

1 Business / Technical Brief / Extreme Oracle Database Connection Scalability with Database Resident Connection Pooling (DRCP) /

 Version 3.2

 Copyright © 2025, Oracle and/or its affiliates / Public

Business / Technical Brief

Extreme Oracle Database
Connection Scalability with
Database Resident
Connection Pooling (DRCP)

Optimizing Oracle Database resource usage for applications and mid-tier services

February 2025, Version 3.2

Copyright © 2025, Oracle and/or its affiliates

Public

2 Business / Technical Brief / Extreme Oracle Database Connection Scalability with Database Resident Connection Pooling (DRCP) /

 Version 3.2

 Copyright © 2025, Oracle and/or its affiliates / Public

Disclaimer

This document in any form, software or printed matter, contains proprietary information that is the

exclusive property of Oracle. Your access to and use of this confidential material is subject to the terms

and conditions of your Oracle software license and service agreement, which has been executed and

with which you agree to comply. This document and information contained herein may not be disclosed,

copied, reproduced, or distributed to anyone outside Oracle without the prior written consent of Oracle.

This document is not part of your license agreement, nor can it be incorporated into any contractual

agreement with Oracle or its subsidiaries or affiliates.

This document is for informational purposes only and is intended solely to assist you in planning for the

implementation and upgrade of the product features described. It is not a commitment to deliver any

material, code, or functionality, and should not be relied upon in making purchasing decisions. The

development, release, and timing of any features or functionality described in this document remains at

the sole discretion of Oracle.

3 Business / Technical Brief / Extreme Oracle Database Connection Scalability with Database Resident Connection Pooling (DRCP) /

 Version 3.2

 Copyright © 2025, Oracle and/or its affiliates / Public

Table of contents

Disclaimer 2

Introduction 5

Overview of DRCP architecture 5

DRCP Quickstart 6

How DRCP works 7

When to use DRCP 8

Comparing DRCP with other database server process models 8

Example of host memory usage between Dedicated, Shared, and

Pooled servers 9

Configuring Database Resident Connection Pooling 10

Enabling and Configuring DRCP on the Server side 10

Working with DRCP in client applications 16

Managing DRCP Connections 17

What is a Connection Class? 17

What is Session Purity? 18

DRCP Session Purity and Connection Class defaults 18

Session Purity and Connection Class in the connection string 18

Per-PDB DRCP 19

Enabling per-PDB DRCP 19

CDB DRCP vs. per-PDB DRCP 20

Implicit Connection Pooling with DRCP 21

Enabling Implicit Connection Pooling 21

Benefits of Implicit Connection Pooling 22

Multi-pool DRCP (Named Pools) 22

Adding and Removing Named Pools 23

Configuring Multi-pool DRCP 23

Monitoring DRCP 23

DBA_CPOOL_INFO 24

V$CPOOL_STATS View 24

V$CPOOL_CC_STATS View 24

V$CPOOL_CONN_INFO View 25

V$CPOOL_CC_INFO View 25

V$AUTHPOOL_STATS View 25

DRCP examples with different languages 26

DRCP with Python 26

DRCP with Node.js 28

DRCP with JDBC 30

DRCP with Oracle Call Interface (OCI) 32

DRCP with Oracle Call C++ Interface (OCCI) 36

DRCP with ODP.NET 38

4 Business / Technical Brief / Extreme Oracle Database Connection Scalability with Database Resident Connection Pooling (DRCP) /

 Version 3.2

 Copyright © 2025, Oracle and/or its affiliates / Public

DRCP with PHP 39

DRCP FAQs 40

Conclusion 41

More Information 41

List of images

 Image 1: DRCP Architecture between Client and Database hosts 6

 Image 2: Stages of DRCP Operation 7

 Image 3: DRCP Pool Sharing across applications 17

 Image 4: Multi Pool DRCP Architecture 22

List of tables

Table 1 – Difference between Dedicated, Shared, and Pooled servers 8

Table 2 – Sample DB memory usage for Dedicated, Shared, and

 and Pooled servers 9

 Table 3 – DRCP Configuration Options 13

 Table 4 – DRCP Initialization Parameters 15

 Table 5 – Session Purity and Connection Class Defaults 18

 Table 6 – CDB DRCP behavior 20

 Table 7 – per-PDB DRCP behavior 20

 Table 8 – Session Purity and Connection Class Behavior

 of OCI applications with DRCP 33

5 Business / Technical Brief / Extreme Oracle Database Connection Scalability with Database Resident Connection Pooling (DRCP) /

 Version 3.2

 Copyright © 2025, Oracle and/or its affiliates / Public

Introduction

Database Resident Connection Pooling (DRCP) is an Oracle Database feature

developed for environments requiring multiple connections with optimal

database resource usage. DRCP is typically suitable for microservices and web

application scenarios where the application obtains a database connection,

works on it for a relatively short time, and then releases the connection. DRCP

provides a pool of "dedicated" server processes (known as pooled servers) to

the database that can be shared by multiple applications running on the same

or several application tier hosts. These pooled servers handle the database

connections/sessions with the client applications. A connection broker

process controls the pooled servers at the database instance level. As DRCP is

a configurable feature chosen at application runtime, client applications can

use both the traditional and DRCP-based connection architectures

simultaneously.

In Oracle Database's traditional dedicated connection model, each process

creates and destroys database servers when connections are opened and

closed. Applications with idle dedicated connections will hold onto database

resources, such as the server process, memory storage, etc.

The DRCP implementation creates a pool of server processes on the database

host that can be shared across multiple applications. The DRCP pool substantially decreases memory consumption

on the server thanks to the multiplexing of client connections over a reduced number of database server processes.

This removes the overheads of creating and destroying database servers and boosts the scalability of application

deployments involving Oracle Database. As explained later in this document, applications with idle connections in

DRCP do not consume database resources.

DRCP boosts the scalability of the database and the application tier because connections to the database are held

at a minimal cost. Database memory is used only by the pooled servers.

DRCP is available with all the editions of Oracle Database from version 11g and is usable on-premises and in Oracle

Cloud. DRCP can be used by any applications running JDBC, ODP.NET, and Oracle Call Interface (OCI1) libraries to

connect to Oracle Database. Applications using the Oracle Database drivers for Python, Node.js, PHP, Ruby, and Go

also support DRCP.

This document covers the architecture, configuration settings, commands, benefits, system views, and examples

to get you started and running with DRCP.

Please check the latest Oracle Database Administrator Guide: DRCP section for a more detailed overview of DRCP.

Overview of DRCP architecture

DRCP enables applications to scale up to tens of thousands of simultaneous database connections. The DRCP

architecture plays a vital role in achieving this scalability.

DRCP uses pooled server processes, which are essentially the combination of dedicated server processes and

database sessions. This model avoids the overhead of allocating a dedicated server for every client connection that

only needs the server for a brief amount of time.

Client applications (hereon referred to as clients in this section) requesting connections from DRCP communicate

with an Oracle background process known as a connection broker. The connection broker multiplexes the pooled

server processes among the inbound connection requests from the clients.

1 Oracle’s native C-based library for connecting to Oracle Database

 “GOL selected Oracle Cloud

Infrastructure based on its

security, cost and superior

performance compared to

other vendors. If an

application experiences a rise

in simultaneous connections,

GOL’s IT uses the Database

Resident Connection Pool

from the Autonomous Cloud

Database”

GOL Linhas Aéreas, Brazil

Leading Brazilian Airline

Oracle Customer Success Story

DRCP HELPS GOL TICK

https://www.oracle.com/customers/gol-linhas-aereas/
https://www.oracle.com/customers/gol-linhas-aereas/
https://www.oracle.com/pls/topic/lookup?ctx=dblatest&id=GUID-BB76E57C-3F16-4C85-AEF6-BA14FC1B4777
https://www.oracle.com/customers/gol-linhas-aereas/
https://www.oracle.com/customers/gol-linhas-aereas/

6 Business / Technical Brief / Extreme Oracle Database Connection Scalability with Database Resident Connection Pooling (DRCP) /

 Version 3.2

 Copyright © 2025, Oracle and/or its affiliates / Public

Initially, the connection broker authenticates the connection requests from the client by using a reserved set of

DRCP processes called authentication servers. Usually, around 5% of the current pooled servers are reserved for

authentication.

Image 1: DRCP Architecture between Client and Database hosts

Whenever the client process acquires an application connection, the connection broker selects a pooled server

process from the free pool and passes it to the client. The client will now be directly connected to the server process

(dubbed the 'active' pooled server) until the database activity is completed.

After the server completes the database activity, the client application must release the active pooled server process

back to the DRCP pool. This then re-establishes its link to the connection broker. The link to the connection broker

remains open until the client process stops running or until a client acquires an application connection.

Also, in the case of DRCP, the session memory is stored in the Program Global Area (PGA) of the database, which is

physically private to a process (the database connection here). This implementation enables the client to re-

establish a connection quickly when any database activity is required.

DRCP Quickstart

The pool can be started, configured, and stopped by running the appropriate procedures in the PL/SQL DRCP

package DBMS_CONNECTION_POOL. Only users with SYSDBA privileges (i.e., the SYS user) or users granted

EXECUTE access for the PL/SQL DRCP package by the SYS user can run it.

In Oracle Cloud Autonomous Database, DRCP is started by default. Otherwise, log in to Oracle Database as the user

with the required privileges and run the dbms_connection_pool.start_pool() PL/SQL procedure.

Once the procedure runs successfully, any client application can access Oracle Database through DRCP using the

Easy Connect string syntax with ':pooled' string or setting(SERVER=POOLED) in the Network Connect Descriptor

string. Applications that do not change the connect string will continue to use traditional dedicated server

processes.

More details and examples of configuring DRCP and other applications using DRCP are available in the later sections

of this technical brief.

https://www.oracle.com/pls/topic/lookup?ctx=dblatest&id=GUID-C918B806-48D1-42F6-9B2E-B3F307164873

7 Business / Technical Brief / Extreme Oracle Database Connection Scalability with Database Resident Connection Pooling (DRCP) /

 Version 3.2

 Copyright © 2025, Oracle and/or its affiliates / Public

How DRCP works

With DRCP, the database listener initially hands the new connection requests from a client to the DRCP

connection broker (CB). These connection requests must initially be authenticated before running any database

transactions on the connection.

The broker performs the authentication using one of the pool's reserved authentication servers. Logon triggers

fire once per authentication and once per user session (when the user session is created). Logoff triggers fire on

every logoff and session release. Once authenticated, the broker keeps the client connection persistent till the

client closes the connection. Further, pooled server requests and releases can happen on this persistent and

authenticated connection. These activities are coordinated by the broker.

On a session request for a database activity, the connection broker assigns a server from the free pool of server

processes for the client and hands over the authenticated client connection to this server. The client carries all its

database interactions on this assigned server process, referred to as the 'busy' server. After the client closes the

session explicitly through an API call or when the client application ends, the busy server is released back to the

free server pool with the session. Then, the client restores its connection to the connection broker if the client

application is still running. The broker holds this connection until a subsequent client connection request comes

in, or when the client application terminates the connection, or when the client application ends.

 d

Image 2: Stages of DRCP Operation

8 Business / Technical Brief / Extreme Oracle Database Connection Scalability with Database Resident Connection Pooling (DRCP) /

 Version 3.2

 Copyright © 2025, Oracle and/or its affiliates / Public

The pool size and the number of connection brokers and authentication servers are configurable. There is always

at least one connection broker per database instance when DRCP is enabled.

When to use DRCP

DRCP is generally recommended for

 Architectures with application servers (such as PHP) that cannot use application connection pools

 Large-scale web deployments with several web servers, micro-services, or application servers that require

database access and application connection pools

 Web architectures that need to support high client connection traffic with minimum memory usage on the

database host

 Applications where connections are held for a short amount of time

 Applications that primarily use the same database credentials for all connections

 Applications with identical connection or session settings, e.g., date formats and PL/SQL package state

These use cases generally have multi-process applications running on multiple hosts with a large number of

connections to the database kept persistent, but not wanting to consume the database server memory when the

connections are not active. The database can scale to tens of thousands of simultaneous connections with DRCP.

