

Oracle Forms Services – Secure
Web.Show_Document() calls to
Oracle Reports Server 6i

$Q�2UDFOH�7HFKQLFDO�:KLWHSDSHU�

0DUFK������

�

�

��������� �
	�����
 ������������������������� � ������� � ��� �!
� ����� �#"���$��%� � ������� &����%'�(�)���*���+

Secure Web.Show_Document() calls to Oracle Reports
Server 6i

Introduction..3
solution For Oracle Reports Server 6i..3
Using Web.Show_Document Built-in to call Reports3

Web.Show_Document syntax...4
Calling Oracle Reports on the Web ...4
Calling Reports from Forms using Web.Show_Document....................5

Secure Web.Show_Document calls to Oracle Reports................................6
Using the oracle.reports.utility.FrmReportsInteg608 Bean in Forms ...6
Forms Services configuration..8

Formsweb.cfg file ...8
forms60/ java directory..8
Basejini.htm file...8

Summary ...9
Appendix A: FrmReportsInteg608 Bean functionality..............................10

SET_<nn>ENCRYPTION_KEY..10
Example ...10

ADJUST_TIMEZONE_DIFFERENCE ..10
SET_COOKIE_DOMAIN ..11
SET_COOKIE_PATH ...11
WRITE_LOGOUTPUT ...11

Enabling debug messages example..11
Disabling debug messages example ...11

WRITE_USERID_COOKIE ..11
Appendix B: Extended PL/ SQL Example..12
Appendix C: Known Issues ...13

JInitiator version dependency..13

��������� �
	�����
 ������������������������� � ������� � ��� �!
� ����� �#"���$��%� � ������� &����%'�(�)���*���,

Secure Web.Show_Document() calls to Oracle Reports
Server 6i

,1752'8&7,21�

Using the Oracle Forms Web.Show_Document() Built-in to call Oracle Reports on
the Web is an alternative to the Run_Report_Object() Built-in.

The Web.Show_Document() Built-in accesses Web resources by issuing a HTTP
“GET” request from the browser URL. HTTP “GET” requests, in contrast to
“POST” requests, show the complete URL string with all the request parameters in
the browser’s address bar, including those parameters that are considered sensitive
information, such as logon information.

This Whitepaper shows you how to secure calls to Oracle Reports Services, issued
by Forms using the Web.Show_Document() Built-in, by eliminating the need to
expose the sensitive userid information in the Reports request URL.

The solution described in this document is based on a Java Bean that resides on
the Oracle Forms Web client and works with the Forms 6i and Reports 6i
components of Oracle9L Application Server Release 1.

62/87,21�)25�25$&/(�5(32576�6(59(5��,�

Oracle9i Reports Services in Oracle9L Application Server 9.0.2 and above handle
authentication cookies differently than Reports Server 6i. The differences are
within the format of the cookie, the number of cookies set and the way cookie
expiration is defined.

Securing Forms Web.Show_Document() calls to Oracle9L Reports, using Oracle9L
Application Server Reports Services and Oracle Application Server 10g Reports
Services, is the subject of separate Whitepaper available on http:/ / otn.oracle.com/
products/ forms.

Please make sure you download and implement the Oracle9i Reports version of
this document when upgrading Forms 6i applications to Oracle9i Forms and
beyond, or when accessing Oracle9LAS Reports Services with Forms 6i.

86,1*�:(%�6+2:B'2&80(17�%8,/7�,1�72�&$//�5(32576��

This section briefly covers the use of the Forms Web.Show_Document() Built-in
to call Oracle Reports on the Web.

��������� �
	�����
 ������������������������� � ������� � ��� �!
� ����� �#"���$��%� � ������� &����%'�(�)���*��.-

:HE�6KRZB'RFXPHQW�V\QWD[�

The Forms Web.Show_Document() Built-In requires two arguments passed within
the call

Web.Show_Document(URL, Target);

85/ – The URL is passed as a string in a variable, or as a combination of both. If
the target Web page is located on the same server that runs Forms Services,
relative addressing could be used.

