
Java 3D™ API
Specification

Version 1.1.2, June 1999

901 San Antonio Road
Palo Alto, CA 94303 USA
415 960-1300 fax 415 969-9131

A Sun Microsystems, Inc. Business

JavaSoft

 1999 Sun Microsystems, Inc.
901 San Antonio Road, Palo Alto, California 94303 U.S.A.
All rights reserved.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the United States
Government is subject to the restrictions set forth in DFARS 252.227-7013 (c)(1)(ii) and
FAR 52.227-19.

The release described in this document may be protected by one or more U.S. patents, for-
eign patents, or pending applications.

Sun Microsystems, Inc. (SUN) hereby grants to you a fully paid, nonexclusive, nontrans-
ferable, perpetual, worldwide limited license (without the right to sublicense) under
SUN’s intellectual property rights that are essential to practice this specification. This
license allows and is limited to the creation and distribution of clean-room implementa-
tions of this specification that (i) are complete implementations of this specification, (ii)
pass all test suites relating to this specification that are available from SUN, (iii) do not
derive from SUN source code or binary materials, and (iv) do not include any SUN binary
materials without an appropriate and separate license from SUN.

Java, JavaScript, and Java 3D are trademarks of Sun Microsystems, Inc. Sun, Sun Micro-
systems, the Sun logo, Java and HotJava are trademarks or registered trademarks of Sun
Microsystems, Inc. UNIX® is a registered trademark in the United States and other coun-
tries, exclusively licensed through X/Open Company, Ltd. All other product names men-
tioned herein are the trademarks of their respective owners.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPO-
GRAPHICAL ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFOR-
MATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW
EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE
IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PRO-
GRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

. xv

1
. . .1
 . .2
 .2
. .2
.3
 . .4
 .4
 .4
 .5
. .5
. .5
. .6
 . .7
 .7
. .8
 .9

15
. .15
.15
.16
.17
. .17
.19
.23
. .24
4
24
 .25
.25
.25
25
26
26
Contents

Preface .

1 Introduction to Java 3D .
1.1 Goals .
1.2 Programming Paradigm. .

1.2.1 The Scene Graph Programming Model
1.2.2 Rendering Modes .
1.2.3 Extensibility .

1.3 High Performance .
1.3.1 Layered Implementation. .
1.3.2 Target Hardware Platforms .

1.4 Support for Building Applications and Applets
1.4.1 Browsers .
1.4.2 Games .

1.5 Overview of Java 3D Object Hierarchy.
1.6 Structuring the Java 3D Program. .

1.6.1 Java 3D Application Scene Graph
1.6.2 Recipe for a Java 3D Program .
1.6.3 HelloUniverse: A Sample Java 3D Program

2 Scene Graph Basics. .
2.1 Scene Graph Structure .

2.1.1 Spatial Separation.
2.1.2 State Inheritance .
2.1.3 Rendering .

2.2 Scene Graph Objects .
2.2.1 Node Objects .
2.2.2 NodeComponent Objects .

2.3 Scene Graph Superstructure Objects .
2.3.1 VirtualUniverse Object. .2
2.3.2 Locale Object .

2.4 Scene Graph Viewing Objects. .
2.4.1 Canvas3D Object .
2.4.2 Screen3D Object.
2.4.3 View Object .
2.4.4 PhysicalBody Object .
2.4.5 PhysicalEnvironment Object .
iiiVersion 1.1.2, June 1999

CONTENTS

iv

27
27

 . 28
29

 . 29
29

29
0
0
32
2

32
33

37
. 37
. 40
. 42
. 44
. 45
. 46
 . 48

49
. 49
 . 51

53
. 54
. 56
. 58
60
61
62
5
5

66
67
. 69
75
76
80

 . 86
89

. 90

. 90
. 93
3 Scene Graph Superstructure .
3.1 The Virtual Universe .
3.2 Establishing a Scene. .
3.3 Loading a Virtual Universe .
3.4 Coordinate Systems .
3.5 High-resolution Coordinates .

3.5.1 Java 3D High-resolution Coordinates
3.5.2 Java 3D Virtual World Coordinates 3
3.5.3 Details of High-resolution Coordinates. 3

3.6 API for Superstructure Objects .
3.6.1 VirtualUniverse Object . 3
3.6.2 Locale Object .
3.6.3 HiResCoord Object .

4 Group Node Objects .
4.1 Group Node .
4.2 BranchGroup Node.
4.3 TransformGroup Node .
4.4 OrderedGroup Node .
4.5 DecalGroup Node.
4.6 Switch Node .
4.7 SharedGroup Node .

5 Leaf Node Objects .
5.1 Leaf Node .
5.2 Shape3D Node .
5.3 BoundingLeaf Node .
5.4 Background Node.
5.5 Clip Node .
5.6 Fog Node .

5.6.1 ExponentialFog Node .
5.6.2 LinearFog Node. .

5.7 Light Node .
5.7.1 AmbientLight Node. 6
5.7.2 DirectionalLight Node. 6
5.7.3 PointLight Node .
5.7.4 SpotLight Node .

5.8 Sound Node .
5.8.1 BackgroundSound Node .
5.8.2 PointSound Node. .
5.8.3 ConeSound Node. .

5.9 Soundscape Node .
5.10 ViewPlatform Node .
5.11 Behavior Node .
5.12 Morph Node .
5.13 Link Node.
Java 3D API Specification

95
. .95
.95
98
 .99
00

101
03

104
05
05

09
109
09
3
4

16
17
19
21
23
24
27
30
31
32
35
6
43
45
46
47
47
48
48
49
50
52
54
56
168
69
77
77
77
78
8

6 Reusing Scene Graphs .
6.1 Sharing Subgraphs.

6.1.1 SharedGroup Node .
6.1.2 Link Leaf Node. .

6.2 Cloning Subgraphs. .
6.2.1 References to Node Component Objects1
6.2.2 References to Other Scene Graph Nodes
6.2.3 Dangling References. .1
6.2.4 Subclassing Nodes .
6.2.5 NodeReferenceTable Object. .1
6.2.6 Example User Behavior Node .1

7 Node Component Objects. 1
7.1 Node Component Objects: Attributes .

7.1.1 Appearance Object .1
7.1.2 ColoringAttributes Object .11
7.1.3 LineAttributes Object .11
7.1.4 PointAttributes Object .1
7.1.5 PolygonAttributes Object .1
7.1.6 RenderingAttributes Object .1
7.1.7 TextureAttributes Object .1
7.1.8 TransparencyAttributes Object.1
7.1.9 Material Object .1
7.1.10 Texture Object .1
7.1.11 Texture2D Object .1
7.1.12 Texture3D Object .1
7.1.13 TexCoordGeneration Object. .1
7.1.14 MediaContainer Object. .1
7.1.15 AuralAttributes Object .13
7.1.16 ImageComponent Object .1
7.1.17 ImageComponent2D Object .1
7.1.18 ImageComponent3D Object .1
7.1.19 DepthComponent Object .1
7.1.20 DepthComponentFloat Object .1
7.1.21 DepthComponentInt Object .1
7.1.22 DepthComponentNative Object1
7.1.23 Bounds Object .1
7.1.24 BoundingBox Object .1
7.1.25 BoundingSphere Object .1
7.1.26 BoundingPolytope Object. .1
7.1.27 Transform3D Object. .1

7.2 Node Component Objects: Geometry .
7.2.1 GeometryArray Object .1
7.2.2 PointArray Object. .1
7.2.3 LineArray Object .1
7.2.4 TriangleArray Object .1
7.2.5 QuadArray Object. .1
7.2.6 GeometryStripArray Object .17
vVersion 1.1.2, June 1999

CONTENTS

vi

9
9

80
80
82
83
83
84
4
5
5

86
87

188
89
92
93
94
197
97
99

01
202
2

203
3

03
04
5

6
07
8
9
209
9

11
12
212
15
17
18
19
20
21
21
221
222
7.2.7 LineStripArray Object. 17
7.2.8 TriangleStripArray Object. 17
7.2.9 TriangleFanArray Object . 1
7.2.10 IndexedGeometryArray Object 1
7.2.11 IndexedPointArray Object. 1
7.2.12 IndexedLineArray Object . 1
7.2.13 IndexedTriangleArray Object . 1
7.2.14 IndexedQuadArray Object . 1
7.2.15 IndexedGeometryStripArray Object 18
7.2.16 IndexedLineStripArray Object 18
7.2.17 IndexedTriangleStripArray Object 18
7.2.18 IndexedTriangleFanArray Object 1
7.2.19 CompressedGeometry Object . 1
7.2.20 CompressedGeometryHeader Object
7.2.21 Raster Object . 1
7.2.22 Font3D Object . 1
7.2.23 FontExtrusion Object . 1
7.2.24 Text3D Geometry Object . 1

7.3 Math Component Objects. .
7.3.1 Tuple Objects . 1
7.3.2 Matrix Objects. 1

8 View Model. 2
8.1 Why a New Model? .

8.1.1 The Physical Environment Influences the View 20
8.2 Separation of Physical and Virtual .

8.2.1 The Virtual World . 20
8.2.2 The Physical World . 2

8.3 The Objects That Define the View. 2
8.4 ViewPlatform: A Place in the Virtual World 20

8.4.1 Moving Through the Virtual World 20
8.4.2 Dropping In on a Favorite Place 2
8.4.3 View Attach Policy . 20
8.4.4 Associating Geometry with a ViewPlatform. 20

8.5 Generating a View .
8.5.1 Composing Model and Viewing Transformations 20
8.5.2 Multiple Locales . 2

8.6 A Minimal Environment. 2
8.7 The View Object. .

8.7.1 Projection Policy . 2
8.7.2 Clip Policies . 2
8.7.3 Projection and Clip Parameters 2
8.7.4 Frame Start Time, Duration, and Number. 2
8.7.5 View Traversal and Behavior Scheduling. 2
8.7.6 Scene Antialiasing. 2
8.7.7 Depth Buffer . 2

8.8 The Screen3D Object .
8.9 The Canvas3D Object. .
Java 3D API Specification

23
223
24
226
226

7
227
28

29
29
30
230
230
31

232
32
34
34
245
5

49
49
54

55
56
8
59
0
61
62
64
65
66
67
69

69
69
71

75
275
76
77
.278
78

278
79
8.9.1 Window System–Provided Parameters 2
8.9.2 Other Canvas3D Parameters. .
8.9.3 GraphicsConfigTemplate3D Object2

8.10 The PhysicalBody Object .
8.11 The PhysicalEnvironment Object .

9 Behaviors and Interpolators . 22
9.1 Behavior Object .

9.1.1 Code Structure .2
9.1.2 WakeupCondition Object .2
9.1.3 WakeupCriterion Object. .2
9.1.4 Composing WakeupCriterion Objects2

9.2 Composing Behaviors .
9.3 Scheduling .
9.4 How Java 3D Performs Execution Culling .2
9.5 The Behavior API .

9.5.1 The Behavior Node. .2
9.5.2 WakeupCondition Object .2
9.5.3 The WakeupCriterion Objects .2

9.6 Interpolator Behaviors .
9.6.1 Mapping Time to Alpha .24
9.6.2 Acceleration of Alpha. .2
9.6.3 The Alpha Class .2
9.6.4 The Interpolator Base Class .2
9.6.5 PositionInterpolator Object. .2
9.6.6 RotationInterpolator Object .2
9.6.7 ColorInterpolator Objectpl .25
9.6.8 ScaleInterpolator Object .2
9.6.9 SwitchValueInterpolator Object26
9.6.10 TransparencyInterpolator Object2
9.6.11 PathInterpolator Object. .2
9.6.12 PositionPathInterpolator Object2
9.6.13 RotPosPathInterpolator Object .2
9.6.14 RotPosScalePathInterpolator Object 2
9.6.15 RotationPathInterpolator Object.2

9.7 Level-of-Detail Behaviors .2
9.7.1 LOD Object .2
9.7.2 DistanceLOD Object .2

9.8 Billboard Behavior. .2

10 Input Devices and Picking . 2
10.1 InputDevice Interface .

10.1.1 The Abstract Interface .2
10.1.2 Instantiating and Registering a New Device 2

10.2 Sensors.
10.2.1 Using and Assigning Sensors .2
10.2.2 Behind the (Sensor) Scenes .
10.2.3 The Sensor Object .2
viiVersion 1.1.2, June 1999

CONTENTS

viii

282
283
285
87
88
88
89
89
90

291
291
92
92
4
94

300

1
301
01
02
02
303
3
03

5
05
05
07
308
10
10

15
315
15
21
27
29
35
41
43
51
59
1

10.2.4 The SensorRead Object .
10.3 Picking .

10.3.1 SceneGraphPath Object. .
10.3.2 BranchGroup Node and Locale Node Pick Methods . . 2
10.3.3 PickShape Object . 2
10.3.4 PickBounds Object . 2
10.3.5 PickPoint Object . 2
10.3.6 PickRay Object . 2
10.3.7 PickSegment Object . 2

11 Audio Devices. .
11.1 AudioDevice Interface .

11.1.1 Initialization. 2
11.1.2 Audio Playback . 2
11.1.3 Device-Driver-Specific Data. 29

11.2 AudioDevice3D Interface. 2
11.3 Instantiating and Registering a New Device

12 Execution and Rendering Model . 30
12.1 Three Major Rendering Modes .

12.1.1 Immediate Mode . 3
12.1.2 Retained Mode . 3
12.1.3 Compiled-retained Mode. 3

12.2 Instantiating the Render Loop .
12.2.1 An Application-level Perspective 30
12.2.2 Retained and Compiled-retained Rendering Modes . . . 3

13 Immediate-Mode Rendering. 30
13.1 Two Styles of Immediate-Mode Rendering . 3

13.1.1 Pure Immediate-Mode Rendering 3
13.1.2 Mixed-Mode Rendering . 3

13.2 Canvas3D Methods .
13.3 API for Immediate Mode . 3

13.3.1 GraphicsContext3D. 3

A Math Objects . 3
A.1 Tuple Objects .

A.1.1 Tuple2d Class . 3
A.1.2 Tuple2f Class. 3
A.1.3 Tuple3b Class . 3
A.1.4 Tuple3d Class . 3
A.1.5 Tuple3f Class. 3
A.1.6 Tuple4b Class . 3
A.1.7 Tuple4d Class . 3
A.1.8 Tuple4f Class. 3
A.1.9 AxisAngle4d Class . 3
A.1.10 AxisAngle4f Class. 36
Java 3D API Specification

63
67

68
74
80
88
97

03
404
404
04

405
407
409
410
411
12
13
4
18
.419
20

421
22

423
23
25
27
28
29
33
34
34

.435
5
6
37
37
37
8
438
38
39
0
441
41
41
A.1.11 GVector Class. .3
A.2 Matrix Objects .3

A.2.1 Matrix3f Class .3
A.2.2 Matrix3d Class .3
A.2.3 Matrix4f Class .3
A.2.4 Matrix4d Class .3
A.2.5 GMatrix Class. .3

B 3D Geometry Compression . 4
B.1 Compression .
B.2 Decompression .
B.3 Appendix Organization .4
B.4 Generalized Triangle Strip. .
B.5 Generalized Triangle Mesh .
B.6 Position Representation and Quantization. .
B.7 Color Representation and Quantization. .
B.8 Normal Representation and Quantization .

B.8.1 Normals as Indices .4
B.8.2 Normal Encoding Parameterization4
B.8.3 Special Warping Rules for Delta Normals41

B.9 Modified Huffman Encoding. .4
B.10 Compressed Geometry Instructions.
B.11 Bit Layout of Compressed Geometry Instructions 4
B.12 Compressed Geometry Instruction Bit Details

B.12.1 nop .4
B.12.2 setState .
B.12.3 setTable. .4
B.12.4 mbr (meshBufferReference) .4
B.12.5 Position Sub-instruction .4
B.12.6 Color Sub-instruction .4
B.12.7 Normal Sub-instruction .4
B.12.8 vertex .4
B.12.9 setNormal .4
B.12.10 setColor. .4

B.13 Semantics of Compressed Geometry Instructions.
B.13.1 Header and Body to Variable-Length Instruction 43
B.13.2 Variable-Length Instruction to Instruction43
B.13.3 Delta Position to Position .4
B.13.4 Delta Color to Color .4
B.13.5 Encoded Delta Normal to Encoded Normal4
B.13.6 Encoded Normal to Rectilinear Normal43

B.14 Semantics of Vertices .
B.14.1 Instruction to Vertex. .4
B.14.2 Vertex to Intermediate Triangle4
B.14.3 Intermediate Triangle to Final Triangle44

B.15 Outline of Geometry Process. .
B.15.1 Compressing Geometry Data .4
B.15.2 Convert to Generalized Mesh Format 4
ixVersion 1.1.2, June 1999

CONTENTS

x

41
42
43
44
44
44
44
46
46
446
49

53
53
454
54
54

54
455
55
57
58

458
9
60
0
1
2
462
64
65
465
66

66
67
467
469
72
2
2
73

74
75

479
479
B.15.3 Position . 4
B.15.4 Normals . 4
B.15.5 Colors . 4
B.15.6 Collect Delta Code Statistics. 4
B.15.7 Position Delta Code Statistics . 4
B.15.8 Color Delta Code Statistics . 4
B.15.9 Normal Delta Code Statistics . 4
B.15.10 Assign Huffman Tags . 4
B.15.11 Assemble the Pieces into a Bit Stream 4

B.16 Compressed Geometry Assembly Syntax .
B.17 Compressed Geometry Instruction Verifier . 4

C View Model Details . 4
C.1 An Overview of the Java 3D View Model . 4
C.2 Physical Environments and Their Effects .

C.2.1 A Head-mounted Example . 4
C.2.2 A Room-mounted Example. 4
C.2.3 Impact of Head Position and Orientation on the

Camera. 4
C.3 The Coordinate Systems. .

C.3.1 Room-mounted Coordinate Systems. 4
C.3.2 Head-mounted Coordinate Systems 4

C.4 The ViewPlatform Object. 4
C.5 The View Object. .

C.5.1 View Policy . 45
C.5.2 Screen Scale Policy . 4
C.5.3 Window Eyepoint Policy. 46
C.5.4 Monoscopic View Policy . 46
C.5.5 Sensors and Their Location in the Virtual World 46

C.6 The Screen3D Object .
C.6.1 Screen3D Calibration Parameters 4
C.6.2 Accessing and Changing Head Tracker Coordinates . . 4

C.7 The Canvas3D Object. .
C.7.1 Scene Antialiasing. 4
C.7.2 Accessing and Modifying an Eye’s Image Plate

Position . 4
C.7.3 Canvas Width and Height . 4

C.8 The PhysicalBody Object .
C.9 The PhysicalEnvironment Object. .
C.10 Viewing in Head-tracked Environments . 4

C.10.1 A Room-mounted Display with Head Tracking 47
C.10.2 A Head-mounted Display with Head Tracking. 47

C.11 Compatibility Mode . 4
C.11.1 Overview of the Camera-based View Model 4
C.11.2 Using the Camera-based View Model. 4

D Exceptions .
D.1 BadTransformException. .
Java 3D API Specification

80
480
481
81

482
82
482
483
83
484

85
485

486
.488
88

496
498
98
00

503

507
D.2 CapabilityNotSetException .4
D.3 DanglingReferenceException .
D.4 IllegalRenderingStateException .
D.5 IllegalSharingException .4
D.6 MismatchedSizeException .
D.7 MultipleParentException .4
D.8 RestrictedAccessException .
D.9 SceneGraphCycleException .
D.10 SingularMatrixException. .4
D.11 SoundException. .

E Equations . 4
E.1 Fog Equations .
E.2 Lighting Equations. .
E.3 Sound Equations .

E.3.1 Headphone Playback Equations4
E.3.2 Speaker Playback Equations. .

E.4 Texture Mapping Equations .
E.4.1 Texture Lookup .4
E.4.2 Texture Application .5

Glossary .

Index. .
xiVersion 1.1.2, June 1999

. . .6

. . .7

.16

. .26
 .28
. .37
. .41
. .50
. .79
 . .80
 .84
.84
 .87
 . .96
 .100
. .101

103
110
. .137
.169
.197
204
206
207
210
46

nly
6
nly
7
All
247
Figures

Figure 1-1 Java 3D Object Hierarchy .
Figure 1-2 Application Scene Graph .
Figure 2-1 A Java 3D Scene Graph Is a DAG (Directed Acyclic Graph)
Figure 2-2 Viewing a Scene Graph .
Figure 3-1 The Virtual Universe .
Figure 4-1 Group Node Hierarchy .
Figure 4-2 Altering the Scene Graph at Run Time .
Figure 5-1 Leaf Node Hierarchy .
Figure 5-2 PointSound Distance Gain Attenuation .
Figure 5-3 ConeSound .
Figure 5-4 ConeSound with a Single Distance Gain Attenuation Array
Figure 5-5 ConeSound with Two Distance Gain Attenuation Arrays
Figure 5-6 Multiple Soundscape Application Regions .
Figure 6-1 Sharing a Subgraph. .
Figure 6-2 Referenced and Duplicated NodeComponent Objects
Figure 6-3 References to Other Scene Graph Nodes .
Figure 6-4 Updated Subgraph afterupdateNodeReferences Call 102
Figure 6-5 Dangling Reference: Bold Nodes Are Being Cloned.
Figure 7-1 Attribute Component Object Hierarchy .
Figure 7-2 Sound Reverberation Parameters .
Figure 7-3 Geometry Component Object Hierarchy .
Figure 7-4 Various Text Alignments and Paths .
Figure 8-1 View Object, Its Component Objects, and Their Interconnection
Figure 8-2 A Portion of a Scene Graph Containing a ViewPlatform Object
Figure 8-3 A Simple Scene Graph with View Control .
Figure 8-4 Object and ViewPlatform Transformations .
Figure 9-1 An Interpolator’s Generic Time-to-Alpha Mapping Sequence 2
Figure 9-2 An Interpolator Set to a Loop Count of 1 with Mode Flags Set to Enable O

theα-Increasing andα-at-1 Portion of the Waveform 24
Figure 9-3 An Interpolator Set to a Loop Count of 1 with Mode Flags Set to Enable O

theα-Decreasing andα-at-0 Portion of the Waveform.24
Figure 9-4 An Interpolator Set to a Loop Count of 1 with Mode Flags Set to Enable

Portions of the Waveform .
xiiiVersion 1.1.2, June 1999

FIGURES

xiv

248

250
306
316
406
407
414

. 415
416

422
455
458
463
463
464
464
474
476
477
477
489
490
492
492
Figure 9-5 An Interpolator Set to Loop Infinitely and Mode Flags Set to Enable
Only theα-Increasing andα-at-1 Portion of the Waveform 248

Figure 9-6 An Interpolator Set to Loop Infinitely and Mode Flags Set to Enable
Only theα-Decreasing andα-at-0 Portion of the Waveform. 248

Figure 9-7 An Interpolator Set to Loop Infinitely and Mode Flags Set to Enable All
Portions of the Waveform .

Figure 9-8 How anα-Increasing Waveform Changes with Various Values of
increasingAlphaRampDuration. .

Figure 13-1 Minimal Immediate-Mode Structure. .
Figure A-1 Math Object Hierarchy .
Figure B-1 A Generalized Triangle Strip .
Figure B-2 A Generalized Triangle Strip .
Figure B-3 Encoding of the Six Sextants of Each Octant of a Sphere
Figure B-4 Sextant Coordinates.
Figure B-5 Sextant Neighbors and Their Relationships .
Figure B-6 Bit Layout of Compressed Geometry Instructions
Figure C-1 Display Rigidly Attached to the Tracker Base .
Figure C-2 Display Rigidly Attached to the Head Tracker (Sensor).
Figure C-3 A Portion of a Scene Graph Containing a Single Screen3D Object
Figure C-4 A Single-Screen Display Environment .
Figure C-5 A Portion of a Scene Graph Containing Three Screen3D Objects
Figure C-6 A Three-Screen Display Environment .
Figure C-7 The Camera-based View Model .
Figure C-8 A Perspective Viewing Frustum .
Figure C-9 Perspective View Model Arguments. .
Figure C-10 Orthographic View Model .
Figure E-1 Signal to Only One Ear Is Direct .
Figure E-2 Signals to Both Ears Are Indirect .
Figure E-3 ConeSound with a Single Distance Gain Attenuation Array
Figure E-4 ConeSound with Two Distance Attenuation Arrays
Java 3D API Specification

n the
er’s
een

e
puter

lgo-
rmi-

fer-
.

and
Preface

THIS document describes the Java 3D™ API and presents some details o
implementation of the API. This specification is not intended as a programm
guide. The programmer’s guide will be written after the specification has b
finalized.

This specification is written for 3D graphics application programmers. W
assume that the reader has at least a rudimentary understanding of com
graphics. This includes familiarity with the essentials of computer graphics a
rithms as well as familiarity with basic graphics hardware and associated te
nology.

Related Documentation

This specification is intended to be used in conjunction with the Java 3D re
ence guide, an online, browser-accessible, javadoc-generated API reference

Style Conventions

The following style conventions are used in this specification:

• Lucida type is used to represent computer code and the names of files
directories.

• Bold Lucida type is used for Java 3D API declarations.

• Bold type is used to represent variables.

• Italic type is used for emphasis and for equations.

Programming Conventions

Java 3D uses the following programming conventions:
xvVersion 1.1.2, June 1999

PREFACE

xvi

of
n of
at-

The
ion,

sug-
• The default coordinate system is right-handed, with +Y being up, +X
horizontal to the right, and +Z directed toward the viewer.

• All angles or rotational representations are in radians.

• All distances are expressed in units or fractions of meters.

Acknowledgments

We gratefully acknowledge Warren Dale for writing the Sound API portion
this specification, Daniel Petersen for writing the scene graph sharing portio
the specification, and Bruce Bartlett for his assistance with the editing, form
ting, and indexing of the specification.

We thank the Java 3D partners for their help in defining the Java 3D API.
Java 3D partner companies include Silicon Graphics, Inc., Intel Corporat
Apple Computer, Inc., and Sun Microsystems, Inc.

We also thank the many individuals and companies for their comments and
gestions on the successive drafts of this specification.

Henry Sowizral
Kevin Rushforth
Michael Deering
Sun Microsystems, Inc.
November 1997
Java 3D API Specification

Version 1.1.2, June 1999
C H A P T E R 1
ng
igh-

ting
can
3D

3D
g it
net
ss to

ch-
ound
i-
cene
onsid-
ound

per-
tions
lar,
was
Introduction to Java 3D

THE Java 3D API is an application programming interface used for writi
three-dimensional graphics applications and applets. It gives developers h
level constructs for creating and manipulating 3D geometry and for construc
the structures used in rendering that geometry. Application developers
describe very large virtual worlds using these constructs, which provide Java
with enough information to render these worlds efficiently.

Java 3D delivers Java’s “write once, run anywhere” benefit to developers of
graphics applications. Java 3D is part of the JavaMedia suite of APIs, makin
available on a wide range of platforms. It also integrates well with the Inter
because applications and applets written using the Java 3D API have acce
the entire set of Java classes.

The Java 3D API draws its ideas from existing graphics APIs and from new te
nologies. Java 3D’s low-level graphics constructs synthesize the best ideas f
in low-level APIs such as Direct3D, OpenGL, QuickDraw3D, and XGL. Sim
larly, its higher-level constructs synthesize the best ideas found in several s
graph–based systems. Java 3D introduces some concepts not commonly c
ered part of the graphics environment, such as 3D spatial sound. Java 3D’s s
capabilities help to provide a more immersive experience for the user.

1.1 Goals

Java 3D was designed with several goals in mind. Chief among them is high
formance. Several design decisions were made so that Java 3D implementa
can deliver the highest level of performance to application users. In particu
when trade-offs were made, the alternative that benefited runtime execution
chosen.

Other important Java 3D goals are to
1

1.2 Programming Paradigm INTRODUCTION TO JAVA 3D

2

red
could

les

ate
er-

ics
ucture
re-

xible
ains a
the

d to
aph
ing

of
a 3D
ian-
ren-

ined
ering
opti-
ke

and
• Provide a rich set of features for creating interesting 3D worlds, tempe
by the need to avoid nonessential or obscure features. Features that
be layered on top of Java 3D were not included.

• Provide a high-level object-oriented programming paradigm that enab
developers to deploy sophisticated applications and applets rapidly.

• Provide support for runtime loaders. This allows Java 3D to accommod
a wide variety of file formats, such as vendor-specific CAD formats, int
change formats, VRML 1.0, and VRML 2.0.

1.2 Programming Paradigm

Java 3D is an object-oriented API. Applications construct individual graph
elements as separate objects and connect them together into a treelike str
called ascene graph. The application manipulates these objects using their p
defined accessor, mutator, and node-linking methods.

1.2.1 The Scene Graph Programming Model

Java 3D’s scene graph–based programming model provides a simple and fle
mechanism for representing and rendering scenes. The scene graph cont
complete description of the entire scene, or virtual universe. This includes
geometric data, the attribute information, and the viewing information neede
render the scene from a particular point of view. Chapter 2, “Scene Gr
Basics,” provides more information on the Java 3D scene graph programm
model.

The Java 3D API improves on previous graphics APIs by eliminating many
the bookkeeping and programming chores that those APIs impose. Jav
allows the programmer to think about geometric objects rather than about tr
gles—about the scene and its composition rather than about how to write the
dering code for efficiently displaying the scene.

1.2.2 Rendering Modes

Java 3D includes three different rendering modes: immediate mode, reta
mode, and compiled-retained mode (see Chapter 12, “Execution and Rend
Model”). Each successive rendering mode allows Java 3D more freedom in
mizing an application’s execution. Most Java 3D applications will want to ta
advantage of the convenience and performance benefits that the retained
compiled-retained modes provide.
Java 3D API Specification

INTRODUCTION TO JAVA 3D Extensibility 1.2.3

aph
mme-
e a
are

n can

ecify
cene
hose

on-
ange

he
graphs
bear
ow-
est

ethods
lica-

ever,
e the
erer

er-
ucts
on
(see
1.2.2.1 Immediate Mode

Immediate mode leaves little room for global optimization at the scene gr
level. Even so, Java 3D has raised the level of abstraction and accelerates i
diate mode rendering on a per-object basis. An application must provid
Java 3D draw method with a complete set of points, lines, or triangles, which
then rendered by the high-speed Java 3D renderer. Of course, the applicatio
build these lists of points, lines, or triangles in any manner it chooses.

1.2.2.2 Retained Mode

Retained mode requires an application to construct a scene graph and sp
which elements of that scene graph may change during rendering. The s
graph describes the objects in the virtual universe, the arrangement of t
objects, and how the application animates those objects.

1.2.2.3 Compiled-Retained Mode

Compiled-retained mode, like retained mode, requires the application to c
struct a scene graph and specify which elements of the scene graph may ch
during rendering. Additionally, the application can compile some or all of t
subgraphs that make up a complete scene graph. Java 3D compiles these
into an internal format. The compiled representation of the scene graph may
little resemblance to the original tree structure provided by the application, h
ever, it is functionally equivalent. Compiled-retained mode provides the high
performance.

1.2.3 Extensibility

Most Java 3D classes expose only accessor and mutator methods. Those m
operate only on that object’s internal state, making it meaningless for an app
tion to override them. Therefore, Java 3D declares most methods as final.

Applications can extend Java 3D’s classes and add their own methods. How
they may not override Java 3D’s scene graph traversal semantics becaus
nodes do not contain explicit traversal and draw methods. Java 3D’s rend
retains those semantics internally.

Java 3Ddoesprovide hooks for mixing Java 3D–controlled scene graph rend
ing and user-controlled rendering using Java 3D’s immediate mode constr
(see Section 13.1.2, “Mixed-Mode Rendering”). Alternatively, the applicati
can stop Java 3D’s renderer and do all its drawing in immediate mode
Section 13.1.1, “Pure Immediate-Mode Rendering”).
3Version 1.1.2, June 1999

1.3 High Performance INTRODUCTION TO JAVA 3D

4

e its
n ref-
ime.
el.

sks,
forth,

ing
ate

D’s
also
the
ow-
Is.

en-
ring
der-
ime
eom-

ctors
vis-

f the
ici-
and
be
these

plat-
end,
cial-
Behaviors require applications to extend the Behavior object and to overrid
methods with user-written Java code. These extended objects should contai
erences to those scene graph objects that they will manipulate at run t
Chapter 9, “Behaviors and Interpolators,” describes Java 3D’s behavior mod

1.3 High Performance

Java 3D’s programming model allows the Java 3D API to do the mundane ta
such as scene graph traversal, managing attribute state changes, and so
thereby simplifying the application’s job. Java 3D does this without sacrific
performance. At first glance, it might appear that this approach would cre
more work for the API, however, it actually has the opposite effect. Java 3
higher level of abstraction not only changes the amount but, more important,
the kind of work the API must perform. Java 3D does not need to impose
same type of constraints as do APIs with a lower level of abstraction, thus all
ing Java 3D to introduce optimizations not possible with these lower-level AP

Additionally, leaving the details of rendering to Java 3D allows it to tune the r
dering to the underlying hardware. For example, relaxing the strict rende
order imposed by other APIs allows parallel traversal as well as parallel ren
ing. Knowing which portions of the scene graph cannot be modified at run t
allows Java 3D to flatten the tree, pretransform geometry, or represent the g
etry in a native hardware format without the need to keep the original data.

1.3.1 Layered Implementation

Besides optimizations at the scene graph level, one of the more important fa
that determines the performance of Java 3D is the time it takes to render the
ible geometry. Java 3D implementations are layered to take advantage o
native, low-level API that is available on a given system. In particular, we ant
pate that Java 3D implementations that use Direct3D, OpenGL,
QuickDraw3D will become available. This means that Java 3D rendering will
accelerated across the same wide range of systems that are supported by
lower-level APIs.

1.3.2 Target Hardware Platforms

Java 3D is aimed at a wide range of 3D-capable hardware and software
forms, from low-cost PC game cards and software renderers at the low
through midrange workstations, all the way up to very high-performance spe
ized 3D image generators.
Java 3D API Specification

INTRODUCTION TO JAVA 3D Games 1.4.2

most
ange
eed

rms
port
go.

tead

tion
eling
xport

t geo-
nd

he
con-

3D
the

In
3D

last
ill-

rfor-
gram
d in
Java 3D implementations are expected to provide useful rendering rates on
modern PCs, especially those with 3D graphics accelerator cards. On midr
workstations, Java 3D is expected to provide applications with nearly full-sp
hardware performance.

Finally, Java 3D is designed to scale as the underlying hardware platfo
increase in speed over time. Tomorrow’s 3D PC game accelerators will sup
more complex virtual worlds than high-priced workstations of a few years a
Java 3D is prepared to meet this increase in hardware performance.

1.4 Support for Building Applications and Applets

Java 3D neither anticipates nor directly supports every possible 3D need. Ins
it provides support for adding those features through Java code.

Objects defined using a computer-aided design (CAD) system or an anima
system may be included in a Java 3D-based application. Most such mod
packages have an external format (sometimes proprietary). Designers can e
geometry designed using an external modeler to a file. Java 3D can use tha
metric information, but only if an application provides a means for reading a
translating the modeler’s file format into Java 3D primitives.

Similarly, VRML loaders will parse and translate VRML files and generate t
appropriate Java 3D objects and Java code necessary to support the file’s
tents.

1.4.1 Browsers

Today’s Internet browsers support 3D content by passing such data to plug-in
viewers that render into their own window. It is anticipated that, over time,
display of 3D content will become integrated into the main browser display.
fact, some of today’s 3D browsers display 2D content as 2D objects within a
world.

1.4.2 Games

Developers of 3D game software have typically attempted to wring out every
ounce of performance from the hardware. Historically they have been quite w
ing to use hardware-specific, nonportable optimizations to get the best pe
mance possible. As such, in the past, game developers have tended to pro
below the level of easy-to-use software such as Java 3D. However, the tren
5Version 1.1.2, June 1999

1.5 Overview of Java 3D Object Hierarchy INTRODUCTION TO JAVA 3D

6

nd to

er’s
ould
One
ave
ech-
lop-

ulate a
erall
il for
3D games today is to leverage general-purpose 3D hardware accelerators a
use fewer “tricks” in rendering.

So, while Java 3D was not explicitly designed to match the game develop
every expectation, Java 3D’s sophisticated implementation techniques sh
provide more than enough performance to support many game applications.
might argue that applications written using a general API like Java 3D may h
a slight performance penalty over those employing special, nonportable t
niques. However, other factors such as portability, time to market, and deve
ment cost must be weighed against absolute peak performance.

1.5 Overview of Java 3D Object Hierarchy

Java 3D defines several basic classes that are used to construct and manip
scene graph and to control viewing and rendering. Figure 1-1 shows the ov
object hierarchy used by Java 3D. Subsequent chapters provide more deta
specific portions of the hierarchy.

Figure 1-1 Java 3D Object Hierarchy

javax.media.j3d
VirtualUniverse
Locale
View
PhysicalBody
PhysicalEnvironment
Screen3D
Canvas3D (extends awt.Canvas)
SceneGraphObject

Node
Group
Leaf

NodeComponent
Various component objects

Transform3D

javax.vecmath
Matrix classes
Tuple classes
Java 3D API Specification

INTRODUCTION TO JAVA 3D Java 3D Application Scene Graph1.6.1

tion.
bject

erse
h is a
struc-

tion
just
All
yed.

nes
tual
1.6 Structuring the Java 3D Program

This section illustrates how a developer might structure a Java 3D applica
The simple application in this example creates a scene graph that draws an o
in the middle of a window and rotates the object about its center point.

1.6.1 Java 3D Application Scene Graph

The scene graph for the sample application is shown in Figure 1-2.

Figure 1-2 Application Scene Graph

The scene graph consists of superstructure components—a VirtualUniv
object and a Locale object—and a set of branch graphs. Each branch grap
subgraph that is rooted by a BranchGroup node that is attached to the super
ture. For more information, see Chapter 2, “Scene Graph Basics.”

A VirtualUniverse object defines a named universe. Java 3D permits the crea
of more than one universe, though the vast majority of applications will use
one. The VirtualUniverse object provides a grounding for scene graphs.
Java 3D scene graphs must connect to a VirtualUniverse object to be displa
For more information, see Chapter 3, “Scene Graph Superstructure.”

Below the VirtualUniverse object is a Locale object. The Locale object defi
the origin, in high-resolution coordinates, of its attached branch graphs. A vir

BG

VirtualUniverse Object

Locale Object

BranchGroup Nodes

BBehavior Node TT TransformGroup Nodes

S
Shape3D Node

Appearance Geometry

ViewPlatform Object

VP
User Code
 and Data

BG

View

Other Objects
7Version 1.1.2, June 1999

1.6.2 Recipe for a Java 3D Program INTRODUCTION TO JAVA 3D

8

ingle

4.2,
ed a

to

des.
of a

e for
.

that
eo-

fers
The
our

eome-

roup
ition
ns-
ni-

the
the

tain
reen

raph
and
universe may contain as many Locales as needed. In this example, a s
Locale object is defined with its origin at (0.0, 0.0, 0.0).

The scene graph itself starts with the BranchGroup nodes (see Section
“BranchGroup Node”). A BranchGroup serves as the root of a subgraph, call
branch graph, of the scene graph. Only BranchGroup objects can attach
Locale objects.

In this example there are two branch graphs and, thus, two BranchGroup no
Attached to the left BranchGroup are two subgraphs. One subgraph consists
user-extended Behavior leaf node. The Behavior node contains Java cod
manipulating the transformation matrix associated with the object’s geometry

The other subgraph in this BranchGroup consists of a TransformGroup node
specifies the position (relative to the Locale), orientation, and scale of the g
metric objects in the virtual universe. A single child, a Shape3D leaf node, re
to two component objects: a Geometry object and an Appearance object.
Geometry object describes the geometric shape of a 3D object (a cube in
simple example). The Appearance object describes the appearance of the g
try (color, texture, material reflection characteristics, and so forth).

The right BranchGroup has a single subgraph that consists of a TransformG
node and a ViewPlatform leaf node. The TransformGroup specifies the pos
(relative to the Locale), orientation, and scale of the ViewPlatform. This tra
formed ViewPlatform object defines the end user’s view within the virtual u
verse.

Finally, the ViewPlatform is referenced by a View object that specifies all of
parameters needed to render the scene from the point of view of
ViewPlatform. Also referenced by the View object are other objects that con
information, such as the drawing canvas into which Java 3D renders, the sc
that contains the canvas, and information about the physical environment.

1.6.2 Recipe for a Java 3D Program

The following steps are taken by the example program to create the scene g
elements and link them together. Java 3D will then render the scene graph
display the graphics in a window on the screen:

1. Create a Canvas3D object and add it to the Applet panel.

2. Create a BranchGroup as the root of the scene branch graph.

3. Construct a Shape3D node with a TransformGroup node above it.

4. Attach a RotationInterpolator behavior to the TransformGroup.
Java 3D API Specification

INTRODUCTION TO JAVA 3D HelloUniverse: A Sample Java 3D Program1.6.3

ee

lat-

ph.

con-

at a

ludes
h to
5. Call the universe builder utility function to do the following:

a. Establish a virtual universe with a single high-resolution Locale (s
Chapter 2, “Scene Graph Basics”).

b. Create the PhysicalBody, PhysicalEnvironment, View, and ViewP
form objects.

c. Create a BranchGroup as the root of the view platform branch gra

d. Insert the view platform branch graph into the Locale.

6. Insert the scene branch graph into the universe builder’s Locale.

The Java 3D renderer then starts running in an infinite loop. The renderer
ceptually performs the following operations:

while(true) {
Process input
If (request to exit) break
Perform Behaviors
Traverse the scene graph and render visible objects

}
Cleanup and exit

1.6.3 HelloUniverse: A Sample Java 3D Program

Here are code fragments from a simple program,HelloUniverse.java, that cre-
ates a cube and a RotationInterpolator behavior object that rotates the cube
constant rate ofπ/2 radians per second.

1.6.3.1 HelloUniverse Class

The HelloUniverse class, on the next page, creates the branch graph that inc
the cube and the RotationInterpolator behavior. It then adds this branch grap
the Locale object generated by the UniverseBuilder utility.
9Version 1.1.2, June 1999

1.6.3 HelloUniverse: A Sample Java 3D Program INTRODUCTION TO JAVA 3D

10
public class HelloUniverse extends Applet {
public BranchGroup createSceneGraph() {

// Create the root of the branch graph
BranchGroup objRoot = new BranchGroup();

// Create the TransformGroup node and initialize it to the
// identity. Enable the TRANSFORM_WRITE capability so that
// our behavior code can modify it at run time. Add it to
// the root of the subgraph.
TransformGroup objTrans = new TransformGroup();
objTrans.setCapability(

TransformGroup.ALLOW_TRANSFORM_WRITE);
objRoot.addChild(objTrans);
// Create a simple Shape3D node; add it to the scene graph.
objTrans.addChild(new ColorCube().getShape());

// Create a new Behavior object that will perform the
// desired operation on the specified transform and add
// it into the scene graph.
Transform3D yAxis = new Transform3D();
Alpha rotationAlpha = new Alpha(

-1, Alpha.INCREASING_ENABLE,
0, 0, 4000, 0, 0, 0, 0, 0);

RotationInterpolator rotator = new RotationInterpolator(
rotationAlpha, objTrans, yAxis,
0.0f, (float) Math.PI*2.0f);

BoundingSphere bounds =
new BoundingSphere(new Point3d(0.0,0.0,0.0), 100.0);

rotator.setSchedulingBounds(bounds);
objTrans.addChild(rotator);

return objRoot;
}

public HelloUniverse() {
setLayout(new BorderLayout());
Canvas3D c = new Canvas3D(graphicsConfig);
add("Center", c);
// Create a simple scene and attach it to the virtual
// universe
BranchGroup scene = createSceneGraph();
UniverseBuilder u = new UniverseBuilder(c);
u.addBranchGraph(scene);

}
}

Java 3D API Specification

INTRODUCTION TO JAVA 3D HelloUniverse: A Sample Java 3D Program1.6.3

rse,
The
hat
1.6.3.2 UniverseBuilder Class

The UniverseBuilder class establishes and initializes Java 3D’s virtual unive
Locale, and viewing objects, and constructs the view platform branch graph.
example code shown below is a simplified version of the UniverseBuilder t
will be supplied as part of the Java 3D utility package.

public class UniverseBuilder extends Object {
// User-specified canvas
Canvas3D canvas;

// Scene graph elements to which the user may want access
VirtualUniverse universe;
Locale locale;
TransformGroup vpTrans;
View view;

public UniverseBuilder(Canvas3D c) {
this.canvas = c;

// Establish a virtual universe that has a single
// hi-res Locale
universe = new VirtualUniverse();
locale = new Locale(universe);

// Create a PhysicalBody and PhysicalEnvironment object
PhysicalBody body = new PhysicalBody();
PhysicalEnvironment environment =

new PhysicalEnvironment();

// Create a View and attach the Canvas3D and the physical
// body and environment to the view.
view = new View();
view.addCanvas3D(c);
view.setPhysicalBody(body);
view.setPhysicalEnvironment(environment);

// Create a BranchGroup node for the view platform
BranchGroup vpRoot = new BranchGroup();

// Create a ViewPlatform object, and its associated
// TransformGroup object, and attach it to the root of the
// subgraph. Attach the view to the view platform.
Transform3D t = new Transform3D();
t.set(new Vector3f(0.0f, 0.0f, 2.0f));
ViewPlatform vp = new ViewPlatform();
vpTrans = new TransformGroup(t);
11Version 1.1.2, June 1999

1.6.3 HelloUniverse: A Sample Java 3D Program INTRODUCTION TO JAVA 3D

12

for an
vpTrans.addChild(vp);
vpRoot.addChild(vpTrans);

view.attachViewPlatform(vp);

// Attach the branch graph to the universe, via the
// Locale. The scene graph is now live!
locale.addBranchGraph(vpRoot);

}

public void addBranchGraph(BranchGroup bg) {
locale.addBranchGraph(bg);

}
}

1.6.3.3 ColorCube Class

The ColorCube Class creates a Shape3D node that contains the geometry
unlit, colored cube.

public class ColorCube extends Object {
private static final float[] verts = {
// front face

 1.0f, -1.0f, 1.0f, 1.0f, 1.0f, 1.0f,
-1.0f, 1.0f, 1.0f, -1.0f, -1.0f, 1.0f,

// back face
-1.0f, -1.0f, -1.0f, -1.0f, 1.0f, -1.0f,
 1.0f, 1.0f, -1.0f, 1.0f, -1.0f, -1.0f,

// right face
 1.0f, -1.0f, -1.0f, 1.0f, 1.0f, -1.0f,
 1.0f, 1.0f, 1.0f, 1.0f, -1.0f, 1.0f,

// left face
-1.0f, -1.0f, 1.0f, -1.0f, 1.0f, 1.0f,
-1.0f, 1.0f, -1.0f, -1.0f, -1.0f, -1.0f,

// top face
 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, -1.0f,
-1.0f, 1.0f, -1.0f, -1.0f, 1.0f, 1.0f,

// bottom face
-1.0f, -1.0f, 1.0f, -1.0f, -1.0f, -1.0f,
 1.0f, -1.0f, -1.0f, 1.0f, -1.0f, 1.0f,

};
private static final float[] colors = {
// front face (red)

1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f,
1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f,

// back face (green)
0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f,
Java 3D API Specification

INTRODUCTION TO JAVA 3D HelloUniverse: A Sample Java 3D Program1.6.3
0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f,
// right face (blue)

0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f,
0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f,

// left face (yellow)
1.0f, 1.0f, 0.0f, 1.0f, 1.0f, 0.0f,
1.0f, 1.0f, 0.0f, 1.0f, 1.0f, 0.0f,

// top face (magenta)
1.0f, 0.0f, 1.0f, 1.0f, 0.0f, 1.0f,
1.0f, 0.0f, 1.0f, 1.0f, 0.0f, 1.0f,

// bottom face (cyan)
0.0f, 1.0f, 1.0f, 0.0f, 1.0f, 1.0f,
0.0f, 1.0f, 1.0f, 0.0f, 1.0f, 1.0f,

};

private Shape3D shape;

public ColorCube() {
QuadArray cube = new QuadArray(24,

QuadArray.COORDINATES | QuadArray.COLOR_3);

cube.setCoordinates(0, verts);
cube.setColors(0, colors);

shape = new Shape3D(cube, new Appearance());
}

public Shape3D getShape() {
return shape;

}
}

13Version 1.1.2, June 1999

Version 1.1.2, June 1999
C H A P T E R 2

s

m to a
rep-
hs in
cene

node
roup
The
tions
node
nds,
cs of

. The
ncur-
jects.
rticular

n the
roup
tains
Scene Graph Basic

A scene graph consists of Java 3D objects, callednodes, arranged in a tree
structure. The user creates one or more scene subgraphs and attaches the
virtual universe. The individual connections between Java 3D nodes always
resent a directed relationship: parent to child. Java 3D restricts scene grap
one major way: Scene graphs may not contain cycles. Thus, a Java 3D s
graph is a directed acyclic graph (DAG). See Figure 2-1.

Java 3D refines the Node object class into two subclasses: Group and Leaf
objects. Group node objects group together one or more child nodes. A g
node can point to zero or more children but can have only one parent.
SharedGroup node cannot have any parents (although it allows sharing por
of a scene graph, as described in Chapter 6, “Reusing Scene Graphs”). Leaf
objects contain the actual definitions of shapes (geometry), lights, fog, sou
and so forth. A leaf node has no children and only one parent. The semanti
the various group and leaf nodes are described in subsequent chapters.

2.1 Scene Graph Structure

A scene graph organizes and controls the rendering of its constituent objects
Java 3D renderer draws a scene graph in a consistent way that allows for co
rence. The Java 3D renderer can draw one object independently of other ob
Java 3D can allow such independence because its scene graphs have a pa
form and cannot share state among branches of a tree.

2.1.1 Spatial Separation

The hierarchy of the scene graph encourages a natural spatial grouping o
geometric objects found at the leaves of the graph. Internal nodes act to g
their children together. A group node also defines a spatial bound that con
15

2.1.2 State Inheritance SCENE GRAPH BASICS

16

ient
ion,

cene
near
verse
from
l-
ghts

APIs
f a
nodes
all the geometry defined by its descendants. Spatial grouping allows for effic
implementation of operations such as proximity detection, collision detect
view frustum culling, and occlusion culling.

Figure 2-1 A Java 3D Scene Graph Is a DAG (Directed Acyclic Graph)

2.1.2 State Inheritance

A leaf node’s state is defined by the nodes in a direct path between the s
graph’s root and the leaf. Because a leaf’s graphics context only relies on a li
path between the root and that node, the Java 3D renderer can decide to tra
the scene graph in whatever order it wishes. It can traverse the scene graph
left to right and top to bottom, in level order from right to left, or even in para
lel. The only exceptions to this rule are spatially bounded attributes such as li
and fog.

This characteristic is in marked contrast to many older scene graph–based
(including PHIGS and SGI’s Inventor), where if a node above or to the left o
node changes the graphics state, the change affects the graphics state of all
below it or to its right.

BG BG BG

Virtual Universe

Hi-Res Locales

BranchGroup Nodes

Leaf Nodes
Java 3D API Specification

SCENE GRAPH BASICS Scene Graph Objects 2.2

that
roup
.

nstit-
ode

rmits
erial

direct
ect.
es.

con-
bjects
re
t class

com-

sired

bjects
—via

tire
2,

be
xplic-
a
cene
n-

ertain
ts
-

The most common node object, along the path from the root to the leaf,
changes the graphics state is the TransformGroup object. The TransformG
object can change the position, orientation, and scale of the objects below it

Most graphics state attributes are set by a Shape3D leaf node through its co
uent Appearance object, thus allowing parallel rendering. The Shape3D n
also has a constituent Geometry object that specifies its geometry—this pe
different shape objects to share common geometry without sharing mat
attributes (or vice versa).

2.1.3 Rendering

The Java 3D renderer incorporates all graphics state changes made in a
path from a scene graph root to a leaf object in the drawing of that leaf obj
Java 3D provides this semantic for both retained and compiled-retained mod

2.2 Scene Graph Objects

A Java 3D scene graph consists of a collection of Java 3D node objects
nected in a tree structure. These node objects reference other scene graph o
callednode component objects. All scene graph node and component objects a
subclasses of a common SceneGraphObject class. The SceneGraphObjec
is an abstract class that defines methods that are common among nodes and
ponent objects.

Scene graph objects are constructed by creating a new instance of the de
class and are accessed and manipulated using the object’sset andget methods.
Once a scene graph object is created and connected to other scene graph o
to form a subgraph, the entire subgraph can be attached to a virtual universe
a high-resolution Locale object—making the objectlive (see Section 3.6.2,
“Locale Object”). Prior to attaching a subgraph to a virtual universe, the en
subgraph can becompiled into an optimized, internal format (see Section 4.
“BranchGroup Node”).

An important characteristic of all scene graph objects is that they can only
accessed or modified during the creation of a scene graph, except where e
itly allowed. Access to mostset andget methods of objects that are part of
live or compiled scene graph is restricted. Such restrictions provide the s
graph compiler with usage information it can use in optimally compiling or re
dering a scene graph. Each object has a set of capability bits that enable c
functionality when the object is live or compiled. By default, all capability bi
are disabled (cleared). Only thoseset andget methods corresponding to capa
17Version 1.1.2, June 1999

2.2 Scene Graph Objects SCENE GRAPH BASICS

18

or
are

cene
by
that
d to a

mod-
bil-
very
am-
bility bits that are explicitly enabled (set) prior to the object being compiled
made live are legal. The methods for setting and getting capability bits
described next.

Constructors

The SceneGraphObject specifies one constructor.

public SceneGraphObject()

Constructs a new SceneGraphObject with default parameters:

Methods

The following methods are available on all scene graph objects.

public final boolean isCompiled()
public final boolean isLive()

The first method returns a flag that indicates whether the node is part of a s
graph that has been compiled. If so, only those capabilities explicitly allowed
the object’s capability bits are allowed. The second method returns a flag
indicates whether the node is part of a scene graph that has been attache
virtual universe via a high-resolution Locale object.

public final boolean getCapability(int bit)
public final void setCapability(int bit)
public final void clearCapability(int bit)

These three methods provide applications with the means for accessing and
ifying the capability bits of a scene graph object. The bit positions of the capa
ity bits are defined as public static final constants on a per-object basis. E
instance of every scene graph object has its own set of capability bits. An ex
ple of a capability bit is theALLOW_BOUNDS_WRITE bit in node objects. Only those
methods corresponding to capabilities that are enabledbefore the object is first
compiled or made live are subsequently allowed for that object. ARestricte-

dAccessException is thrown if an application callssetCapability or clearCa-

Parameters Default Values

capabilitybits clear (all bits)

isLive false

isCompiled false

userData null
Java 3D API Specification

SCENE GRAPH BASICS Node Objects2.2.1

or

cene
y be

—it is
ied

odes
de’s
ering;

are
de

pa-
or

th
pability on live or compiled objects. Note that only a single bit may be set
cleared per method invocation—bits maynot be ORed together.

public void setUserData(Object userData)
public Object getUserData()

These methods access or modify the userData field associated with this s
graph object. The userData field is a reference to an arbitrary object and ma
used to store any user-specific data associated with this scene graph object
not used by the Java 3D API. If this object is cloned, the userData field is cop
to the newly cloned object.

2.2.1 Node Objects

Node objects divide into group node objects and leaf node objects. Group n
serve to group their child node objects together according to the group no
semantics. Leaf nodes specify the actual elements that Java 3D uses in rend
specifically, geometric objects, lights, and sounds. These node objects
described in Chapter 4, “Group Node Objects” and Chapter 5, “Leaf No
Objects.”

Constants

Node object constants allow an application to individually enable runtime ca
bilities. These capability bits are enforced only when the node is part of a live
compiled scene graph.

public static final int ALLOW_PICK

This is a deprecated capability bit. UsesetPickable(boolean) instead.

public static final int ALLOW_BOUNDS_READ
public static final int ALLOW_BOUNDS_WRITE

These bits, when set using thesetCapability method, specify that the node will
permit an application to invoke thegetBounds andsetBounds methods, respec-
tively. An application can choose to enable a particularset method but not the
associatedget method, or vice versa. The application can choose to enable bo
methods or, by default, leave the method(s) disabled.

public static final int ALLOW_AUTO_COMPUTE_BOUNDS_READ
public static final int ALLOW_AUTO_COMPUTE_BOUNDS_WRITE

These bits, when set using thesetCapability method, specify that the node will
permit an application to invoke thegetBoundsAutoCompute and set-
19Version 1.1.2, June 1999

2.2.1 Node Objects SCENE GRAPH BASICS

20

ble

od(s)

By

ph-
; it
des
set to

ility

s-to-

The
es a

und-
BoundsAutoCompute methods, respectively. An application can choose to ena
a particularset method but not the associatedget method, or vice versa. The
application can choose to enable both methods or, by default, leave the meth
disabled.

public static final int ENABLE_PICK_REPORTING

This flag specifies that this node will be reported in a SceneGraphPath.
default, this is disabled.

public static final int ALLOW_PICKABLE_READ
public static final int ALLOW_PICKABLE_WRITE

These flags specify that this Node can have its pickability read or changed.

public static final int ENABLE_COLLISION_REPORTING

This flag specifies that this Node will be reported in the collision SceneGra
Path if a collision occurs. This capability is only specifiable for Group nodes
is ignored for Leaf nodes. The default for Group nodes is false. All interior no
not needed for uniqueness in a SceneGraphPath that don’t have this flag
true will not be reported in the SceneGraphPath.

public static final int ALLOW_COLLIDABLE_READ
public static final int ALLOW_COLLIDABLE_WRITE

These flags specify that this Node allows read or write access to its collidab
state.

public static final int ALLOW_LOCAL_TO_VWORLD_READ

This flag specifies that this node allows read access to its local-coordinate
virtual-world-(Vworld)-coordinates transform.

Constructors

The Node object specifies the following constructor.

public Node()

This constructor constructs and initializes a Node object with default values.
Node class provides an abstract class for all group and leaf nodes. It provid
common framework for constructing a Java 3D scene graph, specifically, bo
ing volumes. The default values are:
Java 3D API Specification

SCENE GRAPH BASICS Node Objects2.2.1

ities

d
f a

rans-
ent.
d
s-
ene
ec-

cep-
e
p-

omet-
ad-
Methods

The following methods are available on Node objects, subject to the capabil
that are enabled for live or compiled nodes.

public final Node getParent()

Retrieves the parent of this node, ornull if this node has no parent. This metho
is only valid during the construction of the scene graph. If this object is part o
live or compiled scene graph, aRestrictedAccessException will be thrown.

public final Bounds getBounds()
public final void setBounds(Bounds bounds)

These methods access or modify this node’s geometric bounds.

public final void getLocalToVworld(Transform3D t)
public final void getLocalToVworld(SceneGraphPath path,

Transform3D t)

These methods access the local-coordinates-to-virtual-world-coordinates t
form for this node and place the result into the specified Transform3D argum
The first form is used for nodes that arenot part of a shared subgraph, the secon
form is used for nodes thatare part of a shared subgraph. The local-coordinate
to-Vworld-coordinates transform is the composite of all transforms in the sc
graph from the root down to this node (via the specified Link nodes, in the s
ond case). It is only valid for nodes that are part of a live scene graph. An ex
tion will be thrown if the node is not part of a live scene graph or if th
appropriate capability is not set. Additionally, the first form will throw an exce
tion if the node is part of a shared subgraph.

public final void setBoundsAutoCompute(boolean autoCompute)
public final boolean getBoundsAutoCompute()

These methods set and get the value that determines whether the node’s ge
ric bounds are computed automatically, in which case the bounds will be re
only, or are set manually, in which case the value specified bysetBounds will be
used. The default is automatic.

Parameters Default Value

pickable true

collidable true

boundsautoCompute true

bounds N/A (automatically computed)
21Version 1.1.2, June 1999

2.2.1 Node Objects SCENE GRAPH BASICS

22

n be
k-

able
ode,
ode
lue
ion

, the
r
ence
dden
public void setPickable(boolean pickable)
public boolean getPickable()

These methods set and retrieve the flag indicating whether this node ca
picked. A setting offalse means that this node and its children are all unpic
able.

public void setCollidable(boolean collidable)
public boolean getCollidable()

The set method sets the collidable value. The get method returns the collid
value. This value determines whether this node and its children, if a group n
can be considered for collision purposes. If the value is false, neither this n
nor any children nodes will be traversed for collision purposes. The default va
is true. The collidable setting is the way that an application can perform collis
culling.

public Node cloneNode(boolean forceDuplicate)

This method creates a new instance of the node. This routine is called byclon-

eTree to duplicate the current node.cloneNode should be overridden by any
user-subclassed objects. All subclasses must have theircloneNode method con-
sist of the following lines:

public Node cloneNode(boolean forceDuplicate) {
UserSubClass usc = new UserSubClass();
usc.duplicateNode(this, forceDuplicate);
return usc;

}

public void duplicateNode(Node originalNode,
boolean forceDuplicate)

This method copies all the node information from theoriginalNode into the
current node. This method is called from thecloneNode method, which is in turn
called by thecloneTree method.

For each NodeComponent object contained by the object being duplicated
NodeComponent’sduplicateOnCloneTree value is used to determine whethe
the NodeComponent should be duplicated in the new node or if just a refer
to the current node should be placed in the new node. This flag can be overri
by setting theforceDuplicate parameter in thecloneTree method totrue.
Java 3D API Specification

SCENE GRAPH BASICS NodeComponent Objects2.2.2

odes

ade

ss

ter is

ibutes
d in

fault
mpo-
public Node cloneTree()
public Node cloneTree(boolean forceDuplicate)
public Node cloneTree(boolean forceDuplicate,

boolean allowDanglingReference)

These methods duplicate all the nodes of the specified subgraph. Group n
are duplicated via a call tocloneNode, and thencloneTree is called for each
child node. For leaf nodes, component data can either be duplicated or be m
a reference to the original data. Leaf nodecloneTree behavior is determined by
theduplicateOnCloneTree flag found in every leaf node’s component data cla
and by theforceDuplicate parameter. TheforceDuplicate parameter, when
set totrue, causes theduplicateOnCloneTree flag to be ignored. Theallow-
DanglingReferences flag, when set totrue, allows thecloneTree method to
complete even when a dangling reference is discovered. When this parame
false, a DanglingReferenceException is generated as soon ascloneTree
detects this situation.

2.2.2 NodeComponent Objects

Node component objects include the actual geometry and appearance attr
used to render the geometry. These component objects are describe
Chapter 7, “Node Component Objects.”

Constructors

The NodeComponent object specifies the following constructor.

public NodeComponent()

This constructor constructs and initializes a NodeComponent object with de
parameters. The NodeComponent class provides an abstract class for all co
nent objects. The default values are as follows:

Methods

The following methods are available on NodeComponent objects.

public void setDuplicateOnCloneTree(boolean duplicate)
public boolean getDuplicateOnCloneTree()

These methods access or modify theduplicateOnCloneTree value of the Node-
Component object. TheduplicateOnCloneTree value is used by thecloneTree

Parameters Default Value

duplicateon clone tree false
23Version 1.1.2, June 1999

2.3 Scene Graph Superstructure Objects SCENE GRAPH BASICS

24

ref-

od is

ent

and
the

cene

ec-
will
tions
thin
n.

cene
method to determine if NodeComponent objects should be duplicated or just
erenced in the cloned leaf object.

public NodeComponent cloneNodeComponent()

This method creates a new instance of a NodeComponent object. This meth
called by thecloneNode method to duplicate the current node. ThecloneNode-

Component should be overridden by any user-subclassed NodeCompon
objects. All subclasses must have theircloneNodeComponent method consist of
the following lines:

public NodeComponent cloneNodeComponent() {
UserNodeComponent unc = new UserNodeComponent();
unc.duplicateNodeComponent(this);
return unc;

}

public void duplicateNodeComponent(NodeComponent
originalNodeComponent)

This method copies all node information fromoriginalNodeComponent into the
current node. This method is called from thecloneNodeComponent method,
which is in turn called by thecloneNode method.

2.3 Scene Graph Superstructure Objects

Java 3D defines two scene graph superstructure objects, VirtualUniverse
Locale, which are used to contain collections of subgraphs that comprise
scene graph. These objects are described in more detail in Chapter 3, “S
Graph Superstructure.”

2.3.1 VirtualUniverse Object

A VirtualUniverse object consists of a list of Locale objects that contain a coll
tion of scene graph nodes that exist in the universe. Typically, an application
need only one VirtualUniverse, even for very large virtual databases. Opera
on a VirtualUniverse include enumerating the Locale objects contained wi
the universe. See Section 3.6.1, “VirtualUniverse Object,” for more informatio

2.3.2 Locale Object

The Locale object acts as a container for a collection of subgraphs of the s
Java 3D API Specification

SCENE GRAPH BASICS View Object2.4.3

ation
to

aph

tual
r of

f the
g or
sub-

cene
s into
ody,
iew

win-
n a
s the
ame

phys-
en in
tion

aph.
the
graph that are rooted by a BranchGroup node. A Locale also defines a loc
within the virtual universe using high-resolution coordinates (HiResCoord)
specify its position. The HiResCoord serves as the origin for all scene gr
objects contained within the Locale.

A Locale has no parent in the scene graph, but is implicitly attached to a vir
universe when it is constructed. A Locale may reference an arbitrary numbe
BranchGroup nodes, but has no explicit children.

The coordinates of all scene graph objects are relative to the HiResCoord o
Locale in which they are contained. Operations on a Locale include settin
getting the HiResCoord of the Locale, adding a subgraph, and removing a
graph (see Section 3.6.2, “Locale Object,” for more information).

2.4 Scene Graph Viewing Objects

Java 3D defines five scene graph viewing objects that are not part of the s
graph per se but serve to define the viewing parameters and to provide hook
the physical world. These objects are Canvas3D, Screen3D, View, PhysicalB
and PhysicalEnvironment. They are described in more detail in Chapter 8, “V
Model,” and Appendix C, “View Model Details.”

2.4.1 Canvas3D Object

The Canvas3D object encapsulates all of the parameters associated with the
dow being rendered into (see Section 8.9, “The Canvas3D Object”). Whe
Canvas3D object is attached to a View object, the Java 3D traverser render
specified view onto the canvas. Multiple Canvas3D objects can point to the s
View object.

2.4.2 Screen3D Object

The Screen3D object encapsulates all of the parameters associated with the
ical screen containing the canvas, such as the width and height of the scre
pixels, the physical dimensions of the screen, and various physical calibra
values (see Section 8.8, “The Screen3D Object”).

2.4.3 View Object

The View object specifies information needed to render the scene gr
Figure 2-2 shows a View object attached to a simple scene graph for viewing
scene.
25Version 1.1.2, June 1999

2.4.4 PhysicalBody Object SCENE GRAPH BASICS

26

of
in
cts
tive

h the
rth.

iated
ker
ment
Figure 2-2 Viewing a Scene Graph

The View object is the central Java 3D object for coordinating all aspects
viewing (see Section 8.7, “The View Object”). All viewing parameters
Java 3D are either directly contained within the View object or within obje
pointed to by a View object. Java 3D supports multiple simultaneously ac
View objects, each of which can render to one or more canvases.

2.4.4 PhysicalBody Object

The PhysicalBody object encapsulates all of the parameters associated wit
physical body, such as head position, right and left eye position, and so fo
(see Section 8.10, “The PhysicalBody Object”).

2.4.5 PhysicalEnvironment Object

The PhysicalEnvironment object encapsulates all of the parameters assoc
with the physical environment, such as calibration information for the trac
base for the head or hand tracker (see Section 8.11, “The PhysicalEnviron
Object”).

BG

VP
View

Platform

Virtual Universe

Hi-Res Locale

View Canvas3D Screen3D

Physical
Body

Physical
Environment
Java 3D API Specification

Version 1.1.2, June 1999
C H A P T E R 3

re

ach
he

cene

e
it of
l uni-
d, in

ore
tual
ual

that

sing
e of

level
ne
d to

only
rticu-
Scene Graph Superstructu

JAVA 3D’s superstructure consists of one or more VirtualUniverse objects, e
of which contains a set of one or more high-resolution Locale objects. T
Locale objects, in turn, contain collections of subgraphs that comprise the s
graph (see Figure 3-1).

3.1 The Virtual Universe

Java 3D defines the concept of avirtual universeas a three-dimensional spac
with an associated set of objects. Virtual universes serve as the largest un
aggregate representation, and can also be thought of as databases. Virtua
verses can be very large, both in physical space units and in content. Indee
most cases a single virtual universe will serve an application’s entire needs.

Virtual universes are separate entities in that no node object may exist in m
than one virtual universe at any one time. Likewise, the objects in one vir
universe are not visible in, nor do they interact with objects in, any other virt
universe.

To support large virtual universes, Java 3D introduces the concept of Locales
havehigh-resolution coordinatesas an origin. Think of high-resolution coordi-
nates as “tie-downs” that precisely anchor the locations of objects specified u
less precise floating-point coordinates that are within the range of influenc
the high-resolution coordinates.

A Locale, with its associated high-resolution coordinates, serves as the next
of representation down from a virtual universe. All virtual universes contain o
or more high-resolution-coordinate Locales, and all other objects are attache
a Locale. High-resolution coordinates act as an upper-level translation-
transform node. For example, the coordinates of all objects attached to a pa
27

3.2 Establishing a Scene SCENE GRAPH SUPERSTRUCTURE

28

di-

t of
etter

inate

va 3D
and
start-
ct,

nces
”).

irtu-
r on
lar Locale are all relative to the location of that Locale’s high-resolution coor
nates.

Figure 3-1 The Virtual Universe

While a virtual universe is similar to the traditional computer graphics concep
a scene graph, a given virtual universe can become so large that it is often b
to think of a scene graph as the descendent of a high-resolution-coord
Locale.

3.2 Establishing a Scene

To construct a three-dimensional scene, the programmer must execute a Ja
program. The Java 3D application must first create a VirtualUniverse object
attach at least one Locale to it. Then the desired scene graph is constructed,
ing with a BranchGroup node and including at least one ViewPlatform obje
and is attached to the Locale. Finally, a View object is constructed that refere
the ViewPlatform object (see Section 1.6, “Structuring the Java 3D Program
As soon as a scene graph containing a ViewPlatform is attached to the V
alUniverse, Java 3D’s rendering loop is engaged, and the scene will appea
the drawing canvas(es) associated with the View object.

BG BG BG

Virtual Universe

Hi-Res Locales

BranchGroup Nodes

Leaf Nodes

Group Nodes
Java 3D API Specification

SCENE GRAPH SUPERSTRUCTURE Java 3D High-resolution Coordinates3.5.1

at.
tual
pro-
or

tion
the

d-
sent
uni-
rigin
ints
ore

ear

res-
ents

ers,
ned
erse
ects
ow
e of
3.3 Loading a Virtual Universe

Java 3D is a runtime application programming interface (API), not a file form
As an API, Java 3D provides no direct mechanism for loading or storing a vir
universe. Constructing a scene graph involves the execution of a Java 3D
gram. However, loaders to convert a number of standard 3D file formats to
from Java 3D virtual universes are expected to be generally available.

3.4 Coordinate Systems

By default, Java 3D coordinate systems are right-handed, with the orienta
semantics being that +Y is the local gravitational up, +X is horizontal to
right, and +Z is directly toward the viewer. The default units are meters.

3.5 High-resolution Coordinates

Double-precision floating-point, single-precision floating-point, or even fixe
point representations of three-dimensional coordinates are sufficient to repre
and display rich 3D scenes. Unfortunately, scenes are not worlds, let alone
verses. If one ventures even a hundred miles away from the (0.0, 0.0, 0.0) o
using only single-precision floating-point coordinates, representable po
become quite quantized, to at very best a third of an inch (and much m
coarsely than that in practice).

To “shrink” down to a small size (say the size of an IC transistor), even very n
(0.0, 0.0, 0.0), the same problem arises.

If a large contiguous virtual universe is to be supported, some form of higher-
olution addressing is required. Thus the choice of 256-bit positional compon
for “high-resolution” positions.

3.5.1 Java 3D High-resolution Coordinates

Java 3D high-resolution coordinates consist of three 256-bit fixed-point numb
one each for x, y, and z. The fixed point is at bit 128, and the value 1.0 is defi
to be exactly 1 meter. This coordinate system is sufficient to describe a univ
in excess of several hundred billion light years across, yet still define obj
smaller than a proton (down to below the planck length). Table 3-1 shows h
many bits are needed above or below the fixed point to represent the rang
interesting physical dimensions.
29Version 1.1.2, June 1999

3.5.2 Java 3D Virtual World Coordinates SCENE GRAPH SUPERSTRUCTURE

30

ctly

onal
. In
can

ree
this

xed-
pre-
nates
0 as
the
ted
tion
A 256-bit fixed-point number also has the advantage of being able to dire
represent nearly any reasonable single-precision floating-point valueexactly.

High-resolution coordinates in Java 3D are only used to embed more traditi
floating point coordinate systems within a much higher-resolution substrate
this way a visually seamless virtual universe of any conceivable size or scale
be created, without worry about numerical accuracy.

3.5.2 Java 3D Virtual World Coordinates

Within a given virtual world coordinate system, positions are expressed by th
floating point numbers. The virtual world coordinate scale is in meters, but
can be affected by scale changes in the object hierarchy.

3.5.3 Details of High-resolution Coordinates

High-resolution coordinates are represented as signed, two’s-complement, fi
point numbers consisting of 256 bits. Although Java 3D keeps the internal re
sentation of high-resolution coordinates opaque, users specify such coordi
using 8-element integer arrays. Java 3D treats the integer found at index
containing the most significant bits and that found at index 7 as containing
least significant bits of the high-resolution coordinate. The binary point is loca
at bit position 128, or between the integers at index 3 and 4. A high-resolu
coordinate of 1.0 is 1 meter.

Table 3-1 Java 3D High-Resolution Coordinates

2n Meters Units

87.29 Universe (20 billion light years)

69.68 Galaxy (100,000 light years)

53.07 Light year

43.43 Solar system diameter

23.60 Earth diameter

10.65 Mile

9.97 Kilometer

0.00 Meter

–19.93 Micron

–33.22 Angstrom

–115.57 Planck length
Java 3D API Specification

SCENE GRAPH SUPERSTRUCTURE Details of High-resolution Coordinates3.5.3

p to
ing
ice is

ela-
ion
t; a
d the
n in

uter
ter-
ence

the

eing
new
raph
) by

the
nts
cial
solu-
3D

ate
uffi-
i-

y
es in
riate
pli-

its
ly
dis-
ce
The semantics of how file loaders deal with high-resolution coordinates is u
the individual file loader, as Java 3D does not directly define any file-load
semantics. However, some general advice can be given (note that this adv
not officially part of the Java 3D specification).

For “small” virtual universes (on the order of hundreds of meters across in r
tive scale), a single Locale with high-resolution coordinates at locat
(0.0, 0.0, 0.0) as the root node (below the VirtualUniverse object) is sufficien
loader can automatically construct this node during the loading process, an
point in high-resolution coordinates does not need any direct representatio
the external file.

Larger virtual universes are expected to be usually constructed like comp
directory hierarchies, that is, as a “root” virtual universe containing mostly ex
nal file references to embedded virtual universes. In this case, the file refer
object (user-specific data hung off a Java 3D group or hi-res node) defines
location for the data to be read into the current virtual universe.

