

Edition-Based Redefinition

Technical Deep Dive
An Oracle Database capability for online application upgrades

May, 2024, Version 4.0

Copyright © 2024, Oracle and/or its affiliates

Public

Purpose Statement

This document provides an overview of features for Edition-Based Redefinition. It is intended solely to help you

assess the business benefits of zero downtime application upgrades and to plan your I.T. projects.

Disclaimer

This document, in any form, software, or printed matter, contains proprietary information that is the exclusive

property of Oracle. Your access to and use of this confidential material is subject to the terms and conditions of your

Oracle software license and service agreement, which has been executed and with which you agree to comply. This

document and information contained herein may not be disclosed, copied, reproduced, or distributed to anyone

outside Oracle without the prior written consent of Oracle. This document is not part of your license agreement, nor

can it be incorporated into any contractual agreement with Oracle or its subsidiaries or affiliates.

This document is for informational purposes only and is intended solely to assist you in planning for the

implementation and upgrade of the product features described. Delivering any material, code, or functionality is not a

commitment and should not be relied upon in making purchasing decisions. The development, release, and timing of

any features or functionality described in this document remain at the sole discretion of Oracle.

Due to the nature of the product architecture, it may not be possible to safely include all features described in this

document without risking significant destabilization of the code.

TABLE OF CONTENTS

Purpose Statement 2

Disclaimer 2

Introduction 5

Edition-Based Redefinition 7

EBR Use Case 7

The Edition 8

Editionable object types, Editions-

enabled users, and Editioned

objects 9

Actual objects, Inherited objects,

and Name resolution 9

Retiring an edition 10

Dropping an edition 10

The EBR lifecycle 10

A minimal, complete EBR exercise

code example 12

Consequential actualization of

dependants and fine-grained

dependency tracking 14

Deliberate invalidation and

revalidation of editioned objects 15

The effect of DDL in an edition with

a child 15

Using DBMS_Sql.Parse() to execute

SQL outside of the current edition 16

Package state when the same

package is instantiated in more

than one edition 16

The Editioning View 17

The conditions that an Editioning

View must satisfy 17

Allowed freedoms when defining

an Editioning View 18

Operations supported by an

Editioning View that are not

supported by an ordinary view 19

EBR using only editions and

Editioning Views 20

The Cross-edtion Trigger 20

Basic firing rules for cross-edtion

triggers 22

Advanced firing rules for cross-

edtion triggers 25

The apply step: systematically

visiting every row to transform the

pre-upgrade representation to the

post-upgrade representation 26

Combining several bug fixes in a

single EBR exercise 28

Conclusion 29

5 Edition-Based Redefinition Technical Deep Dive / Version 4.0

 Copyright © 2024, Oracle and/or its affiliates / Public

Introduction

Large mission-critical applications may experience downtime for tens of hours, or even longer, while the application’s

database components are updated during an application upgrade. Oracle Database introduced Edition-Based Redefinition

(EBR), a revolutionary capability that allows online application upgrades with uninterrupted application availability.

EBR functions by maintaining two versions of the application simultaneously. When the installation of the upgrade is

complete, the pre-upgrade application and the post-upgrade application can be used at the same time. Therefore, an

existing session can continue using the pre-upgrade application until its user decides to end it; all new sessions can use

the post-upgrade application. The pre-upgrade application can be retired after all sessions have disconnected from it. In

other words, the application as a whole enjoys a hot rollover1 from the pre-upgrade version to the post-upgrade version.

The application’s database backend must be enabled to use EBR by making one-time schema changes to take advantage

of the capability. Also, the script that performs the application upgrade must be written in such a way as to use EBR’s

features. Therefore, EBR adoption and subsequent use is the prerogative of the development shop.

To achieve an online application upgrade2, the following conditions must be met:

 Installing changed database objects must not perturb live users of the pre-upgrade
application.

 Transactions done by the users of the pre-upgrade application must be reflected in the post-
upgrade application.

 Transactions done by the users of the post-upgrade application must be reflected in the pre-
upgrade application.

Oracle Database enables this through a revolutionary capability called Edition-Based Redefinition (EBR).

Using EBR:

 Code changes are installed in the privacy of a new edition.
 Data changes are made safely by writing only to new columns or tables invisible to the old

Edition. This is done via an Editioning View, which exposes a different projection of a table
into each Edition so that each Edition sees its own columns.

 A Cross-edition Trigger propagates data changes made by the old Edition into the new Edition’s
common columns or (in hot-rollover) vice-versa.

This whitepaper explains EBR in detail through the concepts that underpin it and by illustrating the basic operations with

minimal code samples. It then presents a series of realistic use cases in order of increasing complexity. Discussing these

use cases should prepare the user for designing and implementing scripts for the online upgrade of real-world

applications.

This whitepaper is not a reference manual. The appropriate SQL syntax and PL/SQL APIs are documented in the Oracle

Database SQL Language Reference book, the Oracle Database PL/SQL Language Reference book, and the Oracle

Database PL/SQL Packages and Types Reference book; and the catalog views that expose facts about the relevant objects

are documented in the Oracle Database Reference book. Instead, it aims to explain the concepts and the use of EBR at a

1 Transactions done by the users of the post-upgrade application must be reflected in the pre-upgrade application.

2 The term upgrade will be used in this whitepaper to denote both that and patch. The term patch is conventionally used to denote changes that are made to a system to correct behavior

which deviates from its current functional specification; and the term upgrade is conventionally used to denote changes that are made to enhance behavior so that it conforms to a new

version of the functional specification. However, this distinction in intention has no consequence for the nature of the changes that are made to an application’s database objects. A

change, for example, to a PL/SQL unit, to table data, or to table structure requires the same steps and has the same consequences whether the intention is to patch or to upgrade.

6 Edition-Based Redefinition Technical Deep Dive / Version 4.0

 Copyright © 2024, Oracle and/or its affiliates / Public

depth impractical in the Oracle Database Documentation Library. This way, it complements and extends the treatment in

the Oracle Database Advanced Application Developer’s Guidebook and the Oracle Database Administrator’s Guidebook.

7 Edition-Based Redefinition Technical Deep Dive / Version 4.0

 Copyright © 2024, Oracle and/or its affiliates / Public

Edition-Based Redefinition

EBR depends upon three new kinds of objects: the Edition, the Editioning View, and the Cross-edition Trigger. Each of

them is used for the following use cases.

1. Suppose the application upgrade only changes views, synonyms, and PL/SQL objects. In that
case, the Edition alone allows these changes to be made while the application remains
online. This type of change is common when, for example, new presentations of data or new
workflows are required.

2. Suppose table data or structure changes are restricted to only those not changed via the
standard end-user interfaces. In that case, the Edition and the Editioning View are
sufficient to allow these changes to be made while the application remains online. Tables
whose data parameterizes the user interface layout or workflows meet this condition. So do
tables that hold the catalog of wares for a shopping application.

3. Suppose changes to table data or structure are required for those tables that are changed
routinely by the end user. In that case, the Edition, the Editioning View, and the Cross-
edition Trigger must be used to make these changes while the application remains online.

EBR Use Case

Suppose an application has 1,000 mutually dependent tables, views, PL/SQL units, and triggers, all owned by more

than one user. The source code of these objects references other objects, often by schema-qualified name. Suppose

that the upgrade needs to change only 10 of these. Figure 1. illustrates this.

pre-upgrade application

post-upgrade application

Figure 1. The challenge of changing dependent objects

Of course, the ten objects cannot be changed in place because many of the other 990 refers to them, and doing so

would change the meaning of the pre-upgrade application. The only dimensions identifying the intended object when

one object refers to another are its name and owner. These naming mechanisms are not rich enough to support online

application upgrades.

A short digression on the viability of an approach that uses schemas and synonyms to enrich the naming

mechanisms manually explicitly will be helpful. It would be possible for a customer to impose a discipline where every

990 unchanged objects

10 changed objects

1,000 mutually referring objects

8 Edition-Based Redefinition Technical Deep Dive / Version 4.0

 Copyright © 2024, Oracle and/or its affiliates / Public

reference from an object to another “primary” object in a different schema is made via a “secondary” private synonym

in the referring object’s schema. In such a regime, it might seem that an online application upgrade could be achieved

by installing the complete upgraded application in a new set of schemas with appropriately redefined private

synonyms. This would, at least, allow the source text of the 900 “primary” objects for which no change was intended

to remain unchanged in the source control system. However, there would be some effort in redefining the synonyms

in the source control system, but this could presumably be done automatically. This approach suffers from several

disadvantages concerning using EBR:

 It requires a specific design by the application developer.
 Every “primary” object must be duplicated, which costs both space and time to run the DDL

statements.
 The strategy for handling changes to table data and structure might be feasible to keep

both pre-upgrade and post-upgrade versions in sync and vice versa. Still, it would be
dauntingly complex and, because of that, subject to an appreciable risk of error.

