
Oracle Solaris 11 Administrator's Cheat Sheet for DTrace

1

Oracle Solaris 11 Cheat Sheet
DTrace

What is DTrace?

Oracle Solaris DTrace is a comprehensive, advanced tracing tool for troubleshooting
systematic problems in real time. Administrators, integrators and developers can use
DTrace to dynamically and safely observe live production systems for performance issues,
including both applications and the operating system itself. DTrace allows you to explore
your system to understand how it works, track down problems across many layers of
software, and locate the cause of any aberrant behavior. Whether it’s at a high level global
overview like memory consumption or CPU time, to much finer grained information like what
specific function calls are being made, DTrace gives the operational insights that have long
been missing in the data center.

Understanding DTrace providers and probes

Oracle Solaris 11 is littered with many different points of instrumentation – places of interest
to which you can bind actions so you can understand what is going on in your system at any
point in time. These ‘probes’, or programmatical sensors, are at the heart of DTrace and as
they fire, data can be gathered and reported back to the user. DTrace probes are delivered
through a series of kernel modules called ‘providers’.

Common DTrace Providers Description
dtrace Start, end and error probes
syscall Entry and return probes for all system calls
fbt Entry and return probes for all kernel calls
profile Timer driven probes
proc Process creation and lifecycle probes
pid Entry and return probes for all user-level

processes
io Probes for all I/O related events
sdt/usdt Developer defined probes at arbitrary

locations/names within source code for kernel
and user-level processes

sched Probes for scheduling related events
lockstat Probes for locking behavior within the operating

system

DTrace Command Components

A typical DTrace command has several components:

• A 4-tuple identifier provider:module:function:name, where module is a kernel
module or application library, and function and name are the routines that are to be
instrumented. If any of these are left black, it is equivalent to a wildcard match. For
example, to fire all entry routines in the syscall provider we would use the
following:
 syscall:::entry

• A predicate, or relational expression, that determines whether any action should be
taken. For example, to check whether the process name matches bash we would use
the following:
 /execname == “bash”/

• An action for what should happen if the probe fires and the predicate is satisfied. For
example, we may create an array and count the number of times a function call has
been made we would use the following:
 { @array[probefunc] = count(); }

D Scripting Language

As DTrace command line examples become more complex, it may be necessary to construct
them using the D scripting language – an awk like script that can be run using the dtrace –s
command. D scripts can consist of multiple clauses that usually specify one or more probe
descriptions, and their associate predicates and actions.

#!/usr/sbin/dtrace –s

probe-description
/predicate/
{
action;
}

Did you know?

You can find out more information about the Oracle Solaris DTrace, including product
documentation, how to guides, and other resources on Oracle Technology Network:

http://www.oracle.com/technetwork/server-storage/solaris11/technologies/dtrace-1930301.html

Oracle Solaris 11 Administrator's Cheat Sheet for DTrace

2

DTrace Aggregations, Actions and Subroutines

DTrace provides several built-in aggregating functions to aggregate data rather than rely
on individual data points. Aggregations can be expressed using the following:

 @name[key] = aggfunc (args);

Common Aggregation
Functions

Description

count Number of times that the count function is called
sum The total value of the specified expressions
avg The average of the specified expressions
min The smallest value among the specified expressions
max The largest value among the specified expressions
lquantize A linear frequency distribution of values of the specified

expression, sized by a specific range
quantize A power-of-two frequency distribution of values of the

specified expression.
clear Clear values in an aggregation
trunc Truncate aggregation data to certain values

Actions enable DTrace to interact with the system outside – whether to record data or
perform destructive behavior (with required security privileges). Subroutines are used to
affect internal state such as string manipulation

Common Actions and
Subroutines

Description

trace Outputs the result of an expression to the buffer
printf Outputs the arguments to the buffer with a specified

format
printa Outputs the aggregation arguments to the buffer with a

specified format
stack Outputs kernel stack to the buffer
ustack Outputs the user-level stack to the buffer
stop Stops the process that fired the probe (destructive)
copyinstr Copies string from address referenced by pointer to the

buffer
strjoin Concatenates two strings
strlen Returns length of a string

DTrace Variables and Associative Arrays

DTrace specifies both scalar variables and associative arrays.

Variable scope can be global, thread local or clause local. Thread local variables allow
separate storage for each thread’s copy of that variable and can be expressed using the
following:

 self->varname = 123;

Clause local variables are only active for the duration of the clause lifecycle and can be
expressed using the following:

 this->varname = 123;

Associative arrays are used to represent collections of data elements that can be retrieved
by specifying a name called a ‘key’ and are expressed in the following form:

 name[key] = expression;

Common Built-in Variables Description
args[] The typed arguments to the current probe –

accessed as args[0], args[1], … but the type
corresponds to probe in question

psinfo_t *curpsinfo The process state of the process associated with the
current thread, as described by proc(4)

string execname The name that was passed to exec(2) to execute the
current process

pid_t pid The process ID of the current process
string probefunc The function name portion of the current probe’s

description
string probemod The module name portion of the current probe’s

description
string probename The name portion of the current probe’s description
string probeprov The provider name portion of the current probe’s

description
uint64_t timestamp The current value of a nanosecond timestamp

counter
unint64_t vtimestamp The current value of a nanosecond timestamp

counter that is virtualized to the amount of time that
the current thread has been running on CPU, minus
time spent in predicates and actions

Oracle Solaris 11 Administrator's Cheat Sheet for DTrace

3

Useful DTrace One Liners

Trace the creation of new processes and output their arguments:

 # dtrace -n 'proc:::exec-success { trace(curpsinfo->pr_psargs); }'

Trace files opened/created by process name:

 # dtrace -n 'syscall::openat*:entry { printf("%s %s",execname,copyinstr(arg1)); }'

Trace the number of system calls made by process name:

 # dtrace -n 'syscall:::entry { @num[execname] = count(); }'

Trace the process name every time a system call is made:
 # dtrace –n ‘syscall:::entry { trace(execname); }’

Trace the number of system calls made for each system call:
 # dtrace -n 'syscall:::entry { @num[probefunc] = count(); }'

Trace the number of system calls made by process id:
 # dtrace -n 'syscall:::entry { @num[pid,execname] = count(); }'

Trace lock times by process name:
 # dtrace -n 'lockstat:::adaptive-block { @time[execname] = sum(arg1); }'

Trace file I/O by process name (measured in blocks):
 # dtrace -n 'io:::start { printf("%d %s %d",pid,execname,args[0]->b_bcount); }'

Trace the writes in bytes by process name:
 # dtrace -n 'sysinfo:::writech { @bytes[execname] = sum(arg0); }'

The DTrace Toolkit

The DTrace Toolkit includes a number of pre-written scripts for common system tasks and has been included in Oracle
Solaris 11 by default. These can be found in /usr/dtrace/DTT and cover a variety of areas including file and disk I/O,
memory, CPU, and network.

Oracle Solaris 11 Administrator's Cheat Sheet for DTrace

4

Contact Us

For more information about Oracle Solaris 11, visit oracle.com/solaris or call +1.800.ORACLE1 to speak to an Oracle representative. Last updated: April 11, 2013.

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

This document is provided for information purposes only and the contents hereof are subject to change without notice. This document is not warranted to be error-free, nor subject to any other warranties or conditions, whether expressed orally or implied in law, including
implied warranties and conditions of merchantability or fitness for a particular purpose. We specifically disclaim any liability with respect to this document and no contractual obligations are formed either directly or indirectly by this document. This document may not be
reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, without our prior written permission.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. UNIX is a registered trademark licensed through X/Open Company, Ltd. 0410