The data file’s contents should be parented to the file object node while b
read, thus inheriting the high-resolution coordinates of the file object as the
relative virtual universe origin of the embedded scene graph. If this scene g
itself contains high-resolution coordinates, it will need to be offset (translated
the amount in the file object’s high-resolution coordinates, and then added to
larger virtual universe as new high-resolution coordinates, with their conte
hung off below them. Once again, the above procedure is not part of the offi
Java 3D specification, but some more details on the care and use of high-re
tion coordinates in external file formats will probably be available as a Java
application note.

Authoring tools that directly support high-resolution coordinates should cre
additional high-resolution coordinates as a user creates new geometry “s
ciently” far away (or of different scale) from existing high-resolution coord
nates.

Semantics of widely moving objects. Most fixed and nearly-fixed objects sta
attached to the same high-resolution Locale. Objects that make wide chang
position or scale may need to be periodically reparented to more approp
high-resolution Locale. If no appropriate high-resolution Locale exists, the ap
cation may need to create a new one.

Semantics of viewing. The ViewPlatform object and the associated nodes in
hierarchy are very often widely moving objects. Applications will typical
attach the view platform to the most appropriate high-resolution Locale. For
play, all objects will first have their positions translated by the differen
31Version 1.1.2, June 1999

3.6 API for Superstructure Objects SCENE GRAPH SUPERSTRUCTURE

32

m's
, no

ord

be

ni-

rdi-
between the location of their high-resolution Locale, and the view platfor
high-resolution Locale. (In the common case of the Locales being the same
translation is necessary.)

3.6 API for Superstructure Objects

This section describes the API for the VirtualUniverse, Locale, and HiResCo
objects.

3.6.1 VirtualUniverse Object

The VirtualUniverse object consists of a set of Locale objects.

Constructors

The VirtualUniverse object has the following constructors.

public VirtualUniverse()

This constructs a new VirtualUniverse object. This VirtualUniverse can then
used to create Locale objects.

Methods

The VirtualUniverse object has the following methods.

public final Enumeration getAllLocales()
public final int numLocales()

The first method returns the Enumeration object of all Locales in this virtual u
verse. ThenumLocales method returns the number of Locales.

3.6.2 Locale Object

The Locale object consists of a point, specified using high-resolution coo
nates, and a set of subgraphs, rooted by BranchGroup node objects.

Constructors

The Locale object has the following constructors.
Java 3D API Specification

SCENE GRAPH SUPERSTRUCTURE HiResCoord Object3.6.3

peci-
at

ified

rdi-

ds,

on-

cale.
he
last

rdi-
ers.
bit
256-
public Locale(VirtualUniverse universe)
public Locale(VirtualUniverse universe, int x[], int y[], int z[])
public Locale(VirtualUniverse universe, HiResCoord hiRes)

These three constructors create a new high-resolution Locale object in the s
fied VirtualUniverse. The first form constructs a Locale object located
(0.0, 0.0, 0.0). The other two forms construct a Locale object using the spec
high-resolution coordinates. In the second form, the parametersx, y, andz are
arrays of eight 32-bit integers that specify the respective high-resolution coo
nate.

Methods

The Locale object has the following methods. For the Locale picking metho
see Section 10.3.2, “BranchGroup Node and Locale Node Pick Methods.”

public VirtualUniverse getVirtualUniverse()

This method retrieves the virtual universe within which this Locale object is c
tained.

public void setHiRes(int x[], int y[], int z[])
public void setHiRes(HiResCoord hiRes)
public void getHiRes(HiResCoord hiRes)

These methods set or get the high-resolution coordinates of this Locale.

public void addBranchGraph(BranchGroup branchGroup)
public void removeBranchGraph(BranchGroup branchGroup)
public void replaceBranchGraph(BranchGroup oldGroup,

BranchGroup newGroup)
public int numBranchGraphs()
public Enumeration getAllBranchGraphs()

The first three methods add, remove, and replace a branch graph in this Lo
Adding a branch graph has the effect of making the branch graph “live.” T
fourth method retrieves the number of branch graphs in this Locale. The
method retrieves an Enumeration object of all branch graphs.

3.6.3 HiResCoord Object

A HiResCoord object defines a point using a set of three high-resolution coo
nates, each of which consists of three two’s-complement fixed-point numb
Each high-resolution number consists of 256 total bits with a binary point at
128. Java 3D uses integer arrays of length eight to define or extract a single
33Version 1.1.2, June 1999

3.6.3 HiResCoord Object SCENE GRAPH SUPERSTRUCTURE

34

t sig-

ree
lues
reso-

.

the

e-

ces
have
of the

and
bit coordinate value. Java 3D interprets the integer at index 0 as the 32 mos
nificant bits and the integer at index 7 as the 32 least significant bits.

Constructors

The HiResCoord object has the following constructors.

public HiResCoord(int x[], int y[], int z[])
public HiResCoord(HiResCoord hc)
public HiResCoord()

The first constructor generates the high-resolution coordinate point from th
integer arrays of length eight. The integer arrays specify the coordinate va
corresponding with their name. The second constructor creates a new high-
lution coordinate point by cloning the high-resolution coordinateshc. The third
constructor creates new high-resolution coordinates with value (0.0, 0.0, 0.0)

Methods

public void setHiResCoord(int x[], int y[], int z[])
public void setHiResCoord(HiResCoord hiRes)
public void setHiResCoordX(int x[])
public void setHiResCoordY(int y[])
public void setHiResCoordZ(int z[])

These five methods modify the value of high-resolution coordinatesthis. The
first method resets all three coordinate values with the values specified by
three integer arrays. The second method sets the value ofthis to that of high-
resolution coordinateshiRes. The third, fourth, and fifth methods reset the corr
sponding coordinate ofthis.

public void getHiResCoord(int x[], int y[], int z[])
public void getHiResCoord(HiResCoord hc)
public void getHiResCoordX(int x[])
public void getHiResCoordY(int y[])
public void getHiResCoordZ(int z[])

These five methods retrieve the value of the high-resolution coordinatesthis.
The first method retrieves the high-resolution coordinates’ values and pla
those values into the three integer arrays specified. All three arrays must
length greater than or equal to eight. The second method updates the value
high-resolution coordinateshc to match the value ofthis. The third, fourth, and
fifth methods retrieve the coordinate value that corresponds to their name
update the integer array specified, which must be of length eight or greater.
Java 3D API Specification

SCENE GRAPH SUPERSTRUCTURE HiResCoord Object3.6.3

rdi-

cales

-

thod

n

uble-

, it

a

inate
that
nted
public void add(HiResCoord h1, HiResCoord h2)
public void sub(HiResCoord h1, HiResCoord h2)

These two methods perform arithmetic operations on high-resolution coo
nates. The first method addsh1 to h2 and stores the result inthis. The second
method subtractsh2 from h1 and stores the result inthis.

public void scale(int scale, HiResCoord h1)
public void scale(int scale)

These methods scale a high-resolution coordinate point. The first method s
h1 by the scalar valuescale and places the scaled coordinates intothis. The
second method scalesthis by the scalar valuescale and places the scaled coor
dinates back intothis.

public void negate(HiResCoord h1)
public void negate()

These two methods negate a high-resolution coordinate point. The first me
negatesh1 and stores the result inthis. The second method negatesthis and
stores its negated value back intothis.

public void difference(HiResCoord h1, Vector3d v)

This method subtractsh1 from this and stores the resulting difference vector i
the double-precision floating-point vectorv. Note that although the individual
high-resolution coordinate points cannot be represented accurately by do
precision numbers, this difference vector between themcan be accurately repre-
sented by doubles for many practical purposes, such as viewing.

public boolean equals(HiResCoord h1)
public boolean equals(Object o1)

The first method performs an arithmetic comparison betweenthis and h1. It
returnstrue if the two high-resolution coordinate points are equal; otherwise
returnsfalse. The second method returns true if the Objecto1 is of type HiRes-
Coord and all of the data members ofo1 are equal to the corresponding dat
members in this HiResCoord.

public double distance(HiResCoord h1)

This method computes the linear distance between high-resolution coord
points this and h1, and returns this value expressed as a double. Note
although the individual high-resolution coordinate points cannot be represe
accurately by double precision numbers, this distance between themcanbe accu-
rately represented by a double for many practical purposes.
35Version 1.1.2, June 1999

Version 1.1.2, June 1999
C H A P T E R 4

s

. The
defi-
s—
asso-
less
hoose
er-

have
n an
add-
sses
Group Node Object

GROUP nodes are the glue elements used in constructing a scene graph
following subsections list the seven group nodes (see Figure 4-1) and their
nitions. All group nodes can have a variable number of child node object
including other group nodes as well as leaf nodes. These children have an
ciated index that allows operations to specify a particular child. However, un
one of the special ordered group nodes is used, the Java 3D renderer can c
to render a group node’s children in whatever order it wishes (including rend
ing the children in parallel).

Figure 4-1 Group Node Hierarchy

4.1 Group Node

The Group node object is a general-purpose grouping node. Group nodes
exactly one parent and an arbitrary number of children that are rendered i
unspecified order (or in parallel). Operations on Group node objects include
ing, removing, and enumerating the children of the Group node. The subcla
of Group node add additional semantics.

SceneGraphObject
Node

Group
BranchGroup
OrderedGroup

DecalGroup
SharedGroup
Switch
TransformGroup
37

4.1 Group Node GROUP NODE OBJECTS

38

om-

thod

The
Constants

public static final int ALLOW_CHILDREN_READ
public static final int ALLOW_CHILDREN_WRITE
public static final int ALLOW_CHILDREN_EXTEND

These flags, when enabled using thesetCapability method, specify that this
Group node will allow the following methods, respectively:

• numChildren, getChild, getAllChildren

• setChild, insertChild, removeChild

• addChild, moveTo

These capability bits are enforced only when the node is part of a live or c
piled scene graph.

public static final int ALLOW_COLLISION_BOUNDS_READ
public static final int ALLOW_COLLISION_BOUNDS_WRITE

These flags, when enabled using thesetCapability method, specify that this
Group node will allow reading and writing of its collision bounds.

Constructors

public Group()

Constructs and initializes a Group node object with default parameters:

collision bounds = null
alternate collision target = false

Methods

The Group node class defines the following methods.

public final int numChildren()
public final Node getChild(int index)

The first method returns a count of the number of children. The second me
returns the child at the specified index.

public final void setChild(Node child, int index)
public final void insertChild(Node child, int index)
public final void removeChild(int index)

The first method replaces the child at the specified index with a new child.
Java 3D API Specification

GROUP NODE OBJECTS Group Node 4.1

The
up

y be
et.

this
des

, the
e
e to
dden

the
this

led
s.
second method inserts a new child before the child at the specified index.
third method removes the child at the specified index. Note that if this Gro
node is part of a live or compiled scene graph, only BranchGroup nodes ma
added to or removed from it—and only if the appropriate capability bits are s

public final Enumeration getAllChildren()

This method returns an Enumeration object of all children.

public final void addChild(Node child)

This method adds a new child as the last child in the group. Note that if
Group node is part of a live or compiled scene graph, only BranchGroup no
may be added to it—and only if the appropriate capability bits are set.

public Node cloneNode(boolean forceDuplicate)

This method creates a new instance of the node. This routine is called byclon-

eTree to duplicate the current node.

public void duplicateNode(Node originalNode,
boolean forceDuplicate)

This method copies all the node information from theoriginalNode into the
current node. This method is called from thecloneNode method, which is in turn
called by thecloneTree method.

For each NodeComponent object contained by the object being duplicated
NodeComponent’sduplicateOnCloneTree flag is used to determine whether th
NodeComponent should be duplicated in the new node or if just a referenc
the current node should be placed in the new node. This flag can be overri
by setting theforceDuplicate parameter in thecloneTree method totrue.

public final void moveTo(BranchGroup branchGroup)

This method moves the specified BranchGroup node from its old location in
scene graph to the end of this group, in an atomic manner. Functionally,
method is equivalent to the following lines:

branchGroup.detach();
this.addChild(branchGroup);

If either this Group or the specified BranchGroup is part of a live or compi
scene graph, the appropriate capability bits must be set in the affected node
39Version 1.1.2, June 1999

4.2 BranchGroup Node GROUP NODE OBJECTS

40

arget
on.
bit
-

e
ith
up
the

as a
in

ht of

s are
eir

o a

be
set.

ome
public final Bounds setCollisionBounds(Bounds bounds)
public final Bounds getCollisionBounds()

These methods set and retrieve the collision bounding object for a node.

public final void setAlternateCollisionTarget(boolean target)
public final boolean getAlternateCollisionTarget()

The set method causes this Group node to be reported as the collision t
when collision is being used and this node or any of its children is in a collisi
The default is false. This method tries to set the capability
Node.ENABLE_COLLISION_REPORTING. The get method returns the collision tar
get state.

For collision with USE_GEOMETRY set, the collision traverser will check th
geometry of all the Group node’s leaf descendants. For collision w
USE_BOUNDS set, the collision traverser will check the bounds at this Gro
node. In both cases, if there is a collision, this Group node will be reported as
colliding object in the SceneGraphPath.

4.2 BranchGroup Node

A BranchGroup is the root of a subgraph of a scene that may be compiled
unit, attached to a virtual universe, or included as a child of a group node
another subgraph. A subgraph, rooted by a BranchGroup node, can be thoug
as a compile unit. The following things may be done with BranchGroup.

• A BranchGroup may be compiled by calling itscompile method. This
causes the entire subgraph to be compiled. If any BranchGroup node
contained within the subgraph, they are compiled as well (along with th
descendants).

• A BranchGroup may be inserted into a virtual universe by attaching it t
Locale. The entire subgraph is then said to belive.

• A BranchGroup that is contained within another subgraph may
reparented or detached at run time if the appropriate capabilities are
See Figure 4-2.

Note that if a BranchGroup is included in another subgraph, as a child of s
other group node, it may not be attached to a Locale.
Java 3D API Specification

GROUP NODE OBJECTS BranchGroup Node 4.2

g is
Figure 4-2 Altering the Scene Graph at Run Time

Constants

The BranchGroup class adds the following new constant.

public static final int ALLOW_DETACH

This flag, when enabled using thesetCapability method, allows this Branch-
Group node to be detached from its parent group node. This capability fla
enforced only when the node is part of a live or compiled scene graph.

Constructors

public BranchGroup()

Constructs and initializes a new BranchGroup node object.

Methods

The BranchGroup class defines the following methods.

BG

Virtual Universe

Hi-Res Locale

BG
Can be reparented or
removed at run time

BranchGroup Node
41Version 1.1.2, June 1999

4.3 TransformGroup Node GROUP NODE OBJECTS

42

eates

, the
r
ence
dden

a a
osi-

ode
trans-
ales

n

ter
t—
public final void compile()

This method compiles the scene graph rooted at this BranchGroup and cr
and caches a newly compiled scene graph.

public final void detach()

This method detaches the BranchGroup node from its parent.

public Node cloneNode(boolean forceDuplicate)

This method creates a new instance of the node. This routine is called byclone-

Tree to duplicate the current node.

public void duplicateNode(Node originalNode,
boolean forceDuplicate)

This method copies all the node information from theoriginalNode into the
current node. This method is called from thecloneNode method, which is in turn
called by thecloneTree method.

For each NodeComponent object contained by the object being duplicated
NodeComponent’sduplicateOnCloneTree value is used to determine whethe
the NodeComponent should be duplicated in the new node or if just a refer
to the current node should be placed in the new node. This flag can be overri
by setting theforceDuplicate parameter in thecloneTree method totrue.

4.3 TransformGroup Node

The TransformGroup node specifies a single spatial transformation—vi
Transform3D object (see Section 7.1.27, “Transform3D Object”)—that can p
tion, orient, and scale all of its children.

The specified transformation must be affine. Further, if the TransformGroup n
is used as an ancestor of a ViewPlatform node in the scene graph, then the
formation must be congruent—only rotations, translations, and uniform sc
are allowed in a direct path from a Locale to a ViewPlatform node. ABadTrans-

formException (see Section D.1, “BadTransformException”) is thrown if a
attempt is made to specify an illegal transform.

Note: Even though arbitrary affine transformations are allowed, bet
performance will result if all matrices within a branch graph are congruen
containing only rotations, translation, anduniformscale.
Java 3D API Specification

GROUP NODE OBJECTS TransformGroup Node 4.3

tena-
the
that
Vir-
ns-
are
e of
of a
alue
ding
jects

rt of

es
ial-

opy-
The effects of transformations in the scene graph are cumulative. The conca
tion of the transformations of each TransformGroup in a direct path from
Locale to a Leaf node defines a composite model transformation (CMT)
takes points in that Leaf node’s local coordinates and transforms them into
tual World (Vworld) coordinates. This composite transformation is used to tra
form points, normals, and distances into Vworld coordinates. Points
transformed by the CMT. Normals are transformed by the inverse-transpos
the CMT. Distances are transformed by the scale of the CMT. In the case
transformation containing a nonuniform scale or shear, the maximum scale v
in any direction is used. This ensures, for example, that a transformed boun
sphere, which is specified as a point and a radius, continues to enclose all ob
that are also transformed using a nonuniform scale.

Constants

The TransformGroup class adds the following new flags.

public static final int ALLOW_TRANSFORM_READ
public static final int ALLOW_TRANSFORM_WRITE

These flags, when enabled using thesetCapability method, allow this node’s
Transform3D to be read or written. They are only used when the node is pa
a live or compiled scene graph.

Constructors

public TransformGroup()
public TransformGroup(Transform3D t1)

These construct and initialize a new TransformGroup. The first form initializ
the node’s Transform3D to the identity transformation; the second form init
izes the node’s Transform3D to a copy of the specified transform.

Methods

The TransformGroup class defines the following methods.

public final void setTransform(Transform3D t1)
public final void getTransform(Transform3D t1)

These methods retrieve or set this node’s attached Transform3D object by c
ing the transform to or from the specified object.
43Version 1.1.2, June 1999

4.4 OrderedGroup Node GROUP NODE OBJECTS

44

d by
ode
d

, the
e
cur-
set-

their
of the

, the
r
ence
public Node cloneNode(boolean forceDuplicate)
public void duplicateNode(Node originalNode,

boolean forceDuplicate)

The first method creates a new instance of the node. This method is calle
cloneTree to duplicate the current node. The second method copies all the n
information from theoriginalNode into the current node. This method is calle
from thecloneNode method, which is in turn called by thecloneTree method.

For each NodeComponent object contained by the object being duplicated
NodeComponent’sduplicateOnCloneTree flag is used to determine whether th
NodeComponent should be duplicated in the new node or a reference to the
rent node should be placed in the new node. This flag can be overridden by
ting theforceDuplicate parameter in thecloneTree method totrue.

4.4 OrderedGroup Node

The OrderedGroup node guarantees that Java 3D will render its children in
index order. Only the OrderedGroup node and its subclasses make any use
order of their children during rendering.

Constructors

public OrderedGroup()

Constructs and initializes a new OrderedGroup node object.

Methods

public Node cloneNode(boolean forceDuplicate)

This method creates a new instance of the node. This routine is called byclone-

Tree to duplicate the current node.

public void duplicateNode(Node originalNode,
boolean forceDuplicate)

This method copies all the node information from theoriginalNode into the
current node. This method is called from thecloneNode method, which is in turn
called by thecloneTree method.

For each NodeComponent object contained by the object being duplicated
NodeComponent’sduplicateOnCloneTree value is used to determine whethe
the NodeComponent should be duplicated in the new node or if just a refer
Java 3D API Specification

GROUP NODE OBJECTS DecalGroup Node 4.5

dden

roup
ther

ed in
lude
ble.

ren
oth-

h of
first
se,
opla-

ues
ces
dis-

oup
to the current node should be placed in the new node. This flag can be overri
by setting theforceDuplicate parameter in thecloneTree method totrue.

4.5 DecalGroup Node

The DecalGroup node is a subclass of the OrderedGroup node. The DecalG
node is an ordered group node used for defining decal geometry on top of o
geometry. The DecalGroup node specifies that its children should be render
index order and that they generate coplanar objects. Examples of this inc
painted decals or text on surfaces and a checkerboard layered on top of a ta

The first child, at index 0, defines the surface on top of which all other child
are rendered. The geometry of this child must encompass all other children;
erwise, incorrect rendering may result. The polygons contained within eac
the children must be facing the same way. If the polygons defined by the
child are front facing, then all other surfaces should be front facing. In this ca
the polygons are rendered in order. The renderer can use knowledge of the c
nar nature of the surfaces to avoidZ-buffer collisions (for example, if the under-
lying implementation supports stenciling or polygon offset, then these techniq
may be employed). If the main surface is back facing, then all other surfa
should be back facing and need not be rendered (even if back-face culling is
abled).

Note that using the DecalGroup node does not guarantee thatZ-buffer collisions
are avoided. An implementation of Java 3D may fall back to treating DecalGr
node as an ordinary OrderedGroup node.

Constructors

public DecalGroup()

Constructs and initializes a new DecalGroup node object.

Methods

public Node cloneNode(boolean forceDuplicate)

This method creates a new instance of the node. This routine is called byclone-

Tree to duplicate the current node.

public void duplicateNode(Node originalNode,
boolean forceDuplicate)

This method copies all the node information from theoriginalNode into the
45Version 1.1.2, June 1999

4.6 Switch Node GROUP NODE OBJECTS

46

, the
r
ence
dden

ally
chil-
ren
ct-

sed

icate
of

rate
current node. This method is called from thecloneNode method, which is in turn
called by thecloneTree method.

For each NodeComponent object contained by the object being duplicated
NodeComponent’sduplicateOnCloneTree value is used to determine whethe
the NodeComponent should be duplicated in the new node or if just a refer
to the current node should be placed in the new node. This flag can be overri
by setting theforceDuplicate parameter in thecloneTree method totrue.

4.6 Switch Node

The Switch group node allows a Java 3D application to choose dynamic
among a number of subgraphs. The Switch node contains an ordered list of
dren and a switch value. The switch value determines which child or child
Java 3D will render. Note that the index order of children is only used for sele
ing the appropriate child or children—it does not specify rendering order.

Constants

public static final int ALLOW_SWITCH_READ
public static final int ALLOW_SWITCH_WRITE

These flags, when enabled using thesetCapability method, allow reading and
writing of the values that specify the child-selection criteria. They are only u
when the node is part of a live or compiled scene graph.

public static final int CHILD_NONE
public static final int CHILD_ALL
public static final int CHILD_MASK

These values, when used in place of a non-negative integer index value, ind
which children of the Switch node are selected for rendering. A value
CHILD_NONE indicates that no children are rendered. A value ofCHILD_ALL indi-
cates that all children are rendered, effectively making this Switch node ope
as an ordinary Group node. A value ofCHILD_MASK indicates that thechildMask
BitSet is used to select the children that are rendered.

Constructors

public Switch()

Constructs a Switch node with default parameters:
Java 3D API Specification

GROUP NODE OBJECTS Switch Node 4.6

ers.

will
or it

t the
public Switch(int whichChild)
public Switch(int whichChild, BitSet childMask)

These constructors initialize a new Switch node using the specified paramet

Methods

The Switch node class defines the following methods.

public final void setWhichChild(int whichChild)
public final int getWhichChild()

These methods access or modify the index of the child that the Switch object
draw. The value may be a non-negative integer, indicating a specific child,
may be one of the following constants:CHILD_NONE, CHILD_ALL, or CHILD_MASK.
If the specified value is out of range, then no children are drawn.

public final void setChildMask(BitSet childMask)
public final BitSet getChildMask()

These methods access or modify the mask used to select the children tha
Switch object will draw when thewhichChild parameter isCHILD_MASK. This
parameter is ignored during rendering if thewhichChild parameter is a value
other thanCHILD_MASK.

public final Node currentChild()

This method returns the currently selected child. IfwhichChild is out of range,
or is set toCHILD_MASK, CHILD_ALL, or CHILD_NONE, thennull is returned.

public Node cloneNode(boolean forceDuplicate)

This method creates a new instance of the node. This routine is called byclone-

Tree to duplicate the current node.

public void duplicateNode(Node originalNode,
boolean forceDuplicate)

This method copies all the node information from theoriginalNode into the
current node. This method is called from thecloneNode method, which is in turn
called by thecloneTree method.

Parameters Default Values

child selection index CHILD_NONE

child selection mask false (for all children)
47Version 1.1.2, June 1999

4.7 SharedGroup Node GROUP NODE OBJECTS

48

, the
r
ence
dden

ph in
oup
For each NodeComponent object contained by the object being duplicated
NodeComponent’sduplicateOnCloneTree value is used to determine whethe
the NodeComponent should be duplicated in the new node or if just a refer
to the current node should be placed in the new node. This flag can be overri
by setting theforceDuplicate parameter in thecloneTree method totrue.

4.7 SharedGroup Node

A SharedGroup node provides a mechanism for sharing the same subgra
different parts of the tree via a Link node. See Section 6.1.1, “SharedGr
Node,” for a description of this node.
Java 3D API Specification

Version 1.1.2, June 1999
C H A P T E R 5
The

chil-
king
form
he

-
ry the
efer-

a 3D
order
Leaf Node Objects

L EAF nodes define atomic entities such as geometry, lights, and sounds.
leaf nodes and their associated meanings follow.

5.1 Leaf Node

The Leaf node is an abstract class for all scene graph nodes that have no
dren. Leaf nodes specify lights, geometry, and sounds; provide special lin
and instancing capabilities for sharing scene graphs; and provide a view plat
for positioning and orienting a view in the virtual world. Figure 5-1 shows t
Leaf node object hierarchy.

Constructors

public Leaf()

Constructs and initializes a new Leaf object.

Methods

The Leaf node object defines the following methods.

public void updateNodeReferences(NodeReferenceTable
referenceTable)

This method is called by thecloneTree method (see Section 6.2, “Cloning Sub
graphs”) after all nodes in the subgraph have been cloned. The user can que
NodeReferenceTable object to determine if any nodes that the Leaf node r
ences have been duplicated by thecloneTree call and, if so, what the corre-
sponding Node is in the new subgraph. If a user extends a predefined Jav
object and adds a reference to another node, this method must be defined in
to ensure proper operation of thecloneTree method. The first statement in the
49

5.1 Leaf Node LEAF NODE OBJECTS

50

e

es in
more

, the

or be

t

user’s updateNodeReferences method must besuper.updateNodeRefer-
ences(referenceTable). For predefined Java 3D nodes, this method will b
implemented automatically.

Figure 5-1 Leaf Node Hierarchy

The NodeReferenceTable object is passed to theupdateNodeReferences method
and allows references from the old subgraph to be translated into referenc
the cloned subgraph. See Section 6.2.5, “NodeReferenceTable Object,” for
details.

public Node cloneTree(boolean forceDuplicate)

This method duplicates all nodes of the specified subgraph. For group nodes
node is first duplicated via a call tocloneNode and thencloneTree is called for
each child node. For leaf nodes, component data can either be duplicated
made a reference to the original data. Leaf nodecloneTree behavior is deter-
mined by theduplicateOnCloneTree flag found in every leaf node’s componen
data class and by theforceDuplicate parameter.

SceneGraphObject
Node

Leaf
Background
Behavior

Predefined behaviors
BoundingLeaf
Clip
Fog

ExponentialFog
LinearFog

Light
AmbientLight
DirectionalLight
PointLight

SpotLight
Link
Morph
Shape3D
Sound

BackgroundSound
PointSound

ConeSound
Soundscape
ViewPlatform
Java 3D API Specification

LEAF NODE OBJECTS Shape3D Node 5.2

two
onent.
bject

ture,
me-

sion
de is

ified
cified

o-
5.2 Shape3D Node

The Shape3D leaf node object specifies all geometric objects. It contains
components: a reference to the shape’s geometry and its appearance comp
The Geometry object defines the shape’s geometric data. The Appearance o
specifies that object’s appearance attributes, including color, material, tex
and so on. See Chapter 7, “Node Component Objects” for details of the Geo
try and Appearance objects.

Constants

The Shape3D node object defines the following flags.

public static final int ALLOW_GEOMETRY_READ
public static final int ALLOW_GEOMETRY_WRITE
public static final int ALLOW_APPEARANCE_READ
public static final int ALLOW_APPEARANCE_WRITE
public static final int ALLOW_COLLISION_BOUNDS_WRITE
public static final int ALLOW_COLLISION_BOUNDS_READ

These flags, when enabled using thesetCapability method, allow reading and
writing of the Geometry and Appearance component objects and the colli
bounds, respectively. These capability flags are enforced only when the no
part of a live or compiled scene graph.

Constructors

The Shape3D node object defines the following constructors.

public Shape3D()

Constructs a Shape3D node with default parameters:

public Shape3D(Geometry geometry, Appearance appearance)
public Shape3D(Geometry geometry)

The first form constructs and initializes a new Shape3D object with the spec
geometry and appearance components. The second form uses the spe
geometry and anull appearance component. The third form uses both anull

geometry component and anull appearance component. If the geometry comp

Parameter Default Value

appearance null (default values are used for all appearance attributes)

geometry null (no geometry is drawn)

collisionbounds null
51Version 1.1.2, June 1999

5.2 Shape3D Node LEAF NODE OBJECTS

52

d with

ciated

nder

-

nent isnull, then no geometry is drawn. If the appearance component isnull,
then default values are used for all appearance attributes.

Methods

The Shape3D node object defines the following methods.

public final void setGeometry(Geometry geometry)
public final Geometry getGeometry()

These methods access or modify the Geometry component object associate
this Shape3D node.

public final void setAppearance(Appearance appearance)
public final Appearance getAppearance()

These methods access or modify the Appearance component object asso
with this Shape3D node. Setting it tonull results in default attribute use.

public final void setCollisionBounds(Bounds bounds)
public final Bounds getCollisionBounds()

These methods set and retrieve the collision bounds for this node.

public boolean intersect(SceneGraphPath path, PickShape pickShape)
public boolean intersect(SceneGraphPath path, PickRay pickRay,

double[] dist)

These two methods check if the geometry component of this shape node u
path intersects with the pickShape.

public Node cloneNode(boolean forceDuplicate)

This method creates a new instance of the node. This routine is called byclone-

Tree to duplicate the current node.cloneNode should be overridden by any user
subclassed objects. All subclasses must have theircloneNode method consist of
the following lines:

public Node cloneNode(boolean forceDuplicate) {
UserSubClass usc = new UserSubClass();
usc.duplicateNode(this, forceDuplicate);
return usc;

}

Java 3D API Specification

LEAF NODE OBJECTS BoundingLeaf Node 5.3

, the
e
e to
dden

-
ry the
efer-

a 3D
order

e

es in
more

nced
acti-
gion
rdi-
can
ned

tem
cal
public void duplicateNode(Node originalNode,
boolean forceDuplicate)

This method copies all the node information from theoriginalNode into the
current node. This method is called from thecloneNode method, which is in turn
called by thecloneTree method.

For each NodeComponent object contained by the object being duplicated
NodeComponent’sduplicateOnCloneTree flag is used to determine whether th
NodeComponent should be duplicated in the new node or if just a referenc
the current node should be placed in the new node. This flag can be overri
by setting theforceDuplicate parameter in thecloneTree method totrue.

public void updateNodeReferences(NodeReferenceTable
referenceTable)

This method is called by thecloneTree method (see Section 6.2, “Cloning Sub
graphs”) after all nodes in the subgraph have been cloned. The user can que
NodeReferenceTable object to determine if any nodes that the leaf node r
ences have been duplicated by thecloneTree call and, if so, what the corre-
sponding node is in the new subgraph. If a user extends a predefined Jav
object and adds a reference to another node, this method must be defined in
to ensure proper operation of thecloneTree method. The first statement in the
user’s updateNodeReferences method must besuper.updateNodeRefer-
ences(referenceTable). For predefined Java 3D nodes, this method will b
implemented automatically.

The NodeReferenceTable object is passed to theupdateNodeReferences method
and allows references from the old subgraph to be translated into referenc
the cloned subgraph. See Section 6.2.5, “NodeReferenceTable Object,” for
details.

5.3 BoundingLeaf Node

The BoundingLeaf node defines a bounding region object that can be refere
by other leaf nodes to define a region of influence (Fog and Light nodes), an
vation region (Background, Clip, and Soundscape nodes), or a scheduling re
(Sound and Behavior nodes). The bounding region is defined in the local coo
nate system of the BoundingLeaf node. A reference to a BoundingLeaf node
be used in place of a locally defined bounds object for any of the aforementio
regions.

This allows an application to specify a bounding region in one coordinate sys
(the local coordinate system of the BoundingLeaf node) other than the lo
53Version 1.1.2, June 1999

5.4 Background Node LEAF NODE OBJECTS

54

f how
ach
local
the
m-

ocal
of a

ion

ack-
me.
. A
the
coordinate system of the node that references the bounds. For an example o
this might be used, consider a closed room with a number of track lights. E
light can move independent of the other lights and, as such, needs its own
coordinate system. However, the bounding volume is used by all the lights in
boundary of the room, which doesn’t move when the lights move. In this exa
ple, the BoundingLeaf node allows the bounding region to be defined in the l
coordinate system of the room, rather than in the local coordinate system
particular light. All lights can then share this single bounding volume.

Constants

The BoundingLeaf node object defines the following flags.

public static final int ALLOW_REGION_READ
public static final int ALLOW_REGION_WRITE

These flags, when enabled using thesetCapability method, allow an applica-
tion to invoke methods that respectively read and write the bounding reg
object.

Constructors

The BoundingLeaf node object defines the following constructors.

public BoundingLeaf()

Constructs a BoundingLeaf node with a null (empty) bounding region.

public BoundingLeaf(Bounds region)

Constructs a BoundingLeaf node with the specified bounding region.

Methods

public final void setRegion(Bounds region)
public final Bounds getRegion()

These methods set and retrieve the BoundingLeaf node’s bounding region.

5.4 Background Node

The Background leaf node defines either a solid background color or a b
ground image that is used to fill the window at the beginning of each new fra
It also specifies an application region in which this Background node is active
Background node is active when its application region intersects
Java 3D API Specification

LEAF NODE OBJECTS Background Node 5.4

he
nd

, the
are

lor.
age.
ry.
ViewPlatform’s activation volume. If multiple Background nodes are active, t
Background node that is “closest” to the eye will be used. If no Backgrou
nodes are active, then the window is cleared to black.

Constants

The Background node object defines the following flags.

public static final int ALLOW_APPLICATION_BOUNDS_READ
public static final int ALLOW_APPLICATION_BOUNDS_WRITE
public static final int ALLOW_IMAGE_READ
public static final int ALLOW_IMAGE_WRITE
public static final int ALLOW_COLOR_READ
public static final int ALLOW_COLOR_WRITE
public static final int ALLOW_GEOMETRY_READ
public static final int ALLOW_GEOMETRY_WRITE

These flags, when enabled using thesetCapability method, allow an applica-
tion to invoke methods that respectively read and write the application region
image, the color, and the background geometry. These capability flags
enforced only when the node is part of a live or compiled scene graph.

Constructors

The Background node object defines the following constructors.

public Background()

Constructs a Background leaf node with default parameters:

public Background(Color3f color)
public Background(float r, float g, float b)
public Background(ImageComponent2D image)
public Background(Branchgroup branch)

The first two forms construct a Background leaf node with the specified co
The second form constructs a Background leaf node with the specified 2D im
The final form constructs a Background leaf node with the specified geomet

Parameter Default Value

color black (0,0,0)

image null

geometry null

applicationbounds null

application boundingLeaf null
55Version 1.1.2, June 1999

5.5 Clip Node LEAF NODE OBJECTS

56

not

e. If
r or
The

nds.
leaf

i-

und-

vir-
is

the
Methods

The Background node object defines the following methods.

public final void getColor(Color3f color)
public final void setColor(Color3f color)
public final void setColor(float r, float g, float b)

These three methods access or modify the background color.

public final ImageComponent2D getImage()
public final void setImage(ImageComponent2D image)

These two methods access or modify the background image. If the image is
null then it is used in place of the color.

public final void setGeometry(BranchGroup branch)
public final BranchGroup getGeometry()

These two methods access or modify the Background geometry. ThesetGeome-

try method sets the background geometry to the specified BranchGroup nod
non-null, this background geometry is drawn on top of the background colo
image using a projection matrix that essentially puts the geometry at infinity.
geometry should be pretessellated onto a unit sphere.

public final void setApplicationBounds(Bounds region)
public final Bounds getApplicationBounds()

These two methods access or modify the Background node’s application bou
This bounds is used as the application region when the application bounding
is set tonull. ThegetApplicationBounds method returns a copy of the assoc
ated bounds.

public final void setApplicationBoundingLeaf(BoundingLeaf region)
public final BoundingLeaf getApplicationBoundingLeaf()

These two methods access or modify the Background node’s application bo
ing leaf. When set to a value other thannull, this bounding leaf overrides the
application bounds object and is used as the application region.

5.5 Clip Node

The Clip leaf node defines the far clipping plane used to clip objects in the
tual universe. It also specifies an application region in which this Clip node
active. A Clip node is active when its application region intersects
Java 3D API Specification

LEAF NODE OBJECTS Clip Node 5.5

ip
ified
lip

and
part

e, in

ode.
m of
count
ViewPlatform’s activation volume. If multiple Clip nodes are active, the Cl
node that is “closest” to the eye will be used. The back distance value spec
by this Clip node overrides the value specified in the View object. If no C
nodes are active, then the back clip distance is used from the View object.

Constants

public static final int ALLOW_APPLICATION_BOUNDS_READ
public static final int ALLOW_APPLICATION_BOUNDS_WRITE
public static final int ALLOW_BACK_DISTANCE_READ
public static final int ALLOW_BACK_DISTANCE_WRITE

These flags, when enabled using thesetCapability method, allow an applica-
tion to invoke methods that respectively read and write the application region
the back distance. These capability flags are enforced only when the node is
of a live or compiled scene graph.

Constructors

The Clip node object defines the following constructors.

public Clip()

Constructs a Clip node with default parameters:

public Clip(double backDistance)

Constructs a Clip leaf node with the rear clip plane at the specified distanc
the local coordinate system, from the eye.

Methods

The Clip node object defines the following methods.

public final void setBackDistance(double backDistance)
public final double getBackDistance()

These methods access or modify the back clipping distances in the Clip n
This distance specifies the back clipping plane in the local coordinate syste
the node. There are several considerations that need to be taken into ac

Parameter Default Value

backDistance 100

schedulingbounds null

schedulingboundingLeaf null
57Version 1.1.2, June 1999

5.6 Fog Node LEAF NODE OBJECTS

58

.7.3,

This
af is
d

leaf.
n

s that
eter

nflu-

nce
The
cope

’s

tem
ter-
l, the
when choosing values for the front and back clip distances. See Section 8
“Projection and Clip Parameters,” for details.

public final void setApplicationBounds(Bounds region)
public final Bounds getApplicationBounds()

These two methods access or modify the Clip node’s application bounds.
bounds is used as the application region when the application bounding le
set tonull. ThegetApplicationBounds method returns a copy of the associate
bounds.

public final void setApplicationBoundingLeaf(BoundingLeaf region)
public final BoundingLeaf getApplicationBoundingLeaf()

These two methods access or modify the Clip node’s application bounding
When set to a value other thannull, this bounding leaf overrides the applicatio
bounds object and is used as the application region.

5.6 Fog Node

The Fog leaf node is an abstract class that defines a common set of attribute
control fog, or depth cueing, in the scene. The Fog node includes a param
that specifies the fog color and a Bounds object that specifies the region of i
ence for the Fog node.

Objects whose bounding volumes intersect the Fog node’s region of influe
have fog applied to their color after lighting and texturing have been applied.
Fog node also contains a list of Group nodes that indicates the hierarchical s
of this fog. If the list of scoping nodes is empty, the fog hasuniverse scopeand
will apply to all nodes in the virtual universe that are within the Fog node
region of influence.

If the regions of influence of multiple Fog nodes overlap, the Java 3D sys
will choose a single set of fog parameters for those objects that lie in the in
section. This is done in an implementation-dependent manner, but in genera
Fog node that is “closest” to the object is chosen.

Constants

The Fog node object defines the following flags.

public static final int ALLOW_INFLUENCING_BOUNDS_READ
public static final int ALLOW_INFLUENCING_BOUNDS_WRITE
public static final int ALLOW_COLOR_READ
Java 3D API Specification

LEAF NODE OBJECTS Fog Node 5.6

ce,
ility
ph.

uses
ified

es are

will

unds
public static final int ALLOW_COLOR_WRITE
public static final int ALLOW_SCOPE_READ
public static final int ALLOW_SCOPE_WRITE

These flags, when enabled using thesetCapability method, allow an applica-
tion to invoke methods that respectively read and write the region of influen
read and write color, and read and write scope information. These capab
flags are enforced only when the node is part of a live or compiled scene gra

Constructors

The Fog node object defines the following constructors.

public Fog()

Constructs a Fog node with default parameters:

public Fog(float r, float g, float b)
public Fog(Color3f color)

These constructors each construct a new Fog node. The first constructor
default values for all parameters. The remaining constructors use the spec
parameters and use defaults for those parameters not specified. Default valu
as follows:

Methods

The Fog node object defines the following methods.

public final void setColor(float r, float g, float b)
public final void setColor(Color3f color)
public final void getColor(Color3f color)

These three methods access or modify the Fog node’s color. An application
typically set this to the same value as the background color.

public final void setInfluencingBounds(Bounds region)
public final Bounds getInfluencingBounds()

These methods access or modify the Fog node’s influencing bounds. This bo

Parameter Default Value

color black (0,0,0)

scope empty (universe scope)

influencingbounds null

influencingboundingLeaf null
59Version 1.1.2, June 1999

5.6.1 ExponentialFog Node LEAF NODE OBJECTS

60

t to
nce.

leaf.
t

fault,
llow
ical
live

nsity
fog

ctual

hese
iled
is used as the region of influence when the influencing bounding leaf is se
null. The Fog node operates on all objects that intersect its region of influe
ThegetInfluencingBounds method returns a copy of the associated bounds.

public final void setInfluencingBoundingLeaf(BoundingLeaf region)
public final BoundingLeaf getInfluencingBoundingLeaf()

These methods access or modify the Fog node’s influencing bounding
When set to a value other thannull, this overrides the influencing bounds objec
and is used as the region of influence.

public final void setScope(Group scope, int index)
public final Group getScope(int index)
public final void addScope(Group scope)
public final void insertScope(Group scope, int index)
public final void removeScope(int index)
public final int numScopes()
public final Enumeration getAllScopes()

These methods access or modify the Fog node’s hierarchical scope. By de
Fog nodes are scoped only by their regions of influence. These methods a
them to be further scoped by a Group node in the hierarchy. The hierarch
scoping of a Fog node cannot be accessed or modified if the node is part of a
or compiled scene graph.

5.6.1 ExponentialFog Node

The ExponentialFog leaf node extends the Fog leaf node by adding a fog de
that is used as the exponent of the fog equation. For more information on the
equation, see Appendix E, “Equations.”

The density is defined in the local coordinate system of the node, but the a
fog equation will ideally take place in eye coordinates.

Constants

The ExponentialFog node object defines the following flags.

public static final int ALLOW_DENSITY_READ
public static final int ALLOW_DENSITY_WRITE

These flags, when enabled using thesetCapability method, allow an applica-
tion to invoke methods that respectively read and write the density values. T
capability flags are enforced only when the node is part of a live or comp
scene graph.
Java 3D API Specification

LEAF NODE OBJECTS LinearFog Node 5.6.2

peci-

ct.

ance
ally

f the
For

hese
Constructors

The ExponentialFog node object defines the following constructors.

public ExponentialFog()

Constructs an ExponentialFog node with default parameters:

public ExponentialFog(float r, float g, float b)
public ExponentialFog(Color3f color)
public ExponentialFog(float r, float g, float b, float density)
public ExponentialFog(Color3f color, float density)

Each of these constructors creates a new ExponentialFog node using the s
fied parameters and use defaults for those parameters not specified.

Methods

The ExponentialFog node object defines the following methods.

public final void setDensity(float density)
public final float getDensity()

These two methods access or modify the density in the ExponentialFog obje

5.6.2 LinearFog Node

The LinearFog leaf node extends the Fog leaf node by adding a pair of dist
values, in Z, at which fog should start obscuring the scene and should maxim
obscure the scene.

The front and back fog distances are defined in the local coordinate system o
node, but the actual fog equation will ideally take place in eye coordinates.
more information on the fog equation, see Appendix E, “Equations.”

Constants

The LinearFog node object defines the following flags.

public static final int ALLOW_DISTANCE_READ
public static final int ALLOW_DISTANCE_WRITE

These flags, when enabled using thesetCapability method, allow an applica-
tion to invoke methods that respectively read and write the distance values. T

Parameter Default Value

density 1.0
61Version 1.1.2, June 1999

5.7 Light Node LEAF NODE OBJECTS

62

iled

ified

ear-
ring
ects.
jects

to all
or
capability flags are enforced only when the node is part of a live or comp
scene graph.

Constructors

The LinearFog node object defines the following constructors.

public LinearFog()

Constructs a LinearFog node with default parameters:

public LinearFog(float r, float g, float b)
public LinearFog(Color3f color)
public LinearFog(float r, float g, float b, double frontDistance,

double backDistance)
public LinearFog(Color3f color, double frontDistance,

double backDistance)

These constructors each construct a new LinearFog node with the spec
parameters and use defaults for those parameters not specified.

Methods

The LinearFog node object defines the following methods.

public final void setFrontDistance(float frontDistance)
public final float getFrontDistance()
public final void setBackDistance(float backDistance)
public final float getBackDistance()

These four methods access or modify the front and back distances in the Lin
Fog object. The front distance is the distance at which the fog starts obscu
objects. The back distance is the distance at which the fog fully obscures obj
Objects drawn closer than the front fog distance are not affected by fog. Ob
drawn farther than the back fog distance are drawn entirely in the fog color.

5.7 Light Node

The Light leaf node is an abstract class that defines the properties common
Light nodes. A light has associated with it a color, a state (whether it is on

Parameter Default Value

frontDistance 0.1

backDistance 1.0
Java 3D API Specification

LEAF NODE OBJECTS Light Node 5.7

ht.
nce
the
has
he

del.

ion,
of a
off), and a Bounds object that specifies the region of influence for the lig
Objects whose bounding volumes intersect the Light node’s region of influe
are lit by this light. The Light node also contains a Group node that indicates
hierarchical scope of this light. If no scoping node is specified, then the light
universe scopeand applies to all nodes in the virtual universe that are within t
light’s region of influence.

The Java 3D lighting model is based on a subset of the OpenGL lighting mo

Constants

The Light node object defines the following flags.

public static final int ALLOW_INFLUENCING_BOUNDS_READ
public static final int ALLOW_INFLUENCING_BOUNDS_WRITE
public static final int ALLOW_STATE_READ
public static final int ALLOW_STATE_WRITE
public static final int ALLOW_COLOR_READ
public static final int ALLOW_COLOR_WRITE
public static final int ALLOW_SCOPE_READ
public static final int ALLOW_SCOPE_WRITE

These flags, when enabled using thesetCapability method, allow reading and
writing of the region of influence, the state, the color, and the scope informat
respectively. These capability flags are enforced only when the node is part
live or compiled scene graph.

Constructors

The Light node object defines the following constructors.

public Light()

Constructs and initializes a light with default values:

Parameter Default Value

enable flag true

color white (1,1,1)

scope empty (universe scope)

influencingbounds null

influencingboundingLeaf null
63Version 1.1.2, June 1999

5.7 Light Node LEAF NODE OBJECTS

64

es.

light

This
af is
of
d

eaf.
t

fault,
hods
public Light(Color3f color)
public Light(boolean lightOn, Color3f color)

These two constructors construct and initialize a light with the specified valu

Methods

The Light node object defines the following methods.

public final void setEnable(boolean state)
public final boolean getEnable()

These methods access or modify the state of this light (that is, whether the
is enabled).

public final void setColor(Color3f color)
public final void getColor(Color3f color)

These methods access or modify the current color of this light.

public final setInfluencingBounds(Bounds region)
public final Bounds getInfluencingBounds()

These methods access or modify the Light node’s influencing bounds.
bounds is used as the region of influence when the influencing bounding le
set tonull. The Light node operates on all objects that intersect its region
influence. ThegetInfluencingBounds method returns a copy of the associate
bounds.

public final setInfluencingBoundingLeaf(BoundingLeaf region)
public final BoundingLeaf getInfluencingBoundingLeaf()

These methods access or modify the Light node’s influencing bounding l
When set to a value other thannull, this overrides the influencing bounds objec
and is used as the region of influence.

public final void setScope(Group scope, int index)
public final Group getScope(int index)
public final void addScope(Group scope)
public final void insertScope(Group scope, int index)
public final void removeScope(int index)
public final int numScopes()
public final Enumeration getAllScopes()

These methods access or modify the Light node’s hierarchical scope. By de
Light nodes are scoped only by their regions of influence bounds. These met
allow them to be further scoped by a node in the hierarchy.
Java 3D API Specification

LEAF NODE OBJECTS DirectionalLight Node 5.7.2

utes

ing
new

s
r to

tion.
om-

em
5.7.1 AmbientLight Node

An AmbientLight node defines an ambient light source. It has the same attrib
as the abstract Light node.

Constructors

The AmbientLight node defines the following constructors.

public AmbientLight()
public AmbientLight(Color3f color)
public AmbientLight(boolean lightOn, Color3f color)

The first constructor constructs and initializes a new AmbientLight node us
default parameters. The next two constructors construct and initialize a
AmbientLight node using the specified parameters. Thecolor parameter is the
color of the light source. ThelightOn flag indicates whether this light is on or
off.

5.7.2 DirectionalLight Node

A DirectionalLight node defines an oriented light with an origin at infinity. It ha
the same attributes as a Light node, with the addition of a direction vecto
specify the direction in which it shines.

Constants

The DirectionalLight node object defines the following flags.

public static final int ALLOW_DIRECTION_READ
public static final int ALLOW_DIRECTION_WRITE

These flags, when enabled using thesetCapability method, allow an applica-
tion to invoke methods that respectively read or write the associated direc
These capability flags are enforced only when the node is part of a live or c
piled scene graph.

The DirectionalLight’s direction vector is defined in the local coordinate syst
of the node.

Constructors

The DirectionalLight node object defines the following constructors.
65Version 1.1.2, June 1999

5.7.3 PointLight Node LEAF NODE OBJECTS

66

ters

and

me-

e.

ten-
s are
public DirectionalLight()

Constructs and initializes a directional light with default parameters:

public DirectionalLight(Color3f color, Vector3f direction)
public DirectionalLight(boolean LightOn, Color3f color,

Vector3f direction)

These constructors construct and initialize a directional light with the parame
provided.

Methods

The DirectionalLight node object defines the following methods.

public final void setDirection(Vector3f direction)
public final void setDirection(float x, float y, float z)
public final void getDirection(Vector3f direction)

These methods access or modify the light’s current direction.

5.7.3 PointLight Node

A PointLight node defines a point light source located at some point in space
radiating light in all directions (also known as apositional light). It has the same
attributes as a Light node, with the addition of location and attenuation para
ters.

The PointLight’s position is defined in the local coordinate system of the nod

Constants

The PointLight node object defines the following flags.

public static final int ALLOW_POSITION_READ
public static final int ALLOW_POSITION_WRITE
public static final int ALLOW_ATTENUATION_READ
public static final int ALLOW_ATTENUATION_WRITE

These flags, when enabled using thesetCapability method, allow an applica-
tion to invoke methods that respectively read position, write position, read at
uation parameters, and write attenuation parameters. These capability flag
enforced only when the node is part of a live or compiled scene graph.

Parameter Default Value

direction (0,0,–1)
Java 3D API Specification

LEAF NODE OBJECTS SpotLight Node 5.7.4

am-

lues
mial,

and
ode,
its,
ates
Constructors

The PointLight Node defines the following constructors.

public PointLight()

Constructs and initializes a point light source with default parameters:

public PointLight(Color3f color, Point3f position,
Point3f attenuation)

public PointLight(boolean lightOn, Color3f color,
Point3f position, Point3f attenuation)

These constructors construct and initialize a point light with the specified par
eters.

Methods

The PointLight node object defines the following methods.

public final void setPosition(Point3f position)
public final void setPosition(float x, float y, float z)
public final void getPosition(Point3f position)

These methods access or modify the point light’s current position.

public final void setAttenuation(Point3f attenuation)
public final void setAttenuation(float constant, float linear,

float quadratic)
public final void getAttenuation(Point3f attenuation)

These methods access or modify the point light’s current attenuation. The va
presented to the methods specify the coefficients of the attenuation polyno
with constant providing the constant term,linear providing the linear coeffi-
cient, andquadratic providing the quadratic coefficient.

5.7.4 SpotLight Node

A SpotLight node defines a point light source located at some point in space
radiating in a specific direction. It has the same attributes as a PointLight n
with the addition of a direction of radiation, a spread angle to specify its lim
and a concentration factor that specifies how quickly the light intensity attenu

Parameter Default Value

position (0,0,0)

attenuation (1,0,0)
67Version 1.1.2, June 1999

5.7.4 SpotLight Node LEAF NODE OBJECTS

68

dia-

ntra-
e is

rdi-
as a function of the angle of radiation as measured from the direction of ra
tion.

Constants

The SpotLight node object defines the following flags.

public static final int ALLOW_SPREAD_ANGLE_READ
public static final int ALLOW_SPREAD_ANGLE_WRITE
public static final int ALLOW_CONCENTRATION_READ
public static final int ALLOW_CONCENTRATION_WRITE
public static final int ALLOW_DIRECTION_READ
public static final int ALLOW_DIRECTION_WRITE

These flags, when enabled using thesetCapability method, allow an applica-
tion to invoke methods that respectively read and write spread angle, conce
tion, and direction. These capability flags are enforced only when the nod
part of a live or compiled scene graph.

The SpotLight’s direction vector and spread angle are defined in the local coo
nate system of the node.

Constructors

The SpotLight node object defines the following constructors.

public SpotLight()

Constructs and initializes a new spotlight with the default values:

public SpotLight(Color3f color, Point3f position,
Point3f attenuation, Vector3f direction, float spreadAngle,
float concentration)

public SpotLight(boolean lightOn, Color3f color, Point3f position,
Point3f attenuation, Vector3f direction, float spreadAngle,
float concentration)

These construct and initialize a new spotlight with the parameters specified.

Parameter Default Value

direction (0,0 –1)

spreadangle π radians

concentration 0.0
Java 3D API Specification

LEAF NODE OBJECTS Sound Node 5.8

ht.

to all
con-
flag

n the
state
not-
n-
d is
Methods

The SpotLight node object defines the following methods.

public final void setSpreadAngle(float spreadAngle)
public final float getSpreadAngle()

These methods access or modify the spread angle, in radians, of this spotlig

public final void setConcentration(float concentration)
public final float getConcentration()

These methods access or modify the concentration of this spotlight.

public final void setDirection(float x, float y, float z)
public final void setDirection(Vector3f direction)
public final void getDirection(Vector3f direction)

These methods access or modify the direction of this spotlight.

5.8 Sound Node

The Sound leaf node is an abstract class that defines the properties common
Sound nodes. A scene graph can contain multiple sounds. Each Sound node
tains a reference to the sound data, an amplitude scale factor, a release
denoting that the sound associated with this node is to play to the end whe
sound is disabled, the number of times the sound is to be repeated, a
(whether the sound is on or off), a scheduling region, a priority, and a flag de
ing if the sound is to continue playing “silently” even while it is inactive. Whe
ever the listener is within the Sound node’s scheduling bounds, the soun
potentially audible.

Constants

The Sound object contains the following flags.

public static final int ALLOW_SOUND_DATA_READ
public static final int ALLOW_SOUND_DATA_WRITE
public static final int ALLOW_INITIAL_GAIN_READ
public static final int ALLOW_INITIAL_GAIN_WRITE
public static final int ALLOW_LOOP_READ
public static final int ALLOW_LOOP_WRITE
public static final int ALLOW_RELEASE_READ
public static final int ALLOW_RELEASE_WRITE
public static final int ALLOW_CONT_PLAY_READ
69Version 1.1.2, June 1999

5.8 Sound Node LEAF NODE OBJECTS

70

itial
ag,
ra-

are

set.

fall-

ing
public static final int ALLOW_CONT_PLAY_WRITE
public static final int ALLOW_ENABLE_READ
public static final int ALLOW_ENABLE_WRITE
public static final int ALLOW_SCHEDULING_BOUNDS_READ
public static final int ALLOW_SCHEDULING_BOUNDS_WRITE
public static final int ALLOW_PRIORITY_READ
public static final int ALLOW_PRIORITY_WRITE
public static final int ALLOW_DURATION_READ
public static final int ALLOW_CHANNELS_USED_READ
public static final int ALLOW_IS_PLAYING_READ
public static final int ALLOW_IS_READY_READ

These flags, when enabled using thesetCapability method, allow an applica-
tion to invoke methods that respectively read and write the sound data, the in
gain information, the loop information, the release flag, the continuous play fl
the sound on/off switch, the scheduling region, the prioritization value, the du
tion information, and the sound playing information. These capability flags
enforced only when the node is part of a live or compiled scene graph.

public static final float NO_FILTER

This constant defines a floating point value that denotes that no filter value is
Filters are described in Section 5.8.3, “ConeSound Node.”

public static final int DURATION_UNKNOWN

This constant denotes that the sound’s duration could not be calculated. A
back forgetDuration of a non-cached sound.

Constructors

The Sound node object defines the following constructors.

public Sound()

Constructs and initializes a new Sound node object that includes the follow
defaults for its fields:

Parameter Default Value

soundData null

initialGain 1.0

loop 0

release flag false

continuous flag false

on switch false
Java 3D API Specification

LEAF NODE OBJECTS Sound Node 5.8

and
lic-
ses

eter

ith a
d or
ent,
t be
dis-
mple-
fully

this

loop
r of
public Sound(MediaContainer soundData, float initialGain)

Constructs and initializes a new Sound node object using the provided data
gain parameter values, and defaults for all other fields. This constructor imp
itly loads the sound data associated with this node if the implementation u
sound caching.

public Sound(MediaContainer soundData, float initialGain,
int loopCount, boolean release, boolean continuous,
boolean enable, Bounds region, float priority)

Constructs and initializes a new Sound node object using the provided param
values.

Methods

The Sound node object defines the following methods.

public final void setSoundData(MediaContainer soundData)
public final MediaContainer getSoundData()

These methods provide a way to associate different types of audio data w
Sound node. This data can be cached (buffered) or noncached (unbuffere
streaming). If the AudioDevice has been attached to the PhysicalEnvironm
the sound data is made ready to begin playing. Certain functionality canno
applied to true streaming sound data: sound duration is unknown, looping is
abled, and the sound cannot be restarted. Furthermore, depending on the i
mentation of the AudioDevice used, streaming, non-cached data may not be
spatialized.

public final void setInitialGain(float amplitude)
public final float getInitialGain()

This gain is a scale factor that is applied to the sound data associated with
sound source to increase or decrease its overall amplitude.

public final void setLoop(int loopCount)
public final int getLoop()

Data for nonstreaming sound (such as a sound sample) can contain two
points marking a section of the data that is to be looped a specific numbe

schedulingregion null (cannot be scheduled)

priority 1.0

Parameter Default Value
71Version 1.1.2, June 1999

5.8 Sound Node LEAF NODE OBJECTS

72

d
nts
o not
f the
case,

and
por-

and
es
f 0
alue

l not
ew

no
the
is
ata
ing.

ue
ks
und

lay-

This
is set
times. Thus, sound data can be divided into three segments: theattack (before
the begin loop point), thesustain(between the begin and end loop points), an
the release(after the end loop point). If there are no loop begin and end poi
defined as part of the sound data (say for Java Media Player types that d
contain sound samples), then the begin loop point is set at the beginning o
sound data, and the end loop point at the end of the sound data. If this is the
looping the sound means repeating the whole sound. However, these begin
end loop points can be placed anywhere within the sound data, allowing a
tion in the middle of the sound to be looped.

A sound can be looped a specified number of times after it is activated
before it is completed. The loop count value explicitly sets the number of tim
the sound is looped. Any non-negative number is a valid value. A value o
denotes that the looped section is not repeated, but is played only once. A v
of –1 denotes that the loop is repeated indefinitely.

Changing the loop count of a sound after the sound has been started wil
dynamically affect the loop count currently used by the sound playing. The n
loop count will be used the next time the sound is enabled.

public final void setReleaseEnable(boolean state)
public final boolean getReleaseEnable()

When a sound is disabled, its playback would normally stop immediately
matter what part of the sound data was currently being played. By setting
Release flag totrue for nodes with nonstreaming sound data, the sound
allowed to play from its current position in the sound data to the end of the d
(without repeats), thus playing the release portion of the sound before stopp

public final void setContinuousEnable(boolean state)
public final boolean getContinuousEnable()

For some applications, it’s useful to turn a sound source “off” but to contin
“silently” playing the sound so that when it is turned back “on” the sound pic
up playing in the same location (over time) as it would have been if the so
had never been disabled (turned off). Setting the continuous flag totrue causes
the sound renderer to keep track of where (over time) the sound would be p
ing even when the sound is disabled.

public final setSchedulingBounds(Bounds region)
public final Bounds getSchedulingBounds()

These two methods access or modify the Sound node’s scheduling bounds.
bounds is used as the scheduling region when the scheduling bounding leaf
Java 3D API Specification

LEAF NODE OBJECTS Sound Node 5.8

er-

leaf.
g

rank
ore

h the
und
en
ority
ange

k of
ilable
er,
ally
three

needs
sec-

ilable
three
lay-
ne
ome

ts a

of a
able
to null. A sound is scheduled for activation when its scheduling region int
sects the ViewPlatform’s activation volume. ThegetSchedulingBounds method
returns a copy of the associated bounds.

public final void setSchedulingBoundingLeaf(BoundingLeaf region)
public final BoundingLeaf getSchedulingBoundingLeaf()

These two methods access or modify the Sound node’s scheduling bounding
When set to a value other thannull, this bounding leaf overrides the schedulin
bounds object and is used as the scheduling region.

public final void setPriority(float ranking)
public final float getPriority()

These methods access or modify the Sound node’s priority, which is used to
concurrently playing sounds in order of importance during playback. When m
sounds are started than the AudioDevice can handle, the Sound node wit
lowest priority ranking is deactivated. If a sound is deactivated (due to a so
with a higher priority being started), it is automatically reactivated wh
resources become available (for example, when a sound with a higher pri
finishes playing) or when the ordering of sound nodes is changed due to a ch
in a Sound node’s priority.

Sounds with a lower priority than a sound that cannot be played due to a lac
channels will be played. For example, assume we have eight channels ava
for playing sounds. After ordering four sounds, we begin playing them in ord
checking if the number of channels required to play a given sound are actu
available before the sound is played. Furthermore, say the first sound needs
channels to play, the second sound needs four channels, the third sound
three channels and the fourth sound needs only one channel. The first and
onds sounds can be started because they require seven of the eight ava
channels. The third sound cannot be audibly started because it requires
channels and only one is still available. Consequently, the third sound starts p
ing “silently.” The fourth sound can and will be started since it only requires o
channel. The third sound will be made audible when three channels bec
available (i.e., when the first or second sound is finished playing).

Sounds given the same priority are ordered randomly. If the application wan
specific ordering it must assign unique priorities to each sound.

Methods to determine what audio output resources are required for playback
Sound node on a particular AudioDevice and to determine the currently avail
audio output resources are described in Chapter 11, “Audio Devices.”
73Version 1.1.2, June 1999

5.8 Sound Node LEAF NODE OBJECTS

74

t is,
d and
ntrol
uous
und
lly)
can

ting
nd by

rt
edi-

for a

fully
ated
r is

n-

ple-
t of

data.

acti-
and
public final void setEnable(boolean state)
public final boolean getEnable()

These two methods access or modify the playing state of this sound (tha
whether the sound is enabled). When enabled, the sound source is starte
thus can potentially be heard, depending on its activation state, gain co
parameters, continuation state, and spatialization parameters. If the contin
state istrue and the sound is not active, enabling the sound starts the so
silently “playing” so that when the sound is activated, the sound is (potentia
heard from somewhere in the middle of the sound data. The activation state
change from active to inactive any number of times without stopping or star
the sound. To restart a sound at the beginning of its data, re-enable the sou
calling setEnable with a value oftrue.

Setting the enable flag totrue during construction will act as a request to sta
the sound playing “as soon as it can” be started. This could be close to imm
ately in limited cases, but several conditions, detailed below, must be meet
sound to be ready to be played.

public final boolean isReady()

This method retrieves the sound’s “ready” status denoting that the sound is
prepared for playing (either audibly or silently) to begin. Sound data associ
with a Sound node, either during construction (when the MediaContaine
passed into the constructor as a parameter) or by callingsetSoundData(), it can
be prepared to begin playing only after the following conditions are satisfied:

• The Sound node has non-null sound data associated with it

• The Sound node is live

• There is an active View in the Universe

• There is an initialized AudioDevice associated with the PhysicalEnviro
ment.

Depending on the type of MediaContainer the sound data is and on the im
mentation of the AudioDevice used, sound data preparation could consis
opening, attaching, loading, or copying into memory the associated sound
The query method,isReady()) returnstrue when the sound is fully prepro-
cessed so that it is playable (audibly if active, silently if not active).

public final boolean isPlaying()

A sound source will not be heard unless it is both enabled (turned on) and
vated. While these two conditions are meet, the sound is potentially audible
the methodisPlaying() will return a status oftrue.
Java 3D API Specification

LEAF NODE OBJECTS BackgroundSound Node5.8.1

lic-

it is
hile

dia
s its

is
ng

ected
nels
rns 0

ource
. This
se-
like
n be

s for
When the sound finishes playing its sound data (including all loops), it is imp
itly disabled.

public final boolean isPlayingSilently()

This method returns the sound’s silent status. If a sound is enabled before
activated it is begun playing silently. If a sound is enabled then deactivated w
playing it continues playing silently. In both of these casesisPlaying() returns
false but the methodisPlayingSilently() returnstrue.

public final long getDuration()

This method returns the length of time (in milliseconds) that the sound me
associated with the sound source could run (including the number of time
loop section is repeated) if it plays to completion. If the sound media type
streaming, or if the sound is looped indefinitely, then a value of –1 (implyi
infinite length) is returned.

public final int getNumberOfChannelsUsed()

When a sound is started it could use more than one channel on the sel
AudioDevice it is to be played on. This method returns the number of chan
(on the executing audio device) being used by this sound. The method retu
if sound is not playing.

5.8.1 BackgroundSound Node

A BackgroundSound node defines an unattenuated, nonspatialized sound s
that has no position or direction. It has the same attributes as a Sound node
type of sound is simply added to the sound mix without modification and is u
ful for playing a mono or stereo music track, or an ambient sound effect. Un
a Background (visual) node, more than one BackgroundSound node ca
simultaneously enabled and active.

Constructors

The BackgroundSound node specifies the following constructor.

public BackgroundSound()

Constructs a BackgroundSound node object using the default parameter
Sound nodes.

public BackgroundSound(MediaContainer soundData,
float initialGain)
75Version 1.1.2, June 1999

5.8.2 PointSound Node LEAF NODE OBJECTS

76

the
con-
, the
ta is
dis-
d a

e uni-
as a
ce-

tener
s of
e fac-

local

dis-
part
public BackgroundSound(MediaContainer soundData,
float initialGain, int loopCount, boolean release,
boolean continuous, boolean enable, Bounds region,
float priority)

The first constructor constructs a new BackgroundSound node using only
provided parameter values for the sound data and initial gain. The second
structor uses the provided parameter values for the sound data, initial gain
number of times the loop is looped, a flag denoting whether the sound da
played to the end, a flag denoting whether the sound plays silently when
abled, whether sound is switched on or off, the sound activation region, an
priority value denoting the playback priority ranking.

5.8.2 PointSound Node

The PointSound node defines a spatially located sound whose waves radiat
formly in all directions from some point in space. It has the same attributes
Sound object, with the addition of a location and the specification of distan
based gain attenuation for listener positions between an array of distances.

The sound’s amplitude is attenuated based on the distance between the lis
and the sound source position. A piecewise linear curve (defined in term
pairs consisting of a distance and a gain scale factor) specifies the gain scal
tor slope.

The PointSound’s location and attenuation distances are defined in the
coordinate system of the node.

Constants

The PointSound object contains the following flags.

public static final int ALLOW_POSITION_READ
public static final int ALLOW_POSITION_WRITE
public static final int ALLOW_DISTANCE_GAIN_READ
public static final int ALLOW_DISTANCE_GAIN_WRITE

These flags, when enabled using thesetCapability method, allow an applica-
tion to invoke methods that respectively read and write the position and the
tance gain array. These capability flags are enforced only when the node is
of a live or compiled scene graph.

Constructors

The PointSound node object defines the following constructors.
Java 3D API Specification

LEAF NODE OBJECTS PointSound Node5.8.2

und

the
The

uses
ters

ided
tion.
ts of
dis-
and a
com-
. See
public PointSound()

Constructs a PointSound node object that includes the defaults for a So
object plus the following defaults for its own fields:

public PointSound(MediaContainer soundData, float initialGain,
Point3f position)

public PointSound(MediaContainer soundData, float initialGain,
float posX, float posY, float posZ)

Both of these constructors construct a PointSound node object using only
provided parameter values for sound data, sample gain, and position.
remaining fields are set to the default values specified earlier. The first form
vectors as input for its position. The second form uses individual float parame
for the elements of the position vector.

public PointSound(MediaContainer soundData, float initialGain,
int loopCount, boolean release, boolean continuous,
boolean enable, Bounds region, float priority,
Point3f position, Point2f distanceGain[])

public PointSound(MediaContainer soundData, float initialGain,
int loopCount, boolean release, boolean continuous,
boolean enable, Bounds region, float priority, float posX,
float posY, float posZ, Point2f distanceGain[])

public PointSound(MediaContainer soundData, float initialGain,
int loopCount, boolean release, boolean continuous,
boolean enable, Bounds region, float priority,
Point3f position, float attenuationDistance[],
float attenuationGain[])

public PointSound(MediaContainer soundData, float initialGain,
int loopCount, boolean release, boolean continuous,
boolean enable, Bounds region, float priority, float posX,
float posY, float posZ, float attenuationDistance[],
float attenuationGain[])

These four constructors construct a PointSound node object using the prov
parameter values. The first and third forms use points as input for the posi
The second and fourth forms use individual float parameters for the elemen
the position. The first and second forms accept an array of Point2f for the
tance attenuation values where each pair in the array contains a distance
gain scale factor. The third and fourth forms accept separate arrays for the
ponents of distance attenuation, namely, the distance and gain scale factors
the description for thesetDistanceGain method, below, for details on how the
separate arrays are interpreted.

Parameter Default Value

Position vector (0.0, 0.0, 0.0)

initialGain null (no attenuation performed)
77Version 1.1.2, June 1999

5.8.2 PointSound Node LEAF NODE OBJECTS

78

ound

t set,
actor
with
gain
ined

rpo-

ance
ates
ly

dis-

of

,

Methods

The PointSound node object defines the following methods.

public final void setPosition(Point3f position)
public final void setPosition(float x, float y, float z)
public final void getPosition(Point3f position)

These methods set and retrieve the position in 3D space from which the s
radiates.

public final void setDistanceGain(Point2f attenuation[])
public final void setDistanceGain(float distance[], float gain[])
public final int getDistanceGainLength()
public final void getDistanceGain(Point2f attenuation[])
public final void getDistanceGain(float distance[], float gain[])

These methods set and retrieve the sound’s distance attenuation. If this is no
no distance gain attenuation is performed (equivalent to using a gain scale f
of 1.0 for all distances). See Figure 5-2. Gain scale factors are associated
distances from the listener to the sound source via an array of distance and
scale factor pairs. The gain scale factor applied to the sound source is determ
by finding the range of valuesdistance[i] and distance[i+1] that includes
the current distance from the listener to the sound source, then linearly inte
lating the corresponding valuesgain[i] andgain[i+1] by the same amount.

If the distance from the listener to the sound source is less than the first dist
in the array, the first gain scale factor is applied to the sound source. This cre
a spherical region around the listener within which all sound gain is uniform
scaled by the first gain in the array.

If the distance from the listener to the sound source is greater than the last
tance in the array, the last gain scale factor is applied to the sound source.

The first form ofsetDistanceGain takes these pairs of values as an array
Point2f. The second form accepts two separate arrays for these values. Thedis-

tance and gainScale arrays should be of the same length. If thegainScale
array length is greater than thedistance array length, thegainScale array ele-
ments beyond the length of thedistance array are ignored. If thegainScale
array is shorter than thedistance array, the lastgainScale array value is
repeated to fill an array of length equal todistance array.

There are two methods forgetDistanceGain, one returning an array of points
the other returning separate arrays for each attenuation component.
Java 3D API Specification

LEAF NODE OBJECTS PointSound Node5.8.2

t of
ain
m-

be

list.

ts, a
dis-
actor
the
ould

in
Figure 5-2 PointSound Distance Gain Attenuation

Distance elements in this array of Point2f are a monotonically increasing se
floating-point numbers measured from the location of the sound source. G
scale factor elements in this list of pairs can be any positive floating-point nu
bers. While for most applications this list of gain scale factors will usually
monotonically decreasing, they do not have to be.

Figure 5-2 shows a graphical representation of a distance gain attenuation
The values given for distance/gain pairs would be

((10.0, 1.0), (12.0, 0.9), (16.0, 0.5), (17.0, 0.3),
 (20.0, 0.16), (24.0, 0.12), (28.0, 0.05), (30.0, 0.0))

Thus if the current distance from the listener to the sound source is 22 uni
scale factor of 0.14 would be applied to the sound amplitude. If the current
tance from the listener to the sound source is less than 10 units, the scale f
of 1.0 would be applied to the sound amplitude. If the current distance from
listener to the sound source is greater than 30 units, the scale factor of 0.0 w
be applied to the sound amplitude.

The getDistanceGainLength method returns the length of the distance ga
attenuation arrays. Arrays passed intogetDistanceGain methods should all be
at least this size.

1.0

0.5

0.0

10 20 300
Distance (from listener
to sound source)

Scale Factor
79Version 1.1.2, June 1999

5.8.3 ConeSound Node LEAF NODE OBJECTS

80

rce is
d by
the

on is
ound
tten-
lter

of a
e (in
fil-

for
axis)

ance
5.8.3 ConeSound Node

The ConeSound node object defines a PointSound node whose sound sou
directed along a specific vector in space. A ConeSound source is attenuate
gain scale factors and filters based on the angle between the vector from
source to the listener, and the ConeSound’s direction vector. This attenuati
either a single spherical distance gain attenuation (as for a general PointS
source) or dual front and back distance gain attenuations defining elliptical a
uation volumes. The angular filter and the active AuralAttribute component fi
define what filtering is applied to the sound source.

This node has the same attributes as a PointSound node, with the addition
direction vector and an array of points that each contain an angular distanc
radians), a gain scale factor, and a filter (which for now consists of a lowpass
ter cutoff frequency). Similar to the definition of the distance gain array
PointSounds, a piecewise linear curve (defined in terms of radians from the
specifies the slope of these additional attenuation values.