For example, a middle-tier connection pool with a pool size of 200 will have 200 connections to the database. The

database, in turn, will have 200 server processes associated with these connections. Suppose there are 30 similar

middle-tier applications. The database will then have 200 * 30 = 6000 corresponding server processes running in

dedicated server mode. Let us assume that only 5% of these connections, and in turn, server processes are in use

at any given time. In this case, only 300 server processes are active, and 5,700 idle server processes are running as

wasted or unused resources on the database side at any given time.

DRCP can solve this resource wastage problem by multiplexing the client connections over fewer pooled servers.

For example, the 6000 client connections might require only 100 pooled server processes (depending on how long

the connections are held), leading to optimal database resource usage and higher scalability.

DRCP is available when connecting over TCP/IP with user ID/password-based database authentication. It is not

available using Oracle's Bequeath or TCPS connections.

It is recommended that DRCP is used along with application connection pooling for maximum efficiency and

optimal database resource consumption. For the best DRCP performance, the application should explicitly specify

a connection class, as shown later in this document.

In addition, please take these considerations into account when using DRCP.

Comparing DRCP with other database server process models

Besides the pooled servers of DRCP, Oracle applications can use two other database server process models to

access data: dedicated and shared servers. Oracle Database provides dedicated servers by default.

The following table shows the differences between Dedicated, Shared, and Pooled servers.

DEDICATED SERVERS SHARED SERVERS POOLED SERVERS

When the connection is

established, a network

connection to a dedicated server

process and associated session

are created.

A network connection to the

dispatcher process is established

A network connection to the

broker is established and

authenticated when the

connection is created.

https://www.oracle.com/pls/topic/lookup?ctx=dblatest&id=GUID-37504E6D-B64F-4EF1-BD7E-335F51F2CE73

9 Business / Technical Brief / Extreme Oracle Database Connection Scalability with Database Resident Connection Pooling (DRCP) /

 Version 3.2

 Copyright © 2025, Oracle and/or its affiliates / Public

when the connection is created.

A session is created in the SGA2.

The dedicated server handles

activity on a connection

Each action3 on a connection

goes through the dispatcher,

which hands the work to a

shared server.

When the application requests a

session, the broker wakes up and

hands the network connection to

a pooled server with a session.

The pooled server then handles

subsequent database requests or

activities directly, just like a

dedicated server.

A program that executes but has

an idle client connection will

maintain a link to a server

process and hold session

resources.

A program that executes but has

an idle client connection will hold

session resources but not

maintain a link to a server

process.

A program that executes but has

an idle client connection that has

already released the database

session will maintain a link to the

connection broker.

Closing a client connection

causes the session to be freed

and the server process to be

terminated.

Closing a client connection

causes the session to be freed,

and the client disconnects from

the dispatcher.

Closing a client connection

causes the pooled server with

the session to be released to the

pool. A network connection to

the connection broker is

retained.

Memory usage is proportional to

the number of server processes

and sessions. There is one server

and one session for each

connection.

Memory usage is proportional to

the sum of the shared servers

and sessions. There is one

session for each client

connection.

Memory usage is proportional to

the number of pooled server

processes and their sessions.

There is one session per pooled

server.

Table 1 – Difference between Dedicated, Shared, and Pooled servers

Note: In the case of DRCP, the connection is released back to the application connection pool when idle.

Example of host memory usage between Dedicated, Shared, and Pooled servers

Consider an application where the memory required for each session is 400 KB. On a 64-bit operating system, the

memory required for each server process could be 8 MB, while DRCP could use 35 KB per connection (mainly in the

connection broker). Suppose the number of pooled servers is configured at 100. Also, assume the number of shared

servers is set to 100, and the deployed application creates 5000 application connections.

The memory used by each server type is estimated in the table below.

 DEDICATED SERVERS SHARED SERVERS POOLED SERVERS

Database Server

Memory

5000 x 8 MB 100 x 8 MB 100 x 8 MB

2 System Global Area – a group of shared memory structures for the whole Oracle Database instance

3 An action is essentially an SQLNet roundtrip, which may involve the execution of one or more SQL or PL/SQL statements, transaction commit, etc.

10 Business / Technical Brief / Extreme Oracle Database Connection Scalability with Database Resident Connection Pooling (DRCP) /

 Version 3.2

 Copyright © 2025, Oracle and/or its affiliates / Public

Session Memory 5000 x 400 KB 5000 x 400 KB

Note: For Shared

Servers, session

memory is allocated

from the SGA

100 x 400 KB

DRCP Connection

Broker Overhead

0 (Not applicable) 0 (Not applicable) 5000 x 35 KB

Total Memory 42 GB 2.8 GB 1 GB

Table 2 – Sample DB memory usage for Dedicated, Shared, and Pooled servers

As can be seen, DRCP pooled servers provide the best database host memory usage among the three options.

Configuring Database Resident Connection Pooling

This section describes how to configure and enable DRCP on both the server side and the client side:

 Enabling and Configuring DRCP on the Server side

 Application Deployment for DRCP

Note: DRCP is already started in Oracle Cloud Autonomous Database by default.

The settings for DRCP can be configured using the DRCP configuration options and DRCP database initialization

parameters, which are explained in detail later in this section.

Enabling and Configuring DRCP on the Server side

From Oracle Database 21c onwards, the first choice that the database administrator (DBA) has to make in DRCP

configuration is between per-PDB DRCP or CDB DRCP. Note that CDB DRCP is the default DRCP configuration.

Only a DBA with SYSDBA privileges or a PDB Administrator with EXECUTE privileges on the

DBMS_CONNECTION_POOL package (granted by the SYS user) can start and stop a pool. In this section, we use

SQL*Plus to configure DRCP on the database.

For CDB DRCP, the database user with SYSDBA privileges (usually the SYS user) can use the following commands

of the DBMS_CONNECTION_POOL package to manage DRCP.

1. Start pool: The start_pool procedure starts DRCP. When DRCP starts, Oracle Database names the default

connection pool created as SYS_DEFAULT_CONNECTION_POOL if no pool name is specified.

sqlplus /nolog

SQL> connect / as sysdba

SQL> execute dbms_connection_pool.start_pool()

From Oracle Database 23ai onwards, The start_pool procedure also allows you to specify the pool name if you

are using multi-pool DRCP.

sqlplus /nolog

SQL> connect / as sysdba

SQL> execute dbms_connection_pool.start_pool('my_pool')

11 Business / Technical Brief / Extreme Oracle Database Connection Scalability with Database Resident Connection Pooling (DRCP) /

 Version 3.2

 Copyright © 2025, Oracle and/or its affiliates / Public

Once started, the pool automatically restarts when the instance restarts unless explicitly stopped with the

stop_pool() procedure.

2. Stop pool: The stop_pool procedure stops DRCP.

The default DRCP pool (SYS_DEFAULT_CONNECTION_POOL) will be stopped if it is running by the following

command:

SQL> execute dbms_connection_pool.stop_pool()

From Oracle Database 23ai, you can stop a specific named pool in a multi-pool DRCP as follows:

SQL> execute dbms_connection_pool.stop_pool('my_pool')

Oracle Database 23ai also provides a new, optional DRAINTIME parameter in stop_pool(). This parameter allows

active DRCP pools to be closed after a specified connection drain time (in seconds) or closed immediately (value 0)

without waiting for connections to be idle. This feature gives DBAs better control over DRCP usage and

configuration. This parameter can be used with the default DRCP pool and the named pools of the multi-pool DRCP

configuration.

Here are some examples:

SQL> execute dbms_connection_pool.stop_pool(pool_name => '', draintime => 0)

This call will immediately abort all the pooled servers in the default pool and stop the default pool.

SQL> execute dbms_connection_pool.stop_pool(pool_name => '', draintime => 30)

This call will wait 30 seconds before aborting the pooled servers and stopping the default pool.

SQL> execute dbms_connection_pool.stop_pool(pool_name => 'my_pool', draintime =>

0)

This call will immediately abort all the pooled servers in the pool named 'my_pool' and stop the pool.

SQL> execute dbms_connection_pool.stop_pool(pool_name => 'my_pool', draintime =>

30)

This call will wait 30 seconds before aborting all the pooled servers in the pool named 'my_pool' and stopping the

pool.

3. Configure pool: The configure_pool procedure configures default or named DRCP pools with additional

options. For example:

To configure the default pool (SYS_DEFAULT_CONNECTION_POOL), run

SQL> execute dbms_connection_pool.configure_pool(

 minsize => 4,

 maxsize => 40,

 incrsize => 2,

 session_cached_cursors => 20,

12 Business / Technical Brief / Extreme Oracle Database Connection Scalability with Database Resident Connection Pooling (DRCP) /

 Version 3.2

 Copyright © 2025, Oracle and/or its affiliates / Public

 inactivity_timeout => 300,

 max_think_time => 600,

 max_use_session => 500000,

 max_lifetime_session => 86400)

This procedure is used when all the connection pool parameters must be modified.

To configure the pool named my_pool, run

SQL> execute dbms_connection_pool.configure_pool(

 pool_name => 'my_pool',

 minsize => 4,

 maxsize => 40,

 incrsize => 2,

 session_cached_cursors => 20,

 inactivity_timeout => 300,

 max_think_time => 600,

 max_use_session => 500000,

 max_lifetime_session => 86400)

This procedure is used when all the connection pool parameters must be modified.

4. Alter parameters: Alternatively, the method dbms_connection_pool.alter_param() can be used to set

a single parameter in a DRCP pool and does not affect other pool parameters.

To alter the 'MAX_THINK_TIME' parameter value in the default pool (SYS_DEFAULT_CONNECTION_POOL), run

SQL> execute dbms_connection_pool.alter_param(

 param_name => 'MAX_THINK_TIME',

 param_value => '1200')

To alter the 'MAX_THINK_TIME' parameter value in a named pool, say my_pool, run

SQL> execute dbms_connection_pool.alter_param(

 pool_name => 'my_pool',

 param_name => 'MAX_THINK_TIME',

 param_value => '1200')

The difference between alter_param and configure_pool options is that alter_param only affects a single

parameter, whereas configure_pool requires all the parameter values to be specified when it is called.

5. Restore defaults: The restore_defaults() procedure resets the default configuration values of any DRCP

pool.

To restore the defaults of the default pool (SYS_DEFAULT_CONNECTION_POOL), run

13 Business / Technical Brief / Extreme Oracle Database Connection Scalability with Database Resident Connection Pooling (DRCP) /

 Version 3.2

 Copyright © 2025, Oracle and/or its affiliates / Public

SQL> exec dbms_connection_pool.restore_defaults()

To restore the default configuration of a named pool, say my_pool, run

SQL> exec dbms_connection_pool.restore_defaults(‘my_pool`)

If DRCP is at the PDB level (per-PDB DRCP), then the PDB administrator (with privileges enabled) will have to execute

the above commands for the corresponding PDBs.

DRCP Configuration Settings

The table below shows the list of DRCP configuration options that the configure_pool and alter_param procedures

can use:

DRCP OPTION DESCRIPTION

POOL_NAME The name of the pool to be configured. Until Oracle Database 21c, the only

name supported was the default value SYS_DEFAULT_CONNECTION_POOL.

From Oracle Database 23ai, other names can be used with the new multi-

pool feature.

MINSIZE Sets the minimum number of pooled servers in the pool. The default value is

4 when DRCP is configured at the CDB level and 0 when per-PDB DRCP is

enabled.

MAXSIZE Sets the maximum number of pooled servers allowed in the pool. If this limit

is reached and all the pooled servers are busy, then connection requests wait

until a server becomes free. The default is 40.

INCRSIZE Sets the increment number by which pooled servers are increased when

servers are unavailable for connections and the pool is not yet at its

maximum size. The default is 2.

SESSION_CACHED_CURSORS Turns on the database parameter SESSION_CACHED_CURSORS for all the

pool connections. Typically, this number is set to the size of the working set

of frequently used statements. The cache uses cursor resources on the

server. The default is 20. An init.ora parameter is also available to set the

value for the entire database instance. The pool option allows a DRCP-based

application to override the instance setting.