7DUJHW – Definition of the target where the addressed Web page should be
displayed. Values must be single-quoted. Possible target values are ‘_blank’ to show
the Reports output in an extra browser window, ‘_self’ to replace the Forms
application with the Reports output, ‘<frame name>’ to load the Reports output
into a named frame of the multi frame HTML page.

&DOOLQJ�2UDFOH�5HSRUWV�RQ�WKH�:HE�

After installing Oracle Application Server, the Oracle Reports Server can be
accessed by the following URL:

On Unix

http(s)://<server>:<port>/dev60cgi/rwcgi60?<reports query parameters>

On Windows

http(s)://<server>:<port>/dev60cgi/rwcgi60�H[H?<reports query parameters>

The default Reports Server installation in Oracle9L Application Server Release 1

(9.0.1.x) uses the Reports Common Gateway Interface (cgi) – rwcgi60 – to access

Reports on the Web.

Starting with Oracle9LAS Report Services (Oracle9L Reports), the cgi interface is

deprecated and the Reports Servlet – UZVHUYOHW���is used instead.

A complete syntax example to run Reports from a browser looks like this

http://<server>:<port>/dev60cgi/rwcgi60?VHUYHU=<reportserver name>

&UHSRUW=<report>.rdf&GHVIRUPDW=[htmlcss|pdf|xml|delimited|]&GHVW\SH=cache

&XVHULG=<user/pw@database>&SDUDPIRUP=[no|yes]

VHUYHU – the name of the Reports Server1 used

UHSRUW – the name of the Reports module to execute

GHVIRUPDW – the output format of the returned Reports result set. Desformat can be

htmlcss, html, pdf, xml, rtf and delimited. For Reports run from Forms pdf and

htmlcss are the most commonly used options

GHVW\SH – determines where the Reports output gets written to. “Cache” specifies

that the Reports output gets streamed to the requesting browser. ‘

1 Please refer to the Reports Services documentation on how to create a Reports Service

��������� �
	�����
 ������������������������� � ������� � ��� �!
� ����� �#"���$��%� � ������� &����%'�(�)���*���/

XVHULG – in the case of a Reports that needs to query a database for its data, the

userid parameter contains the username, the user password and the connection

information for the database.

SDUDPIRUP – determines if Reports should display a HTML parameter form before

executing the request. The parameter form can be used for the user to further filter

the expected Reports result set. Valid values are ‘yes’ and ‘no’.

To reduce the length of the Reports request URL, you can create a key entry in the

Reports cgicmd.dat configuration file to store command line parameters that don’t

change from one Report to the other. In this case the first argument in a Reports

Web request, right after the question mark, must be the key name2.

&DOOLQJ�5HSRUWV�IURP�)RUPV�XVLQJ�:HE�6KRZB'RFXPHQW��

The following PL/ SQL example assumes the Reports Services to run on the same
server that hosts the Forms Services, thus using relative addressing. The server OS
used in this example is Unix, as you can tell from not appending ‘.exe’ to the
“rwcgi60” executable name.

The Reports output is formatted in HTML (desformat=htmlcss) and no Reports
parameter form is shown before running the report (paramform=no). To filter the
Reports result set, a user parameter is passed to Reports, specifying the department
id to retrieve information for (p_deptno=10).

When calling Web.Show_Document(), the second argument is specified as
‘_blank’, which means that the Reports output is shown in a separate browser
window.

DECLARE

 rep_url varchar2(2000);

BEGIN

 rep_url:=‘/dev60cgi/rwcgi60?server=repserv6i&report=reptest.rdf’

 ||’&desformat=htmlcss&destype=cache&userid=scott/tiger@orcl’

 ||’&p_deptno=10¶mform=no’;

 WEB.SHOW_DOCUMENT(rep_url,’_blank’);

END;

([DPSOH����3/�64/�([DPSOH�XVLQJ�:HE�6KRZB'RFXPHQW���%XLOW�LQ�WR�FDOO�
2UDFOH�5HSRUWV�

2 You can also specify the userid parameter in the cgicmd.dat file and thus hide it from
the URL. However the userid will show in the HTML source code of the parameter
form if used

��������� �
	�����
 ������������������������� � ������� � ��� �!
� ����� �#"���$��%� � ������� &����%'�(�)���*���'

The sensitive information for the “userid” parameter is added to the Reports
request URL and will be shown in the browser.