Figure 5-3 shows an approximation of angular attenuation (disregarding dist
attenuation).

Figure 5-3 ConeSound

Constants

The ConeSound object contains the following flags.

public static final int ALLOW_DIRECTION_READ

DistanceGain[1]

angularAttenuation[3]

angularAttenuation[0]

Sound Direction (axis)

Attenuated Values

DistanceGain[0]
Java 3D API Specification

LEAF NODE OBJECTS ConeSound Node5.8.3

the
node

ound

the
ion.
orm
ivid-
public static final int ALLOW_DIRECTION_WRITE
public static final int ALLOW_ANGULAR_ATTENUATION_READ
public static final int ALLOW_ANGULAR_ATTENUATION_WRITE

These flags, when enabled using thesetCapability method, allow an applica-
tion to invoke methods that respectively read and write the direction and
angular attenuation array. These capability flags are enforced only when the
is part of a live or compiled scene graph.

Constructors

The ConeSound node object defines the following constructors.

public ConeSound()

Constructs a ConeSound node object that includes the defaults for a PointS
object plus the following defaults for its own fields:

public ConeSound(MediaContainer soundData, float initialGain,
Point3f position, Vector3f direction)

public ConeSound(MediaContainer soundData, float initialGain,
float posX, float posY, float posZ, float dirX, float dirY,
float dirZ)

Both of these constructors construct a ConeSound node object using only
provided parameter values for sound, overall initial gain, position, and direct
The remaining fields are set to the default values listed earlier. The first f
uses points as input for its position and direction. The second form uses ind
ual float parameters for the elements of the position and direction vectors.

public ConeSound(MediaContainer soundData, float initialGain,
int loopCount, boolean release, boolean continuous,
boolean enable, Bounds region, float priority,
Point3f position, Point2f frontDistanceAttenuation[],
Point2f backDistanceAttenuation[], Vector3f direction)

public ConeSound(MediaContainer soundData, float initialGain,
int loopCount, boolean release, boolean continuous,
boolean enable, Bounds region, float priority, float posX,
float posY, float posZ, float frontDistance[],
float frontDistanceGain[], float backDistance[],
float backDistanceGain[], float dirX, float dirY,
float dirZ)

Parameter Default Value

direction vector (0.0, 0.0, 1.0)

BackDistanceAttenuation null

Angular attenuation ((0.0, 1.0), NO_FILTER,(π/2, 0.0, NO_FILTER))
81Version 1.1.2, June 1999

5.8.3 ConeSound Node LEAF NODE OBJECTS

82

ided
tion,
indi-
dis-

fine
erpo-
s that

in the

ided
rray.
gle

tion,

ular

ntly

factor
tance,
These constructors construct a ConeSound node object using the prov
parameter values. The first form uses points or vectors as input for its posi
direction, and front/back distance attenuation arrays. The second form uses
vidual float parameters for the elements of the position, direction, and two
tance attenuation arrays.

Unlike the single distance gain attenuation array for PointSounds, which de
spherical areas about the sound source between which gains are linearly int
lated, this directed ConeSound can have two distance gain attenuation array
define ellipsoidal attenuation areas. See thesetDistanceGain PointSound
method for details on how the separatedistance anddistanceGain arrays are
interpreted.

The ConeSound’s direction vector and angular measurements are defined
local coordinate system of the node.

public ConeSound(MediaContainer soundData, float initialGain,
int loopCount, boolean release, boolean continuous,
boolean enable, Bounds region, float priority,
Point3f position, Point2f distanceAttenuation[],
Vector3f direction, Point3f angularAttenuation[])

public ConeSound(MediaContainer soundData, float initialGain,
int loopCount, boolean release, boolean continuous,
boolean enable, Bounds region, float priority, float posX,
float posY, float posZ, float distance[],
float distanceGain[], float dirX, float dirY, float dirZ,
float angle[], float angularGain[],
float frequencyCutoff[])

These constructors construct a ConeSound node object using the prov
parameter values, which include a single spherical distance attenuation a
The first form uses points and vectors as input for its position, direction, sin
spherical distanceAttenuation array, andangularAttenuation array. The
second form uses individual float parameters for the elements of the posi
direction,distanceAttenuation array, andangularAttenuation array.

The first form accepts arrays of points for the distance attenuation and ang
values. Each Point2f in thedistanceAttenuation array contains a distance and
a gain scale factor. Each Point3f in theangularAttenuation array contains an
angular distance, a gain scale factor, and a filtering value (which is curre
defined as a simple cutoff frequency).

The second form accepts separate arrays for the distance and gain scale
components of distance attenuation, and separate arrays for the angular dis
angular gain, and filtering components of angular attenuation. See thesetDis-

tanceGain PointSound method for details on how the separatedistance and
Java 3D API Specification

LEAF NODE OBJECTS ConeSound Node5.8.3

ided
lipti-
input
ivid-

ef-
the
distanceGain arrays are interpreted. See thesetAngularAttenuation Cone-
Sound method for details on how the separateangularDistance, angularGain,
andfilter arrays are interpreted.

public ConeSound(MediaContainer soundData, float initialGain,
int loopCount, boolean release, boolean continuous,
boolean enable, Bounds region, float priority,
Point3f position, Point2f frontDistanceAttenuation[],
Point2f backDistanceAttenuation[], Vector3f direction,
Point3f angularAttenuation[])

public ConeSound(MediaContainer soundData, float initialGain,
int loopCount, boolean release, float priority,
boolean continuous, boolean enable, Bounds region,
float posX, float posY, float posZ, float frontDistance[],
float frontDistanceGain[], float backDistance[],
float backDistanceGain[], float dirX, float dirY,
float dirZ, float angle[], float angularGain[],
float frequencyCutoff[])

These constructors construct a ConeSound node object using the prov
parameter values, which include two distance attenuation arrays defining el
cal distance attenuation regions. The first form uses points and vectors as
for its position, direction, and attenuation arrays. The second form uses ind
ual float parameters for these same elements.

These two constructors differ from the previous two constructors only in the d
inition of the two distinct front and back distance attenuation arrays. See
setDistanceGain ConeSound method for details on how the separatedistance

and distanceGain arrays are interpreted. See thesetAngularAttenuation
ConeSound method for details on how the separateangularDistance, angular-
Gain, andfilter arrays are interpreted.

Methods

The ConeSound node object defines the following methods.

public final void setDistanceGain(Point2f frontAttenuation[],
Point2f backAttenuation[])

public final void setDistanceGain(float frontDistance[],
float frontGain[], float backDistance[], float backGain[])

public final void setBackDistanceGain(Point2f attenuation[])
public final void setBackDistanceGain(float distance[],

float gain[])
public final void getDistanceGain(Point2f frontAttenuation[],

Point2f backAttenuation[])
public final void getDistanceGain(float frontDistance[],

float frontGain[], float backDistance[], float backGain[])
83Version 1.1.2, June 1999

5.8.3 ConeSound Node LEAF NODE OBJECTS

84

rrays.
sing
y is
back
(see

ces
nce
the
t be

al
These methods set and retrieve the ConeSound’s two distance attenuation a
If these are not set, no distance gain attenuation is performed (equivalent to u
a distance gain of 1.0 for all distances). If only one distance attenuation arra
set, spherical attenuation is assumed (see Figure 5-4). If both a front and
distance attenuation are set, elliptical attenuation regions are defined
Figure 5-5). Use the PointSoundsetDistanceGain method to set the front dis-
tance attenuation array separately from the back distance attenuation array.

Figure 5-4 ConeSound with a Single Distance Gain Attenuation Array

Figure 5-5 ConeSound with Two Distance Gain Attenuation Arrays

A front distance attenuation array defines monotonically increasing distan
from the sound source origin along the position direction vector. A back dista
attenuation array (if given) defines monotonically increasing distances from
sound source origin along the negative direction vector. The two arrays mus
of the same length. ThebackDistance[i] gain values must be less than or equ
to frontDistance[i] gain values.

Listener

Distances
Sound
Source

Angular Distances

Listener

Back Distances Front Distances
Java 3D API Specification

LEAF NODE OBJECTS ConeSound Node5.8.3

ound
. The
alue
lis-

th
rays.
size.

gu-

ation
med
r of
lar
s the
from
filter
dis-
axis.

nd’s
fac-
gion
rst

tion
r and
Gain scale factors are associated with distances from the listener to the s
source via an array of distance and gain scale factor pairs (see Figure 5-2)
gain scale factor applied to the sound source is the linear interpolated gain v
within the distance value range that includes the current distance from the
tener to the sound source.

ThegetDistanceGainLength method (defined in PointSound) returns the leng
of all distance gain attenuation arrays, including the back distance gain ar
Arrays passed into getBackDistanceGain methods should all be at least this

public final void setDirection(Vector3f direction)
public final void setDirection(float x, float y, float z)
public final void getDirection(Vector3f direction)

This value is the sound source’s direction vector. It is the axis from which an
lar distance is measured.

public final void setAngularAttenuation(Point2f attenuation[])
public final void setAngularAttenuation(Point3f attenuation[])
public final void setAngularAttenuation(float angle[],

float angularGain[], float frequencyCutoff[])
public final int getAngularAttenuationLength()
public final void getAngularAttenuation(Point3f attenuation[])
public final void getAngularAttenuation(float angle[],

float angularGain[], float frequencyCutoff[])

These methods set and retrieve the sound’s angular gain and filter attenu
arrays. If these are not set, no angular gain attenuation or filtering is perfor
(equivalent to using an angular gain scale factor of 1.0 and an angular filte
NO_FILTER for all distances). This attenuation is defined as a triple of angu
distance, gain scale factor, and filter values. The distance is measured a
angle in radians between the ConeSound’s direction vector and the vector
the sound source position to the listener. Both the gain scale factor and
applied to the sound source are the linear interpolation of values within the
tance value range that includes the angular distance from the sound source

If the angular distance from the listener-sound-position vector and the sou
direction vector is less than the first distance in the array, the first gain scale
tor and first filter are applied to the sound source. This creates a conical re
around the listener within which the sound is uniformly attenuated by the fi
gain and the first filter in the array.

If the distance from the listener-sound-position vector and the sound’s direc
vector is greater than the last distance in the array, the last gain scale facto
last filter are applied to the sound source.
85Version 1.1.2, June 1999

5.9 Soundscape Node LEAF NODE OBJECTS

86

t of
s
st

as-
ut-

are

r
gth. If

of

s of

ener’s
iated
eric
d in
be
Distance elements in this array of points are a monotonically increasing se
floating point numbers measured from 0 toπ radians. Gain scale factor element
in this list of points can be any positive floating-point numbers. While for mo
applications this list of gain scale factors will usually be monotonically decre
ing, they do not have to be. The filter (for now) is a single simple frequency c
off value.

In the first form of setAngularAttenuation, only the angular distance and
angular gain scale factor pairs are given. The filter values for these tuples
implicitly set toNO_FILTER. In the second form ofsetAngularAttenuation, an
array of all three values is supplied.

The third form of setAngularAttenuation accepts three separate arrays fo
these angular attenuation values. These arrays should be of the same len
the angularGain or filtering array length is greater than theangularDistance
array length, the array elements beyond the length of theangularDistance array
are ignored. If theangularGain or filtering array is shorter than theangu-
larDistance array, the last value of the short array is repeated to fill an array
length equal to theangularDistance array.

The getAngularAttenuationArrayLength method returns the length of the
angular attenuation arrays. Arrays passed intogetAngularAttenuation methods
should all be at least this size.

There are two methods forgetAngularAttenuation, one returning an array of
points, the other returning separate arrays for each attenuation component.

Figure 5-3 shows an example of an angular attenuation defining four point
the form (radiant distance, gain scale factor, cutoff filter frequency):

((0.12, 0.8, NO_FILTER), (0.26, 0.6, 18000.0), (0.32, 0.4, 15000.0),
(0.40, 0.2, 11000.0))

5.9 Soundscape Node

The Soundscape leaf node defines the attributes that characterize the list
aural environment. This node defines an application region and an assoc
aural attribute component object that controls reverberation and atmosph
properties that affect sound source rendering. (Aural attributes are describe
Section 7.1.15, “AuralAttributes Object.”) Multiple Soundscape nodes can
included in a single scene graph.
Java 3D API Specification

LEAF NODE OBJECTS Soundscape Node 5.9

ling
ject)
posi-

a
es: a
less

their
g on

and
e is
The Soundscape application region, different from a Sound node’s schedu
region, is used to select which Soundscape (and thus which aural attribute ob
is to be applied to the sounds being rendered. This selection is based on the
tion of the ViewPlatform (the “listener”), not the position of the sound.

It will be common for multiple Soundscape regions to be contained within
scene graph. Figure 5-6 shows application regions for two Soundscape nod
region with a large open area on the right, and a smaller, more constricted,
reverberant area on the left.

Figure 5-6 Multiple Soundscape Application Regions

The reverberation attributes for these two regions could be set to represent
physical differences so that active sounds are rendered differently dependin
which region the listener is in.

Constants

The Soundscape node object defines the following flags.

public static final int ALLOW_APPLICATION_BOUNDS_READ
public static final int ALLOW_APPLICATION_BOUNDS_WRITE
public static final int ALLOW_ATTRIBUTES_READ
public static final int ALLOW_ATTRIBUTES_WRITE

These flags, when enabled using thesetCapability method, allow an applica-
tion to invoke methods that respectively read and write the application region
the aural attributes. These capability flags are enforced only when the nod
part of a live or compiled scene graph.

 Application Region 2Application Region 1
87Version 1.1.2, June 1999

5.9 Soundscape Node LEAF NODE OBJECTS

88

r its

ation

unds.
leaf
d to
the

und-

. Set-
Constructors

The Soundscape node object defines the following constructors.

public Soundscape()

Constructs a Soundscape node object that includes the following defaults fo
elements:

public Soundscape(Bounds region, AuralAttributes attributes)

This method constructs a Soundscape node object using the specified applic
region and aural attributes.

Methods

The Soundscape node object defines the following methods.

public final void setApplicationBounds(Bounds region)
public final Bounds getApplicationBounds()

These two methods access or modify the Soundscape node’s application bo
This bounds is used as the application region when the application bounding
is set tonull. The aural attributes associated with this Soundscape are use
render the active sounds when this application region intersects
ViewPlatform’s activation volume. ThegetApplicationBounds method returns
a copy of the associated bounds.

public final void setApplicationBoundingLeaf(BoundingLeaf region)
public final BoundingLeaf getApplicationBoundingLeaf()

These two methods access or modify the Soundscape node’s application bo
ing leaf. When set to a value other thannull, this bounding leaf overrides the
application bounds object and is used as the application region.

public final void setAuralAttributes(AuralAttributes attributes)
public final AuralAttributes getAuralAttributes()

These two methods access or modify the aural attributes of this Soundscape
ting it to null results in default attribute use.

Parameter Default Value

applicationregion null (no active region)

auralattributes null (uses default aural attributes)
Java 3D API Specification

LEAF NODE OBJECTS ViewPlatform Node 5.10

y a
s in
t is
ir-

e the

licy.
om-

ult

f the
and
ects
5.10 ViewPlatform Node

The ViewPlatform node object defines a viewing platform that is referenced b
View object. The location, orientation, and scale of the composite transform
the scene graph from the root to the ViewPlatform specify where the viewpoin
located and in which direction it is pointing. A viewer navigates through the v
tual universe by changing the transform in the scene graph hierarchy abov
ViewPlatform.

Constants

The ViewPlatform node object defines the following flags.

public static final int ALLOW_POLICY_READ
public static final int ALLOW_POLICY_WRITE

These flags, when enabled using thesetCapability method, allow an applica-
tion to invoke methods that respectively read and write the view attach po
These capability flags are enforced only when the node is part of a live or c
piled scene graph.

Constructors

public ViewPlatform()

Constructs and initializes a new ViewPlatform leaf node object with defa
parameters:

Methods

The ViewPlatform node object defines the following methods:

public final void setActivationRadius(float activationRadius)
public final float getActivationRadius()

The activation radius defines an activation volume surrounding the center o
ViewPlatform. This activation volume intersects with the scheduling regions
application regions of other leaf node objects to determine which of those obj
may affect rendering.

Parameter Default Value

view attach policy View.NOMINAL_HEAD

activation radius 62
89Version 1.1.2, June 1999

5.11 Behavior Node LEAF NODE OBJECTS

90

r-
et of
ore

s the

uling
be

dul-
ates
an
r 9,

eye
for

t run
hav-
lasses
ser.

me-
y of
ode
eome-
e

Different leaf objects interact with the ViewPlatform’s activation volume diffe
ently. The Background, Clip, and Soundscape leaf objects each define a s
attributes and an application region in which those attributes are applied. If m
than one node of a given type (Background, Clip, or Soundscape) intersect
ViewPlatform’s activation volume, the “most appropriate” node is selected.

Sound leaf objects begin playing their associated sounds when their sched
region intersects a ViewPlatform’s activation volume. Multiple sounds may
active at the same time.

Behavior objects act somewhat differently. Those Behavior objects with sche
ing regions that intersect a ViewPlatform’s activation volume become candid
for scheduling. Effectively, a ViewPlatform’s activation volume becomes
additional qualifier on the scheduling of all Behavior objects. See Chapte
“Behaviors and Interpolators,” for more details.

public final void setViewAttachPolicy(int policy)
public final int getViewAttachPolicy()

The view attach policy determines how Java 3D places the user’s virtual
point as a function of head position. See Section 8.4.3, “View Attach Policy,”
details.

5.11 Behavior Node

The Behavior leaf node allows an application to manipulate a scene graph a
time. Behavior is an abstract class that defines properties common to all Be
ior objects in Java 3D. There are several predefined behaviors that are subc
of Behavior. Additionally, a Behavior leaf node may be subclassed by the u
Behaviors are described in Chapter 9, “Behaviors and Interpolators.”

5.12 Morph Node

The Morph leaf node permits an application to morph between multiple Geo
tryArrays. The Morph node contains a single Appearance node, an arra
GeometryArray objects, and an array of corresponding weights. The Morph n
combines these GeometryArrays into an aggregate shape based on each G
tryArray’s corresponding weight. Typically, Behavior nodes will modify th
weights to achieve various morphing effects.
Java 3D API Specification

LEAF NODE OBJECTS Morph Node 5.12

ys,

of

of
f the
ays

r

Constants

The Morph node specifies the following flags.

public static final int ALLOW_GEOMETRY_ARRAY_READ
public static final int ALLOW_GEOMETRY_ARRAY_WRITE
public static final int ALLOW_APPEARANCE_READ
public static final int ALLOW_APPEARANCE_WRITE
public static final int ALLOW_WEIGHTS_READ
public static final int ALLOW_WEIGHTS_WRITE
public static final int ALLOW_COLLISION_BOUNDS_READ
public static final int ALLOW_COLLISION_BOUNDS_WRITE

These flags, when enabled using thesetCapability method, allow an applica-
tion to invoke methods that respectively read and write the GeometryArra
appearance, weights, and collision Bounds components.

Constructors

The Morph node specifies the following constructors.

public Morph(GeometryArray geometryArrays[])

Constructs and initializes a new Morph leaf node with the specified array
GeometryArray objects. Default values are used for all other parameters:

public Morph(GeometryArray geometryArrays[],
Appearance appearance)

Constructs and initializes a new Morph leaf node with the specified array
GeometryArray objects and the specified Appearance object. The length o
geometryArrays parameter determines the number of weighted geometry arr
in this Morph node. IfgeometryArrays is null, then aNullPointerException
is thrown. If the Appearance component isnull, then default values are used fo
all appearance attributes.

Methods

The Morph node specifies the following methods.

Parameter Default Value

appearance null

weights [1, 0, 0, 0, ...]

collisionbounds null
91Version 1.1.2, June 1999

5.12 Morph Node LEAF NODE OBJECTS

92

ach
ates.
e

node.
ent,

this
by

e

path
public final void setGeometryArrays(GeometryArray
geometryArrays[])

This method sets the array of GeometryArray objects in the Morph node. E
GeometryArray component specifies colors, normals, and texture coordin
The length of thegeometryArrays parameter must be equal to the length of th
array with which this Morph node was created; otherwise, anIllegal-

ArgumentException is thrown.

public final GeometryArray getGeometryArray(int index)

This method retrieves a single geometry array from the Morph node. Theindex

parameter specifies which array is returned.

public final void setAppearance(Appearance appearance)
public final Appearance getAppearance()

These methods set and retrieve the Appearance component of this Morph
The Appearance component specifies material, texture, texture environm
transparency, or other rendering parameters. Setting it tonull results in default
attribute use.

public void setWeights(double weights[])
public double[] getWeights()

These methods set and retrieve the morph weight vector component of
Morph node. The Morph node “weights” the corresponding GeometryArray
the amount specified. The length of theweights parameter must be equal to th
length of the array with which this Morph node was created; otherwise, anIlle-

galArgumentException is thrown.

public final void setCollisionBounds(Bounds bounds)
public final Bounds getCollisionBounds()

These methods set and retrieve the collision bounding object of this node.

public boolean intersect(SceneGraphPath path, PickShape pickShape)
public boolean intersect(SceneGraphPath path, PickRay pickRay,

double[] dist)

These methods check if the geometry component of this shape node under
intersects with the pickShape.
Java 3D API Specification

LEAF NODE OBJECTS Link Node 5.13

oted
er of
“Link
5.13 Link Node

The Link leaf node allows an application to reference a shared subgroup, ro
by a SharedGroup node, from within a branch of the scene graph. Any numb
Link nodes can refer to the same SharedGroup node. See Section 6.1.2,
Leaf Node,” for a description of this node.
93Version 1.1.2, June 1999

Version 1.1.2, June 1999
C H A P T E R 6

s

s-
raph.
still

e first
to the
in one

ene
iated
d sub-
rpo-

(see

ny
raph

oup
Reusing Scene Graph

JAVA 3D provides application programmers with two different means for reu
ing scene graphs. First, multiple scene graphs can share a common subg
Second, the node hierarchy of a common subgraph can be cloned, while
sharing large component objects such as geometry and texture objects. In th
case, changes in the shared subgraph affect all scene graphs that refer
shared subgraph. In the second case, each instance is unique—a change
instance does not affect any other instance.

6.1 Sharing Subgraphs

An application that wishes to share a subgraph from multiple places in a sc
graph must do so through the use of the Link leaf node and an assoc
SharedGroup node. The SharedGroup node serves as the root of the share
graph. The Link leaf node refers to the SharedGroup node. It does not inco
rate the shared scene graph directly into its scene graph.

6.1.1 SharedGroup Node

A SharedGroup node allows multiple Link leaf nodes to share its subgraph
Figure 6-1) according to the following semantics:

• A SharedGroup may be referenced by one or more Link leaf nodes. A
runtime changes to a node or component object in this shared subg
affect all graphs that refer to this subgraph.

• A SharedGroup may be compiled by calling itscompile method prior to
being referenced by any Link leaf nodes.

• Only Link leaf nodes may refer to SharedGroup nodes. A SharedGr
node cannot have parents or be attached to a Locale.
95

6.1.1 SharedGroup Node REUSING SCENE GRAPHS

96

dded
ly the
Figure 6-1 Sharing a Subgraph

A shared subgraph may contain any group node, except an embe
SharedGroup node (SharedGroup nodes cannot have parents). However, on
following leaf nodes may appear in a shared subgraph:

• Light

• Link

• Morph

• Shape

• Sound

An IllegalSharingException is thrown if any of the following leaf nodes
appear in a shared subgraph:

BG

Virtual Universe

Hi-Res Locale

BG

L

SG

Link Nodes

SharedGroup Node

BranchGroup Nodes

L

Java 3D API Specification

REUSING SCENE GRAPHS SharedGroup Node6.1.1

t and

, the
r
nce

dden
• Background

• BoundingLeaf

• Behavior

• Clip

• Fog

• Soundscape

• ViewPlatform

Constructors

public SharedGroup()

Constructs and initializes a new SharedGroup node object.

Methods

The SharedGroup node defines the following methods.

public final void compile()

This method compiles the source SharedGroup associated with this objec
creates and caches a newly compiled scene graph.

public Node cloneNode(boolean forceDuplicate)

This method creates a new instance of the node. This routine is called byclone-

Tree to duplicate the current node.

public void duplicateNode(Node originalNode,
boolean forceDuplicate)

This method copies all the node information from theoriginalNode into the
current node. This method is called from thecloneNode method, which is in turn
called by thecloneTree method. Applications shouldnot call this method
directly. It should only be called by the cloneNode method.

For each NodeComponent object contained by the object being duplicated
NodeComponent’sduplicateOnCloneTree value is used to determine whethe
the NodeComponent should be duplicated in the new node or if just a refere
to the current node should be placed in the new node. This flag can be overri
by setting theforceDuplicate parameter in thecloneTree method totrue.
97Version 1.1.2, June 1999

6.1.2 Link Leaf Node REUSING SCENE GRAPHS

98

d by
. See
ode.

ode
the

a
ts to

h this

me
Link
6.1.2 Link Leaf Node

The Link leaf node allows an application to reference a shared graph, roote
a SharedGroup node, from within a branch graph or another shared graph
Figure 6-1. Any number of Link nodes can refer to the same SharedGroup n

Constants

The Link node object defines two flags.

public static final int ALLOW_SHARED_GROUP_READ
public static final int ALLOW_SHARED_GROUP_WRITE

These flags, when enabled using thesetCapability method, allow an applica-
tion to invoke methods that respectively read and write the SharedGroup n
pointed to by this Link node. These capability flags are enforced only when
node is part of a live or compiled scene graph.

Constructors

The Link node object defines two constructors.

public Link()
public Link(SharedGroup sharedGroup)

The first form constructs a Link node object that does not yet point to
SharedGroup node. The second form constructs a Link node object that poin
the specified SharedGroup node.

Methods

The Link node object defines two methods.

public final void setSharedGroup(SharedGroup sharedGroup)
public final SharedGroup getSharedGroup()

These methods access and modify the SharedGroup node associated wit
Link leaf node.

public Node cloneNode(boolean forceDuplicate)

This method creates a new instance of the node. This routine is called byclone-

Tree to duplicate the current node. The cloned Link node will refer to the sa
SharedGroup as the original node. The SharedGroup referred to by this
node will not be cloned.
Java 3D API Specification

REUSING SCENE GRAPHS Cloning Subgraphs 6.2

om-
ate a
he

, and
type
ious
each
tance

nent
the

eir
.1,

a
. Set-

-
d on

ng
6.2 Cloning Subgraphs

An application developer may wish to reuse a common subgraph without c
pletely sharing that subgraph. For example, the developer may wish to cre
parking lot scene consisting of multiple cars, each with a different color. T
developer might define three basic types of cars, such as convertible, truck
sedan. To create the parking lot scene, the application will instantiate each
of car several times. Then the application can change the color of the var
instances to create more variety in the scene. Unlike shared subgraphs,
instance is a separate copy of the scene graph definition: Changes to one ins
do not affect any other instance.

Java 3D provides thecloneTree method for this purpose. ThecloneTree
method allows the programmer to change some attributes (NodeCompo
objects) in a scene graph, while at the same time sharing the majority of
scene graph data—the geometry.

Methods

public Node cloneTree()
public Node cloneTree(boolean forceDuplicate)
public Node cloneTree(boolean forceDuplicate,

boolean allowDanglingReferences)

These methods start the cloning of the subgraph. The optionalforceDuplicate

parameter, when set totrue, causes leaf NodeComponent objects to ignore th
duplicateOnCloneTree value and always be duplicated (see Section 6.2
“References to Node Component Objects”). TheallowDanglingReferences
parameter, when set totrue, will permit the cloning of a subgraph even when
dangling reference is generated (see Section 6.2.3, “Dangling References”)
ting forceDuplicate andallowDanglingReferences to false is the equivalent
of calling cloneTree without any parameters. This will result in NodeCompo
nent objects being either duplicated or referenced in the cloned node, base
their duplicateOnCloneTree value. A DanglingReferenceException will be
thrown if a dangling reference is encountered.

When thecloneTree method is called on a node, that node is duplicated alo
with its entire internal state. If the node is a Group node,cloneTree is then
called on each of the node’s children.

ThecloneTree method cannot be called on a live or compiled scene graph.
99Version 1.1.2, June 1999

6.2.1 References to Node Component Objects REUSING SCENE GRAPHS

100

ling
rth).
nent
leaf

g the
ode

the
ref-

tion

and

upli-
6.2.1 References to Node Component Objects

WhencloneTree reaches a leaf node, there are two possible actions for hand
the leaf node’s NodeComponent objects (such as Material, Texture, and so fo
First, the cloned leaf node can reference the original leaf node’s NodeCompo
object—the NodeComponent object itself is not duplicated. Since the cloned
node shares the NodeComponent object with the original leaf node, changin
data in the NodeComponent object will effect a change in both nodes. This m
would also be used for objects that are read-only at run time.

Alternatively, the NodeComponent object can be duplicated, in which case
new leaf node would reference the duplicated object. This mode allows data
erenced by the newly created leaf node to be modified without that modifica
affecting the original leaf node.

Figure 6-2 shows two instances of NodeComponent objects that are shared
one NodeComponent element that is duplicated for the cloned subgraph.

Figure 6-2 Referenced and Duplicated NodeComponent Objects

Methods

public final void setDuplicateOnCloneTree(boolean)
public final void getDuplicateOnCloneTree()

These methods set a flag that controls whether a NodeComponent object is d
cated or referenced on a call tocloneTree. By default this flag isfalse, mean-

G

Leaf Nodes

Group Nodes

LfLfLf

NodeComponents

cloneTree

G

LfLfLf
Java 3D API Specification

REUSING SCENE GRAPHS References to Other Scene Graph Nodes6.2.2

to
nt

is

ref-

till
or-

by a

d by
their

the
ing that the NodeComponent object will not be duplicated on a call
cloneTree—newly created leaf nodes will refer to the original NodeCompone
object instead.

If the cloneTree method is called with theforceDuplicate parameter set to
true, the duplicateOnCloneTree flag is ignored and the entire scene graph
duplicated.

6.2.2 References to Other Scene Graph Nodes

Leaf nodes that contain references to other nodes (for example, Light nodes
erence a Group node) can create a problem for thecloneTree method. After the
cloneTree operation is performed, the reference in the cloned leaf node will s
refer to the node in the original subgraph—a situation that is most likely inc
rect (see Figure 6-3).

Figure 6-3 References to Other Scene Graph Nodes

To handle these ambiguities, a callback mechanism is provided.

A leaf node that needs to update referenced nodes upon being duplicated
call to cloneTree must implement theupdateNodeReferences method. By
using this method, the cloned leaf node can determine if any nodes reference
it have been duplicated and, if so, update the appropriate references to
cloned counterparts.

Suppose, for instance, that the leaf node Lf1 in Figure 6-3 implemented
updateNodeReferences method. Once all nodes had been duplicated, theclon-

eTree method would then call each cloned leaf’s nodeupdateNodeReferences

G

Lf1LfLf

G

Lf2LfLf

cloneTreeN1 N2
101Version 1.1.2, June 1999

6.2.2 References to Other Scene Graph Nodes REUSING SCENE GRAPHS

102

the

ned

ed to

object
that

pre-
must

es in
method. When cloned leaf node Lf2’s method was called, Lf2 could ask if
node N1 had been duplicated during thecloneTree operation. If the node had
been duplicated, leaf Lf2 could then update its internal state with the clo
node, N2 (see Figure 6-4).

All predefined Java 3D nodes will automatically have theirupdateNodeRefer-

ences method defined. Only subclassed nodes that reference other nodes ne
have this method overridden by the user.

Figure 6-4 Updated Subgraph afterupdateNodeReferences Call

Methods

public void updateNodeReferences(NodeReferenceTable
referenceTable)

This Leaf node method is called by thecloneTree method after all nodes in the
subgraph have been cloned. The user can query the NodeReferenceTable
(see Section 6.2.5, “NodeReferenceTable Object”) to determine if any nodes
the leaf node references have been duplicated by thecloneTree call and, if so,
what the corresponding node is in the new subgraph. If a user extends a
defined Java 3D object and adds a reference to another node, this method
be defined in order to ensure proper operation of thecloneTree method. The
first statement in the user’supdateNodeReferences method must be
super.updateNodeReferences(referenceTable). For predefined Java 3D
nodes, this method will be implemented automatically.

The NodeReferenceTable object is passed to theupdateNodeReferences method
and allows references from the old subgraph to be translated into referenc

G

Lf1LfLf

G

Lf2LfLf

cloneTreeN1 N2
Java 3D API Specification

REUSING SCENE GRAPHS Dangling References6.2.3

input
sub-

r an
see

is

loned.
here
efer-

a

the cloned subgraph. The translation is performed by thegetNew-

NodeReference method.

public final Node getNewNodeReference(Node oldReference)

Deprecated method. See thegetNewObjectReference method.

public final SceneGraphObject
getNewObjectReference(SceneGraphObject oldReference)

This method takes a reference to the node in the original subgraph as an
parameter and returns a reference to the equivalent node in the just-cloned
graph. If the equivalent node in the cloned subgraph does not exist, eithe
exception is thrown or a reference to the original node is returned (
Section 6.2.3, “Dangling References”).

6.2.3 Dangling References

BecausecloneTree is able to start the cloning operation from any node, there
a potential for creatingdangling references. A dangling reference can occur only
when a leaf node that contains a reference to another scene graph node is c
If the referenced node is not cloned, a dangling reference situation exists: T
are now two leaf nodes that access the same node (Figure 6-5). A dangling r
ence is discovered when a leaf node’supdateNodeReferences method calls the
getNewNodeReference method and the cloned subgraph does not contain
counterpart to the node being looked up.

Figure 6-5 Dangling Reference: Bold Nodes Are Being Cloned

G

Lf

cloneTree
103Version 1.1.2, June 1999

6.2.4 Subclassing Nodes REUSING SCENE GRAPHS

104

nto

uto-
sub-

st be

-spe-

define
When a dangling reference is discovered,cloneTree can handle it in one of two
ways. If cloneTree is called without theallowDanglingReferences parameter
set totrue, a dangling reference will result in aDanglingReferenceException
being thrown. The user can catch this exception if desired. IfcloneTree is called
with the allowDanglingReferences parameter set totrue, the update-

NodeReferences method will return a reference to the same object passed i
the getNewNodeReference method. This will result in thecloneTree operation
completing with dangling references, as in Figure 6-5.

6.2.4 Subclassing Nodes

All Java 3D predefined nodes (for example, Interpolators and LOD nodes) a
matically handle all node reference and duplication operations. When a user
classes a Leaf object or a NodeComponent object, certain methods mu
provided in order to ensure the proper operation ofcloneTree.

Leaf node subclasses (for example, Behaviors) that contain any user node
cific data that needs to be duplicated during acloneTree operation must define
the following two methods:

Node cloneNode(boolean forceDuplicate);
void duplicateNode(Node n, boolean forceDuplicate)

ThecloneNode method consists of three lines:

UserLeafNode un = new UserLeafNode();
un.duplicateNode(this, forceDuplicate);
return un;

TheduplicateNode method must first callsuper.duplicateNode before dupli-
cating any necessary user-specific data or setting any user-specific state.

NodeComponent subclasses that contain any user node-specific data must
the following two methods:

NodeComponent cloneNodeComponent();
void duplicateNodeComponent(NodeComponent nc);

ThecloneNodeComponent method consists of three lines:

UserNodeComponent un = new UserNodeComponent();
Java 3D API Specification

REUSING SCENE GRAPHS Example User Behavior Node6.2.6

s nec-

ps
This

refer-
3D.

input
sub-

r an
see

to
un.duplicateNodeComponent(this);
return un;

The duplicateNodeComponent must first callsuper.duplicateNodeComponent
and then can duplicate any user-specific data or set any user-specific state a
essary.

6.2.5 NodeReferenceTable Object

The NodeReferenceTable object is used by a leaf node’supdateNodeReferences

method called by thecloneTree operation. The NodeReferenceTable ma
nodes from the original subgraph to the new nodes in the cloned subgraph.
information can than be used to update any cloned leaf node references to
ence nodes in the cloned subgraph. This object can only be created by Java

Methods

public final Node getNewNodeReference(Node oldReference)

Deprecated method. See thegetNewObjectReference method.

public final SceneGraphObject
getNewObjectReference(SceneGraphObject oldReference)

This method takes a reference to the node in the original subgraph as an
parameter and returns a reference to the equivalent node in the just-cloned
graph. If the equivalent node in the cloned subgraph does not exist, eithe
exception is thrown or a reference to the original node is returned (
Section 6.2.3, “Dangling References”).

6.2.6 Example User Behavior Node

The following is an example of a user-defined Behavior object to show how
properly define a node to be compatible with thecloneTree operation.

class RotationBehavior extends Behavior {
TransformGroup objectTransform;
WakeupOnElapsedFrames w;

Matrix4d rotMat = new Matrix4d();
Matrix4d objectMat = new Matrix4d();
Transform3D t = new Transform3D();

// Override Behavior's initialize method to set up wakeup
105Version 1.1.2, June 1999

6.2.6 Example User Behavior Node REUSING SCENE GRAPHS

106
// criteria
public void initialize() {

// Establish initial wakeup criteria
wakeupOn(w);

 }

// Override Behavior's stimulus method to handle the event
public void processStimulus(Enumeration criteria) {

// Rotate by another PI/120.0 radians
objectMat.mul(objectMat, rotMat);
t.set(objectMat);
objectTransform.setTransform(t);

// Set wakeup criteria for next time
wakeupOn(w);

}

// Constructor for rotation behavior.
public RotationBehavior(TransformGroup tg, int numFrames) {

w = new WakeupOnElapsedFrames(numFrames);
objectTransform = tg;
objectMat.setIdentity();

// Create a rotation matrix that rotates PI/120.0
// radians per frame
rotMat.rotX(Math.PI/120.0);

// Note: When this object is duplicated via cloneTree,
// the cloned RotationBehavior node needs to point to
// the TransformGroup in the just-cloned tree.

}

// Sets a new TransformGroup.
public void setTransformGroup(TransformGroup tg) {

objectTransform = tg;
}

// The next two methods are needed for cloneTree to operate
// correctly.
// cloneNode is needed to provide a new instance of the user
// derived subclass.
public Node cloneNode(boolean forceDuplicate) {

// Get all data from current node needed for
// the constructor
int numFrames = w.getElapsedFrameCount();

RotationBehavior r =
new RotationBehavior(objectTransform, numFrames);

r.duplicateNode(this, forceDuplicate);
Java 3D API Specification

REUSING SCENE GRAPHS Example User Behavior Node6.2.6
return r;
}
// duplicateNode is needed to duplicate all super class
// data as well as all user data.
public void duplicateNode(Node originalNode, boolean
 forceDuplicate) {

super.duplicateNode(originalNode, forceDuplicate);
// Nothing to do here - all unique data was handled
// in the constructor in the cloneNode routine.

}

// Callback for when this leaf is cloned. For this object
// we want to find the cloned TransformGroup node that this
// clone Leaf node should reference.
public void updateNodeReferences(NodeReferenceTable t) {

super.updateNodeReferences(t);

// Update node's TransformGroup to proper reference
TransformGroup newTg =
 (TransformGroup)t.getNewObjectReference(

objectTransform);
setTransformGroup(newTg);

}
}

107Version 1.1.2, June 1999

Version 1.1.2, June 1999
C H A P T E R 7

ts

nce

con-
a-

alue.
plex

te

es all
in a
e

Node Component Objec

NODE component objects include the actual geometry and appeara
attributes used to render the geometry.

7.1 Node Component Objects: Attributes

Node objects by themselves do not fully specify their exact semantics. They
tain information that further refines their exact meaning. Some of that inform
tion is specified as an attribute and an associated floating-point or integer v
In many cases, however, the information consists of references to more com
entities callednode component objects. Node component objects encapsula
related state information in a single entity. See Figure 7-1.

7.1.1 Appearance Object

The Appearance object is a component object of a Shape3D node that defin
rendering state attributes for that shape node. If the Appearance object
Shape3D node isnull, default values will be used for all rendering stat
attributes.

Constants

The Appearance component object defines the following flags.

public static final int ALLOW_MATERIAL_READ
public static final int ALLOW_MATERIAL_WRITE
public static final int ALLOW_TEXTURE_READ
public static final int ALLOW_TEXTURE_WRITE
public static final int ALLOW_TEXGEN_READ
public static final int ALLOW_TEXGEN_WRITE
public static final int ALLOW_TEXTURE_ATTRIBUTES_READ
109

7.1.1 Appearance Object NODE COMPONENT OBJECTS

110
Figure 7-1 Attribute Component Object Hierarchy

public static final int ALLOW_TEXTURE_ATTRIBUTES_WRITE
public static final int ALLOW_COLORING_ATTRIBUTES_READ
public static final int ALLOW_COLORING_ATTRIBUTES_WRITE
public static final int ALLOW_TRANSPARENCY_ATTRIBUTES_READ
public static final int ALLOW_TRANSPARENCY_ATTRIBUTES_WRITE
public static final int ALLOW_RENDERING_ATTRIBUTES_READ
public static final int ALLOW_RENDERING_ATTRIBUTES_WRITE
public static final int ALLOW_POLYGON_ATTRIBUTES_READ
public static final int ALLOW_POLYGON_ATTRIBUTES_WRITE
public static final int ALLOW_LINE_ATTRIBUTES_READ
public static final int ALLOW_LINE_ATTRIBUTES_WRITE
public static final int ALLOW_POINT_ATTRIBUTES_READ
public static final int ALLOW_POINT_ATTRIBUTES_WRITE

These flags, when enabled using thesetCapability method, allow an applica-

SceneGraphObject
NodeComponent

Appearance
AuralAttributes
ColoringAttributes
LineAttributes
PointAttributes
PolygonAttributes
RenderingAttributes
TextureAttributes
TransparencyAttributes
Material
MediaContainer
TexCoordGeneration
Texture

Texture2D
Texture3D

ImageComponent
ImageComponent2D
ImageComponent3D

DepthComponent
DepthComponentFloat
DepthComponentInt
DepthComponentNative

Bounds
BoundingBox
BoundingPolytope
BoundingSphere

Transform3D
Java 3D API Specification

NODE COMPONENT OBJECTS Appearance Object7.1.1

fer-
hese
led

vari-

ing.

. Set-
tion to invoke methods that read and write the specified component object re
ence (material, texture, texture coordinate generation, and so forth). T
capability flags are enforced only when the object is part of a live or compi
scene graph.

Constructors

The Appearance object has the following constructor.

public Appearance()

Constructs and initializes an Appearance object using defaults for all state
ables. All component object references are initialized to null.

Methods

The Appearance object has the following methods.

public final void setMaterial(Material material)
public final Material getMaterial()

The Material object specifies the desired material properties used for light
Setting it tonull disables lighting.

public final void setTexture(Texture texture)
public final Texture getTexture()

The Texture object specifies the desired texture map and texture parameters
ting it to null disables texture mapping.

public final void setTextureAttributes(TextureAttributes
textureAttributes)

public final TextureAttributes getTextureAttributes()

These methods set and retrieve the TextureAttributes object. Setting it tonull

results in default attribute use.

public final void setColoringAttributes(ColoringAttributes
coloringAttributes)

public final ColoringAttributes getColoringAttributes()

These methods set and retrieve the ColoringAttributes object. Setting it tonull

results in default attribute use.

public final void setTransparencyAttributes(
TransparencyAttributes transparencyAttributes)

public final TransparencyAttributes getTransparencyAttributes()
111Version 1.1.2, June 1999

7.1.1 Appearance Object NODE COMPONENT OBJECTS

112

it to

leaf
These methods set and retrieve the TransparencyAttributes object. Setting
null results in default attribute use.

public final void setRenderingAttributes(RenderingAttributes
renderingAttributes)

public final RenderingAttributes getRenderingAttributes()

These methods set and retrieve the RenderingAttributes object. Setting it tonull

results in default attribute use.

public final void setPolygonAttributes(PolygonAttributes
polygonAttributes)

public final PolygonAttributes getPolygonAttributes()

These methods set and retrieve the PolygonAttributes object. Setting it tonull

results in default attribute use.

public final void setLineAttributes(LineAttributes lineAttributes)
public final LineAttributes getLineAttributes()

These methods set and retrieve the LineAttributes object. Setting it tonull

results in default attribute use.

public final void setPointAttributes(PointAttributes
pointAttributes)

public final PointAttributes getPointAttributes()

These methods set and retrieve the PointAttributes object. Setting it tonull

results in default attribute use.

public final void setTexCoordGeneration(TexCoordGeneration
texCoordGeneration)

public final TexCoordGeneration getTexCoordGeneration()

These methods set and retrieve the TexCoordGeneration object. Setting it tonull

disables texture coordinate generation.

public NodeComponent cloneNodeComponent()

This method creates a new Appearance object. The method is called from a
node’sduplicateNode method.

public void duplicateNodeComponent(NodeComponent originalNode)

This method copies the information found inoriginalNode to the current node.
This routine is called as part of thecloneTree operation.
Java 3D API Specification

NODE COMPONENT OBJECTS ColoringAttributes Object7.1.2

and

es.

om-
rial

om-
7.1.2 ColoringAttributes Object

The ColoringAttributes object defines attributes that apply to color mapping.

Constants

public static final int ALLOW_COLOR_READ
public static final int ALLOW_COLOR_WRITE
public static final int ALLOW_SHADE_MODEL_READ
public static final int ALLOW_SHADE_MODEL_WRITE

These flags, when enabled using thesetCapability method, allow an applica-
tion to invoke methods that respectively read and write its color component
shade model component information.

Constructors

public ColoringAttributes()

Constructs a ColoringAttributes node with default parameters:

public ColoringAttributes(Color3f color, int shadeModel)
public ColoringAttributes(float red, float green, float blue,

int shadeModel)

These constructors create a ColoringAttributes object with the specified valu

Methods

public final void setColor(Color3f color)
public final void setColor(float r, float g, float b)
public final void getColor(Color3f color)

These methods set and retrieve the intrinsic color of this ColoringAttributes c
ponent object. This color is used when lighting is disabled or when the Mate
is null.

public final void setShadeModel(int shadeModel)
public final int getShadeModel()

These methods set and retrieve the shade model for this ColoringAttributes c
ponent object. The shade model is one of the following:

Parameter Default Value

color white (1,1,1)

shadeModel SHADE_GOURAUD
113Version 1.1.2, June 1999

7.1.3 LineAttributes Object NODE COMPONENT OBJECTS

114

g.

ex

rom

or-

ght
• FASTEST: Uses the fastest available method for shading.

• NICEST: Uses the nicest (highest quality) available method for shadin

• SHADE_FLAT: Does not interpolate color across the primitive.

• SHADE_GOURAUD: Smoothly interpolates the color at each vert
across the primitive.

public NodeComponent cloneNodeComponent()

This method creates a new ColoringAttributes object. This method is called f
a leaf node’sduplicateNode method.

public void duplicateNodeComponent(NodeComponent originalNode)

This method copies the information found inoriginalNode to the current node.
This method is called as part of thecloneTree operation.

7.1.3 LineAttributes Object

The LineAttributes object defines attributes that apply to line primitives.

Constants

The LineAttributes object specifies the following variables.

public static final int ALLOW_WIDTH_READ
public static final int ALLOW_WIDTH_WRITE
public static final int ALLOW_PATTERN_READ
public static final int ALLOW_PATTERN_WRITE
public static final int ALLOW_ANTIALIASING_READ
public static final int ALLOW_ANTIALIASING_WRITE

These flags, when enabled using thesetCapability method, allow an applica-
tion to invoke methods that read and write its individual component field inf
mation.

public static final int PATTERN_SOLID

Draws a solid line with no pattern.

public static final int PATTERN_DASH

Draws a dashed line. Ideally, this will be drawn with a repeating pattern of ei
pixels on and eight pixels off.
Java 3D API Specification

NODE COMPONENT OBJECTS LineAttributes Object7.1.3

ne

ern

rn,

Lin-

At-
public static final int PATTERN_DOT

Draws a dotted line. Ideally, this will be drawn with a repeating pattern of o
pixel on and seven pixels off.

public static final int PATTERN_DASH_DOT

Draws a dashed-dotted line. Ideally, this will be drawn with a repeating patt
of seven pixels on, four pixels off, one pixel on, and four pixels off.

Constructors

public LineAttributes()

Constructs a LineAttributes object with default parameters:

public LineAttributes(float lineWidth, int linePattern,
boolean lineAntialiasing)

Constructs a LineAttributes object with specified values of line width, patte
and whether antialiasing is enabled or disabled.

Methods

public final void setLineWidth(float lineWidth)
public final float getLineWidth()

These methods respectively set and retrieve the line width, in pixels, for this
eAttributes component object.

public final void setLinePattern(int linePattern)
public final int getLinePattern()

These methods respectively set and retrieve the line pattern for this Line
tributes component object. ThelinePattern value describes the line pattern to
be used, which is one of the following:PATTERN_SOLID, PATTERN_DASH,
PATTERN_DOT, or PATTERN_DASH_DOT.

public final void setLineAntialiasingEnable(boolean state)
public final boolean getLineAntialiasingEnable()

Parameter Default Value

lineWidth 1

linePattern PATTERN_SOLID

lineAntialiasing false
115Version 1.1.2, June 1999

7.1.4 PointAttributes Object NODE COMPONENT OBJECTS

116

m-
g.

rom
on
he

or-
Theset method enables or disables line antialiasing for this LineAttributes co
ponent object. Theget method retrieves the state of the line antialiasing fla
The flag istrue if line antialiasing is enabled,false if line antialiasing is dis-
abled.

public NodeComponent cloneNodeComponent()
public void duplicateNodeComponent(NodeComponent originalNode)

The first method creates a new LineAttributes object; this method is called f
a leaf node’sduplicateNode method. The second method copies the informati
found in originalNode to the current node; this method is called as part of t
cloneTree operation.

7.1.4 PointAttributes Object

The PointAttributes object defines attributes that apply to point primitives.

Constants

The PointAttributes object specifies the following variables.

public final static int ALLOW_SIZE_READ
public final static int ALLOW_SIZE_WRITE
public final static int ALLOW_ANTIALIASING_READ
public final static int ALLOW_ANTIALIASING_WRITE

These flags, when enabled using thesetCapability method, allow an applica-
tion to invoke methods that read and write its individual component field inf
mation.

Constructors

public PointAttributes()

Constructs a PointAttributes object with default parameters:

public PointAttributes(float pointSize,
boolean pointAntialiasing)

Constructs a PointAttributes object with specified values.

Parameter Default Value

pointSize 1

pointAntialiasing false
Java 3D API Specification

NODE COMPONENT OBJECTS PolygonAttributes Object7.1.5

com-

tes
g

rom
on
he

es.

or-
Methods

public final void setPointSize(float pointSize)
public final float getPointSize()

These methods set and retrieve the point size, in pixels, for this Appearance
ponent object.

public final void setPointAntialiasingEnable(boolean state)
public final boolean getPointAntialiasingEnable()

The set method enables or disables point antialiasing for this PointAttribu
component object. Theget method retrieves the state of the point antialiasin
flag. The flag istrue if point antialiasing is enabled,false if point antialiasing
is disabled.

public NodeComponent cloneNodeComponent()
public void duplicateNodeComponent(NodeComponent originalNode)

The first method creates a new PointAttributes object; this method is called f
a leaf node’sduplicateNode method. The second method copies the informati
found in originalNode to the current node; this method is called as part of t
cloneTree operation.

7.1.5 PolygonAttributes Object

The PolygonAttributes object defines attributes that apply to polygon primitiv

Constants

The PolygonAttributes object specifies the following variables.

public final static int ALLOW_CULL_FACE_READ
public final static int ALLOW_CULL_FACE_WRITE
public final static int ALLOW_MODE_READ
public final static int ALLOW_MODE_WRITE
public final static int ALLOW_OFFSET_READ
public final static int ALLOW_OFFSET_WRITE
public static final int ALLOW_NORMAL_FLIP_READ
public static final int ALLOW_NORMAL_FLIP_WRITE

These flags, when enabled using thesetCapability method, allow an applica-
tion to invoke methods that read and write its individual component field inf
mation.
117Version 1.1.2, June 1999

7.1.5 PolygonAttributes Object NODE COMPONENT OBJECTS

118

tes

ear-
ing:

he

en

f

Constructors

public PolygonAttributes()

Constructs a PolygonAttributes object with default parameters:

public PolygonAttributes(int polygonMode, int cullFace,
float polygonOffset)

public PolygonAttributes(int polygonMode, int cullFace, float
polygonOffset, boolean backFaceNormalFlip)

These constructors create a new PolygonAttributes object.

Methods

public final void setCullFace(int cullFace)
public final int getCullFace()

These methods set and retrieve the face culling flag for this PolygonAttribu
component object. The face culling flag is one of the following:

• CULL_NONE: Performs no face culling.

• CULL_FRONT: Culls all front-facing polygons.

• CULL_BACK: Culls all back-facing polygons.

public final void setPolygonMode(int polygonMode)
public final int getPolygonMode()

These methods set and retrieve the polygon rasterization mode for this App
ance component object. The polygon rasterization mode is one of the follow

• POLYGON_POINT: Renders polygonal primitives as points drawn at t
vertices of the polygon.

• POLYGON_LINE: Renders polygonal primitives as lines drawn betwe
consecutive vertices of the polygon.

• POLYGON_FILL: Renders polygonal primitives by filling the interior o
the polygon.

Parameter Default Value

cullFace CULL_BACK

backFaceNormalFlipfalse

polygonMode POLYGON_FILL

polygonOffset 0.0
Java 3D API Specification

NODE COMPONENT OBJECTS RenderingAttributes Object7.1.6

set is

ates
ted)
ed,
als.

lled
r-
rt

om-

lue
public final void setPolygonOffset(float polygonOffset)
public final float getPolygonOffset()

These methods set and retrieve the polygon offset. This screen-space off
added to the final, device-coordinate Z value of polygon primitives.

public final void setBackFaceNormalFlip(boolean
backFaceNormalFlip)

public final boolean getBackFaceNormalFlip()

These methods set and retrieve the back-face normal flip flag. This flag indic
whether vertex normals of back-facing polygons should be flipped (nega
prior to lighting. When this flag is set to true and back-face culling is disabl
polygons are rendered as if the polygon had two sides with opposing norm
This feature is disabled by default.

public NodeComponent cloneNodeComponent()
public void duplicateNodeComponent(NodeComponent originalNode)

The first method creates a new PolygonAttributes object; this method is ca
from a leaf node’sduplicateNode method. The second method copies the info
mation found inoriginalNode to the current node; this method is called as pa
of thecloneTree operation.

7.1.6 RenderingAttributes Object

The RenderingAttributes object defines per-pixel rendering state attributes c
mon to all primitive types.

Constants

public static final int ALLOW_ALPHA_TEST_VALUE_READ
public static final int ALLOW_ALPHA_TEST_VALUE_WRITE
public static final int ALLOW_ALPHA_TEST_FUNCTION_READ
public static final int ALLOW_ALPHA_TEST_FUNCTION_WRITE
public static final int ALLOW_DEPTH_ENABLE_READ

These flags, when enabled using thesetCapability method, allow an applica-
tion to invoke methods that respectively read and write its individual test va
and function information.

Constructors

public RenderingAttributes()

Constructs a RenderingAttributes object with default parameters:
119Version 1.1.2, June 1999

7.1.6 RenderingAttributes Object NODE COMPONENT OBJECTS

120

gAt-
,

der-

func-

ion is

ha

lue.

he
public RenderingAttributes(boolean depthBufferEnable,
boolean depthBufferWriteEnable, float alphaTestValue,
int alphaTestFunction)

Constructs a RenderingAttributes object with specified values.

Methods

public final void setDepthBufferEnable(boolean state)
public final boolean getDepthBufferEnable()

These methods set and retrieve the depth buffer enable flag for this Renderin
tributes component object. The flag istrue if the depth buffer mode is enabled
false if disabled.

public final void setDepthBufferWriteEnable(boolean state)
public final boolean getDepthBufferWriteEnable()

These methods set and retrieve the depth buffer write enable flag for this Ren
Attributes component object. The flag istrue if the depth buffer mode is writ-
able,false if the depth buffer is read-only.

public final void setAlphaTestValue(float value)
public final float getAlphaTestValue()

These methods set and retrieve the alpha test value used by the alpha test
tion. This value is compared to the alpha value of each rendered pixel.

public final void setAlphaTestFunction(int function)
public final int getAlphaTestFunction()

These methods set and retrieve the alpha test function. The alpha test funct
one of the following:

• ALWAYS: Indicates pixels are always drawn irrespective of the alp
value. This effectively disables alpha testing.

• NEVER: Indicates pixels are never drawn irrespective of the alpha va

• EQUAL: Indicates pixels are drawn if the pixel alpha value is equal to t
alpha test value.

Parameter Default Value

depthBufferEnable true

depthBufferWriteEnable true

alphaTestFunction ALWAYS

alphaTestValue 0.0
Java 3D API Specification

NODE COMPONENT OBJECTS TextureAttributes Object7.1.7

ot

the

is

ter

a

lled
r-
rt

.

ent
• NOT_EQUAL: Indicates pixels are drawn if the pixel alpha value is n
equal to the alpha test value.

• LESS: Indicates pixels are drawn if the pixel alpha value is less than
alpha test value.

• LESS_OR_EQUAL: Indicates pixels are drawn if the pixel alpha value
less than or equal to the alpha test value.

• GREATER: Indicates pixels are drawn if the pixel alpha value is grea
than the alpha test value.

• GREATER_OR_EQUAL: Indicates pixels are drawn if the pixel alph
value is greater than or equal to the alpha test value.

public NodeComponent cloneNodeComponent()
public void duplicateNodeComponent(NodeComponent originalNode)

The first method creates a new RenderingAttributes object; this method is ca
from a leaf node’sduplicateNode method. The second method copies the info
mation found inoriginalNode to the current node; this method is called as pa
of thecloneTree operation.

7.1.7 TextureAttributes Object

The TextureAttributes object defines attributes that apply to texture mapping

Constants

public static final int ALLOW_MODE_READ
public static final int ALLOW_MODE_WRITE
public static final int ALLOW_BLEND_COLOR_READ
public static final int ALLOW_BLEND_COLOR_WRITE
public static final int ALLOW_TRANSFORM_READ
public static final int ALLOW_TRANSFORM_WRITE

These flags, when enabled using thesetCapability method, allow an applica-
tion to invoke methods that respectively read and write its individual compon
field information.

Constructors

public TextureAttributes()

Constructs a TextureAttributes object with default parameters:
121Version 1.1.2, June 1999

7.1.7 TextureAttributes Object NODE COMPONENT OBJECTS

122

ified

ture-

utes
ram-

form
this
public TextureAttributes(int textureMode, Transform3D transform,
Color4f textureBlendColor, int perspCorrectionMode)

These constructors create a new TextureAttributes object with the spec
parameters.

Methods

public final void setTextureMode(int textureMode)
public final int getTextureMode()

These methods set and retrieve the texture mode parameter for this Tex
Attributes component object. The texture mode is one of the following:

• MODULATE: Modulates the object color with the texture color.

• DECAL: Applies the texture color to the object as a decal.

• BLEND: Blends the texture blend color with the object color.

• REPLACE: Replaces the object color with the texture color.

public final void setTextureBlendColor(Color4f textureBlendColor)
public final void setTextureBlendColor(float r, float g, float b,

float a)
public final void getTextureBlendColor(Color4f textureBlendColor)

These methods set and retrieve the texture blend color for this TextureAttrib
component object. The texture blend color is used when the texture mode pa
eter isBLEND.

public final void setTextureTransform(Transform3D transform)
public final void getTextureTransform(Transform3D transform)

These methods set and retrieve the texture transform object used to trans
texture coordinates. A copy of the specified Transform3D object is stored in
TextureAttributes object.

public final void setPerspectiveCorrectionMode(int mode)
public final int getPerspectiveCorrectionMode()

Parameter Default Value

textureMode REPLACE

blendColor black (0,0,0,0)

transform null

perspCorrectionMode NICEST
Java 3D API Specification

NODE COMPONENT OBJECTS TransparencyAttributes Object7.1.8

d for
e is

ure

ing

lled
r-
rt

par-

ent
These methods set and retrieve the perspective correction mode to be use
color and texture coordinate interpolation. The perspective correction mod
one of the following:

• NICEST: Uses the nicest (highest quality) available method for text
mapping perspective correction.

• FASTEST: Uses the fastest available method for texture mapp
perspective correction.

public NodeComponent cloneNodeComponent()
public void duplicateNodeComponent(NodeComponent originalNode)

The first method creates a new TextureAttributes object; this method is ca
from a leaf node’sduplicateNode method. The second method copies the info
mation found inoriginalNode to the current node; this method is called as pa
of thecloneTree operation.

7.1.8 TransparencyAttributes Object

The TransparencyAttributes object defines all attributes affecting the trans
ency of the object.

Constants

public static final int ALLOW_MODE_READ
public static final int ALLOW_MODE_WRITE
public static final int ALLOW_VALUE_READ
public static final int ALLOW_VALUE_WRITE

These flags, when enabled using thesetCapability method, allow an applica-
tion to invoke methods that respectively read and write its individual compon
field information.

Constructors

public TransparencyAttributes()

Constructs a new TransparencyAttributes object with default values:

Parameter Default Value

transparencyMode NONE

transparencyValue 0.0
123Version 1.1.2, June 1999

7.1.9 Material Object NODE COMPONENT OBJECTS

124

com-

g an
is

eter.

of
y).

. The
1.0

d is
e
s

fines
an

t

public TransparencyAttributes(int tMode, float tVal)

Constructs a new TransparencyAttributes object with specified values.

Methods

public final void setTransparencyMode(int transparencyMode)
public final int getTransparencyMode()

These methods set and retrieve the transparency mode for this Appearance
ponent object. The transparency mode is one of the following:

• FASTEST: Uses the fastest available method for transparency.

• NICEST: Uses the nicest available method for transparency.

• SCREEN_DOOR: Uses screen-door transparency. This is done usin
on/off stipple pattern in which the percentage of transparent pixels
approximately equal to the value specified by the transparency param

• BLENDED: Uses alpha blended transparency. A blend equation
(alpha*src + (1 – alpha)*dst) is used, where alpha is (1 – transparenc

• NONE: No transparency; opaque object.

public final void setTransparency(float transparency)
public final float getTransparency()

These methods set and retrieve this Appearance object’s transparency value
transparency value is in the range [0.0, 1.0], with 0.0 being fully opaque and
being fully transparent.

public NodeComponent cloneNodeComponent()
public void duplicateNodeComponent(NodeComponent originalNode)

The first method creates a new TransparencyAttributes object; this metho
called from a leaf node’sduplicateNode method. The second method copies th
information found inoriginalNode to the current node; this method is called a
part of thecloneTree operation.

7.1.9 Material Object

The Material object is a component object of an Appearance object that de
the material properties used when lighting is enabled. If the Material object in
Appearance object isnull, lighting is disabled for all nodes that use tha
Appearance object.
Java 3D API Specification

NODE COMPONENT OBJECTS Material Object 7.1.9

ent

tes.

ters.
ess
Constants

The Material object defines two flags.

public static final int ALLOW_COMPONENT_READ
public static final int ALLOW_COMPONENT_WRITE

These flags, when enabled using thesetCapability method, allow an applica-
tion to invoke methods that respectively read and write its individual compon
field information.

Constructors

The Material object has the following constructors.

public Material()

Constructs and initializes a Material object using default values for all attribu
The default values are as follows:

public Material(Color3f ambientColor, Color3f emissiveColor,
Color3f diffuseColor, Color3f specularColor,
float shininess)

Constructs and initializes a new Material object using the specified parame
The ambient color, emissive color, diffuse color, specular color, and shinin
parameters are specified.

Methods

The Material object has the following methods.

public final void setAmbientColor(Color3f color)
public final void setAmbientColor(float r, float g, float b)
public final void getAmbientColor(Color3f color)

Parameter Default Value

lightingEnable true

ambientColor (0.2, 0.2, 0.2)

emissiveColor (0.0, 0.0, 0.0)

diffuseColor (1.0, 1.0, 1.0)

specularColor (1.0, 1.0, 1.0)

shininess 64
125Version 1.1.2, June 1999

7.1.9 Material Object NODE COMPONENT OBJECTS

126

ient

his

ght
e is

ss. It
iny

leaf
on
he
This parameter specifies this material’s ambient color, that is, how much amb
light is reflected by the material’s surface.

public final void setEmissiveColor(Color3f color)
public final void setEmissiveColor(float r, float g, float b)
public final void getEmissiveColor(Color3f color)

This parameter specifies the color of light, if any, that the material emits. T
color is added to the color produced by applying the lighting equation.

public final void setDiffuseColor(Color3f color)
public final void setDiffuseColor(float r, float g, float b)
public final void setDiffuseColor(float r, float g, float b,

float a)
public final void getDiffuseColor(Color3f color)

This parameter specifies the color of the material when illuminated by a li
source. In addition to the diffuse color (red, green, and blue), the alpha valu
used to specify transparency such that transparency = (1 – alpha).

public final void setSpecularColor(Color3f color)
public final void setSpecularColor(float r, float g, float b)
public final void getSpecularColor(Color3f color)

This parameter specifies the specular highlight color of the material.

public final void setShininess(float shininess)
public final float getShininess()

This parameter specifies a material specular scattering exponent, or shinine
takes a floating-point number in the range [1.0, 128.0], with 1.0 being not sh
and 128.0 being very shiny.

public final void setLightingEnable(boolean state)
public final boolean getLightingEnable()

These methods set and retrieve the current state of the lighting enable flag (true

or false) for this Appearance component object.

public NodeComponent cloneNodeComponent()
public void duplicateNodeComponent(NodeComponent originalNode)

The first method creates a new Material object; this method is called from a
node’s duplicateNode method. The second method copies the informati
found in originalNode to the current node; this method is called as part of t
cloneTree operation.
Java 3D API Specification

NODE COMPONENT OBJECTS Texture Object7.1.10

ene

fines
ture

ll
ss. As
or a

po-

The
public String toString()

This method returns a string representation of this Material’s values. If the sc
graph is live, only those values with their capability bit set will be displayed.

7.1.10 Texture Object

The Texture object is a component object of an Appearance object that de
the texture properties used when texture mapping is enabled. If the Tex
object in an Appearance object isnull, then texture mapping is disabled for a
nodes that use that Appearance object. The Texture object is an abstract cla
such, all texture objects must be created as either a Texture2D object
Texture3D object.

Constants

The Texture object defines the following flags:

public static final int ALLOW_ENABLE_READ
public static final int ALLOW_ENABLE_WRITE
public static final int ALLOW_BOUNDARY_MODE_READ
public static final int ALLOW_FILTER_READ
public static final int ALLOW_IMAGE_READ
public static final int ALLOW_MIPMAP_MODE_READ
public static final int ALLOW_BOUNDARY_COLOR_READ

These flags, when enabled using thesetCapability method, allow an applica-
tion to invoke methods that read, and in some cases write, its individual com
nent field information.

Constructors

The Texture object has the following constructor.

public Texture()

This constructor is not very useful as the default width and height are 0.
other default values are as follows:

Parameter Default Value

enableFlag true

mipmapMode BASE_LEVEL

format RGB

boundaryModeS WRAP
127Version 1.1.2, June 1999

7.1.10 Texture Object NODE COMPONENT OBJECTS

128

vel

a

and
public Texture(int mipmapMode, int format, int width, int height)

Constructs an empty Texture object with specifiedmipmapMode format, width,
and height. Image at level 0 must be set by the application using thesetImage

method. ThemipmapMode can be one of the following:

• BASE_LEVEL: Indicates that this Texture object only has a base-le
image. If multiple levels are needed, they will be implicitly computed.

• MULTI_LEVEL_MIPMAP: Indicates that this Texture object has
multiple images—one for each mipmap level (that is, log2(max(W,H)) + 1
separate images). IfmipmapMode is set toMULTI_LEVEL_MIPMAP, images
for all levels must be set.

Theformat is the data of textures saved in this object. Theformat can be one of
the following:

• INTENSITY: Specifies Texture contains only intensity values.

• LUMINANCE: Specifies Texture contains only luminance values.

• ALPHA: Specifies Texture contains only alpha values.

• LUMINANCE_ALPHA: Specifies Texture contains luminance and alph
values.

• RGB: Specifies Texture contains red, green, and blue color values.

• RGBA: Specifies Texture contains red, green, and blue color values,
an alpha value.

Methods

The Texture object has the following methods.

public final void setBoundaryModeS(int boundaryModeS)
public final int getBoundaryModeS()
public final void setBoundaryModeT(int boundaryModeT)
public final int getBoundaryModeT()

boundaryModeT WRAP

minificationFilter BASE_LEVEL_POINT

magnificationFilter BASE_LEVEL_POINT

boundaryColor black (0,0,0,0)

textureImage null

Parameter Default Value
Java 3D API Specification

NODE COMPONENT OBJECTS Texture Object7.1.10

n this

ant

are
re

ed
mini-

y.

re

r

ap.

sed
texel.

y.

re

r

These parameters specify the boundary mode for the S and T coordinates i
Texture object. The boundary mode is as follows:

• CLAMP: Clamps texture coordinates to be in the range [0, 1]. A const
boundary color is used for U,V values that fall outside this range.

• WRAP: Repeats the texture by wrapping texture coordinates that
outside the range [0, 1]. Only the fractional portion of the textu
coordinates is used; the integer portion is discarded.

public final void setMinFilter(int minFilter)
public final int getMinFilter()

This parameter specifies the minification filter function. This function is us
when the pixel being rendered maps to an area greater than one texel. The
fication filter is one of the following:

• FASTEST: Uses the fastest available method for processing geometr

• NICEST: Uses the nicest available method for processing geometry.

• BASE_LEVEL_POINT: Selects the nearest texel in the level 0 textu
map.

• BASE_LEVEL_LINEAR: Performs a bilinear interpolation on the fou
nearest texels in the level 0 texture map.

• MULTI_LEVEL_POINT: Selects the nearest texel in the nearest mipm

• MULTI_LEVEL_LINEAR: Performs trilinear interpolation of texels
between four texels each from the two nearest mipmap levels.

public final void setMagFilter(int magFilter)
public final int getMagFilter()

This parameter specifies the magnification filter function. This function is u
when the pixel being rendered maps to an area less than or equal to one
The value is one of the following:

• FASTEST: Uses the fastest available method for processing geometr

• NICEST: Uses the nicest available method for processing geometry.

• BASE_LEVEL_POINT: Selects the nearest texel in the level 0 textu
map.

• BASE_LEVEL_LINEAR: Performs a bilinear interpolation on the fou
nearest texels in the level 0 texture map.
129Version 1.1.2, June 1999

7.1.11 Texture2D Object NODE COMPONENT OBJECTS

130

base

The

ture

this

xture

The
public final void setImage(int level, ImageComponent image)
public final ImageComponent getImage(int level)

These methods set and retrieve a specified mipmap level. Level 0 is the
level.

public final void setBoundaryColor(Color4f boundaryColor)
public final void setBoundaryColor(float r, float g, float b,

float a)
public final void getBoundaryColor(Color4f boundaryColor)

This parameter specifies the texture boundary color for this Texture object.
texture boundary color is used whenboundaryModeS or boundaryModeT is set to
CLAMP.

public final void setEnable(boolean state)
public final boolean getEnable()

These methods set and retrieve the state of texture mapping for this Tex
object. A value oftrue means that texture mapping is enabled,false means that
texture mapping is disabled.

public final void setMipMapMode(int mipmapMode)
public final int getMipMapMode()

These methods set and retrieve the mipmap mode for texture mapping for
Texture object. The mipmap mode is eitherBASE_LEVEL or MULTI_LEVEL_MIP_
MAP.

7.1.11 Texture2D Object

The Texture2D object is a subclass of the Texture class. It extends the Te
class by adding a constructor for setting a 2D texture image.

Constructors

The Texture2D object has the following constructors.

public Texture2D()

This constructor is not very useful as the default width and height are 0.

public Texture2D(int mipmapMode, int format, int width, int height)

Constructs and initializes a Texture2D object with the specified attributes.
mipmapMode parameter is eitherBASE_LEVEL or MULTI_LEVEL_MIPMAP. Thefor-
Java 3D API Specification

NODE COMPONENT OBJECTS Texture3D Object7.1.12

m a
on
he

xture
tting

The
mat parameter is one of the following:INTENSITY, LUMINANCE, ALPHA, LUMI-

NANCE_ALPHA, RGB, or RGBA.

Methods

public NodeComponent cloneNodeComponent()
public void duplicateNodeComponent(NodeComponent originalNode)

The first method creates a new Texture2D object; this method is called fro
leaf node’sduplicateNode method. The second method copies the informati
found in originalNode to the current node; this method is called as part of t
cloneTree operation.

7.1.12 Texture3D Object

The Texture3D object is a subclass of the Texture class. It extends the Te
class by adding a third texture coordinate and by adding a constructor for se
a 3D texture image.

Constructors

The Texture3D object has the following constructors.

public Texture3D()

Constructs a Texture3D object with default parameters.

public Texture3D(int mipmapMode, int format, int width, int height,
int depth)

Constructs and initializes a Texture3D object using the specified attributes.
mipmapMode parameter is eitherBASE_LEVEL or MULTI_LEVEL_MIPMAP. Thefor-
mat parameter is one ofINTENSITY, LUMINANCE, ALPHA, LUMINANCE_ALPHA, RGB,
or RGBA. The default value for a Texture3D object is as follows:

Parameter Default Value

depth 0

boundaryModeR WRAP

Parameter Default Value

boundaryModeR WRAP
131Version 1.1.2, June 1999

7.1.13 TexCoordGeneration Object NODE COMPONENT OBJECTS

132

ture

ant

are
re

m a
on
he

bject
led. If

po-
Methods

The Texture3D object has the following methods.

public final void setBoundaryModeR(int boundaryModeR)
public final int getBoundaryModeR()

This parameter specifies the boundary mode for the R coordinate in this Tex
object. The boundary mode is as follows:

• CLAMP: Clamps texture coordinates to be in the range [0, 1]. A const
boundary color is used for R values that fall outside this range.

• WRAP: Repeats the texture by wrapping texture coordinates that
outside the range [0, 1]. Only the fractional portion of the textu
coordinates is used; the integer portion is discarded.

public NodeComponent cloneNodeComponent()
public void duplicateNodeComponent(NodeComponent originalNode)

The first method creates a new Texture3D object; this method is called fro
leaf node’sduplicateNode method. The second method copies the informati
found in originalNode to the current node; this method is called as part of t
cloneTree operation.

7.1.13 TexCoordGeneration Object

The TexCoordGeneration object is a component object of an Appearance o
that defines the parameters used when texture coordinate generation is enab
the TexCoordGeneration object in an Appearance object isnull, texture coordi-
nate generation is disabled for all nodes that use that Appearance object.

Constants

The TexCoordGeneration object specifies the following variables.

public final static int ALLOW_ENABLE_READ
public final static int ALLOW_ENABLE_WRITE
public final static int ALLOW_FORMAT_READ
public final static int ALLOW_MODE_READ
public final static int ALLOW_PLANE_READ

These flags, when enabled using thesetCapability method, allow an applica-
tion to invoke methods that read, and in some cases write, its individual com
nent field information.
Java 3D API Specification

NODE COMPONENT OBJECTS TexCoordGeneration Object7.1.13

ordi-

the
public final static int OBJECT_LINEAR

Generates texture coordinates as a linear function in object coordinates.

public final static int EYE_LINEAR

Generates texture coordinates as a linear function in eye coordinates.

public final static int SPHERE_MAP

Generates texture coordinates using a spherical reflection mapping in eye co
nates.

public final static int TEXTURE_COORDINATE_2

Generates 2D texture coordinates (S and T).

public final static int TEXTURE_COORDINATE_3

Generates 3D texture coordinates (S, T, and R).