INACTIVITY_TIMEOUT Time to live, in seconds, for a free server in the pool. After this time, the free

server process is terminated. This parameter helps shrink the pool when it is

not used to its maximum capacity. This parameter will not apply if the pool

size is already at minsize. The default is 300 seconds.

MAX_THINK_TIME The maximum time of inactivity, in seconds, allowed after the client is

connected to a pooled server.

If the application code or script does not issue a database call for this amount

of time, the pooled server may be returned to the pool for reuse, and the

client connection is terminated. The application will get an ORA-3113 or

https://www.oracle.com/pls/topic/lookup?ctx=dblatest&id=GUID-E4FC0260-3C8A-4379-8143-6A4E6EE27A2F

14 Business / Technical Brief / Extreme Oracle Database Connection Scalability with Database Resident Connection Pooling (DRCP) /

 Version 3.2

 Copyright © 2025, Oracle and/or its affiliates / Public

ORA-3135 error if it tries to use the connection later. The default is 120

seconds.

MAX_TXN_THINK_TIME The maximum time of inactivity, in seconds, for a client after it has started a

transaction using a pooled server. If the client application does not make a

database call within the time frame provided by max_txn_think_time after

getting the pooled server from the pool, the pooled server is released, and

the client connection is terminated. The default value for this parameter is

the max_think_time parameter value. Applications can set this parameter

value higher than the max_think_time value to provide more time for the

connections with open transactions. The application will get an ORA-3113

or ORA-3135 error if it tries to use the connection later.

MAX_USE_SESSION The maximum number of times a server can be taken and released to the

pool before it is flagged for restarting. The default is 500000.

MAX_LIFETIME_SESSION Time to live, in seconds, for a pooled server before it is restarted. The default

is 86400 seconds.

NUM_CBROK The number of connection brokers created to handle connection requests.

This parameter can be set with alter_param(). The default is 1.

If per-PDB DRCP is enabled, then alter_param() cannot be used to set this

parameter. Only the root DBA can use the database initialization

parameter CONNECTION_BROKERS to set them, as illustrated here. The

PDB admin also cannot modify the value of this parameter.

For the CDB root-level DRCP, if this parameter is not set using

CONNECTION_BROKERS, then the root DBA can use the alter_param()

procedure to set it.

Using CONNECTION_BROKERS is the recommended way to set this

parameter.

MAXCONN_CBROK Sets the maximum number of connections that each connection broker can

handle. The operating system's per-process file descriptor limit must be set

sufficiently high to support the specified number of connections. This

parameter can only be set with alter_param(). The default is 40000.

If per-PDB DRCP is enabled, then alter_param() cannot be used to set this

parameter. Only the root DBA can use the database initialization

parameter CONNECTION_BROKERS to set them, as illustrated here. The

PDB admin also cannot modify the value of this parameter.

For CDB DRCP, if this parameter is not set using CONNECTION_BROKERS,

then the root DBA can use the alter_param() procedure to set it.

Using CONNECTION_BROKERS is the recommended way to set this

parameter.

Table 3 – DRCP Configuration Options

15 Business / Technical Brief / Extreme Oracle Database Connection Scalability with Database Resident Connection Pooling (DRCP) /

 Version 3.2

 Copyright © 2025, Oracle and/or its affiliates / Public

You can also set database initialization parameters for additional configuration and optimization in DRCP:

DRCP PARAMETER DESCRIPTION

ENABLE_PER_PDB_DRCP Available from Oracle Database 21c onwards. This parameter specifies if

DRCP is configured at the CDB level or per PDB. The default value is FALSE,

which will configure DRCP at the CDB level. When this parameter is set to

TRUE, one isolated connection pool is created for each PDB, and no

connection pool is created at the CDB level.

DRCP_DEDICATED_OPT Available from Oracle Database 19.11 onwards. This parameter configures

the use of dedicated optimization with DRCP. The default is YES in Oracle

Database 19c and NO from Oracle Database 21c onwards. Dedicated

optimization is enabled by setting this parameter to YES. Dedicated

optimization makes DRCP operate like a dedicated server when the number

of connections to the DRCP broker is less than the maximum size of the

DRCP pool. Dedicated optimization allows the number of open pooled

servers to grow to the maximum size, even when the connections are

inactive.

Depending on the value of the ENABLE_PER_PDB_DRCP parameter, this

parameter can be modified by the CDB root user or the PDB admin user.

DRCP_CONNECTION_LIMIT Available from Oracle Database 21c onwards. This parameter sets the limit

on the number of DRCP connections for a PDB. If a PDB has a session limit

set and is subsequently restarted, the default is 10 * sessions. Otherwise,

it is 0 (unlimited DRCP connections).

MAX_AUTH_SERVERS Available from Oracle Database 19.10 onwards. This parameter specifies

the maximum number of server processes in the DRCP authentication pool.

This value must be greater than or equal to the MIN_AUTH_SERVERS

parameter value. If the MIN_AUTH_SERVERS value is 0, this value must be

at least 1. The default value is 25.

Depending on the value of the ENABLE_PER_PDB_DRCP parameter, this

parameter can be modified by the CDB root user or the PDB admin user.

MIN_AUTH_SERVERS Available from Oracle Database 19.10 onwards. This parameter specifies

the minimum number of server processes in the DRCP authentication pool.

This value must be less than or equal to the values of both

MAX_AUTH_SERVERS and PROCESSES parameters. Depending on the

value of the ENABLE_PER_PDB_DRCP parameter, this parameter can be

modified by the CDB root user or the PDB admin user.

CONNECTION_BROKERS This parameter specifies the connection broker types, the number of

connection brokers of each type, and the maximum number of connections

per broker. When per-PDB DRCP is enabled, a PDB admin user cannot set

this parameter in the PDB.

Table 4 – DRCP Database Initialization Parameters

The ALTER SYSTEM SQL command can be used to modify all of the above parameters except

ENABLE_PER_PDB_DRCP. This parameter can be set only through the database configuration file.

https://www.oracle.com/pls/topic/lookup?ctx=dblatest&id=GUID-3682B368-2016-48FD-B2BB-E1EC695C3F63
https://www.oracle.com/pls/topic/lookup?ctx=dblatest&id=GUID-351F5DAA-F245-4C37-96D6-3D9623FA8659
https://docs.oracle.com/en/database/oracle/oracle-database/23/refrn/DRCP_CONNECTION_LIMIT.html
https://www.oracle.com/pls/topic/lookup?ctx=dblatest&id=GUID-ADEB1E4C-0264-4123-BEEC-31B322631C8F
https://www.oracle.com/pls/topic/lookup?ctx=dblatest&id=GUID-5C832636-AAC6-4F9B-AAE7-7D457AFEE92A
https://www.oracle.com/pls/topic/lookup?ctx=dblatest&id=GUID-B757AF80-DA38-4167-A914-FE376A3AD4FE
https://www.oracle.com/pls/topic/lookup?ctx=dblatest&id=GUID-C6C3A860-D74C-4D3D-9185-E59794360ACA

16 Business / Technical Brief / Extreme Oracle Database Connection Scalability with Database Resident Connection Pooling (DRCP) /

 Version 3.2

 Copyright © 2025, Oracle and/or its affiliates / Public

Configuring brokers for per-PDB DRCP

As broker processes are shared among all the PDBs, the pool parameters num_cbrok and maxconn_cbrok from

DBA_CPOOL_INFO are ignored and cannot be modified by the PDB admin using

dbms_connection_pool.alter_param(). These parameters can be set using the database parameter

CONNECTION_BROKERS and can only be dynamically altered in the ROOT container. By default, a single broker

process will be started with a maximum limit of 40000 connections per broker and shared across all the PDBs.

Example:

CONNECTION_BROKERS='((TYPE=POOLED)(BROKERS=2)(CONNECTIONS=40000))'

The BROKERS option will set the number of connection brokers, and the CONNECTIONS option will set the

maximum number of connections per broker.

Using DRCP with Oracle Real Application Clusters (RAC)

When DRCP is used with Oracle RAC4, each database instance has its own connection broker and pool of servers.

DRCP configuration in an Oracle RAC environment is applied to every database instance. Hence, each pool has an

identical configuration. For example, all pools will start with minsize server processes. A single

dbms_connection_pool command will alter the pool of each instance at the same time. However, the database

initialization parameters in Table-6 (except the ENABLE_PER_PDB_DRCP and CONNECTION_BROKER

parameters) can be set to different values in different instances.

Using DRCP with Oracle Cloud Autonomous Database (ADB)

DRCP is enabled by default in Oracle Cloud Autonomous Databases (ADBs). Note that the client applications will

have the option of using DRCP as specified in the following sub-section. Oracle ADBs do not allow users to start or

stop DRCP.

Working with DRCP in client applications

Once DRCP is enabled on the database, applications can use DRCP by specifying ': POOLED' in the Easy Connect

string (as in the example below) or (SERVER=POOLED) in the Network Connect Descriptor string when they connect

to the database.

DRCP with ':pooled' in an Easy Connect string

oraclehost.company.com:1521/booksdb.company.com:pooled

Enabling DRCP with SERVER=POOLED in a Network Connect Descriptor string

BOOKSDB = (DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=oraclehost.company.com)

(PORT=1521))(CONNECT_DATA = (SERVICE_NAME=booksdb.company.com)(SERVER=POOLED)))

Applications connecting to Oracle Database through DRCP should use connections for short database activities

and then close them promptly after the database activities are completed.

4 Real Application Clusters - a database option in which a single database is hosted by multiple instances on multiple nodes

https://docs.oracle.com/en/cloud/paas/autonomous-database/adbsa/connect-drcp.html

17 Business / Technical Brief / Extreme Oracle Database Connection Scalability with Database Resident Connection Pooling (DRCP) /

 Version 3.2

 Copyright © 2025, Oracle and/or its affiliates / Public

Managing DRCP Connections

DRCP guarantees that sessions in pooled servers used initially by one database user can only be reused by

connections with that same user identifier. DRCP also further partitions the pool into logical groups or

"connection classes". The pooled servers are also partitioned based on the service names. It is recommended that

applications provide a connection class for the best performance when connecting to the database through DRCP.

DRCP also allows applications to set the session purity attribute to control the reusability of the pooled sessions.

The connection class and session purity settings help multiple applications, web apps and microservices use the

full potential of DRCP and provide the best performance to the end users.

What is a Connection Class?

The connection class defines a logical name for the type of connection an application wants to use and share across

multiple application processes or other applications. The right set of connection classes partitions the connections

effectively and prevents unnecessary session sharing among connections.

The DRCP connections are not shared across database users and service names by default. The connection class

adds an extra level of sharing boundary that applications can maintain when they use the same user and service

name. Applications that require different states in the sessions should use different user names and/or connection

classes.

If no free pooled servers match a request for a user ID in the specified connection class, and if the pool is already at

its maximum size, then an idle server in the pool with a different class will be used, and a new session will be created

for it. If no pooled servers are available, the connection request waits for one to become available. This behavior

allows the database to continue without becoming overloaded.

For example, for the same username, "Blake", applications in a group called Sales may be willing to share pooled

servers between themselves but not with an application group called CRM. In the diagram below, the group names

"Sales" and "CRM" are also the values set for the connection classes.

Image 3: DRCP Pool Sharing across applications

18 Business / Technical Brief / Extreme Oracle Database Connection Scalability with Database Resident Connection Pooling (DRCP) /

 Version 3.2

 Copyright © 2025, Oracle and/or its affiliates / Public

What is Session Purity?

The Session Purity attribute specifies if the application wants a "brand new" session (NEW) or if the application

logic is set up to reuse a "pooled" session (SELF). This attribute controls the reusability of the pooled sessions in

DRCP. Reusing pooled sessions will improve the connection performance.

DRCP Session Purity and Connection Class defaults

The connection class and purity attributes for a DRCP connection will have default values based on whether the

application is using a local connection pool or not.

DRCP

CONNECTION

SETTING

DEFAULT VALUE FOR A CONNECTION

FROM AN APPLICATION CONNECTION

POOL

DEFAULT VALUE FOR A

CONNECTION NOT FROM

AN APPLICATION

CONNECTION POOL

PURITY SELF NEW

CONNECTION

CLASS

For applications using Oracle Call Interface (OCI)

libraries, a randomly generated unique name for

each application session pool is used as the default

connection class for all connections in the session

pool.

