
Performance Collector for Oracle® Forms 6i

An Oracle® Technical White Paper
April 2001

Forms Performance Collector
April 2001

2

INTRODUCTION

An Oracle® Forms application may require frequent user interaction and thus response time plays a

major role in determining the productivity of the Forms user. The 3-tiers of the Forms Server

architecture - the Forms Client, the Forms Server and the database server - are well designed to

provide minimum response time to the end user, however, due to the flexibility supported by

Forms in terms of user exits, libraries and program units the performance of a Forms application

depends in part on the Forms designer. The designer needs a tool or a technique to deliver an

application without performance flaws. Performance Collector, which appears as part of Oracle

Forms release 6i, is one of the features designed to support the application developer or

performance analyst in determining the time spent by a Forms application in each tier of the 3-tier

architecture.

BACKGROUND

A typical network infrastructure for using the Forms application is shown in Figure 1. In this, each

user action from the Forms Client is communicated to the Forms Server. The Forms Server

processes the user request and communicates the response back to the Forms Client. While

processing the user requests, the Forms Server might also communicate with the database server.

In further discussions in this paper, the duration for which a Forms user is using the Forms

application is termed as a session. A typical user session comprises a sequence of round trips

between the Forms Client and the Forms Server and between the Forms Server and the database

server as Figure 1 illustrates.

Figure 1 : A Typical User Session with Forms Server

Forms Performance Collector
April 2001

3

Figure 2 illustrates a typical scenario. (The continuous lines indicate the communication between the

Forms Client and the Forms Server at the start and end of the user action. The dotted lines indicate

the communication between the Forms Server and the database server. The smaller dotted lines

between the Forms Client and Forms Server indicate the roundtrips between the Forms Client and

Forms Server, during the user action processing which is not explicitly known to the end user).

Client Forms Server Database Server

.

.

.

Figure 2 : Communication due to a User Action

User Action - Start

User Action - End

User Action - Start

t

t

sd,11

sd,m1

t

tsc,p1

tcs,12

tds,11

tds,21

tsd,21

t
ds,m1

cs,11

sc,11t
t

tcs,p1

cs,21.
.
.

m - roundtrips between
Fserver and DBserver

p - roundtrips between
Client and FServer

tsc,(p-1)1

tcs,11 Instant at which the Forms Server receives the user action request from the

Forms Client for UserAction 1

tcs,p1 Instant at which the Forms Server receives the last packet from Forms Client

during roundtrips for UserAction 1

tsd,i1 Instant at which the Forms Server sends request to the database server

i = 1,…m for UserAction 1

tds,i1 Instant at which the Forms Server receives the response from the database

server i = 1,…m for UserAction 1

Forms Performance Collector
April 2001

4

tsc,k1 Instant at which the Form Server sends roundtrip packets to the Forms

Client k = 1,…p. for UserAction 1

tsc,p1 Instant at which the Form Server sends last response packet to the Forms

Client for UserAction 1

Tcs,12 Instant at which the Form Server receives the NEXT User Action Request

from the Forms Client for UserAction 2

The illustration also helps in deriving the time spent during various parts of the transaction as

described below:

tcs,12 - tsc,p1 = Forms Client Processing Time + User Think Time (for User action 2) +

Network latency

tcs,i1 - tsc,(i-1)1 = Forms Client Processing Time + Network latency , i = 2,…p

tds,k1 - tsd,k1 = Processing Time at the database server + Network Latency k = 1,…m

Following the same approach, in User Action 1:

Σi=2,…p(tcs,i 1- tsc,(i-1)1) = Forms Client Processing Time + p * Network latency

Σi = 1…p(tsc,i1 - tcs,i1) - Σk=0,1…k (tds,k1 - tsd,k1) = Processing Time at the Forms Server

Σk=1…m (tds,k 1- tsd,k1) = Processing Time at the database server + m * Network Latency

where:

m = no. of roundtrips between the Forms Server and database server

p = no. of roundtrips between the Forms Server and Forms Client.

Forms Performance Collector uses the above approach to determine the timing components at the

3-tiers as illustrated further in this paper.

Forms Performance Collector
April 2001

5

FORMS PERFORMANCE COLLECTOR

Once enabled, the Performance Collector records time stamps in the log file whenever the Forms

application’s thread of execution enters or exits the Forms Server. The following are all of the

possible time stamp labels that can be recorded in the log file:

Recorded as Description

FSERVER_START Instant at which the Forms Server receives the Forms Client request

FSERVER_END Instant at which the Forms Server sends a response to the Client

DBLOGON_START Instant at which the Forms Server sends a logon request to the

database server.

DBLOGON_END Instant at which the Forms Server receives the logon response

from the database server.