Constructors

The TexGen object has the following constructors.

public TexCoordGeneration()

Constructs a TexCoordGeneration object with default parameters:

public TexCoordGeneration(int genMode, int format)
public TexCoordGeneration(int genMode, int format,

Vector4f planeS)
public TexCoordGeneration(int genMode, int format,

Vector4f planeS, Vector4f planeT)
public TexCoordGeneration(int genMode, int format,

Vector4f planeS, Vector4f planeT, Vector4f planeR)

These constructors construct a TexCoordGeneration object by initializing

Parameter Default Value

enableFlag true

textureGenerationMode OBJECT_LINEAR

format TEXTURE_COORDINATE_2

planeS (1,0,0,0)

planeT (0,1,0,0)

planeR (0,0,0,0)
133Version 1.1.2, June 1999

7.1.13 TexCoordGeneration Object NODE COMPONENT OBJECTS

134

ed in

pear-

coor-

ue is

ion is
specified fields. Default values are used for those state variables not specifi
the constructor. The parameters are as follows:

• genMode: Texture generation mode. One ofOBJECT_LINEAR, EYE_LINEAR,
or SPHERE_MAP.

• format: Texture format (2D or 3D). EitherTEXTURE_COORDINATE_2 or
TEXTURE_COORDINATE_3.

• planeS: Plane equation for the S coordinate.

• planeT: Plane equation for the T coordinate.

• planeR: Plane equation for the R coordinate.

Methods

The TexGen object has the following methods.

public final void setEnable(boolean state)
public final boolean getEnable()

This parameter enables or disables texture coordinate generation for this Ap
ance component object. The value istrue if texture coordinate generation is
enabled,false if texture coordinate generation is disabled.

public final void setFormat(int format)
public final int getFormat()

This parameter specifies the format, or dimension, of the generated texture
dinates. The format value is eitherTEXTURE_COORDINATE_2 or TEXTURE_COORD-
INATE_3.

public final void setGenMode(int genMode)
public final int getGenMode()

This parameter specifies the texture coordinate generation mode. The val
one ofOBJECT_LINEAR, EYE_LINEAR, or SPHERE_MAP.

public final void setPlaneS(Vector4f planeS)
public final void getPlaneS(Vector4f planeS)

This parameter specifies the S coordinate plane equation. This plane equat
used to generate the S coordinate inOBJECT_LINEAR and EYE_LINEAR texture
generation modes.

public final void setPlaneT(Vector4f planeT)
public final void getPlaneT(Vector4f planeT)
Java 3D API Specification

NODE COMPONENT OBJECTS MediaContainer Object7.1.14

ion is

ion is

alled
r-
rt

soci-
path
t will
This parameter specifies the T coordinate plane equation. This plane equat
used to generate the T coordinate inOBJECT_LINEAR and EYE_LINEAR texture
generation modes.

public final void setPlaneR(Vector4f planeR)
public final void getPlaneR(Vector4f planeR)

This parameter specifies the R coordinate plane equation. This plane equat
used to generate the R coordinate inOBJECT_LINEAR and EYE_LINEAR texture
generation modes.

public NodeComponent cloneNodeComponent()
public void duplicateNodeComponent(NodeComponent originalNode)

The first method creates a new TexCoordGeneration object; this method is c
from a leaf node’sduplicateNode method. The second method copies the info
mation found inoriginalNode to the current node; this method is called as pa
of thecloneTree operation.

7.1.14 MediaContainer Object

The MediaContainer object defines all sound data: cached state flag and as
ated sound data. Currently, this references the media in the form of a URL
to the sound data. In a future release of Java 3D, the MediaContainer objec
include references to Java Media Framework objects.

Constants

The MediaContainer object has the following flags.

public static final int ALLOW_CACHE_READ
public static final int ALLOW_CACHE_WRITE
public static final int ALLOW_URL_READ
public static final int ALLOW_URL_WRITE

These flags, when enabled using thesetCapability method, allow an applica-
tion to invoke methods that read or write its cached flag and its URL string.

Constructors

The MediaContainer object has the following constructors.
135Version 1.1.2, June 1999

7.1.15 AuralAttributes Object NODE COMPONENT OBJECTS

136

ing

path

rence

with

that
hese
trol-
ler

mal
roxi-
this
public MediaContainer()

Constructs and initializes a new MediaContainer object using the follow
default values.

public MediaContainer(String path)
public MediaContainer(URL url)

Constructs and initializes a new MediaContainer object using the specified
and forcing the cache data flag totrue.

Methods

The Sound object has the following methods.

public final void setCacheEnable(boolean flag)
public final boolean getCacheEnable()

This parameter specifies whether this component contains a noncached refe
to the sound data or explicit cached sound data.

public final void setURL(String path)
public final void setURL(URL url)
public final String getURL()

This parameter specifies the string path (URL) of the sound data associated
this component.

7.1.15 AuralAttributes Object

The AuralAttributes object is a component object of a Soundscape node
defines environmental audio parameters that affect sound rendering. T
attributes include gain scale factor, atmospheric rolloff, and parameters con
ling reverberation, distance frequency filtering, and velocity-activated Dopp
effect.

7.1.15.1 Attribute Gain Rolloff

The rolloff scale factor is used to model atmospheric changes from the nor
speed of sound. The base value, 0.344 meters per millisecond used to app
mate the speed of sound through air at room temperature, is multiplied by

Parameter Default Value

cacheData true

URL null
Java 3D API Specification

NODE COMPONENT OBJECTS AuralAttributes Object7.1.15

cula-
al-
t the

s to

it
.

r

is

s the

rox-
ver-
the
ents
full

ic-
lcu-
as the

iter-
effi-
scale factor whenever the speed of sound is applied during spatialization cal
tions. Valid values are≥ 0.0. Values > 1.0 increase the speed of sound, while v
ues < 1.0 decrease its speed. A value of zero makes the sound silent (bu
sound continues to play).

7.1.15.2 Reverberation

Within Java 3D’s simple model for auralization, there are three component
sound reverberation for a particular listening space:

• Delay time: Approximates the time from the start of a sound until
reaches the listener after reflecting once off the surfaces in the region

• Reflection coefficient: Attenuates the reverberated sound uniformly (fo
all frequencies) as it bounces off surfaces.

• Feedback loop: Controls the maximum number of times a sound
reflected off the surfaces.

None of these parameters are affected by sound position. Figure 7-2 show
interaction of these parameters.

Figure 7-2 Sound Reverberation Parameters

The reflection coefficient for reverberation is a single scale factor used to app
imate the overall reflective or absorptive characteristics of the surfaces in a re
beration region in which the listener is located. This scale factor is applied to
sound’s amplitude regardless of the sound’s position. A value of 1.0 repres
complete (unattenuated) sound reflection, while a value of 0.0 represents
absorption (reverberation is disabled).

The reverberation delay time is set either explicitly (in milliseconds), or impl
itly by supplying an additional bounds volume (so the delay time can be ca
lated). The bounds of the reverberation space do not have to be the same
application region of the Soundscape node using this object.

The reverberation order defines the number of reverberation (feedback) loop
ations to be executed while a sound is played. As long as the reflection co

SoundSource Delay
Reflection

Feedback Loop

Coefficient
137Version 1.1.2, June 1999

7.1.15 AuralAttributes Object NODE COMPONENT OBJECTS

138

rally)
eates

the

ound
fre-
ased

f fre-
of

nds

cal
eters
en

-

cient is small enough, the reverberated sound decreases (as it would natu
each successive iteration. A value of 0 disables reverberation, a value of 1 cr
a single echo (given that the reverb delay is long enough), and a value of−1 sig-
nifies that reverberation is to loop until it reaches an amplitude ofeffective zero
(>60 dB or 1/1000 of sound amplitude). All other positive values are used as
number of loop iterations.

7.1.15.3 Doppler Effect

Doppler effect can be used to create a greater sense of movement of s
sources and can help unambiguate front-to-back localization errors. The
quency of sound waves emanating from the source are raised or lowered b
on the speed of the source in relation to the listener, and severalAuralAt-

tributes parameters.

The frequency scale factor can be used to increase or reduce the change o
quency associated with the normal Doppler calculation, or to shift the pitch
the sound directly if Doppler-effect is disabled. Values must be > 0.0 for sou
to be heard. If the value is 0.0, sounds affected by thisAuralAttributes object
are paused.

To simulate Doppler effect, the relative velocity (change in distance in the lo
coordinate system between the sound source and the listener over time, in m
per second) is calculated. This calculated velocity is multiplied by the giv
velocity scale factor. Values must be≥ 0.0. If the scale factor value is 0.0, Dop
pler effect is not calculated or applied to the sound.

Constants

The AuralAttributes object has the following flags.

public static final int ALLOW_ATTRIBUTE_GAIN_READ
public static final int ALLOW_ATTRIBUTE_GAIN_WRITE
public static final int ALLOW_ROLLOFF_READ
public static final int ALLOW_ROLLOFF_WRITE
public static final int ALLOW_REFLECTION_COEFFICIENT_READ
public static final int ALLOW_REFLECTION_COEFFICIENT_WRITE
public static final int ALLOW_REVERB_DELAY_READ
public static final int ALLOW_REVERB_DELAY_WRITE
public static final int ALLOW_REVERB_ORDER_READ
public static final int ALLOW_REVERB_ORDER_WRITE
public static final int ALLOW_DISTANCE_FILTER_READ
public static final int ALLOW_DISTANCE_FILTER_WRITE
public static final int ALLOW_FREQUENCY_SCALE_FACTOR_READ
Java 3D API Specification

NODE COMPONENT OBJECTS AuralAttributes Object7.1.15

ng
public static final int ALLOW_FREQUENCY_SCALE_FACTOR_WRITE
public static final int ALLOW_VELOCITY_SCALE_FACTOR_READ
public static final int ALLOW_VELOCITY_SCALE_FACTOR_WRITE

These flags, when enabled using thesetCapability method, allow an applica-
tion to invoke methods that read or write the associated parameters.

The following AuralAttributes flags are deprecated:

public static final int ALLOW_DOPPLER_SCALE_FACTOR_READ

UseALLOW_FREQUENCY_SCALE_FACTOR_READ instead.

public static final int ALLOW_DOPPLER_SCALE_FACTOR_WRITE

UseALLOW_FREQUENCY_SCALE_FACTOR_WRITE instead.

public static final int ALLOW_DOPPLER_VELOCITY_READ

UseALLOW_VELOCITY_SCALE_FACTOR_READ instead.

public static final int ALLOW_DOPPLER_VELOCITY_WRITE

UseALLOW_VELOCITY_SCALE_FACTOR_WRITE instead.

Constructors

The AuralAttributes object has the following constructors.

public AuralAttributes()

Constructs and initializes a new AuralAttributes object using the followi
default values:

Parameter Default Value

attributeGain 1.0

rolloff 1.0

reflectionCoeff 0.0

reverbDelay 0.0

reverbOrder 0

distanceFilter null (no filtering performed)

frequencyScaleFactor 1.0

velocityScaleFactor 1.0
139Version 1.1.2, June 1999

7.1.15 AuralAttributes Object NODE COMPONENT OBJECTS

140

me-

Valid

mal
d to
spa-

of
y).

aves
cti-
to

e of
und
ce

hile
public AuralAttributes(float gain, float rolloff,
float reflectionCoefficient, float reverbDelay,
int reverbOrder, Point2f distanceFilter[],
float frequencyScaleFactor, float velocityScaleFactor)

public AuralAttributes(float gain, float rolloff,
float reflectionCoefficient, float reverbDelay,
int reverbOrder, float distance[], float frequencyCutoff,
float frequencyScaleFactor, float velocityScaleFactor)

Construct and initialize a new AuralAttributes object using the specified para
ters.

Methods

The AuralAttributes object has the following methods.

public final void setAttributeGain(float gain)
public final float getAttributeGain()

This parameter specifies an amplitude scale factor applied to the sound.
values are≥ 0.0.

public final void setRolloff(float rolloff)
public final float getRolloff()

The rolloff scale factor is used to model atmospheric changes from the nor
speed of sound. The base value of 0.344 meters per millisecond is use
approximate the speed factor whenever the speed of sound is applied during
tialization calculations. Valid values are≥ 0.0. Values > 1.0 increase the speed
sound; a value of 0.0 makes the sound silent (but the sound continues to pla

public final void setReflectionCoefficient(float coefficient)
public final float getReflectionCoefficient()

This parameter specifies an average amplitude scale factor for all sound w
(independent of their frequencies) as they reflect off all surfaces within the a
vation region in which the listener is located. There is currently no method
assign different reflective audio properties to individual surfaces. The rang
values is 0.0 to 1.0. A value of 0.0 represents a fully absorptive surface (no so
waves reflect off), while a value of 1.0 represents a fully reflective surfa
(amplitudes of sound waves reflecting off surfaces are not decreased).

public final void setReverbDelay(float reverbDelay)
public final void setReverbDelay(Bounds reverbVolume)
public final float getReverbDelay()

This parameter specifies the delay time between each order of reflection w
Java 3D API Specification

NODE COMPONENT OBJECTS AuralAttributes Object7.1.15

nds
new

ded

ound

not
r of
-
lues.

list.
plied
m in

ance
rical
the

is
und

of
reverberation is being rendered. In the first form ofsetReverbDelay, an explicit
delay time is given in milliseconds. In the second form, a reverberation bou
volume is specified, and then the delay time is calculated, becoming the
reverb time delay. A value of 0.0 for delay time disables reverberation.

public final void setReverbOrder(int reverbOrder)
public final int getReverbOrder()

This parameter specifies the maximum number of times reflections will be ad
to the reverberation being calculated. When the amplitude of then-th reflection
reaches effective zero, no further reverberations need be added to the s
image. A value of 0 disables reverberation. A value of−1 specifies that the rever-
beration calculations will loop indefinitely, until then-th reflection term reaches
effective zero.

public final void setDistanceFilter(Point2f attenuation[])
public final void setDistanceFilter(float distance[],

float frequencyCutoff[])
public final int getDistanceFilterLength()
public final void getDistanceFilter(Point2f attenuation[])
public final void getDistanceFilter(float distance[],

float frequencyCutoff[])

This parameter specifies a (distance, filter) attenuation pairs array. If this is
set, no distance filtering is performed (equivalent to using a distance filte
Sound.NO_FILTER for all distances). Currently, this filter is a low-pass cutoff fre
quency. This array of pairs defines a piecewise linear slope for a range of va
This attenuation array is similar to the PointSound node’sdistanceAttenuation

pair array, except that frequency values are paired with distances in this
Using these pairs, distance-based low-pass frequency filtering can be ap
during sound rendering. Distances, specified in the local coordinate syste
meters, must be > 0. Frequencies (in Hz) must be > 0.

If the distance from the listener to the sound source is less than the first dist
in the array, the first filter is applied to the sound source. This creates a sphe
region around the listener within which a sound is uniformly attenuated by
first filter in the array. If the distance from the listener to the sound source
greater than the last distance in the array, the last filter is applied to the so
source.

The first form ofsetDistanceFilter takes these pairs of values as an array
Point2f. The second form accepts two separate arrays for these values. Thedis-

tance and frequencyCutoff arrays should be of the same length. If thefre-

quencyCutoff array length is greater than thedistance array length, the
141Version 1.1.2, June 1999

7.1.15 AuralAttributes Object NODE COMPONENT OBJECTS

142

to

r
t

,

t of
Fre-
for
ng,

uring
used
this
ound
frequencyCutoff array elements beyond the length of thedistance array are
ignored. If thefrequencyCutoff array is shorter than thedistance array, the
last frequencyCutoff array value is repeated to fill an array of length equal
thedistance array.

The getDistanceFilterLength method returns the length of the distance filte
arrays. Arrays passed intogetDistanceFilter methods should all be at leas
this size.

There are two methods forgetDistanceFilter, one returning an array of points
the other returning separate arrays for each attenuation component.

Distance elements in this array of pairs are a monotonically increasing se
floating-point numbers measured from the location of the sound source.
quency cutoff elements in this list of pairs can be any positive float. While
most applications this list of values will usually be monotonically decreasi
they do not have to be.

public final void setDopplerScaleFactor(float
frequencyScaleFactor)

public final float getDopplerScaleFactor()

These methods are deprecated; usesetFrequencyScaleFactor and getFre-

quencyScaleFactor instead.

public final void setFrequencyScaleFactor(float
frequencyScaleFactor)

public final float getFrequencyScaleFactor()

This parameter specifies a scale factor applied to the frequency of sound d
rendering playback. If the Doppler effect is disabled, this scale factor can be
to increase or decrease the original pitch of the sound. During rendering,
scale factor expands or contracts the usual frequency shift applied to the s
source due to Doppler-effect calculations. Valid values are≥ 0.0; a value of 0.0
pauses the sound.

public final void setDopplerVelocity(float velocityScaleFactor)
public final float getDopplerVelocity()

These methods are deprecated; usesetVelocityScaleFactor andgetVeloci-

tyScaleFactor instead.

public final void setVelocityScaleFactor(float
velocityScaleFactor)

public final float getVelocityScaleFactor()
Java 3D API Specification

NODE COMPONENT OBJECTS ImageComponent Object7.1.16

nd’s
cu-
er-

city

. The
r 3D

does
age-
e

s are
lors
n be

2D
pixel
This parameter specifies a scale factor applied to therelative velocityof the
sound relative to the listener’s position and movement in relation to the sou
position and movement over time. This scale factor is multiplied by the cal
lated velocity portion of the Doppler-effect equation used during sound rend
ing. This allows the application to exaggerate or reduce the relative velo
calculated by the standard Doppler equation. Valid values are≥ 0.0. A value of
0.0 disables any Doppler calculation.

7.1.16 ImageComponent Object

The ImageComponent classes are used for texture and background images
ImageComponent object is an abstract class that is used to define 2D o
ImageComponent classes.

Note that all color fields are treated as unsigned values, even though Java
not directly support unsigned variables. This means, for example, that an Im
Component using a format ofFORMAT_RGB5 can represent red, green, and blu
values between 0 and 31, while an ImageComponent using a format ofFORMAT_

RGB8 can represent color values between 0 and 255. Even when byte value
used to create a BufferedImage with 8-bit color components, the resulting co
(bytes) are interpreted as if they were unsigned. Values greater than 127 ca
assigned to a byte variable using a type cast. For example:

byteVariable = (byte) intValue;// intValue can be > 127

If intValue is greater than 127, thenbyteVariable will be negative. The correct
value will be extracted when it is used (by masking off the upper bits).

Constants

The ImageComponent object has the following flags:

public static final int ALLOW_SIZE_READ
public static final int ALLOW_FORMAT_READ
public static final int ALLOW_IMAGE_READ

These flags, when enabled using thesetCapability method, allow an applica-
tion to invoke methods that read the associated parameters.

The ImageComponent object specifies the following variables, used to define
or 3D ImageComponent classes. These variables specify the format of the
data.
143Version 1.1.2, June 1999

7.1.16 ImageComponent Object NODE COMPONENT OBJECTS

144

red,

reen,

red,

reen,

reen,

reen,

reen,

reen,

nce
public final static int FORMAT_RGB

Specifies that each pixel contains three eight-bit channels, one each for
green, and blue. This is the same asFORMAT_RGB8.

public final static int FORMAT_RGBA

Specifies that each pixel contains four eight-bit channels, one each for red, g
blue, and alpha. This is the same asFORMAT_RGBA8.

public final static int FORMAT_RGB8

Specifies that each pixel contains three eight-bit channels, one each for
green, and blue. This is the same asFORMAT_RGB.

public final static int FORMAT_RGBA8

Specifies that each pixel contains four eight-bit channels, one each for red, g
blue, and alpha. This is the same asFORMAT_RGBA.

public final static int FORMAT_RGB5

Specifies that each pixel contains three five-bit channels, one each for red, g
and blue.

public final static int FORMAT_RGB5_A1

Specifies that each pixel contains three five-bit channels, one each for red, g
and blue, and a one-bit channel for alpha.

public final static int FORMAT_RGB4

Specifies that each pixel contains three four-bit channels, one each for red, g
and blue.

public final static int FORMAT_RGBA4

Specifies that each pixel contains four four-bit channels, one each for red, g
blue, and alpha.

public final static int FORMAT_LUM4_ALPHA4

Specifies that each pixel contains two four-bit channels, one each for lumina
and alpha.
Java 3D API Specification

NODE COMPONENT OBJECTS ImageComponent2D Object7.1.17

ance

and

used

nent

and

ject
public final static int FORMAT_LUM8_ALPHA8

Specifies that each pixel contains two eight-bit channels, one each for lumin
and alpha.

public static final int FORMAT_R3_G3_B2

Specifies that each pixel contains two three-bit channels, one each for red
green, and a two-bit channel for blue.

public static final int FORMAT_CHANNEL8

Specifies that each pixel contains one eight-bit channel. The channel can be
for only luminance, alpha, or intensity.

Constructors

The ImageComponent object defines the following constructor.

public ImageComponent(int format, int width, int height)

This constructor constructs and initializes a new ImageComponent object.

Methods

The ImageComponent object defines the following methods.

public final int getWidth()
public final int getHeight()
public final int getFormat()

These methods retrieve the width, height, and format of this image compo
object.

7.1.17 ImageComponent2D Object

The ImageComponent2D class defines a 2D array of pixels, used for texture
background images.

Constructors

The ImageComponent2D object defines the following constructors.

public ImageComponent2D(int format, int width, int height)
public ImageComponent2D(int format, BufferedImage image)

The first constructor constructs and initializes a 2D image component ob
145Version 1.1.2, June 1999

7.1.18 ImageComponent3D Object NODE COMPONENT OBJECTS

146

ructs
uff-

nent

t.

ture

ject
con-
mat
using the specified format, width, and height. The second constructor const
and initializes a 2D image component object using the specified format and b
ered image. A copy of the image is made.

Methods

The ImageComponent2D object defines the following methods.

public void set(BufferedImage image)

This method copies the specified buffered image to this 2D image compo
object.

Note: The image must be completely loaded before calling this function.

public final BufferedImage getImage()

This method retrieves a copy of the image in this ImageComponent2D objec

7.1.18 ImageComponent3D Object

The ImageComponent3D class defines a 3D array of pixels, used for tex
images.

Constructors

The ImageComponent3D object defines the following constructors.

public ImageComponent3D(int format, int width, int height,
int depth)

public ImageComponent3D(int format, BufferedImage image[])

The first constructor constructs and initializes a 3D image component ob
using the specified format, width, height, and depth. The second constructor
structs and initializes a 3D image component object using the specified for
and the buffered image array.

Methods

The ImageComponent3D object defines the following methods.

public final int getDepth()

This method retrieves the depth of this 3D image component object.
Java 3D API Specification

NODE COMPONENT OBJECTS DepthComponentFloat Object7.1.20

ject.

3D
mage

ray of

and
.
-

public final BufferedImage[] getImage()
public final BufferedImage getImage(int index)

These methods retrieve a copy of the images in this ImageComponent3D ob

public final void set(BufferedImage images[])
public final void set(int index, BufferedImage image)

The first method copies the specified array of BufferedImage objects to this
image component object. The second method copies the specified BufferedI
object to this 3D image component object at the specified index.

7.1.19 DepthComponent Object

The DepthComponent object is an abstract base class that defines a 2D ar
depth (Z) values.

Constants

The DepthComponent object has the following flags:

public static final int ALLOW_SIZE_READ
public static final int ALLOW_DATA_READ

These flags, when enabled using thesetCapability method, allow an applica-
tion to invoke methods that read the associated parameters.

Methods

public int getWidth()
public int getHeight()

These methods get the width and height of this object.

7.1.20 DepthComponentFloat Object

The DepthComponentFloat object extends the DepthComponent object
defines a 2D array of depth (Z) values in floating-point format in the range [0, 1]
A value of 0.0 indicates the closestZ value to the user, while a value of 1.0 indi
cates the farthestZ value.

Constructors

The DepthComponentFloat object defines the following constructors.
147Version 1.1.2, June 1999

7.1.21 DepthComponentInt Object NODE COMPONENT OBJECTS

148

-

fines

and
a
ed to
public DepthComponentFloat(int width, int height)

Constructs a new floating-point depth (Z-buffer) component object with the spec
ified width and height.

Methods

public void setDepthData(float depthData[])
public void getDepthData(float depthData[])

These methods set and retrieve the specified depth data for this object.

7.1.21 DepthComponentInt Object

The DepthComponentInt object extends the DepthComponent object and de
a 2D array of depth (Z) values in integer format. Values are in the range [0, (2n) –
1], wheren is theZ-buffer pixel depth.

Constructors

The DepthComponentInt object defines the following constructor.

public DepthComponentInt(int width, int height)

Constructs a new integer depth (Z-buffer) component object with the specified
width and height.

Methods

public void setDepthData(int depthData[])
public void getDepthData(int depthData[])

These methods set and retrieve the specified depth data for this object.

7.1.22 DepthComponentNative Object

The DepthComponentNative object extends the DepthComponent object
defines a 2D array of depth (Z) values stored in the most efficient format for
particular device. Values are not accessible by the user and may only be us
read theZ values and subsequently write them back.

Constructors

The DepthComponentNative object defines the following constructor.
Java 3D API Specification

NODE COMPONENT OBJECTS Bounds Object7.1.23

these
nds
oly-

und-

oint,

ding
public DepthComponentNative(int width, int height)

Constructs a new native depth (Z-buffer) component object with the specified
width and height.

7.1.23 Bounds Object

Bounds objects define three varieties of containing volumes. Java 3D uses
containing volumes to support various culling operations. The types of bou
include an axis-aligned-box volume, a spherical volume, and a bounding p
tope.

Constructors

The Bounds object defines the following constructor.

public Bounds()

Constructs a new Bounds object.

Methods

The Bounds object defines the following methods.

public abstract Object clone()

Clone this object.

public abstract void set(Bounds boundsObject)

This method sets the value of this Bounds object to enclose the specified bo
ing object.

public abstract boolean intersect(Point3d origin,
Point3d direction)

public abstract boolean intersect(Point3d point)
public abstract boolean intersect(Bounds boundsObject)
public abstract boolean intersect(Bounds boundsObjects[])

These methods test for the intersection of this Bounds object with a ray, a p
another Bounds object, or an array of Bounds objects, respectively.

public abstract Bounds closestIntersection(Bounds boundsObjects[])

This method finds the closest bounding object that intersects this boun
object.
149Version 1.1.2, June 1999

7.1.24 BoundingBox Object NODE COMPONENT OBJECTS

150

y of

the
ec-

is

the
the

d
n-
public abstract void combine(Bounds boundsObject)
public abstract void combine(Bounds boundsObjects[])
public abstract void combine(Point3d point)
public abstract void combine(Point3d points[])

These methods combine this Bounds object with a bounding object, an arra
bounding objects, a point, or an array of points, respectively.

public abstract void transform(Bounds bounds, Transform3D trans)
public abstract void transform(Transform3D trans)

The first method tranforms a Bounds object so that it bounds a volume that is
result of transforming the given bounding object by the given transform. The s
ond method transforms the Bounds object by the given transform.

public abstract boolean isEmpty()

This method tests whether the bounds is empty. A bounds is empty if it isnull

(either by construction or as the result of a null intersection) or if its volume
negative. A bounds with a volume of zero isnot empty.

7.1.24 BoundingBox Object

BoundingBox objects are axis-aligned bounding box volumes.

Constructors

The BoundingBox object defines the following constructors.

public BoundingBox()
public BoundingBox(Point3d lower, Point3d upper)
public BoundingBox(Bounds boundsObject)
public BoundingBox(Bounds bounds[])

The first constructor constructs and initializes a 2X unity BoundingBox about
origin. The second constructor constructs and initializes a BoundingBox from
given minimum and maximum inx, y, andz. The third constructor constructs an
initializes a BoundingBox from a bounding object. The fourth constructor co
structs and initializes a BoundingBox from an array of bounding objects.

Methods

The BoundingBox object defines the following methods.
Java 3D API Specification

NODE COMPONENT OBJECTS BoundingBox Object7.1.24

ect.

y of

the
ec-

int,
public void getLower(Point3d p1)
public void setLower(Point3d p1)
public void setLower(double xmin, double ymin, double zmin)

This parameter specifies the lower corner of this bounding box.

public void getUpper(Point3d p1)
public void setUpper(Point3d p1)
public void setUpper(double xmax, double ymax, double zmax)

This parameter specifies the upper corner of this bounding box.

public void set(Bounds boundsObject)

Sets the value of this bounding region to enclose the specified bounding obj

public Object clone()

Creates a copy of this bounding box.

public void combine(Bounds boundsObject)
public void combine(Bounds boundsObjects[])
public void combine(Point3d point)
public void combine(Point3d points[])

These methods combine this bounding box with a bounding object, an arra
bounding objects, a point, or an array of points, respectively.

public void transform(Bounds boundsObject, Transform3D matrix)
public void transform(Transform3D matrix)

The first method transforms a bounding box so that it bounds a volume that is
result of transforming the given bounding object by the given transform. The s
ond method transforms the bounding box by the given transform.

public boolean intersect(Point3d origin, Vector3d direction)
public boolean intersect(Point3d point)
public boolean intersect(Bounds boundsObject)
public boolean intersect(Bounds boundsObjects[])

These methods test for the intersection of this bounding box with a ray, a po
another Bounds object, and an array of Bounds objects, respectively.

public boolean intersect(Bounds boundsObject,
BoundingBox newBoundBox)

public boolean intersect(Bounds boundsObjects[],
BoundingBox newBoundBox)
151Version 1.1.2, June 1999

7.1.25 BoundingSphere Object NODE COMPONENT OBJECTS

152

d by
of

ox.

pty
its

two

dius
itial-
ructs
ctor
ts.
These methods compute a new BoundingBox that bounds the volume create
the intersection of this BoundingBox with another Bounds object or array
Bounds objects.

public Bounds closestIntersection(Bounds boundsObjects[])

This method finds the closest bounding object that intersects this bounding b

public boolean isEmpty()

This method tests whether the bounding box is empty. A bounding box is em
if it is null (either by construction or as the result of a null intersection) or if
volume is negative. A bounding box with a volume of zero isnot empty.

7.1.25 BoundingSphere Object

The BoundingSphere object defines a spherical bounding volume. It has
associated values: the center point and the radius of the sphere.

Constructors

The BoundingSphere object defines the following constructors.

public BoundingSphere()
public BoundingSphere(Point3D center, double radius)
public BoundingSphere(Bounds boundsObject)
public BoundingSphere(Bounds boundsObjects[])

The first constructor constructs and initializes a BoundingSphere to unity (ra
= 1.0 and center at 0.0, 0.0, 0.0). The second constructor constructs and in
izes a BoundingSphere from a center and radius. The third constructor const
and initializes a BoundingSphere from a bounding object. The fourth constru
constructs and initializes a BoundingSphere from an array of bounding objec

Methods

The BoundingSphere object defines the following methods.

public double getRadius()
public void setRadius(double r)

This parameter specifies the bounding sphere radius.

public void getCenter(Point3d center)
public void setCenter(Point3d center)
Java 3D API Specification

NODE COMPONENT OBJECTS BoundingSphere Object7.1.25

the

array

iven

eated
rray

ding

at is
The

that
This parameter defines the position of the bounding sphere.

public void set(Bounds boundsObject)

Sets the value of this bounding sphere to enclose the volume specified by
Bounds object.

public Object clone()

Creates a copy of the bounding sphere.

public void combine(Bounds boundsObject)
public void combine(Bounds boundsObjects[])
public void combine(Point3d point)
public void combine(Point3d points[])

These methods combine this bounding sphere with a bounding object, an
of bounding objects, a point, or an array of points, respectively.

public boolean intersect(Point3d origin, Point3d direction)
public boolean intersect(Point3d point)
public boolean intersect(Bounds boundsObject)
public boolean intersect(Bounds boundsObjects[])

These methods test for the intersection of this bounding sphere with the g
ray, point, another Bounds object, or an array of Bounds objects.

public boolean intersect(Bounds boundsObject,
BoundingSphere newBoundSphere)

public boolean intersect(Bounds boundsObjects[],
BoundingSphere newBoundSphere)

These methods compute a new BoundingSphere that bounds the volume cr
by the intersection of this BoundingSphere with another Bounds object or a
of Bounds objects.

public Bounds closestIntersection(Bounds boundsObjects[])

This method finds the closest bounding object that intersects this boun
sphere.

public void transform(Bounds boundsObject, Transform3D matrix)
public void transform(Transform3D matrix)

The first method transforms a bounding sphere so that it bounds a volume th
the result of transforming the given bounding object by the given transform.
second method transforms the bounding sphere by the given transform. Note
153Version 1.1.2, June 1999

7.1.26 BoundingPolytope Object NODE COMPONENT OBJECTS

154

g a
qual

form

re is
n)

vex,

s it
es
ctor
nal
of
when transforming a bounding sphere by a transformation matrix containin
nonuniform scale or a shear, the result is a bounding sphere with a radius e
to the maximal scale in any direction—the bounding sphere does not trans
into an ellipsoid.

public String toString()

This method returns a string representation of this class.

public boolean isEmpty()

This method tests whether the bounding sphere is empty. A bounding sphe
empty if it is null (either by construction or as the result of a null intersectio
or if its volume is negative. A bounding sphere with a volume of zero isnot
empty.

7.1.26 BoundingPolytope Object

A BoundingPolytope object defines a set of planes that prescribe a con
closed polygonal bounding region.

Constructors

The BoundingPolytope object defines the following constructors.

public BoundingPolytope()
public BoundingPolytope(Vector4d planes[])
public BoundingPolytope(Bounds boundsObject)
public BoundingPolytope(Bounds boundsObjects[])

The first constructor constructs a new BoundingPolytope object and initialize
to a cube where –1 =x,y,z ≤ 1. The second constructor constructs and initializ
a BoundingPolytope from an array of bounding planes. The third constru
constructs and initializes a BoundingPolytope from a Bounds object. The fi
constructor constructs and initializes a BoundingPolytope from an array
Bounds objects.

Methods

The BoundingPolytope object defines the following methods.

public void setPlanes(Vector4d planes[])
public void getPlanes(Vector4d planes[])
Java 3D API Specification

NODE COMPONENT OBJECTS BoundingPolytope Object7.1.26

tope

pe.

rent
to

rray

that
rm.
.

iven

cre-
t or
These methods set and retrieve the bounding planes for this BoundingPoly
object.

public int getNumPlanes()

This method returns the number of bounding planes for this bounding polyto

public void set(Bounds boundsObject)

This method sets the planes for this BoundingPolytope by keeping its cur
number and direction of the planes and computing new plane positions
enclose the given Bounds object.

public Object clone()

This method creates a copy of the BoundingPolytope object.

public void combine(Bounds boundsObject)
public void combine(Bounds boundsObjects[])
public void combine(Point3d point)
public void combine(Point3d points[])

These methods combine this BoundingPolytope with a bounding object, an a
of bounding objects, a point, or an array of points, respectively.

public void transform(Bounds bounds, Transform3D matrix)
public void transform(Transform3D matrix)

The first method tranforms a bounding polytope so that it bounds a volume
is the result of transforming the given bounding object by the given transfo
The second method transforms the bounding polytope by the given transform

public boolean intersect(Point3d origin, Vector3d direction)
public boolean intersect(Point3d point)
public boolean intersect(Bounds boundsObject)
public boolean intersect(Bounds boundsObjects[])

These methods test for the intersection of this BoundingPolytope with the g
ray, point, another Bounds object, or array of Bounds objects, respectively.

public boolean intersect(Bounds boundsObject,
BoundingPolytope newBoundPolytope)

public boolean intersect(Bounds boundsObjects[],
BoundingPolytope newBoundPolytope)

These methods compute a new BoundingPolytope that bounds the volume
ated by the intersection of this BoundingPolytope with another Bounds objec
155Version 1.1.2, June 1999

7.1.27 Transform3D Object NODE COMPONENT OBJECTS

156

oly-

ope
n)

per-
pre-

cs.

the
trix
en-

ype
atrix
array of Bounds objects.

public Bounds closestIntersection(Bounds boundsObjects[])

This method finds the closest bounding object that intersects this bounding p
tope.

public boolean isEmpty()

This method tests whether the bounding polytope is empty. A bounding polyt
is empty if it isnull (either by construction or as the result of a null intersectio
or if its volume is negative. A bounding polytope with a volume of zero isnot
empty.

7.1.27 Transform3D Object

Transformations are represented by matrix multiplication and include such o
ations as rotation, scaling, and translation. The Transform3D object is re
sented internally as a 4× 4 double-precision floating point matrix. The
mathematical representation is row major, as in traditional matrix mathemati

Constants

public static final int ZERO
public static final int IDENTITY
public static final int SCALE
public static final int TRANSLATION
public static final int ORTHOGONAL
public static final int RIGID
public static final int CONGRUENT
public static final int AFFINE
public static final int NEGATIVE_DETERMINANT

A Transform3D has an associated type that is internally computed when
transform object is constructed and updated any time it is modified. A ma
will typically have multiple types. For example, the type associated with an id
tity matrix is the result of ORing all of the types, except forZERO andNEGATIVE_
DETERMINANT, together. There are public methods available to get the ORed t
of the transformation, the sign of the determinant, and the least general m
type. The matrix type flags are defined as follows:

• ZERO: Zero matrix.

• IDENTITY: Identity matrix.
Java 3D API Specification

NODE COMPONENT OBJECTS Transform3D Object7.1.27

or

le

rix
nity

a

ing
y an
the
two

le
ain

t.
n
ion
• SCALE: This matrix is a uniform scale matrix—there are no rotational
translation components.

• TRANSLATION: This matrix has translation components only. The sca
is unity and there are no rotational components.

• ORTHOGONAL: The four row vectors that make up an orthogonal mat
form a basis, meaning that they are mutually orthogonal. The scale is u
and there are no translation components.

• RIGID: The upper 3× 3 of the matrix is orthogonal, and there is
translation component—the scale is unity.

• CONGRUENT: This is an angle- and length-preserving matrix, mean
that it can translate, rotate, and reflect about an axis, and scale b
amount that is uniform in all directions. These operations preserve
distance between any two points, and the angle between any
intersecting lines.

• AFFINE: An affine matrix can translate, rotate, reflect, sca
anisotropically, and shear. Lines remain straight, and parallel lines rem
parallel, but the angle between intersecting lines can change.

A matrix is also classified by the sign of its determinant:

• NEGATIVE_DETERMINANT: This matrix has a negative determinan
An orthogonal matrix with a positive determinant is a rotation matrix. A
orthogonal matrix with a negative determinant is a reflection and rotat
matrix.

The Java 3D model for 4× 4 transformations is

Note: When transforming a Point3f or a Point3d, the inputw is set to 1. When
transforming a Vector3f or Vector3d, the inputw is set to 0.

m00 m01 m02 m03

m10 m11 m12 m13

m20 m21 m22 m23

m30 m31 m32 m33

x

y

z

w

⋅

x ′
y ′
z ′
w′

=

x ′ m00 x m01 y m02+ z m03 w⋅+⋅ ⋅+⋅=
y ′ m10 x m11 y m12+ z m13 w⋅+⋅ ⋅+⋅=
z ′ m20 x m21 y m22+ z m23 w⋅+⋅ ⋅+⋅=
w′ m30 x m31 y m32+ z m33 w⋅+⋅ ⋅+⋅=
157Version 1.1.2, June 1999

7.1.27 Transform3D Object NODE COMPONENT OBJECTS

158

for-

fied

ion
onal
f

gth
ay,

l
-

Constructors

The Transform3D object defines the following constructors.

public Transform3D()

This constructs and initializes a new Transform3D object to the identity trans
mation.

public Transform3D(Transform3D t1)

This constructs and initializes a new Transform3D object from the speci
transform.

public Transform3D(Matrix3f m1, Vector3d t1, double s)
public Transform3D(Matrix3d m1, Vector3d t1, double s)
public Transform3D(Matrix3f m1, Vector3f t1, float s)

These construct and initialize a new Transform3D object from the rotat
matrix, translation, and scale values. The scale is applied only to the rotati
component of the matrix (upper 3× 3) and not to the translational components o
the matrix.

public Transform3D(Matrix4f m1)
public Transform3D(Matrix4d m1)

These construct and initialize a new Transform3D object from the 4× 4 matrix.
The type of the constructed transform is classified automatically.

public Transform3D(float matrix[])
public Transform3D(double matrix[])

These construct and initialize a new Transform3D object from the array of len
16. The top row of the matrix is initialized to the first four elements of the arr
and so on. The type of the constructed transform is classified automatically.

public Transform3D(Quat4d q1, Vector3d t1, double s)
public Transform3D(Quat4f q1, Vector3d t1, double s)
public Transform3D(Quat4f q1, Vector3f t1, float s)

These construct and initialize a new Transform3D object from the quaternionq1,
the translationt1, and the scales. The scale is applied only to the rotationa
components of the matrix (the upper 3× 3) and not to the translational compo
nents of the matrix.
Java 3D API Specification

NODE COMPONENT OBJECTS Transform3D Object7.1.27

the
n
ro.

f all

eral-

ation
the
x

of

t is
oth
public Transform3D(GMatrix m1)

This constructs and initializes a new Transform3D object and initializes it to
upper 4× 4 of the specified GMatrix. If the specified matrix is smaller tha
4 × 4, the remaining elements in the transformation matrix are assigned to ze

Methods

The Transform3D object defines the following methods.

public final int getType()

This method retrieves the type of this matrix. The type is an ORed bitmask o
of the type classifications to which it belongs.

public final int getBestType()

This method retrieves the least general type of this matrix. The order of gen
ity from least to most is as follows:ZERO, IDENTITY, SCALE, TRANSLATION,
ORTHOGONAL, RIGID, CONGRUENT, andAFFINE. If the matrix isORTHOGONAL, call-
ing the methodgetDeterminantSign will yield more information.

public final void setAutoNormalize(boolean autoNormalize)
public final boolean getAutoNormalize()

These methods set and retrieve the state of autonormalization. Autonormaliz
performs an automatic singular value decomposition (SVD) normalization of
rotational components (upper 3× 3) of this matrix after every subsequent matri
operation on this object, unless the boolean is subsequently set tofalse. The
default value for this parameter isfalse.

public final boolean getDeterminantSign()

This method returns the sign of the determinant of this matrix. A return value
true indicates a positive determinant. A return value offalse indicates a nega-
tive determinant. In general, an orthogonal matrix with a positive determinan
a pure rotation matrix; an orthogonal matrix with a negative determinant is b
a rotation and a reflection matrix.

public final void setIdentity()

This method sets this transform to the identity matrix.

public final void setZero()

This method sets this transform to all zeros.
159Version 1.1.2, June 1999

7.1.27 Transform3D Object NODE COMPONENT OBJECTS

160

hen
fer-
the
Y

are
per

le is

ts of
on

er
ion,

ts of
on

er
gle,

the
ale.
public final void setEuler(Vector3d euler)

This method sets the rotational component (upper 3× 3) of this transform to the
rotation matrix converted from the Euler angles provided. Theeuler parameter
is a Vector3d consisting of three rotation angles applied first about the X, t
the Y, then the Z axis. These rotations are applied using a static frame of re
ence. In other words, the orientation of the Y rotation axis is not affected by
X rotation and the orientation of the Z rotation axis is not affected by the X or
rotation.

public final void setRotation(Matrix3d m1)
public final void setRotation(Matrix3f m1)

These methods set the rotational component (upper 3× 3) of this transform to the
values in the specified matrix; the other elements of this transform
unchanged. A singular value decomposition is performed on this object’s up
3 × 3 matrix to factor out the scale, then this object’s upper 3× 3 matrix compo-
nents are replaced by the input rotational components, and finally the sca
reapplied to the rotational components.

public final void setRotation(Quat4f q1)
public final void setRotation(Quat4d q1)

These methods set the rotational component (upper 3× 3) of this transform to the
appropriate values derived from the specified quaternion; the other elemen
this transform are unchanged. A singular value decomposition is performed
this object’s upper 3× 3 matrix to factor out the scale, then this object’s upp
3 × 3 matrix components are replaced by the matrix equivalent of the quatern
and finally the scale is reapplied to the rotational components.

public final void setRotation(AxisAngle4d a1)
public final void setRotation(AxisAngle4f a1)

These methods set the rotational component (upper 3× 3) of this transform to the
appropriate values derived from the specified axis-angle; the other elemen
this transform are unchanged. A singular value decomposition is performed
this object’s upper 3× 3 matrix to factor out the scale, then this object's upp
3 × 3 matrix components are replaced by the matrix equivalent of the axis-an
and finally the scale is reapplied to the rotational components.

public final void setScale(double scale)
public final double getScale()

The set method sets the scale component of this transform by factoring out
current scale from the rotational component and multiplying by the new sc
Java 3D API Specification

NODE COMPONENT OBJECTS Transform3D Object7.1.27

te
on-
ed.

rent
ore
le

r
is
The get method performs an SVD normalization of this transform to calcula
and return the scale factor; this transform is not modified. If the matrix has n
uniform scale factors, the largest of the x, y, and z scale factors will be return

public final void setScale(Vector3d scale)
public final void getScale(Vector3d scale)

The set method sets the possibly non-uniform scale component to the cur
transform. Any existing scale is first factored out of the existing transform bef
the new scale is applied. Theget method returns the possibly non-uniform sca
components of the current transform and places them into the scale vector.

public final void setNonUniformScale(double xScale, double yScale,
double zScale)

This is a deprecated method. Use thesetScale(Vector3d) method instead.

public final void scaleAdd(double s, Transform3D t1,
Transform3D t2)

public final void scaleAdd(double s, Transform3D t1)

The first method scales transformt1 by a uniform scale matrix with scale facto
s, then adds transformt2 (this = S * t1 + t2). The second method scales th
transform by a uniform scale matrix with scale factors, then adds transform t1
(this = S * this + t1).

public final void setRotationScale(Matrix3f m1)
public final void setRotationScale(Matrix3d m1)
public final void getRotationScale(Matrix3f m1)
public final void getRotationScale(Matrix3d m1)

Theset methods replace the upper 3× 3 matrix values of this transform with the
values in the matrixm1. Theget methods retrieve the upper 3× 3 matrix values
of this transform and place them in the matrixm1.

public String toString()

This method returns the matrix elements of this transform as a string.

public final void add(Transform3D t1)
public final void add(Transform3D t1, Transform3D t2)
public final void sub(Transform3D t1)
public final void sub(Transform3D t1, Transform3D t2)

The firstadd method adds this transform to the transformt1 and places the result
back into this. The secondadd method adds the transformst1 and t2 and
places the result intothis. The firstsub method subtracts transformt1 from this
161Version 1.1.2, June 1999

7.1.27 Transform3D Object NODE COMPONENT OBJECTS

162

cond

oses
not

t the
irec-

val-

the

the
transform and places the result back intothis. The secondsub method subtracts
transformt2 from t1 and places the result intothis.

public final void add(double scalar)
public final void add(double scalar, Transform3D t1)

The first method adds a scalar to each component of this transform. The se
method adds a scalar to each component of the transformt1 and places the result
into this. Transformt1 is not modified.

public final void transpose()
public final void transpose(Transform3D t1)

The first method transposes this matrix in place. The second method transp
transformt1 and places the value into this transform. The transform t1 is
modified.

public void rotX(double angle)
public void rotY(double angle)
public void rotZ(double angle)

These three methods set the value of this matrix to a rotation matrix abou
specified axis. The matrices rotate in a counter-clockwise (right-handed) d
tion. The angle to rotate is specified in radians.

public final void setTranslation(Vector3f trans)
public final void setTranslation(Vector3d trans)

This method modifies the translational components of this transform to the
ues of the argument. The other values of this transform are not modified.

public final void set(Quat4f q1)
public final void set(Quat4d q1)

These methods set the value of this transform to the matrix conversion of
quaternion argument.

public final void set(Quat4d q1, Vector3d t1, double s)
public final void set(Quat4f q1, Vector3d t1, double s)
public final void set(Quat4f q1, Vector3f t1, float s)

These methods set the value of this matrix from the rotation expressed by
quaternionq1, the translationt1, and the scales.

public final void set(Vector3d trans)
public final void set(Vector3f trans)
Java 3D API Specification

NODE COMPONENT OBJECTS Transform3D Object7.1.27

ctor
form

atrix;
od-

ype,

val-

the
orm
d all

the

al-
These methods set the translational value of this matrix to the specified ve
parameter values and set the other components of the matrix as if this trans
were an identity matrix.

public final void set(Vector3d v1, double scale)
public final void set(Vector3f v1, float scale)

These methods set the value of this transform to a scale and translation m
the translation is scaled by the scale factor and all of the matrix values are m
ified.

public final void set(Transform3D t1)

This method sets the matrix, type, and state of this transform to the matrix, t
and state of the transformt1.

public final void set(double matrix[])
public final void set(float matrix[])

These methods set the matrix values of this transform to the specified matrix
ues.

public final void set(double scale)
public final void set(double scale, Vector3d v1)
public final void set(float scale, Vector3f v1)

The first method sets the value of this transform to a uniform scale; all of
matrix values are modified. The next two methods set the value of this transf
to a scale and translation matrix; the scale is not applied to the translation an
of the matrix values are modified.

public final void set(Matrix4d m1)
public final void set(Matrix4f m1)

These methods set the matrix values of this transform to the matrix values in
specified matrix.

public final void set(Matrix3f m1)
public final void set(Matrix3d m1)

These methods set the rotational and scale components (upper 3× 3) of this
transform to the matrix values in the specified matrix. The remaining matrix v
ues are set to the identity matrix. All values of the matrix are modified.

public final void set(Matrix3f m1, Vector3f t1, float s)
public final void set(Matrix3f m1, Vector3d t1, double s)
public final void set(Matrix3d m1, Vector3d t1, double s)
163Version 1.1.2, June 1999

7.1.27 Transform3D Object NODE COMPONENT OBJECTS

164

the

the

trix

x of
he

into

into
These methods set the value of this matrix from the rotation expressed by
rotation matrixm1, the translationt1, and the scales. The scale is only applied to
the rotational component of the matrix (upper 3× 3) and not to the translational
component of the matrix.

public final void set(GMatrix matrix)

These methods set the matrix values of this transform to the matrix values in
specified matrix. The GMatrix object must specify a 4× 4, 3× 4, or 3× 3 matrix.

public final void set(AxisAngle4f a1)
public final void set(AxisAngle4d a1)

These methods set the rotational component (upper 3× 3) of this transform to the
matrix conversion of the specified axis-angle argument. The remaining ma
values are set to the identity matrix. All values of the matrix are modified.

public final void get(double matrix[])
public final void get(float matrix[])

These methods place the values of this transform into the specified matri
length 16. The first four elements of the array will contain the top row of t
transform matrix, and so on.

public final void get(Matrix4d matrix)
public final void get(Matrix4f matrix)

These methods place the values of this transform into thematrix argument.

public final void get(Matrix3d m1)
public final void get(Matrix3f m1)

These methods place the normalized rotational component of this transform
the 3× 3 matrix argument.

public final double get(Matrix3d m1, Vector3d t1)
public final float get(Matrix3f m1, Vector3f t1)
public final double get(Matrix3f m1, Vector3d t1)

These methods place the normalized rotational component of this transform
them1 parameter and the translational component into thet1 parameter.

public final void get(Quat4d q1)
public final void get(Quat4f q1)
Java 3D API Specification

NODE COMPONENT OBJECTS Transform3D Object7.1.27

or-

the
lues

the

ns-

elf
is

ond
into
These methods perform an SVD normalization of this matrix to acquire the n
malized rotational component. The values are placed into the quaternionq1

parameter.

public final double get(Quat4d q1, Vector3d t1)
public final float get(Quat4f q1, Vector3f t1)
public final double get(Quat4f q1, Vector3d t1)

These methods perform an SVD normalization of this transform to calculate
rotation as a quaternion, the translation, and the scale. None of the matrix va
are modified.

public final void get(Vector3d trans)
public final void get(Vector3f trans)

These methods retrieve the translational components of this transform.

public final void invert()
public final void invert(Transform3D t1)

The first method inverts this transform in place. The second method sets
value of this transform to the inverse of the transformt1. Both of these methods
use the transform type to determine the optimal algorithm for inverting the tra
form.

public final double determinant()

This method calculates and returns the determinant ofthis transform.

public final void mul(Transform3D t1)
public final void mul(Transform3D t1, Transform3D t2)

The first method sets the value of this transform to the result of multiplying its
with transformt1 (this = this * t1). The second method sets the value of th
transform to the result of multiplying transformt1 by transform t2

(this = t1 * t2).

public final void mul(double scalar)
public final void mul(double scalar, Transform3D t1)

The first method multiplies this transform by the scalar constant. The sec
method multiplies transform t1 by the scalar constant and places the value
this transform.
165Version 1.1.2, June 1999

7.1.27 Transform3D Object NODE COMPONENT OBJECTS

166

ond

s

rs
public final void mulInverse(Transform3D t1)
public final void mulInverse(Transform3D t1, Transform3D t2)

The first method multiplies this transform by the inverse of transformt1 and
places the result intothis transform (this = this * t1–1). The second method mul-
tiplies transformt1 by the inverse of transformt2 and places the result intothis
transform (this = t1 * t2–1).

public final void mulTransposeRight(Transform3D t1,Transform3D t2)
public final void mulTransposeLeft(Transform3D t1, Transform3D t2)
public final void mulTransposeBoth(Transform3D t1, Transform3D t2)

The first method multiplies the transformt1 by the transpose of transformt2
and places the result into this transform (this = t1 * transpose(t2)). The sec
method multiplies the transpose of transformt1 by transformt2 and places the
result intothis transform (this = transpose(t1) * t2). The third method multiplie
the transpose of transformt1 by the transpose oft2 and places the result into
this transform (this = transpose(t1) * transpose(t2)).

public final void normalize()
public final void normalize(Transform3D t1)

Both of these methods use an SVD normalization. The firstnormalize method
normalizes the rotational components (upper 3× 3) of matrix this and places
the results back intothis. The secondnormalize method normalizes the rota-
tional components (upper 3× 3) of transformt1 and places the result inthis.

public final void normalizeCP()
public final void normalizeCP(Transform3D t1)

Both of these methods use a cross-product (CP) normalization. The firstnormal-

izeCP method normalizes the rotational components (upper 3× 3) of this trans-
form and places the result into this transform. The secondnormalizeCP method
normalizes the rotational components (upper 3× 3 of transformt1 and places the
result intothis transform.

public boolean equals(Transform3D t1)
public boolean equals(Object o1)

The first method returnstrue if all of the data members of transformt1 are
equal to the corresponding data members inthis transform. The second method
returns true if the Objecto1 is of type Transform3D and all of the data membe
of o1 are equal to the corresponding data members in this Transform3D.
Java 3D API Specification

NODE COMPONENT OBJECTS Transform3D Object7.1.27

s-
rns

. Two

ash

e

public boolean epsilonEquals(Transform3D t1, double epsilon)

This method returnstrue if the L∞ distance between this transform and tran
form m1 is less than or equal to the epsilon parameter; otherwise, it retu
false. The L∞ distance is equal to:

MAX[i=0,1,2,3 ; j=0,1,2,3 ; abs[(this.m(i,j) – m1.m(i,j)]

public int hashCode()

This method returns a hash number based on the data values in this object
different Transform3D objects with identical data values (that is,true is returned
for trans.equals(Transform3D)) will return the same hash number. Two
Transform3D objects with different data members may return the same h
value, although this is not likely.

public final void transform(Vector4d vec, vector4d vecOut)
public final void transform(Vector4f vec, Vector4f vecOut)
public final void transform(Vector4d vec)
public final void transform(Vector4f vec)

The first two methods transform the vectorvec by this transform and place the
result intovecOut. The last two methods transform the vectorvec by this trans-
form and place the result back intovec.

public final void transform(Point3d point, Point3d pointOut)
public final void transform(Point3f point, point3f pointOut)
public final void transform(Point3d point)
public final void transform(Point3f point)

The first two methods transform thepoint parameter by this transform and plac
the result intopointOut. The last two methods transform thepoint parameter
by this transform and place the result back intopoint. In both cases, the fourth
element of thepoint input parameter is assumed to be 1.

public final void transform(Vector3d normal, Vector3d normalOut)
public final void transform(Vector3f normal, Vector3f normalOut)
public final void transform(Vector3d normal)
public final void transform(Vector3f normal)

The first two methods transforms thenormal parameter by this transform and
place the value intonormalOut. The third and fourth methods transform thenor-

mal parameter by this transform and place the value back intonormal.
167Version 1.1.2, June 1999

7.2 Node Component Objects: Geometry NODE COMPONENT OBJECTS

168

ing
e

hin
ew’s
in

aral-
like

to
ity
ails.

nent
the
etry

metr-
pes
po-
7.1.27.1 View Model Compatibility Mode Methods: Viewing Matrix

public void lookAt(Point3d eye, Point3d center, Vector3d up)

This is a utility method that specifies the position and orientation of a view
transformation. It works very much like the similar function in OpenGL. Th
inverse of this transform can be used to control the ViewPlatform object wit
the scene graph. Alternatively, this transform can be passed directly to the Vi
VpcToEc transform via the compatibility mode viewing functions defined
Section C.11.2, “Using the Camera-based View Model.”

7.1.27.2 View Model Compatibility Mode Methods: Projection Matrix

public void frustum(double left, double right, double bottom,
double top, double near, double far)

public void perspective(double fovx, double aspect, double zNear,
double zFar)

public void ortho(double left, double right, double bottom,
double top, double near, double far)

These three utility methods allow an application to create a perspective or p
lel (orthographic) projection matrix. These three methods work very much
the similar functions in OpenGL. The resulting Transform3D can be used
directly set the View’s left and right projection transforms when in compatibil
mode. See Section C.11.2, “Using the Camera-based View Model,” for det
Thefovx parameter specifies the field of view in thex direction in radians.

7.2 Node Component Objects: Geometry

A Geometry object is an abstract class that specifies the geometry compo
information required by a Shape3D node. Geometry objects describe both
geometry and topology of the Shape3D nodes that reference them. Geom
objects consist of four generic geometric types: CompressedGeometry, Geo
yArray, Raster, and Text3D (see Figure 7-3). Each of these geometric ty
defines a visible object or set of objects. A Geometry object is used as a com
nent object of a Shape3D leaf node.

Constants

The Geometry object defines the following constant.

public static final int ALLOW_INTERSECT

This flag specifies that this Geometry object allows the intersect operation.
Java 3D API Specification

NODE COMPONENT OBJECTS GeometryArray Object7.2.1

are
ep-
als,

s are

a-
and
r-
ther
Figure 7-3 Geometry Component Object Hierarchy

Constructors

public Geometry()

Constructs a new Geometry object.

7.2.1 GeometryArray Object

A GeometryArray object is an abstract class from which several classes
derived to specify a set of geometric primitives. A GeometryArray contains s
arate arrays of the following vertex components: coordinates, colors, norm
and texture coordinates, and a bitmask indicating which of these component
present.

A single GeometryArray contains a predefined collection of per-vertex inform
tion; all of the vertices in a GeometryArray object have the same format
primitive type. Different GeometryArrays can contain different per-vertex info
mation. One GeometryArray might contain only three-space coordinates; ano

SceneGraphObject
NodeComponent

Geometry
CompressedGeometry
Raster
Text3D
GeometryArray

GeometryStripArray
LineStripArray
TriangleStripArray
TriangleFanArray

LineArray
PointArray
QuadArray
TriangleArray
IndexedGeometryArray

IndexedGeometryStripArray
IndexedLineStripArray
IndexedTriangleStripArray
IndexedTriangleFanArray

IndexedLineArray
IndexedPointArray
IndexedQuadArray
IndexedTriangleArray
169Version 1.1.2, June 1999

7.2.1 GeometryArray Object NODE COMPONENT OBJECTS

170

ates;

al-
the
gth
ned

rip-
n

th-
imi-
s

of

of

of

of
might contain per-vertex coordinates, normals, colors, and texture coordin
yet another might contain any subset of the previous example.

All colors used in the GeometryArray object must be in the range [0.0, 1.0]. V
ues outside this range will cause undefined results. All normals used in
GeometryArray object must be unit length vectors. That is their geometric len
must be 1.0. Normals that are not unit length vectors will cause undefi
results.

Note that the termcoordinate, as used in the method names and method desc
tions, actually refers to a set ofx, y, andz coordinates representing the positio
of a single vertex. The termcoordinates(plural) is used to indicate sets ofx, y,
andz coordinates for multiple vertices. This is somewhat at odds with the ma
ematical definition of a coordinate, but is used as a convenient shorthand. S
larly, the termtexture coordinateis used to indicate a set of texture coordinate
for a single vertex, while the termtexture coordinates(plural) is used to indicate
sets of texture coordinates for multiple vertices.

Constants

The GeometryArray object defines the following flags.

public static final int ALLOW_COORDINATE_READ
public static final int ALLOW_COORDINATE_WRITE

These flags specify that the GeometryArray object allows reading or writing
the array of coordinates.

public static final int ALLOW_COLOR_READ
public static final int ALLOW_COLOR_WRITE

These flags specify that the GeometryArray object allows reading or writing
the array of colors.

public static final int ALLOW_NORMAL_READ
public static final int ALLOW_NORMAL_WRITE

These flags specify that the GeometryArray object allows reading or writing
the array of normals.

public static final int ALLOW_TEXCOORD_READ
public final static int ALLOW_TEXCOORD_WRITE

These flags specify that the GeometryArray object allows reading or writing
the array of texture coordinates.
Java 3D API Specification

NODE COMPONENT OBJECTS GeometryArray Object7.2.1

data

for-

and
x

as a
The

his

a.

ors
kes

D

D

r as
public final static int ALLOW_COUNT_READ

This flag specifies that the GeometryArray object allows reading any count
(such as the vertex count) associated with the GeometryArray.

public final static int ALLOW_FORMAT_READ

This flag specifies that the GeometryArray object allows reading the vertex
mat associated with the GeometryArray.

Constructors

The GeometryArray object has the following constructor.

public GeometryArray(int vertexCount, int vertexFormat)

Constructs an empty GeometryArray object with the specified vertex format
number of vertices. ThevertexCount parameter specifies the number of verte
elements in this array. ThevertexFormat parameter is a mask indicating which
vertex components are present in each vertex. The vertex format is specified
set of flags that are bitwise ORed together to describe the per-vertex data.
following vertex formats are supported.

• COORDINATES: Specifies that this vertex array contains coordinates. T
bit must be set.

• NORMALS: Specifies that this vertex array contains normals.

• COLOR_3: Specifies that this vertex array contains colors without alph
Colors are specified as floating-point values in the range [0.0, 1.0].

• COLOR_4: Specifies that this vertex array contains colors with alpha. Col
are specified as floating-point values in the range [0.0, 1.0]. This ta
precedence overCOLOR_3.

• TEXTURE_COORDINATE_2: Specifies that this vertex array contains 2
texture coordinates (S and T).

• TEXTURE_COORDINATE_3: Specifies that this vertex array contains 3
texture coordinates (S, T, and R). This takes precedence overTEXTURE_

COORDINATE_2.

Methods

GeometryArray methods provide access (get and set methods) to individual
vertex component arrays in two different modes: as individual elements o
arrays of multiple elements.
171Version 1.1.2, June 1999

7.2.1 GeometryArray Object NODE COMPONENT OBJECTS

172

y.
rdi-

spec-
ry

-

spec-
ry
i-
public final int getVertexCount()

Retrieves the number of vertices in the GeometryArray.

public final int getVertexFormat()

Retrieves the vertex format of the GeometryArray.

public final void setCoordinate(int index, float coordinate[])
public final void getCoordinate(int index, float coordinate[])
public final void setCoordinate(int index, double coordinate[])
public final void getCoordinate(int index, double coordinate[])

Sets or retrieves the coordinate associated with the vertex at the specifiedindex

of this object. Theindex parameter is the vertex index in this geometry arra
Thecoordinate parameter is an array of three values containing the new coo
nate.

public final void setCoordinate(int index, Point3f coordinate)
public final void getCoordinate(int index, Point3f coordinate)
public final void setCoordinate(int index, Point3d coordinate)
public final void getCoordinate(int index, Point3d coordinate)

Sets or retrieves the coordinate associated with the vertex at the specifiedindex.
Theindex parameter is the vertex index in this geometry array. Thecoordinate

parameter is a vector containing the new coordinate.

public final void setCoordinates(int index, float coordinates[])
public final void getCoordinates(int index, float coordinates[])
public final void setCoordinates(int index, double coordinates[])
public final void getCoordinates(int index, double coordinates[])

Sets or retrieves the coordinates associated with the vertices starting at the
ified index. The index parameter is the starting vertex index in this geomet
array. Thecoordinates parameter is an array of 3n values containingn new
coordinates. The length of thecoordinates array determines the number of ver
tices copied.

public final void setCoordinates(int index, Point3f coordinates[])
public final void getCoordinates(int index, Point3f coordinates[])
public final void setCoordinates(int index, Point3d coordinates[])
public final void getCoordinates(int index, Point3d coordinates[])

Sets or retrieves the coordinates associated with the vertices starting at the
ified index. The index parameter is the starting vertex index in this geomet
array. Thecoordinates parameter is an array of points containing new coord
Java 3D API Specification

NODE COMPONENT OBJECTS GeometryArray Object7.2.1

s

t the
dex
x

The

The

cified
ay.
nates. The length of thecoordinates array determines the number of vertice
copied.

public final void setCoordinates(int index, Point3d coordinates[],
int start, int length)

public final void setCoordinates(int index, Point3f coordinates[],
int start, int length)

public final void setCoordinates(int index, float coordinates[],
int start, int length)

public final void setCoordinates(int index, double coordinates[],
int start, int length)

These methods set the coordinates associated with the vertices starting a
specified index for this object, using coordinate data starting from vertex in
start for length vertices. Theindex parameter is the starting destination verte
index in this geometry array.

public final void setColor(int index, float color[])
public final void getColor(int index, float color[])
public final void setColor(int index, byte color[])
public final void getColor(int index, byte color[])

Sets or retrieves the color associated with the vertex at the specified index.
index parameter is the vertex index in this geometry array. Thecolor parameter
is an array of three or four values containing the new color.

public final void setColor(int index, Color3f color)
public final void getColor(int index, Color3f color)
public final void setColor(int index, Color4f color)
public final void getColor(int index, Color4f color)
public final void setColor(int index, Color3b color)
public final void getColor(int index, Color3b color)
public final void setColor(int index, Color4b color)
public final void getColor(int index, Color4b color)

Sets or retrieves the color associated with the vertex at the specified index.
index parameter is the vertex index in this geometry array. Thecolor parameter
is a vector containing the new color.

public final void setColors(int index, float colors[])
public final void getColors(int index, float colors[])
public final void setColors(int index, byte colors[])
public final void getColors(int index, byte colors[])

Sets or retrieves the colors associated with the vertices starting at the spe
index. Theindex parameter is the starting vertex index in this geometry arr
173Version 1.1.2, June 1999

7.2.1 GeometryArray Object NODE COMPONENT OBJECTS

174

cified
ay.
he

cified

m-

cified

m-
.

The colors parameter is an array of 3n or 4n values containingn new colors.
The length of thecolors array determines the number of vertices copied.

public final void setColors(int index, Color3f colors[])
public final void getColors(int index, Color3f colors[])
public final void setColors(int index, Color4f colors[])
public final void getColors(int index, Color4f colors[])
public final void setColors(int index, Color3b colors[])
public final void getColors(int index, Color3b colors[])
public final void setColors(int index, Color4b colors[])
public final void getColors(int index, Color4b colors[])

Sets or retrieves the colors associated with the vertices starting at the spe
index. Theindex parameter is the starting vertex index in this geometry arr
The colors parameter is an array of vectors containing the new colors. T
length of thecolors array determines the number of vertices copied.

public final void setColors(int index, float colors[], int start,
int length)

public final void setColors(int index, byte colors[], int start,
int length)

These methods set the colors associated with the vertices starting at the spe
index for this object, using data incolors starting at indexstart for length

colors. Theindex parameter is the starting destination vertex index in this geo
etry array. Thecolors parameter is an array of 3n or 4n values containingn new
colors.

public final void setColors(int index, Color3f colors[], int start,
int length)

public final void setColors(int index, Color4f colors[], int start,
int length)

public final void setColors(int index, Color3b colors[], int start,
int length)

public final void setColors(int index, Color4b colors[], int start,
int length)

These methods set the colors associated with the vertices starting at the spe
index for this object, using data incolors starting at indexstart for length

colors. Theindex parameter is the starting destination vertex index in this geo
etry array. Thecolors parameter is an array of vectors containing new colors

public final void setNormal(int index, float normal[])
public final void getNormal(int index, float normal[])
Java 3D API Specification

NODE COMPONENT OBJECTS GeometryArray Object7.2.1

. The

. The

cified
ay.

cified
ay.
he

speci-

n

cified

ture
Sets or retrieves the normal associated with the vertex at the specified index
index parameter is the vertex index in this geometry array. Thenormal parame-
ter is the new normal.

public final void setNormal(int index, Vector3f normal)
public final void getNormal(int index, Vector3f normal)

Sets or retrieves the normal associated with the vertex at the specified index
index parameter is the vertex index in this geometry array. Thenormal parame-
ter is a vector containing the new normal.

public final void setNormals(int index, float normals[])
public final void getNormals(int index, float normals[])

Sets or retrieves the normals associated with the vertices starting at the spe
index. Theindex parameter is the starting vertex index in this geometry arr
The normals parameter is an array of 3n values containingn new normals. The
length of thenormals array determines the number of vertices copied.

public final void setNormals(int index, Vector3f normals[])
public final void getNormals(int index, Vector3f normals[])

Sets or retrieves the normals associated with the vertices starting at the spe
index. Theindex parameter is the starting vertex index in this geometry arr
The normals parameter is an array of vectors containing new normals. T
length of thenormals array determines the number of vertices copied.

public final void setNormals(int index, float normals[], int start,
int length)

public final void setNormals(int index, Vector3f normals[],
int start, int length)

These methods set the normals associated with the vertices starting at the
fied index for this object, using data innormals starting at indexstart and end-
ing at index start+length. The index parameter is the starting destinatio
vertex index in this geometry array.

public final void setTextureCoordinate(int index,
float texCoord[])

public final void getTextureCoordinate(int index,
float texCoord[])

Sets or retrieves the texture coordinate associated with the vertex at the spe
index. Theindex parameter is the vertex index in this geometry array. Thetex-

Coord parameter is an array of two or three values containing the new tex
coordinate.
175Version 1.1.2, June 1999

7.2.1 GeometryArray Object NODE COMPONENT OBJECTS

176

cified
y
te.

ng at

ng at

ting at
public final void setTextureCoordinate(int index,
Point2f texCoord)

public final void getTextureCoordinate(int index,
Point2f texCoord)

public final void setTextureCoordinate(int index,
Point3f texCoord)

public final void getTextureCoordinate(int index,
Point3f texCoord)

Sets or retrieves the texture coordinate associated with the vertex at the spe
index for this object. Theindex parameter is the vertex index in this geometr
array. ThetexCoord parameter is a point containing the new texture coordina

public final void setTextureCoordinates(int index,
float texCoords[])

public final void getTextureCoordinates(int index,
float texCoords[])

Sets or retrieves the texture coordinates associated with the vertices starti
the specified index for this object. Theindex parameter is the starting vertex
index in this geometry array. ThetexCoords parameter is an array of 2n or 3n
values containingn new texture coordinates. The length of thetexCoords array
determines the number of vertices copied.

public final void setTextureCoordinates(int index,
Point2f texCoords[])

public final void getTextureCoordinates(int index,
Point2f texCoords[])

public final void setTextureCoordinates(int index,
Point3f texCoords[])

public final void getTextureCoordinates(int index,
Point3f texCoords[])

Sets or retrieves the texture coordinates associated with the vertices starti
the specified index for this object. ThetexCoords parameter is an array of points
containing the new texture coordinate. The length of thetexCoords array deter-
mines the number of vertices copied.

public final void setTextureCoordinates(int index,
float texCoords[], int start, int length)

public final void setTextureCoordinates(int index,
Point2f texCoords[], int start, int length)

public final void setTextureCoordinates(int index,
Point3f texCoords[], int start, int length)

These methods set the texture coordinates associated with the vertices star
the specified index for this object, using data intexCoords starting at index
Java 3D API Specification

NODE COMPONENT OBJECTS TriangleArray Object7.2.4

eth-

nd

th-
nts.

m-

nal
les.

and
start and ending at indexstart+length. The index parameter is the starting
destination vertex index in this geometry array.

7.2.2 PointArray Object

The PointArray object extends GeometryArray and provides no additional m
ods. Objects of this class draw the array of vertices as individual points.

Constructors

public PointArray(int vertexCount, int vertexFormat)

Constructs an empty PointArray object with the specified vertex format a
number of vertices.

7.2.3 LineArray Object

The LineArray object extends GeometryArray and provides no additional me
ods. Objects of this class draw the array of vertices as individual line segme
Each pair of vertices defines a line segment to be drawn.

Constructors

public LineArray(int vertexCount, int vertexFormat)

Constructs an empty LineArray object with the specified vertex format and nu
ber of vertices.

7.2.4 TriangleArray Object

The TriangleArray object extends GeometryArray and provides no additio
methods. Objects of this class draw the array of vertices as individual triang
Each group of three vertices defines a triangle to be drawn.

Constructors

public TriangleArray(int vertexCount, int vertexFormat)

Constructs an empty TriangleArray object with the specified vertex format
number of vertices.
177Version 1.1.2, June 1999

7.2.5 QuadArray Object NODE COMPONENT OBJECTS

178

eth-
rals.
eral
ren-
the

and

ne
the

e-
ifies

r of

he
s the
ified
s

7.2.5 QuadArray Object

The QuadArray object extends GeometryArray and provides no additional m
ods. Objects of this class draw the array of vertices as individual quadrilate
Each group of four vertices defines a quadrilateral to be drawn. A quadrilat
must be planar and convex or results are undefined. A quadrilateral may be
dered as a pair of triangles with either diagonal line arbitrarily chosen to split
quad.

Constructors

public QuadArray(int vertexCount, int vertexFormat)

Constructs an empty QuadArray object with the specified vertex format
number of vertices.

7.2.6 GeometryStripArray Object

GeometryStripArray is an abstract class from which all strip primitives (li
strip, triangle strip, and triangle fan) are derived. In addition to specifying
array of vertex elements, which is inherited from GeometryArray, the Geom
tryStripArray class specifies an array of per-strip vertex counts that spec
where the separate strips appear in the vertex array.

Constructors

The GeometryStripArray object has the following constructor.

public GeometryStripArray(int vertexCount, int vertexFormat,
int stripVertexCounts[])

Constructs an empty GeometryStripArray object with the specified numbe
vertices, vertex format, and an array of vertex counts per strip. ThevertexCount

parameter specifies the number of vertex elements in this array.