 Some applications issue DDL statements as a normal response to ordinary end-user
interaction. The effort to design and implement a scheme to reflect such changes forward
and backward between the pre-upgrade and the post-upgrade applications would be huge.

With applications of sufficient size and complexity, various issues arise (too complicated to describe in this

whitepaper) that defeat the scheme. It is, quite simply, not generally viable “in the large.” EBR supports this high-level

philosophy of the manual approach just described but overcomes its disadvantages.

The Edition

An edition is a new, non-schema object type uniquely identified by its name. Editions are listed in the DBA_Objects

catalog view family where, just like the non schema object type directory, they appear to be owned by SYS3. Every

database, whether brand new or the result of an upgrade from an earlier version, non-negotiable has at least one

Edition. Immediately on creating or upgrading an Oracle database, there is precisely one Edition named Ora$Base.

A new edition must be created as the child of an existing one; the syntax of the create edition statement allows the

parent edition to be identified using the as the child of a clause. An edition may have no more than one child. The

create edition statement allows the as the child of a clause to be omitted to mean that the new Edition is created as

the child of the leaf edition.

Every foreground database session, at every moment throughout its lifetime, non-negotiably uses a particular

edition4. This is reflected as the value of the new parameter Current_Edition_Name in the Userenv namespace for the

Sys_Context () builtin. A new not null database property, Default_Edition, listed in Database_Properties, specifies the

Edition that a session will use immediately on connection if the connect syntax does not nominate an explicit

edition—a side effect of making an edition the default is granting use to the public.

Code_1 shows the SQL statement to set this.

 -- Code_1
 alter database default edition = Some_Edition

When a new connection is made, it is possible to specify the Edition the session should (initially) use. A new alter

session command allows the Edition a session uses to be changed. However, this command is legal only as a top-level

server call; an attempt to issue it using PL/SQL’s dynamic SQL will cause an error. Further, an effort to change the

Edition that a session uses will fail if there is any uncommitted DML5.

3 A nonschema object, just as the name implies, is not owned by a schema and is potentially visible to all users, identified by just its name. The fact that DBA_Objects shows the

owner of an edition or directory to be SYS is an artefact of the implementation and has no practical significance.

4 Some background sessions, most notably MMON, also always use exactly one edition.

5 The attempt causes ORA-38814: Alter session set edition must be first statement of transaction.

9 Edition-Based Redefinition Technical Deep Dive / Version 4.0

 Copyright © 2024, Oracle and/or its affiliates / Public

Editionable object types, Editions-enabled users, and Editioned objects

Views (and therefore Editioning Views), synonyms, and all the kinds of PL/SQL objects type6 (and therefore Cross-

edition Triggers) are editionable object types. There are no other editionable object types. For example, the table is

not an editionable object type or Java class.

The non-schema object type user has a new Y/N property, shown in DBA_Users.Editions_Enabled. The users that

have this property as Y are called editions-enabled users. This can be set with the create user command or changed

with the alter user command, but only from N to Y. However, certain users (SYS, SYSTEM, and any user listed in the

DBA_Registry) cannot be editions-enabled, and the attempt to enable editions on them will cause an error.

A database object that is an editionable object type and is also owned by an editions-enabled user is called an editioned

object. An object not of an editionable type can never be editioned. An object of an editionable object type that is

owned by a user that is not editions-enabled is not editioned. Still, it will irrevocably become so when its owner is altered

to become editions-enabled. An object not editioned is uniquely identified by its owner, name, and namespace. The

context of reference defines the namespace so that references mention only the owner and name as explicit

references. For example, a package is in the namespace 1, and a package body is in the namespace 27. The create

package statement establishes the namespace as 1; the create package body statement establishes the namespace as

2; and the invocation of DBMS_Output.Put_Line() in a PL/SQL unit establishes that the identifier DBMS_Output is in

namespace 1.

An editioned object is uniquely identified by its owner, name, namespace, and the value of the current Edition that issued

the SQL statement that created or changed it8. This fact is the sine qua non of EBR; it lets two or several occurrences

of the “same” object, as identified by owner, name, and namespace, exist in the same database. The DBA_Objects

catalog view family has a new column, Edition_Name. It is always null for an object that is not editioned; for an

editioned object, it is always not null and shows the name of the Edition where the object was created or changed.

Actual objects, Inherited objects, and Name resolution

There is no edition-extended syntax. When an editioned object is to be identified, the name of the Edition is always

supplied implicitly by the reference context. For a DDL statement, the current Edition provides the value; for a

reference from the source code of an editioned object, the referring object’s Edition provides the value. Therefore, the

source code of an object not editioned may not refer to an editioned object; such an attempt will cause a compilation

error. As a result, an effort to editions-enable a user will sometimes fail.

When the source code of an editioned object refers to another editioned object, then this reference is resolved to that

occurrence where the Edition_Name is that of the Edition, which is the closest ancestor to the one denoted by the

Edition_Name of the referring object. When the Edition_Name of the referenced object is the same as that of the

referring object, then the referenced object is said to be an actual object from the point of view of the referring object.

When the Edition_Name of the referenced object denotes an ancestor to that of the referring object, then the

referenced object is said to be an inherited object from the point of view of the referring object.

A DDL statement that changes an existing inherited editioned object (for example, create, replace, or alter) causes that

object to become actual in the current Edition of the session that issued the DDL; in other words, it actualizes a new

occurrence of the target object. This means that the changes are not seen in ancestor editions. If an editioned object

is the target of a DDL statement in a particular edition (including drop), if that Edition has descendants, and if the

object in question is not actual in any of these descendants, then the effect of the change is visible in the

6 All the PL/SQL object types are potentially listed in the DBA_PLSQL_Object_Settings catalog view family. This includes library.

7 The DBA_Objects catalog view family gained the column Namespace to advertise this property that, hitherto, had been somewhat obscure.

8 As will be seen, “change” includes not only the effect of the create or replace or alter statements but also statements like grant and revoke.

10 Edition-Based Redefinition Technical Deep Dive / Version 4.0

 Copyright © 2024, Oracle and/or its affiliates / Public

descendants. Suppose the object in question is actual in one of these descendants. In that case, the difference is

visible in the intervening descendants up to, but not including, the descendant where it is actual.

Retiring an edition

When an EBR exercise is complete, ensuring that no new sessions will use the pre-upgrade Edition is useful. This is

achieved by revoking the USE privilege on the to-be-retired Edition from every user and role in the database. Notice

that SYS, beyond the normal notions of privilege, can still use the retired Edition. Advantage can be taken of this to

drop objects that are actual in such retired editions and not visible in any non-retired edition because they are actual

in a descendant of the retired Edition.

Dropping an edition

It is helpful to drop the new child edition used for an EBR exercise should the exercise fail or the result be unsatisfactory.

For this use case, use the drop edition... cascade command to drop all objects that are actual in the to-be-dropped

Edition.

While it is never necessary to drop the root edition, this may be done when the conditions below are met. The current

root edition may be dropped, and then the new root edition may be dropped until the database has only a single

edition: the leaf edition as existed when these successive drops of the root edition were started. Customers may

occasionally like to do this in pursuit of hygiene. But doing this has no practical benefit except to remove unnecessary

clutter.

The drop edition... cascade command is not atomic, just like the drop user... cascade command. If the instance is shut

down while the command is in progress, some of the Edition’s actual objects will have been dropped, but others, and

the Edition itself, will remain. However, unlike the case, if the instance is shut down while a drop user... cascade

command is in progress (where connecting as the to-be-dropped user is still safe), it is not now safe to use the to-be-

dropped Edition. For this reason, such an edition is marked unusable. This status is reflected in the Usable column in

the DBA_Editions catalog view family. An error occurs if a session attempts to make an unusable edition its current

Edition, either with the alter session command or at connect time.