DB_START Instant at which the Forms Server sends a query or other

request to the database server

DB_END Instant at which the Forms Server receives a query response

from the database server

DBLOGOFF_START Instant at which the Forms Server sends a logoff request to

the database server

DBLOGOFF_END Instant at which the Forms Server receives the logoff

response from the database server

Table 1. Forms Server Time Stamps

Forms Performance Collector
April 2001

6

Since time stamps are only recorded when the thread of execution for a Forms application either

enters or exits the Forms Server, the difference between two successive time stamp points represents

time spent in one of the 3-tiers. The interval of time spent in one tier is called a Within-Tier Event.

Within-Tier Events are grouped into 4 categories - Forms Server, Database, Network, and Client.

Note that Network and Client categories are actually the two subdivisions that make up the Forms

Client tier. The Network category does not include time spent on the network communicating

between the Forms Server and the database server.

Each Within-Tier Event is uniquely defined by an ordered pair of time stamps - the initial time

stamp and the final time stamp. For example, a FSPrelogon Within-Tier Event starts with a

FSERVER_START time stamp and ends with a DBLOGON_START time stamp. This

indicates that the thread of execution entered the Forms Server (in response to a user action on the

Forms Client), the Forms Server processed the request, then the thread of execution exited the

Forms Server and entered the database server in order to perform a database logon operation. To

be considered a FSPrelogon Within-Tier Event, DBLOGON_START must be the first time

stamp recorded after the FSERVER_START time stamp.

1. Forms Server Within-Tier Events

FSPreLogon FSERVER_START → DBLOGON_START

Time spent in the Forms Server before a logon request is sent to the database server.

FSPostLogon DBLOGON_END → FSERVER_END

Time spent in the Forms Server after the response to a logon request is received from the

database server.

FSPreDB FSERVER_START → DB_START

Time spent in the Forms Server after processing a Forms Client request and before a query

is sent to the database server.

FSMidDB DB_END → DB_START

Time spent in the Forms Server between successive queries to the database server. Arises

when query results are not deliverable in a single round trip between the Forms Server and

the database server.

FSPostDB DB_END → FSERVER_END

Forms Performance Collector
April 2001

7

Time spent in the Forms Server after a query is sent to the database server and before

responding to the Forms Client.

PreLogoff FSERVER_START → DBLOGOFF_START

Time spent in the Forms Server before a logoff request is sent to the database server.

PostLogoff DBLOGOFF_END → FSERVER_END

Time spent in the Forms Server after the response to a logoff request is received from the

database server.

2. Database Within-Tier Events

DBLogon DBLOGON_START → DBLOGON_END

Time spent in the database server and on the network processing a logon request.

DBLogoff DBLOGOFF_START → DBLOGOFF_END

Time spent in the database server and on the network processing a logoff request.

DBProc DB_START → DB_END

Time spent in the database server and on the network processing a database query.

3. Network Within-Tier Events

Network FSERVER_END → FSERVER_START *

The duration between when the Forms Server sent a response to the Forms Client and the

next request was received from the Forms Client minus time spent either executing the

Forms Client or waiting for user input to the Forms Client.

4. Client Within-Tier Events

Network FSERVER_END → FSERVER_START *

Time spent executing the Forms Client or waiting for the user input to the Forms Client.

Does not include time spent on the network communicating between Forms Client and

Forms Server.

The start and end timestamp point names, the Forms Server Event names and the Group names are

further used in this paper in discussing the reporting and output analysis of the performance data.

Forms Performance Collector
April 2001

8

USING THE FORMS PERFORMANCE COLLECTOR

The Performance Collector is built with the Forms Runtime Diagnostic (FRD) logging facility. The

Performance Collector collects time stamps at predefined points as previously explained and records

them in an ASCII output file. A PERL script is supplied to parse and report the data meaningfully

into HTML and optionally into a Comma Separated Value (CSV) file.

With understanding of the 3-tier architecture, Performance Collector’s breakdown of data into 4

categories (Forms Server, Database, Network, and Client), and the definitions of the Within-Tier

Events, discussed in the previous section, the data can be easily processed using any spreadsheet

application.

Using Performance Collector requires three steps :

1. Enabling performance collection

2. Reporting the data for analysis

3. Analyzing the output

ENABLING PERFORMANCE COLLECTION

Performance Collector is enabled by the command line option record=performance on the

Forms Client. Alternately, Performance Collector can be started by specifying record=all to

have both Performance Collector and Forms Runtime Diagnostics (FRD) data written to the log

file. The Performance Collector PERL script will extract only the Performance Collector data from

the resulting log file in either case.

Forms 3-tier Modes (Sockets, HTTP, Listener Servlet)

Include record=performance as part of the serverArgs parameter in the HTML file:

<param name=“serverArgs” value = “module=put_module_name_here

userid=put_userid_here record=performance

log=put_file_name_here”>

Forms Performance Collector
April 2001

9

or include record=all as part of the serverArgs parameter:

<param name=“serverArgs” value = “module=put_module_name_here

userid=put_userid_here record=all log=put_file_name_here”>

The user actions and the timestamp details are written into the log file denoted by

put_file_name_here. If the log file name is not specified then a log file is created with a

unique name of the format perf_xxxx where xxxx is the process id of the Forms Server

process.