The stripVertexCounts parameter is an array that specifies the count of t
number of vertices for each separate strip. The length of this array specifie
number of separate strips. The sum of the vertex counts for all strips, as spec
by the stripVertexCounts array, must equal the total count of all vertices a
specified by thevertexCount parameter.

Methods

The GeometryStripArray object has the following methods.
Java 3D API Specification

NODE COMPONENT OBJECTS TriangleStripArray Object7.2.8

nal
d line
trips
with
revi-

es,

nal
d tri-
rate
ning
rent

er-
public final int getNumStrips()

This method returns the number of strips in the GeometryStripArray.

public final void getStripVertexCounts(int stripVertexCounts[])

This method gets an array containing a list of vertex counts for each strip.

7.2.7 LineStripArray Object

The LineStripArray extends GeometryStripArray and provides no additio
methods. Objects of this class draw an array of vertices as a set of connecte
strips. An array of per-strip vertex counts specifies where the separate s
appear in the vertex array. For every strip in the set, each vertex, beginning
the second vertex in the array, defines a line segment to be drawn from the p
ous vertex to the current vertex.

Constructors

public LineStripArray(int vertexCount, int vertexFormat,
int stripVertexCounts[])

Constructs an empty LineStripArray object with the specified number of vertic
vertex format, and array of vertex counts per strip.

7.2.8 TriangleStripArray Object

The TriangleStripArray extends GeometryStripArray and provides no additio
methods. Objects of this class draw an array of vertices as a set of connecte
angle strips. An array of per-strip vertex counts specifies where the sepa
strips appear in the vertex array. For every strip in the set, each vertex, begin
with the third vertex in the array, defines a triangle to be drawn using the cur
vertex and the two previous vertices.

Constructors

public TriangleStripArray(int vertexCount, int vertexFormat,
int stripVertexCounts[])

Constructs an empty TriangleStripArray object with the specified number of v
tices, vertex format, and array of vertex counts per strip.
179Version 1.1.2, June 1999

7.2.9 TriangleFanArray Object NODE COMPONENT OBJECTS

180

nal
d tri-
strips
ning
rent
col-

rti-

etr-
ion
tes—
rre-
ture

or

or
7.2.9 TriangleFanArray Object

The TriangleFanArray extends GeometryStripArray and provides no additio
methods. Objects of this class draw an array of vertices as a set of connecte
angle fans. An array of per-strip vertex counts specifies where the separate
(fans) appear in the vertex array. For every strip in the set, each vertex, begin
with the third vertex in the array, defines a triangle to be drawn using the cur
vertex, the previous vertex, and the first vertex. This can be thought of as a
lection of convex polygons.

Constructors

public TriangleFanArray(int vertexCount, int vertexFormat,
int stripVertexCounts[])

Constructs an empty TriangleFanArray object with the specified number of ve
ces, vertex format, and array of vertex counts per strip.

7.2.10 IndexedGeometryArray Object

An IndexedGeometryArray object is an abstract class that extends Geom
yArray to allow vertex data to be accessed via a level of indirection. In addit
to the separate arrays of coordinates, colors, normals, and texture coordina
inherited from GeometryArray—an IndexedGeometryArray object adds co
sponding arrays of coordinate indices, color indices, normal indices, and tex
coordinate indices.

Constants

The IndexedGeometryArray object defines the following flags.

public final static int ALLOW_COORDINATE_INDEX_READ
public final static int ALLOW_COORDINATE_INDEX_WRITE

These flags specify that the IndexedGeometryArray object allows reading
writing of the array of coordinate indices.

public static final int ALLOW_COLOR_INDEX_READ
public static final int ALLOW_COLOR_INDEX_WRITE

These flags specify that the IndexedGeometryArray object allows reading
writing of the array of color indices.
Java 3D API Specification

NODE COMPONENT OBJECTS IndexedGeometryArray Object7.2.10

or

or

same

r of
the

e all

the
ele-

cified

at the
public static final int ALLOW_NORMAL_INDEX_READ
public static final int ALLOW_NORMAL_INDEX_WRITE

These flags specify that the IndexedGeometryArray object allows reading
writing of the array of normal indices.

public static final int ALLOW_TEXCOORD_INDEX_READ
public static final int ALLOW_TEXCOORD_INDEX_WRITE

These flags specify that the IndexedGeometryArray object allows reading
writing of the array of texture coordinate indices.

Constructors

The IndexedGeometryArray object has one constructor that accepts the
parameters as GeometryArray.

public IndexedGeometryArray(int vertexCount, int vertexFormat,
int indexCount)

Constructs an empty IndexedGeometryArray object with the specified numbe
vertices, vertex format, and number of indices. The index values in each of
four index arrays (coordinates, colors, normals, and texture coordinates) ar
initialized to 0.

Methods

IndexedGeometryArray methods provide access (get and set methods) to the
individual vertex component index arrays that are used when rendering
geometry. This access is allowed in two different modes: as individual index
ments or as arrays of multiple index elements.

public final void setCoordinateIndex(int index,
int coordinateIndex)

public final int getCoordinateIndex(int index)

Sets or retrieves the coordinate index associated with the vertex at the spe
index.

public final void setCoordinateIndices(int index,
int coordinateIndices[])

public final void getCoordinateIndices(int index,
int coordinateIndices[])

Sets or retrieves the coordinate indices associated with the vertices starting
specified index.
181Version 1.1.2, June 1999

7.2.11 IndexedPointArray Object NODE COMPONENT OBJECTS

182

dex.

spec-

ified

t the

t the

start-

s no
dual
public final void setColorIndex(int index, int colorIndex)
public final int getColorIndex(int index)

Sets or retrieves the color index associated with the vertex at the specified in

public final void setColorIndices(int index, int colorIndices[])
public final void getColorIndices(int index, int colorIndices[])

Sets or retrieves the color indices associated with the vertices starting at the
ified index.

public final void setNormalIndex(int index, int normalIndex)
public final int getNormalIndex(int index)

Sets or retrieves the normal index associated with the vertex at the spec
index.

public final void setnormalIndices(int index, int normalIndices[])
public final void getNormalIndices(int index, int normalIndices[])

Sets or retrieves the normal indices associated with the vertices starting a
specified index.

public final void setTextureCoordinateIndex(int index,
int texCoordIndex)

public final int getTextureCoordinateIndex(int index)

Sets or retrieves the texture coordinate index associated with the vertex a
specified index.

public final void setTextureCoordinateIndices(int index,
int texCoordIndices[])

public final void getTextureCoordinateIndices(int index,
int texCoordIndices[])

Sets or retrieves the texture coordinate indices associated with the vertices
ing at the specified index.

public final int getIndexCount()

Retrieves the number of indices for this IndexedGeometryArray.

7.2.11 IndexedPointArray Object

The IndexedPointArray object extends IndexedGeometryArray and provide
additional methods. Objects of this class draw the array of vertices as indivi
points.
Java 3D API Specification

NODE COMPONENT OBJECTS IndexedTriangleArray Object7.2.13

ver-
rip-
.

no
dual

ver-

(see
tex

ides
ivid-

r of

(see
Constructors

The IndexedPointArray object has the following constructor.

public IndexedPointArray(int vertexCount, int vertexFormat,
int indexCount)

Constructs an empty IndexedPointArray object with the specified number of
tices, vertex format (see Section 7.2.1, “GeometryArray Object,” for a desc
tion of the supported vertex formats), and the number of indices in this array

7.2.12 IndexedLineArray Object

The IndexedLineArray object extends IndexedGeometryArray and provides
additional methods. Objects of this class draw the array of vertices as indivi
line segments. Each pair of vertices defines a line segment to be drawn.

Constructors

The IndexedLineArray object has the following constructor.

public IndexedLineArray(int vertexCount, int vertexFormat,
int indexCount)

Constructs an empty IndexedLineArray object with the specified number of
tices, vertex format, and the number of indices in this array. ThevertexFormat

is a mask indicating which components are present in each vertex
Section 7.2.1, “GeometryArray Object,” for a description of the supported ver
formats).

7.2.13 IndexedTriangleArray Object

The IndexedTriangleArray object extends IndexedGeometryArray and prov
no additional methods. Objects of this class draw the array of vertices as ind
ual triangles. Each group of three vertices defines a triangle to be drawn.

Constructors

The IndexedTriangleArray object has the following constructor.

public IndexedTriangleArray(int vertexCount, int vertexFormat,
int indexCount)

Constructs an empty IndexedTriangleArray object with the specified numbe
vertices, vertex format, and the number of indices in this array. ThevertexFor-

mat is a mask indicating which components are present in each vertex
183Version 1.1.2, June 1999

7.2.14 IndexedQuadArray Object NODE COMPONENT OBJECTS

184

tex

s no
dual
n. A
teral
sen

ver-
rip-
.

es
ing
the

unts

um-
y of
r-
Section 7.2.1, “GeometryArray Object,” for a description of the supported ver
formats).

7.2.14 IndexedQuadArray Object

The IndexedQuadArray object extends IndexedGeometryArray and provide
additional methods. Objects of this class draw the array of vertices as indivi
quadrilaterals. Each group of four vertices defines a quadrilateral to be draw
quadrilateral must be planar and convex or results are undefined. A quadrila
may be rendered as a pair of triangles with either diagonal line arbitrarily cho
to split the quad.

Constructors

The IndexedQuadArray object has the following constructor.

public IndexedQuadArray(int vertexCount, int vertexFormat,
int indexCount)

Constructs an empty IndexedQuadArray object with the specified number of
tices, vertex format (see Section 7.2.1, “GeometryArray Object,” for a desc
tion of the supported vertex formats), and the number of indices in this array

7.2.15 IndexedGeometryStripArray Object

IndexedGeometryStripArray is an abstract class from which all strip primitiv
(line strip, triangle strip, and triangle fan) are derived. In addition to specify
the array of vertex elements, which is inherited from IndexedGeometryArray,
IndexedGeometryArrayStrip class specifies an array of per-strip index co
that specifies where the separate strips appear in the indexed vertex array.

Constructors

The IndexedGeometryStripArray object has the following constructor.

public IndexedGeometryStripArray(int vertexCount,
int vertexFormat, int indexCount, int stripIndexCounts[])

Constructs an empty IndexedGeometryStripArray object with the specified n
ber of vertices, vertex format, number of indices in the array, and an arra
index counts per strip. ThevertexCount parameter specifies the number of ve
tex elements in this array. ThevertexFormat parameter is a mask indicating
which vertex components are present in each vertex. TheindexCount parameter
specifies the number of indices in this array. ThestripIndexCounts parameter
Java 3D API Specification

NODE COMPONENT OBJECTS IndexedTriangleStripArray Object7.2.17

arate
m of

des
et of
sep-
ver-

o be

rti-
ifies

e or
rtex
up-

ro-
as a
is an array that specifies the count of the number of indices for each sep
strip. The length of this array specifies the number of separate strips. The su
the index counts for all strips, as specified by thestripIndexCounts array, must
equal the total count of all indices as specified by theindexCount parameter.

Methods

The IndexedGeometryArrayStrip object has the following methods.

public final int getNumStrips()

Gets the number of strips in the IndexedGeometryStripArray.

public final void getStripIndexCounts(int stripIndexCounts[])

Gets a list of theindexCounts for each strip.

7.2.16 IndexedLineStripArray Object

The IndexedLineStripArray extends IndexedGeometryStripArray and provi
no additional methods. Objects of this class draw an array of vertices as a s
connected line strips. An array of per-strip index counts specifies where the
arate strips appear in the indexed vertex array. For every strip in the set, each
tex, beginning with the second vertex in the array, defines a line segment t
drawn from the previous vertex to the current vertex.

Constructors

The IndexedLineStripArray object has the following constructor.

public IndexedLineStripArray(int vertexCount, int vertexFormat,
int indexCount, int stripIndexCounts[])

Constructs an empty IndexedLineStrip object with the specified number of ve
ces, vertex format, number of indices in this array, and an array that spec
number of indices for each strip. ThevertexFormat parameter is a mask indicat-
ing which components are present in each vertex. This is specified as on
more individual flags that are bitwise ORed together to describe the per-ve
data (see Section 7.2.1, “GeometryArray Object,” for a description of the s
ported vertex formats).

7.2.17 IndexedTriangleStripArray Object

The IndexedTriangleStripArray extends IndexedGeometryStripArray and p
vides no additional methods. Objects of this class draw an array of vertices
185Version 1.1.2, June 1999

7.2.18 IndexedTriangleFanArray Object NODE COMPONENT OBJECTS

186

ifies
in the
le to

ber
dex
-
idual
(see
tex

ides
et of
the

e set,
be

can

ber
dex
-
idual
(see
tex
set of connected triangle strips. An array of per-strip index counts spec
where the separate strips appear in the indexed vertex array. For every strip
set, each vertex, beginning with the third vertex in the array, defines a triang
be drawn using the current vertex and the two previous vertices.

Constructors

The IndexedTriangleStripArray object has the following constructor.

public IndexedTriangleStripArray(int vertexCount,
int vertexFormat, int indexCount, int stripIndexCounts[])

Constructs an empty IndexedTriangleStripArray object with the specified num
of vertices, vertex format, number of indices in this array, and an array of in
counts per strip. ThevertexFormat parameter is a mask indicating which com
ponents are present in each vertex. This is specified as one or more indiv
flags that are bitwise ORed together to describe the per-vertex data
Section 7.2.1, “GeometryArray Object,” for a description of the supported ver
formats).

7.2.18 IndexedTriangleFanArray Object

The IndexedTriangleFanArray extends IndexedGeometryStripArray and prov
no additional methods. Objects of this class draw an array of vertices as a s
connected triangle fans. An array of per-strip index counts specifies where
separate strips (fans) appear in the indexed vertex array. For every strip in th
each vertex, beginning with the third vertex in the array, defines a triangle to
drawn using the current vertex, the previous vertex, and the first vertex. This
be thought of as a collection of convex polygons.

Constructors

The IndexedTriangleFanArray object has the following constructor.

public IndexedTriangleFanArray(int vertexCount, int vertexFormat,
int indexCount, int stripIndexCounts[])

Constructs an empty IndexedTriangleFanArray object with the specified num
of vertices, vertex format, number of indices in this array, and an array of in
counts per strip. ThevertexFormat parameter is a mask indicating which com
ponents are present in each vertex. This is specified as one or more indiv
flags that are bitwise ORed together to describe the per-vertex data
Section 7.2.1, “GeometryArray Object,” for a description of the supported ver
formats).
Java 3D API Specification

NODE COMPONENT OBJECTS CompressedGeometry Object7.2.19

d for-
omet-
ugh
be
le, a

om-

opied
7.2.19 CompressedGeometry Object

The CompressedGeometry object is used to store geometry in a compresse
mat. CompressedGeometry objects use a special format for representing ge
ric information in one order of magnitude less space. The representation, tho
lossy, preserves significant object quality during compression. There will
parameters to allow the user to specify the degree of lossy-ness (for examp
space versus quality knob).

For more information, see Appendix B, “3D Geometry Compression.”

Constants

The CompressedGeometry object specifies the following variables.

public final static int ALLOW_COUNT_READ
public final static int ALLOW_HEADER_READ
public final static int ALLOW_GEOMETRY_READ

These flags, when enabled using thesetCapability method, allow an applica-
tion to invoke methods that read its individual component field information.

Constructors

public CompressedGeometry(CompressedGeometryHeader hdr,
byte geometry[])

Constructs a CompressedGeometry node component. Thehdr field is copied into
the CompressedGeometry object. Thegeometry parameter must conform to the
compressed geometry format as described in Appendix B, “3D Geometry C
pression.”

Methods

public final int getByteCount()

Retrieves the size, in bytes, of the compressed geometry buffer.

public final void getCompressedGeometryHeader
(CompressedGeometryHeader hdr)

Retrieves the header for this CompressedGeometry object. The header is c
into the CompressedGeometryHeader object provided.
187Version 1.1.2, June 1999

7.2.20 CompressedGeometryHeader Object NODE COMPONENT OBJECTS

188

metry
bject

s con-

om-
infor-
the

in the
bers

nd all

idual

ial-

om-
public final void getCompressedGeometry(byte compGeom[])

Retrieves the compressed geometry associated with the CompressedGeo
object. Copies the compressed geometry from the CompressedGeometry o
into the given array.

public final Shape3D[] decompress()

Decompresses the compressed geometry. Returns an array of Shape node
taining the decompressed geometry objects.

7.2.20 CompressedGeometryHeader Object

The CompressedGeometryHeader object is used in conjunction with the C
pressedGeometry object. The CompressedGeometryHeader object contains
mation specific to the compressed geometry data stored in
CompressedGeometry NodeComponent object. This header is used to aid
processing of the compressed geometry by decompression routines. All mem
in the CompressedGeometryHeader node are public, so noget or set routines
are provided. The CompressedGeometryHeader object should be created, a
values set, by the geometry compression utility.

Constants

public static final int POINT_BUFFER
public static final int LINE_BUFFER
public static final int TRIANGLE_BUFFER

These flags indicate whether the compressed geometry is made up of indiv
points, line segments, or triangles.

public static final int COLOR_IN_BUFFER
public static final int ALPHA_IN_BUFFER
public static final int NORMAL_IN_BUFFER

These flags indicate whether RGB, alpha color, or normal information is init
ized in the compressed geometry buffer.

public int majorVersionNumber
public int minorVersionNumber
public int minorMinorVersionNumber

These indicate the major, minor, and minor-minor version numbers for the c
pressed geometry format that was used to compress the geometry.
Java 3D API Specification

NODE COMPONENT OBJECTS Raster Object7.2.21

one

r) is
. If a
the

to be
etry

etry

ffset

of a
pub-
and

at is
oint
that
rence
public int bufferType

This flag describes the type of data in the compressed geometry buffer. Only
type may be present in any given compressed geometry buffer.

public int bufferDataPresent

This flag indicates whether a particular data component (for example, colo
present in the compressed geometry buffer, preceding any geometric data
particular data type is not present then this information will be inherited from
Appearance object.

public int size

This flag indicates the size of the compressed geometry, in bytes, that needs
applied to every point in the compressed geometry buffer to restore the geom
to its original (uncompressed) position.

public int start

This flag contains the offset in bytes of the start of the compressed geom
from the beginning of the compressed geometry buffer.

public double scale
public double xOffset
public double yOffset
public double zOffset

Deprecated flags. Compressed geometry scale, xOffset, yOffset, and zO
should be set by a Transform.

Constructors

public CompressedGeometryHeader()

Creates a new CompressedGeometryHeader object used for the creation
CompressedGeometry NodeComponent object. All instance data is declared
lic and no get or set methods are provided. All values are set to 0 by default
must be filled in by the application.

7.2.21 Raster Object

The Raster object extends Geometry to allow drawing a raster image th
attached to a 3D location in the virtual world. The Raster object contains a p
that is defined in the local object coordinate system of the Shape3D node
references the Raster. The Raster object also contains a type specifier, a refe
189Version 1.1.2, June 1999

7.2.21 Raster Object NODE COMPONENT OBJECTS

190

eger
he
g, a
the

ras-
ster

is

osi-

t ref-

om-

de,
ject,
nent
to an ImageComponent2D object or a DepthComponent object, and an int
x,y offset and a size (width, height) to allow reading or writing of a portion of t
referenced image. In addition to being used as a type of geometry for drawin
Raster object may be used to read back pixel data (color and Z-buffer) from
frame buffer in immediate mode.

The geometric extent of a Raster object is a single 3D point, specified by the
ter position. This means that geometry-based picking or collision with a Ra
object will only intersect the object at this single point; the 2D raster image
neither pickable nor collidable.

Constants

The Raster object defines the following flags.

public static final int ALLOW_POSITION_READ
public static final int ALLOW_POSITION_WRITE
public static final int ALLOW_OFFSET_READ
public static final int ALLOW_OFFSET_WRITE
public static final int ALLOW_IMAGE_READ
public static final int ALLOW_IMAGE_WRITE
public static final int ALLOW_DEPTH_COMPONENT_READ
public static final int ALLOW_DEPTH_COMPONENT_WRITE
public static final int ALLOW_SIZE_READ
public static final int ALLOW_SIZE_WRITE
public static final int ALLOW_TYPE_READ

These flags specify that the Raster object allows reading or writing of the p
tion, offset, image, depth component, or size, or reading of the type.

public static final int RASTER_COLOR

Specifies a Raster object with color data. In this mode, the ImageComponen
erence must point to a valid ImageComponent object.

public static final int RASTER_DEPTH

Specifies a Raster object with depth (Z-buffer) data. In this mode, the depth c
ponent reference must point to a valid DepthComponent object.

public static final int RASTER_COLOR_DEPTH

Specifies a Raster object with both color and depth (Z-buffer) data. In this mo
the image component reference must point to a valid ImageComponent ob
and the depth component reference must point to a valid DepthCompo
object.
Java 3D API Specification

NODE COMPONENT OBJECTS Raster Object7.2.21

ster.
r-left

h to
Constructors

public Raster()

Constructs and initializes a new Raster object with default values:

public Raster(Point3f pos, int type, int xOffset, int yOffset,
int width, int height, ImageComponent2D image,
DepthComponent depthComponent)

public Raster(Point3f pos, int type, Point offset, Dimension size,
ImageComponent2D image, DepthComponent depthComponent)

Constructs and initializes a new Raster object with the specified values.

Methods

public void setPosition(Point3f pos)
public void getPosition(Point3f pos)

These methods set and retrieve the position, in object coordinates, of this ra
This position is transformed into device coordinates and is used as the uppe
corner of the raster.

public void setType(int type)
public int getType()

These methods set and retrieve the type of this Raster object. Thetype is one of
the following:RASTER_COLOR, RASTER_DEPTH, or RASTER_COLOR_DEPTH.

public void setOffset(int xOffset, int yOffset)
public void setOffset(Point offset)
public void getOffset(Point offset)

These methods set and retrieve the offset within the array of pixels at whic
start copying.

Parameter Default Value

type RASTER_COLOR

pos (0,0,0)

offset (0,0)

size (0,0)

image null

depthComponent null
191Version 1.1.2, June 1999

7.2.22 Font3D Object NODE COMPONENT OBJECTS

192

pixel

m a
R_

to or

ese
ject
the

sion
ath
cre-
public void setSize(int width, int height)
public void setSize(Dimension size)
public void getSize(Dimension size)

These methods set and retrieve the number of pixels to be copied from the
array.

public void setImage(ImageComponent2D image)
public ImageComponent2D getImage()

These methods set and retrieve the pixel array used to copy pixels to or fro
Canvas3D. This is used when the type is RASTER_COLOR or RASTE
COLOR_DEPTH.

public void setDepthComponent(DepthComponent depthComponent)
public DepthComponent getDepthComponent()

These methods set and retrieve the DepthComponent used to copy pixels
from a Canvas3D. This is used when thetype is RASTER_DEPTH or RASTER_

COLOR_DEPTH.

7.2.22 Font3D Object

The Font3D object is used to contain 3D glyphs used in rendering 3D text. Th
3D glyphs are constructed from a Java 2D font object and a FontExtrusion ob
(see Section 7.2.23, “FontExtrusion Object”). To ensure correct rendering,
2D font object should be created with the default transform.

Constructors

public Font3D(java.awt.Font font, FontExtrusion extrudePath)

Creates a Font3D object from the specified Font object. The FontExtru
object (see Section 7.2.23, “FontExtrusion Object”) contains the extrusion p
to use on the 2D font glyphs. To ensure correct rendering, the font must be
ated with the default AffineTransform. Passingnull for the FontExtrusion

parameter results in no extrusion being done.

Methods

public GeometryStripArray[] getAsTriangles(int glyphCode)

Deprecated method.
Java 3D API Specification

NODE COMPONENT OBJECTS FontExtrusion Object7.2.23

bject
tru-

t3D
on-

f 3D
ori-
on-
ust
hs or

hape
ed.

ject.
is
or
public Bounds getBounds(int glyphCode)

Deprecated method.

public final void getBoundingBox(int glyphCode,
BoundingBox bounds)

This method returns the 3D bounding box of the specified glyph code.

public Font getFont()

This method returns the Java 2D font used to create this Font3D object.

public void getFontExtrusion(FontExtrusion extrudePath)

This method retrieves the FontExtrusion object used to create this Font3D o
and copies it into the specified parameter. For information about the FontEx
sion object, see Section 7.2.23, “FontExtrusion Object.”

7.2.23 FontExtrusion Object

The FontExtrusion object is used to describe the extrusion path for a Fon
object (see Section 7.2.22, “Font3D Object”). The extrusion path is used in c
junction with a Font2D object. The extrusion path defines the edge contour o
text. This contour is perpendicular to the face of the text. The contour has its
gin at the edge of the glyph, with 1.0 being the height of the tallest glyph. C
tour must be monotonic in x. The user is responsible for data sanity and m
make sure that extrusionShape does not cause intersection of adjacent glyp
within a single glyph, else undefined output may be generated.

Constructors

public FontExtrusion()

Creates the object with the default extrusion shape. The default extrusion s
is null, which specifies that a straight line from 0.0 to 0.2 (straight bevel) is us

public FontExtrusion(java.awt.Shape extrusionShape)

Creates a FontExtrusion object with the specified extrusion shape. Theextru-

sionShape parameter is used to construct the edge contour of a Font3D ob
Each shape begins with an implicit point at 0.0. An IllegalArgumentException
thrown if multiple contours in extrusionShape, or contour is not monotonic,
least x-value of a contour point is not 0.0f.
193Version 1.1.2, June 1999

7.2.24 Text3D Geometry Object NODE COMPONENT OBJECTS

194

ntEx-
a 3D
eter.

The
ance
n—
aced

ion
ue,
Methods

public final void setExtrusionShape(java.awt.Shape extrusionShape)
public final java.awt.Shape getExtrusionShape()

These methods set and retrieve the 2D shape object associated with this Fo
trusion object. The Shape object describes the extrusion path used to create
glyph from a 2D glyph. The set method sets the FontExtrusion's shape param
the get method gets the FontExtrusion's shape parameter.

public final void getExtrusionShape(java.awt.Shape extrusionShape)

Deprecated method.

7.2.24 Text3D Geometry Object

A Text3D object is a text string that has been converted to 3D geometry.
Font3D object (see Section 7.2.22, “Font3D Object”) determines the appear
of the Text3D NodeComponent object. Each Text3D object has a text positio
a point in 3D space where the text should be placed. The 3D text can be pl
around this position using different alignments and paths.

Constants

The Text3D object defines the following flags.

public static final int ALLOW_FONT3D_READ
public static final int ALLOW_FONT3D_WRITE
public static final int ALLOW_STRING_READ
public static final int ALLOW_STRING_WRITE
public static final int ALLOW_POSITION_READ
public static final int ALLOW_POSITION_WRITE
public static final int ALLOW_ALIGNMENT_READ
public static final int ALLOW_ALIGNMENT_WRITE
public static final int ALLOW_PATH_READ
public static final int ALLOW_PATH_WRITE
public static final int ALLOW_CHARACTER_SPACING_READ
public static final int ALLOW_CHARACTER_SPACING_WRITE
public static final int ALLOW_BOUNDING_BOX_READ

These flags control reading and writing of the Font3D component informat
for Font3D, the String object, the text position value, the text alignment val
the text path value, the character spacing, and the bounding box.
Java 3D API Specification

NODE COMPONENT OBJECTS Text3D Geometry Object7.2.24

bject.

xt3D

nc-
d in
Constructors

public Text3D()

Create a new Text3D object with default parameters:

public Text3D(Font3D font3D)
public Text3D(Font3D font3D, String string)
public Text3D(Font3D font3D, String string, Point3f position)
public Text3D(Font3D font3D, String string, Point3f position,

int alignment, int path)

Create a new Text3D object with the defined parameters.

Methods

public final Font3D getFont3D()
public final void setFont3D(Font3D font3d)

These methods get and set the Font3D object associated with this Text3D o

public final String getString()
public final void setString(String string)

These methods get and set the character string associated with this Te
object.

public final void getPosition(Point3f position)
public final void setPosition(Point3f position)

These methods get and set the text position. Theposition parameter is used to
determine the initial placement of the string. The text position is used in conju
tion with the alignment and path to determine how the glyphs are to be place
the scene. The default value is (0.0, 0.0, 0.0).

Parameter Default Value

font3D null

string null

position (0,0,0)

alignment ALIGN_FIRST

path PATH_RIGHT

characterSpacing 0.0
195Version 1.1.2, June 1999

7.2.24 Text3D Geometry Object NODE COMPONENT OBJECTS

196

om-

.

on

nt.

how
(see
t3D
s”) is

.

public final void setAlignment(int alignment)
public final int getAlignment()

These methods set and get the text alignment policy for this Text3D NodeC
ponent object (see Figure 7-4). Thealignment parameter is used to specify how
glyphs in the string are placed in relation to theposition field. Valid values for
the alignment field are:

• ALIGN_CENTER: places the center of the string on the position point

• ALIGN_FIRST: places the first character of the string on the positi
point.

• ALIGN_LAST: places the last character of the string on the position poi

The default value of this field isALIGN_FIRST.

public final void setPath(int path)
public final int getPath()

These methods set and get the node’s path field. This field is used to specify
succeeding glyphs in the string are placed in relation to the previous glyph
Figure 7-4). The path is relative to the local coordinate system of the Tex
node. The default coordinate system (see Section 3.4, “Coordinate System
right-handed with +Y being up, +X horizontal to the right, and +Z directed
toward the viewer. Valid values for this field are as follows:

• PATH_LEFT: places succeeding glyphs to the left (the –X direction) of the
current glyph.

• PATH_RIGHT: places succeeding glyphs to the right (the +X direction) of
the current glyph.

• PATH_UP: places succeeding glyphs above (the +Y direction) the current
glyph.

• PATH_DOWN: places succeeding glyphs below (the –Y direction) the
current glyph.

The default value of this field isPATH_RIGHT.

public final void getBoundingBox(BoundingBox bounds)

This method retrieves the 3D bounding box that encloses this Text3D object
Java 3D API Specification

NODE COMPONENT OBJECTS Tuple Objects7.3.1

ext3D
as

idth

ction
tor-
ting
and

y are
these
hese

our.
nor-
Figure 7-4 Various Text Alignments and Paths

public final void setCharacterSpacing(float characterSpacing)
public final float getCharacterSpacing()

These methods set and get the character spacing used to construct the T
string. This spacing is in addition to the regular spacing between glyphs
defined in the Font object. A value of 1.0 in this space is measured as the w
of the largest glyph in the 2D font. The default value is 0.0.

7.3 Math Component Objects

Java 3D defines a number of additional objects that are used in the constru
and manipulation of other Java 3D objects. These objects provide low-level s
age and manipulation control for users. They provide methods for represen
vertex components (for example, color and position), volumes, vectors,
matrices.

The tuple and matrix math classes are not part of Java 3D per se, but the
needed by Java 3D and are defined here for convenience. Java 3D uses
classes internally and also makes them available for use by applications. T
classes will be delivered in a separatejavax.vecmath package. The tuple and
matrix math classes are described in detail in Appendix A, “Math Objects.”

7.3.1 Tuple Objects

The tuple objects, listed in Table 7-1, store tuples of length two, three, and f
Java 3D tuples are used to store various kinds of information such as colors,
mals, texture coordinates, vertices, and so forth.

TFEL HTAP.

.PATH_RIGHT

= Text Position Point

ALIGN_FIRST

P
U

D
O
W
N

.
.

ALIGN_CENTER

TFEL HTAP

PATH_RIGHT

P
U

D
O
W
N

.

.

.

ALIGN_LAST

PATH_RIGHT.

.TFEL HTAP

P
U

.

D
O
W
N.
197Version 1.1.2, June 1999

7.3.1 Tuple Objects NODE COMPONENT OBJECTS

198

ctor,
ou-

ple

t

class

t

, and
e

ss is

tored
The tuple classes are further subdivided by storage type, such as point, ve
color, and so forth, and by class—whether the vector consists of single- or d
ble-precision floating-point numbers or bytes. Only the floating-point tu
classes support math operations.

Table 7-1 Tuple Objects

Class Description

Tuple2d Used to represent two-component coordinates in double-precision floating-poin
format. This class is further divided into the following:

Point2d: Representsx,y point coordinates.
Vector2d: Representsx,y vector coordinates.

Tuple2f Used to represent two-component coordinates in single-precision floating-point
format. This class is further divided into the following:

Point2f: Representsx,y point coordinates.
TexCoord2f: Representsx,y texture coordinates.
Vector2f: Representsx,y vector coordinates.

Tuple3b Used to represent three-component color information stored as three bytes. This
is further divided into the following:

Color3b: Represents RGB color values.

Tuple3d Used to represent point and vector coordinates in double-precision floating-poin
format. This class is further divided into the following:

Point3d: Representsx,y,z point coordinates.
Vector3d: Representsx,y,z vector coordinates.

Tuple3f Used to represent three-component colors, point coordinates, texture coordinates
vectors in single-precision floating-point format. This class is further divided into th
following:

Color3f: Represents RGB color values.
Point3f: Representsx,y,z point coordinates.
TexCoord3f: Representsx,y,z texture coordinates.
Vector3f: Representsx,y,z vector coordinates.

Tuple4b Used to represent four-component color information stored as four bytes. This cla
further divided into the following:

Color4b: Represents RGBα color values.

Tuple4d Used to represent four-component color information, quaternions, and vectors s
in double-precision floating-point format. This class is further divided into the
following:

Point4d: Representsx,y,z,w point coordinates.
Quat4d: Representsx,y,z,w quaternion coordinates.
Vector4d: Representsx,y,z,w vector coordinates.
Java 3D API Specification

NODE COMPONENT OBJECTS Matrix Objects7.3.2

one

ons,
to

ision

sion

ass.
These are described in more detail in Appendix A, “Math Objects.”

7.3.2 Matrix Objects

The matrix objects, listed in Table 7-2, define a complete 3× 3 or 4× 4 floating-
point transformation matrix. All the vector subclasses operate using this
matrix type.

These are described in more detail in Appendix A, “Math Objects.”

Tuple4f Used to represent four-component color information, point coordinates, quaterni
and vectors in single-precision floating-point format. This class is further divided in
the following:

Color4f: Represents RGBα color values.
Point4f: Representsx,y,z,w point coordinates.
Quat4f: Representsx,y,z,w quaternion coordinates.
Vector4f: Representsx,y,z,w vector coordinates.

AxisAngle4d Used to represent four-component axis-angle rotations consisting of double-prec
floating-pointx, y, andz coordinates and a rotation angle in radians.

AxisAngle4f Used to represent four-component axis-angle rotations consisting of single-preci
floating pointx, y, andz coordinates and a rotation angle in radians.

GVector Used to represent a general, dynamically resizeable, one-dimensional vector cl

Table 7-2 Matrix Objects

Class Description

Matrix3d Used to represent a double-precision floating-point 3× 3 matrix.

Matrix3f Used to represent a single-precision floating-point 3× 3 matrix.

Matrix4d Used to represent a double-precision floating-point 4× 4 matrix.

Matrix4f Used to represent a single-precision floating-point 4× 4 matrix.

GMatrix A double-precision, general, dynamically resizeableN × M matrix class.

Table 7-1 Tuple Objects (Continued)

Class Description
199Version 1.1.2, June 1999

Version 1.1.2, June 1999
C H A P T E R 8
e,
s-of-
ery-
tten
play
lay
h. It
ren-

ker to

tual
tion
vir-
hat
’s
this
ent,

ome
ates

the
a

he
tor’s
View Model

JAVA 3D introduces a new view model that takes Java’s vision of “write onc
run anywhere” and generalizes it to include display devices and six-degree
freedom input peripherals such as head trackers. This “write once, view ev
where” nature of the new view model means that an application or applet wri
using the Java 3D view model can render images to a broad range of dis
devices, including standard computer displays, multiple-projection disp
rooms, and head-mounted displays, without modification of the scene grap
also means that the same application, once again without modification, can
der stereoscopic views and can take advantage of the input from a head trac
control the rendered view.

Java 3D’s view model achieves this versatility by cleanly separating the vir
and the physical world. This model distinguishes between how an applica
positions, orients, and scales a ViewPlatform object (a viewpoint) within the
tual world and how the Java 3D renderer constructs the final view from t
viewpoint’s position and orientation. The application controls the ViewPlatform
position and orientation; the renderer computes what view to render using
position and orientation, a description of the end-user’s physical environm
and the user’s position and orientation within the physical environment.

This chapter first explains why Java 3D chose a different view model and s
of the philosophy behind that choice. It next describes how that model oper
in the simple case of a standard computer screen without head tracking—
most common case. Finally, it presents the relevant parts of the API from
developer’s perspective. Appendix C, “View Model Details,” describes t
Java 3D view model from an advanced developer and Java 3D implemen
perspective.
201

8.1 Why a New Model? VIEW MODEL

202

trol
ppli-
plica-
s as
even

man
late

no
ion

t and
era-
ntly

ys-
s.

the
ion
for
vary

as a
d a
er’s
en
ent
rs,

s of
ill

es
8.1 Why a New Model?

Camera-based view models as found in low-level APIs give developers con
over all rendering parameters. This makes sense when dealing with custom a
cations, less sense when dealing with systems that wish to have broader ap
bility: systems such as viewers or browsers that load and display whole world
a single unit or systems where the end users view, navigate, display, and
interact with the virtual world.

Camera-based view models emulate a camera in the virtual world, not a hu
in a virtual world. Developers must continuously reposition a camera to emu
“a human in the virtual world.”

The Java 3D view model incorporates head tracking directly, if present, with
additional effort from the developer, thus providing end users with the illus
that they actually exist inside a virtual world.

The Java 3D view model, when operating in a non-head-tracked environmen
rendering to a single, standard display, acts very much like a traditional cam
based view model, with the added functionality of being able to transpare
generate stereo views.

8.1.1 The Physical Environment Influences the View

Letting the application control all viewing parameters is not reasonable in s
tems in which the physical environment dictates some of the view parameter

One example of this is a head-mounted display (HMD), where the optics of
head-mounted display directly determine the field of view that the applicat
should use. Different HMDs have different optics, making it unreasonable
application developers to hard-wire such parameters or allow end users to
that parameter at will.

Another example is a system that automatically computes view parameters
function of the user’s current head position. The specification of a world an
predefined flight path through that world may not exactly specify an end-us
view. HMD users would expect to look and thus see to their left or right ev
when following a fixed path through the environment—imagine an amusem
park ride with vehicles that follow fixed paths to present content to their visito
but visitors can continue to move their heads while on those rides.

Depending on the physical details of the end-user’s environment, the value
the viewing parameters, particularly the viewing and projection matrices, w
vary widely. The factors that influence the viewing and projection matric
Java 3D API Specification

VIEW MODEL The Physical World 8.2.2

er’s
three
and
del

ation
envi-
input

ysical
l-
action
ctiv-

al
cale
ts
tive
en-
raph

in
ead
ocal
ed.

iffer-
dif-
re is
di-
er (if
include the size of the physical display, how the display is mounted (on the us
head or on a table), whether the computer knows the user’s head location in
space, the head mount’s actual field of view, the display’s pixels per inch,
other such parameters. For more information, see Appendix C, “View Mo
Details.”

8.2 Separation of Physical and Virtual

The Java 3D view model separates the virtual environment, where the applic
programmer has placed objects in relation to one another, from the physical
ronment, where the user exists, sees computer displays, and manipulates
devices.

Java 3D also defines a fundamental correspondence between the user’s ph
world and the virtual world of the graphic application. This physical-to-virtua
world correspondence defines a single common space, a space where an
taken by an end user affects objects within the virtual world and where any a
ity by objects in the virtual world affects the end-user’s view.

8.2.1 The Virtual World

The virtual world is a common space in which virtual objects exist. The virtu
world coordinate system exists relative to a high-resolution Locale—each Lo
object defines the origin of virtual world coordinates for all of the objec
attached to that Locale. The Locale that contains the currently ac
ViewPlatform object defines the virtual world coordinates that are used for r
dering. Java3D eventually transforms all coordinates associated with scene g
elements into this common virtual world space.

8.2.2 The Physical World

The physical world is just that—the real, physical world. This is the space
which the physical user exists, and within which he or she moves his or her h
and hands. This is the space in which any physical trackers define their l
coordinates, and in which several calibration coordinate systems are describ

The physical world is a space, not a common coordinate system between d
ent execution instances of Java 3D. So while two different computers at two
ferent physical locations on the globe may be running at the same time, the
no mechanism directly within Java 3D to relate their local physical world coor
nate systems with each other. Because of calibration issues, the local track
203Version 1.1.2, June 1999

8.3 The Objects That Define the View VIEW MODEL

204

ular

cally,
ject,
ject.

sid-

For
tual
ard
tails

he
in
any) defines the local physical world coordinate system known to a partic
instance of Java 3D.

8.3 The Objects That Define the View

Java 3D distributes its view model parameters across several objects, specifi
the View object and its associated component objects, the PhysicalBody ob
the PhysicalEnvironment object, the Canvas3D object, and the Screen3D ob
Figure 8-1 shows graphically the central role of the View object and the sub
iary role of its component objects.

Figure 8-1 View Object, Its Component Objects, and Their Interconnection

The view-related objects shown in Figure 8-1 and their roles are as follows.
each of these objects, the portion of the API that relates to modifying the vir
world and the portion of the API that is relevant to non-head-tracked stand
display configurations are derived in this chapter. The remainder of the de
are described in Appendix C, “View Model Details.”

• ViewPlatform: A leaf node that locates a view within a scene graph. T
ViewPlatform’s parents specify its location, orientation, and scale with

BG

VP
View

Platform

Virtual Universe

Hi-Res Locale

View Canvas3D Screen3D

Physical
Body

Physical
Environment
Java 3D API Specification

VIEW MODEL ViewPlatform: A Place in the Virtual World 8.4

nd
-

ee

es.
the

ject.

y
n in
hin
n 8.8,

g
ct,”

-
n-
ee
.

citly
for-
eo-

ng

nce
he
e for

de.
is

e
ctly
the virtual universe. See Section 5.10, “ViewPlatform Node,” a
Section 8.4, “ViewPlatform: A Place in the Virtual World,” for more infor
mation.

• View: The main view object. It contains many pieces of view state. S
Section 8.7, “The View Object,” for more information.

• Canvas3D: The 3D version of the Abstract Windowing Toolkit (AWT)
Canvas object. It represents a window in which Java 3D will draw imag
It contains a reference to a Screen3D object and information describing
Canvas3D’s size, its shape, and its location within the Screen3D ob
See Section 8.9, “The Canvas3D Object,” for more information.

• Screen3D: An object that contains information describing the displa
screen’s physical properties. Java 3D places display-screen informatio
a separate object to prevent the duplication of screen information wit
every Canvas3D object that shares a common screen. See Sectio
“The Screen3D Object,” for more information.

• PhysicalBody: An object that contains calibration information describin
the user’s physical body. See Section 8.10, “The PhysicalBody Obje
for more information.

• PhysicalEnvironment: An object that contains calibration information de
scribing the physical world, mainly information that describes the enviro
ment’s six-degrees-of freedom tracking hardware, if present. S
Section 8.11, “The PhysicalEnvironment Object,” for more information

Together, these objects describe the geometry of viewing rather than expli
providing a viewing or projection matrix. The Java 3D renderer uses this in
mation to construct the appropriate viewing and projection matrices. The g
metric focus of these view objects provides more flexibility in generati
views—a flexibility needed to support alternative display configurations.

8.4 ViewPlatform: A Place in the Virtual World

A ViewPlatform leaf node defines a coordinate system, and thus a refere
frame with its associated origin or reference point, within the virtual world. T
ViewPlatform serves as a point of attachment for View objects and as a bas
determining a renderer’s view.

Figure 8-2 shows a portion of a scene graph containing a ViewPlatform no
The nodes directly above a ViewPlatform determine where that ViewPlatform
located and how it is oriented within the virtual world. By modifying th
Transform3D object associated with a TransformGroup node anywhere dire
205Version 1.1.2, June 1999

8.4.1 Moving Through the Virtual World VIEW MODEL

206

rm
s-

w
nto

’s
m’s
iga-
rch-

ful
for a
that
above a ViewPlatform, an application or behavior can move that ViewPlatfo
anywhere within the virtual world. A simple application might define one Tran
formGroup node directly above a ViewPlatform, as shown in Figure 8-2.

A VirtualUniverse may have many different ViewPlatforms, but a particular Vie
object can only attach itself to a single ViewPlatform. Thus, each rendering o
a Canvas3D is done from the point of view of a single ViewPlatform.

Figure 8-2 A Portion of a Scene Graph Containing a ViewPlatform Object

8.4.1 Moving Through the Virtual World

An application navigates within the virtual world by modifying a ViewPlatform
parent TransformGroup. Examples of applications that modify a ViewPlatfor
location and orientation include browsers, object viewers that provide nav
tional controls, applications that do architectural walkthroughs, and even sea
and-destroy games.

Controlling the ViewPlatform object can produce very interesting and use
results. Our first simple scene graph (see Figure 1-2) defines a scene graph
simple application that draws an object in the center of a window and rotates

BG

VP

Virtual Universe

Hi-Res Locale

View Canvas3D Screen3D

Physical
Body

Physical
Environment

TG

BranchGroup

TransformGroup

ViewPlatform
Java 3D API Specification

VIEW MODEL Dropping In on a Favorite Place 8.4.2

the

ntral
ode
r to

low

cess
llow
ect.

es a
nt
of

he
object about its center point. In that figure, the Behavior object modifies
TransformGroup directly above the Shape3D node.

An alternative application scene graph, shown in Figure 8-3, leaves the ce
object alone and moves the ViewPlatform around the world. If the shape n
contains a model of the earth, this application could generate a view simila
that seen by astronauts as they orbit the earth.

Had we populated this world with more objects, this scene graph would al
navigation through the world via the Behavior node.

Figure 8-3 A Simple Scene Graph with View Control

Applications and behaviors manipulate a TransformGroup through its ac
methods. These methods (defined in Section 4.3, “TransformGroup Node”) a
an application to retrieve and set the Group node’s Transform3D obj
Transform3D Node methods includegetTransform andsetTransform.

8.4.2 Dropping In on a Favorite Place

A scene graph may contain multiple ViewPlatform objects. If a user detach
View object from a ViewPlatform and then reattaches that View to a differe
ViewPlatform, the image on the display will now be rendered from the point
view of the new ViewPlatform. For more information, see Section 8.7, “T
View Object.”

BG

Virtual Universe

Locale Object

BranchGroup Nodes

BBehavior Node
TT TransformGroup Nodes

S
Shape3D Node

Appearance Geometry

ViewPlatform Object

VP

User Code
and Data

BG

View

Other Objects
207Version 1.1.2, June 1999

8.4.3 View Attach Policy VIEW MODEL

208

olicy
es

y. A
al
l-

in
in

ls
in
om-
d

de-

ch
to-
int.
by

10,

l
his
n-
rtual
the
-

t-
tical
8.4.3 View Attach Policy

The actual view that Java 3D’s renderer draws depends on the view attach p
specified within the currently attached ViewPlatform. The ViewPlatform defin
the following methods for setting and retrieving the view attach policy.

Methods

public final void setViewAttachPolicy(int policy)
public final int getViewAttachPolicy()

These methods set and retrieve the coexistence center in virtual world polic
ViewPlatform’s view attach policydetermines how Java 3D places the virtu
eyepoint within the ViewPlatform. The policy can have one of the following va
ues:

• NOMINAL_HEAD: Ensures that the end-user’s nominal eye position
the physical world corresponds to the virtual eye’s nominal eye position
the virtual world (the ViewPlatform’s origin). In essence, this policy tel
Java 3D to position the virtual eyepoint relative to the ViewPlatform orig
in the same way as the physical eyepoint is positioned relative to its n
inal physical-world origin. Deviations in the physical eye’s position an
orientation from nominal in the physical world generate corresponding
viations of the virtual eye’s position and orientation in the virtual world.

• NOMINAL_FEET: Ensures that the end-user’s virtual feet always tou
the virtual ground. This policy tells Java 3D to compute the physical-
virtual-world correspondence in a way that enforces this constra
Java 3D does so by appropriately offsetting the physical eye’s position
the end-user’s physical height. Java 3D uses thenominalEyeHeightFrom-

Ground parameter found in the PhysicalBody object (see Section 8.
“The PhysicalBody Object”) to perform this computation.

• NOMINAL_SCREEN: Allows an application to always have the virtua
eyepoint appear at some “viewable” distance from a point of interest. T
policy tells Java 3D to compute the physical-to-virtual-world correspo
dence in a way that ensures that the renderer moves the nominal vi
eyepoint away from the point of interest by the amount specified by
nominalEyeOffsetFromNominalScreen parameter found in the Physical
Body object (see Section 8.10, “The PhysicalBody Object”).

• NOMINAL_SCREEN_SCALED: This value is deprecated. All view a
tach policies are now affected by the screen scale so this policy is iden
to NOMINAL_SCREEN, which should be used instead.
Java 3D API Specification

VIEW MODEL Composing Model and Viewing Transformations8.5.1

sta-

ucts.

roup
r the
ode

ould
n a
l
now

sys-

g on
iron-

s the
om-

del

tual
ion
erer
ction
ng

a 3D
tion
om-

and
—
the
8.4.4 Associating Geometry with a ViewPlatform

Java 3D does not have any built-in semantics for displaying a visible manife
tion of a ViewPlatform within the virtual world (anavatar). However, a devel-
oper can construct and manipulate an avatar using standard Java 3D constr

A developer can construct a small scene graph consisting of a TransformG
node, a behavior leaf node, and a shape node and insert it directly unde
BranchGroup node associated with the ViewPlatform object. The shape n
would contain a geometric model of the avatar’s head. The behavior node w
change the TransformGroup’s transform periodically to the value stored i
View object’s UserHeadToVworld parameter, (see Appendix C, “View Mode
Details”). The avatar’s virtual head, represented by the shape node, will
move around in lock-step with the ViewPlatform’s TransformGroupandany rel-
ative position and orientation changes of the user’s actual physical head (if a
tem has a head tracker).

8.5 Generating a View

Java 3D generates viewing matrices in one of a few different ways, dependin
whether the end user has a head-mounted or a room-mounted display env
ment and whether or not head tracking is enabled. This section describe
computation for a non-head-tracked, room-mounted display—a standard c
puter display. Other environments are described in Appendix C, “View Mo
Details.”

In the absence of head tracking, the ViewPlatform’s origin specifies the vir
eye’s location and orientation within the virtual world. However, the eye locat
provides only part of the information needed to render an image. The rend
also needs a projection matrix. In the default mode, Java 3D uses the proje
policy, the specified field-of-view information, and the front and back clippi
distances to construct a viewing frustum.

8.5.1 Composing Model and Viewing Transformations

Figure 8-4 shows a simple scene graph. To draw the object labeled “S,” Jav
internally constructs the appropriate model, view platform, eye, and projec
matrices. Conceptually, the model transformation for a particular object is c
puted by concatenating all the matrices in a direct path between the object
the VirtualUniverse. The view matrix is then computed—again, conceptually
by concatenating all the matrices between the VirtualUniverse object and
209Version 1.1.2, June 1999

8.5.1 Composing Model and Viewing Transformations VIEW MODEL

210

tri-
cts.

tion

the
iew

ich

odel

aces
ion
tually
eral
di-
ViewPlatform attached to the current View object. The eye and projection ma
ces are constructed from the View object and its associated component obje

Figure 8-4 Object and ViewPlatform Transformations

In our scene graph, what we would normally consider the model transforma
would consist of the following three transformations:LT 1T2. By multiplying
LT 1T2 by a vertex in the shape object, we would transform that vertex into
virtual universe’s coordinate system. What we would normally consider the v
platform transformation would be (LT v1)–1 or Tv1

–1L –1. This presents a problem
since coordinates in the virtual universe are 256-bit fixed-point values, wh
cannot be used to efficiently represent transformed points.

Fortunately, however, there is a solution to this problem. Composing the m
and view platform transformations gives us

Tv1
–1L –1LT 1T2 = Tv1

–1IT 1T2 = Tv1
–1T1T2,

the matrix that takes vertices in an object’s local coordinate system and pl
them in the ViewPlatform’s coordinate system. Note that the high-resolut
Locale transformations cancel each other out, which removes the need to ac
transform points into high-resolution VirtualUniverse coordinates. The gen
formula of the matrix that transforms object coordinates to ViewPlatform coor
nates isTvn

–1…Tv2
–1Tv1

–1T1T2…Tm.

BG

VP

Virtual Universe

Hi-Res Locale

View Canvas3D Screen3D

Physical
Body

Physical
Environment

T1

T2

S

Tv1

L

Java 3D API Specification

VIEW MODEL Multiple Locales 8.5.2

iew

ordi-

ices

cales
that

s the
les

am-
the

es in

ns-
irtu-

y

iven
, the

di-

olu-
e are
As was mentioned above, the View object contains the remainder of the v
information, specifically, the eye matrix,E, that takes points in the View-
Platform’s local coordinate system and translates them into the user’s eye co
nate system, and the projection matrix,P, that projects objects in the eye’s
coordinate system into clipping coordinates. The final concatenation of matr
for rendering our shape object “S” on the specified Canvas3D isPETv1

–1T1T2. In
general this isPETvn

–1…Tv2
–1Tv1

–1T1T2…Tm.

The details of how Java 3D constructs the matricesE andP in different end-user
configurations are described in Appendix C, “View Model Details.”

8.5.2 Multiple Locales

Java 3D supports multiple high-resolution Locales. In some cases, these Lo
are close enough to each other that they can “see” each other, meaning
objects can be rendered even though they are not in the same Locale a
ViewPlatform object that is attached to the View. Java 3D automatically hand
this case without the application having to do anything. As in the previous ex
ple, where the ViewPlatform and the object being rendered are attached to
same Locale, Java 3D internally constructs the appropriate matrices for cas
which the ViewPlatform and the object being rendered arenot attached to the
same Locale.

Let’s take two Locales, L1 and L2, with the View attached to a ViewPlatform in
L1. According to our general formula, the modeling transformation—the tra
formation that takes points in object coordinates and transforms them into V
alUniverse coordinates—isLT 1T2…Tm. In our specific example, a point in
Locale L2 would be transformed into VirtualUniverse coordinates b
L 2T1T2…Tm. The view platform transformation would be (L 1Tv1Tv1…Tvn)–1 or
Tvn

–1…Tv2
–1Tv1

–1L 1
–1. Composing these two matrices gives us

Tvn
–1…Tv2

–1Tv1
–1L 1

–1L 2T1T2…Tm.

Thus, to render objects in another Locale, it is sufficient to computeL 1
–1L 2 and

use that as the starting matrix when composing the model transformations. G
that a Locale is represented by a single high-resolution coordinate position
transformationL 1

–1L 2 is a simple translation byL 2 – L 1. Again, it is not neces-
sary to actually transform points into high-resolution VirtualUniverse coor
nates.

In general, Locales that are close enough that the difference in their high-res
tion coordinates can be represented in double precision by a noninfinite valu
211Version 1.1.2, June 1999

8.6 A Minimal Environment VIEW MODEL

212

iques

can
ust
ent

ion

s all
rmine
ts. It
ew.

ew
iew
close enough to be rendered. In practice, more sophisticated culling techn
can be used to only render those Locales that really are “close enough.”

8.6 A Minimal Environment

An application must create a minimal set of Java 3D objects before Java 3D
render to a display device. In addition to a Canvas3D object, the application m
create a View object, with its associated PhysicalBody and PhysicalEnvironm
objects, and the following scene graph elements:

• A VirtualUniverse object

• A high-resolution Locale object

• A BranchGroup node object

• A TransformGroup node object with associated transform

• A ViewPlatform leaf node object that defines the position and orientat
within the virtual universe for generating views

8.7 The View Object

The View object coordinates all aspects of the rendering process. It contain
the parameters or references to objects containing the parameters that dete
how to render images to the windows represented by its Canvas3D objec
also contains the set of canvases that represent various “windows” onto a vi

Java 3D allows applications to specify multiple simultaneously active Vi
objects, each controlling its own set of canvases. For more details on a V
object’s internals, see Section C.5, “The View Object.”

Constructors

The View object specifies the following constructor.

public View()

Constructs and initializes a new View object with default parameters:

Parameter Default Value

view policy SCREEN_VIEW

projection policy PERSPECTIVE_PROJECTION

screen scale policy SCALE_SCREEN_SIZE
Java 3D API Specification

VIEW MODEL The View Object 8.7

See
al-
Methods

The View object specifies the following methods.

public final void setPhysicalBody(PhysicalBody physicalBody)
public final PhysicalBody getPhysicalBody()

These methods set and retrieve the View’s PhysicalBody object.
Section 8.10, “The PhysicalBody Object,” for more information on the Physic
Body object.

window resize policy PHYSICAL_WORLD

window movement policy PHYSICAL_WORLD

window eyepoint policy RELATIVE_TO_FIELD_OF_VIEW

monoscopic view policy CYCLOPEAN_EYE_VIEW

front clip policy PHYSICAL_EYE

back clip policy PHYSICAL_EYE

compatibility mode false

left projection identity

right projection identity

vpc to ec transform identity

physical body null

physical environment null

screen scale 1.0

field of view π/4

front clip distance 0.1

back clip distance 10.0

tracking enable false

user head to vworld enable false

list of Canvas3D objects empty

depth buffer freeze transparent true

scene antialiasing false

local eye lighting false

view platform null

behavior scheduler running true

view running true

Parameter Default Value
213Version 1.1.2, June 1999

8.7 The View Object VIEW MODEL

214

See
he

ist-
e-
iew

g a

ulta-
was

live
a-

bject
thin
ion
public final void setPhysicalEnvironment(PhysicalEnvironment
physicalEnvironment)

public final PhysicalEnvironment getPhysicalEnvironment()

These methods set and retrieve the View’s PhysicalEnvironment object.
Section 8.11, “The PhysicalEnvironment Object,” for more information on t
PhysicalEnvironment object.

public final void attachViewPlatform(ViewPlatform vp)

This method attaches a ViewPlatform leaf node to this View, replacing the ex
ing ViewPlatform. If the ViewPlatform is part of a live scene graph, or is subs
quently made live, the scene graph is rendered into all canvases in this V
object’s list of Canvas3D objects. To remove a ViewPlatform without attachin
new one—causing the View to no longer be rendered—anull reference may be
passed to this method. In this case, the behavior is as if rendering were sim
neously stopped on all canvases attached to the View—the last frame that
rendered in each remains visible until the View is again attached to a
ViewPlatform object. See Section 5.10, “ViewPlatform Node,” for more inform
tion on ViewPlatform objects.

public final ViewPlatform getViewPlatform()

This method retrieves the currently attached ViewPlatform object.

public final Canvas3D getCanvas3D(int index)
public final void setCanvas3D(Canvas3D canvas3D, int index)
public final void addCanvas3D(Canvas3D canvas3D)
public final void insertCanvas3D(Canvas3D canvas3D, int index)
public final void removeCanvas3D(int index)
public final void removeCanvas3D(Canvas3D canvas3D)

These methods set, retrieve, add to, insert after, and remove a Canvas3D o
from this View. The index specifies the reference to the Canvas3D object wi
the View object. See Section 8.9, “The Canvas3D Object” for more informat
on Canvas3D objects.

public final Enumeration getAllCanvas3Ds()

This method gets the Enumeration object of all the Canvas3Ds.

public final void addInputDevice(InputDevice device)
public final Enumeration allInputDevices()

These methods are deprecated. UsePhysicalEnvironment.addInputDe-
vice(InputDevice) instead of View.addInputDevice(InputDevice). Use
Java 3D API Specification

VIEW MODEL Projection Policy 8.7.1

ro-
iew

iew.

a

te a

ates
jec-
n

us-
,

Physical-Environment.getAllInputDevices() instead ofView.allInputDe-
vices().

public final void addAudioDevice(AudioDevice device)
public final Enumeration allAudioDevices()

These methods are deprecated. UsePhysicalEnvironment.setAudioDe-
vice(AudioDevice) instead of View.addAudioDevice(AudioDevice). Use
PhysicalEnvironment.getAudioDevice() instead of View.allAudioDev-

ices().

8.7.1 Projection Policy

The projection policy informs Java 3D whether it should generate a parallel p
jection or a perspective projection. This policy is attached to the Java 3D V
object.

Methods

public final void setProjectionPolicy(int policy)
public final int getProjectionPolicy()

These two methods set and retrieve the current projection policy for this v
The projection policies are as follows:

• PARALLEL_PROJECTION: Specifies that Java 3D should compute
parallel projection.

• PERSPECTIVE_PROJECTION: Specifies that Java 3D should compu
perspective projection. This is the default setting.

public final void setLocalEyeLightingEnable(boolean flag)
public final boolean getLocalEyeLightingEnable()

These methods set and retrieve the local eye lighting flag, which indic
whether the local eyepoint is used in lighting calculations for perspective pro
tions. If this flag is set totrue, the view vector is calculated per vertex based o
the direction from the actual eyepoint to the vertex. If this flag is set tofalse, a
single view vector is computed from the eyepoint to the center of the view fr
tum. This is calledinfinite eye lighting. Local eye lighting is disabled by default
and is ignored for parallel projections.
215Version 1.1.2, June 1999

8.7.1 Projection Policy VIEW MODEL

216

dow

le
.

icy

orld.

rtual

win-
g
ed
sing
dow

r a
ain

omes
fault

nc-

r
nges
. A
8.7.1.1 Window Sizing and Movement

When users resize or move windows, Java 3D can choose to think of the win
as attached either to the physical world or to the virtual world. Thewindow
resize policyallows an application to specify how the view model will hand
resizing requests. The window resize policies are specified by two constants

Constants

public static final int PHYSICAL_WORLD

This variable specifies the policy for resizing and moving windows. This pol
is used in specifyingwindowResizePolicy and windowMovementPolicy. This
variable specifies that the specified action takes place only in the physical w

public static final int VIRTUAL_WORLD

This variable specifies that Java 3D applies the associated policy in the vi
world.

Methods

public final void setWindowResizePolicy(int policy)
public final int getWindowResizePolicy()

This variable specifies how Java 3D modifies the view when a user resizes a
dow. A value ofPHYSICAL_WORLD states that Java 3D will treat window resizin
operations asonly happening in the physical world. This implies that render
objects continue to fill the same percentage of the newly sized window, u
more or less pixels to draw those objects, depending on whether the win
grew or shrank in size. A value ofVIRTUAL_WORLD states that Java 3D will treat
window resizing operations as also happening in the virtual world wheneve
resizing occurs in the physical world. This implies that rendered objects rem
the same size (use the same number of pixels), but since the window bec
larger or smaller, the user sees more or less of the virtual world. The de
value isPHYSICAL_WORLD.

public final void setWindowMovementPolicy(int policy)
public final int getWindowMovementPolicy()

This variable specifies what part of the virtual world Java 3D will draw as a fu
tion of the window location on the display screen. A value ofPHYSICAL_WORLD

states that the window acts as if it movesonly on the physical screen. As the use
moves the window on the screen, the window’s position on the screen cha
but Java 3D continues to draw exactly the same image within that window
Java 3D API Specification

VIEW MODEL Clip Policies 8.7.2

e
in-

anges
in

the
ying
e vir-
lative

ne.

ne.

e’s

the
ters).

al

he
tes.
value ofVIRTUAL_WORLD states that the window acts as if it also moves within th
virtual world. As the user moves the window on the physical screen, the w
dow’s position on the screen changes and the image that Java 3D draws ch
as well to match what would be visible in the virtual world from a window
that new position. The default value isPHYSICAL_WORLD.

8.7.2 Clip Policies

The clip policies determine how Java 3D interprets clipping distances to both
near and far clip planes. The policies can contain one of four values specif
whether a distance measurement should be interpreted in the physical or th
tual world and whether that distance measurement should be interpreted re
to the physical eyepoint or the physical screen.

Methods

public final void setFrontClipPolicy(int policy)
public final int getFrontClipPolicy()
public final void setBackClipPolicy(int policy)
public final int getBackClipPolicy()

The front clip policy determines where Java 3D places the front clipping pla
The value is one of the following:PHYSICAL_EYE, PHYSICAL_SCREEN, VIRTUAL_
EYE, or VIRTUAL_SCREEN. The default value isPHYSICAL_EYE.

The back clip policydetermines where Java 3D places the back clipping pla
The value is one of the following:PHYSICAL_EYE, PHYSICAL_SCREEN, VIRTUAL_
EYE, or VIRTUAL_SCREEN. The default value isPHYSICAL_EYE.

These policies are defined as follows.

• PHYSICAL_EYE: Specifies that the plane is located relative to the ey
position as measured in the physical space (in meters).

• PHYSICAL_SCREEN: Specifies that the plane is located relative to
screen (that is, the image plate) as measured in physical space (in me

• VIRTUAL_EYE: Specifies that the plane is located relative to the virtu
eyepoint as measured in virtual world coordinates.

• VIRTUAL_SCREEN: Specifies that the plane is located relative to t
screen (that is, the image plate) as measured in virtual world coordina
217Version 1.1.2, June 1999

8.7.3 Projection and Clip Parameters VIEW MODEL

218

and

ori-
is
pol-

ront
ing.
are
pec-

ack
ing.
is-

rtual)
ct’s
ode

hoos-

rdi-

at
ys-

less
8.7.3 Projection and Clip Parameters

The projection and clip parameters determine the view model’s field of view
the front and back clipping distances.

public final void setFieldOfView(double fieldOfView)
public final double getFieldOfView()

In the default non-head-tracked mode, this value specifies the view model’s h
zontal field of view in radians. This value is ignored when the view model
operating in head-tracked mode, or when the Canvas3D’s window eyepoint
icy is set to a value other than the default setting ofRELATIVE_TO_FIELD_OF_

VIEW (see Section C.5.3, “Window Eyepoint Policy”).

public void setFrontClipDistance(double distance)
public double getFrontClipDistance()

This value specifies the distance away from the clip origin, specified by the f
clip policy variable, in the direction of gaze where objects stop disappear
Objects closer than the clip origin (eye or screen) plus the front clip distance
not drawn. Measurements are done in the space (physical or virtual) that is s
ified by the associated front clip policy parameter.

public void setBackClipDistance(double distance)
public double getBackClipDistance()

This value specifies the distance away from the clip origin (specified by the b
clip policy variable) in the direction of gaze where objects begin disappear
Objects farther away from the clip origin (eye or screen) plus the back clip d
tance are not drawn. Measurements are done in the space (physical or vi
that is specified by the associated back clip policy parameter. The View obje
back clip distance is ignored if the scene graph contains an active Clip leaf n
(see Section 5.5, “Clip Node”).

There are several considerations that need to be taken into account when c
ing values for the front and back clip distances.

• The front clip distance must be greater than 0.0 in physical eye coo
nates.

• The front clipping plane must be in front of the back clipping plane, th
is, the front clip distance must be less than the back clip distance in ph
ical eye coordinates.

• The front and back clip distances, in physical eye coordinates, must be
than the largest positive single-precision floating point value,Float.MAX_
Java 3D API Specification

VIEW MODEL Frame Start Time, Duration, and Number8.7.4

e in

eye
out

000

es,

and

d. It
MT.
e is

ted
w is
f the

can-
point
me

ts at

r of
ran-
VALUE. In practice, since these physical eye coordinate distances ar
meters, the values should bemuch less than that.

• The ratio of the back distance divided by the front distance, in physical
coordinates, affects Z-buffer precision. This ratio should be less than ab
3000 to accommodate 16-bit Z-buffers. Values of 100 to less than 1
will produce better results.

Violating any of the above rules will result in undefined behavior. In many cas
no picture will be drawn.

8.7.4 Frame Start Time, Duration, and Number

The following methods are used to get information about system execution
performance.

public long getCurrentFrameStartTime()

This method returns the time at which the most recent rendering frame starte
is defined as the number of milliseconds since January 1, 1970 00:00:00 G
Since multiple canvases might be attached to this View, the start of a fram
defined as the point just prior to clearing any canvas attached to this View.

public long getLastFrameDuration()

This method returns the duration, in milliseconds, of the most recently comple
rendering frame. The time taken to render all canvases attached to this Vie
measured. This duration is computed as the difference between the start o
most recently completed frame and the end of that frame. Since multiple
vases might be attached to this View, the start of a frame is defined as the
just prior to clearing any canvas attached to this View, while the end of a fra
is defined as the point just after swapping the buffer for all canvases.

public long getFrameNumber()

This method returns the frame number for this view. The frame number star
0 and is incremented prior to clearing all the canvases attached to this view.

public static int getMaxFrameStartTimes()

This method retrieves the implementation-dependent maximum numbe
frames whose start times will be recorded by the system. This value is gua
teed to be at least 10 for all implementations of the Java 3D API.
219Version 1.1.2, June 1999

8.7.5 View Traversal and Behavior Scheduling VIEW MODEL

220

y.
ext

n. If

n of

uled
n the
r is
end-
ior
nning
ether

ene
ciated
g this
view.

run-

tion
trol.
public long getFrameStartTimes(long times[])

This method copies the lastk frame start time values into the user-specified arra
The most recent frame start time is copied to location 0 of the array, the n
most-recent frame start time is copied into location 1 of the array, and so o
times.length is smaller thatmaxFrameStartTimes, only the lasttimes.length
values are copied. Iftimes.length is greater thanmaxFrameStartTimes, all
array elements after indexmaxFrameStartTimes – 1 are set to 0.

8.7.5 View Traversal and Behavior Scheduling

The following methods control the traversal, the rendering, and the executio
the behavior scheduler for this view.

public final long[] stopBehaviorScheduler()
public final void startBehaviorScheduler()
public final boolean isBehaviorSchedulerRunning()

The first method stops the behavior scheduler after all currently-sched
behaviors are executed. Any frame-based behaviors scheduled to wake up o
next frame will be executed at least once before the behavior schedule
stopped. The method returns a pair if integers that specify the beginning and
ing time (in milliseconds since January 1, 1970 00:00:00 GMT) of the behav
scheduler’s last pass. The second method starts the behavior scheduler ru
after it has been stopped. The third method retrieves a flag that indicates wh
the behavior scheduler is currently running.

public final void stopView()
public final void startView()
public final boolean isViewRunning()

The first method stops traversing this view after the current state of the sc
graph is reflected on all canvases attached to this view. The renderers asso
with these canvases are also stopped. The second method starts traversin
view and starts the renderers associated with all canvases attached to this
The third method returns a flag indicating whether the traverser is currently
ning on this view.

Note: The above six methods are heavy-weight methods intended for verifica
and image capture (recording). They are not intended to be used for flow con
Java 3D API Specification

VIEW MODEL The Screen3D Object 8.8

ing is
be
ntial-

for
dered
led
uffer-
his

on-
tive
tiple
tput
the

ysi-
tem.
he x
ical

bra-

bject
as by

e-
8.7.6 Scene Antialiasing

public final void setSceneAntialiasingEnable(boolean flag)
public final boolean getSceneAntialiasingEnable()

These methods set and retrieve the scene antialiasing flag. Scene antialias
either enabled or disabled for this view. If enabled, the entire scene will
antialiased on each canvas in which scene antialiasing is available. Scene a
iasing is disabled by default.

8.7.7 Depth Buffer

public final void setDepthBufferFreezeTransparent(boolean flag)
public final boolean getDepthBufferFreezeTransparent()

The set method enables or disables automatic freezing of the depth buffer
objects rendered during the transparent rendering pass (that is, objects ren
using alpha blending) for this view. If enabled, depth buffer writes are disab
during the transparent rendering pass regardless of the value of the depth-b
write-enable flag in the RenderingAttributes object for a particular node. T
flag is enabled by default. Theget method retrieves this flag.

8.8 The Screen3D Object

The Screen3D object provides a 3D version of the AWT screen object. It c
tains the screen’s physical properties. Java 3D will support multiple ac
Screen3D objects as soon as AWT support is available. Of course, mul
screens are only available if the machine configuration has multiple ou
screens. Java 3D primarily needs to know the physical size (in meters) of
Screen3D’s visible, addressable raster (theimage plate) and, in head-tracking
mode, the position and orientation of this raster relative to a well-defined ph
cal world coordinate system, specifically, the tracker base coordinate sys
Java 3D also needs to know how many pixels the raster can display in both t
and y dimensions. This information allows Java 3D to calculate a pixel’s phys
dimension.

Calibration utilities can change a Screen3D’s physical characteristics or cali
tion transforms. See Section C.6, “The Screen3D Object.”

The Screen3D object has no public constructors. Instead, the Screen3D o
associated with a particular Canvas3D object can be obtained from the canv
calling thegetScreen3D method. See Section 8.9.2, “Other Canvas3D Param
ters.”
221Version 1.1.2, June 1999

8.9 The Canvas3D Object VIEW MODEL

222

ing
rs.

.

ht in

tion,
tereo
object
nits,
ters.
ical
Default values for Screen3D parameters are as follows:

Methods

These methods provide applications with information concerning the underly
display hardware, such as the screen’s width and height in pixels or in mete

public Dimension getSize()

This method retrieves the screen’s (image plate’s) width and height in pixels

public final double getPhysicalScreenWidth()
public final double getPhysicalScreenHeight()

These methods retrieve the screen’s (image plate’s) physical width and heig
meters.

8.9 The Canvas3D Object

The Canvas3D object extends thejava.awt.Canvas object to include 3D-related
information such as the size of the canvas in pixels, the Canvas3D’s loca
also in pixels, within a Screen3D object, and whether or not the canvas has s
enabled. Because all Canvas3D objects contain a reference to a Screen3D
and because Screen3D objects define the size of a pixel in physical u
Java 3D can convert a Canvas3D size in pixels to a physical world size in me
It can also determine the Canvas3D’s position and orientation in the phys
world.

Constructors

The Canvas3D object specifies one constructor.

Parameter Default Value

physical screenwidth 0.35

physical screenheight 0.27

tracker base to image plate transform identity

head tracker to left image plate transform identity

head tracker to right image plate transform identity
Java 3D API Specification

VIEW MODEL Other Canvas3D Parameters 8.9.2

ics-
to

he
mp-

pec-

tion
to

s3D’s

ntial

s ste-
f the
public Canvas3D(GraphicsConfiguration graphicsConfiguration)

This constructs and initializes a new Canvas3D object given a valid Graph
Configuration object. The following Canvas3D parameters are initialized
default values as shown:

Java 3D can render into this Canvas3D object. If thegraphicsConfiguration

argument isnull, a GraphicsConfiguration object will be constructed using t
default GraphicsConfigTemplate3D (see Section 8.9.3, “GraphicsConfigTe
late3D Object.”

For more information on the GraphicsConfiguration object see the Java 2D s
ification, which will be part of the AWT in JDK 1.2.

8.9.1 Window System–Provided Parameters

Java 3D specifies the size of a Canvas3D in pixels. It extracts this informa
directly from the AWT’s window system. Java 3D only allows applications
access these values, not change them.

public Dimension getLocationOnScreen()
public Dimension getSize()

These methods, inherited from the parent Canvas class, retrieve the Canva
screen position and size in pixels.