6(&85(�:(%�6+2:B'2&80(17�&$//6�72�25$&/(�5(32576�

Adding the userid parameter to the Reports request URL violates the security
policies of many companies. Thus, to avoid exposing the userid parameter at all,
the userid connect string must be encrypted and stored in a temporary cookie on
the client browser.

This means the following for Reports to run:

1. The userid parameter is omitted in the Reports HTML parameter form
and doesn’t show in the requested URL

2. The userid connect string is encrypted and stored as a temporary cookie.
The cookie is deleted immediately when closing the browser

3. The default cookie domain is derived from the host running Forms
Services. This secures the cookie from applications hosted by other
servers accessing this information

The Reports userid cookie can be set from Forms using a Java Bean in Forms. A
Bean that performs this action, “oracle.reports.utility.FrmReportsInteg608”, has
been written to accompany this Whitepaper, and handles setting the userid
parameter in a cookie. The Bean is contained in a jar file called “frmrwinteg608.jar”
and can be downloaded with this document from http:/ / otn.oracle.com/
products/ forms.

8VLQJ�WKH�RUDFOH�UHSRUWV�XWLOLW\�)UP5HSRUWV,QWHJ����%HDQ�LQ�)RUPV��

For the Bean to work in Forms, it needs to be added to a Forms Canvas that is
visible when calling Reports.

1. In the Forms Layout Editor, add a Java Bean container to Forms, making
sure that the Bean item is created in a control block.

2. To hide the Bean on the canvas, select the Bean in the Layout editor and
press F4 to open the property inspector. Set the Width and Height
properties to 1, the Bevel property to Plain and set the background and
foreground color to the color of the canvas

3. Set the value “oracle.reports.utility.FrmReportsInteg608” for the Bean
Item “Implementation Class” property . Ignore any errors shown when
navigating out of the Implementation class property field. This error
message may show again later on, but then can be ignored too.3

3 To avoid the error message to be shown, add the frmrwinteg608.jar file name with the
complete path information to the FORMS90_BUILDER_CLASSPATH registry
variable.

��������� �
	�����
 ������������������������� � ������� � ��� �!
� ����� �#"���$��%� � ������� &����%'�(�)���*���0

4. Define the Bean item name as USERID_BEAN and close the Property
Palette.

5. To use the PL/ SQL code shown in Example 1, the following changes
need to be done in the code to exclude the userid value from the Reports
request URL. Instead the userid value is stored in a temporary cookie on
the client.

DECLARE

 rep_url varchar2(2000);

BEGIN

 rep_url:=‘/dev60cgi/rwcgi?server=repserv6i&report=reptest.rdf’

 ||’&desformat=htmlcss&destype=cache’

 ||’&p_deptno=’|| :dept.deptno¶mform=no’;

 -- Write log messages to the Forms JInitiator console. The next line must

 -- be disabled before running this code in any production environment

 set_custom_property('control.userid_bean',1,'WRITE_LOGOUTPUT','true');

 -- VHW�XVHULG�LQ�HQFU\SWHG�FRRNLH�EHIRUH�FDOOLQJ�:HE�6KRZB'RFXPHQW��

 set_custom_property('control.userid_bean',1,'ADD_USERID',

 get_application_property(username)||'/'||

 get_application_property(password)||'@'||

 get_application_property(connect_string));

 -- ZULWLQJ�WKH�FRRNLH

 set_custom_property('control.userid_bean',1,'WRITE_USERID_COOKIE','');

 WEB.SHOW_DOCUMENT(rep_url,’_blank’);

