

Oracle Database Consolidation Best Practices

For Cloud & On-Premises

July 2020

Safe harbor statement

_

The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated into any contract. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in making purchasing decisions. The development, release, timing, and pricing of any features or functionality described for Oracle's products may change and remains at the sole discretion of Oracle Corporation.

Agenda

- Business Goals of Consolidation
- Technical Challenges with Consolidation
- Providing Isolation in a Consolidated Environment
- Exadata Cloud & On-Premises
- Why Consolidate on Exadata?
- Implementing Consolidation

Database Consolidation Business Goals

Reduce Costs

- Combine Multiple Smaller Systems Into Fewer Larger Systems
- Take Advantage of More Powerful Computer Systems
- Share Excess Capacity Between Business Applications

Simplify Operations

- Fewer Systems to Operate & Maintain
- Standardize on a Common Platform for All Databases

Improve Security

- One Standardized Platform with Common Security Practices
- Fewer Systems to Secure

Database Consolidation Challenges

Availability

- Fewer Systems Results in Higher Risk
- Greater Impact of Potential Failures
- Requirement to Align Maintenance Schedules

Performance

- Greater Risk of Databases Impacting Performance of Each Other
- Higher Demand on System Resources (CPU, I/O, etc.)
- Increased Demand for Capacity Planning
- Requirement to manage the "Noisy Neighbor" Problem

Why is Isolation Required?

Physical Location	PROD vs. DR Sites, Location of Users, Integration, Network Bandwidth, etc.
Administrative Separation	Multiple DBA Teams
Security Separation	Quarantine Networks, highly sensitive data (such as PCI, PII), etc.
Maintenance	Database Version Requirements, Upgrade Schedules
Blast Radius	Scope of Failure Impact
Resource Management	Control Noisy Neighbors

Methods for Isolation

Physical DB Servers

Virtual Machines

Isolation

More

Many DBs in one Server

Database 19c Multitenant

Oracle Resource Manager

VMs have good isolation but poor efficiency and high management

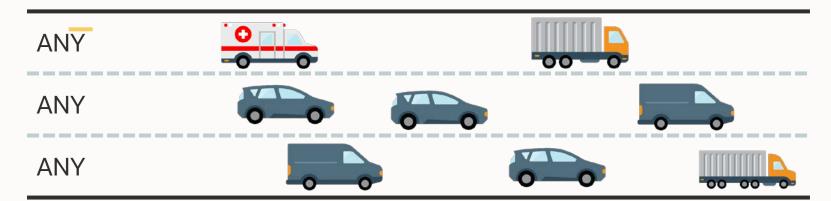
- VMs have separate OS, memory, CPUs, and patching
- Isolation without need to trust DBA, System Admin

Database consolidation in a single OS is highly efficient but less isolated

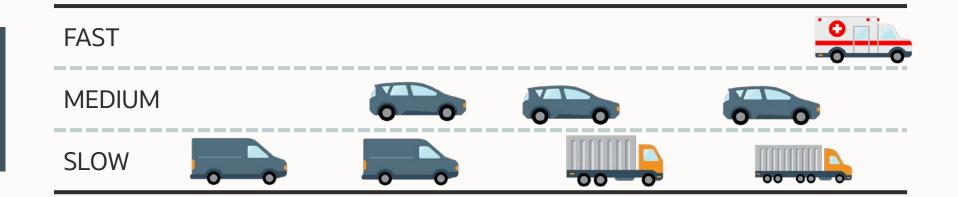
- DB Resource manager isolation adds no overhead
- Resources can be shared much more dynamically
- But, must trust admins to configure systems correctly

Best strategy is to combine VMs with database native consolidation

- Multiple trusted DBs or Pluggable DBs in a VM
- Few VMs per server to limit overhead of fragmenting CPUs/memory/patching etc.


Control Noisy Neighbors with Resource Manger

Controls the entire resource stack from CPU to I/O


Isolate Workload using Resource Management

CPU, Memory, Processes, Storage Network, Flash Storage, I/O

Without Exadata Resource Management, any database can slow down others.

Exadata Allows Control over which Databases Run Faster.

Exadata: Full Choice of Deployment Models

On-Premises

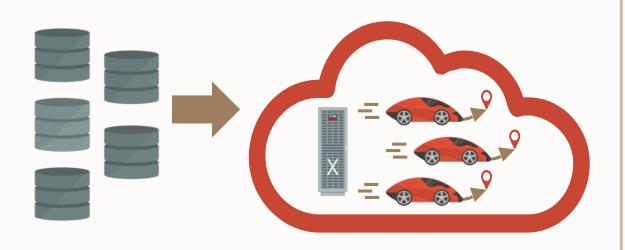
Cloud@Customer

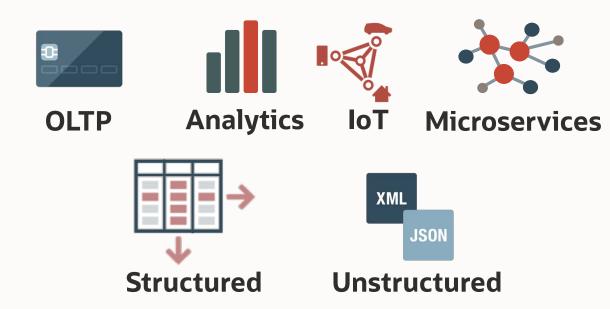
Public Cloud

Exadata Database Machine

Exadata Cloud at Customer

Exadata Cloud Service


Database Consolidation Applies in all Deployment Models Cloud Provides Additional Automation & Standardization


Oracle Autonomous Database – Dedicated & Cloud@Customer

The Ultimate Database Consolidation Platform

Consolidation, Cloud Transformation, Database as a Service

Any Workload or Mix of Workloads Any Scale

Exadata – Continuous Innovation

• IO Priorities

Data Mining Offload

Offload Decrypt on Scans

Dramatically Better Performance and Cost

- Exadata Cloud at Customer
- In-Memory OLTP Acceleration
- In-Memory Columnar in Flash
- Exadata Cloud Service
- Smart Fusion Block Transfer
- In-Memory Fault Tolerance
- Direct-to-wire Protocol
- JSON and XML offload
- Instant failure detection

- Hot Swappable Flash
- 25 GigE Client Network

- Network Resource Management
- Multitenant Aware Resource Mgmt
- Prioritized File Recovery

- 3D V-NAND
- Flash

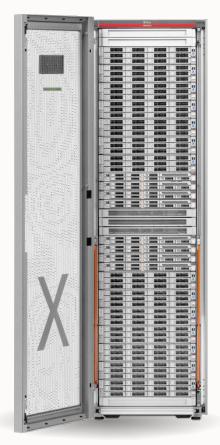
• Software-in-

Silicon

- nart Softwar Database Aware Flash Cache
 - Storage Indexes
 - Columnar Compression
- Smart Scan
- InfiniBand Scale-Out