8.9.2 Other Canvas3D Parameters

public final boolean getStereoAvailable()

This method specifies whether the underlying hardware supports field-seque
stereo on this canvas.

public final boolean getStereoEnable()
public final void setStereoEnable(boolean flag)

These methods set or retrieve the flag indicating whether this Canvas3D ha
reo enabled. If enabled, Java 3D generates left and right eye images. I

Parameter Default Value

left manual eye in image plate (0.142, 0.135, 0.4572)

right manual eye in image plate (0.208, 0.135, 0.4572)

stereo enable true

double buffer enable true
223Version 1.1.2, June 1999

ffer-

dou-
fer
a 3D

level

nfig-
s and

eets

lues
Canvas3D’sStereoAvailable flag isfalse, Java 3D displays only theleft eye’s
view even if an application setsStereoEnable to true. This parameter allows
applications to enable or disable stereo on a canvas-by-canvas basis.

public final void getDoubleBufferAvailable()

This method specifies whether the underlying hardware supports double bu
ing on this canvas.

public final boolean getDoubleBufferEnable()
public final void setDoubleBufferEnable(boolean flag)

These methods set or retrieve the flag indicating whether this Canvas3D has
ble buffering enabled. If disabled, all drawing is to the front buffer and no buf
swap will be done between frames. It should be stressed that running Jav
with double buffering disabled is not recommended.

public final boolean getSceneAntialiasingAvailable()

This method specifies whether the underlying hardware supports scene-
antialiasing.

public final View getView()

Retrieves the View object that points to this Canvas3D.

public final Screen3D getScreen3D()

Retrieves the Screen3D object to which this Canvas3D is attached.

8.9.3 GraphicsConfigTemplate3D Object

This GraphicsConfigTemplate3D class is used to obtain a valid GraphicsCo
uration that can be used by Java 3D. A user instantiates one of these object
then sets all non-default attributes as desired. ThegetGraphicsConfiguration

method found in thejava.awt.GraphicsDevice class is then called with this
GraphicsConfigTemplate. A valid GraphicsConfiguration is returned that m
or exceeds what was requested in thejava.awt.GraphicsConfigTemplate.

Constructors

public GraphicsConfigTemplate3D()

This constructor constructs a new GraphicsConfigTemplate3D and sets all va
to their default:

VIEW MODEL GraphicsConfigTemplate3D Object 8.9.3

lues

are:

alues

ested
Methods

public void setDoubleBuffer(int value)
public int getDoubleBuffer()

These methods set and retrieve the double-buffering attribute. The valid va
are:REQUIRED, PREFERRED, andUNNECESSARY.

public void setStereo(int value)
public int getStereo()

These methods set and retrieve the stereo attribute. The valid values
REQUIRED, PREFERRED, andUNNECESSARY.

public void setSceneAntialiasing(int value)
public int getSceneAntialiasing()

These methods set and retrieve the scene antialiasing attribute. The valid v
are:REQUIRED, PREFERRED, andUNNECESSARY.

public void setDepthSize(int value)
public int getDepthSize()

These methods set and retrieve the depth buffer size requirement.

public void setRedSize(int value)
public int getRedSize()
public void setGreenSize(int value)
public int getGreenSize()
public void setBlueSize(int value)
public int getBlueSize()

These methods set and retrieve the number of red, green, and blue bits requ
by this template.

Parameter Default Value

doubleBuffer REQUIRED

stereo UNNECESSARY

sceneAntialiasing UNNECESSARY

depthSize 16

redSize 2

greenSize 2

blueSize 2
225Version 1.1.2, June 1999

8.10 The PhysicalBody Object VIEW MODEL

226

teria

on-
. This
eate
t be

the
spec-

nter-
The
ad-

ed in
ient
on-
public java.awt.GraphicsConfiguration
getBestConfiguration(java.awt.GraphicsConfiguration[] gc)

This method returns the “best” configuration possible that passes the cri
defined in the GraphicsConfigTemplate3D.

public boolean
isGraphicsConfigSupported(java.awt.GraphicsConfiguration
gc)

This method returns a boolean indicating whether or not the given GraphicsC
figuration can be used to create a drawing surface that can be rendered to
method returns true if this GraphicsConfiguration object can be used to cr
surfaces that can be rendered to, false if the GraphicsConfiguration canno
used to create a drawing surface usable by this API.

8.10 The PhysicalBody Object

Java 3D defines a PhysicalBody object that contains information concerning
end user’s physical characteristics. The head parameters allow end users to
ify their own head’s characteristics, such as the location of the eyes and the i
pupilary distance. See Section C.8, “The PhysicalBody Object,” for details.
default values are sufficient for applications that are running in a non-he
tracked environment and that do not manually set the eyepoint.

Constructors

public PhysicalBody()

This constructor constructs and initializes a default PhysicalBody object.

8.11 The PhysicalEnvironment Object

The PhysicalEnvironment object defines several methods that are describ
Section C.9, “The PhysicalEnvironment Object.” The default values are suffic
for applications that do not use continuous input devices that are run in a n
head-tracked display environment.

Constructors

public PhysicalEnvironment()

Constructs and initializes a default PhysicalEnvironment object.
Java 3D API Specification

Version 1.1.2, June 1999
C H A P T E R 9

s

ey-
pick

ode’s
a 3D
com-

. For
ively
ate.
and

: an

ior
y its

ed-

t’s

te
ial-

vir-
Behaviors and Interpolator

BEHAVIOR nodes provide the means for animating objects, processing k
board and mouse inputs, reacting to movement, and enabling and processing
events. Behavior nodes contain Java code and state variables. A Behavior n
Java code can interact with Java objects, change node values within a Jav
scene graph, change the behavior’s internal state—in general, perform any
putation it wishes.

Simple behaviors can add surprisingly interesting effects to a scene graph
example, one can animate a rigid object by using a Behavior node to repetit
modify the TransformGroup node that points to the object one wishes to anim
Alternatively, a Behavior node can track the current position of a mouse
modify portions of the scene graph in response.

9.1 Behavior Object

A Behavior leaf node object contains a scheduling region and two methods
initialize method called once when the behavior becomes “live” and apro-

cessStimulus method called whenever appropriate by the Java 3D behav
scheduler. The Behavior object also contains the state information needed b
initialize andprocessStimulus methods.

The scheduling regiondefines a spatial volume that serves to enable the sch
uling of Behavior nodes. A Behavior node isactive (can receive stimuli) when-
ever a ViewPlatform’s activation volume intersects a Behavior objec
scheduling region. Only active behaviors can receive stimuli.

The initialize method allows a Behavior object to initialize its internal sta
and specify its initial wakeup condition(s). Java 3D invokes a behavior’s init
ize code when the behavior’s containing BranchGroup node is added to the
tual universe. Java 3D does not invoke theinitialize method in a new thread.
227

9.1.1 Code Structure BEHAVIORS AND INTERPOLATORS

228

else

es-

ior
fied.
ly
D to
ally

, it
ba-
can
ilities
strict

cene
ro-
eates
s to

ways
asic

mer-

ition

ler)
Thus, for Java 3D to regain control, theinitialize method must not execute an
infinite loop: It must return. Furthermore, a wakeup condition must be set or
the behavior’sprocessStimulus method is never executed.

TheprocessStimulus method receives and processes a behavior’s ongoing m
sages. The Java 3D behavior scheduler invokes a Behavior node’sprocessStim-

ulus method when a ViewPlatform’s activation volume intersects a Behav
object’s scheduling region and all of that behavior’s wakeup criteria are satis
The processStimulus method performs its computations and actions (possib
including the registration of state change information that could cause Java 3
wake other Behavior objects), establishes its next wakeup condition, and fin
exits.

9.1.1 Code Structure

When the Java 3D behavior scheduler invokes a Behavior object’sprocessStim-

ulus method, that method may perform any computation it wishes. Usually
will change its internal state and specify its new wakeup conditions. Most pro
bly, it will manipulate scene graph elements. However, the behavior code
only change those aspects of a scene graph element permitted by the capab
associated with that scene graph element. A scene graph’s capabilities re
behavioral manipulation to those manipulations explicitly allowed.

The application must provide the Behavior object with references to those s
graph elements that the Behavior object will manipulate. The application p
vides those references as arguments to the behavior’s constructor when it cr
the Behavior object. Alternatively, the Behavior object itself can obtain acces
the relevant scene graph elements either when Java 3D invokes itsinitialize

method or each time Java 3D invokes itsprocessStimulus method.

Behavior methods have a very rigid structure. Java 3D assumes that they al
run to completion (if needed, they can spawn threads). Each method’s b
structure consists of the following:

• Code to decode and extract references from the WakeupCondition enu
ation that caused the object’s awakening

• Code to perform the manipulations associated with the WakeupCond

• Code to establish this behavior’s new WakeupCondition

• A path to Exit (so that execution returns to the Java 3D behavior schedu
Java 3D API Specification

BEHAVIORS AND INTERPOLATORS WakeupCriterion Object9.1.3

rent
ple

ndi-
avior
enu-

e in
use

bject

bject

any

iate
ents
nter-
9.1.2 WakeupCondition Object

A WakeupCondition object is an abstract class specialized to fourteen diffe
WakeupCriterion objects and to four combining objects containing multi
WakeupCriterion objects.

A Behavior node provides the Java 3D behavior scheduler with a WakeupCo
tion object. When that object’s WakeupCondition has been satisfied, the beh
scheduler hands that same WakeupCondition back to the Behavior via an
meration.

9.1.3 WakeupCriterion Object

Java 3D provides a rich set of wakeup criteria that Behavior objects can us
specifying a complex WakeupCondition. These wakeup criteria can ca
Java 3D’s behavior scheduler to invoke a behavior’sprocessStimulus method
whenever

• The center of a ViewPlatform enters a specified region

• The center of a ViewPlatform exits a specified region

• A behavior is activated

• A behavior is deactivated

• A specified TransformGroup node’s transform changes

• Collision is detected between a specified Shape3D node’s Geometry o
and any other object

• Movement occurs between a specified Shape3D node’s Geometry o
and any other object with which it collides

• A specified Shape3D node’s Geometry object no longer collides with
other object

• A specified Behavior object posts a specific event

• A specified AWT event occurs

• A specified time interval elapses

• A specified number of frames have been drawn

• The center of a specified Sensor enters a specified region

• The center of a specified Sensor exits a specified region

A Behavior object constructs a WakeupCriterion by constructing the appropr
criterion object. The Behavior object must provide the appropriate argum
(usually a reference to some scene graph object and possibly a region of i
229Version 1.1.2, June 1999

9.1.4 Composing WakeupCriterion Objects BEHAVIORS AND INTERPOLATORS

230

cify

ore
osite

at

ts

by
s as

ments
ific

heir
door
d the

rces
0 or
con-
ated
est). Thus, to specify a WakeupOnViewPlatformEntry, a behavior would spe
the region that will cause the behavior to execute if a ViewPlatform enters it.

9.1.4 Composing WakeupCriterion Objects

A Behavior object can combine multiple WakeupCriterion objects into a m
powerful, composite WakeupCondition. Java 3D behaviors construct a comp
WakeupCondition in one of the following ways:

• WakeupAnd: An array of WakeupCriterion objects ANDed together.

WakeupCriterion && WakeupCriterion && ...

• WakeupOr: An array of WakeupCriterion objects ORed together.

WakeupCriterion || WakeupCriterion || ...

• WakeupAndOfOrs: An array of WakeupOr WakeupCondition objects th
are then ANDed together.

WakeupOr && WakeupOr && ...

• WakeupOrOfAnds: An array of WakeupAnd WakeupCondition objec
that are then ORed together.

WakeupAnd || WakeupAnd || ...

9.2 Composing Behaviors

Behavior objects can condition themselves to awaken only when signaled
another Behavior node. The WakeupOnBehaviorPost WakeupCriterion take
arguments a reference to a Behavior node and an integer. These two argu
allow a behavior to limit its wakeup criterion to a specific post by a spec
behavior.

The WakeupOnBehaviorPost WakeupCriterion permits behaviors to chain t
computations, allowing parenthetical computations—one behavior opens a
and the second closes the same door, or one behavior highlights an object an
second unhighlights the same object.

9.3 Scheduling

As a virtual universe grows large, Java 3D must carefully husband its resou
to ensure adequate performance. In a 10,000-object virtual universe with 40
so Behavior nodes, a naive implementation of Java 3D could easily end up
suming the majority of its compute cycles in executing the behaviors associ
Java 3D API Specification

BEHAVIORS AND INTERPOLATORS How Java 3D Performs Execution Culling9.4

the

uni-
000-
ould
sso-
few

igh-
ke

pro-
lec-
tely

con-
g all
main
rform

rm
ing

a
eup

w-

if
t

with the 400 Behavior objects before it draws a frame. In such a situation,
frame rate could easily drop to unacceptable levels.

Behavior objects are usually associated with geometric objects in the virtual
verse. In our example of 400 Behavior objects scattered throughout a 10,
object virtual universe, only a few of these associated geometric objects w
be visible at a given time. A sizable fraction of the Behavior nodes—those a
ciated with nonvisible objects—need not be executed. Only those relatively
Behavior objects that are associated with visible objects must be executed.

Java 3D mitigates the problem of a large number of Behavior nodes in a h
population virtual universe through execution culling—choosing only to invo
those behaviors that have high relevance.

Java 3D requires each behavior to have ascheduling regionand to post a wakeup
condition. Together a behavior’s scheduling region and wakeup condition
vide Java 3D’s behavior scheduler with sufficient domain knowledge to se
tively prune behavior invocations and only invoke those behaviors that absolu
need to be executed.

9.4 How Java 3D Performs Execution Culling

Java 3D finds all scheduling regions associated with Behavior nodes and
structs a scheduling/volume tree. It also creates an AND/OR tree containin
the Behavior node wakeup criteria. These two data structures provide the do
knowledge Java 3D needs to prune unneeded behavior execution (to pe
“execution triage”).

Java 3D must track a behavior’s wakeup conditions only if a ViewPlatfo
object’s activation volume intersects with that Behavior object’s schedul
region. If the ViewPlatform object’s activation volume does not intersect with
behavior’s scheduling region, Java 3D can safely ignore that behavior’s wak
criteria.

In essence, the Java 3D scheduler performs the following checks:

• Find all Behavior objects with scheduling regions that intersect the Vie
Platform object’s activation volume.

• For each Behavior object within the ViewPlatform’s activation volume,
that behavior’s WakeupCondition istrue, schedule that Behavior objec
for execution.
231Version 1.1.2, June 1999

9.5 The Behavior API BEHAVIORS AND INTERPOLATORS

232

been

the
the

r all

the
s that

duler
end
Java 3D’s behavior scheduler executes those Behavior objects that have
scheduled by calling the behavior’sprocessStimulus method.

9.5 The Behavior API

The Java 3D behavior API spreads its functionality across three objects:
Behavior leaf node, the WakeupCondition object and its subclasses, and
WakeupCriterion objects.

9.5.1 The Behavior Node

The Behavior object is an abstract class that contains the framework fo
behavioral components in Java 3D.

Constructor

The Behavior leaf node class defines the following constructor.

public Behavior()

Constructs a Behavior node with default parameters:

Methods

The Behavior leaf node class defines the following methods.

public abstract void initialize()

This method, invoked by Java 3D’s behavior scheduler, is used to initialize
behavior’s state variables and to establishes its WakeupConditions. Classe
extend Behavior must provide their owninitialize method. Applications
shouldnot call this method.

public abstract void processStimulus(Enumeration criteria)

This method processes stimuli destined for this behavior. The behavior sche
invokes this method if its WakeupCondition is satisfied. Classes that ext

Parameter Default Value

enable flag true

schedulingbounds null

scheduling bounding leaf null
Java 3D API Specification

BEHAVIORS AND INTERPOLATORS The Behavior Node9.5.1

nds.
leaf

on
en
d

ding
-

be

f the
ave

nced

ted.
k up
Behavior must provide their ownprocessStimulus method. Applications should
not call this method.

public final void setSchedulingBounds(Bounds region)
public final Bounds getSchedulingBounds()

These two methods access or modify the Behavior node’s scheduling bou
This bounds is used as the scheduling region when the scheduling bounding
is set tonull. A behavior is scheduled for activation when its scheduling regi
intersects the ViewPlatform’s activation volume (if its wakeup criteria have be
satisfied). ThegetSchedulingBounds method returns a copy of the associate
bounds.

public final void setSchedulingBoundingLeaf(BoundingLeaf region)
public final BoundingLeaf getSchedulingBoundingLeaf()

These two methods access or modify the Behavior node’s scheduling boun
leaf. When set to a value other thannull, this bounding leaf overrides the sched
uling bounds object and is used as the scheduling region.

protected void wakeupOn(WakeupCondition criteria)

This method defines this behavior’s wakeup criteria. This method may only
called from a Behavior object’sinitialize or processStimulus methods to
(re)arm the next wakeup. It should be the last thing done by those methods.

public void postId(int postId)

This method, when invoked by a behavior, informs the Java 3D scheduler o
identified event. The scheduler will schedule other Behavior objects that h
registered interest in this posting.

public void duplicateNode(Node originalNode,
boolean forceDuplicate)

This method copies all the node information fromoriginalNode into the current
node. This method is called from thecloneTree method.

public void updateNodeReferences(NodeReferenceTable
referenceTable)

This is a callback method used to allow a node to check if any nodes refere
by that node have been duplicated via a call tocloneTree. This method is called
by thecloneTree method after all nodes in the subgraph have been duplica
The cloned leaf node’s method will be called and the leaf node can then loo
any node references by using thegetNewNodeReference method found in the
233Version 1.1.2, June 1999

9.5.2 WakeupCondition Object BEHAVIORS AND INTERPOLATORS

234

ding
ce is

hod
on

(the
ry”
is

ori-
me

rion,
. A
and
.

nu-

pCon-
tially
tion.
those

Each
iated
ed a
NodeReferenceTable object. If a match is found, a reference to the correspon
node in the newly cloned subgraph is returned. If no corresponding referen
found, either aDanglingReferenceException is thrown or a reference to the
original node is returned, depending on the value of theallowDanglingRefer-

ences parameter passed in thecloneTree call.

protected View getView()

This method returns the primary view associated with this behavior. This met
is useful with certain types of behaviors, such as Billboard and LOD, that rely
per-View information and with behaviors in general in regards to scheduling
distance from the view platform determines the active behaviors). The “prima
view is defined to be the first View attached to a live ViewPlatform, if there
more than one active View. So, for instance, Billboard behaviors would be
ented toward this primary view, in the case of multiple active views into the sa
scene graph.

9.5.2 WakeupCondition Object

WakeupCondition is an abstract class that is extended by the WakeupCrite
WakeupOr, WakeupAnd, WakeupOrOfAnds, and WakeupAndOfOr classes
Behavior node hands a WakeupCondition object to the behavior scheduler
the behavior scheduler hands back an enumeration of that WakeupCondition

Methods

The Java 3D API provides two methods for constructing WakeupCondition e
merations.

public Enumeration allElements()
public Enumeration triggeredElements()

These two methods create enumerators that sequentially access this Wakeu
dition’s wakeup criteria. The first method creates an enumerator that sequen
presents all wakeup criteria that were used to construct this WakeupCondi
The second method creates an enumerator that sequentially presents only
wakeup criteria that have been satisfied.

9.5.3 The WakeupCriterion Objects

WakeupCriterion is an abstract class that consists of several subclasses.
subclass specifies one particular wakeup criterion, that criterion’s assoc
arguments (if any), and either a flag that indicates whether this criterion caus
Java 3D API Specification

BEHAVIORS AND INTERPOLATORS The WakeupCriterion Objects9.5.3

hat

vior

WT
e-
e

this
can

lat-
his
Behavior object to awaken or a return field containing the information t
caused the Behavior object to awaken.

Methods

public boolean hasTriggered()

This predicate method returnstrue if this WakeupCriterion contributed to wak-
ing a Behavior object.

9.5.3.1 WakeupOnAWTEvent

This WakeupCriterion object specifies that Java 3D should awaken a beha
when the specified AWT event occurs.

Constructors

public WakeupOnAWTEvent(int AWTId)
public WakeupOnAWTEvent(long eventMask)

The first constructor creates a WakeupOnAWTEvent object thatinforms the
Java 3D scheduler to wake up the specified Behavior object whenever the A
event specified byAWTId occurs. The second constructor creates a Wak
upOnAWTEvent object thatinforms the Java 3D scheduler to wake up th
specified Behavior object whenever any of the specified AWTEVENT_MASK

events occur. TheeventMask consists of an ORed collection ofEVENT_MASK val-
ues.

Methods

public AWTEvent[] getAWTEvent()

This method returns the array of consecutive AWT events that triggered
WakeupCriterion to awaken the Behavior object. The Behavior object
retrieve theAWTEvent array and process it in any way it wishes.

9.5.3.2 WakeupOnActivation

The WakeupOnActivation object specifies a wakeup the first time the ViewP
form’s activation region intersects with this object’s scheduling region. T
gives the behavior an explicit means of executing code when it is activated.
235Version 1.1.2, June 1999

9.5.3 The WakeupCriterion Objects BEHAVIORS AND INTERPOLATORS

236

vior

hav-

peci-

ostid
will

hav-
the
Constructors

public WakeupOnActivation()

This constructor creates a WakeupOnActivation criterion.

9.5.3.3 WakeupOnBehaviorPost

This WakeupCriterion object specifies that Java 3D should awaken this beha
when the specified behavior posts the specified ID.

Constructors

public WakeupOnBehaviorPost(Behavior behavior, int postId)

This constructor creates a WakeupOnBehaviorPost object thatinforms the
Java 3D scheduler to wake up this Behavior object whenever the specified be
ior posts the specifiedpostId. A postId of 0 specifies that this behavior should
awaken on any post from the specified behavior. Specifying anull behavior
implies that this behavior should awaken whenever any behavior posts the s
fied postId.

Methods

public int getPostId()

This method returns thepostId used in creating this WakeupCriterion.

public Behavior getBehavior()

This method returns the behavior specified in this object’s constructor.

public int getTriggeringPostId()

This method returns the postid that caused the behavior to wake up. If the p
used to construct this wakeup criterion was not zero, the triggering postid
always be equal to the postid used in the constructor.

public Behavior getTriggeringBehavior()

This method returns the behavior that triggered this wakeup. If the arming be
ior used to construct this object was not null, the triggering behavior will be
same as the arming behavior.
Java 3D API Specification

BEHAVIORS AND INTERPOLATORS The WakeupCriterion Objects9.5.3

of a
d-
n it

vior
that

awn
e.

vior
9.5.3.4 WakeupOnDeactivation

The WakeupOnDeactivation object specifies a wakeup on the first detection
ViewPlatform’s activation region no longer intersecting with this object’s sche
uling region. This gives the behavior an explicit means of executing code whe
is deactivated.

Constructors

public WakeupOnDeactivation()

This constructor creates a new WakeupOnDeactivation criterion.

public WakeupOnDeactivation(Bounds region)

Deprecated constructor. Use the empty constructor instead.

9.5.3.5 WakeupOnElapsedFrames

This WakeupCriterion object specifies that Java 3D should awaken this beha
after it has rendered the specified number of frames. A value of 0 implies
Java 3D will awaken this behavior at the next frame.

Constructors

public WakeupOnElapsedFrames(int frameCount)

This constructor creates a WakeupOnElapsedFrames object thatinforms the
Java 3D scheduler to wake up the specified Behavior object after it has dr
frameCount frames. AframeCount value of 0 means wake up at the next fram

Methods

public int getElapsedFrameCount()

This method returns the frame count used in creating this WakeupCriterion.

9.5.3.6 WakeupOnElapsedTime

This WakeupCriterion object specifies that Java 3D should awaken this beha
after an elapsed number of milliseconds.
237Version 1.1.2, June 1999

9.5.3 The WakeupCriterion Objects BEHAVIORS AND INTERPOLATORS

238

ified

ber
ually

s.

vior

t an

cts a

n.

vior
ion.
Constructors

public WakeupOnElapsedTime(long milliseconds)

This constructor creates a WakeupOnElapsedTime object thatinforms the
Java 3D scheduler to wake up the specified Behavior object after the spec
number of milliseconds.

Note: The Java 3D scheduler will schedule the object after the specified num
of milliseconds have elapsed, not before. However, the elapsed time may act
be slightly greater than the time specified.

Methods

public long getElapsedFrameTime()

This method returns the WakeupCriterion’s elapsed time value in millisecond

9.5.3.7 WakeupOnSensorEntry

This WakeupCriterion object specifies that Java 3D should awaken this beha
when any sensor enters the specified region.

Note: There can be situations in which a sensor may enter and then exi
armed region so rapidly that neither the Entry nor Exit condition is engaged.

Constructors

public WakeupOnSensorEntry(Bounds region)

This constructor creates a WakeupOnSensorEntry object thatinforms the
Java 3D scheduler to wake up the specified Behavior object whenever it dete
sensor within the specifiedregion for the first time.

Methods

public Bounds getBounds()

This method returns the Bounds object used in creating this WakeupCriterio

9.5.3.8 WakeupOnSensorExit

This WakeupCriterion object specifies that Java 3D should awaken this beha
when any sensor, already marked as within the region, is no longer in that reg
Java 3D API Specification

BEHAVIORS AND INTERPOLATORS The WakeupCriterion Objects9.5.3

rre-

e it

n.

ake-
her

orph
s are

ified
ny
Note: This semantic guarantees that an Exit condition is engaged if its co
sponding Entry condition was engaged.

Constructors

public WakeupOnSensorExit(Bounds region)

This constructor creates a WakeupOnSensorExit object thatinforms the
Java 3D scheduler to wake up the specified Behavior object the first tim
detects that a sensor has left the specifiedregion.

Methods

public Bounds getBounds()

This method returns the Bounds object used in creating this WakeupCriterio

9.5.3.9 WakeupOnCollisionEntry

This WakeupCriterion object specifies that Java 3D should awaken the W
upOnCollisionEntry behavior when the specified object collides with any ot
object in the scene graph.

Constants

public static final int USE_GEOMETRY
public static final int USE_BOUNDS

These constants specify whether collision against a Group, Shape, or M
node is done using the actual geometry or whether the geometric bound
used as an approximation.

Constructors

public WakeupOnCollisionEntry(SceneGraphPath armingPath)
public WakeupOnCollisionEntry(SceneGraphPath armingPath,

int speedHint)
public WakeupOnCollisionEntry(Node armingNode)
public WakeupOnCollisionEntry(Node armingNode, int speedHint)
public WakeupOnCollisionEntry(Bounds armingBounds)

These constructors create a WakeupOnCollisionEntry object thatinforms the
Java 3D scheduler to wake up the specified Behavior object if the spec
“armed” node’s geometry or the specified “armed” bounds collides with a
239Version 1.1.2, June 1999

9.5.3 The WakeupCriterion Objects BEHAVIORS AND INTERPOLATORS

240

ying

ake-
ith

orph
s are

ified
es
other object in the scene graph. ThespeedHint flag is eitherUSE_GEOMETRY or
USE_BOUNDS.

Methods

public SceneGraphPath getArmingPath()
public Bounds getArmingBounds()

These methods return the “collideable” path or bounds object used in specif
the collision detection.

public SceneGraphPath getTriggeringPath()
public Bounds getTriggeringBounds()

These methods return the path or bounds object that caused the collision.

9.5.3.10 WakeupOnCollisionExit

This WakeupCriterion object specifies that Java 3D should awaken the W
upOnCollisionExit behavior when the specified object no longer collides w
any other object in the scene graph.

Constants

public static final int USE_GEOMETRY
public static final int USE_BOUNDS

These constants specify whether collision against a Group, Shape, or M
node is done using the actual geometry or whether the geometric bound
used as an approximation.

Constructors

public WakeupOnCollisionExit(SceneGraphPath armingPath)
public WakeupOnCollisionExit(SceneGraphPath armingPath,

int speedHint)
public WakeupOnCollisionExit(Node armingNode)
public WakeupOnCollisionExit(Node armingNode, int speedHint)
public WakeupOnCollisionExit(Bounds armingBounds)

These constructors create a WakeupOnCollisionExit object thatinforms the
Java 3D scheduler to wake up the specified Behavior object if the spec
“armed” node’s geometry or the specified “armed” bounds no longer collid
with any other object in the scene graph. ThespeedHint flag is eitherUSE_
GEOMETRY or USE_BOUNDS.
Java 3D API Specification

BEHAVIORS AND INTERPOLATORS The WakeupCriterion Objects9.5.3

ying

ake-
n a

orph
s are

ified
the
Methods

public SceneGraphPath getArmingPath()
public Bounds getArmingBounds()

These methods return the “collideable” path or bounds object used in specif
the collision detection.

public SceneGraphPath getTriggeringPath()
public Bounds getTriggeringBounds()

These methods return the path or bounds object that caused the collision.

9.5.3.11 WakeupOnCollisionMovement

This WakeupCriterion object specifies that Java 3D should awaken the W
upOnCollisionMovement behavior when the specified object moves while i
state of collision with any other object in the scene graph.

Constants

public static final int USE_GEOMETRY
public static final int USE_BOUNDS

These constants specify whether collision against a Group, Shape, or M
node is done using the actual geometry or whether the geometric bound
used as an approximation.

Constructors

public WakeupOnCollisionMovement(SceneGraphPath armingPath)
public WakeupOnCollisionMovement(SceneGraphPath armingPath,

int speedHint)
public WakeupOnCollisionMovement(Node armingNode)
public WakeupOnCollisionMovement(Node armingNode, int speedHint)
public WakeupOnCollisionMovement(Bounds armingBounds)

These constructors create a WakeupOnCollisionMovement object thatinforms
the Java 3D scheduler to wake up the specified Behavior object if the spec
node’s geometry or the specified bounds collides with any other object in
scene graph. ThespeedHint flag is eitherUSE_GEOMETRY or USE_BOUNDS.
241Version 1.1.2, June 1999

9.5.3 The WakeupCriterion Objects BEHAVIORS AND INTERPOLATORS

242

ying

ake-
ed

exit
ed.

er it

n.

ake-
as

rre-
Methods

public SceneGraphPath getArmingPath()
public Bounds getArmingBounds()

These methods return the “collideable” path or bounds object used in specif
the collision detection.

public SceneGraphPath getTriggeringPath()
public Bounds getTriggeringBounds()

These methods return the path or bounds object that caused the collision.

9.5.3.12 WakeupOnViewPlatformEntry

This WakeupCriterion object specifies that Java 3D should awaken the W
upOnViewPlatformEntry behavior when any ViewPlatform enters the specifi
region.

Note: There can be situations in which a ViewPlatform may enter and then
an armed region so rapidly that neither the Entry nor Exit condition is engag

Constructors

public WakeupOnViewPlatformEntry(Bounds region)

This constructor creates a WakeupOnViewPlatformEntry object thatinforms
the Java 3D scheduler to wake up the specified Behavior object whenev
detects a ViewPlatform center within the specifiedregion for the first time.

Methods

public Bounds getBounds()

This method returns the Bounds object used in creating this WakeupCriterio

9.5.3.13 WakeupOnViewPlatformExit

This WakeupCriterion object specifies that Java 3D should awaken the W
upOnViewPlatformExit behavior when any ViewPlatform, already marked
within the region, is no longer in that region.

Note: This semantic guarantees that an Exit condition gets engaged if its co
sponding Entry condition was engaged.
Java 3D API Specification

BEHAVIORS AND INTERPOLATORS The WakeupCriterion Objects9.5.3

e it

n.

form

Cri-

ed
this

me

the
Constructors

public WakeupOnViewPlatformExit(Bounds region)

This constructor creates a WakeupOnViewPlatformExit object thatinforms the
Java 3D scheduler to wake up the specified Behavior object the first tim
detects that a ViewPlatform has left the specifiedregion.

Methods

public Bounds getBounds()

This method returns the Bounds object used in creating this WakeupCriterio

9.5.3.14 WakeupOnTransformChange

The WakeupOnTransformChange object specifies a wakeup when the trans
within a specified TransformGroup changes.

Constructors

public WakeupOnTransformChange(TransformGroup node)

This constructor creates a new WakeupOnTransformChange criterion.

Methods

public TransformGroup getTransformGroup()

This method returns the TransformGroup node used in creating this Wakeup
terion.

9.5.3.15 WakeupAnd

The WakeupAnd class specifies any number of wakeup conditions AND
together. This WakeupCondition object specifies that Java 3D should awaken
Behavior when all of the WakeupCondition’s constituent wakeup criteria beco
valid.

Constructors

public WakeupAnd(WakeupCriterion conditions[])

This constructor creates a WakeupAnd object thatinforms the Java 3D sched-
uler to wake up this Behavior object when all the conditions specified in
array of WakeupCriterion objects have become valid.
243Version 1.1.2, June 1999

9.5.3 The WakeupCriterion Objects BEHAVIORS AND INTERPOLATORS

244

ther.
hav-
es

r
of

ions
uld

pOr

ons

ons
ould
eu-

ndi-
9.5.3.16 WakeupOr

The WakeupOr class specifies any number of wakeup conditions ORed toge
This WakeupCondition object specifies that Java 3D should awaken this Be
ior when any of the WakeupCondition’s constituent wakeup criteria becom
valid.

Constructors

public WakeupOr(WakeupCriterion conditions[])

This constructor creates a WakeupOr object thatinforms the Java 3D schedule
to wake up this Behavior object when any condition specified in the array
WakeupCriterion objects becomes valid.

9.5.3.17 WakeupAndOfOrs

The WakeupAndOfOrs class specifies any number of OR wakeup condit
ANDed together. This WakeupCondition object specifies that Java 3D sho
awaken this Behavior when all of the WakeupCondition’s constituent Wakeu
conditions become valid.

Constructors

public WakeupAndOfOrs(WakeupOr conditions[])

This constructor creates a WakeupAndOfOrs object thatinforms the Java 3D
scheduler to wake up this Behavior object when all of the WakeupOr conditi
specified in the array of WakeupOr objects become valid.

9.5.3.18 WakeupOrOfAnds

The WakeupOrOfAnds class specifies any number of AND wakeup conditi
ORed together. This WakeupCondition object specifies that Java 3D sh
awaken this Behavior when any of the WakeupCondition’s constituent Wak
pAnd conditions becomes valid.

Constructors

public WakeupOrOfAnds(WakeupAnd conditions[])

This constructor creates a WakeupOrOfAnds object thatinforms the Java 3D
scheduler to wake up this Behavior object when any of the WakeupAnd co
tions specified in the array of WakeupAnd objects becomes valid.
Java 3D API Specification

BEHAVIORS AND INTERPOLATORS Mapping Time to Alpha9.6.1

are
me
ioral

ing
de,

ecify-
tors
d a

ge
the
e of
, an
lpha

the

ap-
rent

given
icate
nt
sistent

ing.
rtical
e to

orm
e,
ange.
.

9.6 Interpolator Behaviors

This section describes Java 3D’s predefined Interpolator behaviors. They
called interpolatorsbecause they smoothly interpolate among the two extre
values that an interpolator can produce. Interpolators perform simple behav
acts, yet they provide broad functionality.

The Java 3D API provides interpolators for a number of functions: manipulat
transforms within a TransformGroup, modifying the values of a Switch no
and modifying Material attributes such as color and transparency.

These predefined Interpolator behaviors share the same mechanism for sp
ing and later for converting a temporal value into an alpha value. Interpola
consist of two portions: a generic portion that all interpolators share an
domain-specific portion.

The generic portion maps time in milliseconds onto a value in the ran
[0.0, 1.0] inclusive. The domain-specific portion maps an alpha value in
range [0.0, 1.0] onto a value appropriate to the predefined behavior’s rang
outputs. An alpha value of 0.0 generates an interpolator’s minimum value
alpha value of 1.0 generates an interpolator’s maximum value, and an a
value somewhere in between generates a value proportionally in between
minimum and maximum values.

9.6.1 Mapping Time to Alpha

Several parameters control the mapping of time onto an alpha value. That m
ping is deterministic as long as its parameters do not change. Thus, two diffe
interpolators with the same parameters will generate the same alpha value
the same time value. This means that two interpolators that do not commun
can still precisely coordinate their activities, even if they reside in differe
threads or even different processors—as long as those processors have con
clocks.

Figure 9-1 shows the components of an interpolator’s time-to-alpha mapp
Time is represented on the horizontal axis. Alpha is represented on the ve
axis. As we move from left to right, we see the alpha value start at 0.0, ris
1.0, and then decline back to 0.0 on the right-hand side.

On the left-hand side, the trigger time defines when this interpolator’s wavef
begins in milliseconds. The region directly to the right of the trigger tim
labeled Phase Delay, defines a time period where the waveform does not ch
During phase delaysα is either 0 or 1, depending on which region it precedes
245Version 1.1.2, June 1999

9.6.1 Mapping Time to Alpha BEHAVIORS AND INTERPOLATORS

246

tors
ame-

t the
-
both,

rate
flag

the
inter-
ram-

en-
Phase delays provide an important means for offsetting multiple interpola
from one another, especially where the interpolators have all the same par
ters. The next four regions, labeledα increasing,α at 1, α decreasing, andα at
0, all specify durations for the corresponding values of alpha.

Interpolators have a loop count that determines how many times to repea
sequence ofα increasing,α at 1,α decreasing, andα at 0; they also have associ
ated mode flags that enable either the increasing or decreasing portions, or
of the waveform.

Figure 9-1 An Interpolator’s Generic Time-to-Alpha Mapping Sequence

Developers can use the loop count in conjunction with the mode flags to gene
various kinds of actions. Specifying a loop count of 1 and enabling the mode
for only theα-increasing andα-at-1 portion of the waveform, we would get the
waveform shown in Figure 9-2.

Figure 9-2 An Interpolator Set to a Loop Count of 1 with Mode Flags Set to Enable Only
the α-Increasing andα-at-1 Portion of the Waveform

In Figure 9-2, the alpha value is 0 before the combination of trigger time plus
phase delay duration. The alpha value changes from 0 to 1 over a specified
val of time, and thereafter the alpha value remains 1 (subject to the reprog
ming of the interpolator’s parameters). A possible use of a singleα-increasing
value might be to combine it with a rotation interpolator to program a door op
ing.

Trigger

Phase
delay

α
increasing

α
at 1

α
decreasing

α
at 0

α

0

1

Time
Java 3D API Specification

BEHAVIORS AND INTERPOLATORS Mapping Time to Alpha9.6.1

the

the
inter-
g of

f 1

the
ified
ges
lue

). A

hen
Similarly, by specifying a loop count of 1 and a mode flag that enables only
α-decreasing andα-at-0 portion of the waveform, we would get the waveform
shown in Figure 9-3.

In Figure 9-3, the alpha value is 1 before the combination of trigger time plus
phase delay duration. The alpha value changes from 1 to 0 over a specified
val, and thereafter the alpha value remains 0 (subject to the reprogrammin
the interpolator’s parameters). A possible use of a singleα-decreasing value
might be to combine it with a rotation interpolator to program a door closing.

Figure 9-3 An Interpolator Set to a Loop Count of 1 with Mode Flags Set to Enable Only
the α-Decreasing andα-at-0 Portion of the Waveform

We can combine both of the above waveforms by specifying a loop count o
and setting the mode flag to enable both theα-increasing andα-at-1 portion of
the waveform as well as theα-decreasing andα-at-0 portion of the waveform.
This combination would result in the waveform shown in Figure 9-4.

Figure 9-4 An Interpolator Set to a Loop Count of 1 with Mode Flags Set to Enable All Por-
tions of the Waveform

In Figure 9-4, the alpha value is 0 before the combination of trigger time plus
phase delay duration. The alpha value changes from 0 to 1 over a spec
period of time, remains at 1 for another specified period of time, then chan
from 1 to 0 over a third specified period of time, and thereafter the alpha va
remains 0 (subject to the reprogramming of the interpolator’s parameters
possible use of anα-increasing followed by anα-decreasing value might be to
combine it with a rotation interpolator to program a door swinging open and t
closing.

1

0

Time

0 0

1

Time
247Version 1.1.2, June 1999

9.6.1 Mapping Time to Alpha BEHAVIORS AND INTERPOLATORS

248

door
ecify

9-2,
de

for

ble

nd
By increasing the loop count, we can get repetitive behavior, such as a
swinging open and closed some number of times. At the extreme, we can sp
a loop count of−1 (representing infinity).

We can construct looped versions of the waveforms shown in Figure
Figure 9-3, and Figure 9-4. Figure 9-5 shows a looping interpolator with mo
flags set to enable only theα-increasing andα-at-1 portion of the waveform.

Figure 9-5 An Interpolator Set to Loop Infinitely and Mode Flags Set to Enable Only theα-
Increasing andα-at-1 Portion of the Waveform

In Figure 9-5, alpha goes from 0 to 1 over a fixed duration of time, stays at 1
another fixed duration of time, and then repeats.

Similarly, Figure 9-6 shows a looping interpolator with mode flags set to ena
only theα-decreasing andα-at-0 portion of the waveform.

Figure 9-6 An Interpolator Set to Loop Infinitely and Mode Flags Set to Enable Only theα-
Decreasing andα-at-0 Portion of the Waveform

Finally, Figure 9-7 shows a looping interpolator with both the increasing a
decreasing portions of the waveform enabled.

Figure 9-7 An Interpolator Set to Loop Infinitely and Mode Flags Set to Enable All Por-
tions of the Waveform

1
0

1
0

1
0

1
0

1
0

1
0

1
0

Time

1

0

1

0

1

0

1

0

1

0

1

0

1

0

Time

1

0 0

1

0

1

0

1

0

Time
Java 3D API Specification

BEHAVIORS AND INTERPOLATORS The Alpha Class9.6.3

om-

their
ch the

until
celer-

the
two

asing
til it
eler-

of
t

sing
f
alue

an
ly a
led:
r-

-1

at

m.
In all three cases shown by Figure 9-5, Figure 9-6, and Figure 9-7, we can c
pute the exact value of alpha at any point in time.

Java 3D’s preprogrammed behaviors permit other behaviors to change
parameters. When such a change occurs, the alpha value changes to mat
state of the newly parameterized interpolator.

9.6.2 Acceleration of Alpha

Commonly, developers want alpha to change slowly at first and to speed up
the change in alpha reaches some appropriate rate. This is analogous to ac
ating your car up to the speed limit—it does not start off immediately at
speed limit. Developers specify this “ease-in, ease-out” behavior through
additional parameters, theincreasingAlphaRampDuration and thedecreasin-
gAlphaRampDuration.

Each of these parameters specifies a period within the increasing or decre
alpha duration region during which the “change in alpha” is accelerated (un
reaches its maximum per-unit-of-time step size) and then symmetrically dec
ated. Figure 9-8 shows three general examples of how theincreasingAl-

phaRampDuration method can be used to modify the alpha waveform. A value
0 for the increasing ramp duration implies thatα is not accelerated; it changes a
a constant rate. A value of 0.5 or greater (clamped to 0.5) for this increa
ramp duration implies that the change inα is accelerated during the first half o
the period and then decelerated during the second half of the period. For a v
of n that is less than 0.5, alpha is accelerated for durationn, held constant for
duration (1.0− 2n), then decelerated for durationn of the period.

9.6.3 The Alpha Class

The Alpha class provides common methods for converting a time value into
alpha value (a value in the range 0.0 to 1.0). The Alpha object is effective
function of time that generates alpha values in the range [0,1] when samp
ft = [0,1]. The functionft and the characteristics of the Alpha object are dete
mined by the following user-definable parameters:

• loopCount: Specifies the number of times to run this Alpha. A value of
specifies that the Alpha loops indefinitely.

• triggerTime: Specifies the time in milliseconds since the start time th
this object first triggers. IfstartTime + triggerTime is less thancur-
rentTime, the Alpha object is started as soon as possible by the syste
249Version 1.1.2, June 1999

9.6.3 The Alpha Class BEHAVIORS AND INTERPOLATORS

250

r

-

AS-
.

cel-
ing
p. If
• phaseDelayDuration: Specifies the number of milliseconds to wait afte
triggerTime before actually starting this Alpha.

• mode: The mode can be set to INCREASING_ENABLE or DECREAS
ING_ENABLE, or the ORed value of the two. INCREASING_ENABLE
activates the increasing Alpha parameters described below. DECRE
ING_ENABLE activates the decreasing Alpha parameters listed below

Figure 9-8 How an α-Increasing Waveform Changes with Various Values ofincreasing
AlphaRampDuration

The increasing Alpha parameters are:

• increasingAlphaDuration: Specifies the time period during which Al-
pha goes from zero to one.

• increasingAlphaRampDuration: Specifies the time period during which
the Alpha step size increases at the beginning of theincreasingAlphaDu-

ration and, correspondingly, decreases at the end of theincreasingAl-

phaDuration. This parameter is clamped to half ofincreasing-
AlphaDuration. When this parameter is non-zero, one gets constant ac
eration while it is in effect; constant positive acceleration at the beginn
of the ramp and constant negative acceleration at the end of the ram

α Acceleration

α Velocity

α Value
0

1

Ramp = 0 Ramp ≥ 1/2 Duration Ramp < 1/2 Duration

Alpha Ramp Examples

0 0

1 1

α Increasing α Increasing α Increasing

•

•

Java 3D API Specification

BEHAVIORS AND INTERPOLATORS The Alpha Class9.6.3

ant

.

tion
he
pa-

the

o.

asing
this parameter is zero, the effective velocity of the Alpha value is const
and the acceleration is zero (i.e., linearly increasing alpha ramp).

• alphaAtOneDuration: Specifies the time period that Alpha stays at one

The decreasing Alpha parameters are:

• decreasingAlphaDuration: Specifies the time period during which Al-
pha goes from one to zero.

• decreasingAlphaRampDuration: Specifies the time period during which
the Alpha step size increases at the beginning of thedecreasingAlphaDu-

ration and, correspondingly, decreases at the end of thedecreasingAl-

phaDuration. This parameter is clamped to half ofdecreasingAlpha-
Duration. When this parameter is non-zero, one gets constant accelera
while it is in effect; constant positive acceleration at the beginning of t
ramp and constant negative acceleration at the end of the ramp. If this
rameter is zero, the effective velocity of the Alpha value is constant and
acceleration is zero (i.e., a linearly-decreasing alpha ramp).

• alphaAtZeroDuration: Specifies the time period that Alpha stays at zer

Constants

public static final int INCREASING_ENABLE
public static final int DECREASING_ENABLE

These flags specify that this alpha’s mode is to use the increasing or decre
component of the alpha, respectively.

Constructors

public Alpha()

Constructs an Alpha object with default parameters:

Parameter Default Value

loopCount –1

mode INCREASING_ENABLE

triggerTime 0

phaseDelayDuration 0

increasingAlphaDuration 1000

increasingAlphaRampDuration 0

alphaAtOneDuration 0

decreasingAlphaDuration 0
251Version 1.1.2, June 1999

9.6.3 The Alpha Class BEHAVIORS AND INTERPOLATORS

252

alpha

ed on
thod
or an
alue
e is

ative

.

public Alpha(int loopCount, long increasingAlphaDuration)
public Alpha(int loopCount, long triggerTime,

long phaseDelayDuration, long increasingAlphaDuration,
long increasingAlphaRampDuration, long alphaAtOneDuration)

public Alpha(int loopCount, int mode, long triggerTime,
long phaseDelayDuration, long increasingAlphaDuration,
long increasingAlphaRampDuration, long alphaAtOneDuration,
long decreasingAlphaDuration,
long decreasingAlphaRampDuration,
long alphaAtZeroDuration)

Constructs a new Alpha object using the specified parameters to define the
phases for the object.

Methods

public float value()
public float value(long atTime)

These methods return the alpha value (between 0.0 and 1.0 inclusive) bas
the time-to-alpha parameters established for this interpolator. The first me
returns the alpha for the current time. The second method returns the alpha f
arbitrary given time. If the alpha mapping has not started, the starting alpha v
is returned. If the alpha mapping has completed, the ending alpha valu
returned.

public void setStartTime(long startTime)
public long getStartTime()

These methods set and retrieve this alpha’s start time, the base for all rel
time specifications. The default value ofstartTime is the system start time,
defined to be a global time base representing the start of Java 3D execution

public void setLoopCount(int loopCount)
public int getLoopCount()

These methods set and retrieve this alpha’s loop count.

decreasingAlphaRampDuration 0

alphaAtZeroDuration 0

Parameter Default Value
Java 3D API Specification

BEHAVIORS AND INTERPOLATORS The Alpha Class9.6.3

f the

d

s
elay
public void setMode(int mode)
public int getMode()

These methods set and retrieve this alpha’s mode, which defines which o
alpha regions are active. The mode is one of the following values:INCREASING_

ENABLE, DECREASING_ENABLE, or both (when both of these modes are ORe
together).

If the mode isINCREASING_ENABLE, the increasingAlphaDuration, increas-
ingAlphaRampDuration, and alphaAtOneDuration are active. If the mode is
DECREASING_ENABLE, the decreasingAlphaDuration, decreasingAlphaRamp-

Duration, andalphaAtZeroDuration are active. If the mode is both constant
ORed, all regions are active. Active regions are all preceded by the phase d
region.

public void setTriggerTime(long triggerTime)
public long getTriggerTime()

These methods set and retrieve this alpha’s trigger time.

public void setPhaseDelayDuration(long phaseDelayDuration)
public long getPhaseDelayDuration()

These methods set and retrieve this alpha’s phase delay duration.

public void setIncreasingAlphaDuration(long
increasingAlphaDuration)

public long getIncreasingAlphaDuration()

These methods set and retrieve this alpha’sincreasingAlphaDuration.

public void setIncreasingAlphaRampDuration(long
increasingAlphaRampDuration)

public long getIncreasingAlphaRampDuration()

These methods set and retrieve this alpha’sincreasingAlphaRampDuration.

public void setAlphaAtOneDuration(long alphaAtOneDuration)
public long getAlphaAtOneDuration()

These methods set and retrieve this alpha’salphaAtOneDuration.

public void setDecreasingAlphaDuration(long
decreasingAlphaDuration)

public long getDecreasingAlphaDuration()

These methods set and retrieve this alpha’sdecreasingAlphaDuration.
253Version 1.1.2, June 1999

9.6.4 The Interpolator Base Class BEHAVIORS AND INTERPOLATORS

254

,

are
the

the
spe-

eed
-

public void setDecreasingAlphaRampDuration(long
decreasingAlphaRampDuration)

public long getDecreasingAlphaRampDuration()

These methods set and retrieve this alpha’sdecreasingAlphaRampDuration.

public void setAlphaAtZeroDuration(long alphaAtZeroDuration)
public long getAlphaAtZeroDuration()

These methods set and retrieve this alpha’salphaAtZeroDuration.

public boolean finished()

This method returnstrue if this Alpha object is past its activity window, that is
if it has finished all its looping activity. This method returnsfalse if this Alpha
object is still active.

9.6.4 The Interpolator Base Class

Interpolator is an abstract behavior class from which several subclasses
derived. The base Interpolator class contains an Alpha object that provides
means for converting a time value (in milliseconds) into an alpha value in
range [0.0, 1.0] inclusive. Its subclasses map this alpha value into domain-
cific values in their range.

Constants

protected WakeupCriterion defaultWakeupCriterion

This is the default WakeupCondition for all interpolators. ThewakeupOn method
of Behavior, which takes a WakeupCondition as the method parameter, will n
to be called at the end of theprocessStimulus method of any class that sub
classes Interpolator. This is done with the following method call:

wakeupOn(defaultWakeupCriterion);

Constructors

The Interpolator behavior class has the following constructors.

public Interpolator()

Constructs and initializes a new Interpolator a null alpha value.
Java 3D API Specification

BEHAVIORS AND INTERPOLATORS PositionInterpolator Object9.6.5

his
of

ult is

onal
pair
ect).

the
public Interpolator(Alpha alpha)

Constructs and initializes a new Interpolator with the specified alpha value. T
constructor provides the common initialization code for all specializations
Interpolator.

Methods

public void setAlpha(Alpha alpha)
public Alpha getAlpha()

These methods set and retrieve this interpolator’s Alpha object. Setting it tonull

causes the Interpolator to stop running.

public void setEnable(boolean state)
public boolean getEnable()

These methods set and retrieve this Interpolator’s enabled state—the defa
enabled.

public void initialize()

This is the generic predefined interpolatorinitialize method. It schedules the
behavior to awaken at the next frame.

9.6.5 PositionInterpolator Object

The PositionInterpolator class extends Interpolator. It modifies the translati
component of its target TransformGroup by linearly interpolating between a
of specified positions (using the value generated by the specified Alpha obj
The interpolated position is used to generate a translation transform along
local X-axis of this interpolator.

Constructors

The PositionInterpolator object specifies the following constructors.

public PositionInterpolator(Alpha alpha, TransformGroup target)

Constructs a trivial position interpolator with a specified target, anaxisOf-

Translation set to the identity transformation, astartPosition of 0.0, and an
endPosition of 1.0 along theX-axis.
255Version 1.1.2, June 1999

9.6.6 RotationInterpolator Object BEHAVIORS AND INTERPOLATORS

256

ans-

cal
one

de.

lpha
es a
node

nal
pair
. The
public PositionInterpolator(Alpha alpha, TransformGroup target,
Transform3D axisOfTranslation, float startPosition,
float endPosition)

Constructs and initializes a new PositionInterpolator that varies the target Tr
formGroup node’s translational component (startPosition andendPosition).
TheaxisOfTranslation parameter specifies the transform that defines the lo
coordinate system in which this interpolator operates. The translation is d
along theX-axis of this local coordinate system.

Methods

The PositionInterpolator object specifies the following methods.

public void setStartPosition(float position)
public float getStartPosition()

These two methods set and get the Interpolator’s start position.

public void setEndPosition(float position)
public float getEndPosition()

These two methods set and get the Interpolator’s end position.

public void setTarget(TransformGroup target)
public TransformGroup getTarget()

These two methods set and get the Interpolator’s target TransformGroup no

public void setAxisOfTranslation(Transform3D axis)
public Transform3D getAxisOfTranslation()

These two methods set and get the Interpolator’s axis of translation.

public void processStimulus(Enumeration criteria)

This method is invoked by the behavior scheduler every frame. It maps the a
value that corresponds to the current time into a translation value, comput
transform based on this value, and updates the specified TransformGroup
with this new transform.

9.6.6 RotationInterpolator Object

The RotationInterpolator class extends Interpolator. It modifies the rotatio
component of its target TransformGroup by linearly interpolating between a
of specified angles (using the value generated by the specified Alpha object)
Java 3D API Specification

BEHAVIORS AND INTERPOLATORS RotationInterpolator Object9.6.6

of

oup
,

m in

, in

, in

e.
interpolated angle is used to generate a rotation transform about the localY-axis
of this interpolator.

Constructors

public RotationInterpolator(Alpha alpha, TransformGroup target)

Constructs a trivial rotation interpolator with a specifiedtarget, an axisOf-

Rotation set to identity, a minimum angle of 0 radians, and a maximum angle
2π radians.

public RotationInterpolator(Alpha alpha, TransformGroup target,
Transform3D axisOfRotation, float minimumAngle,
float maximumAngle)

Constructs a new rotation interpolator that varies the target TransformGr
node’s rotational component. TheminimumAngle parameter is the starting angle
in radians;maximumAngle is the ending angle, in radians. TheaxisOfRotation
parameter specifies the transform that defines the local coordinate syste
which this interpolator operates. The rotation is done about theY-axis of this
local coordinate system.

Methods

public void setMinimumAngle(float angle)
public float getMinimumAngle()

These two methods set and get the interpolator’s minimum rotation angle
radians.

public void setMaximumAngle(float angle)
public float getMaximumAngle()

These two methods set and get the interpolator’s maximum rotation angle
radians.

public void setAxisOfRotation(Transform3D axis)
public Transform3D getAxisOfRotation()

These two methods set and get the interpolator’s axis of rotation.

public void setTarget(TransformGroup target)
public TransformGroup getTarget()

These two methods set and get the interpolator’s target TransformGroup nod
257Version 1.1.2, June 1999

9.6.7 ColorInterpolator Objectpl BEHAVIORS AND INTERPOLATORS

258

lpha
rans-
with

r of
col-

of

tar-

nent
public void processStimulus(Enumeration criteria)

This method is invoked by the behavior scheduler every frame. It maps the a
value that corresponds to the current time into a rotation angle, computes a t
form based on this angle, and updates the specified TransformGroup node
this new transform.

9.6.7 ColorInterpolator Objectpl

The ColorInterpolator class extends Interpolator. It modifies the diffuse colo
its target material object by linearly interpolating between a pair of specified
ors (using the value generated by the specified Alpha object).

Constructors

public ColorInterpolator(Alpha alpha, Material target)

Constructs a trivial color interpolator with a specified target, a start color
black, and an end color of white.

public ColorInterpolator(Alpha alpha, Material target,
Color3f startColor, color3f endColor)

Constructs a new ColorInterpolator object that varies the diffuse color of the
get material between two color values (startColor andendColor).

Methods

public void setStartColor(Color3f color)
public void getStartColor(Color3f color)

These two methods set and get the interpolator’s start color.

public void setEndColor(Color3f color)
public void getEndColor(Color3f color)

These two methods set and get the interpolator’s end color.

public void setTarget(Material target)
public Material getTarget()

These two methods set and get the interpolator’s target Material compo
object.
Java 3D API Specification

BEHAVIORS AND INTERPOLATORS ScaleInterpolator Object9.6.8

lpha
dif-

cale
pair
lpha
in the

ode
ix, a

roup

cal
t the
public void processStimulus(Enumeration criteria)

This method is invoked by the behavior scheduler every frame. It maps the a
value that corresponds to the current time into a color value and updates the
fuse color of the target Material object with this new color value.

9.6.8 ScaleInterpolator Object

The ScaleInterpolator class extends Interpolator. It modifies the uniform s
component of its target TransformGroup by linearly interpolating between a
of specified scale values (using the value generated by the specified A
object). The interpolated scale value is used to generate a scale transform
local coordinate system of this interpolator.

Constructors

public ScaleInterpolator(Alpha alpha, TransformGroup target)

Constructs a trivial scale interpolator that varies its target TransformGroup n
between the two scale values, using the specified alpha, an identity matr
minimum scale of 0.1, and a maximum scale of 1.0.

public ScaleInterpolator(Alpha alpha, TransformGroup target,
Transform3D axisOfScale, float minimumScale,
float maximumScale)

Constructs a new ScaleInterpolator object that varies the target TransformG
node’s scale component between two scale values (minimumScale andmaximum-
Scale). TheaxisOfScale parameter specifies the transform that defines the lo
coordinate system in which this interpolator operates. The scale is done abou
origin of this local coordinate system.

Methods

public void setMinimumScale(float scale)
public float getMinimumScale()

These two methods set and get the interpolator’s minimum scale.

public void setMaximumScale(float scale)
public float getMaximumScale()

These two methods set and get the interpolator’s maximum scale.
259Version 1.1.2, June 1999

9.6.9 SwitchValueInterpolator Object BEHAVIORS AND INTERPOLATORS

260

e.

lpha
rans-
with

nced

ted.
k up

ding
ce is

cted
ci-

ect).

itch
public void setAxisOfScale(Transform3D axis)
public Transform3D getAxisOfScale()

These two methods set and get the interpolator’s axis of scale.

public void setTarget(TransformGroup target)
public TransformGroup getTarget()

These two methods set and get the interpolator’s target TransformGroup nod

public void processStimulus(Enumeration criteria)

This method is invoked by the behavior scheduler every frame. It maps the a
value that corresponds to the current time into a scale value, computes a t
form based on this value, and updates the specified TransformGroup node
this new transform.

public void updateNodeReferences(NodeReferenceTable
referenceTable)

This is a callback method used to allow a node to check if any nodes refere
by that node have been duplicated via a call tocloneTree. This method is called
by thecloneTree method after all nodes in the subgraph have been duplica
The cloned leaf node’s method will be called and the leaf node can then loo
any node references by using thegetNewNodeReference method found in the
NodeReferenceTable object. If a match is found, a reference to the correspon
node in the newly cloned subgraph is returned. If no corresponding referen
found, either aDanglingReferenceException is thrown or a reference to the
original node is returned, depending on the value of theallowDanglingRefer-

ences parameter passed in thecloneTree call.

9.6.9 SwitchValueInterpolator Object

The SwitchValueInterpolator class extends Interpolator. It modifies the sele
child of the target Switch node by linearly interpolating between a pair of spe
fied child index values (using the value generated by the specified Alpha obj

Constructors

public SwitchValueInterpolator(Alpha alpha, Switch target)
public SwitchValueInterpolator(Alpha alpha, Switch target,

int firstChildIndex, int lastChildIndex)

Constructs a new SwitchValueInterpolator object that varies the target Sw
node’s child index between the two values provided (firstChildIndex, the
Java 3D API Specification

BEHAVIORS AND INTERPOLATORS TransparencyInterpolator Object9.6.10

lpha
ates

spar-
een
cified

um
index of the first children in the Switch node to select, andlastChildIndex, the
index of the last children in the Switch node to select).

Methods

public void setFirstChildIndex(int firstIndex)
public int getFirstChildIndex()

These two methods set and get the interpolator’s first child index.

public void setLastChildIndex(int lastIndex)
public int getLastChildIndex()

These two methods set and get the interpolator’s last child index.

public void setTarget(Switch target)
public Switch getTarget()

These two methods set and get the interpolator’s target Switch node.

public void processStimulus(Enumeration criteria)

This method is invoked by the behavior scheduler every frame. It maps the a
value that corresponds to the current time into a child index value and upd
the specified Switch node with this new child index value.

9.6.10 TransparencyInterpolator Object

The TransparencyInterpolator class extends Interpolator. It modifies the tran
ency of its target TransparencyAttributes object by linearly interpolating betw
a pair of specified transparency values (using the value generated by the spe
Alpha object).

Constructors

public TransparencyInterpolator(Alpha alpha,
TransparencyAttributes target)

Constructs a trivial transparency interpolator with a specified target, a minim
transparency of 0.0, and a maximum transparency of 1.0.
261Version 1.1.2, June 1999

9.6.11 PathInterpolator Object BEHAVIORS AND INTERPOLATORS

262

rial’s

utes

lpha
dates
.

class

d by
e-
ith
public TransparencyInterpolator(Alpha alpha,
TransparencyAttributes target, float minimumTransparency,
float maximumTransparency)

Constructs a new TransparencyInterpolator object that varies the target mate
transparency between the two transparency values (minimumTransparency, the
starting transparency, andmaximumTransparency, the ending transparency).

Methods

public void setMinimumTransparency(float transparency)
public float getMinimumTransparency()

These two methods set and get the interpolator’s minimum transparency.

public void setMaximumTransparency(float transparency)
public float getMaximumTransparency()

These two methods set and get the interpolator’s maximum transparency.

public void setTarget(TransparencyAttributes target)
public TransparencyAttributes getTarget()

These two methods set and get the interpolator’s target TransparencyAttrib
component object.

public void processStimulus(Enumeration criteria)

This method is invoked by the behavior scheduler every frame. It maps the a
value that corresponds to the current time into a transparency value and up
the specified TransparencyAttributes object with this new transparency value

9.6.11 PathInterpolator Object

The PathInterpolator class extends Interpolator. This class defines the base
for all path interpolators. Subclasses have access to thecomputePathInterpola-

tion method, which computes thecurrentInterpolationValue given the cur-
rent time and alpha. The method also computes thecurrentKnotIndex, which is
based on thecurrentInterpolationValue.

The currentInterpolationValue is calculated by linearly interpolating among
a series of predefined knot and orientation, pairs (using the value generate
the specifiedAlpha object). The last knot must have a value of 1.0. An interm
diate knot with index k must have a value strictly greater than any knot w
index less than k.
Java 3D API Specification

BEHAVIORS AND INTERPOLATORS PathInterpolator Object9.6.11

use
e

te

lpha
use

le, a

t

-

the

ola-

cur-
e no
Constants

protected float currentInterpolationValue

This value is the ratio between knot values indicated by thecurrentKnotIndex

variable. So if a subclass wanted to interpolate between knot values, it would
the currentKnotIndex to get the bounding knots for the “real” value, then us
the currentInterpolationValue to interpolate between the knots. To calcula
this variable, a subclass needs to call thecomputePathInterpolation method
from the subclass’sprocessStimulus method. Then this variable will hold a
valid value that can be used in further calculations by the subclass.

protected int currentKnotIndex

This value is the index of the current base knot value, as determined by the a
function. A subclass wishing to interpolate between bounding knots would
this index and the one following it, and would use thecurrentInterpolation-

Value variable as the ratio between these indices. To calculate this variab
subclass needs to call thecomputePathInterpolation method from the sub-
class’sprocessStimulus method. Then this variable will hold a valid value tha
can be used in further calculations by the subclass.

Constructors

public PathInterpolator(Alpha alpha, float knots[])

Constructs a newPathInterpolator object that varies the target Transform
Group node’s transform.

Methods

public int getArrayLengths()

This method retrieves the length of the knot and position arrays (which are
same length).

public void setKnot(int index, float knot)
public float getKnot(int index)

These methods set and retrieve the knot at the specified index for this interp
tor.

protected void computePathInterpolation()

This method computes the base knot index and interpolation value given the
rent value of alpha and the knots[] array. If the index is 0 and there should b
263Version 1.1.2, June 1999

9.6.12 PositionPathInterpolator Object BEHAVIORS AND INTERPOLATORS

264

o 0.

rans-
ng

spec-
tion

1.0.
y

arget

per-
s a
he
interpolation, both the index variable and the interpolation variable are set t
Otherwise,currentKnotIndex is set to the lower index of the two bounding
knot points and thecurrentInterpolationValue variable is set to the ratio of
the alpha value between these two bounding knot points.

9.6.12 PositionPathInterpolator Object

The PositionPathInterpolator class extends PathInterpolator. It modifies the t
lational component of its target TransformGroup by linearly interpolating amo
a series of predefined knot/position pairs (using the value generated by the
ified Alpha object). The interpolated position is used to generate a transla
transform in the local coordinate system of this interpolator.

The first knot must have a value of 0.0. The last knot must have a value of
An intermediate knot with indexk must have a value strictly greater than an
knot with index less thank.

Constructors

public PositionPathInterpolator(Alpha alpha,
TransformGroup target, Transform3D axisOfTranslation, float
knots[], Point3f positions[])

Constructs a new PositionPathInterpolator that varies the translation of the t
TransformGroup’s transform. TheaxisOfTranslation parameter specifies the
transform that defines the local coordinate system in which this interpolator o
ates. Theknots parameter specifies an array of knot values that specifie
spline. Thepositions parameter specifies an array of position values at t
knots.

Methods

public void setPosition(int index, Point3f position)
public void getPosition(int index, Point3f position)

These two methods set and get the interpolator’s indexed position.

public void setAxisOfTranslation(Transform3D axis)
public Transform3D getAxisOfTranslation()

These two methods set and get the interpolator’s axis of translation.
Java 3D API Specification

BEHAVIORS AND INTERPOLATORS RotPosPathInterpolator Object9.6.13

ect.

lpha
es a
node

rota-
rly

tion
lated
inate

1.0.
y

ation

m in
t
r-
n

public void setTarget(TransformGroup target)
public TransformGroup getTarget()

These two methods set and get the interpolator’s target TransformGroup obj

public void processStimulus(Enumeration criteria)

This method is invoked by the behavior scheduler every frame. It maps the a
value that corresponds to the current time into a translation value, comput
transform based on this value, and updates the specified TransformGroup
with this new transform.

9.6.13 RotPosPathInterpolator Object

The RotPosPathInterpolator class extends PathInterpolator. It modifies the
tional and translational components of its target TransformGroup by linea
interpolating among a series of predefined knot/position and knot/orienta
pairs (using the value generated by the specified Alpha object). The interpo
position and orientation are used to generate a transform in the local coord
system of this interpolator.

The first knot must have a value of 0.0. The last knot must have a value of
An intermediate knot with indexk must have a value strictly greater than an
knot with index less thank.

Constructors

public RotPosPathInterpolator(Alpha alpha, TransformGroup target,
Transform3D axisOfRotPos, float knots[], Quat4f quats[],
Point3f positions[])

This constructor constructs a new RotPosPathInterpolator that varies the rot
and translation of the target TransformGroup’s transform. TheaxisOfRotPos

parameter specifies the transform that defines the local coordinate syste
which this interpolator operates. Theknots parameter specifies an array of kno
values that specifies a spline. Thequats parameter specifies an array of quate
nion values at the knots. Thepositions parameter specifies an array of positio
values at the knots.

Methods

public void setQuat(int index, Quat4f quat)
public void getQuat(int index, Quat4f quat)

These two methods set and get the interpolator’s indexed quaternion value.
265Version 1.1.2, June 1999

9.6.14 RotPosScalePathInterpolator Object BEHAVIORS AND INTERPOLATORS

266

tion.

ect.

lpha
ues,
Trans-

s the
p by
ta-

lpha
ate a

1.0.
y

s the
The
cal
public void setPosition(int index, Point3f position)
public void getPosition(int index, Point3f position)

These two methods set and get the interpolator’s indexed position.

public void setAxisOfRotPos(Transform3D axisOfRotPos)
public Transform3D getAxisOfRotPos()

These two methods set and get the interpolator’s axis of rotation and transla

public void setTarget(TransformGroup target)
public TransformGroup getTarget()

These two methods set and get the interpolator’s target TransformGroup obj

public void processStimulus(Enumeration criteria)

This method is invoked by the behavior scheduler every frame. It maps the a
value that corresponds to the current time into translation and rotation val
computes a transform based on these values, and updates the specified
formGroup node with this new transform.

9.6.14 RotPosScalePathInterpolator Object

The RotPosScalePathInterpolator class extends PathInterpolator. It varie
rotational, translational, and scale components of its target TransformGrou
linearly interpolating among a series of predefined knot/position, knot/orien
tion, and knot/scale pairs (using the value generated by the specified A
object). The interpolated position, orientation, and scale are used to gener
transform in the local coordinate system of this interpolator.

The first knot must have a value of 0.0. The last knot must have a value of
An intermediate knot with indexk must have a value strictly greater than an
knot with index less thank.

Constructors

public RotPosScalePathInterpolator(Alpha alpha,
TransformGroup target, Transform3D axisOfRotPosScale,
float knots[], Quat4f quats[], Point3f positions[],
float scales[])

This constructor constructs a new RotPosScalePathInterpolator that varie
rotation, translation, and scale of the target TransformGroup’s transform.
axisOfRotPosScale parameter specifies the transform that defines the lo
coordinate system in which this interpolator operates. Theknots parameter spec-
Java 3D API Specification

BEHAVIORS AND INTERPOLATORS RotationPathInterpolator Object9.6.15

e

and

ect.

lpha
val-

ecified

aries
ing
d by
ifies an array of knot values that specifies a spline. Thequats parameter specifies
an array of quaternion values at the knots. Thepositions parameter specifies an
array of position values at the knots. Thescale parameter specifies the scal
component value.

Methods

public void setScale(int index, float scale)
public float getScale(int index)

These two methods set and get the interpolator’s indexed scale value.

public void setQuat(int index, Quat4f quat)
public void getQuat(int index, Quat4f quat)

These two methods set and get the interpolator’s indexed quaternion value.

public void setPosition(int index, Point3f position)
public void getPosition(int index, Point3f position)

These two methods set and get the interpolator’s indexed position.

public void setAxisOfRotPosScale(Transform3D axisOfRotPosScale)
public Transform3D getAxisOfRotPosScale()

These two methods set and get the interpolator’s axis of rotation, translation,
scale.

public void setTarget(TransformGroup target)
public TransformGroup getTarget()

These two methods set and get the interpolator’s target TransformGroup obj

public void processStimulus(Enumeration criteria)

This method is invoked by the behavior scheduler every frame. It maps the a
value that corresponds to the current time into translation, rotation, and scale
ues, computes a transform based on these values, and updates the sp
TransformGroup node with this new transform.

9.6.15 RotationPathInterpolator Object

The RotationPathInterpolator class extends the PathInterpolator class. It v
the rotational component of its target TransformGroup by linearly interpolat
among a series of predefined knot/orientation pairs (using the value generate
267Version 1.1.2, June 1999

9.6.15 RotationPathInterpolator Object BEHAVIORS AND INTERPOLATORS

268

te a

1.0.
y

s the

rpo-
at
at

ect.

lpha
rans-
with
the specified Alpha object). The interpolated orientation is used to genera
rotation transform in the local coordinate system of this interpolator.

The first knot must have a value of 0.0. The last knot must have a value of
An intermediate knot with indexk must have a value strictly greater than an
knot with index less thank.

Constructors

public RotationPathInterpolator(Alpha alpha,
TransformGroup target, Transform3D axisOfRotation,
float knots[], Quat4f quats[])

This constructor constructs a new RotationPathInterpolator object that varie
target TransformGroup node’s transform. TheaxisOfRotation parameter speci-
fies the transform that defines the local coordinate system in which this inte
lator operates. Theknots parameter specifies an array of knot values th
specifies a spline. Thequats parameter specifies an array of quaternion values
the knots.

Methods

public void setQuat(int index, Quat4f quat)
public void getQuat(int index, Quat4f quat)

These two methods set and get the interpolator’s indexed quaternion value.

public void setAxisOfRotation(Transform3D axisOfRotation)
public Transform3D getAxisOfRotation()

These two methods set and get the interpolator’s axis of rotation.

public void setTarget(TransformGroup target)
public TransformGroup getTarget()

These two methods set and get the interpolator’s target TransformGroup obj

public void processStimulus(Enumeration criteria)

This method is invoked by the behavior scheduler every frame. It maps the a
value that corresponds to the current time into a rotation angle, computes a t
form based on this angle, and updates the specified TransformGroup node
this new transform.
Java 3D API Specification

BEHAVIORS AND INTERPOLATORS DistanceLOD Object9.7.2

ates
des.
-of-

ment
ria

of
he

d
.

y. It
ode
9.7 Level-of-Detail Behaviors

The LOD (Level of Detail) leaf node is an abstract behavior class that oper
on a list of Switch group nodes to select one of the children of the Switch no
Specializations of the LOD abstract behavior node implement various level
detail policies.

9.7.1 LOD Object

The LOD behavior node is an abstract class that is subclassed to imple
selection among two or more levels of detail using an LOD selection crite
defined by the subclass.

Constructors

public LOD()

Constructs and initializes a new LOD node.

Methods

The LOD node class defines the following methods.

public final void addSwitch(Switch switchNode)
public final void setSwitch(Switch switchNode, int index)
public final void insertSwitch(Switch switchNode, int index)
public final void removeSwitch(int index)
public final Switch getSwitch(int index)
public final int numSwitches()

The addSwitch method appends the specified Switch node to this LOD’s list
switches. ThesetSwitch method replaces the specified Switch node with t
Switch node provided. TheinsertSwitch method inserts the specified Switch
node at the specified index. TheremoveSwitch method removes the Switch node
at the specified index. ThegetSwitch method returns the Switch node specifie
by the index. ThenumSwitches method returns a count of this LOD’s switches

public final Enumeration getAllSwitches()

This method returns the Enumeration object of all switches.

9.7.2 DistanceLOD Object

The DistanceLOD behavior node implements a distance-based LOD polic
operates on a Switch group node to select one of the children of that Switch n
269Version 1.1.2, June 1999

9.7.2 DistanceLOD Object BEHAVIORS AND INTERPOLATORS

270

iated
t
OD

for

the

et to

fault

the

off
.

based on the distance of this LOD node from the viewer. An array ofn monoton-
ically increasing distance values is specified, such that distances[0] is assoc
with the highest level of detail and distances[n–1] is associated with the lowes
level of detail. Based on the actual distance from the viewer to this DistanceL
node, thesen distance values [0,n–1] select from amongn+1 levels of detail
[0, n]. If d is the distance from the viewer to the LOD node, then the equation
determining which level of detail (child of the Switch node) is selected is:

0, if d ≤ distances[0]

i, if distances[i–1] < d ≤ distances[i]

n, if d > distances[n–1]

Both the position of this node and the array of LOD distances are defined in
local coordinate system of this node.