Forms Client/Server Mode

When running Performance Collector in Client/Server mode only the raw time stamp data will be

available. The PERL script is only supported for 3-tier modes. Since there is only the Forms Client in

Client/Server mode (Server referring to the database server) FSERVER_START and

FSERVER_END time stamps will not be recorded.

REPORTING THE DATA FOR ANALYSIS

The data collected by the Performance Collector is processed using a PERL script to produce

meaningful reports for analysis. Perl 5 (or a newer version), available on the web for free download,

can be used to run the PERL script. The PERL script accepts the recorded log file, the optional

output CSV file name, and the OS (operating system) on which the Forms Server was running when

the performance data was collected. The output includes HTML files and optionally a CSV file,

viewable with a spreadsheet application.

To analyze the data :

• Locate the PERL script f60parse.pl in the following directory :

 <Oracle_Home>\forms60\Perl

• Run the Perl script: using the following command :

 perl f60parse.pl -input=infile [-output=ofile] [-os=n|u]

 where:

 infile = Data log file recorded while running the application

 ofile = Optional CSV file

Forms Performance Collector
April 2001

10

 os = operating system, can be either n or u

 By default, the results are written in HTML format to six different files - index.html, summary.html,

runtime.html, detailed.html, detailed2.html, event.html, glossary.html Index.html is the first HTML

page you should look at and will contain links to the five other HTML files.

 ANALYZING THE OUTPUT

 Log File Output

 The raw data output is contained

 ##### CTIME STARTS HERE
 # 2 - MODULE1:EMP.EMPNO.166935470
 MENU DEFAULT Query eXecute

 TSE FSERVER_START -1 4577 166935470
 TSE DB_START 0 0 166935480
 TSE DB_END 0 0 166935480
 TSE DB_START 0 0 166935480
 TSE DB_END 0 0 166935480
 TSE FSERVER_END -1 0 166935530
 ##### CTIME STARTS HERE
 # 3 - MODULE1:EMP.EMPNO.166936902
 MENU DEFAULT Record Next

 TSE FSERVER_START -1 1342 166936902
 TSE DB_START 0 0 166936902
 TSE DB_END 0 0 166936902
 TSE DB_START 0 0 166936902
 TSE DB_END 0 0 166936902
 TSE FSERVER_END -1 0 166936902

 HTML Output

 The HTML report allows the performance data to be viewed with any standard web browser.

Index.html is the starting point and the table of contents for the HTML presentation. Most terms

used in the HTML pages are hyperlinked to glossary.html which contains a list of useful definitions.

Forms Performance Collector
April 2001

11

 Figure 3 : Index.html

 Figure 4 : Detailed.html

 Detailed.html presents two views of every user action - time spent in each tier and time spent in each

Within-Tier Event. Statistics like the minimum, maximum, and average time per Within-Tier Event

per user action are also displayed.

Forms Performance Collector
April 2001

12

 Figure 5 : Detailed2.html

 Detailed2.html presents the raw time stamp data that was used to create the Tier-By-Tier and

Within-Tier views of detailed.html.

 CSV Output

 The optional output file is a Comma Separated Value (CSV) file that can be loaded in any standard

spreadsheet application. This comprises of three parts:

• List of User Actions

• Tier-by-Tier Summary per User Action

• Within-Tier Event per User Action

SUMMARY

With Oracle Forms release 6i, you now have an option when troubleshooting and improving

performance. Evaluating performance of Oracle Forms is essential in order to ensure that the

software provides the minimum response time in the given operating environment and maximizes

resource utilization. The Forms Performance Collector helps you to determine where to focus your

performance tuning.

Forms Performance Collector
April 2001

13

OTHER USEFUL REFERENCES

1. “An overview of Oracle Forms Server Architecture,” Technical White Paper.

2. “How to Tune your Oracle Forms Server Applications,” Technical White Paper.

3. “Integration of Oracle Forms with Oracle Trace,” Technical White Paper.

Forms Performance Collector
April 2001

14

Oracle Corporation
World Headquarters
500 Oracle Parkway
Redwood Shores, CA 94065
U.S.A.

Worldwide Inquiries:
+1.650.506.7000
Fax +1.650.506.7200
http://www.oracle.com/

Copyright © Oracle Corporation 2000
All Rights Reserved

This document is provided for informational purposes only,
and the information herein is subject to change without notice.
Please report any errors herein to Oracle Corporation. Oracle
Corporation does not provide any warranties covering and
specifically disclaims any liability in connection with this
document.

Oracle is a registered trademark, and Oracle8i, Oracle8,
PL/SQL, and Oracle Expert are trademarks of Oracle
Corporation. All other company and product names
mentioned are used for identification purposes only and may
be trademarks of their respective owners.