END;

([DPSOH����3/�64/�([DPSOH�VHFXULQJ�WKH�:HE�6KRZB'RFXPHQW���%XLOW�LQ�FDOO�
WR�2UDFOH�5HSRUWV��7KH�XVHULG�SDUDPHWHU�YDOXH�LV�WHPSRUDULO\�VWRUHG�LQ�DQ�
HQFU\SWHG�FRRNLH�RQ�WKH�FOLHQW�

2UDFOH�L�5HSRUWV�XSJUDGH�QRWH: Oracle Reports 9.0.2 and later releases still
require that the userid parameter is added to the request URL, but the parameter
value is left blank. In this case the ‘userid=’ parameter indicates to the Reports
Server that the requested report requires a database connect and that the database
credentials are stored in a temporary cookie on the client.

��������� �
	�����
 ������������������������� � ������� � ��� �!
� ����� �#"���$��%� � ������� &����%'�(�)���*���1

The first call to SET_CUSTOM_PROPERTY() (Example 2) enables debug
messages to be written to the JInitiator console, which may prove useful during
design time. This should be disabled before productizing the application.

The second call to SET_CUSTOM_PROPERTY() sends the connect string
information to the Bean, which it needs to create the cookie

Finally, the cookie is created for the client browser using another call to
SET_CUSTOM_PROPERTY().

This sets the cookie to the client browser using the following cookie settings:

1. Expiry is set to temporary, which means that the cookie expires when
the user closes the browser.

2. The cookie path is set to ‘/ ’ which means that all applications that run
on a server in the same domain as the server running Forms Services can
access this cookie (see Appendix A).

3. The cookie domain is set to the domain of the server running Forms
Services. If the server domain is us.oracle.com, then only those servers
that run in this domain can access the client side cookie (see Appendix
A).

4. The default Reports key is used to encrypt the information.

)RUPV�6HUYLFHV�FRQILJXUDWLRQ�

To deploy the FrmReportsInteg608 Bean with Forms, changes are required in the
formsweb.cfg file and the basejini.htm file, both located in the <Oracle Home>
\ forms60\ server directory.

243�57698;:=<
>.? @BADCEAGF H <

The archive file fmrRwInteg608.jar that contains the FrmReportsInteg608 Bean
needs to be configured for download when the Forms application is started. Add
the following line to the named configuration section for your application in the
formsweb.cfg file, located in the forms90/ server directory:

[<name>]
…
archive_jini=f60all_jinit.jar,frmrwinteg608.jar
...

AD3�576984I;JBK L MON�M9P�F 5 <�@BQD3�5 R

Make sure that the frmrwinteg608.jar file is located in the forms60/ java directory
of your Forms Services installation.

S!MO8�<�L7F T.F ? U;Q76VAGF H <

For the Java Bean to work, it is required to grant permission to the Forms Applet
to use scripting. Edit the basejini.htm file, or any other template file you use to
launch Forms, and add the following lines to the IE section and Netscape section.

��������� �
	�����
 ������������������������� � ������� � ��� �!
� ����� �#"���$��%� � ������� &����%'�(�)���*���W

,QWHUQHW�([SORUHU�

<OBJECT …>

<PARAM NAME="MAYSCRIPT" VALUE="TRUE">

</OBJECT>

1HWVFDSH�

<EMBED …

MAYSCRIPT=TRUE>

</EMBED>

6800$5<�

Calling Oracle reports from Oracle Forms using the Web.Show_Document() Built-
in isn’t secure as it exposes sensitive information in the browser URL. This
document helps to secure sensitive information by using an encrypted temporary
cookie that can be read by the Reports Server but never is exposed to the browser
URL. This solution should be seen as a solution for customers that cannot use the
Run_Report_Object() Built-in for calling Oracle Reports from Forms and that
don’t want to leverage the Oracle Single Sign-On solution in Oracle Application
Server.

