An Overview on Globalizing
Oracle PHP Applications

An Oracle White Paper
January 2004

ORACLE

An Overview on Globalizing Oracle PHP

Applications

TNEEOAUCHON 1.ttt ettt et ettt e e eenea 3
Aspects of GlobaliZationcccccucueiiiiiiininininiinccceees 3
Data INtegrity. .o 3
String Manipulation ... 4
Text TraAnSIAtION c.eeciieiicieiectece ettt ettt et evenens 4
Data PreSentationN. .uciciecciecieceieeieeee ettt ettt e ete et eteereerens 4
Working with PHP......cccccooviiiiiiiiiiiiiiic, 5
Establishing the ENVIFONMENtccviiiiiiiiiiiiciiiiciiiccesiceeecenas 5
Working the Datac.covceiiiiiiiriiicicceccececeeece s 8
Externalizing TeXtu. oo 10
Bringing it all together........ccoviiiiiiiiiiiiiiic 10
CONCIUSION .1ttt ettt ettt ettt et et r et sseteeteeve st e s eteesensensens 11

An Overview on Globalizing Oracle PHP Applications Page 2

An Overview on Globalizing Oracle PHP
Applications

INTRODUCTION

When an application is considered fully globalized it can be used in a multitude of
languages and is essentially ready for deployment World Wide. From the users
perspective, this means that all aspects of the interface are translated into their local
language and conventions, from the developers point of view, creating a Globalized
application introduces a new set of issues that need to be carefully planned from
the carly stages. Luckily, PHP offers all the necessary building blocks so that the
developer can implement fully Globalized applications. This document provides an
introduction on how to effectively use these features when deploying in the Oracle

Application Server.

ASPECTS OF GLOBALIZATION

The act of globalizing your application can be broken into four distinct stages. The
concepts will be introduced then the methods to achieve them will be discussed

later in the document.

Data Integrity

Ensuring data maintains its meaning is perhaps the most basic but important
concept for database driven applications. As data flows between user, middle tier
and database without explicit manipulation, it must maintain integrity between all
tiers of the application. This is especially pertinent in globalized applications where
character set conversion and string expansion could take place and potentially cause
data corruption under incorrect configuration. If, for example, your databasc is
configured to store Unicode data while your middle tier application is configured
only for Western Huropean data then any non Western European data within the
database will most likely end up corrupt when presented to the end user through
character set conversion. The ecasiest way to achieve data integrity here is to ensure
that between the Oracle database, PHP, and the end user browser, all layers are in
agreement as to the character sets that are used to convey data and each layer

performs any necessary character set conversions to support this.

An Overview on Globalizing Oracle PHP Applications Page 3

String Manipulation

Any tier that needs to manipulate text data needs to have awareness of the
character set that data is encoded in so that the results may be correctly interpreted.
As a simple example, suppose an application is configured to accept a field whose
character length was not to exceed 3 characters. Most likely there would be a string
length function employed somewhere to perform this checking but without
knowledge of the character set that data is in, the function cannot correctly
determine how many characters are presented and hence could not correctly
perform this checking. String manipulation functions typically include string
length, sub-string, search, replace, and regular expression operations and all are at

the heart of many middle tier applications.

Text Translation

The application should be translated into all the intended target languages.
Translation at this level means transforming the base text to be something
equivocally meaningful in the target language and includes translating the user
interface, translating associated documentation and on-line help, and possibly
translating any template text that could be used for emails or logging. The first rule
in building an easily translatable product is to externalize from the source code all
text that will require translation. By doing this you are separating logic from data
presentation that makes the handling of translations far less complex than it would
otherwise be. Externalizing messages means that translators may process and
deliver files without special knowledge of your application, and your application can
be configured to select the correct set of languages at run time. The development
environment must provide a method to externalize text into message catalogues

and a means to obtain the intended translation through identification.

Data Presentation

Runtime data may need special preparation in order to be correctly presented to the
end user depending on the language they require. For example, '12th October 2003'
may be presented to a user in the United States as '10/12/03" but a user in the
United Kingdom as '12/10/03" and application logic will have to be aware and
support this requirement.

Applications dealing with lists, such as a to do list, a list of email headers, a product
list, and so on, may want to present this data to the user sorted according to the

rules of their language.

Sometimes text also needs to be presented in a special format for consumption by
another application or protocol. Some applications might require an encoded

format such as Base-64, others might require a particular encoding such as UTF-8.

An Overview on Globalizing Oracle PHP Applications Page 4

WORKING WITH PHP

PHP was originally designed to work with Western European data only and, much
like C or PERL, does not directly support any of the concepts we have talked about
so far. These languages do, however, usually provide an impressive set of building
blocks to allow the developer to create a fully Globalized application. Because of its
open source nature, PHP is free to make use of available libraries for performing
globalization tasks and, much like PERL, borrows from many C APIs to perform
such tasks. You should also be aware that within PHP, globalization support is only
available in certain components, and even only to certain extents within those
components, so it pays to know their level of support before making a commitment
to using them. For example, PHP will only allow single byte Western European

names for variables.