Constructors

public DistanceLOD()

This constructor creates a DistanceLOD object with a single distance value s
0.0 and is, therefore, not very useful.

public DistanceLOD(float distances[])
public DistanceLOD(float distances[], Point3f position)

Construct and initialize a new DistanceLOD node. Thedistances parameter
specifies a vector of doubles representing LOD cutoff distances. Theposition

parameter specifies the position of this node in local coordinates. The de
position is (0,0,0).

Methods

public final void setPosition(Point3f position)
public final void getPosition(Point3f position)

These methods set and retrieve theposition parameter for this DistanceLOD
node. This position is specified in the local coordinates of this node, and is
position from which the distance to the viewer is computed.

public final int numDistances()
public final double getDistance(int whichDistance)
public final void setDistance(int whichDistance, double distance)

ThenumDistances method returns a count of the number of LOD distance cut
parameters. ThegetDistance method returns a particular LOD cutoff distance
Java 3D API Specification

BEHAVIORS AND INTERPOLATORS Billboard Behavior 9.8

e the
is

de in

tric
map

ren’s
ThesetDistance method sets a particular LOD cutoff distance.

public void initialize()

This method sets up the initial wakeup criteria.

public void processStimulus(Enumeration criteria)

This method computes the appropriate level of detail.

9.8 Billboard Behavior

The Billboard behavior node operates on the TransformGroup node to caus
local +z axis of the TransformGroup to point at the viewer’s eye position. This
done regardless of the transforms above the specified TransformGroup no
the scene graph.

Billboard nodes provide the most benefit for complex, roughly symme
objects. A typical use might consist of a quadrilateral that contains a texture
of a tree.

Constants

The Billboard class adds the following new constants.

public static final int ROTATE_ABOUT_AXIS

Specifies that rotation should be about the specified axis.

public static final int ROTATE_ABOUT_POINT

Specifies that rotation should be about the specified point and that the child
Y-axis should match the ViewPlatform’sY-axis.

Constructors

The Billboard class specifies the following constructors.

public Billboard()

Constructs a Billboard node with default parameters:

Parameter Default Value

alignmentmode ROTATE_ABOUT_AXIS

alignmentaxis Y-axis (0,1,0)
271Version 1.1.2, June 1999

9.8 Billboard Behavior BEHAVIORS AND INTERPOLATORS

272

peci-

me-

and

ither

et or

oard
public Billboard(TransformGroup tg)

Constructs a Billboard node with default parameters that operates on the s
fied TransformGroup node. The default alignment mode isROTATE_ABOUT_AXIS

rotation with the axis pointing along theY axis.

public Billboard(TransformGroup tg, int mode, Vector3f axis)
public Billboard(TransformGroup tg, int mode, Point3f point)

The first constructor constructs a Billboard behavior node with default para
ters that operates on the specified targetTransformGroup node. The default
alignment mode isROTATE_ABOUT_AXIS, with the axis along theY-axis. The next
two constructors construct a Billboard behavior node with the specified axis
mode that operates on the specified TransformGroup node. Theaxis parameter
specifies the ray about which the billboard rotates. Thepoint parameter specifies
the position about which the billboard rotates. Themode parameter is the align-
ment mode and is eitherROTATE_ABOUT_AXIS or ROTATE_ABOUT_POINT.

Methods

The Billboard class defines the following methods.

public final void setAlignmentMode(int mode)
public final int getAlignmentMode()

These methods, if enabled by the appropriate flag, permit an application to e
retrieve or set the Billboard node’s alignment mode, one ofROTATE_ABOUT_AXIS

or ROTATE_ABOUT_POINT.

public final void setAlignmentAxis(Vector3f axis)
public final void setAlignmentAxis(float x, float y, float z)
public final void getAlignmentAxis(Vector3f axis)

These methods, if enabled by the appropriate flag, permit an application to s
retrieve the Billboard node’s alignment axis.

public final void setTarget(TransformGroup tg)
public final TransformGroup getTarget()

These methods set or retrieve the target TransformGroup node for this Billb
object.

rotationpoint (0,0,1)

target transform group (tg) null

Parameter Default Value
Java 3D API Specification

BEHAVIORS AND INTERPOLATORS Billboard Behavior 9.8

tion
public final void setRotationPoint(float x, float y, float z)
public final void setRotationPoint(Point3f point)
public final void getRotationPoint(Point3f point)

The first two methods set the rotation point. The third method gets the rota
point and sets the parameter to this value.

public void initialize()

This method sets up the initial wakeup criteria.

public void processStimulus(Enumeration criteria)

This method computes the appropriate transform.
273Version 1.1.2, June 1999

9.8 Billboard Behavior BEHAVIORS AND INTERPOLATORS

274
 Java 3D API Specification

Version 1.1.2, June 1999
C H A P T E R 10

g

API
vari-
kers

ned
3D

ous
ation
the

sis-
er of
stant

r can
ns
put
ncor-
ust

pe-
per

-to-
dou-
Input Devices and Pickin

JAVA 3D provides access to keyboards and mice using the standard Java
for keyboard and mouse support. Additionally, Java 3D provides access to a
ety of continuous-input devices such as six-degrees-of-freedom (6DOF) trac
and joysticks.

Continuous-input devices like 6DOF trackers and joysticks have well defi
continuous inputs. Trackers produce a position and orientation that Java
stores internally as a transformation matrix. Joysticks produce two continu
values in the range [–1.0, 1.0] that Java 3D stores internally as a transform
matrix with an identity rotation (no rotation) and one of the joystick values as
X translation and the other as the Y translation component.

Unfortunately, continuous-input devices do not have the same level of con
tency when it comes to their associated switches or buttons. Still, the numb
buttons or switches attached to a particular sensing element remains con
across all sensing elements associated with a single device.

10.1 InputDevice Interface

The InputDevice interface specifies an abstract input device that a develope
use in implementing a device driver for a particular device. All implementatio
of an InputDevice interface must implement all of its methods. Java 3D’s in
device scheduler uses these methods to interact with specific devices and i
porate their input. In addition to the generic methods that all InputDevices m
provide, implementations of an InputDevice will contain whatever device-s
cific information and methods are necessary to maintain that device’s pro
functioning.

All input devices consist of a number of Sensor objects that have a direct one
one relationship with that device’s physical detectors. Sensor objects serve
275

10.1.1 The Abstract Interface INPUT DEVICES AND PICKING

276

ve as
can

Sen-

on,
ver
ific

the

he
-
The
ed-

will

t

ble duty. They not only represent actual physical detectors but they also ser
abstract six-degrees-of-freedom transformations that a Java 3D application
access. The Sensor class is described in more detail in Section 10.2.3, “The
sor Object.”

10.1.1 The Abstract Interface

All input devices implement a consistent interface that allows the initializati
processing of input, and finalization of a particular input device. A device-dri
programmer would implement the following methods in whatever device-spec
manner is necessary to perform the specified operations.

Constants

public static final int POLLED
public static final int STREAMING

These flags are deprecated. Use one of the following three flags instead.

public static final int BLOCKING
public static final int NON_BLOCKING
public static final int DEMAND_DRIVEN

These three flags control how Java 3D schedules reads. TheBLOCKING flag signi-
fies that the driver for a device is ablocking driverand that it should be sched-
uled for regular reads by Java 3D. A blocking driver is a driver that can cause
thread accessing the driver (the Java 3D implementation thread calling thepol-

lAndProcessInput method) to block while the data is being accessed from t
driver. TheNON_BLOCKING flag signifies that the driver for a device is a non
blocking driver and that it should be scheduled for regular reads by Java 3D.
DEMAND_DRIVEN flag signifies that the Java 3D implementation should not sch
ule regular reads on the sensors of this device; the Java 3D implementation
only call pollAndProcessInput when one of the device’s sensors’getRead
methods is called. ADEMAND_DRIVEN driver must always provide the curren
value of the sensor on demand wheneverpollAndProcessInput is called. This
means thatDEMAND_DRIVEN drivers are non-blocking by definition.

Methods

public abstract boolean initialize()

This method initializes the device. It returnstrue if initialization succeeded,
false otherwise.
Java 3D API Specification

INPUT DEVICES AND PICKING Instantiating and Registering a New Device10.1.2

e.

ice’s
ative
g a

alues

lues.

be

. This
D via

cific
lable-
or
ser.
public abstract void setProcessingMode(int mode)
public abstract int getProcessingMode()

These methods set and retrieve this device’s processing mode, one ofBLOCKING,
NON_BLOCKING, or DEMAND_DRIVEN.

public int getSensorCount()

This method returns the number of Sensor objects associated with this devic

public Sensor getSensor(int sensorIndex)

This method returns the specified Sensor associated with this device.

public abstract void setNominalPositionAndOrientation()

This method sets the device’s current position and orientation as the dev
nominal position and orientation (that is, establishes its reference frame rel
to the “tracker base” reference frame). This method is most useful in definin
nominal pose in immersive head-tracked situations.

public abstract void pollAndProcessInput()

This method first polls the device for data values and then processes the v
received from the device. ForBLOCKING andNON_BLOCKING drivers, this method
is called regularly and the Java 3D implementation can cache the sensor va
For DEMAND_DRIVEN drivers, this method is called each time one of theSen-

sor.getRead methods is called, and is not otherwise called.

public abstract void processStreamInput()

This method will not be called by the Java 3D implementation and should
implemented as an empty method.

public abstract void close()

This method cleans up the device and relinquishes the associated resources
method should be called after the device has been unregistered from Java 3
thePhysicalEnvironment.removeInputDevice(InputDevice) method.

10.1.2 Instantiating and Registering a New Device

A browser or applications developer must instantiate whatever system-spe
input devices that he or she needs and that exist on the system. This avai
device information typically exists in a site configuration file. The browser
application will instantiate the viewing environment as requested by the end u
277Version 1.1.2, June 1999

10.2 Sensors INPUT DEVICES AND PICKING

278

ject
vice

the
d in

3D

than
ept of
d the
e. A
inate

nts,
from
DOF

writes
. The
h or

hese
tion

enti-
ibly
sy

At a
tion
The API for instantiating devices is site-specific, but it consists of a device ob
with a constructor and at least all of the methods specified in the Input-De
interface.

Once instantiated, the browser or application must register the device with
Java 3D input device scheduler. The API for registering devices is specifie
Section 8.7, “The View Object.” TheaddInputDevice method introduces new
devices to the Java 3D environment and theallInputDevices method produces
an enumeration that allows examination of all available devices within a Java
environment.

10.2 Sensors

The Java 3D API provides only an abstract concept of a device. Rather
focusing on issues of devices and device models, it instead defines the conc
a sensor. A sensor consists of a timestamped sequence of input values an
state of the buttons or switches at the time that Java 3D sampled the valu
sensor also contains a hotspot offset specified in that sensor’s local coord
system. If not specified, the hotspot is (0.0, 0.0, 0.0).

Since a typical hardware environment contains multiple sensing eleme
Java 3D maintains an array of sensors. Users can access a sensor directly
their Java code or they can assign a sensor to one of Java 3D’s predefined 6
entities such as UserHead.

10.2.1 Using and Assigning Sensors

Using a sensor is as easy as accessing an object. The application developer
Java code to extract the associated sensor value from the array of sensors
developer can then directly apply that value to an element in a scene grap
process the sensor values in whatever way necessary.

Java 3D includes three special six-degrees-of-freedom (6DOF) entities. T
include UserHead, DominantHand, and NondominantHand. An applica
developer can assign or change which sensor drives one of these predefined
ties. Java 3D uses the specified sensor to drive the 6DOF entity—most vis
the View. Application developers should use this facility carefully. It is quite ea
to get the effect of a WristCam—and very disconcerting as well.

10.2.2 Behind the (Sensor) Scenes

Java 3D does not provide raw tracker or joystick-generated data in a sensor.
minimum, Java 3D normalizes the raw data using the registration and calibra
Java 3D API Specification

INPUT DEVICES AND PICKING The Sensor Object10.2.3

ay
ation

r be
on a

ensor
iated
s.

edic-
next

e no
dict-
nsor

ucted
parameters either provided by or provided for the end user. It additionally m
filter and process the data to remove noise and improve latency. The applic
programmer can suppress this latter effect on a sensor-by-sensor basis.

Unfortunately, tracker or sensor hardware may not always be available o
operational. Thus, Java 3D provides both an available and an enable flag
per-sensor basis.

10.2.3 The Sensor Object

Java 3D stores its sensor array in the PhysicalEnvironment object. Each S
in the array consists of a fixed number of SensorRead objects. Also assoc
with each SensorRead is its timestamp and the state of that sensor’s button

Constants

The Sensor object specifies the following constants.

public static final int PREDICT_NONE
public static final int PREDICT_NEXT_FRAME_TIME

These flags define the Sensor’s predictor type. The first flag defines no pr
tion. The second flag specifies to generate the value to correspond with the
frame time.

public static final int NO_PREDICTOR
public static final int HEAD_PREDICTOR
public static final int HAND_PREDICTOR

These flags define the Sensor’s predictor policy. The first flag specifies to us
prediction policy. The second flag specifies to assume that the sensor is pre
ing head position or orientation. The third flag specifies to assume that the se
is predicting hand position or orientation.

public static final int DEFAULT_SENSOR_READ_COUNT

This constant specifies the default number of SensorRead objects constr
when no SensorRead count is specified.

Constructors

The Sensor object specifies the following constructors.
279Version 1.1.2, June 1999

10.2.3 The Sensor Object INPUT DEVICES AND PICKING

280

me-

cified

the

cified

in the

ciated
h the
t Sen-
public Sensor(InputDevice device)

Constructs a Sensor object for the specified input device using default para
ters:

public Sensor(InputDevice device, int sensorReadCount)
public Sensor(InputDevice device, int sensorReadCount,

int sensorButtonCount)

These methods construct a new Sensor object associated with the spe
device and consisting of either a default number of SensorReads orsensorRead-

Count number of SensorReads and a hot spot at (0.0, 0.0, 0.0) specified in
sensor’s local coordinate system. The default forsensorButtonCount is zero.

public Sensor(InputDevice device, Point3d hotspot)
public Sensor(InputDevice device, int sensorReadCount,

Point3d hotspot)
public Sensor(InputDevice device, int sensorReadCount,

int sensorButtonCount, Point3d hotspot)

These methods construct a new Sensor object associated with the spe
device and consisting of eithersensorReadCount number of SensorReads or a
default number of SensorReads and an offset defining the sensor’s hot spot
sensor’s local coordinate system. The default forsensorButtonCount is zero.

Methods

public void setSensorReadCount(int count)
public final int getSensorReadCount()
public final int getSensorButtonCount()

These methods set and retrieve the number of SensorRead objects asso
with this sensor and the number of buttons associated with this sensor. Bot
number of SensorRead objects and the number of buttons are determined a
sor construction time.

Parameter Default Value

sensorReadCount 0

sensorButtonCount 0

hotspot (0,0,0)

predictor PREDICT_NONE

predictionpolicy NO_PREDICTOR
Java 3D API Specification

INPUT DEVICES AND PICKING The Sensor Object10.2.3

speci-

sen-

pol-
e

ading

into
read-

cent
meth-

olicy
public void getHotspot(Point3d hotspot)
public void setHotspot(Point3d hotspot)

These methods set and retrieve the sensor’s hotspot offset. The hotspot is
fied in the sensor’s local coordinate system.

public void lastRead(Transform3D read)
public void lastRead(Transform3D read, int kth)

These methods extract the most recent sensor reading and thekth most recent
sensor reading from the Sensor object. In both cases, the methods copy the
sor value into the specified argument.

public void getRead(Transform3D read)
public void getRead(Transform3D read, long deltaT)

The first method computes the sensor reading consistent with the prediction
icy and copies that value into theread matrix. The second method computes th
sensor reading consistent as of timedeltaT in the future and copies that value
into theread matrix. All times are in milliseconds.

public long lastTime()
public long lastTime(int k)

These methods return the time associated with the most recent sensor re
and with thekth most recent sensor reading, respectively.

public int lastButtons()
public int lastButtons(int k)

Deprecated methods. Use one of the following methods instead.

public int lastButtons(int values[])
public void lastButtons(int k, int values[])

The first method places the most recent sensor reading value for each button
the array parameter. The second method places the kth most recent sensor
ing value for each button into the array parameter, where 0 is the most-re
sensor reading, 1 is the next most recent sensor reading, and so on. These
ods will throw an ArrayIndexOutOfBoundsException ifvalues.length is less
than the number of buttons.

public void setPredictor(int predictor)
public int getPredictor()

These methods set and retrieve the sensor’s predictor policy. The predictor p
is eitherPREDICT_NONE or PREDICT_NEXT_FRAME_TIME.
281Version 1.1.2, June 1999

10.2.4 The SensorRead Object INPUT DEVICES AND PICKING

282

pe is

luding
ay.

ingle

d on
public void setPredictionPolicy(int policy)
public int getPredictionPolicy()

These methods set and retrieve the sensor’s predictor type. The predictor ty
one of the following:NO_PREDICTOR, HEAD_PREDICTOR, or HAND_PREDICTOR.

public void setDevice(InputDevice device)
public InputDevice getDevice()

These methods set and retrieve the sensor’s input device.

public SensorRead getCurrentSensorRead()

This method returns the current number of SensorRead objects per sensor.

public void setNextSensorRead(long time, Transform3D transform,
int values[])

public void setNextSensorRead(SensorRead read)

These methods set the next SensorRead object to the specified values, inc
the next SensorRead’s associated time, transformation, and button state arr

public void setNextSensorRead(long time, Transform3D transform,
int buttons)

Deprecated method. Use one of the above two methods.

10.2.4 The SensorRead Object

A SensorRead object encapsulates all the information associated with a s
reading of a sensor.

Constants

public final static int MAXIMUM_SENSOR_BUTTON_COUNT

This flag determines the maximum number of sensor-attached buttons tracke
a per-sensor basis.

Constructors

The SensorRead object specifies the following constructor.

public SensorRead()

Constructs a SensorRead object with default parameters:
Java 3D API Specification

INPUT DEVICES AND PICKING Picking 10.3

llow a
ject,

llow a
con-

They
nsor-
ons.

ing
sing
rs”).

oot a
public SensorRead(int numButtons)

Constructs a SensorRead object with the specified number of buttons.

Methods

public final void set(Transform3D t1)
public final void get(Transform3D result)

These methods set and retrieve the SensorRead object’s transform. They a
device to store a new rotation and orientation value into the SensorRead ob
and a consumer of that value to access it.

public final void setTime(long time)
public final long getTime()

These methods set and retrieve the SensorRead object’s timestamp. They a
device to store a new timestamp value into the SensorRead object, and a
sumer of that value to access it.

public final void setButtons(int values)
public final int getButtons()

Deprecated methods. Use the following set and get methods instead.

public final void setButtons(int values[])
public final void getButtons(int values[])

These methods set and retrieve the SensorRead object’s button values.
allow a device to store an integer that encodes the button values into the Se
Read object, and a consumer of those values to access the state of the butt

10.3 Picking

Behavior nodes provide the means for building developer-specific pick
semantics. An application developer can define custom picking semantics u
Java 3D’s behavior mechanism (see Chapter 9, “Behaviors and Interpolato
The developer might wish to define pick semantics that use a mouse to sh

Parameter Default Value

numButtons 0

buttonvalues 0 (for all array elements)

transform identity

time current time
283Version 1.1.2, June 1999

10.3 Picking INPUT DEVICES AND PICKING

284

ng
on. A

ken

er of

the

ts.

the

ts.

the

the

de to

tric

hat
cts

dis-

c-

.

ray into the virtual universe from the current viewpoint, find the first object alo
that ray, and highlight that object when the end user releases the mouse butt
typical scenario follows:

1. The application constructs a Behavior node that arms itself to awa
when AWT detects a left-mouse-button-down event.

2. Upon awakening from a left-mouse-button-down event, the behavior

a. Updates a Switch node to draw a ray that emanates from the cent
the screen.

b. Changes that ray’s TransformGroup node so that the ray points in
direction of the current mouse position.

c. Declares its interest in mouse-move or left-mouse-button-up even

3. Upon awakening from a mouse-move event, the behavior

a. Changes that ray’s TransformGroup node so that the ray points in
direction of the current mouse position.

b. Declares its interest in mouse-move or left-mouse-button-up even

4. Upon awakening from a left-mouse-button-up event, the behavior

a. Changes that ray’s TransformGroup node so that the ray points in
direction of the current mouse position.

b. Intersects the ray with all the objects in the virtual universe to find
first object that the ray intersects.

c. Changes the appearance component of that object’s shape no
highlight the selected object.

d. Declares its interest in left-mouse-button-down events.

Java 3D includes helping functions that aid in intersecting various geome
objects with objects in the virtual universe by

• Intersecting an oriented ray with all the objects in the virtual universe. T
function can return the first object intersected along that ray, all the obje
that intersect that ray, or a list of all the objects along that ray sorted by
tance from the ray’s origin.

• Intersecting a volume with all the objects in the virtual universe. That fun
tion returns a list of all the objects contained in that volume.

• Discovering which vertex within an object is closest to a specified ray
Java 3D API Specification

INPUT DEVICES AND PICKING SceneGraphPath Object10.3.1

de in
ay of
ter-
Path
that
f the
, the

ist of
ph-
A

as an

the
de at
odes
.

cene
iding

ll the

Link

t
by

s of
r-
10.3.1 SceneGraphPath Object

A SceneGraphPath object represents the path from a Locale to a terminal no
the scene graph. This path consists of a Locale, a terminal node, and an arr
internal nodes that are in the path from the Locale to the terminal node. The
minal node may be either a Leaf node or a Group node. A valid SceneGraph
must uniquely identify a specific instance of the terminal node. For nodes
are not under a SharedGroup, the minimal SceneGraphPath consists o
Locale and the terminal node itself. For nodes that are under a SharedGroup
minimal SceneGraphPath consists of the Locale, the terminal node, and a l
all Link nodes in the path from the Locale to the terminal node. A SceneGra
Path may optionally contain other interior nodes that are in the path.
SceneGraphPath is verified for correctness and uniqueness when it is sent
argument to other methods of Java 3D.

In the array of internal nodes, the node at index 0 is the node closest to
Locale. The indices increase along the path to the terminal node, with the no
index length–1 being the node closest to the terminal node. The array of n
does not contain either the Locale (which is not a node) or the terminal node

During picking and intersection tests, the user specifies the subtree of the s
graph that should be tested. The whole tree for a Locale is searched by prov
the Locale to the picking or intersection tests.

The SceneGraphPath object returned by the picking methods represents a
components in the subgraph that have the capabilityENABLE_PICK_REPORTING

set between the root of the subtree and the picked or intersected object. All
nodes are implicitly enabled for pick reporting. Note thatENABLE_PICK_REPORT-

ING andENABLE_COLLISION_REPORTING are disabled by default. This means tha
the picking and collision methods will return the minimal SceneGraphPath
default.

When a SceneGraphPath is returned from the picking or collision method
Java 3D, it will also contain the value of the LocalToVworld transform of the te
minal node that was in effect at the time the pick or collision occurred.

Constructors

public SceneGraphPath()

Constructs and initializes a new SceneGraphPath object with default values:

Parameter Default Value

root null
285Version 1.1.2, June 1999

10.3.1 SceneGraphPath Object INPUT DEVICES AND PICKING

286

pec-
orm
ues-

e of

r val-
third

pe3D
with
ll of

ath’s

sec-
public SceneGraphPath(Locale root, Node object)
public SceneGraphPath(Locale root, Node nodes[], Node object)

These construct and initialize a new SceneGraphPath object. The first form s
ifies the path’s Locale object and the object in question. The second f
includes an array of nodes that fall in between the Locale and the object in q
tion, and which nodes have theirENABLE_PICK_REPORTING capability bit set. The
object parameter may be a Group, Shape3D, or Morph node. If any other typ
leaf node is specified, anIllegalArgumentException is thrown.

Methods

public final void set(SceneGraphPath newPath)
public final void setLocale(Locale newLocale)
public final void setObject(Node object)
public final void setNode(int index, Node newNode)
public final void setNodes(Node nodes[])

These methods set the path’s values. The first method sets the path’s interio
ues. The second method sets the path’s Locale to the specified Locale. The
method sets the path’s object to the specified object (a Group node, or a Sha
or Morph leaf node). The fourth method replaces the link node associated
the specified index with the specified newLink. The last method replaces a
the link nodes with the new list of link nodes.

public final Locale getLocale()
public final Node getObject()

The first method returns the path’s Locale. The second method returns the p
object.

public final int nodeCount()
public final Node getNode(int index)

The first method returns the number of intermediate nodes in this path. The
ond method returns the node associated with the specified index.

object null

list of (interior)nodes null

transform identity

Parameter Default Value
Java 3D API Specification

INPUT DEVICES AND PICKING BranchGroup Node and Locale Node Pick Methods10.3.2

o the
form
s no
cking
for

same
rnal
red.

econd
e
his

. Two

h this

s the

cale
public final void setTransform(Transform3D trans)
public final Transform3D getTransform()

The set method sets the transform component of this SceneGraphPath t
value of the passed transform. The get method returns a copy of the trans
associated with this SceneGraphPath. The method returns null if there i
transform associated. If this SceneGraphPath was returned by a Java 3D pi
and collision method, the local-coordinate-to-virtual-coordinate transform
this scene graph object at the time of the pick or collision is recorded.

public final boolean isSamePath(SceneGraphPath testPath)

This method determines whether two SceneGraphPath objects represent the
path in the scene graph. Either object might include a different subset of inte
nodes; only the internal link nodes, the Locale, and the Node itself are compa
The paths are not validated for correctness or uniqueness.

public boolean equals(SceneGraphPath testPath)
public boolean equals(Object o1)

The first method returnstrue if all of the data members of pathtestPath are
equal to the corresponding data members in this SceneGraphPath. The s
method returns true if the Objecto1 is of type SceneGraphPath and all of th
data members ofo1 are equal to the corresponding data members in t
SceneGraphPath and if the values of the transforms are equal.

public int hashCode()

This method returns a hash number based on the data values in this object
different SceneGraphPath objects with identical data values (that is,trans.-

equals(SceneGraphPath) returnstrue) will return the same hash number. Two
paths with different data members may return the same hash value, althoug
is not likely.

public String toString()

This method returns a string representation of this object. The string contain
class names of all nodes in the SceneGraphPath.

10.3.2 BranchGroup Node and Locale Node Pick Methods

The following methods are in both the BranchGroup node class and the Lo
node class.
287Version 1.1.2, June 1999

10.3.3 PickShape Object INPUT DEVICES AND PICKING

288

ingle
from

0.3.3,
the
cts
int.
that

atter
ting

used
t is

and
cale

null.
public final SceneGraphPath[] pickAll(PickShape pickShape)
public final SceneGraphPath[] pickAllSorted(PickShape pickShape)
public final SceneGraphPath pickClosest(PickShape pickShape)
public final SceneGraphPath pickAny(PickShape pickShape)

These methods return either an array of SceneGraphPath objects or a s
SceneGraphPath object. A SceneGraphPath object describes the entire path
a Locale to a node that intersects the specified PickShape (see Section 1
“PickShape Object”). The methods that return an array either return all
picked objects or all the picked objects in sorted order starting with the obje
“closest” to the eyepoint and ending with the objects farthest from the eyepo
Methods that return a single SceneGraphPath return a single path object
specifies either the object closest to the eyepoint or any picked object (this l
method also implements the fastest pick operation possible). All ties in tes
for closest objects intersected result in an indeterminate order.

10.3.3 PickShape Object

The PickShape object is an abstract class for describing a shape that can be
with the BranchGroup and Locale pick methods. The PickShape objec
extended by PickBounds, PickPoint, PickRay, and PickSegment objects.

Constructors

public PickShape()

Constructs a PickShape object.

10.3.4 PickBounds Object

The PickBounds object provides a bounds to supply to the BranchGroup
Locale pick methods. See also Section 10.3.2, “BranchGroup Node and Lo
Node Pick Methods.”

Constructors

public PickBounds()
public PickBounds(Bounds boundsObject)

The first constructor creates a PickBounds initialized with the bounds set to
The second constructor creates a PickBounds with the bounds set toboundsOb-

ject.
Java 3D API Specification

INPUT DEVICES AND PICKING PickRay Object10.3.6

ale
ode

on-

eth-
ode

of
Methods

public void set(Bounds boundsObject)
public Bounds get()

These methods set and retrieve theboundsObject of this PickBounds.

10.3.5 PickPoint Object

The PickPoint object provides a point to supply to the BranchGroup and Loc
pick methods. See also Section 10.3.2, “BranchGroup Node and Locale N
Pick Methods.”

Constructors

public PickPoint()
public PickPoint(Point3d location)

The first constructor creates a PickPoint initialized to (0,0,0). The second c
structor creates a PickPoint at the specified location.

Methods

public void set(Point3d location)
public void get(Point3d location)

These methods set and retrieve the position of this PickPoint.

10.3.6 PickRay Object

The PickRay object is an encapsulation of a ray that is passed to the pick m
ods in BranchGroup and Locale. See also Section 10.3.2, “BranchGroup N
and Locale Node Pick Methods.”

Constructors

public PickRay()
public PickRay(Point3d origin, Vector3d direction)

The first constructor creates a PickRay initialized with an origin and direction
(0,0,0). The second constructor creates a PickRay cast from the specifiedorigin

anddirection.
289Version 1.1.2, June 1999

10.3.7 PickSegment Object INPUT DEVICES AND PICKING

290

to the
nch-

f the
ment
Methods

public void set(Point3d origin, Vector3d direction)
public void get(Point3d origin, Vector3d direction)

These methods set and retrieve the ray to point from the specifiedorigin in the
specifieddirection.

10.3.7 PickSegment Object

The PickSegment object is an encapsulation of a segment that is passed
pick methods in BranchGroup and Locale. See also Section 10.3.2, “Bra
Group Node and Locale Node Pick Methods.”

Constructors

public PickSegment()
public PickSegment(Point3d start, Point3d end)

The first constructor creates a PickSegment object with the start and end o
segment initialized to (0,0,0). The second constructor creates a PickSeg
object from the specifiedstart andend points.

Methods

public void set(Point3d start, Point3d end)
public void get(Point3d start, Point3d end)

These methods set and return the line segment from thestart point to theend
point.
Java 3D API Specification

Version 1.1.2, June 1999
C H A P T E R 11
sev-
ren-

one
other
e are
ch of
udio

the
ren-
can
red

(s)) is

nvi-
pli-
user
tics.
for a
nt’s
.

ators
ses
ple-

ializ-
Audio Devices

A Java 3D application running on a particular machine could have one of
eral options available to it for playing the audio image created by the sound
derer. Perhaps the machine on which Java 3D is executing has more than
sound card (for example, one that is a wave table synthesis card and the
with accelerated sound spatialization hardware). Furthermore, suppose ther
Java 3D audio device drivers that execute Java 3D audio methods on ea
these specific cards. The application would therefore have at least two a
device drivers through which the audio could be produced. For such a case
Java 3D application must choose the audio device driver with which sound
dering is to be performed. Once this audio device is chosen, the application
additionally select the type of audio playback on which device the rende
sound image is to be output. The playback device (headphones or speaker
physically connected to the port to which the selected device driver outputs.

11.1 AudioDevice Interface

The selection of this device driver is done through methods in the PhysicalE
ronment object (see Section C.9, “The PhysicalEnvironment Object”). The ap
cation queries how many audio devices are available. For each device, the
can get the AudioDevice object that describes it and query its characteris
Once a decision is made about which of the available audio devices to use
PhysicalEnvironment, the particular device is set into this PhysicalEnvironme
fields. Each PhysicalEnvironment object may use only a single audio device

The AudioDevice object interface specifies an abstract audio device that cre
of Java 3D class libraries would implement for a particular device. Java 3D u
several methods to interact with specific devices. Since all audio devices im
ment this consistent interface, the user could have a portable means of init
291

11.1.1 Initialization AUDIO DEVICES

292

cter-

ance

ance

d be
ple-

en-

e-
ver

f the
will
ing, setting particular audio device elements, and querying generic chara
istics for any audio device.

Constants

public final static int HEADPHONES

Specifies that audio playback will be through stereo headphones.

public final static int MONO_SPEAKER

Specifies that audio playback will be through a single speaker some dist
away from the listener.

public final static int STEREO_SPEAKERS

Specifies that audio playback will be through stereo speakers some dist
away from, and at some angle to, the listener.

11.1.1 Initialization

Each audio device driver must be initialized. The chosen device driver shoul
initialized before any Java 3D Sound methods are executed because the im
mentation of the Sound methods, in general, is potentially device-driver dep
dent.

Methods

public abstract boolean initialize()

Initialize the audio device. Exactly what occurs during initialization is impl
mentation dependent. This method provides explicit control by the user o
when this initialization occurs.

public abstract boolean close()

Closes the audio device, releasing resources associated with this device.

11.1.2 Audio Playback

Methods to set and retrieve the audio playback parameters are part o
AudioDevice object. The audio playback information specifies that playback
be through one of the following:

• Stereo headphones.
Java 3D API Specification

AUDIO DEVICES Audio Playback11.1.2

gle
re

can-
s is

3D

-

r (the
ner’s
ener
laced

from
center
f the
n 10

ent
• A monaural speaker.

• A pair of speakers, equally distant from the listener, both at some an
from the head coordinate systemZ axis. It’s assumed that the speakers a
at the same elevation and oriented symmetrically about the listener.

The type of playback chosen affects the sound image generated. Cross-talk
cellation is applied to the audio image if playback over stereo speaker
selected.

Methods

The following methods affect the playback of sound processed by the Java
sound renderer.

public abstract void setAudioPlaybackType(int type)
public abstract int getAudioPlaybackType()

These methods set and retrieve the type of audio playback device (HEADPHONES,
MONO_SPEAKER, or STEREO_SPEAKERS) used to output the analog audio from ren
dering Java 3D Sound nodes.

public abstract void setCenterEarToSpeaker(float distance)
public abstract float getCenterEarToSpeaker()

These methods set and retrieve the distance in meters from the center ea
midpoint between the left and right ears) and one of the speakers in the liste
environment. For monaural speaker playback, a typical distance from the list
to the speaker in a workstation cabinet is 0.76 meters. For stereo speakers p
at the sides of the display, this might be 0.82 meters.

public abstract void setAngleOffsetToSpeaker(float angle)
public abstract float getAngleOffsetToSpeaker()

These methods set and retrieve the angle, in radians, between the vectors
the center ear to each of the speaker transducers and the vectors from the
ear parallel to the head coordinate’s Z axis. Speakers placed at the sides o
computer display typically range between 0.175 and 0.350 radians (betwee
and 20 degrees).

public abstract PhysicalEnvironment getPhysicalEnvironment()

This method returns a reference to the AudioDevice’s PhysicalEnvironm
object.
293Version 1.1.2, June 1999

11.1.3 Device-Driver-Specific Data AUDIO DEVICES

294

ther
le-
red
will

nd
(dur-
tics

3D

um-
es.

for
r a

their

n
r live,
n by

and
per-
11.1.3 Device-Driver-Specific Data

While the sound image created for final output to the playback system is ei
only monaural or stereo (for this version of Java 3D), most device-driver imp
mentations will mix the left and right image signals generated for each rende
sound source before outputting the final playback image. Each sound source
useN input channels of this internal mixer.

Each implemented Java 3D audio device driver will have its own limitations a
driver-specific characteristics. These include channel availability and usage
ing rendering). Methods for querying these device-driver-specific characteris
are provided below.

Methods

public abstract int getTotalChannels()

This method retrieves the maximum number of channels available for Java
sound rendering for all sound sources.

public abstract int getChannelsAvailable()

During rendering, when Sound nodes are playing, this method returns the n
ber of channels still available to Java 3D for rendering additional Sound nod

public abstract int getChannelsUsedForSound(Sound node)

This is a deprecated method. This method is now part of the Sound class.

11.2 AudioDevice3D Interface

The AudioDevice3D Class extends the AudioDevice interface. The intent is
this interface to be implemented by AudioDevice driver developers (whethe
Java 3D licensee or not). Each implementation will use a sound engine of
choice.

The methods in this interface shouldnot be called an application. The methods i
this interface are referenced by the core Java 3D Sound classes to rende
scheduled sound on the AudioDevice chosen by the application or use chose
the application or user.

Methods in this interface provide the Java 3D core a generic way to set
query the audio device the application has chosen audio rendering to be
formed on. Methods in this interface include:
Java 3D API Specification

AUDIO DEVICES AudioDevice3D Interface 11.2

ice

ound

les

node
one-

affect

sed as
ta to

ces-
t be
ta.

-

to the
ype
ienta-
and
ual
• Setup and clearing the sound as a sample on the device

• Start, stop, pause, unpause, mute, and unmute of sample on the dev

• Set parameters for each sample corresponding to the fields in the S
node

• Set the current active aural parameters that affect all positional samp

Constants

public static final int BACKGROUND_SOUND
public static final int POINT_SOUND
public static final int CONE_SOUND

These constants specify the sound types. Sound types match the Sound
classes defined for Java 3D core for BackgroundSound, PointSound, and C
Sound. The type of sound a sample is loaded as determines which methods
it.

public static final int STREAMING_AUDIO_DATA
public static final int BUFFERED_AUDIO_DATA

These constants specify the sound data types. Samples can be proces
streaming or buffered data. Fully spatializing sound sources may require da
be buffered.

Sound data specified asstreamingis not copied by the AudioDevice diver imple-
mentation. It is up the application to ensure that this data is continuously ac
sible during sound rendering. Futhermore, full sound spatialization may no
possible, for all AudioDevice3D implementations on unbuffered sound da
Sound data specified asbufferedis copied by the AudioDevice driver implemen
tation.

Methods

public abstract void setView(View reference)

This method accepts a reference to the current View and passes reference
current View Object. The PhysicalEnvironment parameters (with playback t
and speaker placement) and the PhysicalBody parameters (position and or
tion of ears) can be obtained from this object, and the transformations to
from ViewPlatform coordinate (the space the listener’s head is in) and Virt
World coordinates (the space the sounds are in).
295Version 1.1.2, June 1999

11.2 AudioDevice3D Interface AUDIO DEVICES

296

r that
it is.
ple

ple-
t of
ed is
-

cific
the

rces

tion
thod

mber
lay-
s the
unt.

ren-

g up
public abstract int prepareSound(int soundType,
MediaContainer soundData)

Prepare the sound. This method accepts a reference to the MediaContaine
contains a reference to sound data and information about the type of data
The soundType parameter defines the type of sound associated with this sam
(Background, Point, or Cone).

Depending on the type of MediaContainer the sound data is and on the im
mentation of the AudioDevice used, sound data preparation could consis
opening, attaching, or loading sound data into the device. Unless the cach
true, this sound data shouldnot be copied, if possible, into host or device mem
ory.

Once this preparation is complete for the sound sample, an AudioDevice-spe
index, used to reference the sample in future method calls, is returned. All
rest of the methods described below require this index as a parameter.

public abstract void clearSound(int index)

Clear the sound. This method requests that the AudioDevice free all resou
associated with the sample withindex id.

public abstract long getSampleDuration(int index)

Query Sample duration. If it can be determined, this method returns the dura
in milliseconds of the sound sample. For non-cached streams, this me
returnsSound.DURATION_UNKNOWN.

public abstract int getNumberOfChannelsUsed(int index)
public abstract int getNumberOfChannelsUsed(int index,

boolean muted)

Query the number of channels used by Sound. These methods return the nu
of channels (on the executing audio device) that this sound is using, if it is p
ing, or is expected to use if it were begun to be played. The first method take
sound’s current state (including whether it is muted or unmuted) into acco
The second method uses themuted parameter to make the determination.

For some AudioDevice3D implementations:

• Muted sounds take up channels on the systems mixer (because they’re
dered as samples playing with gain zero).

• A single sound could be rendered using multiple samples, each takin
mixer channels.
Java 3D API Specification

AUDIO DEVICES AudioDevice3D Interface 11.2

and

flag

stem
as

uar-

d to
. The

the

nua-
ys
o all
n the
rs are

one-

rre-
tive

tance
public abstract int startSample(int index)

Start sample. This method begins a sound playing on the AudioDevice
returns a flag indicating whether or not the sample was started.

public abstract int stopSample(int index)

Stop sample. This method stops the sound on the AudioDevice and returns a
indicating whether or not the sample was stopped.

public abstract long getStartTime(int index)

Query last start time for this sound on the device. This method returns the sy
time of when the sound was last “started.” Note that this start time will be
accurate as the AudioDevice implementation can make it, but that it is not g
anteed to be exact.

public abstract void setSampleGain(int index, float scaleFactor)

Set gain scale factor. This method sets the overall gain scale factor applie
data associated with this source to increase or decrease its overall amplitude
gain scaleFactor value passed into this method is the combined value of
Sound node’s initial gain and the current AuralAttribute gain scale factors.

public abstract void setDistanceGain(int index,
double[] frontDistance,
float[] frontAttenuationScaleFactor,
double[] backDistance, float[] backAttenuationScaleFactor)

Set distance gain. This method sets this sound’s distance gain elliptical atte
tion (not including the filter cutoff frequency) by defining corresponding arra
containing distances from the sound’s origin and gain scale factors applied t
active positional sounds. The gain scale factor is applied to sound based o
distance the listener is from the sound source. These attenuation paramete
ignored for BackgroundSound nodes. ThebackAttenuationScaleFactor
parameter is ignored for PointSound nodes.

For a full description of the attenuation parameters, see Section 5.8.3, “C
Sound Node.”

public abstract void setDistanceFilter(int filterType,
double[] distance, float[] filterCutoff)

Set AuralAttributes distance filter. This method sets the distance filter co
sponding arrays containing distances and frequency cutoff applied to all ac
positional sounds. The gain scale factor is applied to sound based on the dis
297Version 1.1.2, June 1999

11.2 AudioDevice3D Interface AUDIO DEVICES

298

and

ring
the

thod
sam-

ple
le to

ffset
ple

ethod
le’s
un-
was

n the

rom

ate

nated
s.
the listener is from the sound source. For a full description of this parameter
how it is used, see Section 7.1.15, “AuralAttributes Object.”

public abstract void setLoop(int index, int count)

Set loop count. This method sets the number of times sound is looped du
play. For a complete description of this method, see the description for
Sound.setLoop method in Section 5.8, “Sound Node.”

public abstract void muteSample(int index)
public abstract void unmuteSample(int index)

These methods mute and unmute a playing sound sample. The first me
makes a sample play silently. The second method makes a silently-playing
ple audible. Ideally, the muting of a sample is implemented by stopping a sam
and freeing channel resources (rather than just setting the gain of the samp
zero). Ideally, the un-muting of a sample restarts the muted sample by o
from the beginning by the number of milliseconds since the time the sam
began playing.

public abstract void pauseSample(int index)
public abstract void unpauseSample(int index)

These methods pause and unpause a playing sound sample. The first m
temporarily stops a cached sample from playing without resetting the samp
current pointer back to the beginning of the sound data so that it can be
paused at a later time from the same location in the sample when the pause
initiated. The second method restarts the paused sample from the location i
sample where it was paused.

public abstract void setPosition(int index, Point3d position)

Set position. This method sets this sound’s location (in Local coordinates) f
provided theposition.

public abstract void setDirection(int index, Vector3d direction)

Set direction. This method sets this sound’s direction from the local coordin
vector provided. For a full description of thedirection parameter, see
Section 5.8.3, “ConeSound Node.”

public abstract void setVworldXfrm(int index, Transform3D trans)

Set virtual world transform. This method passes a reference to the concate
transformation to be applied to local sound position and direction parameter
Java 3D API Specification

AUDIO DEVICES AudioDevice3D Interface 11.2

For
.15,

ation
ets

all
the
the

8.3,

or
rrent
sed,

een
en

full
lAt-

mes
s an
and

ctor
d to

ue to
public abstract void setRolloff(float rolloff)

Set AuralAttributes gain rolloff. This method sets the speed-of-sound factor.
a full description of this parameter and how it is used, see Section 7.1
“AuralAttributes Object.”

public abstract void setAngularAttenuation(int index,
int filterType, double[] angle,
float[] attenuationScaleFactor, float[] filterCutoff)

Set angular attenuation. This method sets this sound’s angular gain attenu
(including filter) by defining corresponding arrays containing angular offs
from the sound’s axis, gain scale factors, and frequency cutoff applied to
active directional sounds. Gain scale factor is applied to sound based on
angle between the sound’s axis and the ray from the sound source origin to
listener. The form of the attenuation parameter is fully described in Section 5.
“ConeSound Node.”

public abstract void setReflectionCoefficient(float coefficient)

Set AuralAttributes reverberation coefficient. This method sets the reflective
absorptive characteristics of the surfaces in the region defined by the cu
Soundscape region. For a full description of this parameter and how it is u
see Section 7.1.15, “AuralAttributes Object.”

public abstract void setReverbDelay(float reverbDelay)

Set AuralAttributes reverberation delay. This method sets the delay time betw
each order of reflection (while reverberation is being rendered) explicitly giv
in milliseconds. A value for delay time of 0.0 disables reverberation. For a
description of this parameter and how it is used, see Section 7.1.15, “Aura
tributes Object.”

public abstract void setReverbOrder(int reverbOrder)

Set AuralAttributes reverberation order. This method sets the number of ti
reflections are added to reverberation being calculated. A value of –1 specifie
unbounded number of reverberations. For a full description of this parameter
how it is used, see Section 7.1.15, “AuralAttributes Object.”

public abstract void setFrequencyScaleFactor(float
frequencyScaleFactor)

Set AuralAttributes frequency scale factor. This method specifies a scale fa
applied to the frequency (or wavelength). This parameter can also be use
expand or contract the usual frequency shift applied to the sound source d
299Version 1.1.2, June 1999

11.3 Instantiating and Registering a New Device AUDIO DEVICES

300

it is

ale
ve-

ul-
ing
see

plic-
ave
se to
te of
ft as

cific
evice
a-

ject
ice

the
ment
D

at
See
Doppler effect calculations. Valid values are≥ 0.0. A value greater than 1.0 will
increase the playback rate. For a full description of this parameter and how
used, see Section 7.1.15, “AuralAttributes Object.”

public abstract void setVelocityScaleFactor(float
velocityScaleFactor)

Set AuralAttributes velocity scale factor. This method specifies a velocity sc
factor applied to the velocity of sound relative to listener’s position and mo
ment in relation to the sound’s position and movement. This scale factor is m
tiplied by the calculated velocity portion of Doppler effect equation used dur
sound rendering. For a full description of this parameter and how it is used,
Section 7.1.15, “AuralAttributes Object.”

public abstract void updateSample(int index)

Explicit update of a sample. This method is called when a Sound is to be ex
itly updated. It is only called when all a sound’s parameters are known to h
been passed to the audio device. In this way, an implementation can choo
perform lazy-evaluation of a sample, rather than updating the rendering sta
the sample after every individual parameter changed. This method can be le
a null method if the implementor so chooses.

11.3 Instantiating and Registering a New Device

A browser or applications developer must instantiate whatever system-spe
audio devices that he or she needs and that exist on the system. This d
information typically exists in a site configuration file. The browser or applic
tion will instantiate the physical environment as requested by the end user.

The API for instantiating devices is site-specific, but it consists of a device ob
with a constructor and at least all of the methods specified in the AudioDev
interface.

Once instantiated, the browser or application must register the device with
Java 3D sound scheduler by associating this device with a PhysicalEnviron
object. ThesetAudioDevice method introduces new devices to the Java 3
environment and theallAudioDevices method produces an enumeration th
allows examination of all available devices within a Java 3D environment.
Section C.9, “The PhysicalEnvironment Object,” for more details.
Java 3D API Specification

Version 1.1.2, June 1999
C H A P T E R 12

g

rtu-
inimal
ate-

av-
des,

lly, it

ode,
port
-the-

ed.
cture
etry
pen-

The
ng.”
Execution and Renderin
Model

JAVA 3D’s execution and rendering model assumes the existence of a Vi
alUniverse object and an attached scene graph. This scene graph can be m
and not noticeable from an application’s perspective when using immedi
mode rendering, but it must exist.

Java 3D’s execution model intertwines with its rendering modes and with beh
iors and their scheduling. This chapter first describes the three rendering mo
then describes how an application starts up a Java 3D environment, and fina
discusses how the various rendering modes work within this framework.

12.1 Three Major Rendering Modes

Java 3D supports three different modes for rendering scenes: immediate m
retained mode, and compiled-retained mode. These three levels of API sup
represent a potentially large variation in graphics processing speed and in on
fly restructuring.

12.1.1 Immediate Mode

Immediate mode allows maximum flexibility at some cost in rendering spe
The application programmer can either use or ignore the scene graph stru
inherent in Java 3D’s design. The programmer can choose to draw geom
directly or to define a scene graph. Immediate mode can either be used inde
dently or mixed with retained and/or compiled-retained mode rendering.
immediate-mode API is described in Chapter 13, “Immediate-Mode Renderi
301

12.1.2 Retained Mode EXECUTION AND RENDERING MODEL

302

ode
cts
itself

ene
ined

ty.

jects

ects,
jects
r has
form

an
sys-

um
tate

m-
res-
.

ing.
with

ed in
ct or
inter-
s to
con-

res
aximal
cene
r of
al
12.1.2 Retained Mode

Retained mode allows a great deal of the flexibility provided by immediate m
while also providing a substantial increase in rendering speed. All obje
defined in the scene graph are accessible and manipulable. The scene graph
is fully manipulable. The application programmer can rapidly construct the sc
graph, create and delete nodes, and instantly “see” the effect of edits. Reta
mode also allows maximal access to objects through a general pick capabili

Java 3D’s retained mode allows a programmer to construct objects, insert ob
into a database, compose objects, and add behaviors to objects.

In retained mode, Java 3D knows that the programmer has defined obj
knows how the programmer has combined those objects into compound ob
or scene graphs, and knows what behaviors or actions the programme
attached to objects in the database. This knowledge allows Java 3D to per
many optimizations. It can construct specialized data structures that hold
object’s geometry in a manner that enhances the speed at which the Java 3D
tem can render it. It can compile object behaviors so that they run at maxim
speed when invoked. It can flatten transformation manipulations and s
changes where possible in the scene graph.

12.1.3 Compiled-retained Mode

Compiled-retained mode allows the Java 3D API to perform an arbitrarily co
plex series of optimizations including, but not restricted to, geometry comp
sion, scene graph flattening, geometry grouping, and state change clustering

Compiled-retained mode provides hooks for end-user manipulation and pick
Pick operations return the closest object (in scene graph space) associated
the picked geometry.

Java 3D’s compiled-retained mode ensures effective graphics rendering spe
yet one more way. A programmer can request that Java 3D compile an obje
a scene graph. Once compiled, the programmer has minimal access to the
nal structure of the object or scene graph. Capability flags provide acces
specified components that the application program may need to modify on a
tinuing basis.

A compiled object or scene graph consists of whatever internal structu
Java 3D wishes to create to ensure that objects or scene graphs render at m
rates. Because Java 3D knows that the majority of the compiled object’s or s
graph’s components will not change, it can perform an extraordinary numbe
optimizations, including the fusing of multiple objects into one conceptu
Java 3D API Specification

EXECUTION AND RENDERING MODEL Retained and Compiled-retained Rendering Modes12.2.2

bject
into

sly.
cene
n-

The
cess
ple-

cting
ined
ref-

h to
use

tual
eats
a 3D
uni-

es.
ode,
s the
object, turning an object into compressed geometry, or even breaking an o
up into like-kind components and reassembling the like-kind components
new “conceptual objects.”

12.2 Instantiating the Render Loop

From an application’s perspective, Java 3D’s render loop runs continuou
Whenever an application adds a scene branch to the virtual world, that s
branch is instantly visible. This high-level view of the render loop permits co
current implementations of Java 3D as well as serial implementations.
remainder of this section describes the Java 3D render loop bootstrap pro
from a serialized perspective. Differences that would appear in concurrent im
mentations are noted as well.

12.2.1 An Application-level Perspective

First the application must construct its scene graphs. It does this by constru
scene graph nodes and component objects and linking them into self-conta
trees with a BranchGroup node as a root. The application next must obtain a
erence to any constituent nodes or objects within that branch that it may wis
manipulate. It sets the capabilities of all the objects to match their anticipated
and only then compiles the branch using the BranchGroup’scompile method.
Whether or not it compiles the branch, the application can add it to the vir
universe by adding the BranchGroup to a Locale object. The application rep
this process for each branch it wishes to create. Note that for concurrent Jav
implementations, whenever an application adds a branch to the active virtual
verse, that branch becomes visible.

12.2.2 Retained and Compiled-retained Rendering Modes

This initialization process is identical for retained and compiled-retained mod
In both modes, the application builds a scene graph. In compiled-retained m
the application then compiles the scene graph. Then the application insert
(possibly compiled) scene graph into the virtual universe.
303Version 1.1.2, June 1999

Version 1.1.2, June 1999
C H A P T E R 13

g

s in
ring.
ibil-

raph
dom,
ode,
om-
orm

edi-
and
nvas.
om

that
uch
phi-
and

jects
te a
Immediate-Mode Renderin

JAVA 3D is fundamentally a scene graph–based API. Most of the construct
the API are biased toward retained mode and compiled-retained mode rende
However, there are some applications that want both the control and the flex
ity that immediate-mode rendering offers.

Immediate-mode applications can either use or ignore Java 3D’s scene g
structure. By using immediate mode, end-user applications have more free
but this freedom comes at the expense of performance. In immediate m
Java 3D has no high-level information concerning graphical objects or their c
position. Because it has minimal global knowledge, Java 3D can only perf
localized optimizations on behalf of the application programmer.

13.1 Two Styles of Immediate-Mode Rendering

Use of Java 3D’s immediate mode falls into one of two categories: pure imm
ate-mode rendering and mixed-mode rendering in which immediate mode
retained or compiled-retained mode interoperate and render to the same ca
The Java 3D renderer is idle in pure immediate mode, distinguishing it fr
mixed-mode rendering.

13.1.1 Pure Immediate-Mode Rendering

Pure immediate-mode rendering provides for those applications and applets
do not want Java 3D to do any automatic rendering of the scene graph. S
applications may not even wish to build a scene graph to represent their gra
cal data. However, they use Java 3D’s attribute objects to set graphics state
Java 3D’s geometric objects to render geometry.

A pure immediate mode application must create a minimal set of Java 3D ob
before rendering. In addition to a Canvas3D object, the application must crea
305

13.1.1 Pure Immediate-Mode Rendering IMMEDIATE-MODE RENDERING

306

cts,
olu-
ject

hat
the

lf of
lica-

ser
ally,
ibil-

the
ct
rm
View object, with its associated PhysicalBody and PhysicalEnvironment obje
and the following scene graph elements: a VirtualUniverse object, a high-res
tion Locale object, a BranchGroup node object, a TransformGroup node ob
with associated transform and, finally, a ViewPlatform leaf node object t
defines the position and orientation within the virtual universe that generates
view (see Figure 13-1).

Figure 13-1 Minimal Immediate-Mode Structure

Java 3D provides utility functions that create much of this structure on beha
a pure immediate-mode application, making it less noticeable from the app
tion’s perspective—but the structure must exist.

All rendering is done completely under user control. It is necessary for the u
to clear the 3D canvas, render all geometry, and swap the buffers. Addition
rendering the right and left eye for stereo viewing becomes the sole respons
ity of the application.

In pure immediate mode, the user must stop the Java 3D renderer, via
Canvas3D objectstopRenderer() method, prior to adding the Canvas3D obje
to an active View object (that is, one that is attached to a live ViewPlatfo
object).

BG

VP

Virtual Universe

Hi-Res Locale

View Canvas3D

Screen3D

Physical
Body

Physical
Environment

TG

BranchGroup

TransformGroup

ViewPlatform
Java 3D API Specification

IMMEDIATE-MODE RENDERING Mixed-Mode Rendering13.1.2

ore
run-
a 3D

with
ty to
ren-
the
13.1.2 Mixed-Mode Rendering

Mixing immediate mode and retained or compiled-retained mode requires m
structure than pure immediate mode. In mixed mode, the Java 3D renderer is
ning continuously, rendering the scene graph into the canvas. The basic Jav
stereorendering loop, executed for each Canvas3D, is as follows:

clear canvas (both eyes)
call preRender() // user-supplied method
set left eye view
render opaque scene graph objects
call renderField(FIELD_LEFT) // user-supplied method
render transparent scene graph objects
set right eye view
render opaque scene graph objects again
call renderField(FIELD_RIGHT) // user-supplied method
render transparent scene graph objects again
call postRender() // user-supplied method
synchronize and swap buffers
call postSwap() // user-supplied method

The basic Java 3Dmonoscopicrendering loop is as follows:

clear canvas
call preRender() // user-supplied method
set view
render opaque scene graph objects
call renderField(FIELD_ALL) // user-supplied method
render transparent scene graph objects
call postRender() // user-supplied method
synchronize and swap buffers
call postSwap() // user-supplied method

In both cases, the entire loop, beginning with clearing the canvas and ending
swapping the buffers, defines a frame. The application is given the opportuni
render immediate-mode geometry at any of the clearly identified spots in the
dering loop. A user specifies his or her own rendering methods by extending
Canvas3D class and overriding thepreRender, postRender, postSwap, and/or
renderField methods.
307Version 1.1.2, June 1999

13.2 Canvas3D Methods IMMEDIATE-MODE RENDERING

308

are

This
ren-

ode

D is

with
ist. It
nder-

ny
okes
ne for

ny
okes
fore
13.2 Canvas3D Methods

The Canvas3D methods that directly affect immediate-mode rendering
described here.

When a Canvas3D object is created, it is initially marked as being started.
means that as soon as the Canvas3D is added to an active View object, the
dering loop will render the scene graph to the canvas. In pure immediate m
the renderer must be stopped (via a call tostopRenderer) prior to adding the
canvas to an active View object.

Constants

public static final int FIELD_LEFT
public static final int FIELD_RIGHT
public static final int FIELD_ALL

These constants specify the field that the rendering loop for this Canvas3
rendering. TheFIELD_LEFT and FIELD_RIGHT values indicate the left and right
fields of a field-sequential stereo rendering loop, respectively. TheFIELD_ALL

value indicates a monoscopic or single-pass stereo rendering loop.

Methods

public final GraphicsContext3D getGraphicsContext3D()

This method retrieves the immediate-mode 3D graphics context associated
this Canvas3D. It creates a new graphics context if one does not already ex
returns a GraphicsContext3D object that can be used for immediate mode re
ing to this Canvas3D.

public void preRender()

Applications that wish to perform operations in the rendering loop prior to a
actual rendering must override this method. The Java 3D rendering loop inv
this method after clearing the canvas and before any rendering has been do
this frame. Applications shouldnot call this method.

public void postRender()

Applications that wish to perform operations in the rendering loop following a
actual rendering must override this method. The Java 3D rendering loop inv
this method after completing all rendering to the canvas for this frame and be
the buffer swap. Applications shouldnot call this method.
Java 3D API Specification

IMMEDIATE-MODE RENDERING Canvas3D Methods 13.2

ing
thod
iated
s

ust
ibly
no-
l ste-
and
d by
mix
der-

e

If the

ne
ren-

this

r this
has

fer. If
ren-
public void postSwap()

Applications that wish to perform operations at the very end of the render
loop must override this method. The Java 3D rendering loop invokes this me
after completing all rendering to this canvas, and all other canvases assoc
with the current view, for this frame following the buffer swap. Application
shouldnot call this method.

public void renderField(int fieldDesc)

Applications that wish to perform operations during the rendering loop m
override this function. The Java 3D rendering loop invokes this method, poss
twice, during the loop. It is called once for each field (once per frame on a mo
scopic system or once each for the right eye and left eye on a field-sequentia
reo system). This method is called after all opaque objects are rendered
before any transparent objects are rendered (subject to restrictions impose
OrderedGroup nodes). This is intended for use by applications that want to
retained/compiled-retained mode rendering with some immediate-mode ren
ing. The fieldDesc parameter is the field description:FIELD_LEFT, FIELD_

RIGHT, or FIELD_ALL. Applications that wish to work correctly in stereo mod
should render the same image for bothFIELD_LEFT and FIELD_RIGHT calls. If
Java 3D calls the renderer withFIELD_ALL, the immediate-mode rendering only
needs to be done once. Applications shouldnot call this method.

public final void startRenderer()
public final void stopRenderer()

These methods start or stop the Java 3D renderer for this Canvas3D object.
Java 3D renderer is currently running whenstopRenderer is called, the render-
ing will be synchronized before being stopped. No further rendering will be do
to this canvas by Java 3D until the renderer is started again. If the Java 3D
derer is not currently running whenstartRenderer is called, any rendering to
other Canvas3D objects sharing the same View will be synchronized before
Canvas3D’s renderer is (re)started.

public final void swap()

This method synchronizes and swaps buffers on a double-buffered canvas fo
Canvas3D object. This method may only be called if the Java 3D renderer
been stopped. In the normal case, the renderer automatically swaps the buf
the application invokes this method and the canvas has a running Java 3D
derer, aRestrictedAccessException exception is thrown.
309Version 1.1.2, June 1999

13.3 API for Immediate Mode IMMEDIATE-MODE RENDERING

310

and
cene
o the

3D
t. A
state

lica-
ich

lica-
13.3 API for Immediate Mode

The Java 3D immediate mode allows an application to directly set attributes
draw three-dimensional geometry using the same objects as in Java 3D s
graphs. An immediate-mode application renders by passing these objects t
set anddraw methods of a GraphicsContext3D object.

13.3.1 GraphicsContext3D

The GraphicsContext3D object is used for immediate-mode rendering into a
canvas. It is created by, and associated with, a specific Canvas3D objec
GraphicsContext3D class defines methods that manipulate 3D graphics
attributes and draw 3D geometric primitives.

Constructors

There are no publicly accessible constructors of GraphicsContext3D. An app
tion obtains a 3D graphics context object from the Canvas3D object into wh
the application wishes to render by using thegetGraphicsContext3D method.

The Canvas3D object creates a new GraphicsContext3D the first time an app
tion invokesgetGraphicsContext3D. A new GraphicsContext3D initializes its
state variables to the following defaults:

Methods

public final Canvas3D getCanvas3D()

This method gets the Canvas3D that created this GraphicsContext3D.

public final void setAppearance(Appearance appearance)
public final Appearance getAppearance()

Parameters Default Values

Background object null

Fob object null

Appearance object null

List of Light objects empty

High-Res coordinates (0, 0, 0,)

modelTransform identity

AuralAttributes object null

List of Sound objects empty
Java 3D API Specification

IMMEDIATE-MODE RENDERING GraphicsContext3D13.3.1

t used
spec-
ual
object
bject
t of a

e
con-

used
spec-
ck-

node
t be
cene
-
to
lica-

is 3D
Fog
the
The

y be

ren-
These methods access or modify the current Appearance component objec
by this 3D graphics context. The graphics context stores a reference to the
ified Appearance object. This means that the application may modify individ
appearance attributes by using the appropriate methods on the Appearance
(see Section 7.1.1, “Appearance Object”). The Appearance component o
must not be part of a live scene graph, nor may it subsequently be made par
live scene graph—anIllegalSharingException is thrown in such cases. If the
Appearance object isnull, default values will be used for all appearanc
attributes—it is as if an Appearance node were created using the default
structor.

public final void setBackground(Background background)
public final Background getBackground()

These methods access or modify the current Background leaf node object
by this 3D graphics context. The graphics context stores a reference to the
ified Background node. This means that the application may modify the ba
ground color or image by using the appropriate methods on the Background
object (see Section 5.4, “Background Node”). The Background node must no
part of a live scene graph, nor may it subsequently be made part of a live s
graph—anIllegalSharingException is thrown in such cases. If the Back
ground object isnull, the default background color of black (0,0,0) is used
clear the canvas prior to rendering a new frame. The Background node’s app
tion region is ignored for immediate-mode rendering.

public final void setFog(Fog fog)
public final Fog getFog()

These methods access or modify the current Fog leaf node object used by th
graphics context. The graphics context stores a reference to the specified
node. This means that the application may modify the fog attributes using
appropriate methods on the Fog node object (see Section 5.6, “Fog Node”).
Fog node must not be part of a live scene graph, nor may it subsequentl
made part of a live scene graph—anIllegalSharingException is thrown in
such cases. If the Fog object isnull, fog is disabled. Both the region of influence
and the hierarchical scope of the Fog node are ignored for immediate-mode
dering.

public final void addLight(Light light)
public final void insertLight(Light light, int index)
public final void setLight(Light light, int index)
public final Light getLight(int index)
public final void removeLight(int index)
311Version 1.1.2, June 1999

13.3.1 GraphicsContext3D IMMEDIATE-MODE RENDERING

312

con-
e

ex.
ro-
he
he

hts.
the
5.7,
e
h—an

ode

hics
hod,
h-

ed
peci-

lle-
public final int numLights()
public final Enumeration getAllLights()

These methods access or modify the list of lights used by this 3D graphics
text. TheaddLight method adds a new light to the end of the list of lights. Th
insertLight method inserts a new light before the light at the specified ind
ThesetLight method replaces the light at the specified index with the light p
vided. TheremoveLight method removes the light at the specified index. T
numLights method returns a count of the number of lights in the list. T
getLight method returns the light at the specified index. ThegetAllLights

method retrieves the Enumeration object of all lights.

The graphics context stores a reference to each light object in the list of lig
This means that the application may modify the light attributes for any of
lights using the appropriate methods on that Light node object (see Section
“Light Node”). None of the Light nodes in the list of lights may be part of a liv
scene graph, nor may they subsequently be made part of a live scene grap
IllegalSharingException is thrown in such cases. Adding anull Light object
to the list will result in aNullPointerException. Both the region of influence
and the hierarchical scope of all lights in the list are ignored for immediate-m
rendering.

public void setHiRes(int x[], int y[], int z[])
public void setHiRes(HiResCoord hiRes)
public void getHiRes(HiResCoord hiRes)

These methods access or modify the high-resolution coordinates of this grap
context to the location specified by the parameters provided. In the first met
the parametersx, y, andz are arrays of eight 32-bit integers that specify the hig
resolution coordinates point.

public void setModelTransform(Transform3D t)
public void multiplyModelTransform(Transform3D t)
public void getModelTransform(Transform3D t)

These methods access or modify the current model transform. Themultiply-

ModelTransform method multiplies the current model transform by the specifi
transform and stores the result back into the current model transform. The s
fied transformation must be affine. ABadTransformException is thrown (see
Section D.1, “BadTransformException”) if an attempt is made to specify an i
gal Transform3D.

public final void setAuralAttributes(AuralAttributes attributes)
public final AuralAttributes getAuralAttributes()
Java 3D API Specification

IMMEDIATE-MODE RENDERING GraphicsContext3D13.3.1

ject
o the
ify

ral-
l-
y it

re

ge-
aster
nent
this

data

rrent

the

al to

pe3D

con-
These methods access or modify the current AuralAttributes component ob
used by this 3D graphics context. The graphics context stores a reference t
specified AuralAttributes object. This means that the application may mod
individual audio attributes by using the appropriate methods in the Au
Attributes object (see Section 7.1.15, “AuralAttributes Object”). The Aura
Attributes component object must not be part of a live scene graph, nor ma
subsequently be made part of a live scene graph—anIllegalSharingExcep-

tion is thrown in such cases. If the AuralAttributes object isnull, default values
will be used for all audio attributes—it is as if an AuralAttributes object we
created using the default constructor.

public final void readRaster(Raster raster)

This method reads an image from the frame buffer and copies it into the Ima
Component or DepthComponent objects referenced by the specified R
object. All parameters of the Raster object and the component ImageCompo
or DepthComponent objects must be set to the desired values prior to calling
method. These values determine the location, size, and format of the pixel
that is read.

public final void clear()

This method clears the canvas to the color or image specified by the cu
Background leaf node object.

public final void draw(Geometry geometry)
public final void draw(Shape3D shape)

The firstdraw method draws the specified Geometry component object using
current state in the graphics context. The seconddraw method draws the speci-
fied Shape3D leaf node object. This is a convenience method that is identic
calling thesetAppearance(Appearance) anddraw(Geometry) methods passing
the Appearance and Geometry component objects of the specified Sha
nodes as arguments.

public final void addSound(Sound sound)
public final void insertSound(Sound sound, int index)
public final void setSound(Sound sound, int index)
public final Sound getSound(int index)
public final void removeSound(int index)
public final int numSounds()
public final boolean isSoundPlaying(int index)
public final Enumeration getAllSounds()

These methods access or modify the list of sounds used by this 3D graphics
313Version 1.1.2, June 1999

13.3.1 GraphicsContext3D IMMEDIATE-MODE RENDERING

314

on-
e

th
i-
f

.
.

unds.
the
(see

may
live

ay-
nd’s

or
text. TheaddSound method appends the specified sound to this graphics c
text’s list of sounds. TheinsertSound method inserts the specified sound at th
specified index location. ThesetSound method replaces the specified sound wi
the sound provided. TheremoveSound method removes the sound at the spec
fied index location. ThenumSounds method retrieves the current number o
sounds in this graphics context. ThegetSound method retrieves the index-
selected sound. TheisSoundPlaying method retrieves the sound-playing flag
ThegetAllSounds method retrieves the Enumeration object of all the sounds

The graphics context stores a reference to each sound object in the list of so
This means that the application may modify the sound attributes for any of
sounds by using the appropriate methods on that Sound node object
Section 5.8, “Sound Node”). None of the Sound nodes in the list of sounds
be part of a live scene graph, nor may they subsequently be made part of a
scene graph—anIllegalSharingException is thrown in such cases. Adding a
null Sound object to the list results in aNullPointerException. If the list of
sounds is empty, sound rendering is disabled.

Adding or inserting a sound to the list of sounds implicitly starts the sound pl
ing. Once a sound is finished playing, it can be restarted by setting the sou
enable flag totrue. The scheduling region of all sounds in the list is ignored f
immediate-mode rendering.
Java 3D API Specification

Version 1.1.2, June 1999
A P P E N D I X A
te
jects
riate

y and
not

s will
epa-

r-ele-

ent

blic
Math Objects

M ATHEMATICAL objects allow Java 3D users to represent and manipula
low-level mathematical constructs such as vectors and matrices. Math ob
also define specific operations that allow users to manipulate them in approp
ways.

Java 3D needs these vector and matrix math classes. It uses them internall
also makes them available to applications for their use. However, they are
part of Java 3D. Rather, they are defined here for convenience. These classe
become more widely distributed, which is why Java 3D defines them as a s
ratejavax.vecmath package. Figure A-1 shows the math object hierarchy.

A.1 Tuple Objects

Java 3D uses tuple objects to represent and manipulate two-, three-, and fou
ment values.

A.1.1 Tuple2d Class

The Tuple2d class is used for points and vectors. This class is a two-elem
tuple that is represented by double-precision floating point x,y coordinates.

Variables

The component values of a Tuple2d are directly accessible through the pu
variablesx and y. To access thex component of a Tuple2d calledupperLeft-
Corner, a programmer would writeupperLeftCorner.x. The programmer
would access they component similarly.
315

A.1.1 Tuple2d Class MATH OBJECTS

316
Figure A-1 Math Object Hierarchy

public double x
Public double y

The x and y coordinates, respectively.

Tuple Objects
Tuple2d

Point2d
Vector2d

Tuple2f
Point2f
TexCoord2f
Vector2f

Tuple3b
Color3b

Tuple3d
Point3d
Vector3d

Tuple3f
Color3f
Point3f
TexCoord3f
Vector3f

Tuple4b
Color4b

Tuple4d
Point4d
Quat4d
Vector4d

Tuple4f
Color4f
Point4f
Quat4f
Vector4f

AxisAngle4d
AxisAngle4f
GVector

Matrix Objects
Matrix3f
Matrix3d
Matrix4f
Matrix4d
GMatrix
Java 3D API Specification

MATH OBJECTS Tuple2d Class A.1.1

ner-

y

tes.
ed
e
is

of
or
Constructors

public Tuple2d(double x, double y)
public Tuple2d(double[] t)
public Tuple2d(Tuple2d t1)
public Tuple2d(Tuple2f t1)
public Tuple2d()

These five constructors each return a new Tuple2d. The first constructor ge
ates a Tuple2d from two double-precision floating-point numbersx and y. The
second constructor generates a Tuple2d from the first two elements of arrat.
The third and fourth constructors generate a Tuple2d from the tuplet1. The final
constructor generates a Tuple2d with the value of (0.0, 0.0).

Methods

public final void set(double x, double y)
public final void set(double[] t)
public final void set(Tuple2d t1)
public final void set(Tuple2f t1)
public final void get(double[] t)

The firstset method sets the value of this tuple to the specified xy coordina
The secondset method sets the value of this tuple from the two values specifi
in the arrayt. The third and fourthset methods set the value of this tuple to th
value of the tuplet1. The get method copies the value of the elements of th
tuple into the arrayt.

public final void add(Tuple2d t1, Tuple2d t2)
public final void add(Tuple2d t1)
public final void sub(Tuple2d t1, Tuple2d t2)
public final void sub(Tuple2d t1)

The firstadd method sets the value of this tuple to the vector sum of tuplesv1

andv2. The secondadd method sets the value of this tuple to the vector sum
itself and tuplet1. The firstsub method sets the value of this tuple to the vect
difference of tuplet1 andt2 (this = t1 – t2). The secondsub method sets the
value of this tuple to the vector difference of itself and tuplet1 (this = this – t1).

public final void negate(Tuple2d t1)
public final void negate()

The firstnegate method sets the value of this tuple to the negation of tuplet1.
The second method negates the value of this vector in place.
317Version 1.1.2, June 1999

A.1.1 Tuple2d Class MATH OBJECTS

318

e

e and

rst

ple

lin-
public final void scale(double s, Tuple2d t1)
public final void scale(double s)
public final void scaleAdd(double s, Tuple2d t1)
public final void scaleAdd(double s, Tuple2d t1, Tuple2d t2)

The firstscale method multiplies each element of the tuplet1 by the scale fac-
tor s and places the resulting scaled tuple intothis. The second method multi-
plies each element of this tuple by the scale factors and places the resulting
scaled tuple intothis. The firstscaleAdd method scales this tuple by the scal
factors, adds the result to tuplet1, and places the result into the tuplethis (this
= s*this + t1). The secondscaleAdd method scales tuplet1 by the scale factor
s, adds the result to tuplet1, then places the result into the tuplethis (this =
s*t1 + t2).

public final void absolute(Tuple2d t)

This method sets each component of the tuple parameter to its absolute valu
places the modified values into this tuple.

public final void clamp(double min, double max)
public final void clamp(double min, double max, Tuple2d t)
public final void clampMin(double min)
public final void clampMin(double min, Tuple2d t)
public final void clampMax(double max)
public final void clampMax(double max, Tuple2d t)

The first clamp method clamps this tuple to the range [min, max]. The second
clamp method clamps the values from tuplet to the range [min, max] and assigns
these clamped values to this tuple. The firstclampMin method clamps each value
of this tuple to themin parameter. The secondclampMin method clamps each
value of the tuplet and assigns these clamped values to this tuple. The fi
clampMax method clamps each value of this tuple to themax parameter. The sec-
ond clampMax method clamps each value of tuplet to the max parameter and
assigns these clamped values to this tuple. In each method the values of tut

remain unchanged.

public final void interpolate(Tuple2d t1, Tuple2d t2, double alpha)
public final void interpolate(Tuple2d t1, double alpha)

The first method linearly interpolates between tuplest1 and t2 and places the
result into this tuple (this = (1 – alpha) * t1 + alpha * t2). The second method
early interpolates between this tuple and tuplet1 and places the result into this
tuple (this = (1 – alpha) * this + alpha * t1).
Java 3D API Specification

MATH OBJECTS Tuple2d Class A.1.1

rue if

s

this
is,
ts
is is

pre-

ner-

y

public boolean equals(Tuple2d t1)
public boolean equals(Object t1)

The first method returnstrue if all of the data members of tuplet1 are equal to
the corresponding data members in this tuple. The second method returns t
the Objectt1 is of type Tuple2d and all of the data members oft1 are equal to
the corresponding data members in this Tuple2d.

public boolean epsilonEquals(Tuple2d t1, double epsilon)

This method returnstrue if the L∞ distance between this tuple and tuplet1 is
less than or equal to theepsilon parameter. Otherwise, this method return
false. The L∞ distance is equal to

public int hashCode()

The hashCode method returns a hash number based on the data values in
object. Two Tuple2d objects with identical data values (that
equals(Tuple2d) returnstrue) will return the same hash number. Two objec
with different data members may return the same hash number, although th
not likely.

public String toString()

This method returns a string that contains the values of this Tuple2d.