- Unified InfiniBand
- DB Processors in Storage
- Scale-Out Storage
- vart Hardw Scale-Out Servers

- Tiered Disk/ Flash PCle NVMe Flash


Exadata Vision: Dramatically Better Database Platform

<u>Ideal Database</u> <u>Hardware</u>

Leading edge enterprise-grade components for <u>maximum</u> <u>performance</u> and <u>value</u>

Smart System Software

Database-aware algorithms vastly improve the effectiveness of <u>ALL workloads</u>

Automated infrastructure integrated with <u>Oracle</u> Autonomous Database

Database Platform Leadership Since 2008

	Sep 2008 Xeon E5430 Harpertown	Sep 2009 Xeon E5540 Nehalem	Sep 2010 Xeon X5670 Westmere	Sep 2012 Xeon E5-2690 Sandy Bridge	Nov 2013 Xeon E5-2697v2 Ivy Bridge	Dec 2014 Xeon E5-2699v3 Haswell	Apr 2016 Xeon E5-2699v4 Broadwell	Oct 2017 Xeon 8160 Skylake	Apr 2019 Xeon 8260 Cascade Lake	Sep 2019 Xeon 8260 Cascade Lake	V1 – X8M Growth
Storage (TB)	168	336	504	504	672	1344	1344	1.68	2.35	2.3 PB	14 X
Flash Cache (TB)	0	5.3	5.3	22.4	44.8	89.6	179.2	358	358	358 TB	64 X
CPU (cores)	64	64	96	128	192	288	352	384	384	384	6 X
Max Mem (GB)	256	576	1152	2048	4096	6144	12288	12288	12	12 TB	48 X
Internal Network Fabric (GB/s)	20	40	40	40	80	80	80	80	80	200 Gb/s	10x
Ethernet (Gb/s)	8	24	184	400	400	400	400	800	800	800 Gb/s	100 X
Scan Rate (GB/s)	14	50	75	100	100	263	301	350	560	560 GB/s	40 X
Read IOPS (M)	.05	1	1.5	1.5	2.66	4.14	5.6	5.97	6.57	16 M	320 X

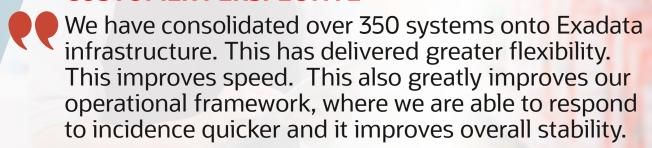
Why Consolidate Databases onto Exadata?

- Cost
- Simplicity
- Security
- Availability
- Performance

Why Consolidate Databases onto Exadata?

- Cost
- Simplicity
- Security
- Availability
- Performance

Target Consolidates Over 350 Systems onto Exadata


\$1.33M reduction in acquisition cost

10x faster backup time

250% improvement in Order Flow

CUSTOMER PERSPECTIVE

— Tony Kadlec, Senior VP, Infrastructure and Operations, Target

NTT docomo: MoBills (Mobile Billing System)

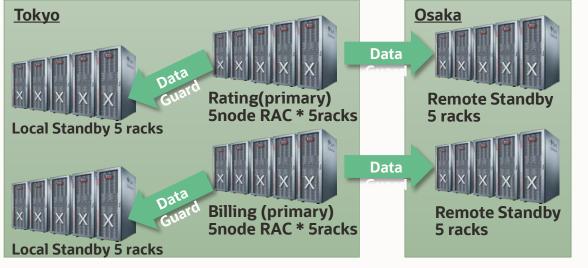
Maximum Reduced Reduced **Faster Data Center Benefits Billing Processing Availability Operational Cost Introduction Cost Cost Savings Local & Remote** 90% Space "MoBills is a very important position as a mission-critical system to **10X** speedup 50% 25% promote efforts toward the realization of "+d". Oracle Exadata is Reduction **Standby** running very stable as a expected performance. We will continue to use the "Oracle Exadata" and we would like to establish a further advantage for our business." 3 million - Shimamura, Manager, Information System Department, NTT docomo SQL /sec

Business Objectives

- Real-Time Billing Platform for 66 million customer
- Dramatically improve performance and availability
- Reduce cost and complexity

Solution

- Oracle Exadata: 30 racks
- Oracle MAA (RAC / Active Data Guard - Local & Remote Standby database)


Pre-Exadata

- Real-Time Billing Processing
 - High-end SMP Server
- + High-end Storage: 350 racks
- Storage Mirror Backup
- Storage Mirror Replication
- Oracle 9i Database Release 2

Exadata MAA

30 racks / Local & Remote Standby / RMAN backup

Exadata Cost Drivers

Elastic Configurations

- Match Compute vs. Storage to Customer Needs
- More Flexibility than Standard Fractional Configurations
- Enables Customers to Control Costs by Choosing the Right Configuration

Flexible Storage Options

- High Capacity, Extreme Flash, Extended Storage
- Enable use of the Specific Type of Storage for Each Use-Case

High Consolidation Density

- Exadata Supports Higher Consolidation Density than Other Platforms
- Hundreds or Thousands of Databases Per Rack
- Enables The Maximum Number of Databases to be Run in the Smallest Configuration

Why Consolidate Databases onto Exadata?

- Cost
- Simplicity
- Security
- Availability
- Performance

Thousands of Critical Deployments Since 2008

Financial Services, Telecoms, Healthcare, Retail, Public Sector, Travel, Manufacturing, Professional Services, Consumer Goods, Education, Utilities, ...

Best for ALL workloads

- Petabyte Warehouses
- Super Critical Systems
 - Financial Trading
 - Process manufacturing
 - E-commerce
- Packaged Applications
 - SAP, Oracle, Siebel, PSFT, ...
- Database Consolidation

86% of Fortune Global 100 Run Exadata



YESTERDAY'S SOLUTIONS DON'T MEET THE MARK

FROM 300+ DIFFERENT DATA BASE STACKS TO ...