The remainder of this document aims to describe how you can build fully
globalized applications in PHP (4.2.x or higher) with Oracle (9.2.x or higher) as a
backend datastore using the Oracle connectivity functions as documented in
“LXXIII. Oracle 8 functions” of the PHP Manual.

Establishing the Environment

Getting the right running environment for your PHP application is vital and, when
done correctly, will guarantee data integrity across all tiers. First we should
concentrate on the connectivity between the PHP engine and Oracle to ensure that

we can insert and select data.

Most Internet based standards support Unicode as a character encoding. Unicode is
a single encoding that can represent most languages of the world so it makes sense
to ensure your application also supports it so that it may deploy in many languages.
Given the state of the art, we are going to presume that your application will in fact
be entirely based on Unicode, as there is little incentive to support legacy encodings

when the entire technology stack you are using can support it.

PHP is basically an OCI application as far as Oracle connectivity is concerned, this
means that all the rules that apply to OCI also apply to PHP. OCI applications
make use of environment variables to control certain runtime aspects of the client,
in our case, the character set. This setting is achieved through the NLS_LANG

environment variable that takes the following form:

<language> <territory>.<character set>

If our application was designed to work in Unicode for a Japanese user we would

set this variable as:

NLS LANG=JAPANESE JAPAN.AL32UTF8

An Overview on Globalizing Oracle PHP Applications Page 5

This environment variable only affects the client and the basic premise for the
character set portion is that data selected from the server will be presented in the
specified character set, and more importantly, data presented to the server by the
client must be in this character set. A common mistake is to assume that the
character set in NLS_LANG must be set to that of the database being connected
to. This can be a costly mistake if the character set that the client is running in does
not match that of the database character set. With web-based applications such as
the one we are trying to build, we will assume that all data being presented to the
database is already in Unicode. While the language and territory portions of this
setting can be changed at runtime, the character set cannot so it is the only real
mandatory setting here. By omitting the optional settings we can configure our

application to be a Unicode application with the following:

NLS LANG=.AL32UTEFS8

Where AL32UTFS is Oracle’s naming convention for UTF-8. For test purposes
you can set this as an environment variable in your shell and run PHP from the
command line. In your runtime application you would need to set this alongside
your ORACLE_HOME and ORACLE_SID settings for the Apache user within
your runtime application. Setting this variable indicates to Oracle what character set
the client provided data will be in and means that Oracle can perform character set
conversion for both incoming and outgoing data if required. In order to avoid the
overhead of character set conversion and to minimize data loss, ensure your
database character set is also AL32UTFES. For cases where your database character
set is a subset of Unicode, for example Western European, then data outside that

repertoire will not be stored correctly.

Data integrity will now be maintained between PHP and Oracle so all that is left to
do is to ensure that it will be maintained between PHP and the end users browser.
The browser looks to an HT'TP header (namely Content-Type) to determine not
only how best to display that content but more importantly, what character set
encoding to use to send user provided form input back to PHP. We want to be
Unicode everywhere here so we need to find a means of tagging all pages as being
such. While Oracle uses 'AL32UTF8' to refer to Unicode, Internet standards use
'UTF-8'. There ate many ways to provide this tagging in PHP but the most
convenient is to set the default_chatset configuration variable in your php.ini file as

follows:

default charset = UTF-8

This ensures that the following HTTP header will be set in all PHP pages and
consequently sent to the browser.

An Overview on Globalizing Oracle PHP Applications Page 6

Content-Type: text/html; charset=UTF-8

While it is guaranteed that the browser will only supply well-formed UTF-8 to the
servet, it is up to the application developer to ensure that server generated pages are

indeed encoded in UTT-8. This setting does not imply any conversion of outgoing
pages.

At this point you can take your application for a data integrity test drive. Tty to
build a form for input in PHP, take the variables as input and insert them into a
VARCHAR2 column in Oracle. Prove that it works by selecting the data back out
into a report. By using data not normally found in Western European character sets
you can convince yourself that it really is working, try cutting and pasting content
from an Arabic or Chinese website and comparing with the output. If you need
further confirmation that the set up is working, test the data stored in the database
using the DUMP() function to examine the byte sequence and ensure it is valid
UTF-8. Note also that PHP is able to correctly decode form input that is encoded
in the URL Transformation Format, before presenting them for use in your PHP
application as variables. Following is a very simple example that inserts a user
provided string into the database and selects out all rows, a table with a single

character column is assumed:

<FORM METHOD=GET>
<INPUT TYPE=TEXT NAME=invar VALUE="">
<INPUT TYPE=SUBMIT VALUE="GO"”>
</FORM>
<?