An edition can be dropped only when the following conditions are met:

 The Edition is not the only one in the database
 and either it has no child edition (i.e., is the leaf edition)
 or both; it has no parent edition (i.e., is the root edition), and it has non-editioned

objects inherited by its child edition.
 No session is using the Edition.
 The Edition is not the database's default edition.

Notice that the MMON background process, like the foreground processes, always uses an edition. This is because,

unlike other “primitive” background processes like SMON or PMON, it issues SQL. Some additional background

processes also issue SQL.

The EBR lifecycle

Most EBR exercises will follow this simple pattern:

 Before starting, the database will have only one non-retired Edition, say Pre_Upgrade.
 During the EBR exercise, the database will have two non-retired editions, Pre_Upgrade,

and its child, say
 Post_Upgrade.
 When no sessions any longer need to use Pre_Upgrade, then this will be retired, and the

starting state for the next exercise will be restored: the database has only one non-
retired Edition.

11 Edition-Based Redefinition Technical Deep Dive / Version 4.0

 Copyright © 2024, Oracle and/or its affiliates / Public

If the Pre_Upgrade edition is still available for ordinary use, then Post_Upgrade can be dropped9. This might be done if

it were realized that the upgrade install script is irrevocably incompatible with some customizations that have to be

made at the particular deployed site.

It might seem that, in principle, name resolution in the many-edition regime would be appreciably slower than in the

single-edition regime because most lookups would involve a recursive search backward in the edition ancestor chain.

However, the implementation, which faithfully preserves the conceptual model, transparently uses denormalization to

avoid the recursive search. Moreover, name resolution takes place at compile time and not at run-time10. It turns out,

therefore, that there is no noticeable difference between using a database where the only non-retired Edition is that

database’s only Edition and using one where the only non-retired Edition has an ancestor chain of, say several

hundred retired editions.

Diagrammatically illustrated example

Figure 2. shows the situation that might exist after a few distinct EBR exercises have been undertaken.

 The starting point is that the database has precisely one Edition, e1. The procedures p1
and p2 and the views v1 and v2 are editioned objects and are actual, as they must be, in
e1. The table t1, because it is not an editioned object, is drawn outside the box
representing e1.

 Then e2 is created as the child of e1.
 Then a session that uses e2 creates or replaces p2 and v1, causing them to be actualized

in e2. A session using e2 sees p2 and v1 as actual and p1 and v2 as inherited. The
sessions using respectively e1 and e2 see the same occurrence of p1 and v2, and each
Edition sees its distinct occurrence of p2 and v1, each with its defining source code.
Each Edition sees the same t1 because there can never be more than one occurrence of an
object that is not editioned. When no sessions need to use e1, it is retired.

 Then e3 is created as the child of e2. The session that uses e3 creates or replaces p1
and v2, causing them to be actualized in e3, and it drops v1. A session using e3 sees p1
and v2 as actual and p2 as inherited. Of course, it cannot see the dropped v1; it
considers the one-and-only occurrence of t1. Though v1 is dropped in e3, it is still
visible in e1 and e2. When no sessions need to use e2, it is retired.

9 As soon as the post-upgrade application is used to record end-user transactions that cannot be represented by the pre-upgrade application, then the possibility for a simple return

to the pre-upgrade application vanishes. This is determined by ordinary logic and not by any restrictions imposed by EBR.

10 The compilation of a stored PL/SQL unit is very visible, because it requires a separate step. The compilation of a SQL statement, often referred to as parsing, is less visible to users

because interfaces like PL/SQL’s embedded SQL disguise the distinction between SQL compilation and SQL execution; nevertheless, the distinction is clear—and the famous so-

called soft-parse skips the SQL compilation and goes straight to the execution.

v2

v1

p2

p1

p2

p1

v2 v2

v1 v1

p2

p1

t1

12 Edition-Based Redefinition Technical Deep Dive / Version 4.0

 Copyright © 2024, Oracle and/or its affiliates / Public

 e1 e2 e3 e4

Figure 2. The situation after three EBR exercises. Actual editioned objects are shown as squares with a solid border; inherited editioned objects are

shown as squares with no border; objects that are not editioned are shown as circles with a solid border; active editions are shown with a light gray fill;

and retired editions are shown with a dark gray fill.

 Then e4 is created as the child of e3. The session that uses e4 does create or replace
v2, causing it to be actualized in e4. A session using e4 sees v2 as actual and p1 and p2
as inherited. Of course, it, too, like e3, cannot see the dropped v1; it also considers
the one-and-only occurrence of t1. When no sessions need to use e3, it is retired.

 e5 is created as the child of e4.
 Then a session that uses e4 creates or replaces on v2; this change is denoted by the

asterisk in Figure 3. A session using e5 sees the same modified v2 because it sees v2 as
inherited.

 Then a session that uses e5 creates package v1. Because just before it does this, e5 sees
no object called v1, so this name cannot now be used for an editioned object of a
different type from that which the name denotes in e1 and e2. Notice that had an attempt
been made to create an object called v1 that was not editioned (for example, a table
called v1), this would have failed because of name collisions in e1 and e2.

Figure 3. illustrates the situation that might exist after the next EBR exercise.

 e1 e2 e3 e4 e5

Figure 3. The situation after four EBR exercises

A minimal, complete EBR exercise code example

The starting point is a database that has exactly one Edition, Pre_Upgrade. The application architect has determined

that objects whose type is editionable and owned by App_Owner should be editioned. Therefore, the DBA has

executed the SQL statement shown in Code_2.

-- Code_2

alter user App_Owner enable editions

t1

v2

v1

p2

p1

v2*

p2

p1

v2* v2

v1 v1 v1

p2

p1

13 Edition-Based Redefinition Technical Deep Dive / Version 4.0

 Copyright © 2024, Oracle and/or its affiliates / Public

App_Owner connects and inevitably uses edition Pre_Upgrade. The query shown in Code_3 is then executed.

-- Code_3

select Text

from User_Source

where Name = 'HELLO' and Type = 'PROCEDURE' order by Line

The output is as shown in Code_4.

-- Code_4 procedure Hello is begin

DBMS_Output.Put_Line('Hello from Pre_Upgrade'); end Hello;

Of course, when Hello is executed, it shows “Hello from Pre_Upgrade.”

In preparation for the EBR exercise, a user with the Create Any Edition system privilege creates Post_Upgrade,

allowing App_Owner to use it using the SQL*Plus script shown in Code_5.

-- Code_5

create edition Post_Upgrade as child of Pre_Upgrade

/

grant use on edition Post_Upgrade to App_Owner

/

App_Owner is now able to execute the SQL statement shown in Code_6.

-- Code_6

alter session set Edition = Post_Upgrade

If Hello is executed, it still shows “Hello from Pre_Upgrade.” Now App_Owner executes the same DDL statement that

would have been used to modify Hello in versions of the Oracle Database, as shown in Code_7.

-- Code_7

create or replace procedure Hello is begin

DBMS_Output.Put_Line('Hello from Post_Upgrade'); end Hello;

App_Owner now executes the SQL*Plus script shown in Code_8.

-- Code_8

begin Hello(); end;

/

select Text

from User_Source

where Name = 'HELLO' and Type = 'PROCEDURE' order by Line

/

alter session set edition = Pre_Upgrade

14 Edition-Based Redefinition Technical Deep Dive / Version 4.0

 Copyright © 2024, Oracle and/or its affiliates / Public

/

select Sys_Context('Userenv', 'Current_Edition_Name') from Dual

/

-- Notice that the spelling that follows is identical

-- to that used before the current Edition was changed

begin Hello(); end;

/

select Text

from User_Source

where Name = 'HELLO' and Type = 'PROCEDURE' order by Line

/

While App_Owner is using Post_Upgrade, the output of Hello is “Hello from Post_Upgrade,” and the code shown in

User_Source is that of the new, modified occurrence; and while App_Owner is using Pre_Upgrade, the output of Hello

is “Hello from Pre_Upgrade” and the code shown in User_Source is that of the old, original occurrence.

When all are satisfied that the application represented in Post_Upgrade improves the one represented in

Pre_Upgrade, and no sessions no longer using Pre_Upgrade, a suitably privileged user will retire the Pre_Upgrade

edition.