ORACLE solaris Windows IBM Power 5 Power 6 Power 8 redhat. Intel x86 AMD x86 HP RISC MD UX suse aliabi BROCADE[™] CISCO Switching Technology NetApp Disk Pools EMC² Tape Pools NetBackup 7.5 HITACHI EMC NetWorker

... DATA BASE AS A SERVICE

Goals of Standardization

Any Workload

One Standard Platform for ANY workload including DW, OLTP, and Mixed Workloads

Any Scale

One Standard Platform for ANY scale of data and user concurrency from large to small

Any Availability Requirement

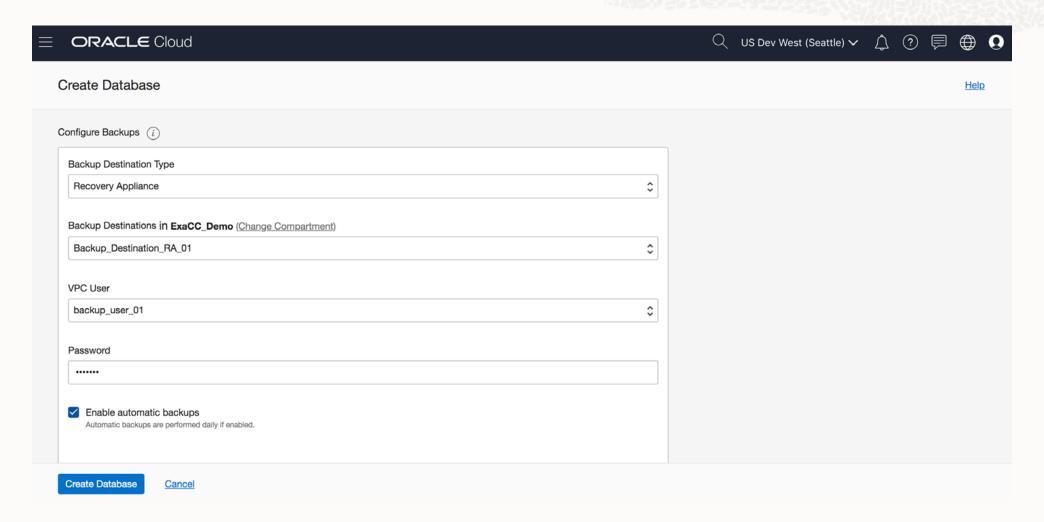
• One Standard Platform for all MAA References Architectures (Bronze, Silver, Gold, Platinum)

Simplicity with Exadata

One Standardized Platform and Operational Practices

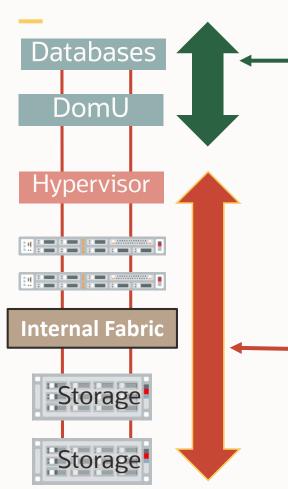
- Single configuration runs databases of any size, complexity, or workload
- RAC, non-RAC, DW, OLTP, Critical, non-Critical, High Performance & Low
- Thousands of customers with same configuration and practices

Complete & Integrated


- VM, O/S, Storage S/W, Clusterware, Volume Manager, DBMS
- Delivered as a single bundle for install, patch, upgrade, etc.

Automated Management & Operations

- Built-in configuration checker
- Integrated Management UI (Oracle Enterprise Manager) for full stack



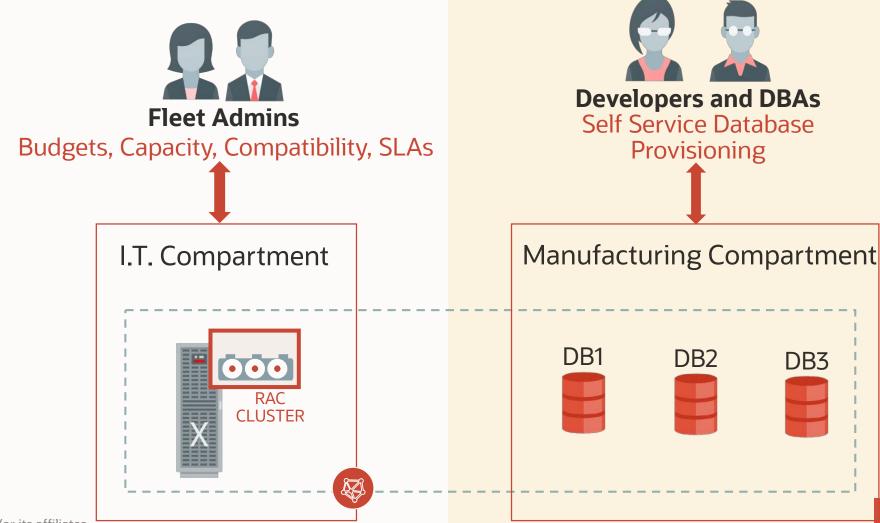
Even Simpler with Exadata Cloud Service & Cloud@Customer

Cloud Management Model

Customer invokes Oracle Automation for DB and VM lifecycle operations

- Automated: create, delete, patch, backup, scale up/down, etc.
- Runs all supported Oracle Database versions 11.2.0.4 to 19c
- Only Customer has DomU and DB administrator credentials
- Customer can install and manage additional software in DomU

Oracle owns, manages, and controls hypervisor, DB servers, storage servers, InfiniBand network, etc.


No customer access

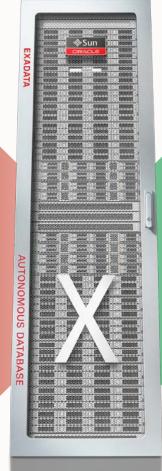
Oracle Cloud Infrastructure Global Footprint

July 2020: 24 Regions Live, 12 Planned

Autonomous Database Dedicated - Roles

Why Consolidate Databases onto Exadata?

- Cost
- Simplicity
- Security
- Availability
- Performance


Security

Exadata Database Machine Security

- Industry policing: Banks,
 Government, Retail, Telcos
- Advanced Intrusion Detection Environment (AIDE)
- Regular security scans
- FIPS 140-2 certification
- PCI-DSS compliance
- Data and network encryption
- Linux minimal distribution
- Secure erase
- System lockdown
- Live kernel patching

- Identity Management
- Transparent Data Encryption
- Network Encryption
- Database Vault
- Audit Vault
- Key Vault
- Database Firewall
- Virtual Private Database
- Label Security
- Data Redaction
- Data Masking & Subsetting