if (isset ($invar))

{

Sconn = ocilogon (“scott”, “tiger”);

Spars = ociparse ($conn, “INSERT INTO tl
VALUES (‘Sinvar’)”);
ociexecute ($pars) ;

Spars = ociparse ($conn, “SELECT cl FROM tl”);
ociexecute (Spars) ;

ocifetchstatement ($Spars, Sres);
for ($1 = 0; $1i < Snrow; S$i++)
{

Svar = Sres[“C1”][Si];
echo “value: (Svar)
";

2>

An Overview on Globalizing Oracle PHP Applications Page 7

It is important that any text you encode in your script be encoded in Unicode. For
example, if you have a table name in Oracle that uses characters beyond the ASCII
set, you must use UTF-8 encoding in SQL statements otherwise Oracle will throw

an errofr.

Working the Data

Once the correct data flow is established it is important to identify functions
available that understand Unicode and can help us manipulate and format our data.
As mentioned earlier, PHP was originally designed to work natively with Western
Buropean data, specifically the ISO-8859-1 character set, and will not normally
return expected results when dealing with other character sets, particularly those
that do not encode each character in one byte. To solve this limitation, a set of
functions made available in PHP 4.0.6 and documented under the 'Multi-Byte
String Functions' section in the PHP manual provide string manipulation functions
that support many character sets. Of particular interest to us, PHP also supports
Unicode.

To use the multi-byte string feature ensure it is enabled in PHP by compiling with
the ——enable-mbstring configure option. You can check if support is already
compiled in by examining the output of phpinfo() in a script or by running 'php -m'
on the command line. If you do not have control over your PHP installation then
you are out of luck; ask nicely that your administrator include it. The following

setting in the php.ini file is all it takes to start deploying applications in Unicode:

mbstring.internal encoding=UTF-8

When this is set all mbstring functions will assume the text you are providing them
will be in UTF-8 and as we have already made sure this will be the case when we
established our environment, we are ready to begin coding. To prove to ourselves

that it is working, amend the FOR loop in the previous example to read as follows:

for ($1 = 0; $1i < Snrow; S$Si++)
{
Svar = Sres[“C1”][S$i];
echo “value: (S$Svar)
";
echo "strlen: " . strlen($var) . "
";
echo "mb strlen: " . mb strlen(Svar) . "
";

Given the word “résumé” as input, observe the following output:

value: (résumé)
strlen: 8
mb strlen: 6

An Overview on Globalizing Oracle PHP Applications Page 8

Notice that the normal string function returns 8 which is actually a byte count as
each ¢ character is encoded in 2-bytes in UTF-8. The real string length is correctly
calculated by mb_strlen as it knows that the 2-bytes of ¢ make up just one single
character. It is also possible to overload the behaviour of the standard string
manipulation functions, such as strlen(), so that they work in terms of UTF-8 with

the following configuration:

mbstring.func overload=7

Both functions in our example would know the data is in Unicode and the output

would then become:

value: (résumé)
strlen: ©
mb strlen: 6

If you do decide to overload the standard functions, be warned that it will change
the documented behaviour and may return unexpected results for the basic string
functions. If you are using strlen () to obtain the byte length of a user provided
string to determine, for example, whether it will fit within a CHAR (20) in your
database, you probably don’t want to overload strlen () to work in terms of
characters. It may be a good idea to migrate your function calls that are supposed to
work in terms of characters to their mbstring equivalents and leaving

mbstring. func overload well alone.

It should be noted that many of the string manipulation features available in PHP
are also available in Oracle. Oracle has the added benefit of being fully globalized
and all function calls work in terms of the current database character set without
extra configuration. An array of sort orders is also provided that is configurable by
setting NLS_SORT when data is selected from a table. It can often be to your
advantage to perform these routines within the database so your middle tier logic

can focus on presentation.

Regular Expressions are also worth a mention as they are perhaps the single most
useful means to manipulate and search text data. Currently the mbstring
implementations of regular expressions are in Beta meaning you are discouraged
from using them in production code. If you are running on Oracle Database 10g,
however, regular expressions are available in the SQL REGEXP_LIKE,
REGEXP_SUBSTR, REGEXP_INSTR, and REGEXP_REPLACE functions.

It should be noted that while PHP character datatypes are fully interoperable with
Oracle's CHAR, VARCHAR?2, LONG, and CLOB character datatypes, full support
for accessing NCHAR, NVARCHAR2, and NCLOB is currently not provided.
When selecting or inserting data into NCHAR datatypes, implicit conversion to
their CHAR counterparts takes place. This means that unless the character set of
your NCHAR datatypes (as defined by the national character set) is a superset of

An Overview on Globalizing Oracle PHP Applications Page 9

the character set of your CHAR datatypes (as defined by the database character
set), data loss will occurt.