In this trivial example, Pre_Upgrade now has no actual editioned objects that its child inherits (and has no parent);

there is no reason, therefore, not to drop it. However, in the general case, Pre_Upgrade would likely have editioned

objects that Post_Upgrade inherits, and it would not be cost-beneficial to actualize all of these in Post_Upgrade.

Therefore, in the general case, Pre_Upgrade would be retired but not dropped.

If, for some reason, it is decided to abandon the changes made in Post_Upgrade, then a user who has the Drop Any

Edition system privileges ensures that no session is using Post_Upgrade and then executes the SQL*Plus script shown

in Code_9.

-- Code_9

drop edition Post_Upgrade cascade

/

Consequential actualization of dependants and fine-grained dependency tracking

When an editioned object refers to, and therefore depends upon, another editioned object, the referenced editioned

object11 must be visible in the Edition where the dependant is actual. The referenced object might be actual in the

identical Edition as the dependant or might be actual in an ancestor edition to the dependant’s and therefore seen as

inherited in the dependant’s Edition. This rule implies that when a referenced object is first actualized in a particular

edition, all its direct and recursive dependants, which are not yet actual in that Edition, will be consequentially

actualized in that identical Edition12.

Oracle Database has a fine-grained dependency tracking model. In earlier releases, any change to a referenced object

caused all objects that depended on it to become invalid. This was because only coarse-grained dependency

11 The term referenced object reflects the names of the columns in the DBA_Dependencies catalog view family: Referenced_Owner, Referenced_Name, and so on.

12 The rule is a consequence of logic: an object cannot depend on another that it cannot see.

15 Edition-Based Redefinition Technical Deep Dive / Version 4.0

 Copyright © 2024, Oracle and/or its affiliates / Public

information (object p depends on object q) was recorded. The fine-grained model records dependency information at

the level of the element within the referenced object. For example:

 If procedure p depends only on procedure x in the package Pkg and if Pkg also exposes
other subprograms, variables, type declarations, and so on, then the dependency
information records that p depends on Pkg.x.

 If view v mentions only columns c1, c2, and c3 in table t, then the dependency
information records precisely this.

This means that the dependant remains valid when a referenced object is changed without changing the elements

that an object that depends on it refers to.

This understanding needs to be extended when the referenced object, and therefore the dependant too, are

editioned. Suppose the dependant is already actual in the identical Edition as the referenced object (after this has

suffered the DDL) or in a descendant of that Edition. In that case, the full benefit of fine-grained dependency tracking

is available, and invalidation that is not logically required is avoided. However, suppose on completion of the DDL to

the referenced object, it is now in a younger edition than the dependant. In that case, the dependant is actualized into

the referenced object’s Edition in an invalid state13.

Deliberate invalidation and revalidation of editioned objects

In an ordinarily installed Oracle Database, any user can invoke DBMS_Utility.Validate() or

DBMS_Utility.Compile_Schema()14 , only the owner, SYS, can invoke the Utl_Recomp APIs.

DBMS_Utility.Validate() has two overloads. One takes Object_ID, and the other takes Owner, ObjName, Namespace,

and Edition. (Edition defaults to the current Edition.) If the target object is not actual in the current Edition, then it is

not actualized into this but remains actual in the Edition where it was found. Notice that this differs from how alter...

compile behaves; here, the target object is actualized into the current Edition.

DBMS_Utility.Compile_Schema() and the Utl_Recomp APIs are wrappers that apply DBMS_Utility.Validate() to all the

invalid objects in all editions in the specified schema or database-wide. As a consequence, using these APIs never

causes actualization.

An EBR exercise will likely change editioned objects where some will have dependent objects. This will cause the

dependent objects to be actualized into the new Edition in an invalid state. It would be sensible to revalidate such

objects as soon as all the intended DDLs have been completed in the new Edition before proceeding to the next steps.

Utl_Recomp.Recomp_Parallel() is a natural choice. There are no privilege concerns; implicit validation of invalid objects

in the closure of dependency parents of an invalid object that is referenced for compilation or execution will anyway

take place with no special privileges.

DBMS_Utility.Invalidate() has only one overload; this identifies the target object using Object_ID. Its only use in an EBR

exercise would be to enable the PL/SQL compilation parameter values for many units to be changed in the new

Edition with optimal efficiency. For example, an upgrade script might intend to compile each of the application’s

PL/SQL objects native. This is done efficiently by first invoking DBMS_Utility.Invalidate() for each object, using an

appropriate actual for p_plsql_object_settings, and then invoking Utl_Recomp.Recomp_Parallel(). Oracle recommends

against invoking DBMS_Utility.Invalidate() on an object not actual in the current Edition.

The effect of DDL in an edition with a child

Suppose a database has exactly N editions, e1 through eN, where e2 is the child of e1. Let x[e1] denote an editioned

object x that is actual in e1 and has no dependencies on any editioned objects. If no DDL has been done on x while

13 It turns out that, because of various internal optimizations, an invalid object that is the result of consequential invalidation does not show up immediately in the DBA_Objects and

DBA_Objects_AE catalog view families. However, it will show up after a call to DBMS_Utility.Compile_Schema() or to one of the Utl_Recomp APIs. It will show up, too, after an

attempt to reference it (in either a compilation or an execution context).

14 The Execute privilege on DBMS_Utility is granted to public and the package has a public synonym.

16 Edition-Based Redefinition Technical Deep Dive / Version 4.0

 Copyright © 2024, Oracle and/or its affiliates / Public

using edition e2 or one of its descendants, then x[e1] will be visible in e2 and its descendants because no actual

occurrence of x exists in these editions. Notice that if x[e1] does have a dependency on an editioned object, y, then it

will be actualized as x[eM] in edition eM should y be actualized there as y[eM].

In other words, when an editioned object suffers DDL using a particular edition, the change is visible in all descendent

editions up to, but not including, the closest descendent Edition where another actual occurrence exists. (This actual

occurrence might have Object_Type = non-existent if a DDL had been issued to drop the object in questionin the

descendent Edition.) It can be seen, therefore, that, in general, the effect of DDL in any descendent editions might

depend on specific circumstances and history: it might well happen that the effect “shines through” to all descendent

editions, but this result is not guaranteed.

Using DBMS_Sql.Parse() to execute SQL outside of the current Edition

DBMS_Sql.Parse() has some new overloads. Some support working with cross-edition triggers; these will be described

in “The Cross-edition Trigger.” One new overload is provided to execute a single SQL statement in a specifically

nominated edition. This allows a PL/SQL unit to execute SQL in two or more different editions and can be useful for

automating DBA tasks. The remote session that supports access via a database link can use only the remote

database’s default edition. Using the remote database’s DBMS_Sql package, at least a single SQL statement can be

executed in the chosen Edition in the remote database.

Package state when the same package is instantiated in more than one Edition

Suppose that the database has two editions, Pre_Upgrade, and Post_Upgrade and that the editioned package Pkg,

with the source shown in Code_1015, is actual in Pre_Upgrade and inherited in Post_Upgrade.

-- Code_10

package Pkg authid Current_User is State simple_integer := 0;

end Pkg;

The SQL*Plus script shown in Code_11 runs without error.

-- Code_11

alter session set Edition = Pre_Upgrade

/

begin Pkg.State := 1; end;

/

alter session set Edition = Post_Upgrade

/ begin

if Pkg.State <> 0 then Raise_Application_Error(-20000,

‘Unexpected Pkg.State: ‘||Pkg.State); end if;

end;

/

alter session set Edition = Pre_Upgrade

/ begin

15 The datatype simple_integer has a not null constraint.

17 Edition-Based Redefinition Technical Deep Dive / Version 4.0

 Copyright © 2024, Oracle and/or its affiliates / Public

if Pkg.State <> 1 then Raise_Application_Error(-20000,

‘Unexpected Pkg.State: ‘||Pkg.State); end if;

end;

/

This shows that the same editioned package is instantiated distinctly in each distinct Edition from which it is

referenced during the lifetime of a session and that its state for each Edition’s instantiation is preserved

independently. It is essential to understand this principle when a forward cross-edition trigger references an editioned

package referenced by an ordinary application code.

Notice that the opposite is the case for a non-editioned package. This has just a single instantiation. This can be seen by

re-running Code_11 when the owner of Pkg is not editions-enabled. Now, the value of Pkg.State that was set in

Pre_Upgrade is visible in Post_Upgrade.