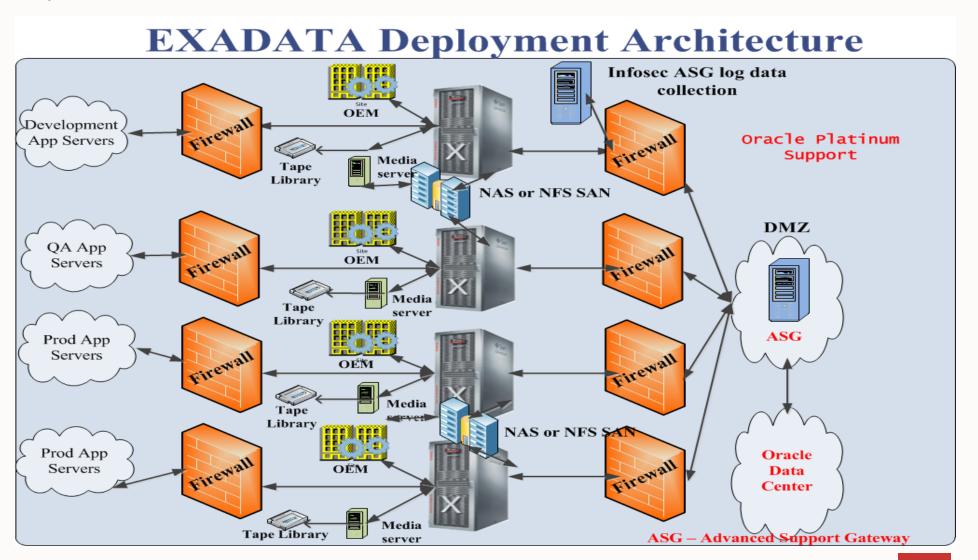
Enhanced Security Posture with Exadata

Minimize Attack Surface

- Exadata installation only uses required system components
- Exadata includes the full-stack (VM, OS, Drivers, Storage S/W, Clusterware, and DBMS)

Security Scans & Fixes

- Pre-Scanned Prior to Shipment (base install & software updates)
- Scanned with industry-leading security scanners
- Integrated Security Fixes


Intrusion Detection

- Advanced Intrusion Detection Environment (A.I.D.E.)
- SHA256 hash signatures applied and validated on critical system objects

Exadata Security In Action at NYSE

Why Consolidate Databases onto Exadata?

- Cost
- Simplicity
- Security
- Availability
- Performance

High Availability for Maximum Application Uptime

"Exadata achieved AL4 fault tolerance in a Maximum Availability Architecture configuration"

Only other AL4 Systems

- IBM z Systems
- HPE Integrity NonStop & Superdome
- Fujitsu GS & BS2000
- NEC FT Server/320 Series
- Stratus ftServer & V Series
- Unisys Dorado

Downtime is Prevalent and Businesses are at Risk

40%

of businesses fail to reopen after experiencing a disaster

Source:

https://informationprotected.com/stud y-40-percent-businesses-fail-reopendisaster/

91%

of companies have experienced unplanned data center outages in the past 24 months

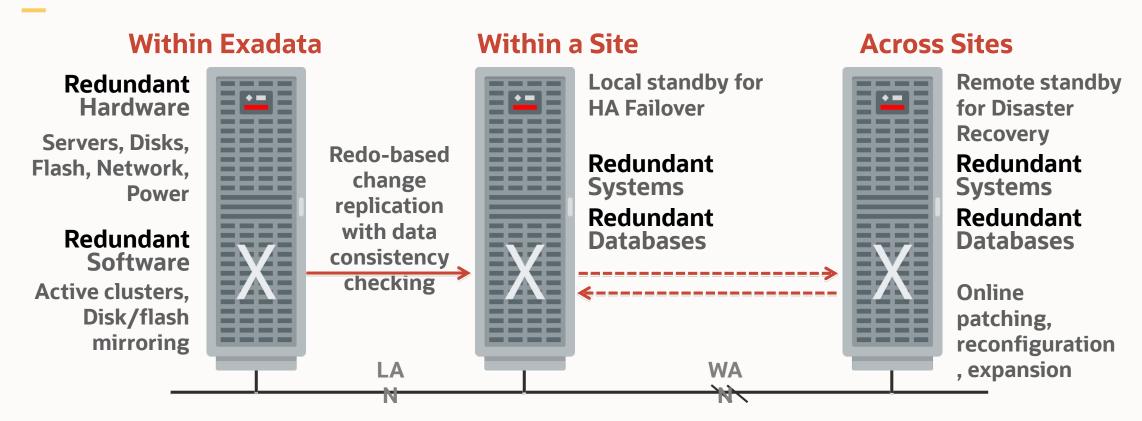
Source:

https://www.healthitoutcomes.com/doc/beware-the-high-cost-of-data-center-outages-0001

75%

of small to medium sized business don't have a disaster recovery plan in place

Source: http://gazette.com/7-shocking-disaster-recovery-stats-for-small-business-owners/article/1590436



Oracle Maximum Availability Architecture (MAA) Solution Options

Exadata Maximum Availability Architecture (MAA) Blueprint for HA: Designed and Tested to Handle All Failure Scenarios

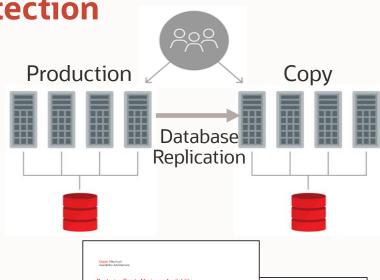
Fastest RAC Instance and Node Failure Recovery | Fastest Backup - RMAN Offload to Storage Deep ASM Mirroring Integration | Fastest Data Guard Redo Apply | Complete Failure Testing with Lowest Brownouts

Oracle Maximum Availability Architecture (MAA)

High Availability, Disaster Recovery and Data Protection

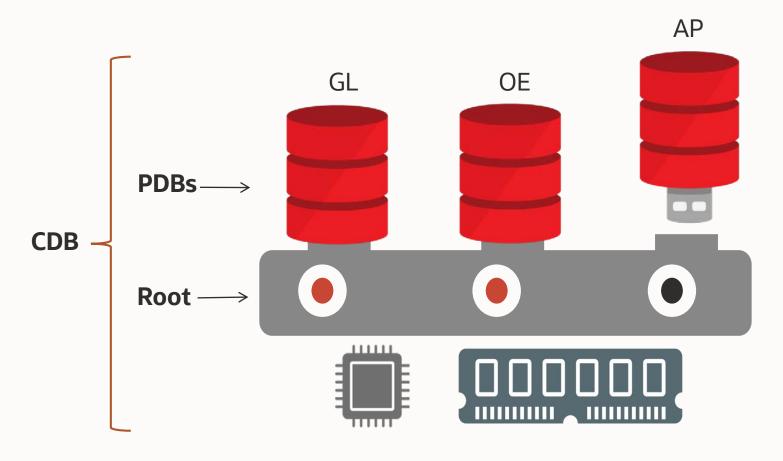
Applying 25+ years of lessons learned in solving toughest HA problems around the world

Solutions to reduce downtime for planned & unplanned outages for Enterprise customers with most demanding workloads and requirements


Service level oriented architectures Books, white papers, blueprints

MAA integrated Engineered Systems

Continuous feedback into products


https://oracle.com/goto/maa

Oracle Multitenant Highest Density Database Consolidation

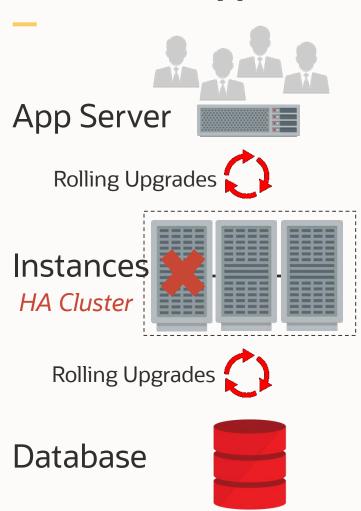
Self-contained PDB for each application

- Portability (via pluggability)
- Rapid provisioning (via clones)
- Applications run unchanged
- PDB upgrades via plug/unplug