Externalizing Text

As mentioned eatrlier, one of the key areas to globalizing your application is that it is
translated into all the required languages. As a means to translate user interface text,
we must start by externalizing such text from the application logic and place it

somewhere where it can be easily retrieved on a per language basis.

In PHP, there is no one right way to do this, rather, there are many options
available to you. The GNU gettext functions are available and allow you to
externalize text for translation using a flat file format for messages. The details of
these functions are well documented and you can read more at the GNU website.
Another good way to externalize text is to look into a template based solution, this
is ideal if you have a large amount of static HTML text that you wish to translate.
Other potential solutions include using Oracle tables and SQL queries to store and
retrieve text.

You may find that a combination of the above is ideal depending on the type of
data being translated, whether it is online help pages, Ul labels, error messages, or

other text.

Bringing it all together

Now that we have data flowing back and forth in Unicode and we have all our text
externalized and translated into the different languages that we are going to
support, we need to bring it all together to the point where we can deploy our
multilingual application.

The first consideration to make is how are you going to determine the language of
the user so that you may present them with text in their language. There is a
multitude of different ways to do this depending on the model of your application.
You may require the user to login and maintain user preferences where the user
could identify their native language or you may provide an interface of the
application itself where any user can identify their language and that preference is
stored in a cookie without necessarily requiring the user to login. Perhaps the
simplest approach to this problem is to honor the accept-language preference that
is sent by the browser with every request. In its most simplest form, the header
looks like this:

Accept-Language: language|[-territory]

Tertitory is optional and is useful for defining variations on languages such as 'fr-
CA' for French as spoken in Canada or "zh-TW' for Chinese as spoken in Taiwan.
This value is stored in the ‘ HTTP_ACCEPT_LANGUAGE’ Apache environment
variable and you will need to determine how best to parse this value. This approach

does have several drawbacks though, often users do not set their language

An Overview on Globalizing Oracle PHP Applications Page 10

preference in the browser, and in many cases, the user is not allowed to make such
settings such as in an internet café of airport lobby. It is always best to have an

application level user language and territory preference available.

Once you have determined the preferred language it should be an easy task to
obtain the translated resource, be it an externalized flat file, PHP array element or
column value from the database, the main challenge here is ensuring that you have
a means to translate the tag used to indicate the language preference to that used to

tag the translated file so some consideration is needed in this area.

Oracle also offers several features that help to refine the presentation of data when

the language preference is known. First set the language with the following:

ALTER SESSION SET NLS LANGUAGE=<language>

It should be noted that the Oracle convention is required for the language tag.
Setting the language will return translated Oracle error messages, return translated
date formats such as day and month name, and will set a default sort order
applicable to that language. Note that PHP itself is not a globalized application so
error text or logging data will always be in English. Next set the territory:

ALTER SESSION SET NLS TERRITORY=<territory>

This will assign a default date format and will format numeric values for the local
conventions, such as using a comma or a period for the thousands separator. In
depth discussion of these parameters is beyond the scope of this document so refer

to the Oracle Globalization Guide for more details.

CONCLUSION

This paper aims to give a quick introduction to some of the issues you will face as
an application developer when creating a fully globalized application in PHP and
Oracle. It is not intended to be a complete guideline and several major issues, such
as how to design an application that can render HTML pages suitable for bi-
directional languages, are beyond the scope of this document, as they do not

directly pertain to PHP or Oracle.

There ate also other subtle character set related issues, such as which character set
to use should your application need to send mail, which are not discussed in detail
but it is worth mentioning that PHP does offer APIs for this particular issue.

Like most contemporary languages, PHP is a quite dynamic and changes often as
new features and packages are added. It is important to keep up to date with
changes especially in the area of Globalization support that is typically improved

release by release.

An Overview on Globalizing Oracle PHP Applications Page 11

An Overview on Globalizing Oracle PHP Applications Page 12

ORACLE

Globalized Oracle PHP Applications
January 2004

Author: Peter Linsley

Contributing Authors:

Oracle Corporation

World Headquarters

500 Oracle Parkway
Redwood Shores, CA 94065
US.A.

Worldwide Inquiries:
Phone: +1.650.506.7000
Fax: +1.650.506.7200
www.oracle.com

Copyright © 2003, Oracle. All rights reserved.

This document is provided for information purposes only

and the contents hereof are subject to change without notice.

This document is not warranted to be error-free, nor subject to
any other warranties or conditions, whether expressed orally

or implied in law, including implied warranties and conditions of
merchantability or fitness for a particular purpose. We specifically
disclaim any liability with respect to this document and no
contractual obligations are formed either directly or indirectly

by this document. This document may not be reproduced or
transmitted in any form or by any means, electronic or mechanical,
for any purpose, without our prior written permission.

Oracle is a registered trademark of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective owners.