The Editioning View

Only some object types are editionable. Editionable objects do not consume quota—they are represented entirely by

metadata (rows in various tables in the SYS schema) and cannot contain data. It is convenient to refer to these as code

objects. Non-Editionable objects do consume quota and can be referred to as data objects. The prominent examples

of data objects are tables and indexes. Tables can contain terabytes of data.

Editioned objects can have many occurrences in different editions relying on name-resolution that supplies the

Edition_Name implicitly because, as code objects, they are small enough to allow many distinct but similar

circumstances to exist without representing differences.

However, the potentially enormous size of data objects makes such an approach impractical. The only practical

approach is to let the user explicitly control the differencing. If the aim is to change a column, for example, by

widening it, the original column is left in place, and a new wider replacement column (or columns) is added to the

table.

A further practical reason drives this design. Typical table changes during an application upgrade are incremental: the

pre-upgrade and post-upgrade applications see most of the table’s data in common. Therefore, during an EBR

exercise, it is natural and efficient to share this common data explicitly rather than to use mechanisms to keep two

separate copies of nominally the same data synchronized.

How, then, can such a table be presented to editioned code objects so that these see only the logical intention of the

table at each new version and are not troubled by physical details? A view provides precisely the suitable mechanism,

but an ordinary view is too general in its power of expression. This forbids it from being treated like a table concerning

some application requirements. For example, creating table-style triggers on an ordinary view is not allowed.

EBR introduces a new kind of view, the Editioning View. It is created using a special syntax, and its defining select

statement must satisfy strict restrictions if the creation is to succeed. An Editioning View, as a special kind of view, is

editionable. It might help to think that while the physical table cannot be editioned, the Editioning View allows

different occurrences of its logical projection to be presented in various editions. Indexes and constraints remain in

the physical domain at the table level.

The conditions that an Editioning View must satisfy

An Editioning View’s defining select statement must obey several restrictions16. The following list is not intended to be

complete; rather, it is intended to clarify the spirit of the design. The restrictions reflect the intention that an Editioning

16 An attempted create editioning view statement that fails to satisfy the restrictions will cause an error and the view will not be created. The error message may seem obscure. For

example, inclusion of a where clause causes ORA-00933: SQL command not properly ended; and inclusion of the distinct keyword causes ORA-00936: missing expression. If the

18 Edition-Based Redefinition Technical Deep Dive / Version 4.0

 Copyright © 2024, Oracle and/or its affiliates / Public

View must return every row from a single table (and only those rows) without explicit ordering and project and maybe

rename a subset of the columns.

Because a successfully created Editioning View has been confirmed to have satisfied all the restrictions, various

operations on an Editioning View that cannot be supported on an ordinary view can be supported. In particular, all

memory of an Editioning View standing in front of a table is lost during SQL compilation. The resulting execution plan

is identical to a query with the same meaning that targets the table(s) directly. In other words, using an Editioning

View is guaranteed to bring no performance penalty.

 An Editioning View must be owned by an editions-enabled user as an Editioning View’s
specific purpose is to provide an editioned API to a projection of the data stored in the
base table.

 The table’s owner must own an Editioning View because the table for an Editioning View
cannot be in a different database denoted by a database link.

 There can be no more than one visible Editioning View for a particular table in a
specific edition, as having more than one logical projection of the same table data in
the identical Edition is meaningless.

 The subquery factoring clause is not allowed because of the other restrictions; the
subquery factoring clause could have no practical usability benefit.

 The subquery must be a single query block, meaning the keywords union [all], minus, and
intersect are not allowed.

 The “for update” clause is not allowed but is always allowed in a query targeting an
Editioning View.

 The query block must identify precisely one table. The from list must have just one item:
a table. A self-join is prohibited17 ; the item cannot be a view or synonym.

 The select list must mention only column names and optional aliases. No column can be
mentioned more than once. No kind of expression is allowed in the select list. For
example, columns cannot be arithmetically combined; SQL and PL/SQL functions are
prohibited.

 The where clause, group by clause, and having clause are not allowed. This is consistent
with the basic intention to provide a logical cover for a physical table. Application
upgrades typically change the structure of tables and apply corrections, for every row, to
values in particular columns. They rarely need to add or remove rows in a table. For such
scenarios, different occurrences of the Editioning View must denote different physical
tables in various editions18.

 The order by clause is not allowed. This, too, is consistent with the basic intention. In
particular, without this restriction, the requirement could not be met that the execution
plan for a query that targets an Editioning View must be identical to the one for a query
with the same meaning that targets the table directly.

 Other restrictions are that distinct, unique, and all keywords are not allowed before the
select list. The hierarchical query clause and the model clause are not allowed. The
flashback query clause is not permitted.

Allowed freedoms when defining an Editioning View

The following semantics are allowed in addition to the basic rule that an Editioning View merely projects a single table,

maps the names of its columns, and does no restriction.

 The “read only” clause is allowed. Sometimes the amount of data in a table that needs to
be changed in an application upgrade is small. This is typically the case for lists of
values and data used to configure the application's behavior. Moreover, such data usually
is not modifiable by ordinary end-user actions but is changed only by an administrator. A
very straightforward approach to online application upgrade is possible in such cases. A

statement succeeds without the editioning keyword but fails with it, then the reason is that the defining statement does not respect the restrictions. This suggests an approach to

debugging a failed create editioning view statement: try it again without the editioning keyword.

17 ANSI join syntax is therefore disallowed.

18 It hardly needs pointing out that rows come and go, and are changed, as part of the routine operation of every application. The capability to do this comfortably in a multiuser

environment is well-established. It would be appropriate to use EBR to stage the visibility of such ordinary changes only when the content of the tables in some way defines the

behavior and meaning of the application, and, of course, especially when both the context and the structure of such configuration tables needs to be changed.

19 Edition-Based Redefinition Technical Deep Dive / Version 4.0

 Copyright © 2024, Oracle and/or its affiliates / Public

new table is defined and populated ordinarily. It is then exposed using an Editioning
View with the same name and logical meaning in the new Edition as the one that exposed
the old table in the old Edition. By setting these Editioning Views with read-only, the
intention that end-users do not change the table content is formally enforced. Of course,
the alter view command can make an Editioning View read-only or read/write. Notice that
there is no special alter Editioning View syntax.

 Primary key constraints are allowed, but foreign key constraints are disallowed. Primary
and foreign key constraints can be created on an ordinary view, but the keywords disable
novalidate must be used. The benefit is that tools can generate diagrammatic
representations of the logical database design. However, an Editioning View must be
editioned, and an editioned object cannot be the source or the target of a foreign key
constraint. Therefore, an Editioning View cannot be the source or the target of a foreign
key constraint. An Editioning View can have a disable novalidate primary key constraint.

Operations supported by an Editioning View that are not supported by an

ordinary view

The fact that the following operations are allowed on an Editioning View reflects the intention that, once an Editioning

View is in place in front of every table, then the rest of the application design and implementation can treat these

Editioning Views as if they were tables and will never, therefore, need to refer to a table explicitly.

The following are examples. However, rather than listing every single property that distinguishes an Editioning View

from an ordinary view, it is more beneficial to state the overall principle:

DML Operations support

Any select, insert, update, delete, merge, lock table, or explain plan SQL statement19 running without error on a table

will run without error on an Editioning View covering that table.

An Editioning View allows table-style triggers
Triggers defined on renamed tables become invalid because they are still attached to those tables20. However, to

honor the principle that application code should not refer explicitly to tables, the triggers should be recreated on the

Editioning View that now has the table’s former name. This is trivially achieved by dropping the triggers and then re-

running the DDL that created them21.

Notice that when DML is issued using an Editioning View, triggers not only defined on the Editioning View will fire but

also those defined on its base table. However, only the triggers defined on the table will fire when DML is issued using

a table. Triggers defined on the Editioning View will not fire. The paradigm requires that all regular application DML

be issued using Editioning Views; as seen (see “The cross-edition trigger”), only cross-edition triggers are allowed to

do DML using tables.

Hint in a SQL statement targeting Editioning View can identify an index by listing the names

of its columns

Again, this allows extant application code to remain correct after introducing an Editioning View to cover a table.

Queries against an Editioning View allow partition extended syntax

When an Editioning View’s base table is partitioned, the same query extended syntax that can be used against the

table can be used against the Editioning View. The SQL*Plus script shown in Code_12 illustrates this.