Common operations performed at CDB level

- Manage many as one (upgrade, backups, HA)
- Granular control when appropriate
- Simple DR

Shared memory and background processes


More applications per server

MAA and Multitenant

Solutions for planned / unplanned outages

Oracle Real Application Clusters (Oracle RAC)

Enables shared access by two or more database instances to a single Oracle Database

Very Scalable

- All instances active
- Add capacity online
- Ideal for database consolidation

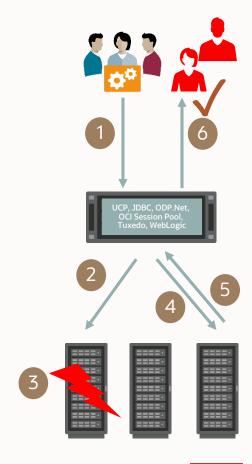
Highly Available

- Auto-failover of services to an already running instance
- Outage is transparent to user, in-flight transactions succeed
- Zero downtime rolling maintenance

Transparent Application Continuity

Preserving and Replaying Database Requests Across Interruptions

Failures in the database stack & connectivity lead to


- Interruptions in user sessions
- Unknown state of transactions

Application Continuity masks errors from applications by recovering session state and replaying in-flight requests

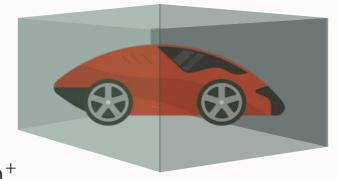
- Replay performed on a surviving RAC instance or Data Guard standby
 - If transaction already committed: no action;
 - if replay successful: app continues;
 - if request non-recoverable: app handles errors usual way
- Eliminates the need to create custom exception code

Application Continuity extends Oracle's HA capabilities

end-to-end – from bottom to top, without code changes.

Autonomous Database is Highly Available

Automatically protects from all types of downtime:


Failures – Exadata⁺, RAC⁺, App Continuity⁺

Site Outages - Autonomous Data Guard +

Maintenance - RAC Rolling Updates⁺

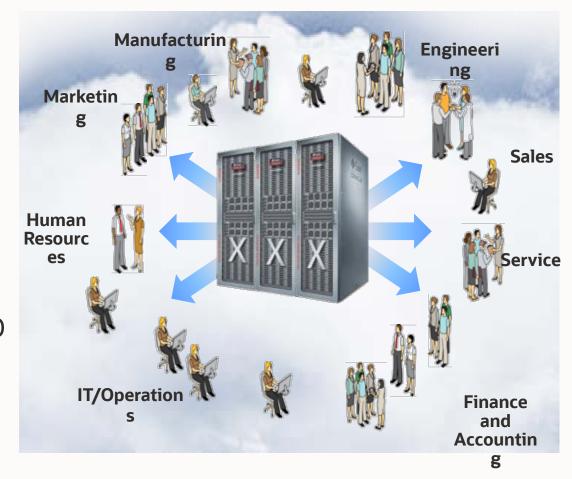
Changes – Online Indexing, Edition Based Redefinition⁺

User Errors – Flashback Database +, Table +, Query+

No ridiculous exclusions to availability in fine print

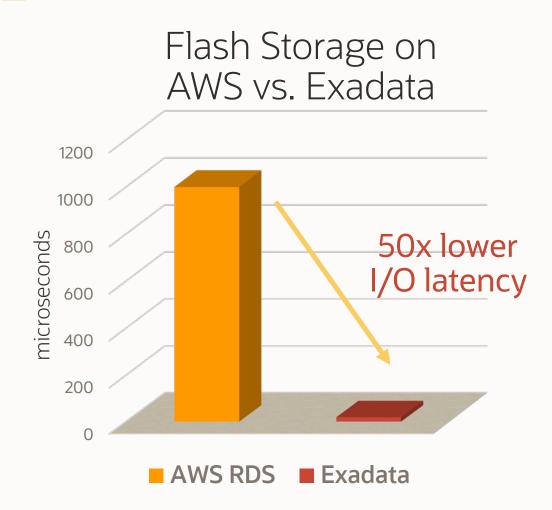
• Amazon excludes planned downtime, database bugs, regional outages, etc.

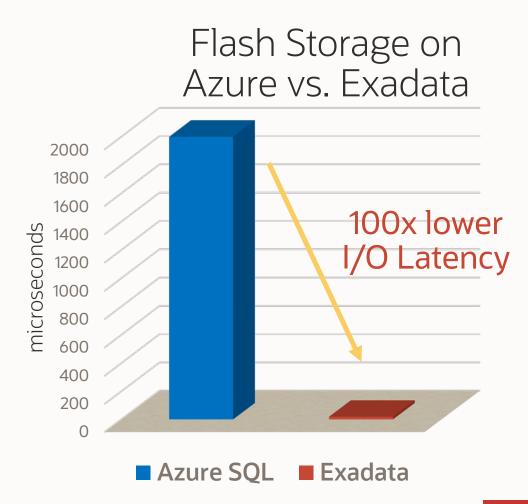
* Unique to Oracle


Why Consolidate Databases onto Exadata?

- Cost
- Simplicity
- Security
- Availability
- Performance

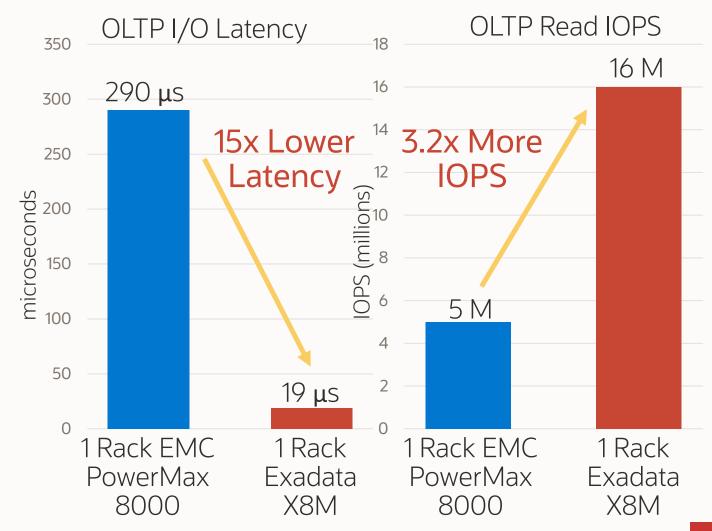
Exadata for Consolidation and Database as a Service Best Mixed Workload Performance, No Bottlenecks, Performance Isolation, Availability