��������� �
	�����
 ������������������������� � ������� � ��� �!
� ����� �#"���$��%� � ������� &����%'�(�)���*��#XGY

$33(1',;�$��)505(32576,17(*����%($1�)81&7,21$/,7<�

The Java Bean used to set the cookie provides convenience methods for users that
don’t want to use the default values but need to modify some of the cookie
settings.

6(7B�QQ!(1&5<37,21B.(<�

The SET_<nn>ENCRYPTION_KEY property allows the application developer
to issue another key for encrypting the Reports cookie other than the default.
Before changing the key in the cookie, make sure that the key is also changed in
the Reports Server environment variable.

Z.[�M46]\.H <

set_custom_property('control.userid_bean',1,'SET_ENCRYPTION_KEY',
'myOwnKeyFor6i');

The key, once changed, is kept until the end of the Java Bean session. If you are
okay with the default encryption key, don’t use this property.

$'-867B7,0(=21(B',))(5(1&(�

By default, the cookie will hold the connection string for a default time period of
30 minutes, or until the browser is exited. This time is defined on the Reports
Server and can be overridden by setting the REPORTS60_COOKIE_EXPIRE
environment variable. It can be set in minutes for an alternative time period to
either allow the cookie to last longer or expire more quickly.

Because the cookie is set on the client, the cookie creation time is the current client
time. For example, the time difference of a Reports Server installed in California to
a Forms Applet that runs on a Browser client in New York is 3 hours. This may
exceed the time period defined on the Reports Server for the cookie validness.
Therefore, timezone differences must be reflected when setting the Reports cookie
on the Forms client.

The ADJUST_TIMEZONE_ DIFFERENCE property of the Forms Java bean
introduced in this Whitepaper can be used to handle time differences between the
Forms client and the Reports Server.

For the above example, the cookie needs to be created with a creation time three
hours earlier than what is the current time in New York:

set_custom_property('control.userid_bean',1,ADJUST_TIMEZONE_
DIFFERENCE,’-180’);

If The Forms Java client and the Reports Server are located in the same timezone,
or if the REPORTS60_COOKIE_EXPIRE value is set big enough, you don’t
need to set the ADJUST_TIMEZONE_ DIFFERENCE parameter.

��������� �
	�����
 ������������������������� � ������� � ��� �!
� ����� �#"���$��%� � ������� &����%'�(�)���*��#X�X

6(7B&22.,(B'20$,1�

The cookie domain defines the scope of servers, from where hosted applications
can access the cookie information if requested by the user. The minimum
requirement is a domain that has at least has two ‘.’ in it. For example,
‘�oracle�com’ is a valid domain while ‘oracle�com’ isn’t. The domain can be set to a
complete server name, therefore ensuring that only applications started on this
server can access the cookie.

set_custom_property('control.userid_bean',1,SET_COOKIE_DOMAIN,
’.oracle.com’);

The default value for cookie domain is the domain of the server that runs the
Forms Servlet.

To reset the default domain, use

set_custom_property('control.userid_bean',1,SET_COOKIE_DOMAIN,
’UHVHW’);

6(7B&22.,(B3$7+�

The cookie path defines the virtual path an application needs to access to the client
side cookie. By default the path value is set to ‘/ ’, which means that applications
downloaded from any virtual path in the cookie’s domain can access the cookie.
To restrict access to only those applications downloaded from a specific virtual
path, like “dev60cgi”, use the following Java Bean functionality:

 set_custom_property('control.userid_bean',1,SET_COOKIE_PATH,
’/ dev60cgi/ ’);

:5,7(B/2*287387�

The WRITE_LOGOUTPUT property allows to switch on and off debug
messages written to the client side JInitiator console. By default no debug message
is written.