Python-oracledb Thin mode generates a unique

connection class name by default with the prefix

"DPY".

Node-oracledb Thin mode generates a unique

connection class name by default with the prefix

"NJS".

For JDBC Thin, the default is the name of the

connection pool specified if UCP is set. If UCP is not

set, the class gets a random name.

In Managed and Core ODP.NET, the default is null.

“SHARED”

Table 5 – Session Purity and Connection Class Defaults

Session Purity and Connection Class in the connection string

Many database drivers provide the options for applications to set the connection class and purity values as

attributes. However, when the option to set these attribute values via the application code is not available or when

these values are not optimal, you can set the parameters POOL_CONNECTION_CLASS and POOL_PURITY in the

connect string. These two parameters are ignored if the SERVER is not POOLED.

The POOL_CONNECTION_CLASS and POOL_PURITY attributes specified in a connect string will have the highest

priority and override the default or application-specified values (set through OCI OCIAttrSet or OCISessionGet calls

in Oracle Call Interface (C/C++) or by the Python, JDBC, and ODP.NET thin drivers).

The valid values for POOL_PURITY are SELF and NEW. These values are not case-sensitive.

Note: When using SELF in a connect string, any session requests with application attribute NEW purity will not be

dropped from the application pool even if the application passes the OCI_SESSRLS_DROPSESS mode in

OCISessionRelease().

19 Business / Technical Brief / Extreme Oracle Database Connection Scalability with Database Resident Connection Pooling (DRCP) /

 Version 3.2

 Copyright © 2025, Oracle and/or its affiliates / Public

The value for POOL_CONNECTION_CLASS can be any string conforming to connection class semantics. This value

is case-sensitive.

Sample Easy Connect string:

oraclehost:1521/db_svc1:pooled?pool_purity=self&pool_connection_class=ccname

In Easy Connect syntax, the pool_connection_class and pool_purity attributes can be used with Oracle Database

21c onwards. If the applications use Oracle Client libraries, then these attributes are supported in the Easy

Connect syntax from Oracle Client version 12 or later.

For more information on the usage of these DRCP parameters, please check out the latest technical brief on Easy

Connect syntax.

Sample Network Connect Descriptor String:

ServerPool =

 (DESCRIPTION =

 (ADDRESS=(PROTOCOL=tcp)(HOST=oraclehost)(PORT=1521))

 (CONNECT_DATA=(SERVICE_NAME=db_svc1)(SERVER=POOLED))

 (POOL_CONNECTION_CLASS=CCNAME)(POOL_PURITY=SELF))

Per-PDB DRCP

The multitenant option introduced in Oracle Database 12c brought in the Container Database (CDB) and Pluggable

Database (PDB) model. There was only one DRCP pool available for all PDBs, and management was done at the

CDB level by the ROOT user with SYSDBA privileges. This is known as ‘CDB DRCP’.

From Oracle Database 21c, DRCP can be either at the CDB (CDB DRCP) or PDB level (per-PDB DRCP). In per-PDB

DRCP mode, a PDB Admin user (say PDB1ADMIN) can configure, manage, and monitor the DRCP pool owned by

that PDB. The brokers are still owned by ROOT and shared by all the per-PDB DRCP pools.

Enabling per-PDB DRCP

By default, DRCP is at the CDB level. In CDB DRCP mode, a single DRCP pool running in the CDB is shared across all

the PDBs. In this mode, the database initialization parameter ENABLE_PER_PDB_DRCP will be 'FALSE'.

ENABLE_PER_PDB_DRCP can be set to 'TRUE' to enable per-PDB DRCP.

For PDB1ADMIN user to access the DBMS_CONNECTION_POOL package and query the DRCP statistics, the ROOT

user (SYS) has to grant the following permissions to PDB1ADMIN.

GRANT CREATE SESSION, CREATE SYNONYM TO PDB1ADMIN;

GRANT EXECUTE ON DBMS_CONNECTION_POOL TO PDB1ADMIN;

GRANT SELECT ON V_$CPOOL_STATS TO PDB1ADMIN;

GRANT SELECT ON V_$CPOOL_CC_STATS TO PDB1ADMIN;

GRANT SELECT ON V_$CPOOL_CONN_INFO TO PDB1ADMIN;

GRANT SELECT ON V_$CPOOL_CC_INFO TO PDB1ADMIN;

GRANT SELECT ON V_$AUTHPOOL_STATS TO PDB1ADMIN;

To make management and monitoring of the DRCP pool easier, the PDB Admin user (PDB1ADMIN in this case) can

create the following synonyms.

CREATE SYNONYM DBMS_CONNECTION_POOL FOR SYS.DBMS_CONNECTION_POOL;

https://download.oracle.com/ocomdocs/global/Oracle-Net-Easy-Connect-Plus.pdf
https://download.oracle.com/ocomdocs/global/Oracle-Net-Easy-Connect-Plus.pdf

20 Business / Technical Brief / Extreme Oracle Database Connection Scalability with Database Resident Connection Pooling (DRCP) /

 Version 3.2

 Copyright © 2025, Oracle and/or its affiliates / Public

CREATE SYNONYM V$CPOOL_STATS FOR SYS.V_$CPOOL_STATS;

CREATE SYNONYM V$CPOOL_CC_STATS FOR SYS.V_$CPOOL_CC_STATS;

CREATE SYNONYM V$CPOOL_CONN_INFO FOR SYS.V_$CPOOL_CONN_INFO;

CREATE SYNONYM V$CPOOL_CC_INFO FOR SYS.V_$CPOOL_CC_INFO;

CREATE SYNONYM V$AUTHPOOL_STATS FOR SYS.V_$AUTHPOOL_STATS;

Once this is done, pool management is allowed only at the PDB level by the respective PDB Admins.

CDB DRCP vs. per-PDB DRCP

In CDB DRCP, the ROOT user (e.g., SYS) manages the DRCP Pool in the CDB. All the PDBs share this single DRCP

pool.

MANAGING THE POOL

FROM A CDB

MANAGING THE POOL

FROM A PDB

VIEWING POOL

STATISTICS

FROM A CDB

VIEWING POOL

STATISTICS

FROM A PDB

The ROOT user can run all

the procedures of the
dbms_connection_pool

package, e.g.,

start_pool(), stop_pool(),

when connected to a CDB.

The alter_param() procedure

cannot modify the DRCP

configuration parameters

num_cbrok and

maxconn_cbrok if the

database parameter

connection_brokers has been

set through init.ora or ALTER

SYSTEM.

CDB DRCP cannot be

managed from a PDB by

any user.

The ROOT user can

query the below

gv$ tables :

gv$cpool_stats

gv$cpool_cc_stats

gv$cpool_conn_info

gv$authpool_stats

gv$cpool_cc_info

, their corresponding

v$tables and

DBA_CPOOL_INFO.

The ROOT user

connected to a PDB

can view stats only

from

gv$cpool_conn_info

and

gv$authpool_stats

and their

corresponding v$

tables.

Table 6 – CDB DRCP behavior

In per-PDB DRCP, the PDB Admin user manages the DRCP pool for each individual PDB.

MANAGING THE

POOL FROM A CDB

MANAGING THE POOL

FROM A PDB

VIEWING POOL

STATISTICS FROM

A CDB

VIEWING POOL

STATISTICS FROM A

PDB

The procedures on the
dbms_connection_p

ool package cannot be

run by the ROOT user

or the PDB Admin user

when connected to the

CDB.

The ROOT user can

alter num_cbrok and

maxconn_cbrok values

using the database

Only the PDB Admin user can

run all the procedures of the
dbms_connection_pool

package, e.g.,
start_pool(), stop_pool() when

connected to the PDB.

The alter_param() procedure

cannot modify the DRCP

configuration parameters

num_cbrok and

maxconn_cbrok. The PDB

Admin user cannot alter the

The ROOT user can

query below

gv$tables and the

corresponding

v$ tables connected

to the CDB.

gv$cpool_stats

gv$cpool_cc_stats

gv$cpool_conn_info

gv$authpool_stats

gv$cpool_cc_info

The result will

The PDB Admin user or

the ROOT user can

query the below

gv$tables from the PDB:

gv$cpool_stats

gv$cpool_cc_stats

gv$cpool_conn_info

gv$authpool_stats

gv$cpool_cc_info, their

corresponding v$tables

and DBA_CPOOL_INFO.

21 Business / Technical Brief / Extreme Oracle Database Connection Scalability with Database Resident Connection Pooling (DRCP) /

 Version 3.2

 Copyright © 2025, Oracle and/or its affiliates / Public

parameter

connection_brokers.

database parameter

connection_brokers.

contain DRCP

information about all

the PDBs.

The result will contain

DRCP information

about the specific PDB.

 Table 7 – per-PDB DRCP behavior

Implicit Connection Pooling with DRCP

Oracle Database 23ai introduced Implicit Connection Pooling. This can be used with DRCP to enable the database

to automatically release connections/sessions based on specific boundary requirements in SQL or PL/SQL

transactions and reduce pool management responsibilities on the application. Implicit Connection Pooling works

with both per-PDB DRCP and CDB DRCP.

DRCP's Implicit Connection Pooling detects when the database connection/session is stateless (no open cursors,

temp LOBs, temp tables, or active transactions) and performs an 'implicit release' over the database connection.

The 'implicit release' process involves two steps:

 Handback of the connection to the connection broker

 Return of the pooled server along with the session back to the DRCP' free server' pool.

The ‘implicit release’ process happens without the application being aware of it. The subsequent database call on

the connection implicitly gets a session from the DRCP pool.

Implicit Connection Pooling with DRCP is suitable for applications

 that hold onto connections when not doing database work

 that use custom pooling or no pooling at all

 that have sparse but repeated workload processing

 with legacy or third-party code that is difficult to move to Oracle pooling APIs

Please take a look at the Implicit Connection Pooling blog for detailed insights.

Enabling Implicit Connection Pooling

To enable applications to work with Implicit Connection Pooling, start by configuring DRCP on the database

server.

On the application side, you need to set the POOL_BOUNDARY option in the connect string to enable the

application to work with Implicit Connection Pooling. The POOL_BOUNDARY option can have two values:

 STATEMENT – DRCP performs an 'implicit release' when the database session is stateless

 TRANSACTION – DRCP performs an 'implicit release' at commit/rollback or when the database session is

stateless. This release will close any active cursors, temporary tables, and temporary LOBs in case of

commit/rollback.

Sample Easy Connect string with Implicit Connection Pooling:

oraclehost:1521/db_svc_name:pooled?pool_boundary=statement

Sample Network Connect Descriptor string with Implicit Connection Pooling:

DBServerPool =

 (DESCRIPTION =

 (ADDRESS=(PROTOCOL=tcp)(HOST=oraclehost)(PORT=1521))

https://medium.com/oracledevs/implicit-connection-pooling-when-connections-overload-your-database-3fe7c59acae2

22 Business / Technical Brief / Extreme Oracle Database Connection Scalability with Database Resident Connection Pooling (DRCP) /

 Version 3.2

 Copyright © 2025, Oracle and/or its affiliates / Public

 (CONNECT_DATA=(SERVICE_NAME=db_svc_name)(SERVER=POOLED)

 (POOL_BOUNDARY=STATEMENT))

)

The session purity value defaults to ‘SELF’ for the connections in Implicit Connection Pooling. No other change in

the application is required for Implicit Connection Pooling.

Benefits of Implicit Connection Pooling

Implicit Connection Pooling with DRCP increases the multiplexing of database connections without relying on the

application's explicit opening or closing of connection calls. It allows applications that hold connections open for a

long time to share their database server processes and session memory. This reduces the load on the database

host and makes the overall system more scalable.

To sum up, Implicit Connection pooling with DRCP provides the following benefits for applications:

 Improved scalability for applications through better multiplexing

 Reduced pool handling required on the application side

 Supports higher concurrency for mid-tiers through optimal database resource usage

Multi-pool DRCP (Named Pools)

Oracle Database 23ai introduced Multi-pool DRCP to enable the creation of multiple named pools with different

configurations. With this feature, Database Administrators can add or remove DRCP pools. Multi-pool DRCP can

be configured at both CDB and PDB levels. The application must specify the pool name in the connect string to

access a specific DRCP pool.