- Any bottleneck on consolidated system can stall all workloads. Exadata eliminates bottlenecks
 - Highest network bandwidth, storage offload
 - Millions of I/Os per second, unique log optimizations
- Exadata uniquely prioritizes I/O by pluggable database, job, user, service, etc.
- Exadata uniquely prioritizes critical DB network messages through entire fabric
- Exadata uniquely unifies CPU prioritization with I/O prioritization for end-to-end assurance



Exadata X8M Storage Performance

>50x faster than Flash Block Storage on AWS or Azure



Many Times Faster than All-Flash EMC

Single rack Exadata X8M beats the fastest EMC PowerMax all-flash array

- 7.4x higher throughput
- 3.2x more IOPS
- 15x lower latency

Exadata performance scales as more racks are added

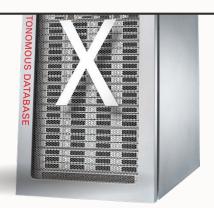
Exadata X8 Performance Improvements

Performance Scales Linearly as More Racks are Added

560 GB/sec Analytics

• **60%** more for all-Flash storage vs X7 *Scan a Terabyte in under 2 seconds!*

6.57 Million OLTP Read IOPS


- 25% more per storage server vs X7
- 3.5 million IOPS under 1/4 millisecond

Each rack has up to...

3.0 PB (raw) Disk

920 TB (raw) Flash

Smart System Software Highlights

Smart Analytics

Move **queries to storage**, not storage to queries

Automatically **offload and parallelize** queries across all storage servers

100X faster analytics

Smart Storage

Hybrid Columnar Compression reduces space usage by **10X**

Database-aware **Flash Caching** gives speed of flash with capacity of disk

PCI Flash

Smart OLTP

Special InfiniBand protocol enables highest speed, lowest latency OLTP

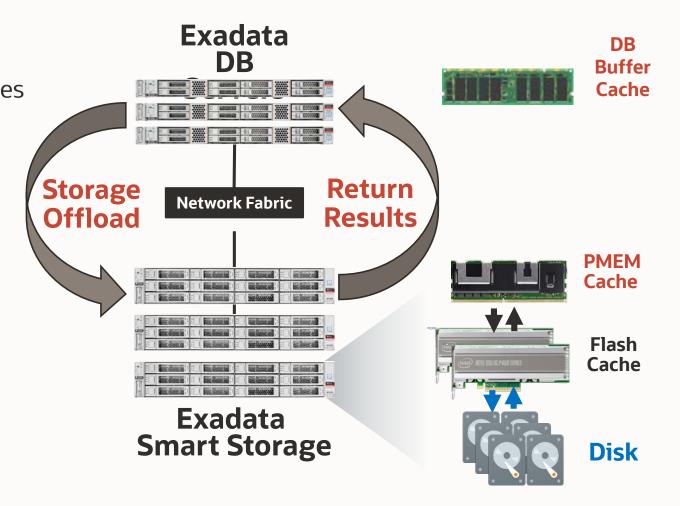
Ultra-fast transactions using DB optimized **flash logging** algorithms

Fault-tolerant In-Memory DB by mirroring memory across servers

Smart Consolidation

Workload prioritization from CPU to network to storage ensures QoS

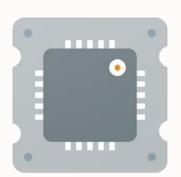
4X more Databases in same hardware

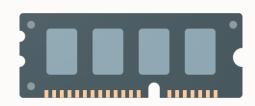


Exadata Performance & Consolidation

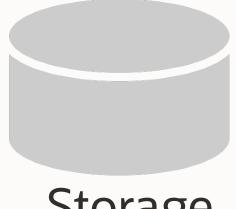
Fundamental Architectural Differences

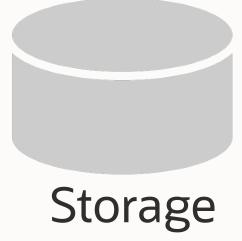
Unlike traditional compute & storage architectures
Database Functions are performed <u>in</u> storage
Database Aware Storage
I/O Prioritization based on Database Needs
Caching of data, not storage tiering

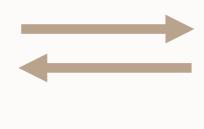



Implementing Consolidation on Exadata

- 1. Inventory Databases to be Consolidated
- 2. Gather Resource Utilization & Growth Metrics
- 3. Map Resource Requirements to New Platform
- 4. Determine Database Isolation Requirements & Methods
- 5. Select Consolidation Method for Databases
- 6. Group Databases into HA Tiers
- 7. Perform Bin-Packing of Databases into Resource Shapes
- 8. Create Resource Plans for Databases


