Forms Performance Collector 11
April 2001

A7 Farrnee B Prfopmance Collector fnaiysss - Meborape = =]

Fin Edt lbaw o Conwurasbor Help

4« # 32 /4 o @ =+ & A B\
Hact frays Adoad Home Sesch Nelompe Pt Secudy Shop T
T inumiHesege & wetisd H cods @ Asdc T Pecde [vetowPages [B pomiced 25 Chanek
Action 3 MENT DEFAULT Record Next o
Lanel Clies Tane | e v 4
FSERVEE_START 1342 [1Ra3ER02
DB _STAET 0 [tesmacnm
TR _END 0 [t&ssasn0
DB _STAKT 0 [1&ee3sm02
DB END 0 [188535002
FAERVEE, END 0 T
|
| == oo et Done P L B e R 0

Figure 5 : Detailed2.html

Detailed2.html presents the raw time stamp data that was used to create the Tier-By-Tier and
Within-Tier views of detailed.html.

CSV Output

The optional output file is a Comma Separated Value (CSV) file that can be loaded in any standard

spreadsheet application. This comprises of three parts:
List of User Actions
Tier-by-Tier Summary per User Action

Within-Tier Event per User Action

SUMMARY

With Oracle Forms release 6, you now have an option when troubleshooting and improving
performance. Evaluating performance of Oracle Forms is essential in order to ensure that the
software provides the minimum response time in the given operating environment and maximizes
resource utilization. The Forms Performance Collector helps you to determine where to focus your

performance tuning.

Forms Performance Collector 12
April 2001

OTHER USEFUL REFERENCES

1. “An overview of Oracle Forms Server Architecture,” Technical White Paper.
2. “How to Tune your Oracle Forms Server Applications,” Technical White Paper.

3. “Integration of Oracle Forms with Oracle Trace,” Technical White Paper.

Forms Performance Collector

13
April 2001

ORACLE

Oracle Corporation

World Headquarters

500 Oracle Parkway
Redwood Shores, CA 94065
USA.

Worldwide Inquiries:
+1.650.506.7000

Fax +1.650.506.7200
http://www.oracle.com/

Copyright © Oracle Corporation 2000
All Rights Reserved

This document is provided for informational purposes only,
and the information herein is subject to change without notice.
Please report any errors herein to Oracle Corporation. Oracle
Corporation does not provide any warranties covering and
specifically disclaims any liability in connection with this
document.

Oracle is a registered trademark, and Oracle8i, Oracle8,
PL/SQL, and Oracle Expert are trademarks of Oracle
Corporation. All other company and product names
mentioned are used for identification purposes only and may
be trademarks of their respective owners.

Forms Performance Collector
April 2001

14