Multi-pool DRCP provides configuration flexibility to Database Administrators (DBAs) and helps organize the

database connections based on the type of incoming application requests.

Image 4: Multi-pool DRCP Architecture

https://docs.oracle.com/en/database/oracle/oracle-database/23/adfns/performance-and-scalability.html#GUID-030F924E-949D-44CD-ADE7-2C64CF154A28

23 Business / Technical Brief / Extreme Oracle Database Connection Scalability with Database Resident Connection Pooling (DRCP) /

 Version 3.2

 Copyright © 2025, Oracle and/or its affiliates / Public

Adding and Removing Named Pools

A new PL/SQL procedure dbms_connection_pool.add_pool() adds the new pool.

To add a new pool called 'my_pool' with the default pool parameters, run:

SQL> execute dbms_connection_pool.add_pool('my_pool')

Another new PL/SQL procedure, dbms_connection_pool.remove_pool(), removes the pool.

To remove 'my_pool', run:

SQL> execute dbms_connection_pool.remove_pool('my_pool')

Configuring Multi-pool DRCP

Multi-pool DRCP does not require additional configuration on the database server other than enabling DRCP.

The application will need to specify (POOL_NAME=<pool_name>) in the connect string

with (SERVER=POOLED) specified for DRCP to mark a client connection against the appropriate pool. For

example:

(DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)(HOST=host_name)(PORT=port_number))

(CONNECT_DATA=(SERVICE_NAME=db_service.company.com>)(SERVER=POOLED)

(POOL_NAME=my_pool)))

If you are using Easy Connect String, then you can specify the pool name as follows:

host_name:port_number/db_service.company.com:pooled?pool_name=my_pool

You can configure the named pools similar to the default DRCP pools using the PL/SQL procedures in the

DBMS_CONNECTION_POOL package as described in the 'Enabling and Configuring DRCP on the Server Side'

section in this document. Note that SYS_DEFAULT_CONNECTION_POOL will still be automatically created when

DRCP is enabled and will remain the default DRCP pool.

For more details about configuring and working with multi-pool DRCP, please check out the blog' Multi-pool

Database Resident Connection Pooling (DRCP) in Oracle Database 23ai'.

Monitoring DRCP

In-built data dictionary views and dynamic performance views are available in Oracle Database to monitor the

performance of DRCP. Database administrators can check statistics such as the number of busy and free servers

and the number of hits and misses in the pool against the total number of client requests.

The in-built views available in Oracle Database for looking at DRCP statistics are:

DBA_CPOOL_INFO

V$CPOOL_STATS

V$CPOOL_CC_STATS

V$CPOOL_CONN_INFO

V$CPOOL_CC_INFO

https://www.oracle.com/pls/topic/lookup?ctx=dblatest&id=GUID-9F85857F-05A7-456F-A18B-582AAB4AFA6D
https://docs.oracle.com/en/database/oracle/oracle-database/23/arpls/DBMS_CONNECTION_POOL.html#GUID-5D1E097F-F555-4B5B-9E87-89049CC0746A
https://medium.com/oracledevs/multi-pool-database-resident-connection-pooling-drcp-in-oracle-database-23c-39d86ccd05ce
https://medium.com/oracledevs/multi-pool-database-resident-connection-pooling-drcp-in-oracle-database-23c-39d86ccd05ce

24 Business / Technical Brief / Extreme Oracle Database Connection Scalability with Database Resident Connection Pooling (DRCP) /

 Version 3.2

 Copyright © 2025, Oracle and/or its affiliates / Public

V$AUTHPOOL_STATS

In the following subsections, we will use SQL*Plus to query the data dictionary views for DRCP.

DBA_CPOOL_INFO

The DBA_CPOOL_INFO view displays configuration information about the connection pool, such as the pool

status, the maximum and the minimum number of connections, etc.

The following example checks if the pool has been started (ACTIVE status) and finds the maximum number of

pooled servers allowed:

SQL> SELECT connection_pool, status, maxsize FROM dba_cpool_info;

CONNECTION_POOL STATUS MAXSIZE

---------------------------- ---------- ----------

SYS_DEFAULT_CONNECTION_POOL ACTIVE 40

V$CPOOL_STATS View

The V$CPOOL_STATS view displays information about the DRCP statistics for a database instance. The

V$CPOOL_STATS view can assess the efficiency of the connection pool settings.

The query in the following example shows an application using the pool effectively. The low number of misses

indicates that servers and sessions were reused by the sharing applications and the purity to 'SELF'. The wait count

shows just over 10% of requests had to wait for a pooled server to become available:

SQL> SELECT num_requests, num_hits, num_misses, num_waits FROM v$cpool_stats;

NUM_REQUESTS NUM_HITS NUM_MISSES NUM_WAITS

------------ ---------- ---------- ----------

 10031 99990 40 1055

If the connection class is set (allowing pooled servers and sessions to be reused), then NUM_MISSES will be low. If

the pool maxsize value is too small for the connection load, then NUM_WAITS will be high.

When CDB-level DRCP is enabled, this view returns data only when queried from a CDB root (SYS user) and returns

0 rows when queried from a PDB. With per-PDB DRCP, this view will return data when queried from a CDB root (SYS

user) and PDB (PDBADMIN user).

Note: SQL*Plus does not set PURITY by default and hence does not reuse DRCP sessions.

V$CPOOL_CC_STATS View

The view V$CPOOL_CC_STATS contains the connection class level statistics for the pool per instance. For example:

SQL> SELECT cclass_name, num_requests, num_hits, num_misses

 FROM v$cpool_cc_stats;

CCLASS_NAME NUM_REQUESTS NUM_HITS NUM_MISSES

---------------------------- ------------- -------- -----------

https://www.oracle.com/pls/topic/lookup?ctx=dblatest&id=GUID-14A26A04-952B-44B5-BCF1-1083AACD366F
https://www.oracle.com/pls/topic/lookup?ctx=dblatest&id=GUID-D57D1672-386B-4F9E-9B78-42176115D6DC
https://www.oracle.com/pls/topic/lookup?ctx=dblatest&id=GUID-DAD6A631-8165-4CF9-8242-DC9FAE3F6005

25 Business / Technical Brief / Extreme Oracle Database Connection Scalability with Database Resident Connection Pooling (DRCP) /

 Version 3.2

 Copyright © 2025, Oracle and/or its affiliates / Public

HR.MYCLASS 100031 99993 38

When CDB-level DRCP is enabled, this view returns data only when queried from a CDB root (SYS user) and returns

0 rows when queried from a PDB. In the case of per-PDB DRCP, this view will return data when queried from both

the CDB (Root user) and the PDB (PDBADMIN user).

In Oracle Database 23ai, a new POOL_NAME column has been added to the V$CPOOL_CC_STATS view to maintain

connection class statistics for named pools, if available.

V$CPOOL_CONN_INFO View

You can monitor the view V$CPOOL_CONN_INFO to identify misconfigured machines, for example, that do not

have the connection class set correctly. This view displays the connection information of each connection to the

connection broker. The query in the example below maps the machine name to the class name:

SQL> SELECT cclass_name, machine FROM v$cpool_conn_info;

CCLASS_NAME MACHINE

--------------------------------------- ------------

GK.OCI:SP:wshbIFDtb7rgQwMyuYvodA gklinux

In this example, you would examine applications on the Linux machine (gklinux) and make sure that cclass is set.

More examples of usage for the V$CPOOL_CONN_INFO view can be found here.

In Oracle Database 23ai, a new POOL_NAME column is added to this view to maintain connection pool

information for named pools, if available.

V$CPOOL_CC_INFO View

V$CPOOL_CC_INFO holds information on the pool-to-connection class mapping for the DRCP pool of each

database instance. The query in the example below identifies all the connection classes in the database instance:

SQL> SELECT pool_name, cclass_name FROM v$cpool_cc_info;

POOL_NAME CCLASS_NAME CON_ID

-- ------------------------------ ------

SYS_DEFAULT_CONNECTION_POOL HR.MYCLASS 3

In this example, the user is HR, and the Connection Class is MYCLASS.

V$AUTHPOOL_STATS View

V$AUTHPOOL_STATS shows the statistics for the DRCP authentication servers. This view is available from Oracle

Database 21c. The query in the example below looks at the authentication server statistics:

SQL> select num_srvs, num_busy, num_free, num_waiters from v$authpool_stats;

 NUM_SRVS NUM_BUSY NUM_FREE NUM_WAITERS

---------- ---------- ---------- -----------

 3 0 3 0

https://www.oracle.com/pls/topic/lookup?ctx=dblatest&id=GUID-20A39B0D-5E39-426D-B10D-668AFD569B83
https://www.oracle.com/pls/topic/lookup?ctx=dblatest&id=GUID-6C99612A-B34C-4412-BBCD-1FFD72B253D3
https://www.oracle.com/pls/topic/lookup?ctx=dblatest&id=GUID-A57977A3-D27F-417C-8ACD-85AFAF978B7F
https://www.oracle.com/pls/topic/lookup?ctx=dblatest&id=GUID-362357B3-B1BB-43EA-8171-398DBE267E45

26 Business / Technical Brief / Extreme Oracle Database Connection Scalability with Database Resident Connection Pooling (DRCP) /

 Version 3.2

 Copyright © 2025, Oracle and/or its affiliates / Public

The above example shows that there are three authentication server processes free and ready to receive any

connection authentication requests.

DRCP examples with different languages

To enable and use DRCP with applications, we have to:

1. Configure and enable DRCP in the database

2. Configure the application to use a DRCP connection

3. Deploy the application

If the below code snippets are executed without configuring the database for DRCP, the connections will not

succeed, and an error will be returned to the application.

DRCP with Python

The latest Python interface for Oracle Database, python-oracledb (package name: oracledb), supports DRCP.

Application Deployment for DRCP

To request the database to use a DRCP pooled server, you can use a specific connection string

in oracledb.create_pool() or oracledb.connect() similar to one of the following syntaxes.

Using Oracle's Easy Connect syntax, the connection parameters would look like this:

import oracledb

connection = oracledb.connect(user="hr", password=userpwd,

 dsn="dbhost.example.com/orcl:pooled”,

 cclass="MYAPP")

Or if you connect using a tnsnames.ora alias named customerdb:

connection = oracledb.connect(user="hr", password=userpwd,

 dsn="customerdb")

In this case, only the Oracle Network configuration file tnsnames.ora needs to be modified:

customerdb = (DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=dbhost.example.com)

 (PORT=1521))(CONNECT_DATA=(SERVICE_NAME=CUSTOMER)(SERVER=POOLED)))

You can also specify to use a DRCP pooled server by setting the server_type parameter when creating a standalone

connection or a python-oracledb connection pool.

For example:

pool = oracledb.create_pool(user="hr", password=userpwd,

 dsn="dbhost.example.com/orclpdb", min=2, max=5,

 increment=1, server_type="pooled")

https://python-oracledb.readthedocs.io/en/latest/user_guide/connection_handling.html#database-resident-connection-pooling-drcp
https://python-oracledb.readthedocs.io/en/latest/api_manual/module.html#oracledb.create_pool
https://python-oracledb.readthedocs.io/en/latest/api_manual/module.html#oracledb.connect

27 Business / Technical Brief / Extreme Oracle Database Connection Scalability with Database Resident Connection Pooling (DRCP) /

 Version 3.2

 Copyright © 2025, Oracle and/or its affiliates / Public

Setting Connection Class and Purity attributes

This user-chosen name provides some partitioning of DRCP session memory. So, reuse is limited to similar

applications. It provides maximum pool sharing if multiple application processes are started.

To create an application connection pool requesting DRCP servers using a connection class name (cclass attribute)

and get a connection:

pool = oracledb.create_pool(user="hr", password=userpwd,

 dsn="dbhost.example.com/orclpdb:pooled",

 min=2, max=5, increment=1,

 cclass="MYAPP")

connection = pool.acquire()

The purity of all the connections in the pool will be set to SELF (PURITY_SELF value in python-oracledb) by default,

which is also the recommended best practice.