19 For example, select Rowid, ev.* from ev is legal when ev is an editioning view.

20 When a table is renamed, the opening part of the source text of a trigger on the table is automatically updated to reflect the new name. The same happens when columns are

renamed and the they are mentioned in the when clause. However, the source text of the PL/SQL that implements the trigger action is not updated. This will leave the trigger in an

invalid state when the text refers to other tables that have been renamed.

21 The DDL will run without error because the new editioning view exposes exactly the same identifiers as the table it covers. This holds also for compound triggers that may been

defined on the renamed table.

20 Edition-Based Redefinition Technical Deep Dive / Version 4.0

 Copyright © 2024, Oracle and/or its affiliates / Public

-- Code_12

create table t(PK integer primary key, Info varchar2(10)) partition by range(PK)

(partition p1 values less than (10), partition p2 values less than (maxvalue))

/ begin

insert into t(PK, Info) values (5, 'in p1'); insert into t(PK, Info) values (15, 'in p2');

commit;

end;

/

create view v as select a. P.K., a.Info from t a

/

-- Causes ORA-14109

select * from v partition(p1)

/

create Editioning View ev as select a. P.K., a.Info from t a

/

-- Runs without error

select * from ev partition(p1)

/

EBR using only Editions and Editioning Views

Suppose an application upgrade changes only those tables whose data is not changed via the standard end-user

interfaces. In that case, the Edition and the Editioning View are sufficient to allow these changes to be made while the

application remains online. The most obvious example is configuration data, which determines the application's

behavior and is changed only as part of an upgrade. Such data is typically not voluminous, so it would be natural to

create a replacement table for the upgrade so that an Editioning View with a particular owner and name selects from

one table in the pre-upgrade Edition and a different table in the post-upgrade Edition. The upgrade installation script

can populate the replacement table as required. According to the upgrade requirements using EBR, the Editioning

View that covers the post-upgrade table may or may not have the same shape as the Editioning View that covers the

pre-upgrade table.

The Cross-edition Trigger

Sometimes, an application upgrade has to change one or more tables whose content is queried and altered by

ordinary end-user interaction. Consider a use case; for example, a single column representing a telephone number as

it would be used when dialing within the USA is to be split into two columns, one for the country code and one for the

within-country number. A bulk transformation of the data is not, by itself, sufficient to ensure the correctness of the

transformed data. A mechanism is needed to keep pace with changes that end-users of the pre-upgrade application

make to the old representation of the data, converting it into the new representation, both during the bulk

transformation and after it is complete as some users continue to use the pre-upgrade application while others start

to use the post-upgrade application.

Moreover, changes that end-users of the post-upgrade application make to the new representation of the data must

be transformed back into the old representation for the benefit of end-users of the pre-upgrade application.

21 Edition-Based Redefinition Technical Deep Dive / Version 4.0

 Copyright © 2024, Oracle and/or its affiliates / Public

Triggers have the right properties to affect the proper responses to end-user changes during the bulk forward data

transformation and the hot rollover period. Moreover, using a trigger for this purpose meets the high-level

requirement that the application code itself can be written to implement only what is needed for its ordinary pre- and

post-upgrade operation and need not implement special logic to accommodate the period when an EBR exercise is in

progress. Special triggers, understood to be distinct from the application code, can be deployed during the EBR

exercise and dropped when complete.

A Cross-edition Trigger is a special kind of trigger; a trigger is an editionable object type. However, unlike other

objects whose type is editionable, a Cross-edition Trigger must be owned by an editions-enabled user; in other words,

a Cross-edition Trigger is always editioned22. This restriction is because the firing rules for a cross-edition trigger are

defined for the relationship between the Edition in which it is actual and the current Edition of the session that issues

the DML. Further, a cross-edition trigger is visible only in the Edition in which it is actual. As a consequence, the

SQL*Plus script shown in Code_13 runs without error.

-- Code_13

alter session set edition = e2

/

create trigger x

before insert or update or delete on t for each row

forward crossedition disable

begin

...

end x;

/

-- e3 is the child of e2

alter session set edition = e3

/

-- Notice that we don’t need “or replace”

create trigger x

before insert or update or delete on t for each row

forward crossedition disable

begin

...

end x;

/

It is unimportant concerning the firing rules that a cross-edition trigger is visible only in the Edition in which it is actual

because these rules are explicitly defined, but this has the consequence that dependencies between cross-edition

triggers (by virtue of follows or precedes relationships) can exist only between sets of cross-edition triggers that are

22 If a user that is not editions-enabled attempts to create a cross-edtion trigger, this causes ORA-25030.

22 Edition-Based Redefinition Technical Deep Dive / Version 4.0

 Copyright © 2024, Oracle and/or its affiliates / Public

actual in the identical Edition23. If the clause is “follows,” the target must be a forward cross-edition trigger; if the

clause precedes, the target must be a reverse cross-edition trigger.

The compilation of a cross-edition trigger follows the standard rules for the compilation of any editioned object:

names are resolved to objects that are visible in the Edition in which it is actual. But in contrast to other editioned

objects, a cross-edition trigger and all code it calls always runs using the Edition in which it is actual. Code_20 is an

SQL*Plus script that shows this.

A cross-edition trigger may be created only directly on a table—and not on either a regular view or an Editioning

View24. This implies that only the before statement, before each row, after each row, and after statement variants may

be specified; the instead of variant is not legal for a cross-edition trigger. A cross-edition trigger may be a compound

trigger.

Basic firing rules for cross-edition triggers

The firing rules were designed on the assumption that the cross-edition triggers required to implement a particular

upgrade are all installed in the post-upgrade Edition. This is consistent with the overall paradigm that (so that the pre-

upgrade application will be unperturbed) all DDL to editioned objects are done in the

post-upgrade Edition. The rules assume that pre-upgrade columns are changed (by ordinary application code) only

by sessions using the pre-upgrade Edition and that post-upgrade columns are changed (again by standard

application code) only by sessions using the post-upgrade Edition. There are, therefore, two kinds of cross-edition

triggers:

 A forward cross-edition trigger is fired by the application DML issued by sessions using
the pre-upgrade Edition. Such a trigger transforms the old representation forwards into
the new representation.

 A reverse cross-edition trigger is fired by the application DML issued by sessions using
the post-upgrade Edition. Such a trigger transforms the new representation backwards into
the old representation.

The following is a more detailed statement of the rules, acknowledging the fact that three or more editions might be

active during an EBR exercise:

 A forward cross-edition trigger is fired by application DML issued by a session using any
ancestor edition to that in which the trigger is actual.

 A reverse cross-edition trigger is fired by application DML issued by a session using the
Edition in which the trigger is actual or any descendant of that Edition.

The following demonstration illustrates these basic firing rules for cross-edition triggers. The database has five

editions, e1, e2 (child of e1), and so on through to e5 (child of e4).

The procedure Trace, shown in Code_14, is owned by SYS and, therefore, not editioned.

-- Code_14

procedure Trace(

t1 in varchar2, t2 in varchar2 := null) authid Definer

is

f Utl_File.File_Type := Utl_File.Fopen(Location => 'MY_DIR',

Filename => 't.txt', Open_Mode => 'a', Max_Linesize => 32767);

23 This restriction ensures that no contradictions about firing order can be expressed. As will be seen, the firing order of cross-edtion triggers in a particular edition cannot be

interleaved with that of cross-edtion triggers in a different edition.

24 The attempt causes ORA-42306: a cross-edtion trigger may not be created on an editioning view.

23 Edition-Based Redefinition Technical Deep Dive / Version 4.0

 Copyright © 2024, Oracle and/or its affiliates / Public

begin

if t2 is null then Utl_File.Put_Line(f, t1);

else

Utl_File.Put_Line(f, Rpad(t1, 30, '.')||' '||t2); end if;

Utl_File.Fclose(f); end Trace;

There is a public synonym for Sys.Trace and Execute on Sys.Trace is granted to public.

The user Usr is editions-enabled and is granted only Create Session, Resource, and Use on each of e1

through e5.

The function Usr.Curr_Edn, shown in Code_15, is actual in edition e1.

-- Code_15

function Curr_Edn return varchar2 authid Definer is e constant varchar2(30) not null :=

Sys_Context('Userenv', 'Current_Edition_Name'); begin

return e; end Curr_Edn;

The table Usr.t has a column n of datatype number; the Editioning View Usr.ev covers it and selects n. The regular

trigger Usr.Regular, shown Code_16, is actual in edition e2.