Z!T�M
>.H F T4C^P
<
>._4C]6E<O8;8�M�C
<O89<O[�M46]\.H <

set_custom_property('control.userid_bean',1, WRITE_LOGOUTPUT,’true’);

`aF 8�M
>.H F T4C^P
<
>._4C]6E<O8;8�M�C
<O89<O[�M46]\.H <

set_custom_property('control.userid_bean',1, WRITE_LOGOUTPUT,’false’);

:5,7(B86(5,'B&22.,(�

The ’WRITE_USERID_COOKIE property actually sets the cookie to the client

browser �

 set_custom_property(’control.userid_bean’,1,’WRITE_USERID_COOKIE’,’’);

��������� �
	�����
 ������������������������� � ������� � ��� �!
� ����� �#"���$��%� � ������� &����%'�(�)���*��#XG+

$33(1',;�%��(;7(1'('�3/�64/�(;$03/(�

The following is a PL/ SQL example for the FrmReportsInteg608 Java Bean using
all its properties:

x� It enables log messages to be written to the JInitiator console

x� It handles a timezone difference of 1 hour for a Reports Server installed in
Germany and the Forms Java client running on a PC in London

x� It sets the cookie domain to .fooserver.com

x� It sets the cookie path to / dev60cgi/

DECLARE

 rep_url varchar2(2000);

BEGIN

 rep_url:=‘/dev60cgi/rwcgi60?server=repserv6i &report=reptest.rdf’

 ||’&desformat=htmlcss&destype=cache’

 ||’&p_deptno=’|| :dept.deptno¶mform=no’;

 -- :ULWH�ORJ�PHVVDJHV�WR�WKH�)RUPV�-,QLWLDWRU�FRQVROH�

 set_custom_property('control.userid_bean',1,'WRITE_LOGOUTPUT','true');

 -- VHW�XVHULG�LQ�HQFU\SWHG�FRRNLH�EHIRUH�FDOOLQJ�:HE�6KRZB'RFXPHQW��

 set_custom_property('control.userid_bean',1,'ADD_USERID',

 get_application_property(username)||'/'||

 get_application_property(password)||'@'||

 get_application_property(connect_string));

 -- KDQGOH�WLPH�]RQH�GLIIHUHQFH

 set_custom_property(' control.userid_bean ',1,'ADJUST_TIMEZONE_

 DIFFERENCE',’-60’);

 -- VHW�WKH�FRRNLH�GRPDLQ�WR��IRRVHUYHU�FRP

 set_custom_property('control.userid_bean’,1,'SET_COOKIE_DOMAIN',

 ’.fooserver.com’);

 -- VHW�WKH�FRRNLH�SDWK�WR��GHY��FJL�

 set_custom_property('control.userid_bean’,1,'SET_COOKIE_PATH','/dev60cgi/');

 -- ZULWLQJ�WKH�FRRNLH

 set_custom_property('control.userid_bean',1,'WRITE_USERID_COOKIE','');

 WEB.SHOW_DOCUMENT(rep_url,’_blank’);

END;

([DPSOH����([WHQGHG�3/�64/�([DPSOH��

��������� �
	�����
 ������������������������� � ������� � ��� �!
� ����� �#"���$��%� � ������� &����%'�(�)���*��#XG,

$33(1',;�&��.12:1�,668(6�

-,QLWLDWRU�YHUVLRQ�GHSHQGHQF\�

For this solution to work, JInitiator of version 1.3.1.9, 1.3.1.13 and above should
be used. Problems have been reported when using earlier JInitiator versions.

Secure Web.Show_Document() calls to Oracle Reports Server 6i
February 2004
Author: Frank Nimphius
Contributing Authors: A big “thank you” to Ajay Gopalan for testing this Java Bean

Oracle Corporation
World Headquarters
500 Oracle Parkway
Redwood Shores, CA 94065
U.S.A.

Worldwide Inquiries:
Phone: +1.650.506.7000
Fax: +1.650.506.7200
www.oracle.com

Oracle Corporation provides the software
that powers the internet.

Oracle is a registered trademark of Oracle Corporation. Various
product and service names referenced herein may be trademarks
of Oracle Corporation. All other product and service names
mentioned may be trademarks of their respective owners.

Copyright © 2003 Oracle
All rights reserved.