The python-oracledb connection pool size does not need to match the DRCP pool size. The DRCP pool size

determines the limit on overall execution parallelism.

Connection class names can also be passed to the acquire() function:

connection = pool.acquire(cclass="OTHERAPP")

To change the pool connection purity to NEW, set the purity attribute to PURITY_NEW with the acquire() function.

connection = pool.acquire(cclass="MYAPP", purity=oracledb.PURITY_NEW)

You can use this connection object to run any database transactions.

with connection.cursor() as cursor:

 print("Performing query using DRCP...")

 for row in cursor.execute("select sysdate from dual"):

 print(row)

This code snippet will print the current system date of the database host.

If the cclass parameter and SELF purity are not set, then the pooled server sessions will not be reused optimally,

and the DRCP statistic views may record large values for NUM_MISSES.

DRCP allows the session memory of the connection to be reused or cleaned every time a connection is acquired

from the pool. In pool or connection creation, the purity parameter value can be PURITY_NEW, PURITY_SELF,

or PURITY_DEFAULT. By default, python-oracledb pooled connections use PURITY_SELF, and standalone

connections use PURITY_NEW.

Setting Connection Class and Purity in the Connection String

For the python-oracledb Thin mode, you can specify the connection class and purity in the Easy Connect string

for Oracle Databases from version 21c onwards. This removes the need to modify an existing application when

you want to use DRCP:

dsn = "localhost/orclpdb:pooled?pool_connection_class=MYAPP&pool_purity=self"

https://python-oracledb.readthedocs.io/en/latest/api_manual/connection_pool.html#ConnectionPool.acquire

28 Business / Technical Brief / Extreme Oracle Database Connection Scalability with Database Resident Connection Pooling (DRCP) /

 Version 3.2

 Copyright © 2025, Oracle and/or its affiliates / Public

DRCP with Node.js

To use DRCP in node-oracledb, the Node.js driver for Oracle Database:

The oracledb.createPool() or oracledb.getConnection()'s property connectString (or its alias connectionString) must

specify to use a pooled server, either by the Easy Connect syntax like myhost/sales:POOLED, or by using

a tnsnames.ora alias for a Network Connect Descriptor string that contains (SERVER=POOLED).

For efficiency, it is recommended that DRCP connections be used with node-oracledb's local connection pool.

Example:

Easy Connect string: dbhost.us.oracle.com:2222/dbsvc.company.com:POOLED

or

tnsnames.ora:

customerpool = (DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=dbhost.example.com)

(PORT=1521))(CONNECT_DATA=(SERVICE_NAME=CUSTOMER)(SERVER=POOLED)))

When you are using node-oracledb's local connection pool, the following code snippets will work:

Easy Connect String pointing to DRCP

const oracledb = require("oracledb");

pool = await oracledb.createPool({

 user: "scott",

 password: "tiger",

 connectString: "dbhost.us.oracle.com:2222/dbsvc.company.com:POOLED",

 poolMax: 1,

 poolMin: 1,

 poolPingInterval: 0,

});

connection = await pool.getConnection();

or

tnsnames.ora alias pointing to DRCP

const oracledb = require('oracledb');

pool = await oracledb.createPool({

user: "scott", password: "tiger", connectString: "customerpool", poolMax: 1,

poolMin: 1, poolPingInterval: 0 });

connection = await pool.getConnection();

For standalone connections, the following code snippets will work:

Easy Connect String pointing to DRCP

const connection = await oracledb.getConnection({

https://node-oracledb.readthedocs.io/en/latest/user_guide/connection_handling.html#database-resident-connection-pooling-drcp
http://oracle.github.io/node-oracledb/doc/api.html#easyconnect
http://oracle.github.io/node-oracledb/doc/api.html#tnsnames
http://oracle.github.io/node-oracledb/doc/api.html#poolclass

29 Business / Technical Brief / Extreme Oracle Database Connection Scalability with Database Resident Connection Pooling (DRCP) /

 Version 3.2

 Copyright © 2025, Oracle and/or its affiliates / Public

user: "scott",

password: "tiger",

connectString: "dbhost.us.oracle.com:2222/dbsvc.company.com:POOLED"

 });

or

tnsnames.ora alias pointing to DRCP

const connection = await oracledb.getConnection({

user: "scott",

password: "tiger",

connectString: "customerpool"

 });

Note that all the above code snippets should be written inside an Async function. It is recommended to embed all

of these code snippets in a try-catch-finally block.

You can use this connection object to run any database transactions.

console.log("System Date:");

result = await connection.execute(

 `SELECT sysdate

 FROM dual`

);

let ts = result.rows[0][0];

console.log(ts);

if (connection) await connection.close();

This program will print the current system date of the database host and then close the connection.

Setting Connection Class and Purity

Node-oracledb provides the connectionClass attribute to set a connection class name.

oracledb.connectionClass = "NodePool";

The 'Purity' value is always SELF for DRCP connections with node-oracledb. This allows the reuse of both pooled

server process and session memory, giving maximum benefit from DRCP. There is no separate parameter or

function for setting the purity for connections in node-oracledb.

The connection class and purity values can also be set using the Easy Connect syntax shown in the DRCP with

Python sub-section.

30 Business / Technical Brief / Extreme Oracle Database Connection Scalability with Database Resident Connection Pooling (DRCP) /

 Version 3.2

 Copyright © 2025, Oracle and/or its affiliates / Public

DRCP with JDBC

Oracle JDBC drivers support DRCP.

The DRCP implementation creates a pool on the server side, which is shared across multiple client pools. JDBC

applications use Universal Connection Pool (UCP) for application connection pooling. UCP significantly lowers

memory consumption (because of the reduced number of server processes) and increases the scalability of the

database layer.

Java applications must use an application connection pool such as UCP for JDBC or a third-party Java connection

pool to track check-in and checkout operations of the server-side connections. The benefit of using UCP over a

third-party client pool is that UCP transparently takes care of attaching and detaching server connections.

If UCP is not used for any reason, the connections must use attachServerConnection() and

detachServerConnection() functions to attach and detach connections to the connection broker, respectively.

To enable DRCP on the client side, you must do the following:

• Pass a non-NULL, non-empty string value to the DRCP connection class property

 oracle.jdbc.DRCPConnectionClass

• Pass (SERVER=POOLED) in the Network Connect Descriptor string.

(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=<hostname>)(PORT=<port>))(CONNECT_DATA=

(SERVICE_NAME=<service name>)(SERVER=POOLED)))

You can also specify (SERVER=POOLED) in the short URL form as follows:

jdbc:oracle:thin:@//<host>:<port>/<service_name>[:POOLED]

For example:

jdbc:oracle:thin:@//localhost:5221/orclpdb:POOLED

By setting the same DRCP Connection class name for all the pooled server processes using the connection property

oracle.jdbc.DRCPConnectionClass, you can share pooled server processes on the server across multiple connection

pools.

In DRCP, you can also apply a tag to a given connection and easily retrieve that tagged connection later.

Enabling DRCP on the client side using Universal Connection Pool (UCP)

The PoolDataSource object from the oracle.ucp.jdbc package is used to create the UCP.

import java.sql.Connection;

import java.sql.Statement;

import java.sql.ResultSet;

import java.sql.SQLException;

import java.util.Properties;

import java.util.Scanner;

import oracle.ucp.jdbc.PoolDataSource;

import oracle.ucp.jdbc.PoolDataSourceFactory;

31 Business / Technical Brief / Extreme Oracle Database Connection Scalability with Database Resident Connection Pooling (DRCP) /

 Version 3.2

 Copyright © 2025, Oracle and/or its affiliates / Public

public class DRCPSamplewithUCP{

final static String url = "jdbc:oracle:thin:@//localhost:1522/orclpdb:POOLED";

static public void main(String args[]) throws SQLException {

 PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();

 pds.setConnectionFactoryClassName("oracle.jdbc.pool.OracleDataSource");

 Scanner sc = new Scanner(System.in);

 // Set DataSource Properties – Get DB credentials as input

 System.out.print("Enter the DB User name: ");

 String dbUser = sc.nextLine();

 System.out.print("Enter the DB password: ");

 String dbPassword = sc.nextLine();

 System.out.println ("Connecting to " + url);

 pds.setUser(dbUser);

 pds.setPassword(dbPassword);

 pds.setURL(url);

 //Set UCP Properties

 pds.setInitialPoolSize(1);

 pds.setMinPoolSize(4);

 pds.setMaxPoolSize(20);

 // Get the Database Connection from Universal Connection Pool.

 try (Connection conn = pds.getConnection()) {

 System.out.println("\nConnection obtained from UniversalConnectionPool");

 // Perform a database operation

 doSQLWork(conn);

 System.out.println("Connection returned to the UniversalConnectionPool");

 }

 }

 // Displays system date (sysdate).

 public static void doSQLWork(Connection connection) throws SQLException {

 // Statement and ResultSet are auto-closable by this syntax

32 Business / Technical Brief / Extreme Oracle Database Connection Scalability with Database Resident Connection Pooling (DRCP) /

 Version 3.2

 Copyright © 2025, Oracle and/or its affiliates / Public

 try (Statement statement = connection.createStatement()) {

 try (ResultSet resultSet = statement

 .executeQuery("select SYSDATE from DUAL")) {

 while (resultSet.next())

 System.out.print("Today's date is " + resultSet.getString(1) + " ");

 }

 }

 System.out.println("\n");

 }

}

This code prints the system date using a UCP JDBC connection via DRCP. In this example, we used the Easy Connect

Syntax.

JDBC connect string also supports the TNS URL Format

jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(PROTOCOL=<protocol>)

(HOST=<dbhost>)(PORT=<dbport>)) (CONNECT_DATA=(SERVICE_NAME=<service-name>))

Setting Connection Class and Purity attributes

The connection class is set through the oracle.jdbc.DRCPConnectionClass property. If UCP is used, then the

connection class defaults to the UCP pool's name if one is set and otherwise to the randomly generated one.

You can set the connection class name through a Java Properties object and add it to the UCP's Connection

properties.

Properties prop = new Properties();

prop.put("oracle.jdbc.DRCPConnectionClass", "MyConClass");

pds.setConnectionProperties(prop);

The DRCP connection purity is set via the oracle.jdbc.DRCPConnectionPurity property (default: SELF) if required.

prop.put("oracle.jdbc.DRCPConnectionPurity", "NEW");

DRCP with Oracle Call Interface (OCI)

Oracle Call Interface (OCI) libraries provide APIs in the C language to access and work with Oracle Database. For

DRCP, The OCI session pool APIs OCISessionPoolCreate(), OCISessionGet(), and OCISessionRelease() must be used

for optimal performance.

An OCI application initializes the environment for the OCI session pool by invoking OCISessionPoolCreate() with

sessMin, sessMax, and sessIncr parameters set appropriately for the application and DRCP pool settings. In single-

threaded applications using DRCP, set sessMin to 0 or 1 and sessMax to 1. In multi-threaded applications using

https://docs.oracle.com/en/database/oracle/oracle-database/23/jajdb/oracle/jdbc/OracleConnection.html#CONNECTION_PROPERTY_CONNECTION_PURITY
https://www.oracle.com/pls/topic/lookup?ctx=dblatest&id=GUID-1E929CFB-9D96-4E8E-9F24-904AD539E555
https://www.oracle.com/pls/topic/lookup?ctx=dblatest&id=GUID-890DFBC4-718B-4339-A0EA-6226A25B8241
https://www.oracle.com/pls/topic/lookup?ctx=dblatest&id=GUID-DAAECC99-A432-48B5-AC33-0868C2FE762D

33 Business / Technical Brief / Extreme Oracle Database Connection Scalability with Database Resident Connection Pooling (DRCP) /

 Version 3.2

 Copyright © 2025, Oracle and/or its affiliates / Public

DRCP and application-side connection pooling, set the sessMin and sessMax (1 or higher) parameters based on the

threading requirements.

To get a session from the OCI session pool for DRCP, an OCI application invokes OCISessionGet(), specifying

OCI_SESSGET_SPOOL for the mode parameter. To release a session back to the OCI session pool for DRCP, the

application invokes OCISessionRelease().