-- Code_16

trigger Regular after update on ev

begin

Trace('From Regular', Curr_Edn()); end Regular;

The forward cross-edition trigger Usr.Fwd_Xed, shown in Code_17, is actual in edition e3.

-- Code_17

trigger Fwd_Xed after update on t

forward crossedition begin

Trace('From Fwd_Xed. Expect E3', Curr_Edn()); end Fwd_Xed;

The reverse cross-edition trigger Usr.Rev_Xed, shown in Code_19, is actual in edition e4.

-- Code_18

trigger Rev_Xed after update on t

reverse crossedition begin

Trace('From Rev_Xed. Expect E4', Curr_Edn()); end Rev_Xed;

Finally, the procedure Usr.Do_Update, shown in Code_19, is actual in edition e1.

24 Edition-Based Redefinition Technical Deep Dive / Version 4.0

 Copyright © 2024, Oracle and/or its affiliates / Public

-- Code_19

Do_Update authid Definer is begin

Trace('From Do_Update', Curr_Edn()); update ev set n = n + 1;

commit;

end Do_Update;

The SQL*Plus script shown in Code_20

-- Code_20

alter session set edition = e1

/ begin

Trace(Chr(10)||'App using e1'); Do_Update();

end;

/

alter session set edition = e2

/ begin

Trace(Chr(10)||'App using e2'); Do_Update();

end;

/

alter session set edition = e3

/ begin

Trace(Chr(10)||'App using e3'); Do_Update();

end;

/

alter session set edition = e4

/ begin

Trace(Chr(10)||'App using e4'); Do_Update();

end;

/

alter session set edition = e5

/ begin

Trace(Chr(10)||'App using e5'); Do_Update();

end;

/

Will then produce this output to the trace file t.txt:

-- Code_21

25 Edition-Based Redefinition Technical Deep Dive / Version 4.0

 Copyright © 2024, Oracle and/or its affiliates / Public

App using e1

From Do_Update. E1

From Fwd_Xed. Expect E3. E3

App using e2

From Do_Update. E2

From Regular. E2

From Fwd_Xed. Expect E3. E3

App using e3

From Do_Update. E3

From Regular. E3

App using e4

From Do_Update. E4

From Regular. E4

From Rev_Xed. Expect E4. E4

App using e5

From Do_Update. E5

From Regular. E5

From Rev_Xed. Expect E4. E4

When a database has no more than two active editions during an EBR exercise and no cross-edition trigger issues

DML, it is sufficient to understand these basic firing rules.

Advanced firing rules for cross-edition triggers

We will use the term cross-edition trigger DML for DML issued directly, using embedded SQL or native dynamic SQL,

from the PL/SQL unit that is a cross-edition trigger. We will use the term regular DML for DML issued from any other

site. Notice that this definition means that DML issued from a PL/SQL unit invoked by a cross-edition trigger is

regular DML. In particular, DML issued using the DBMS_Sql API is, by default, regular DML, even when these

subprograms are invoked directly from implementing a cross-edition trigger. However, if the name of the cross-

edition trigger that invokes the DBMS_Sql API is included in the actual Applying_Cross-edtion_Trigger() formal

parameter to DBMS_Sql.Parse(),the DML that the DBMS_Sql API issues will be cross-edition trigger DML.

 Regular DML always fires both visible regular triggers and appropriately selected cross-
edition triggers.

 The firing order of cross-edition triggers in a particular edition is never interleaved
with that of cross-edition triggers in a different edition. All forward cross-edition
triggers in edition e will fire before any in a descendent edition of edition e. All
reverse cross-edition triggers in edition e will fire after any in an ancestor edition of
edition e.

 Cross-edition trigger DML from a forward cross-edition trigger actual in edition e will
fire forward cross-edition triggers that are actual in descendants of edition e but will
never fire reverse cross-edition triggers or regular triggers.

 Correspondingly, cross-edition trigger DML from a reverse cross-edition trigger actual in
edition e will fire reverse cross-edition triggers that are actual in ancestors of
edition e but will never fire forward cross-edition triggers or regular triggers.

26 Edition-Based Redefinition Technical Deep Dive / Version 4.0

 Copyright © 2024, Oracle and/or its affiliates / Public

 Recall that DML done to a table does not fire triggers on an Editioning View that covers
the table (see “An Editioning View allows table-style triggers"). This means that, in
practice, even DML to tables that a cross-edition trigger issues using the DBMS_Sql API
or a helper PL/SQL unit that, in turn, does the DML (which is, therefore, regular DML)
will not fire regular triggers because these, following the paradigm, will not be created
on tables but will be created only on Editioning Views.

 Cross-edition trigger DML from a unit that is actual in edition e does not, unless
special programming steps (described in the following two bullet points) are taken, fire
cross-edition triggers that are actual in edition e.

 If forward cross-edition trigger Fwd_Xed_1, on table t1, issues cross-edition trigger DML
to table t2, then forward cross-edition trigger Fwd_Xed_2, on table t2, will fire if and
only if there is an ordering relationship between Fwd_Xed_2 and Fwd_Xed_1. Either
Fwd_Xed_2 may be defined using the follows Fwd_Xed_1 syntax, or the ordering relationship
between Fwd_Xed_1 and Fwd_Xed_2 may be established transitively (through one or several
intervening cross-edition triggers).

 Correspondingly, if reverse cross-edition trigger Rev_Xed_1, on table t1, issues cross-
edition trigger DML to table t2, then reverse cross-edition trigger Rev_Xed_2, on table
t2, will fire if and only if there is an ordering relationship between Rev_Xed_2 and
Rev_Xed_1. Again, the ordering may be direct or transitive25.

The apply step: systematically visiting every row to transform the pre-upgrade

representation to the post-upgrade representation

While forward cross-edition triggers are necessary to propagate changes that happen to be made to the pre-upgrade

representation by user activity, having them in place is insufficient to ensure that every row will be transformed. The

simplest way to ensure that every row is transformed is to use a batch process to force each forward cross-edition

trigger to fire. This is trivially achieved by updating each forward cross-edition trigger's base table to set a column that

fires the trigger on update to itself. However, there is a little more to this than you might initially think.

Using DBMS_Sql.Parse() to apply a forward cross-edition trigger

The firing rules for cross-edition triggers dictate that regular DML issued by a session using edition e will not fire

forward cross-edition triggers that are actual in edition e. But the paradigm for EBR requires that a session installing

the upgrade should use the post-upgrade Edition. How can such a session make a relevant forward cross-edition

trigger fire?

DBMS_Sql.Parse() has overloads with the formal parameter Apply_Cross-edtion_Trigger. These overloads also have

the formal parameters Edition and Fire_Apply_Trigger. Apply_Cross-edtion_Trigger has no default value, Edition has

the default value null, and Fire_Apply_Trigger has the default value true. (Other overloads have just the formal

parameter Edition; in these, it has no default value.) Code_22 shows the simple use of the overload with Apply_Cross-

edtion_Trigger to fire the forward cross-edition trigger Fwd_Xed on table t for each row.

-- Code_22

DBMS_Sql.Parse(

C => The_Cursor,

Language_Flag => DBMS_Sql.Native,

Statement => 'update t set c1 = c1', Apply_Cross-edtion_Trigger => 'Fwd_Xed');

When Edition is null, names are resolved in the current Edition of the session that invokes DBMS_Sql.Parse(). The

significance of Fire_Apply_Trigger is explained in "Using explicit SQL for the apply step.” Forward cross-edition

triggers are the only triggers you can apply (cause to fire on every table row on which they are defined).

25 Of course, neither the use of the precedes clause nor the use of the follows must specify circularity. The attempt causes ORA-25023: Cyclic trigger dependency is not allowed.

27 Edition-Based Redefinition Technical Deep Dive / Version 4.0

 Copyright © 2024, Oracle and/or its affiliates / Public

Cross-edition triggers must be idempotent

It is impossible to predict whether a particular row that is to be transformed by a forward cross-edition trigger will be

visited first by ordinary end-user activity or by the apply step. Therefore, it is possible that, when the apply step

happens second, the same transform will be applied twice to the same row. Therefore, the action of a forward cross-

edition trigger must be idempotent by explicit design. (Similar rationale holds for the design of a reverse cross-edition

trigger—even though these are never the subject of an apply step.)