The 4 Dimensions of Sizing



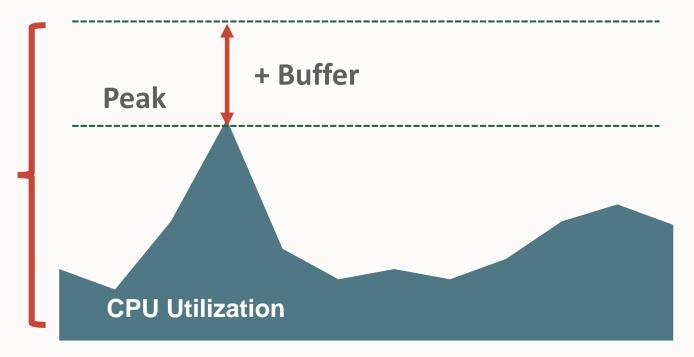


Memory

Map Resource Utilization to New Platform

Applies to both Cloud and On-Premises Deployments

CPU Power varies by generation


- Use Oracle M-Values to normalize
- Use AWR and EMCC to track history

Peak CPU Utilization

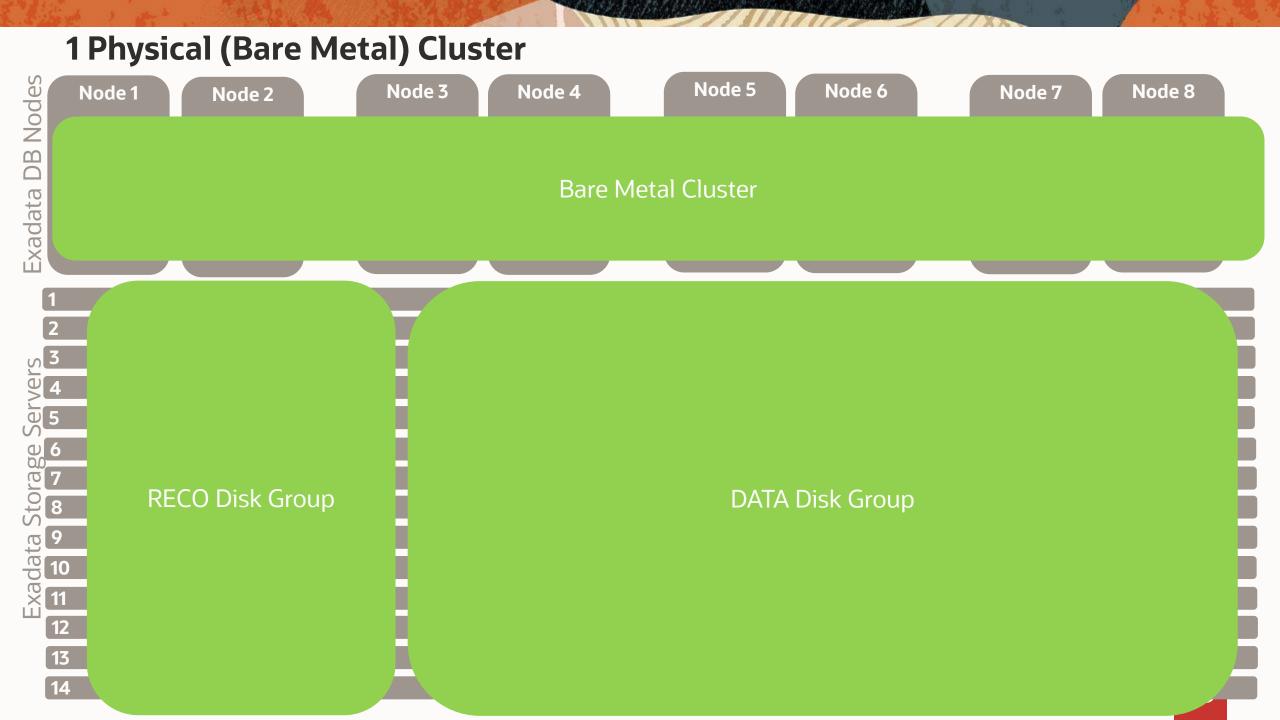
- Size for peak processing
- Varies depending on business cycle
- Use Auto-Scale in Autonomous Database

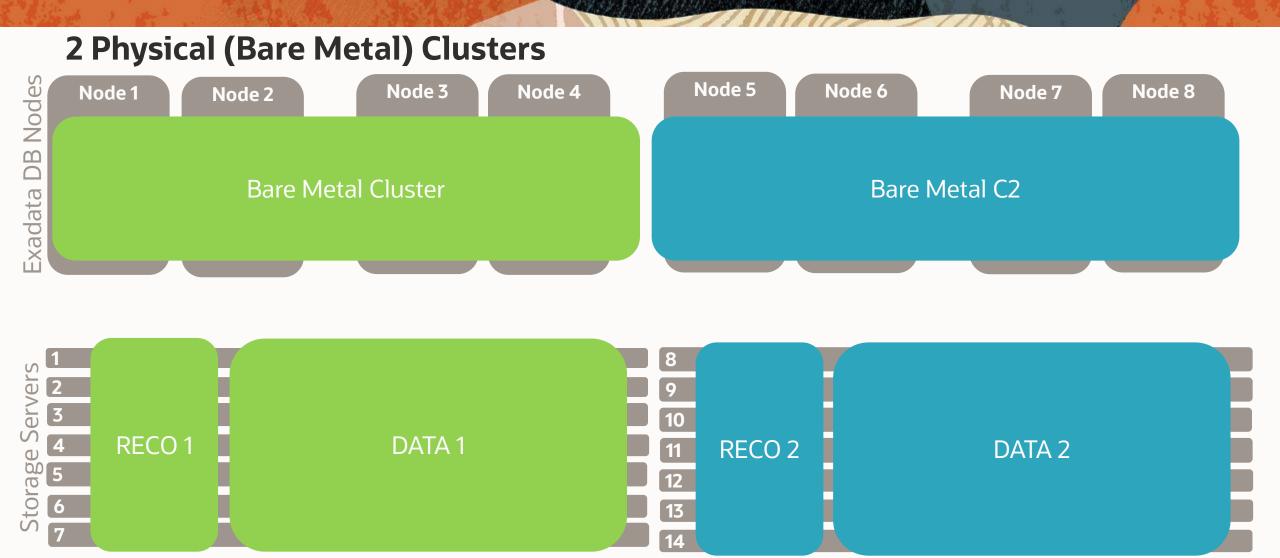
Buffer of Capacity

- Needed for Contingency
- 10-30% buffer is desirable
- No need to consume OCPU for Buffer in Cloud

Exadata System Shapes

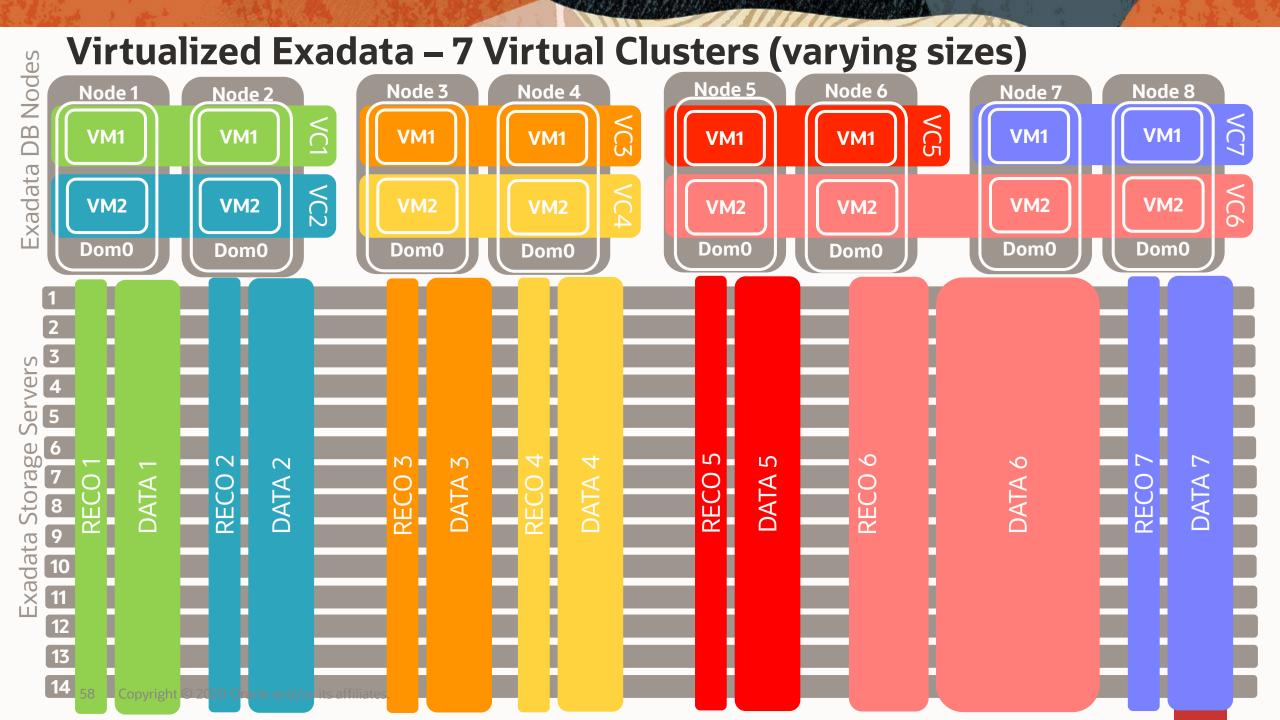
Isolation by Virtual or Physical Clusters