The OCI session pool can transparently cache connections to the connection broker to improve performance. An

OCI application can reuse the sessions of a similar state by setting the connection class in the OCIAttrSet() function

with the OCI_ATTR_CONNECTION_CLASS attribute using the OCIAuthInfo handle before invoking OCISessionGet().

Session purity specifies whether an OCI application can reuse a pooled session (OCI_SESSGET_PURITY_SELF) or

use a new session (OCI_SESSGET_PURITY_NEW).

OCISessionGet() can take in a session purity setting value of OCI_SESSGET_PURITY_NEW or

OCI_SESSGET_PURITY_SELF. Alternatively, the application can set OCI_ATTR_PURITY_NEW or

OCI_ATTR_PURITY_SELF on the OCIAuthInfo handle before calling OCISessionGet(). Both these methods are

equivalent. The default purity value for the OCI session pool is SELF, and a standalone connection is NEW.

Session Purity and Connection Class behavior of OCI functions with DRCP

The following table indicates the behavior of session purity and connection class attributes with applications using

Oracle Call Interface (OCI) libraries:

APPLICATION

PURITY

CONNECT

STRING

PURITY

APPLICATION

SESSION RELEASE

MODE

SESSION RELEASE

BEHAVIOR

SESSION GET

BEHAVIOR

Unset or NEW

or SELF

NEW Default/

OCI_SESSRLS_DROPSESS

(OCI attribute to drop the

session)

The session will be

dropped

New session

NEW SELF Default The session will be

retained
If a matching session

is found, you will get

an existing session;

else, a new session

NEW SELF OCI_SESSRLS_DROPSESS The session will be

retained
If a matching session

is found, you will get

an existing session;

else, a new session

SELF SELF Default The session will be

retained
If a matching session

is found, you will get

an existing session;

else, a new session

SELF SELF OCI_SESSRLS_DROPSESS The session will be

dropped
If a matching session

is found, you will get

an existing session;

else, a new session

Table 8 – Session Purity and Connection Class Behavior of OCI applications with DRCP

34 Business / Technical Brief / Extreme Oracle Database Connection Scalability with Database Resident Connection Pooling (DRCP) /

 Version 3.2

 Copyright © 2025, Oracle and/or its affiliates / Public

The default purity is NEW for non-session pool applications and SELF for session pool applications.

When POOL_PURITY=SELF is in the connect string, session reuse is desired. Session having NEW purity and

specifying OCI_SESSRLS_DROPSESS in OCISessionRelease() mandates to drop the session, preventing session

reuse.

For applications that specify POOL_PURITY=SELF through the connect string and session having NEW purity and

OCI_SESSRLS_DROPSESS in OCISessionRelease(), it will be perceived that the session reuse capability is of higher

importance. So, OCI_SESSRLS_DROPSESS will be ignored by the server, and sessions will not be dropped.

An application that wants to give precedence to OCI_SESSRLS_DROPSESS in OCISessionRelease() rather than

session reuse should not use POOL_PURITY=SELF in the connect string.

Setting the Connection Class and Session Purity attributes for a new session

The following code snippet shows how a connection pooling OCI application sets up a new DRCP session.

#include <oci.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

OraText userName[129];

OraText userPassword[129];

/* Request a "pooled" connection */

const OraText connectString[] = "localhost:1522/orclpdb.domain.com:pooled";

/* DRCP connection class name */

const OraText connectionClassName[] = "OCIConnectionPool";

int main(int argc, char** argv)

{

 OCIEnv *envhp = NULL;

 OCIError *errhp = NULL;

 OCIAuthInfo *authInfop = NULL;

 OCISvcCtx *svchp = NULL;

 OraText *poolName = NULL;

 ub4 poolNameLen = 0;

 OCISPool *spoolhp = NULL;

 int rc;

 /* Add error handling and other variables as required */

 //Initialize the DB Context

 rc = OCIEnvNlsCreate(&envhp, OCI_DEFAULT, 0, NULL, NULL, NULL, 0, NULL, 0, 0);

 /* Add error handling code for consistency below ... */

 //Initialize all the handles (error, authentication & session pool)

 rc = OCIHandleAlloc(envhp, (void **)&errhp, OCI_HTYPE_ERROR, 0, NULL);

 /* Add any error handling code below ... */

35 Business / Technical Brief / Extreme Oracle Database Connection Scalability with Database Resident Connection Pooling (DRCP) /

 Version 3.2

 Copyright © 2025, Oracle and/or its affiliates / Public

 rc = OCIHandleAlloc(envhp, (void **)&authInfop, OCI_HTYPE_AUTHINFO, 0, NULL);

 /* Add any error handling code below ... */

 rc = OCIHandleAlloc(envhp, (void **)&spoolhp, OCI_HTYPE_SPOOL, 0, NULL);

 /* Add any error handling code below ... */

 // Get the DB credentials through user input (recommended)

 printf("Enter the DB username: ");

 scanf("%s", userName);

 printf("Enter the DB password: ");

 scanf("%s", userPassword);

 //Create the Session Pool

 rc = OCISessionPoolCreate(envhp, errhp, spoolhp, &poolName, &poolNameLen,

 connectString, strlen((char *)connectString), 0, UB4MAXVAL, 1,

 (OraText *)userName, strlen((char *)userName), (OraText *)userPassword,

 strlen((char *)userPassword), OCI_SPC_NO_RLB | OCI_SPC_HOMOGENEOUS);

// OCIAttrSet method for setting the Connection Class name

 OCIAttrSet(authInfop, OCI_HTYPE_AUTHINFO, (dvoid *)connectionClassName, (ub4)

 strlen((char *)connectionClassName), OCI_ATTR_CONNECTION_CLASS, errhp);

 // OCISessionGet mode method

 OCISessionGet (envhp, errhp, &svchp, authInfop, poolName, poolNameLen, NULL, 0,

NULL, NULL, NULL, OCI_SESSGET_SPOOL);

/* Add the DB query code below... */

 // Destroy the Session Pool and Free the handles

 OCISessionPoolDestroy(spoolhp, errhp, OCI_DEFAULT);

 OCIHandleFree((dvoid *)spoolhp, OCI_HTYPE_SPOOL);

 OCIHandleFree((dvoid *)authInfop, OCI_HTYPE_AUTHINFO);

 OCIHandleFree((dvoid *)errhp, OCI_HTYPE_ERROR);

 OCIHandleFree((dvoid *)envhp, OCI_HTYPE_ENV);

}

To set the purity value for the connections, use OCIAttrSet() function:

 ub4 purity = OCI_ATTR_PURITY_NEW;

 OCIAttrSet(authInfop, OCI_HTYPE_AUTHINFO, &purity, (ub4)sizeof(purity),

 OCI_ATTR_PURITY, errhp);

36 Business / Technical Brief / Extreme Oracle Database Connection Scalability with Database Resident Connection Pooling (DRCP) /

 Version 3.2

 Copyright © 2025, Oracle and/or its affiliates / Public

DRCP with Oracle Call C++ Interface (OCCI)

Oracle Call C++ Interface (OCCI) provides C++ APIs to access and work with Oracle Database. Now, OCCI libraries

are built on top of Oracle Call Interface (OCI) libraries. So, the underlying behavior with respect to DRCP,

connection string and application pools remain the same as OCI.

For DRCP, The OCCI session pool method, createStatelessConnectionPool, of the OCCI Environment handle class

must be used for optimal performance. This method creates a StatelessConnectionPool object.

A typical OCCI application initializes the environment handle for the session pool with the createEnvironment

static method. The environment handle calls its createStatelessConnectionPool method to create a

StatelessConnectionPool object with specific pool attributes like maxConn, minConn and incrConn and the

poolType (HOMEOGENEOUS or HETEROGENEOUS). HETEROGENEOUS is the default pool type in OCCI.

To get a new connection from the StatelessConnectionPool object, the application calls the getConnection method

with connection class and purity parameters (use Connection::SELF) passed in to acquire a new connection object

with the required DRCP settings. The connection object can be used to execute database statements using

statement objects and resultsets.

Finally, the application will need to release the connection back to the pool (releaseConnection), then close the

pool (terminateStatelessConnectionPool) and the environment handle (terminateEnvironment).

The following code snippet shows how a connection pooling OCCI application sets up a DRCP session as described

above:

#include <iostream>

#include <occi.h>

using namespace oracle::occi;

using namespace std;

#include <stdlib.h>

main(int argc, char *argv[])

{

 int i=0;

 if (argc !=2) {cout << "Usage: con <ntimes>\n"; exit(1);}

 Environment *env = Environment::createEnvironment();

 try

 {

 StatelessConnectionPool *scp = env->createStatelessConnectionPool(

 "db_user","db_pwd"," localhost:1522/orclpdb.domain.com:pooled",

 10,0,1,StatelessConnectionPool::HOMOGENEOUS);

 Connection *conn;

 Statement *stmt;

 ResultSet *rs;

https://www.oracle.com/pls/topic/lookup?ctx=dblatest&id=GUID-0CC9175A-255B-49ED-A23B-5BE924603BE7
https://www.oracle.com/pls/topic/lookup?ctx=dblatest&id=GUID-C0591485-F818-4AC0-9875-ED245BDABCA6
https://www.oracle.com/pls/topic/lookup?ctx=dblatest&id=GUID-FBDA4841-F927-4B27-B35F-D94DB266198B
https://www.oracle.com/pls/topic/lookup?ctx=dblatest&id=GUID-C0591485-F818-4AC0-9875-ED245BDABCA6
https://www.oracle.com/pls/topic/lookup?ctx=dblatest&id=GUID-7B51A18D-4F2E-4049-92D5-31B5ED8204A0
https://www.oracle.com/pls/topic/lookup?ctx=dblatest&id=GUID-E2C3EF92-6DDA-4C2F-8F93-A344AF875E3B
https://www.oracle.com/pls/topic/lookup?ctx=dblatest&id=GUID-995DD530-7CE2-4E10-BFE8-405F2A233CF8
https://www.oracle.com/pls/topic/lookup?ctx=dblatest&id=GUID-8334BA8B-E696-4694-9B5E-6833F7939301

37 Business / Technical Brief / Extreme Oracle Database Connection Scalability with Database Resident Connection Pooling (DRCP) /

 Version 3.2

 Copyright © 2025, Oracle and/or its affiliates / Public

 for (i=1;i<=atoi(argv[1]);i++) // This is typically a thread function

 {

 string my_tname;

 // set connection class and purity parameters for DRCP

 // "ABCAPP" is the connection class here

 conn = scp->getConnection("ABCAPP",Connection::SELF);

 // execute DB statements

 stmt = conn->createStatement("select tname from tab where rownum < 5");

 rs = stmt->executeQuery();

 while (rs->next())

 {

 // print the row data

 my_tname = rs->getString(1);

 cout << my_tname << endl;

 }

 stmt->closeResultSet(rs);

 conn->terminateStatement(stmt);

 // release connection back to the connection pool

 scp->releaseConnection(conn);

 } // end loop

 // Close and remove the connection pool

 env->terminateStatelessConnectionPool(scp);

 }

 catch (SQLException e)

 {

 cout << e.what() << endl;

 }

 Environment::terminateEnvironment(env);

};

38 Business / Technical Brief / Extreme Oracle Database Connection Scalability with Database Resident Connection Pooling (DRCP) /

 Version 3.2

 Copyright © 2025, Oracle and/or its affiliates / Public

DRCP with ODP.NET

ODP.NET5 has three driver types: Core, Managed, and Unmanaged. Unmanaged ODP.NET uses OCI (Oracle Call

Interface) libraries and runs on .NET framework. Managed and Core ODP.NET have 100% managed code that

directly works with Oracle Database and runs on .NET framework and .NET Core, respectively.

Here is a sample code that uses Managed/Core ODP.NET driver code:

// This application uses the following network connect descriptor:

// oracle =

(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=<hostname>)(PORT=<port>))(CONNECT_DATA=

(SERVICE_NAME=<service name>)(SERVER=POOLED)))

using System;

using Oracle.ManagedDataAccess.Client;

class DRCP

{

 static void Main()

 {

 string dbconfig = "user id=hr;password=hr;data source=oracle";

 OracleConnection con = new OracleConnection(dbconfig);

 con.DRCPConnectionClass = "GroupA";

 con.Open();

 con.Dispose();

 }

}

The database configuration stored in the dbconfig variable is used to make a database connection in ODP.NET.