When a replacement table is used, every row in the original table must be reflected in the replacement. If the source

row is visited first by ordinary end-user activity, no further action is needed when the apply step visits the same row.

(This is because the current state of the source row is already reflected in the target replacement table.) The

Ignore_Row_On_Dupkey_Index is provided to allow the rule to be implemented. It is, however, necessary to detect

that the apply step is in progress if this is implemented by merely causing the forward cross-edition trigger that

implements the transform to fire for every row. The boolean function Applying_Cross-edtion_Trigger() in the package

DBMS_Standard is provided for this purpose.

It is possible, of course, that when the forward cross-edition trigger fires in response to ordinary end-user activity, the

source row is already reflected in the target table. If this is the case, then the functional equivalent of a merge must be

done. The Change_Dupkey_Error_Index hint is provided to allow this functionality to be programmed conveniently.

When to enable cross-edition triggers—DBMS_Utility.Wait_On_Pending_DML()
So that there be no “lost updates” during the apply step, the following logic must be used.

 Enable the forward cross-edtion triggers that are mutually related by the follows
relationship.

 Invoke DBMS_Utility.Wait_On_Pending_DML(). This waits until all transactions (other than
the caller’s own) that have locks on the listed tables that began prior to this
function's invocation have either been committed or rolled back.

 Start the apply step.

Using the DBMS_Parallel.Execute() API

If the table that will suffer the apply step has very many rows, then should the operation be done as a single

transaction, ordinary users attempting to change rows in the same table would likely suffer unacceptable waits.

Therefore, the availability of the pre-upgrade application will be improved if the apply step is conducted in separately

committed chunks of reasonable size. Because the transform is required to be idempotent, there is no requirement to

complete the apply step in a single commit unit and no need to keep the wall clock time between the commit of the

separate chunks short. The DBMS_Parallel.Execute() package provides a convenient way to achieve this. It exposes just

the same degrees of freedom as the DBMS_Sql.Parse() overload shown in Code_22 on page 22.

Using explicit SQL for the apply step

While it takes less effort on behalf of the developers using EBR to implement the apply step simply by causing the

forward cross-edition trigger(s) that implement the transform for each row of the table, this is not always the approach

produces the most performant result. This is especially the case when a replacement table is used. A SQL statement

that has the same effect (if one can be written) will use less computational resource than the row-by-row approach

(with associated per row SQL to PL/SQL to SQL context switches) that reusing the forward cross-edition trigger(s)

implies. Code_23 shows how to achieve this, DBMS_Sql.Parse() is used with Fire_Apply_Trigger set to false to indicate

that rather than firing the forward cross-edtion trigger designated by Apply_Cross-edtion_Trigger, the real SQL

statement designated by Statement will be used.

-- Code_23

DBMS_Sql.Parse(

c => The_Cursor,

Language_Flag => DBMS_Sql.Native,

28 Edition-Based Redefinition Technical Deep Dive / Version 4.0

 Copyright © 2024, Oracle and/or its affiliates / Public

Statement => The_Real_SQL_Statement, Apply_Cross-edtion_Trigger => 'Fwd_Xed',

Fire_Apply_Trigger => false);

It is necessary to specify the name of the forward cross-edtion trigger, Fwd_Xed, that implements the same transform

so that the closure of other forward cross-edtion triggers in follows relationship with the Fwd_Xed will fire. Of course,

the DBMS_Parallel.Execute() approach may be used for this approach to the apply step.

Combining several bug fixes in a single EBR exercise

Real applications are often vast and complex, may be developed and maintained by a large team, and suffer from

many independent bugs. Each bug fix might be implemented independently of others by a different developer. There

are two ways to implement a set of fixes at a deployed site.

 Either, a single patch script is developed to transform corresponding to N distinct bug
fixes, going from the start state to the end state in an optimal fashion

 or N separate patch scripts are developed, each to implement the fix for one bug, and these
N scripts are run in succession in an order that has been designed to be appropriate.

The first approach is potentially more efficient, but the second approach will likely require less effort from the team

that develops and maintains the application. Moreover, especially when the application is delivered by an ISV,

different sites where the same application is deployed might need different bug fixes; in such cases, the second

approach offers more flexibility. When the first approach is implemented using EBR, it is implausible that the

advanced firing rules for cross-edition triggers will be helpful. The exercise will use only a single new edition and no

cross-edtion trigger Trg2 will implement logic to respond to a change that a different cross-edtion trigger Trg1 will

make. (Rather, Trg1 will implement directly the logic that Trg2 otherwise would have implemented.)

However, when the second approach is implemented using EBR, it might happen that one cross-edtion trigger Trg2

must fire only after another cross-edtion trigger Trg1 has fired because, in the ordering scheme for individual fixes, it

is realized that Trg2 (on table t2) must read data that Trg1 (on table t1) must first have changed. In relatively rare

cases, not only might Trg1 do DML to t2, but also Trg2 might do DML to t1—in other words, a possibility of circularity

might arise.

The conceptually simple way to avoid such circularity is to use a new edition for each fix, where the parent-child order of

the editions reflects the designed order of applying the fixes. End-user sessions would use only the ultimate ancestor

and descendent editions. The fact that cross-edtion trigger DML from a forward cross-edtion trigger will fire only

those forward cross-edtion triggers in descendent editions (and correspondingly for reverse cross-edtion triggers)

avoids circular firing. However, it is less cumbersome to use only a single new edition; in this case, the fact that cross-

edtion trigger DML will never fire cross-edtion triggers in the identical Edition unless this is explicitly requested with a

follows or precedes mutual relationship avoids circular firing.

29 Edition-Based Redefinition Technical Deep Dive / Version 4.0

 Copyright © 2024, Oracle and/or its affiliates / Public

Conclusion

This whitepaper has explained how edition-based redefinition (EBR) allows an application’s database objects to be

patched or upgraded online while the application is in use. It also draws attention to the characteristics that

distinguish the capability markedly from other Oracle Database capabilities supporting the other subgoals of high

availability.

An application’s database backend must be specifically prepared to use EBR. This will need a new version of the

application as the vehicle. The architect will design the latest version, which upgrade scripts created by the developers

will deliver. The upgrade to the EBR-readied version must be done in downtime because tables will be renamed, and

dependent objects will be invalidated. Revalidation is possible only when an Editioning View covers each table and

restores its former name.

An existing application (before it is EBR-readied) needs to be redesigned with some non-trivial changes by the

application architect if it meets any of the below conditions:

 Has unfavorable occurrences of objects that cannot be editioned that depend on objects
that will be editioned

 Has occurrences of evolved ADTs owned by users that will be editions-enabled
 Has occurrences of views that are the source or target of foreign key constraints owned

by users that will be editions-enabled

Once the application has been EBR-readied, subsequent upgrades and patches may be done online. Such scripted

EBR exercises, just like scripted classical offline upgrades and patches, will be designed by the application’s architect

and implemented by the application’s developers. An administrator at the deployed site of an application cannot

perform an online application upgrade unless the application’s developers have delivered the upgrade scripts as an

EBR exercise. This is not an issue for a new application that can quickly be built to be EBR-readied right before the

onset.

Below are typical use cases in which EBR can be used to maintain application availability during an application

upgrade. A one-time configuration step is needed to enable EBR for a database.

CHANGE TYPE FEATURE

PL/SQL object changes Editions

Table structure changes Editions and Editioning Views

Table data changes Editions, Editioning Views, and Cross-edition Triggers

30 Edition-Based Redefinition Technical Deep Dive / Version 4.0

 Copyright © 2024, Oracle and/or its affiliates / Public

Connect with us

Call +1.800.ORACLE1 or visit oracle.com. Outside North America, find your local office at: oracle.com/contact.

 blogs.oracle.com facebook.com/oracle twitter.com/oracle

Copyright © 2024, Oracle and/or its affiliates. This document is provided for information purposes only, and the contents hereof are subject to change without notice. This document is

not warranted to be error-free, nor subject to any other warranties or conditions, whether expressed orally or implied in law, including implied warranties and conditions of merchantability

or fitness for a particular purpose. We specifically disclaim any liability with respect to this document, and no contractual obligations are formed either directly or indirectly by this document.

This document may not be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, without our prior written permission.

Oracle, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