- Isolate to meet business requirements (ex: Data Governance)
- Isolate by environment (DEV, TEST, QA, DR, etc.)
- Isolate by maintenance/upgrade schedules
- Storage Allocated to Each Cluster


Examples:

- 1 Physical (On-Premise Bare Metal) Cluster in 1 Rack
- 2 Physical (On-Premise Bare Metal) Clusters in 1 Rack
- 1 Virtual Cluster in 1 Rack
- 2 Virtual Clusters in 1 Rack
- 8 Virtual Clusters in 1 Rack
- 7 Virtual Clusters (varying sizes of clusters)

*Note: Not all system shape variations are available in all deployment models & versions.



1 Virtual Cluster Nodes Node 5 Node 6 Node 8 Node 3 Node 4 Node 1 Node 2 Node 7 DB VC1 VM1 VM1 VM1 VM1 VM1 VM1 VM1 VM1 Exadata Dom0 Dom₀ Dom₀ Dom₀ Dom0 Dom₀ Dom₀ Dom0 Storage 2 DATA Disk Group **RECO Disk Group** 12

2 Virtual Clusters Nodes Node 5 Node 6 Node 3 Node 4 Node 8 Node 1 Node 2 Node 7 VM1 VM1 VM1 VM1 VM1 VM₁ VM₁ VM1 \mathbf{m} Exadata VM2 VM2 VM2 VM2 VM2 VM2 VM2 VM2 Dom₀ Dom₀ Dom₀ Dom₀ Dom₀ Dom₀ Dom₀ Dom₀ 7 Storage 2 9 RECO Ш 12

Database Resource Shapes & Plans

Resources Allocated to Databases by Resource Manager

- Easier to meet business objectives
- More flexible than Virtual Machines
- Simpler to Change
- Does not add Admin Overhead like Virtual Machines
- OLTP vs. DW Shapes

Layered Into Exadata System Shapes

- System Shapes provide ISOLATION
- DB Resource Shapes facilitate Resource Management

OLTP DB Resource Shapes

Layered into Exadata System Shapes

				Memory				Pro	cesses	IORM		
Shape	CPU_COUNT	Nodes	Total	DB Memory	SGA	PGA Target	PGA Limit	Sessions	PQ Processes	Share	Limit %	FlashCache Limit
OLTP Small 2V	4	VM 2	8	30 GB	15 GB	7.5 GB	15 GB	128	4	8	5%	3.7 TB
OLTP Medium 2V	8	VM 2	16	60 GB	30 GB	22 GB	30 GB	256	8	16	5%	7.4 TB
OLTP Large 2V	16	VM 2	32	120 GB	60 GB	30 GB	60 GB	512	16	32	5%	14.9 TB
OLTP 2X Large 2V	32	VM 2	64	240 GB	120 GB	60 GB	120 GB	1024	32	64	8%	29.8 TB
OLTP 3X Large 2V	48	VM 2	96	360 GB	180 GB	90 GB	180 GB	1536	48	96	12%	44.8 TB
OLTP 3X Large 4V	48	VM 4	192	360 GB	180 GB	90 GB	180 GB	1536	48	192	25%	89.6 TB
OLTP 6X Large 2V	96	VM 2	192	720 GB	360 GB	180 GB	360 GB	3072	96	192	25%	89.6 TB
OLTP 6X Large 2B	96	BM 2	192	1.5 TB	768 GB	384 GB	768 GB	3072	96	192	25%	89.6 TB
OLTP 12X Large 4B	96	BM 4	384	1.5 TB	768 GB	384 GB	768 GB	3072	96	384	50%	179.2 TB
OLTP 24X Large 8B	96	BM 8	768	1.5 TB	768 GB	384 GB	768 GB	3072	96	768	100%	358.4 TB

DW DB Resource Shapes

Layered into Exadata System Shapes

				Memory				Pro	cesses	IORM		
Shape	CPU_COUNT	Nodes	Total	DB Memory	SGA	PGA Target	PGA Limit	Sessions	PQ Processes	Share	Limit %	FlashCache Limit
DW Small 2V	4	VM 2	8	30 GB	10 GB	10 GB	20 GB	32	16	8	5%	3.7 TB
DW Medium 2V	8	VM 2	16	60 GB	20 GB	20 GB	40 GB	64	32	16	5%	7.4 TB
DW Large 2V	16	VM 2	32	120 GB	40 GB	40 GB	80 GB	128	64	32	5%	14.9 TB
DW 2X Large 2V	32	VM 2	64	240 GB	80 GB	80 GB	160 GB	256	128	64	8%	29.8 TB
DW 3X Large 2V	48	VM 2	96	360 GB	120 GB	120 GB	240 GB	384	192	96	12%	44.8 TB
DW 3X Large 4V	48	VM 4	192	360 GB	120 GB	120 GB	240 GB	384	192	96	25%	89.6 TB
DW 6X Large 2V	96	VM 2	192	720 GB	240 GB	240 GB	480 GB	768	384	192	25%	89.6 TB
DW 6X Large 2B	96	BM 2	192	1.5 TB	360 GB	588 GB	1176 GB	768	384	192	25%	89.6 TB
DW 12X Large 4B	96	BM 4	384	1.5 TB	360 GB	588 GB	1176 GB	768	384	384	50%	179.2 TB
DW 24X Large 8B	96	BM 8	768	1.5 TB	360 GB	588 GB	1176 GB	768	384	768	100%	358.4 TB

Implementing Consolidation on Exadata

- 1. Inventory Databases to be Consolidated
- 2. Gather Resource Utilization & Growth Metrics
- 3. Map Resource Requirements to New Platform
- 4. Determine Database Isolation Requirements & Methods
- 5. Select Consolidation Method for Databases
- 6. Group Databases into HA Tiers
- 7. Perform Bin-Packing of Databases into Resource Shapes
- 8. Create Resource Plans for Databases

ORACLE

Our mission is to help people see data in new ways, discover insights, unlock endless possibilities.