The dbconfig variable includes a username (user attribute), a password (password attribute) and a Network

Connect Descriptor string (data source attribute).

We can also use the Easy Connect Syntax for specifying the data source attribute (with DRCP enabled) as

data source=//<hostname>:<port>/<service_name>:pooled

A valid database configuration (dbconfig) for a DRCP connection with Easy Connect Syntax would be

"user id=hr;password=hr;data source=//localhost:1522/orclpdb.us.acme.com:pooled"

Enabling DRCP with Unmanaged ODP.NET requires some additional configuration as follows:

 Set the ODP.NET configuration file setting, CPVersion to 2.0 or,

 If the CPVersion configuration option is not set, have (SERVER=POOLED) in the Network Connect

Descriptor string used by the application or ':pooled' in the Easy Connect String.

5 Oracle Data Provider for .NET – Oracle’s Implementation of ADO .NET data provider for Oracle Database

https://www.oracle.com/pls/topic/lookup?ctx=dblatest&id=GUID-7C0D3D86-BFD6-4CA2-B4DF-61EB83FDE6B0
https://www.oracle.com/pls/topic/lookup?ctx=dblatest&id=GUID-A9EF5624-1828-46DD-84D1-CC5F40BFB6F5

39 Business / Technical Brief / Extreme Oracle Database Connection Scalability with Database Resident Connection Pooling (DRCP) /

 Version 3.2

 Copyright © 2025, Oracle and/or its affiliates / Public

Setting ODP.NET Connection Class and Session Purity properties

For DRCP connections to be shared across multiple ODP.NET connection pools, set

the OracleConnection.DRCPConnectionClass property to a string value before opening the ODP.NET connection.

This property will set the connection class for that connection. ODP.NET will initially try to obtain an idle

connection with the same DRCP connection class property value. If it does not find one, it will establish a new

connection.

For example, The following line in the earlier ODP.NET code sample sets the connection class.

con.DRCPConnectionClass = "GroupA";

This property can be used to set and get the connection class names. Its value is unique to each application

connection pool. The default value of this property is null. The character limit is 1024 minus the number of

characters in the user id. This property must be set before opening the connection if used.

The default purity value in ODP.NET is SELF (Pooled in ODP.NET parlance) and is the recommended value.

To set the DRCP Purity attribute to NEW, use the OracleConnection.DRCPPurity property in the earlier ODP.NET

code sample as follows:

con.DRCPPurity = = OracleConnection.OracleDRCPPurity.New;

DRCP with PHP

The OCI8 1.4 extension for PHP can be used with Oracle client libraries version 9.2 and higher. However, DRCP

functionality is only available when PHP is linked with Oracle 11g client libraries and connects to Oracle Database

11g.

Once installed, use PHP's phpinfo() function to verify that OCI8 has been loaded.

Before using DRCP, the new php.ini parameter oci8.connection_class should be set to specify the connection class

used by all the requests for pooled servers by the PHP application.

oci8.connection_class = MYPHPAPP

The parameter can be set in php.ini, .htaccess, or httpd.conf files. It can also be set and retrieved programmatically

using the PHP functions ini_set() and ini_get().

PHP Application Deployment for DRCP

PHP applications must specify the server type POOLED in the connect string to use DRCP. Using Oracle's Easy

Connect syntax, the PHP call to connect to the sales database on myhost would look like this:

$c = oci_pconnect('myuser', 'mypassword', 'myhost/sales:pooled');

If PHP uses an Oracle Network alias that looks like this:

$c = oci_pconnect('myuser', 'mypassword', 'salespool');

Then, only the Oracle network configuration file tnsnames.ora needs to be modified:

salespool=(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)

(HOST=myhost.domain.com)(PORT=1521))

https://www.oracle.com/pls/topic/lookup?ctx=dblatest&id=GUID-7AF8E7A9-4F0F-4639-AED0-1E76135D8E22
https://www.oracle.com/pls/topic/lookup?ctx=dblatest&id=GUID-E486AA85-D3B3-4483-8E34-E500E0B925BF

40 Business / Technical Brief / Extreme Oracle Database Connection Scalability with Database Resident Connection Pooling (DRCP) /

 Version 3.2

 Copyright © 2025, Oracle and/or its affiliates / Public

(CONNECT_DATA= (SERVICE_NAME=sales)(SERVER=POOLED)))

It is recommended that oci_close($c) is called immediately after completing the database work without leaving it to

the implicit connection closure that happens at the end of the script.

Note: oci_pconnect() uses SELF purity, while the other connect functions of PHP, oci_connect(), and

oci_new_connect() use NEW purity.

DRCP FAQs

Q1: How do I check and tune the number of connection brokers?

The number of connection brokers can be checked and tuned using the following SQL statements:

SQL> select num_cbrok from DBA_CPOOL_INFO;

 NUM_CBROK

 1

SQL> execute dbms_connection_pool.alter_param(null, 'NUM_CBROK', '2')

PL/SQL procedure successfully completed.

SQL> select num_cbrok from DBA_CPOOL_INFO;

 NUM_CBROK

 2

Q2: If there are multiple connection brokers, is there any way I can check the connection distribution load

across the connection broker processes?

As far as the connection distribution load goes, you can check it in v$cpool_conn_info as below:

SQL> select cmon_addr, count(*) from v$cpool_conn_info group by cmon_addr;

CMON_ADDR COUNT(*)

---------------- ----------

000000014BE63E40 500

000000014BE64198 500

In the above example, 500 client connections are made to each connection broker process. A total of 1000

connections are made to DRCP.

Q3: Can I stop the DRCP pool when there are connections from the application to the connection brokers?

Oracle Database 23ai introduced a DRAINTIME parameter to dbms_connection_pool.stop_pool(), which can

configured immediately abort all the pooled servers and stop the pool.

Prior to this release, you cannot stop the pool when there are connections to the brokers from the clients.

41 Business / Technical Brief / Extreme Oracle Database Connection Scalability with Database Resident Connection Pooling (DRCP) /

 Version 3.2

 Copyright © 2025, Oracle and/or its affiliates / Public

Q4: Should I restart the DRCP pool to change the number of connection brokers?

You do not need to restart the pool if you are increasing the number of brokers. If you are reducing them, wait for

the clients/applications to disconnect.

 The connection brokers manage the connection checkin/checkouts, and if there are more brokers, they share the

load and do not multiply the CPU usage. A connection broker process only takes the CPU when the clients

connect or actively request and release the pooled servers.

Q5: What is the limit for the number of connection brokers? How many connection requests can it cater at

the same time?

There is no hard-coded limit for the number of DRCP connection brokers, as it entirely depends on the workload.

Oracle's Automatic Workload Repository (AWR) reports can provide insights into the load on the connection

brokers. This can indicate if the number of connection broker processes needs to be increased.

Q6: Does DRCP support TCPS connections?

No, it does not support TCPS connections at the time of publishing this document.

Conclusion

DRCP allows applications to use a connection pool in the database shared across multiple application servers and

mid-tier deployments. These applications must actively wrap database activity with calls to get or release sessions

to use DRCP effectively. Such applications can establish connections quickly and use minimal database resources

for a large number of connections.

Oracle's database proxy solution, Connection Manager in Traffic Director Mode (CMAN-TDM), has its own pooling

feature – Proxy Resident Connection Pooling (PRCP), which works similarly to DRCP. If an application works well

with DRCP, it will work just as well with PRCP. The only change necessary (on the application side) for PRCP is that

the tnsnames.ora alias or Easy Connect string should point to the PRCP server instead of the database/DRCP server.

To sum it all up, the benefits of DRCP are as follows:

• DRCP allows resources to be shared among multiple client applications and application servers

• DRCP improves the scalability of databases and applications by reducing resource usage on the database host

More Information

For more information, please refer to the following links and documents:

 Understanding DRCP, Oracle Database Administrator's Guide

 Using Database Resident Connection Pool, Oracle Database Developer Guide

 Database Resident Connection Pooling, Oracle Database Concepts

 Database Resident Connection Pooling, Oracle Call Interface Programmer's Guide

 Database Resident Connection Pooling, Oracle Data Provider for .NET Developer's Guide

 Database Resident Connection Pooling, Oracle JDBC Developer's Guide

 New DRCP Parameters, Oracle New Features Guide

 CMAN-TDM – An Oracle Database connection proxy for scalable and highly available applications,

CMAN-TDM Technical Brief

 Oracle Database Easy Connect Plus, A Technical Brief on Easy Connect and Easy Connect Plus

https://download.oracle.com/ocomdocs/global/CMAN_TDM_Oracle_DB_Connection_Proxy_for_scalable_apps.pdf
https://www.oracle.com/pls/topic/lookup?ctx=dblatest&id=GUID-82FF6896-F57E-41CF-89F7-755F3BC9C924
https://www.oracle.com/pls/topic/lookup?ctx=dblatest&id=GUID-015CA8C1-2386-4626-855D-CC546DDC1086
https://www.oracle.com/pls/topic/lookup?ctx=dblatest&id=GUID-531EEE8A-B00A-4C03-A2ED-D45D92B3F797
https://www.oracle.com/pls/topic/lookup?ctx=dblatest&id=GUID-1E260CD3-2EF7-49FF-97FC-041C2EF60381
https://www.oracle.com/pls/topic/lookup?ctx=dblatest&id=GUID-757A465B-4025-4550-8F13-EA92FE0C1B5A
https://www.oracle.com/pls/topic/lookup?ctx=dblatest&id=GUID-D4F9DBD7-7DC6-4233-B831-933809173E39
https://docs.oracle.com/en/database/oracle/oracle-database/21/nfcon/management-solutions.html
https://download.oracle.com/ocomdocs/global/CMAN_TDM_Oracle_DB_Connection_Proxy_for_scalable_apps.pdf
https://download.oracle.com/ocomdocs/global/Oracle-Net-Easy-Connect-Plus.pdf

42 Business / Technical Brief / Extreme Oracle Database Connection Scalability with Database Resident Connection Pooling (DRCP) /

 Version 3.2

 Copyright © 2025, Oracle and/or its affiliates / Public

 Application Programming using Pooling and Caching, A Technical Brief on Pooling and Caching of Oracle

Database resources

 GOL tracks ticket purchases in under 60 seconds using Oracle Cloud Infrastructure, Oracle Customer

References

 Multi-pool DRCP Blog, Multi-pool Database Resident Connection Pooling (DRCP) in Oracle Database 23ai

 Implicit Connection Blog, Implicit Connection Pooling when connections overload your database

Connect with us

Call +1.800.ORACLE1 or visit oracle.com. Outside North America, find your local office at: oracle.com/contact.

 blogs.oracle.com facebook.com/oracle twitter.com/oracle

Copyright © 2025, Oracle and/or its affiliates. All rights reserved. This document is

provided for information purposes only, and the contents hereof are subject to

change without notice. This document is not warranted to be error-free, nor subject

to any other warranties or conditions, whether expressed orally or implied in law,

including implied warranties and conditions of merchantability or fitness for a

particular purpose. We specifically disclaim any liability with respect to this

document, and no contractual obligations are formed either directly or indirectly by

this document. This document may not be reproduced or transmitted in any form or

by any means, electronic or mechanical, for any purpose, without our prior written

permission.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may

be trademarks of their respective owners.

https://download.oracle.com/ocomdocs/global/Application_Programming_Using_Pooling.pdf
https://download.oracle.com/ocomdocs/global/Application_Programming_Using_Pooling.pdf
https://www.oracle.com/customers/gol-linhas-aereas/
https://www.oracle.com/customers/gol-linhas-aereas/
https://medium.com/oracledevs/multi-pool-database-resident-connection-pooling-drcp-in-oracle-database-23c-39d86ccd05ce
https://medium.com/oracledevs/implicit-connection-pooling-when-connections-overload-your-database-3fe7c59acae2
https://blogs.oracle.com/
https://www.facebook.com/Oracle/
https://twitter.com/oracle