A.1.1.1 Point2d Class

The Point2d class extends Tuple2d. The Point2d is a two-element point re
sented by double-precision floating-pointx,y coordinates.

Constructors

public Point2d(double x, double y)
public Point2d(double p[])
public Point2d(Point2d p1)
public Point2d(Point2f p1)
public Point2d(Tuple2d t1)
public Point2d(Tuple2f t1)
public Point2d()

These four constructors each return a new Point2d. The first constructor ge
ates a Point2d from two double-precision floating-point numbersx and y. The
second constructor generates a Point2d from the first two elements of arrap.

MAX abs x1 x2–() abs y1 y2–(),[]
319Version 1.1.2, June 1999

A.1.1 Tuple2d Class MATH OBJECTS

320

ce

nt

pre-

ner-
The third and fourth constructors generate a Point2d from the pointp1. The fifth
and sixth constructors generate a Point2d from the tuplet1. The final constructor
generates a Point2d with the value of (0.0, 0.0).

Methods

public final double distanceSquared(Point2d p1)
public final double distance(Point2d p1)

The distanceSquared method computes the square of the Euclidean distan
between this point and pointp1 and returns the result. Thedistance method
computes the Euclidean distance between this point and pointp1 and returns the
result.

public final double distanceL1(Point2d p1)

This method computes the L1 (Manhattan) distance between this point and poi
p1. The L1 distance is equal to

public final double distanceLinf(Point2d p1)

This method computes the L∞ distance between this point and pointp1. The L∞
distance is equal to

A.1.1.2 Vector2d Class

The Vector2d class extends Tuple2d. The Vector2f is a two-element vector re
sented by double-precision floating-pointx,y coordinates.

Constructors

public Vector2d(double x, double y)
public Vector2d(double v[])
public Vector2d(Vector2d v1)
public Vector2d(Vector2f v1)
public Vector2d(Tuple2d t1)
public Vector2d(Tuple2f t1)
public Vector2d()

These four constructors each return a new Vector2d. The first constructor ge
ates a Vector2d from two floating-point numbersx andy. The second constructor

abs x1 x2–() abs y1 y2–()+

MAX abs x1 x2–() abs y1 y2–(),[]
Java 3D API Specification

MATH OBJECTS Tuple2f Class A.1.2

tor
The

ing

blic
generates a Vector2d from the first two elements of arrayv. The third and fourth
constructors generate a Vector2d from the vectorv1. The fifth and sixth construc-
tors generate a Vector2d from the specified tuplet1. The final constructor gener-
ates a Vector2d with the value of (0.0, 0.0).

Methods

public final double dot(Vector2d v1)

Thedot method computes the dot product between this vector and vectorv1 and
returns the resulting value.

public final double lengthSquared()
public final double length()

The lengthSquared method computes the square of the length of the vec
this and returns its length as a double-precision floating-point number.
length method computes the length of the vectorthis and returns its length as
a double-precision floating-point number.

public final void normalize(Vector2d v1)
public final void normalize()

The firstnormalize method normalizes the vectorv1 to unit length and places
the result inthis. The secondnormalize method normalizes the vectorthis
and places the resulting unit vector back intothis.

public final double angle(Vector2d v1)

This method returns the angle, in radians, between this vector and vectorv1. The
return value is constrained to the range [0,π].

A.1.2 Tuple2f Class

The Tuple2f class is a generic two-element tuple mostly used for specify
points and vectors made up of single-precision floating-pointx,y coordinates.

Variables

The component values of a Tuple2f are directly accessible through the pu
variablesx andy. To access thex component of a Tuple2f calledupperLeftCor-
ner, a programmer would writeupperLeftCorner.x. The programmer would
access they component similarly.
321Version 1.1.2, June 1999

A.1.2 Tuple2f Class MATH OBJECTS

322

rates
-

a

-

public float x
public float y

Thex andy coordinates, respectively.

Constructors

public Tuple2f(float x, float y)
public Tuple2f(float t[])
public Tuple2f(Tuple2f t1)
public Tuple2f(Tuple2d t1)
public Tuple2f()

These five constructors each return a new Tuple2f. The first constructor gene
a Tuple2f from two floating-point numbersx andy. The second constructor gen
erates a Tuple2f from the first two elements of arrayt. The third and fourth con-
structors generate a Tuple2f from the tuplet1. The final constructor generates
Tuple2f with the value of (0.0, 0.0).

Methods

public final void set(float x, float y)
public final void set(float t[])
public final void set(Tuple2f t1)
punlic final void set(Tiple2d t1)
public final void get(float t[])

The set methods set the value of tuplethis to the values provided. Theget
method copies the values of the elements of this tuple into the arrayt.

public final void add(Tuple2f t1, Tuple2f t2)
public final void add(Tuple2f t1)
public final void sub(Tuple2f t1, Tuple2f t2)
public final void sub(Tuple2f t1)

The firstadd method computes the element-by-element sum of tuplest1 andt2,
placing the result inthis. The secondadd method computes the element-by-ele
ment sum of this tuple and tuplet1, placing the result inthis. The first sub
method performs an element-by-element subtraction of tuplet2 from tuple t1

and places the result inthis (this = t1 – t2). The secondsub method performs an
element-by-element subtraction oft1 from this and places the result inthis
(this = this – t1).

public final void negate(Tuple2f t1)
public final void negate()
Java 3D API Specification

MATH OBJECTS Tuple2f Class A.1.2

ues

e

ute
he

rst

ple
The firstnegate method sets the values of this tuple to the negative of the val
from tuplet1. The secondnegate method negates the tuplethis and places the
resulting tuple back intothis.

public final void scale(float s, Tuple2f t1)
public final void scale(float s)
public final void scaleAdd(float s, Tuple2f t1)
public final void scaleAdd(float s, Tuple2f t1, Tuple2f t2)

The firstscale method multiplies each element of the tuplet1 by the scale fac-
tor s and places the resulting scaled tuple intothis. The secondscale method
multiplies each element of this tuple by the scale factors and places the resulting
scaled tuple intothis. The firstscaleAdd method scales this tuple by the scal
factors, adds the result to tuplet1, and places the result into the tuplethis (this
= s*this + t1). The secondscaleAdd method scales tuplet1 by the scale factor
s, adds the result to tuplet2, then places the result into the tuplethis (this =
s*t1 + t2).

public final void absolute()
public final void absolute(Tuple2f t)

The first absolute method sets each component of this tuple to its absol
value. The secondabsolute method sets each component of this tuple to t
absolute value of the corresponding component in tuplet.

public final void clamp(float min, float max)
public final void clamp(float min, float max, Tuple2f t)
public final void clampMin(float min)
public final void clampMin(float min, Tuple2f t)
public final void clampMax(float max)
public final void clampMax(float max, Tuple2f t)

The first clamp method clamps this tuple to the range [min, max]. The second
clamp method clamps the values from tuplet to the range [min, max] and assigns
these clamped values to this tuple. The firstclampMin method clamps each value
of this tuple to themin parameter. The secondclampMin method clamps each
value of the tuplet and assigns these clamped values to this tuple. The fi
clampMax method clamps each value of this tuple to themax parameter. The sec-
ond clampMax method clamps each value of tuplet to the max parameter and
assigns these clamped values to this tuple. In each method the values of tut

remain unchanged.
323Version 1.1.2, June 1999

A.1.2 Tuple2f Class MATH OBJECTS

324

lin-

rue if

s

this

ta

pre-
public final void interpolate(Tuple2f t1, Tuple2f t2, float alpha)
public final void interpolate(Tuple2f t1, float alpha)

The first method linearly interpolates between tuplest1 and t2 and places the
result into this tuple (this = (1 – alpha) * t1 + alpha * t2). The second method
early interpolates between this tuple and tuplet1 and places the result into this
tuple (this = (1 – alpha) * this + alpha * t1).

public boolean equals(Tuple2f t1)
public boolean equals(Object t1)

The first method returnstrue if all of the data members of tuplet1 are equal to
the corresponding data members in this tuple. The second method returns t
the Objectt1 is of type Tuple2f and all of the data members oft1 are equal to
the corresponding data members in this Tuple2f.

public boolean epsilonEquals(Tuple2f t1, float epsilon)

This method returnstrue if the L∞ distance between this tuple and tuplet1 is
less than or equal to theepsilon parameter. Otherwise, this method return
false. The L∞ distance is equal to

public int hashCode()

The hashCode method returns a hash number based on the data values in
object. Two Tuple2f objects with identical data values (that is,equals(Tuple2f)

returnstrue) will return the same hash number. Two objects with different da
members may return the same hash number, although this is not likely.

public String toString()

This method returns a string that contains the values of this Tuple2f.

A.1.2.1 Point2f Class

The Point2f class extends Tuple2f. The Point2f is a two-element point re
sented by single-precision floating-pointx,y coordinates.

Constructors

public Point2f(float x, float y)
public Point2f(float p[])
public Point2f(Point2f p1)
public Point2f(Point2d p1)

MAX abs x1 x2–() abs y1 y2–(),[]
Java 3D API Specification

MATH OBJECTS Tuple2f Class A.1.2

rates
-

f

ce

nt

pre-
public Point2f(Tuple2f t1)
public Point2f(Tuple2f t1)
public Point2f()

These four constructors each return a new Point2f. The first constructor gene
a Point2f from two floating-point numbersx andy. The second constructor gen
erates a Point2f from the first two elements of arrayp. The third and fourth con-
structors generate a Point2f from the pointp1. The fifth and sixth constructors
generate a Point2f from the tuplet1. The final constructor generates a Point2
with the value of (0.0, 0.0).

Methods

public final float distanceSquared(Point2f p1)
public final float distance(Point2f p1)

The distanceSquared method computes the square of the Euclidean distan
between this point and pointp1 and returns the result. Thedistance method
computes the Euclidean distance between this point and pointp1 and returns the
result.

public final float distanceL1(Point2f p1)

This method computes the L1 (Manhattan) distance between this point and poi
p1. The L1 distance is equal to

public final float distanceLinf(Point2f p1)

This method computes the L∞ distance between this point and pointp1. The L∞
distance is equal to

A.1.2.2 Vector2f Class

The Vector2f class extends Tuple2f. The Vector2f is a two-element vector re
sented by single-precision floating-pointx,y coordinates.

Constructors

public Vector2f(float x, float y)
public Vector2f(float v[])
public Vector2f(Vector2f v1)

abs x1 x2–() abs y1 y2–()+

MAX abs x1 x2–() abs y1 y2–(),[]
325Version 1.1.2, June 1999

A.1.2 Tuple2f Class MATH OBJECTS

326

ner-

tor
he

ent
public Vector2f(Vector2d v1)
public Vector2f(Tuple2f t1)
public Vector2f(Tuple2d t1)
public Vector2f()

These four constructors each return a new Vector2f. The first constructor ge
ates a Vector2f from two floating-point numbersx andy. The second constructor
generates a Vector2f from the first two elements of arrayv. The third and fourth
constructors generate a Vector2f from the vectorv1. The fifth and sixth construc-
tors generate a Vector2f from the specified tuplet1. The final constructor gener-
ates a Vector2f with the value of (0.0, 0.0).

Methods

public final float dot(Vector2f v1)

Thedot method computes the dot product between this vector and vectorv1 and
returns the resulting value.

public final float lengthSquared()
public final float length()

The lengthSquared method computes the square of the length of the vec
this and returns its length as a single-precision floating-point number. T
length method computes the length of the vectorthis and returns its length as
a single-precision floating-point number.

public final void normalize(Vector2f v1)
public final void normalize()

The firstnormalize method normalizes the vectorv1 to unit length and places
the result inthis. The secondnormalize method normalizes the vectorthis
and places the resulting unit vector back intothis.

public final float angle(Vector2f v1)

This method returns the angle, in radians, between this vector and vectorv1. The
return value is constrained to the range [0,π].

A.1.2.3 TexCoord2f Class

The TexCoord2f class is a subset of Tuple2f. The TexCoord2f is a two-elem
vector represented by single-precision floating-point x,y coordinates.
Java 3D API Specification

MATH OBJECTS Tuple3b Class A.1.3

gen-

uple.

55].
resent
the
riable

blic

s

Constructors

public TexCoord2f(float x, float y)
public TexCoord2f(float v[])
public TexCoord2f(TexCoord2f v1)
public TexCoord2f(Tuple2f t1)
public TexCoord2f()

These four constructors each return a new TexCoord2f. The first constructor
erates a TexCoord2f from two floating-point numbersx andy. The second con-
structor generates a TexCoord2f from the first two elements of arrayv. The third
constructor generates a TexCoord2f from the TexCoord2fv1. The fourth con-
structor generates a TexCoord2f from the Tuple2ft1. The final constructor gen-
erates a TexCoord2f with the value of (0.0, 0.0).

A.1.3 Tuple3b Class

The Tuple3b class is used for colors. This class represents a three-byte t
Note that Java defines a byte as a signed integer in the range [−128, 127]. How-
ever, colors are more typically represented by values in the range [0, 2
Java 3D recognizes this and, in those cases where Tuple3b is used to rep
color, treats the bytes as if the range were [0, 255]—in other words, as if
bytes were unsigned. Values greater than 127 can be assigned to a byte va
using a type cast. For example:

byteVariable = (byte) intValue;// intValue can be > 127

If intValue is greater than 127, thenbyteVariable will be negative. The correct
value will be extracted when it is used (by masking off the upper bits).

Variables

The component values of a Tuple3b are directly accessible through the pu
variablesx, y, and z. To access thex (red) component of a Tuple3b called
myColor, a programmer would writemyColor.x. The programmer would acces
they (green) andz (blue) components similarly.

public byte x
public byte y
public byte z

The red, green, and blue values, respectively.
327Version 1.1.2, June 1999

A.1.3 Tuple3b Class MATH OBJECTS

328

ner-
s

e

s true

. Two

ta
Constructors

public Tuple3b(byte b1, byte b2, byte b3)
public Tuple3b(byte t[])
public Tuple3b(Tuple3b t1)
public Tuple3b()

These four constructors each return a new Tuple3b. The first constructor ge
ates a Tuple3b from three bytesb1, b2, andb3. The second constructor generate
a Tuple3b from the first three elements of arrayt. The third constructor gener-
ates a Tuple3b from the byte-precision Tuple3bt1. The final constructor gener-
ates a Tuple3b with the value of (0.0, 0.0, 0.0).

Methods

public String toString()

This method returns a string that contains the values of this Tuple3b.

public final void set(byte t[])
public final void set(Tuple3b t1)
public final void get(byte t[])
public final void get(Tuple3b t1)

The first set method sets the values of thex, y, and z data members of this
Tuple3b to the values in the arrayt of length three. The secondset method sets
the values of thex, y, andz data members of this Tuple3b to the values in th
argument tuplet1. The firstget method places the values of thex, y, andz com-
ponents of this Tuple3b into the arrayt of length three. The secondget method
places the values of thex, y, andz components of this Tuple3b into the tuplet1.

public boolean equals(Tuple3b t1)
public boolean equals(Object t1)

The first method returnstrue if all of the data members of Tuple3bt1 are equal
to the corresponding data members in this tuple. The second method return
if the Objectt1 is of type Tuple3b and all of the data members oft1 are equal to
the corresponding data members in this Tuple3b.

public int hashCode()

This method returns a hash number based on the data values in this object
different Tuple3b objects with identical data values (that is,equals(Tuple3b)

returnstrue) will return the same hash number. Two tuples with different da
members may return the same hash value, although this is not likely.
Java 3D API Specification

MATH OBJECTS Tuple3d Class A.1.4

ner-
s

th

reci-

blic
A.1.3.1 Color3b Class

The Color3b class extends Tuple3b and represents three-byte color values.

Constructors

public Color3b(byte c1, byte c2, byte c3)
public Color3b(byte c[])
public Color3b(Color3b c1)
public Color3b(Tuple3b t1)
public Color3b()

These four constructors each return a new Color3b. The first constructor ge
ates a Color3b from three bytesc1, c2, andc3. The second constructor generate
a Color3b from the first three elements of arrayc. The third constructor gener-
ates a Color3b from the byte-precision Color3bc1. The fourth constructor gener-
ates a Color3b from the tuplet1. The final constructor generates a Color3b wi
the value of (0.0, 0.0, 0.0).

A.1.4 Tuple3d Class

The Tuple3d class is a generic three-element tuple represented by double-p
sion floating-pointx, y, andz coordinates.

Variables

The component values of a Tuple3d are directly accessible through the pu
variablesx, y, andz. To access thex component of a Tuple3d calledupperLeft-
Corner, a programmer would writeupperLeftCorner.x. The programmer
would access they andz components similarly.

public double x
public double y
public double z

Thex, y, andz coordinates, respectively.

Constructors

public Tuple3d(double x, double y, double z)
public Tuple3d(double t[])
public Tuple3d(Tuple3d t1)
public Tuple3d(Tuple3f t1)
public Tuple3d()
329Version 1.1.2, June 1999

A.1.4 Tuple3d Class MATH OBJECTS

330

ner-

ues
These five constructors each return a new Tuple3d. The first constructor ge
ates a Tuple3d from three floating-point numbersx, y, andz. The second con-
structor generates a Tuple3d from the first three elements of arrayt. The third
constructor generates a Tuple3d from the double-precision Tuple3dt1. The
fourth constructor generates a Tuple3d from the single-precision Tuple3ft1. The
final constructor generates a Tuple3d with the value of (0.0, 0.0, 0.0).

Methods

public final void set(double x, double y, double z)
public final void set(double t[])
public final void set(Tuple3d t1)
public final void set(Tuple3f t1)
public final void get(double t[])
public final void get(Tuple3d t)

The fourset methods set the value of tuplethis to the values specified or to the
values of the specified vectors. The twoget methods copy thex, y, andz values
into the arrayt of length three.

public final void add(Tuple3d t1, Tuple3d t2)
public final void add(Tuple3d t1)
public final void sub(Tuple3d t1, Tuple3d t2)
public final void sub(Tuple3d t1)

The firstadd method computes the element-by-element sum of tuplest1 andt2
and places the result inthis. The secondadd method computes the ele-
ment-by-element sum of this tuple and tuplet1 and places the result intothis.
The first sub method performs an element-by-element subtraction of tuplet2

from tuple t1 and places the result inthis (this = t1 – t2). The secondsub
method performs an element-by-element subtraction of tuplet1 from this tuple
and places the result inthis (this = this – t1).

public final void negate(Tuple3d t1)
public final void negate()

The firstnegate method sets the values of this tuple to the negative of the val
from tuplet1. The secondnegate method negates the tuplethis and places the
resulting tuple back intothis.

public final void scaleAdd(double s, Tuple3f t1)

Deprecated method. See method below.
Java 3D API Specification

MATH OBJECTS Tuple3d Class A.1.4

m is

. Two

ta

turns
are

s

ute
public final void scale(double s, Tuple3d t1)
public final void scale(double s)
public final void scaleAdd(double s, Tuple3d t1)
public final void scaleAdd(double s, Tuple3d t1, Tuple3d t2)

The firstscale method multiplies each element of the tuplet1 by the scale fac-
tor s and places the resulting scaled tuple intothis. The secondscale method
multiplies each element ofthis tuple by the scale factors and places the result-
ing scaled tuple back intothis. The firstscaleAdd method scales this tuple by
the scale factors, adds the result to tuplet1, and places the result into tuplethis
(this = s*this + t1). The secondscaleAdd method scales the tuplet1 by the scale
factors, adds the result to the tuplet2, and places the result into the tuplethis
(this = s*t1 + t2).

public String toString()

This method returns a string that contains the values of this Tuple3d. The for
(x, y, z).

public int hashCode()

This method returns a hash number based on the data values in this object
different Tuple3d objects with identical data values (that is,equals(Tuple3d)

returnstrue) will return the same hash number. Two tuples with different da
members may return the same hash value, although this is not likely.

public boolean equals(Tuple3d v1)
public boolean equals(Object t1)

The first method returnstrue if all of the data members of Tuple3dv1 are equal
to the corresponding data members in this Tuple3d. The second method re
true if the Object t1 is of type Tuple3d and all of the data members of t1
equal to the corresponding data members in this Tuple3d.

public boolean epsilonEquals(Tuple3d t1, double epsilon)

This method returnstrue if the L∞ distance between this tuple and tuplet1 is
less than or equal to theepsilon parameter. Otherwise, this method return
false. The L∞ distance is equal to

public final void absolute()
public final void absolute(Tuple3d t)

The first absolute method sets each component of this tuple to its absol

MAX abs x1 x2–() abs y1 y2–() abs z1 z2–(),,[]
331Version 1.1.2, June 1999

A.1.4 Tuple3d Class MATH OBJECTS

332

he

rst

ple

nd
value. The secondabsolute method sets each component of this tuple to t
absolute value of the corresponding component in tuplet.

public final void clamp(float min, float max)
public final void clamp(float min, float max, Tuple3d t)
public final void clampMin(float min)
public final void clampMin(float min, Tuple3d t)
public final void clampMax(float max)
public final void clampMax(float max, Tuple3d t)

Deprecated methods. See the next six methods.

public final void clamp(double min, double max)
public final void clamp(double min, double max, Tuple3d t)
public final void clampMin(double min)
public final void clampMin(double min, Tuple3d t)
public final void clampMax(double max)
public final void clampMax(double max, Tuple3d t)

The first clamp method clamps this tuple to the range [min, max]. The second
clamp method clamps the values from tuplet to the range [min, max] and assigns
these clamped values to this tuple. The firstclampMin method clamps each value
of this tuple to themin parameter. The secondclampMin method clamps each
value of the tuplet and assigns these clamped values to this tuple. The fi
clampMax method clamps each value of this tuple to themax parameter. The sec-
ond clampMax method clamps each value of tuplet to the max parameter and
assigns these clamped values to this tuple. In each method, the values of tut

remain unchanged.

public final void interpolate(Tuple3d t1, Tuple3d t2, float alpha)
public final void interpolate(Tuple3d t1, float alpha)

Deprecated methods. See the next two methods.

public final void interpolate(Tuple3d t1, Tuple3d t2, double alpha)
public final void interpolate(Tuple3d t1, double alpha)

The firstinterpolate method linearly interpolates between tuplest1 andt2 and
places the result into this tuple (this = (1 – alpha) * t1 + alpha * t2). The seco
interpolate method linearly interpolates between this tuple and tuplet1 and
places the result into this tuple (this = (1 – alpha) * this + alpha * t1).
Java 3D API Specification

MATH OBJECTS Tuple3d Class A.1.4

epre-

rates

a

ce

int3d

nt
A.1.4.1 Point3d Class

The Point3d class extends Tuple3d. The Point3d is a three-element point r
sented by double-precision floating-pointx, y, andz coordinates.

Constructors

public Point3d(double x, double y, double z)
public Point3d(double p[])
public Point3d(Point3d p1)
public Point3d(Point3f p1)
public Point3d(Tuple3d t1)
public Point3d(Tuple3f t1)
public Point3d()

These five constructors each return a new Point3d. The first constructor gene
a Point3d from three floating-point numbersx, y, andz. The second constructor
generates a Point3d from the first three elements of arrayp. The third constructor
generates a Point3d from the double-precision Point3dp1. The fourth constructor
generates a Point3d from the single-precision Point3fp1. The fifth and sixth con-
structors generate a Point3d from the tuplet1. The final constructor generates
Point3d with the value of (0.0, 0.0, 0.0).

Methods

public final double distanceSquared(Point3d p1)
public final double distance(Point3d p1)

The distanceSquared method computes the square of the Euclidean distan
between this Point3d and the Point3dp1 and returns the result. Thedistance
method computes the Euclidean distance between this Point3d and the Po
p1 and returns the result.

public final double distanceL1(Point3d p1)

This method computes the L1 (Manhattan) distance between this point and poi
p1. The L1 distance is equal to

public final double distanceLinf(Point3d p1)

This method computes the L∞ distance between this point and pointp1. The L∞
distance is equal to

abs x1 x2–() abs y1 y2–() abs z1 z2–()+ +

MAX abs x1 x2–() abs y1 y2–() abs z1 z2–(),,[]
333Version 1.1.2, June 1999

A.1.4 Tuple3d Class MATH OBJECTS

334

-

rep-

ner-
public final void project(Point4d p1)

This method multiplies each of thex, y, andz components of the Point4d param
eterp1 by 1/w and places the projected values into this point.

A.1.4.2 Vector3d Class

The Vector3d class extends Tuple3d. The Vector3d is a three-element vector
resented by double-precision floating-pointx, y, andz coordinates. If this value
represents a normal, it should be normalized.

Constructors

public Vector3d(double x, double y, double z)
public Vector3d(double v[])
public Vector3d(Vector3d v1)
public Vector3d(Vector3f v1)
public Vector3d(Tuple3d t1)
public Vector3d(Tuple3f t1)
public Vector3d()

These five constructors each return a new Vector3d. The first constructor ge
ates a Vector3d from three floating-point numbersx, y, andz. The second con-
structor generates a Vector3d from the first three elements of arrayv. The third
constructor generates a Vector3d from the double-precision vectorv1. The fourth
constructor generates a Vector3d from the single-precision vectorv1. The fifth
and sixth constructors generate a Vector3d from the tuplet1. The final construc-
tor generates a Vector3d with the value of (0.0, 0.0, 0.0).

Methods

public final void cross(Vector3d v1, Vector3d v2)

The cross method computes the vector cross-product of vectorsv1 andv2 and
places the result inthis.

public final void normalize(Vector3d v1)
public final void normalize()

The firstnormalize method normalizes the vectorv1 to unit length and places
the result inthis. The secondnormalize method normalizes the vectorthis
and places the resulting unit vector back intothis.

public final double dot(Vector3d v1)

Thedot method returns the dot product of this vector and vectorv1.
Java 3D API Specification

MATH OBJECTS Tuple3f Class A.1.5

he

or

reci-

blic

rates
public final double lengthSquared()
public final double length()

The lengthSquared method returns the squared length of this vector. T
length method returns the length of this vector.

public final double angle(Vector3d v1)

This method returns the angle, in radians, between this vector and the vectv1

parameter. The return value is constrained to the range [0,π].

A.1.5 Tuple3f Class

The Tuple3f class is a generic three-element tuple represented by single-p
sion floating-pointx, y, andz coordinates.

Variables

The component values of a Tuple3f are directly accessible through the pu
variablesx, y, andz. To access thex component of a Tuple3f calledupperLeft-
Corner, a programmer would writeupperLeftCorner.x. The programmer
would access they andz components similarly.

public float x
public float y
public float z

Thex, y, andz coordinates, respectively.

Constructors

public Tuple3f(float x, float y, float z)
public Tuple3f(float t[])
public Tuple3f(Tuple3d t1)
public Tuple3f(Tuple3f t1)
public Tuple3f()

These five constructors each return a new Tuple3f. The first constructor gene
a Tuple3f from three floating-point numbersx, y, andz. The second constructor
generates a Tuple3f from the first three elements of arrayt. The third constructor
generates a Tuple3f from the double-precision Tuple3dt1. The fourth construc-
tor generates a Tuple3f from the single-precision Tuple3ft1. The final construc-
tor generates a Tuple3f with the value of (0.0, 0.0, 0.0).
335Version 1.1.2, June 1999

A.1.5 Tuple3f Class MATH OBJECTS

336

-

t

ues
Methods

public String toString()

This method returns a string that contains the values of this Tuple3f.

public final void set(float x, float y, float z)
public final void set(float t[])
public final void set(Tuple3f t1)
public final void set(Tuple3d t1)
public final void get(float t[])
public final void get(Tuple3f t)

The fourset methods set the value of vectorthis to the coordinates provided or
to the values of the vectors provided. The firstget method gets the value of this
vector and copies the values into the arrayt. The secondget method gets the
value of this vector and copies the values into tuplet.

public final void add(Tuple3f t1, Tuple3f t2)
public final void add(Tuple3f t1)
public final void sub(Tuple3f t1, Tuple3f t2)
public final void sub(Tuple3f t1)

The firstadd method computes the element-by-element sum of tuplest1 andt2,
placing the result inthis. The secondadd method computes the element-by-ele
ment sum ofthis and tuplet1 and places the result inthis. The first sub
method performs an element-by-element subtraction of tuplet2 from tuple t1

and places the result inthis (this = t1 – t2). The secondsub method performs an
element-by-element subtraction of tuplet1 from this tuple and places the resul
into this (this = this – t1).

public final void negate(Tuple3f t1)
public final void negate()

The firstnegate method sets the values of this tuple to the negative of the val
from tuplet1. The secondnegate method negates the vectorthis and places the
resulting tuple back intothis.

public final void scale(float s, Tuple3f t1)
public final void scale(float s)
public final void scaleAdd(float s, Tuple3f t1)
public final void scaleAdd(float s, Tuple3f t1, Tuple3f t2)

The firstscale method multiplies each element of the vectort1 by the scale fac-
tor s and places the resulting scaled vector intothis. The secondscale method
multiples the vectorthis by the scale factors and replacesthis with the scaled
Java 3D API Specification

MATH OBJECTS Tuple3f Class A.1.5

true

s

ute
he

rst

ple
value. The firstscaleAdd method scales this tuple by the scale factors, adds the
result to tuplet1, and places the result into tuplethis (this = s*this + t1). The
secondscaleAdd method scales the tuplet1 by the scale factors, adds the result
to the tuplet2, and places the result into the tuplethis (this = s*t1 + t2).

public boolean equals(Tuple3f t1)
public boolean equals(Object t1)

The first method returnstrue if all of the data members of tuplet1 are equal to
the corresponding data members in this Tuple3f. The second method returns
if the Objectt1 is of type Tuple3f and all of the data members oft1 are equal to
the corresponding data members in this Tuple3f.

public boolean epsilonEquals(Tuple3f t1, float epsilon)

This method returnstrue if the L∞ distance between this tuple and tuplet1 is
less than or equal to theepsilon parameter. Otherwise, this method return
false. The L∞ distance is equal to

public final void absolute()
public final void absolute(Tuple3f t)

The first absolute method sets each component of this tuple to its absol
value. The secondabsolute method sets each component of this tuple to t
absolute value of the corresponding component in tuplet.

public final void clamp(float min, float max)
public final void clamp(float min, float max, Tuple3f t)
public final void clampMin(float min)
public final void clampMin(float min, Tuple3f t)
public final void clampMax(float max)
public final void clampMax(float max, Tuple3f t)

The first clamp method clamps this tuple to the range [min, max]. The second
clamp method clamps the values from tuplet to the range [min, max] and assigns
these clamped values to this tuple. The firstclampMin method clamps each value
of this tuple to themin parameter. The secondclampMin method clamps each
value of the tuplet and assigns these clamped values to this tuple. The fi
clampMax method clamps each value of this tuple to themax parameter. The sec-
ond clampMax method clamps each value of tuplet to the max parameter and
assigns these clamped values to this tuple. In each method the values of tut

remain unchanged.

MAX abs x1 x2–() abs y1 y2–() abs z1 z2–(),,[]
337Version 1.1.2, June 1999

A.1.5 Tuple3f Class MATH OBJECTS

338

lin-

. Two

ta

pre-

rates

and
public final void interpolate(Tuple3f t1, Tuple3f t2, float alpha)
public final void interpolate(Tuple3f t1, float alpha)

The first method linearly interpolates between tuplest1 and t2 and places the
result into this tuple (this = (1 – alpha) * t1 + alpha * t2). The second method
early interpolates between this tuple and tuplet1 and places the result into this
tuple (this = (1–alpha) * this + alpha * t1).

int hashCode()

This method returns a hash number based on the data values in this object
different Tuple3f objects with identical data values (that is,equals(Tuple3f)

returnstrue) will return the same hash number. Two tuples with different da
members may return the same hash value, although this is not likely.

A.1.5.1 Point3f Class

The Point3f class extends Tuple3f. The Point3f is a three-element point re
sented by single-precision floating-pointx, y, andz coordinates.

Constructors

public Point3f(float x, float y, float z)
public Point3f(float p[])
public Point3f(Point3d p1)
public Point3f(Point3f p1)
public Point3f(Tuple3d t1)
public Point3f(Tuple3f t1)
public Point3f()

These five constructors each return a new Point3f. The first constructor gene
a point from three floating-point numbersx, y, and z. The second constructor
(Point3f(float p[]) generates a point from the first three elements of arrayp.
The third constructor generates a point from the double-precision pointp1. The
fourth constructor generates a point from the single-precision pointp1. The fifth
and sixth constructors generate a Point3f from the tuplet1. The final constructor
generates a point with the value of (0.0, 0.0, 0.0).

Methods

public final float distance(Point3f p1)
public final float distanceSquared(Point3f p1)

The distance method computes the Euclidean distance between this point
the pointp1 and returns the result. ThedistanceSquared method computes the
Java 3D API Specification

MATH OBJECTS Tuple3f Class A.1.5

nt

-

rep-

ner-
square of the Euclidean distance between this point and the pointp1 and returns
the result.

public final float distanceL1(Point3f p1)

This method computes the L1 (Manhattan) distance between this point and poi
p1. The L1 distance is equal to

public final float distanceLinf(Point3f p1)

This method computes the L∞ distance between this point and pointp1. The L∞
distance is equal to

public final void project(Point4f p1)

This method multiplies each of thex, y, andz components of the Point4f param
eterp1 by 1/w and places the projected values into this point.

A.1.5.2 Vector3f Class

The Vector3f class extends Tuple3f. The Vector3f is a three-element vector
resented by single-precision floating-pointx, y, andz coordinates.

Constructors

public Vector3f(float x, float y, float z)
public Vector3f(float v[])
public Vector3f(Vector3d v1)
public Vector3f(Vector3f v1)
public Vector3f(Tuple3d t1)
Public Vector3f(Tuple3f t1)
public Vector3f()

These five constructors each return a new Vector3f. The first constructor ge
ates a Vector3f from three floating-point numbersx, y, andz. The second con-
structor generates a Vector3f from the first three elements of arrayv. The third
constructor generates a Vector3f from the double-precision Vector3dv1. The
fourth constructor generates a Vector3f from the single-precision Vector3fv1.
The fifth and sixth constructors generate a Vector3f from the tuplet1. The final
constructor generates a Vector3f with the value of (0.0, 0.0, 0.0).

abs x1 x2–() abs y1 y2–() abs z1 z2–()+ +

MAX abs x1 x2–() abs y1 y2–() abs z1 z2–(),,[]
339Version 1.1.2, June 1999

A.1.5 Tuple3f Class MATH OBJECTS

340

-

r

ctor

tex-
Methods

public final float length()
public final float lengthSquared()

Thelength method computes the length of the vectorthis and returns its length
as a single-precision floating-point number. ThelengthSquared method com-
putes the square of the length of the vectorthis and returns its length as a sin
gle-precision floating-point number.

public final void cross(Vector3f v1, Vector3f v2)

The cross method computes the vector cross-product ofv1 and v2 and places
the result inthis.

public final float dot(Vector3f v1)

Thedot method computes the dot product between this vector and the vectov1

and returns the resulting value.

public final void normalize(Vector3f v1)
public final void normalize()

The firstnormalize method normalizes the vectorv1 to unit length and places
the result inthis. The secondnormalize method normalizes the vectorthis
and places the resulting unit vector back intothis.

public final float angle(Vector3f v1)

This method returns the angle, in radians, between this vector and the ve
parameter. The return value is constrained to the range [0,π].

A.1.5.3 TexCoord3f Class

The TexCoord3f class extends Tuple3f. The TexCoord3f is a three-element
ture coordinate represented by single-precision floating-pointx, y, andz coordi-
nates.

Constructors

public TexCoord3f(float x, float y, float z)
public TexCoord3f(float v[])
public TexCoord3f(TexCoord3f v1)
public TexCoord3f(Tuple3d t1)
public TexCoord3f(Tuple3f t1)
public TexCoord3f()
Java 3D API Specification

MATH OBJECTS Tuple4b Class A.1.6

gen-

nts of
pre-
or-
ith

lue

mpo-

ner-

ts
ion

e as a
-
hose
range
than
These four constructors each return a new TexCoord3f. The first constructor
erates a texture coordinate from three floating-point numbersx, y, and z. The
second constructor generates a texture coordinate from the first three eleme
arrayv. The third constructor generates a texture coordinate from the single-
cision TexCoord3fv1. The fourth and fifth constructors generate a texture co
dinate from tuplet1. The final constructor generates a texture coordinate w
the value of (0.0, 0.0, 0.0).

A.1.5.4 Color3f Class

The Color3f class extends Tuple3f. The Color3f is a three-element color va
represented by single-precision floating-pointx, y, andz values. Thex, y, andz
values represent the red, blue, and green color values, respectively. Color co
nents should be in the range [0.0, 1.0].

Constructors

public Color3f(float x, float y, float z)
public Color3f(float v[])
public Color3f(Color3f v1)
public Color3f(Tuple3d t1)
public Color3f(Tuple3f t1)
public Color3f()

These four constructors each return a new Color3f. The first constructor ge
ates a Color3f from three floating-point numbersx, y, andz. The second con-
structor (Color3f(float v[]) generates a Color3f from the first three elemen
of array v. The third constructor generates a Color3f from the single-precis
color v1. The fourth and fifth constructors generate a Color3f from the tuplet1.
The final constructor generates a Color3f with the value of (0.0, 0.0, 0.0).

A.1.6 Tuple4b Class

The Tuple4b class represents four-byte tuples. Note that Java defines a byt
signed integer in the range [−128, 127]. However, colors are more typically rep
resented by values in the range [0, 255]. Java 3D recognizes this and, in t
cases where Tuple4b is used to represent color, treats the bytes as if the
were [0, 255]—in other words, as if the bytes were unsigned. Values greater
127 can be assigned to a byte variable using a type cast. For example:

byteVariable = (byte) intValue;// intValue can be > 127

If intValue is greater than 127, thenbyteVariable will be negative. The correct
value will be extracted when it is used (by masking off the upper bits).
341Version 1.1.2, June 1999

A.1.6 Tuple4b Class MATH OBJECTS

342

blic
e,

ner-

).

the
rs
Variables

The component values of a Tuple4b are directly accessible through the pu
variablesx, y, z, andw. Thex, y, z, andw values represent the red, green, blu
and alpha values, respectively. To access thex (red) component of a Tuple4b
called backgroundColor, a programmer would writebackgroundColor.x. The
programmer would access they (green),z (blue), andw (alpha) components sim-
ilarly.

public byte x
public byte y
public byte z
public byte w

The red, green, blue, and alpha values, respectively.

Constructors

public Tuple4b(byte b1, byte b2, byte b3, byte b4)
public Tuple4b(byte t[])
public Tuple4b(Tuple4b t1)
public Tuple4b()

These four constructors each return a new Tuple4b. The first constructor ge
ates a Tuple4b from four bytesb1, b2, b3, and b4. The second constructor
(Tuple4b(byte t[]) generates a Tuple4b from the first four elements of arrayt.
The third constructor generates a Tuple4b from the byte-precision Tuple4bt1.
The final constructor generates a Tuple4b with the value of (0.0, 0.0, 0.0, 0.0

Methods

public String toString()

This method returns a string that contains the values of this Tuple4b.

public final void set(byte b[])
public final void set(Tuple4b t1)
public final void get(byte b[])
public final void get(Tuple4b t1)

The firstset method sets the value of the data members of this Tuple4b to
value of the arrayb. The secondset method sets the value of the data membe
of this Tuple4b to the value of the argument tuplet1. The first get method
places the values of thex, y, z, andw components of this Tuple4b into the byte
Java 3D API Specification

MATH OBJECTS Tuple4d Class A.1.7

turns
are

. Two

r-
y.

red,

ner-
-

b

preci-
arrayb. The secondget method places the values of thex, y, z, andw compo-
nents of this Tuple4b into the Tuple4bt1.

public boolean equals(Tuple4b t1)
public boolean equals(Object t1)

The first method returnstrue if all of the data members of Tuple4bt1 are equal
to the corresponding data members in this Tuple4b. The second method re
true if the Object t1 is of type Tuple4b and all of the data members of t1
equal to the corresponding data members in this Tuple4b.

public int hashCode()

This method returns a hash number based on the data values in this object
different Tuple4b objects with identical data values (that is,equals(Tuple4b)

returnstrue) will return the same hash number. Two Tuple4b objects with diffe
ent data members may return the same hash value, although this is not likel

A.1.6.1 Color4b Class

The Color4b class extends Tuple4b. The Color4b is a four-byte color value (
green, blue, and alpha).

Constructors

public Color4b(byte b1, byte b2, byte b3, byte b4)
public Color4b(byte c[])
public Color4b(Color4b c1)
public Color4b(Tuple4b t1)
public Color4b()

These four constructors each return a new Color4b. The first constructor ge
ates a Color4b from four bytesb1, b2, b3, andb4. The second constructor gener
ates a Color4b from the first four elements of byte arrayc. The third constructor
generates a Color4b from the byte-precision Color4bc1. The fourth constructor
generates a Color4b from the tuplet1. The final constructor generates a Color4
with the value of (0.0, 0.0, 0.0, 0.0).

A.1.7 Tuple4d Class

The Tuple4d class represents a four-element tuple represented by double-
sion floating-pointx, y, z, andw coordinates.
343Version 1.1.2, June 1999

A.1.7 Tuple4d Class MATH OBJECTS

344

blic

ner-

ts
ion
ion
.0,
Variables

The component values of a Tuple4d are directly accessible through the pu
variablesx, y, z, andw. To access thex component of a Tuple4d calledupper-
LeftCorner, a programmer would writeupperLeftCorner.x. The programmer
would access they, z, andw components similarly.

public double x
public double y
public double z
public double w

Thex, y, z, andw coordinates, respectively.

Constructors

public Tuple4d(double x, double y, double z, double w)
public Tuple4d(double t[])
public Tuple4d(Tuple4d t1)
public Tuple4d(Tuple4f t1)
public Tuple4d()

These five constructors each return a new Tuple4d. The first constructor ge
ates a Tuple4d from four floating-point numbersx, y, z, andw. The second con-
structor (Tuple4d(double t[]) generates a Tuple4d from the first four elemen
of arrayt. The third constructor generates a Tuple4d from the double-precis
tuple t1. The fourth constructor generates a Tuple4d from the single-precis
tuple t1. The final constructor generates a Tuple4d with the value of (0.0, 0
0.0, 0.0).

Methods

public final void set(double x, double y, double z, double w)
public final void set(double t[])
public final void set(Tuple4d t1)
public final void set(Tuple4f t1)
public final void get(double t[])
public final void get(Tuple4d t)

These methods set the value of the tuplethis to the values specified or to the
values of the specified tuples. The firstget method retrieves the value of this
tuple and places it into the arrayt of length four, inx, y, z, w order. The second
get method retrieves the value of this tuple and places it into tuplet.
Java 3D API Specification

MATH OBJECTS Tuple4d Class A.1.7

ple

ues
public final void add(Tuple4d t1, Tuple4d t2)
public final void add(Tuple4d t1)
public final void sub(Tuple4d t1, Tuple4d t2)
public final void sub(Tuple4d t1)

The firstadd method computes the element-by-element sum of the tuplet1 and
the tuplet2, placing the result inthis. The secondadd method computes the
element-by-element sum of this tuple and the tuplet1 and places the result in
this. The firstsub method performs an element-by-element subtraction of tu
t2 from tuplet1 and places the result inthis. The secondsub method performs
an element-by-element subtraction of tuplet1 from this tuple and places the
result inthis.

public final void negate(Tuple4d t1)
public final void negate()

The firstnegate method sets the values of this tuple to the negative of the val
from tuplet1. The secondnegate method negates the tuplethis and places the
resulting tuple back intothis.

public final void scaleAdd(float s, Tuple4d t1)

Deprecated method. See method below.

public final void scale(double s, Tuple4d t1)
public final void scale(double s)
public final void scaleAdd(double s, Tuple4d t1)
public final void scaleAdd(double s, Tuple4d t1, Tuple4d t2)

The firstscale method multiplies each element of the tuplet1 by the scale fac-
tor s and places the resulting scaled tuple intothis. The secondscale method
multiples the tuplethis by the scale factors and replacesthis with the scaled
value. The firstscaleAdd method scales this tuple by the scale factors, adds the
result to tuplet1, and places the result into tuplethis (this = s*this + t1). The
secondscaleAdd method scales the tuplet1 by the scale factors, adds the result
to the tuplet2, and places the result into the tuplethis (this = s*t1 + t2).

public void interpolate(Tuple4d t1, Tuple4d t2, float alpha)
public void interpolate(Tuple4d t1, float alpha)

Deprecated methods. See the next two methods.

public void interpolate(Tuple4d t1, Tuple4d t2, double alpha)
public void interpolate(Tuple4d t1, double alpha)

The firstinterpolate method linearly interpolates between tuplest1 andt2 and
345Version 1.1.2, June 1999

A.1.7 Tuple4d Class MATH OBJECTS

346

nd

is

rue if
l to

d
s

ute
he
places the result into this tuple (this = (1 – alpha) * t1 + alpha * t2). The seco
interpolate method linearly interpolates between this tuple and tuplet1 and
places the result into this tuple (this = (1 – alpha) * this + alpha * t1).

public String toString()

This method returns a string that contains the values of this tuple. The form
(x, y, z, w).

public boolean equals(Tuple4d v1)
public boolean equals(Object t1)

The first method returnstrue if all of the data members of tuplev1 are equal to
the corresponding data members in this tuple. The second method returns t
the Object t1 is of type Tuple4d and all of the data members of t1 are equa
the corresponding data members in this Tuple4d.

public boolean epsilonEquals(Tuple4d t1, double epsilon)

This method returnstrue if the L∞ distance between this Tuple4d and Tuple4
t1 is less than or equal to theepsilon parameter. Otherwise, this method return
false. The L∞ distance is equal to

public final void absolute()
public final void absolute(Tuple4d t)

The first absolute method sets each component of this tuple to its absol
value. The secondabsolute method sets each component of this tuple to t
absolute value of the corresponding component in tuplet.

public final void clamp(float min, float max)
public final void clamp(float min, float max, Tuple4d t)
public final void clampMin(float min)
public final void clampMin(float min, Tuple4d t)
public final void clampMax(float max)
public final void clampMax(float max, Tuple4d t)

Deprecated methods. See the next six methods.

public final void clamp(double min, double max)
public final void clamp(double min, double max, Tuple4d t)
public final void clampMin(double min)
public final void clampMin(double min, Tuple4d t)
public final void clampMax(double max)

MAX abs x1 x2–() abs y1 y2–() abs z1 z2–() abs w1 w2–(),,,[]
Java 3D API Specification

MATH OBJECTS Tuple4d Class A.1.7

e

. Two

r-
y.

pre-

rates

ay
t

public final void clampMax(double max, Tuple4d t)

The first clamp method clamps this tuple to the range [min, max]. The second
clamp method clamps this tuple to the range [min, max] and places the values
into tuplet. The firstclampMin method clamps the minimum value of this tupl
to themin parameter. The secondclampMin method clamps the minimum value
of this tuple to themin parameter and places the values into the tuplet. The first
clampMax method clamps the maximum value of this tuple to themax parameter.
The secondclampMax method clamps the maximum value of this tuple to themax

parameter and places the values into the tuplet.

public int hashCode()

This method returns a hash number based on the data values in this object
different Tuple4d objects with identical data values (that is,equals(Tuple4d)

returnstrue) will return the same hash number. Two Tuple4d objects with diffe
ent data members may return the same hash value, although this is not likel

A.1.7.1 Point4d Class

The Point4d class extends Tuple4d. The Point4d is a four-element point re
sented by double-precision floating-point x, y, z, and w coordinates.

Constructors

public Point4d(double x, double y, double z, double w)
public Point4d(double p[])
public Point4d(Point4d p1)
public Point4d(Point4f p1)
public Point4d(Tuple4d t1)
public Point4d(Tuple4f t1)
public Point4d()

These five constructors each return a new Point4d. The first constructor gene
a Point4d from four floating-point numbersx, y, z, andw. The second constructor
(Point4d(double p[]) generates a Point4d from the first four elements of arr
p. The third constructor generates a Point4d from the double-precision poinp1.
The fourth constructor generates a Point4d from the single-precision pointp1.
The fifth and sixth constructors generate a Point4d from tuplet1. The final con-
structor generates a Point4d with the value of (0.0, 0.0, 0.0, 0.0).

Methods

public final double distance(Point4d p1)
public final double distanceSquared(Point4d p1)
347Version 1.1.2, June 1999

A.1.7 Tuple4d Class MATH OBJECTS

348

and

nt

rep-

ner-
The distance method computes the Euclidean distance between this point
the pointp1 and returns the result. ThedistanceSquared method computes the
square of the Euclidean distance between this point and the pointp1 and returns
the result.

public final double distanceL1(Point4d p1)

This method computes the L1 (Manhattan) distance between this point and poi
p1. The L1 distance is equal to

public final double distanceLinf(Point4d p1)

This method computes the L∞ distance between this point and pointp1. The L∞
distance is equal to

public final void project(Point4d p1)

This method multiplies each of thex, y, andz components of the pointp1 by
, places the projected values into this point, and places a 1 into thew param-

eter of this point.

A.1.7.2 Vector4d Class

The Vector4d class extends Tuple4d. The Vector4d is a four-element vector
resented by double-precision floating-pointx, y, z, andw coordinates.

Constructors

public Vector4d(double x, double y, double z, double w)
public Vector4d(double v[])
public Vector4d(Vector4d v1)
public Vector4d(Vector4f v1)
public Vector4d(Tuple4d t1)
public Vector4d(Tuple4f t1)
public Vector4d()

These five constructors each return a new Vector4d. The first constructor ge
ates a Vector4d from four floating-point numbersx, y, z, andw. The second con-
structor generates a Vector4d from the first four elements of arrayv. The third
constructor generates a Vector4d from the double-precision Vector4dv1. The
fourth constructor generates a Vector4d from the single-precision Vector4fv1.

abs x1 x2–() abs y1 y2–() abs z1 z2–() abs w1 w2–()+ + +

MAX abs x1 x2–() abs y1 y2–() abs z1 z2–() abs w1 w2–(),,,[]

1 w⁄
Java 3D API Specification

MATH OBJECTS Tuple4d Class A.1.7

-

and

rep-

rates
The fifth and sixth constructors generate a Vector4d from tuplet1. The final con-
structor generates a Vector4d with the value of (0.0, 0.0, 0.0, 0.0).

Methods

public final double length()
public final double lengthSquared()

Thelength method computes the length of the vectorthis and returns its length
as a double-precision floating-point number. ThelengthSquared method com-
putes the square of the length of the vectorthis and returns its length as a dou
ble-precision floating-point number.

public final void dot(Vector4d v1)

This method returns the dot product of this vector and vectorv1.

public final void normalize(Vector4d v1)
public final void normalize()

The firstnormalize method normalizes the vectorv1 to unit length and places
the result inthis. The secondnormalize method normalizes the vectorthis
and places the resulting unit vector back intothis.

public final double angle(Vector4d v1)

This method returns the (four-space) angle, in radians, between this vector
the vectorv1 parameter. The return value is constrained to the range [0,π].

A.1.7.3 Quat4d Class

The Quat4d class extends Tuple4d. The Quat4d is a four-element quaternion
resented by double-precision floating-pointx, y, z, andw values.

Constructors

public Quat4d(double x, double y, double z, double w)
public Quat4d(double q[])
public Quat4d(Quat4d q1)
public Quat4d(Quat4f q1)
public Quat4d(Tuple4d t1)
public Quat4d(Tuple4f t1)
public Quat4d()

These five constructors each return a new Quat4d. The first constructor gene
a quaternion from four floating-point numbersx, y, z, andw. The second con-
349Version 1.1.2, June 1999

A.1.7 Tuple4d Class MATH OBJECTS

350

sion
re-
m
0.0,

of
is

uct
t
-

oth

ion

ed
structor generates a quaternion from the first four elements of arrayq of length
four. The third constructor generates a quaternion from the double-preci
quaternionq1. The fourth constructor generates a quaternion from the single-p
cision quaternionq1. The fifth and sixth constructors generate a Quat4d fro
tuplet1. The final constructor generates a quaternion with the value of (0.0,
0.0, 0.0).

Methods

public final void conjugate(Quat4d q1)
public final void conjugate()

The firstconjugate method sets the values of this quaternion to the conjugate
quaternionq1. The secondconjugate method negates the value of each of th
quaternion’sx, y, andz coordinates in place.

public final void mul(Quat4d q1, Quat4d q2)
public final void mul(Quat4d q1)

The firstmul method sets the value of this quaternion to the quaternion prod
of quaternionsq1 andq2 (this = q1 * q2). Note that this is safe for aliasing (tha
is, this can beq1 or q2). The secondmul method sets the value of this quater
nion to the quaternion products of itself andq1 (this = this * q1).

public final void mulInverse(Quat4d q1, Quat4d q2)
public final void mulInverse(Quat4d q1)

The first mulInverse method multiplies quaternionq1 by the inverse of
quaternionq2 and places the value into this quaternion. The values of b
quaternion arguments are preserved (this = q1 * q2–1). The secondmulInverse
method multiplies this quaternion by the inverse of quaternionq1 and places the
value into this quaternion. The value of the argumentq1 is preserved (this =
this * q1–1).

public final void inverse(Quat4d q1)
public final void inverse()

The first inverse method sets the value of this quaternion to the quatern
inverse of quaternionq1. The secondinverse method sets the value of this
quaternion to the quaternion inverse of itself.

public final void normalize(Quat4d q1)
public final void normalize()

The firstnormalize method sets the value of this quaternion to the normaliz
Java 3D API Specification

MATH OBJECTS Tuple4f Class A.1.8

f

ent

ion
sec-

ision

blic
value of quaternionq1. The secondnormalize method normalizes the value o
this quaternion in place.

public final void set(Matrix4f m1)
public final void set(Matrix4d m1)
public final void set(Matrix3f m1)
public final void set(Matrix3d m1)
public final void set(AxisAngle4f a)
public final void set(AxisAngle4d a)

Theseset methods set the value of this quaternion to the rotational compon
of the passed matrix.

public final void interpolate(Quat4d q1, double alpha)
public final void interpolate(Quat4d q1, Quat4d q2, double alpha)

The first method performs a great circle interpolation between this quatern
and the quaternion parameter and places the result into this quaternion. The
ond method performs a great circle interpolation between quaternionq1 and
quaternionq2 and places the result into this quaternion.

A.1.8 Tuple4f Class

The Tuple4f class represents a four-element tuple represented by single-prec
floating-pointx, y, z, andw values.

Variables

The component values of a Tuple4f are directly accessible through the pu
variablesx, y, z, andw. To access thex component of a Tuple4f calledupper-
LeftCorner, a programmer would writeupperLeftCorner.x. The programmer
would access they, z, andw components similarly.

public double x
public double y
public double z
public double w

Thex, y, z, andw values, respectively.

Constructors

public Tuple4f(float x, float y, float z, float w)
public Tuple4f(float t[])
public Tuple4f(Tuple4d t1)
351Version 1.1.2, June 1999

A.1.8 Tuple4f Class MATH OBJECTS

352

rates

ay

).

di-

ues
public Tuple4f(Tuple4f t1)
public Tuple4f()

These five constructors each return a new Tuple4f. The first constructor gene
a Tuple4f from four floating-point numbersx, y, z, andw. The second constructor
(Tuple4f(float t[]) generates a Tuple4f from the first four elements of arr
t. The third constructor generates a Tuple4f from the double-precision tuplet1.
The fourth constructor generates a Tuple4f from the single-precision tuplet1.
The final constructor generates a Tuple4f with the value of (0.0, 0.0, 0.0, 0.0

Methods

public final void set(float x, float y, float z, float w)
public final void set(float t[])
public final void set(Tuple4f t1)
public final void set(Tuple4d t1)
public final void get(float t[])
public final void get(Tuple4f t)

The firstset method sets the value of this tuple to the specifiedx, y, z, andw val-
ues. The secondset method sets the value of this tuple to the specified coor
nates in the array. The next two methods set the value of tuplethis to the value
of tuplet1. Theget methods copy the value of this tuple into the tuplet.

public final void add(Tuple4f t1, Tuple4f t2)
public final void add(Tuple4f t1)
public final void sub(Tuple4f t1, Tuple4f t2)
public final void sub(Tuple4f t1)

The firstadd method computes the element-by-element sum of tuplest1 andt2
and places the result inthis. The secondadd method computes the ele-
ment-by-element sum of this tuple and tuplet1 and places the result inthis.
The first sub method performs the element-by-element subtraction of tuplet2

from tuple t1 and places the result inthis (this = t1 – t2). The secondsub
method performs the element-by-element subtraction of tuplet1 from this tuple
and places the result inthis (this = this – t1).

public final void negate(Tuple4f t1)
public final void negate()

The firstnegate method sets the values of this tuple to the negative of the val
from tuplet1. The secondnegate method negates the tuplethis and places the
resulting tuple back intothis.
Java 3D API Specification

MATH OBJECTS Tuple4f Class A.1.8

m is

turns
are

s

ute
he
public final void scale(float s, Tuple4f t1)
public final void scale(float s)
public final void scaleAdd(float s, Tuple4f t1)
public final void scaleAdd(float s, Tuple4f t1, Tuple4f t2)

The firstscale method multiplies each element of the tuplet1 by the scale fac-
tor s and places the resulting scaled tuple intothis. The secondscale method
multiples the tuplethis by the scale factors, replacingthis with the scaled
value. The firstscaleAdd method scales this tuple by the scale factors, adds the
result to tuplet1, and places the result into tuplethis (this = s*this + t1). The
secondscaleAdd method scales the tuplet1 by the scale factors, adds the result
to the tuplet2, and places the result into the tuplethis (this = s*t1 + t2).

public String toString()

This method returns a string that contains the values of this Tuple4f. The for
(x, y, z, w).

public boolean equals(Tuple4f t1)
public boolean equals(Object t1)

The first method returnstrue if all of the data members of Tuple4ft1 are equal
to the corresponding data members in this Tuple4f. The second method re
true if the Object t1 is of type Tuple4f and all of the data members of t1
equal to the corresponding data members in this Tuple4f.

public boolean epsilonEquals(Tuple4f t1, float epsilon)

This method returnstrue if the L∞ distance between this Tuple4f and Tuple4f t1

is less than or equal to theepsilon parameter. Otherwise, this method return
false. The L∞ distance is equal to

public final void absolute()
public final void absolute(Tuple4f t)

The first absolute method sets each component of this tuple to its absol
value. The secondabsolute method sets each component of this tuple to t
absolute value of the corresponding component in tuplet.

public final void clamp(float min, float max)
public final void clamp(float min, float max, Tuple4f t)
public final void clampMin(float min)
public final void clampMin(float min, Tuple4f t)
public final void clampMax(float max)

MAX abs x1 x2–() abs y1 y2–() abs z1 z2–() abs w1 w2–(),,,[]
353Version 1.1.2, June 1999

A.1.8 Tuple4f Class MATH OBJECTS

354

e

nd

. Two

r-
y.

pre-

rates
public final void clampMax(float max, Tuple4f t)

The first clamp method clamps this tuple to the range [min, max]. The second
clamp method clamps this tuple to the range [min, max] and places the values
into tuplet. The firstclampMin method clamps the minimum value of this tupl
to themin parameter. The secondclampMin method clamps the minimum value
of this tuple to themin parameter and places the values into the tuplet. The first
clampMax method clamps the maximum value of this tuple to themax parameter.
The secondclampMax method clamps the maximum value of this tuple to themax

parameter and places the values into the tuplet.

public void interpolate(Tuple4f t1, Tuple4f t2, float alpha)
public void interpolate(Tuple4f t1, float alpha)

The firstinterpolate method linearly interpolates between tuplest1 andt2 and
places the result into this tuple (this = (1 – alpha) * t1 + alpha * t2). The seco
interpolate method linearly interpolates between this tuple and tuplet1 and
places the result into this tuple (this = (1 – alpha) * this + alpha * t1).

public int hashCode()

This method returns a hash number based on the data values in this object
different Tuple4f objects with identical data values (that is,equals(Tuple4f)

returnstrue) will return the same hash number. Two Tuple4f objects with diffe
ent data members may return the same hash value, although this is not likel

A.1.8.1 Point4f Class

The Point4f class extends Tuple4f. The Point4f is a four-element point re
sented by single-precision floating-point x, y, z, and w coordinates.

Constructors

public Point4f(float x, float y, float z, float w)
public Point4f(float p[])
public Point4f(Point4d p1)
public Point4f(Point4f p1)
public Point4f(Tuple4d t1)
public Point4f(Tuple4f t1)
public Point4f()

These five constructors each return a new Point4f. The first constructor gene
a Point4f from four floating-point numbersx, y, z, andw. The second constructor
(Point4f(float p[]) generates a Point4f from the first four elements of arrayp.
The third constructor generates a Point4f from the double-precision pointp1.
Java 3D API Specification

MATH OBJECTS Tuple4f Class A.1.8

ce

nt

lue

ively.
The fourth constructor generates a Point4f from the single-precision pointp1.
The fifth and sixth constructors generate a Point4f from tuplet1. The final con-
structor generates a Point4f with the value of (0.0, 0.0, 0.0, 0.0).

Methods

public final float distanceSquared(Point4f p1)
public final float distance(Point4f p1)

The distanceSquared method computes the square of the Euclidean distan
between this point and the pointp1 and returns the result. Thedistance method
computes the Euclidean distance between this point and the pointp1 and returns
the result.

public final float distanceL1(Point4f p1)

This method computes the L1 (Manhattan) distance between this point and poi
p1. The L1 distance is equal to

public final float distanceLinf(Point4f p1)

This method computes the L∞ distance between this point and pointp1. The L∞
distance is equal to

public final void project(Point4f p1)

This method multiplies each of thex, y, andz components of the pointp1 by
, places the projected values into this point, and places a 1 into thew param-

eter of this point.

A.1.8.2 Color4f Class

The Color4f class extends Tuple4f. The Color4f is a four-element color va
represented by single-precision floating-pointx, y, z, andw values. Thex, y, z,
andw values represent the red, blue, green, and alpha color values, respect
Color and alpha components should be in the range [0.0, 1.0].

Constructors

public Color4f(float x, float y, float z, float w)
public Color4f(float c[])

abs x1 x2–() abs y1 y2–() abs z1 z2–() abs w1 w2–()+ + +

MAX abs x1 x2–() abs y1 y2–() abs z1 z2–() abs w1 w2–(),,,[]

1 w⁄
355Version 1.1.2, June 1999

A.1.8 Tuple4f Class MATH OBJECTS

356

ner-

pre-

ner-

-

public Color4f(Color4f c1)
public Color4f(Tuple4d t1)
public Color4f(Tuple4f t1)
public Color4f()

These four constructors each return a new Color4f. The first constructor ge
ates a Color4f from four floating-point numbersx, y, z, andw. The second con-
structor generates a Color4f from the first four elements of arrayc. The third
constructor generates a Color4f from the single-precision colorc1. The fourth
and fifth constructors generate a Color4f from tuplet1. The final constructor
generates a Color4f with the value of (0.0, 0.0, 0.0, 0.0).

A.1.8.3 Vector4f Class

The Vector4f class extends Tuple4f. The Vector4f is a four-element vector re
sented by single-precision floating-pointx, y, z, andw coordinates.

Constructors

public Vector4f(float x, float y, float z, float w)
public Vector4f(float v[])
public Vector4f(Vector4d v1)
public Vector4f(Vector4f v1)
public Vector4f(Tuple4d t1)
public Vector4f(Tuple4f t1)
public Vector4f()

These five constructors each return a new Vector4f. The first constructor ge
ates a Vector4f from four floating-point numbersx, y, z, andw. The second con-
structor generates a Vector4f from the first four elements of arrayv. The third
constructor generates a Vector4f from the double-precision Vector4dv1. The
fourth constructor generates a Vector4f from the single-precision Vector4fv1.
The fifth and sixth constructors generate a Vector4f from tuplet1. The final con-
structor generates a Vector4f with the value of (0.0, 0.0, 0.0, 0.0).

Methods

public final float length()
public final float lengthSquared()

Thelength method computes the length of the vectorthis and returns its length
as a single-precision floating-point number. ThelengthSquared method com-
putes the square of the length of the vectorthis and returns its length as a sin
gle-precision floating-point number.
Java 3D API Specification

MATH OBJECTS Tuple4f Class A.1.8

r

of

and

rep-

rates

reci-
in-
a
he

of
public final float dot(Vector4f v1)

Thedot method computes the dot product between this vector and the vectov1

and returns the resulting value.

public final void normalize(Vector4f v1)
public final void normalize()

The firstnormalize method sets the value of this vector to the normalization
vectorv1. The secondnormalize method normalizes this vector in place.

public final float angle(Vector4f v1)

This method returns the (four-space) angle, in radians, between this vector
the vectorv1 parameter. The return value is constrained to the range [0,π].

A.1.8.4 Quat4f Class

The Quat4f class extends Tuple4f. The Quat4f is a four-element quaternion
resented by single-precision floating-pointx, y, z, andw coordinates.

Constructors

public Quat4f(float x, float y, float z, float w)
public Quat4f(float q[])
public Quat4f(Quat4d q1)
public Quat4f(Quat4f q1)
public Quat4f(Tuple4d t1)
public Quat4f(Tuple4f t1)
public Quat4f()

These five constructors each return a new Quat4f. The first constructor gene
a quaternion from four floating-point numbersx, y, z, andw. The second con-
structor generates a quaternion from the four floating-point numbers of arrayq of
length four. The third constructor generates a quaternion from the double-p
sion quaternionq1. The fourth constructor generates a quaternion from the s
gle-precision quaternionq1. The fifth and sixth constructors generate
quaternion from tuplet1. The final constructor generates a quaternion with t
value of (0.0, 0.0, 0.0, 0.0).

Methods

public final void conjugate(Quat4f q1)
public final void conjugate()

The firstconjugate method sets the value of this quaternion to the conjugate
357Version 1.1.2, June 1999

A.1.8 Tuple4f Class MATH OBJECTS

358

o

uct
t
-

ent

ved

ion

ed
f

ent
quaternionq1. The secondconjugate method sets the value of this quaternion t
the conjugate of itself.

public final void mul(Quat4f q1, Quat4f q2)
public final void mul(Quat4f q1)

The firstmul method sets the value of this quaternion to the quaternion prod
of quaternionsq1 andq2 (this = q1 * q2). Note that this is safe for aliasing (tha
is, this can beq1 or q2). The secondmul method sets the value of this quater
nion to the quaternion product of itself andq1 (this = this * q1).

public final void mulInverse(Quat4f q1, Quat4f q2)
public final void mulInverse(Quat4f q1)

The firstmulInverse method multiplies quaternionq1 by the inverse of quater-
nion q2 and places the value into this quaternion. The value of both argum
quaternions is preserved (this = q1 * q2–1). The secondmulInverse method mul-
tiplies this quaternion by the inverse of quaternionq1 and places the value into
this quaternion. The value of the argument quaternion is preser
(this = this * q1–1).

public final void inverse(Quat4f q1)
public final void inverse()

The first inverse method sets the value of this quaternion to the quatern
inverse of quaternionq1. The secondinverse method sets the value of this
quaternion to the quaternion inverse of itself.

public final void normalize(Quat4f q1)
public final void normalize()

The firstnormalize method sets the value of this quaternion to the normaliz
value of quaternionq1. The secondnormalize method normalizes the value o
this quaternion in place.

public final void set(Matrix4f m1)
public final void set(Matrix4d m1)
public final void set(Matrix3f m1)
public final void set(Matrix3d m1)
public final void set(AxisAngle4f a)
public final void set(AxisAngle4d a)

Theseset methods set the value of this quaternion to the rotational compon
of the passed matrix.
Java 3D API Specification

MATH OBJECTS AxisAngle4d ClassA.1.9

ion
hod

dou-
s.

the

ion

ctor

array
sion
in-

ith
public final void interpolate(Quat4f q1, float alpha)
public final void interpolate(Quat4f q1, Quat4f q2, float alpha)

The first method performs a great circle interpolation between this quatern
and quaternionq1 and places the result into this quaternion. The second met
performs a great circle interpolation between quaternionq1 and quaternionq2
and places the result into this quaternion.

A.1.9 AxisAngle4d Class

The AxisAngle4d class represents a four-element axis-angle represented by
ble-precision floating-pointx, y, z coordinates and an angle of rotation in radian
An axis-angle is a rotation ofangle radians about the vectorx,y,z.

Variables

The component values of an AxisAngle4d are directly accessible through
public variables x, y, z, and angle. To access thex component of an
AxisAngle4d calledmyRotation, a programmer would writemyRotation.x. The
programmer would access they, z, andangle components similarly.

public double x
public double y
public double z
public double angle

The x, y, and z coordinates and the rotational angle, respectively. The rotat
angle is expressed in radians.

Constructors

public AxisAngle4d(double x, double y, double z, double angle)
public AxisAngle4d(double a[])
public AxisAngle4d(AxisAngle4d a1)
public AxisAngle4d(AxisAngle4f a1)
public AxisAngle4d()

These five constructors each return a new AxisAngle4d. The first constru
generates an axis-angle from four floating-point numbersx, y, z, andangle. The
second constructor generates an axis-angle from the first four elements of
a. The third constructor generates an axis-angle from the double-preci
axis-anglea1. The fourth constructor generates an axis-angle from the s
gle-precision axis-anglea1. The final constructor generates an axis-angle w
the value of (0.0, 0.0, 1.0, 0.0).
359Version 1.1.2, June 1999

A.1.9 AxisAngle4d Class MATH OBJECTS

360

o

sed
s it

The

ethod
ers

d

Methods

public final void set(double x, double y, double z, double angle)
public final void set(double a[])
public final void set(Matrix4f m1)
public final void set(Matrix4d m1)
public final void set(Matrix3f m1)
public final void set(Matrix3d m1)
public final void set(AxisAngle4f a1)
public final void set(AxisAngle4d a1)
public final void set(Quat4f q1)
public final void set(Quat4d q1)
public final void get(double a[])

The firstset method sets the value of this axis-angle to the specifiedx, y, z, and
angle coordinates. The secondset method sets the value of this axis-angle t
the specifiedx,y,z angle. The next fourset methods set the value of this
axis-angle to the rotational component of the passed matrixm1. The next twoset
methods set the value of this axis-angle to the value of axis-anglea1. The last
two set methods set the value of this axis-angle to the value of the pas
quaternionq1. Theget method retrieves the value of this axis-angle and place
into the arraya of length four inx,y,z,angle order.

public String toString()

This method returns a string that contains the values of this AxisAngle4d.
form is (x, y, z, angle).

public boolean equals(AxisAngle4d v1)
public boolean equals(Object o1)

The first method returnstrue if all of the data members of AxisAngle4dv1 are
equal to the corresponding data members in this axis-angle. The second m
returns true if the Object o1 is of type AxisAngle4d and all of the data memb
of o1 are equal to the corresponding data members in this AxisAngle4d.

public boolean epsilonEquals(AxisAngle4d a1, double epsilon)

This method returnstrue if the L∞ distance between this axis-angle an
axis-anglea1 is less than or equal to theepsilon parameter. Otherwise, this
method returnsfalse. The L∞ distance is equal to

MAX abs x1 x2–() abs y1 y2–() abs z1 z2–() abs angle1 angle2–(),,,[]
Java 3D API Specification

MATH OBJECTS AxisAngle4f ClassA.1.10

. Two
s,

ash

sin-
in

the

ion

ctor

array
sion
ou-
ith
public int hashCode()

This method returns a hash number based on the data values in this object
different AxisAngle4d objects with identical data values (that i
equals(AxisAngle4d) returnstrue) will return the same hash number. Two
AxisAngle4d objects with different data members may return the same h
value, although this is not likely.

A.1.10 AxisAngle4f Class

The AxisAngle4f class represents a four-element axis-angle represented by
gle-precision floating-point x, y, and z coordinates and an angle of rotation
radians. An axis-angle is a rotation ofangle radians about the vectorx,y,z.

Variables

The component values of an AxisAngle4f are directly accessible through
public variables x, y, z, and angle. To access thex component of an
AxisAngle4f calledmyRotation, a programmer would writemyRotation.x. The
programmer would access they, z, andangle components similarly.

public float x
public float y
public float z
public float angle

The x, y, and z coordinates and the rotational angle, respectively. The rotat
angle is expressed in radians.

Constructors

public AxisAngle4f(float x, float y, float z, float angle)
public AxisAngle4f(float a[])
public AxisAngle4f(AxisAngle4f a1)
public AxisAngle4f(AxisAngle4d a1)
public AxisAngle4f()

These five constructors each return a new AxisAngle4f. The first constru
generates an axis-angle from four floating-point numbersx, y, z, andangle. The
second constructor generates an axis-angle from the first four elements of
a. The third constructor generates an axis-angle from the single-preci
axis-anglea1. The fourth constructor generates an axis-angle from the d
ble-precision axis-anglea1. The final constructor generates an axis-angle w
the value of (0.0, 0.0, 1.0, 0.0).
361Version 1.1.2, June 1999

A.1.10 AxisAngle4f Class MATH OBJECTS

362

o

he
d

form

ethod
s

d

Methods

public final void set(float x, float y, float z, float angle)
public final void set(float a[])
public final void set(Matrix4f m1)
public final void set(Matrix4d m1)
public final void set(Matrix3f m1)
public final void set(Matrix3d m1)
public final void set(AxisAngle4f a1)
public final void set(AxisAngle4d a1)
public final void set(Quat4f q1)
public final void set(Quat4d q1)
public final void get(float a[])

The firstset method sets the value of this axis-angle to the specifiedx, y, z, and
angle coordinates. The secondset method sets the value of this axis-angle t
the specified coordinates in the arraya. The next fourset methods set the value
of this axis-angle to the rotational component of the passed matrixm1. The next
two set methods set the value of this axis-angle to the value of axis-anglea1.
The last twoset methods set the value of this axis-angle to the value of t
passed quaternionq1. Theget method retrieves the value of this axis-angle an
places it into the arraya of length four inx,y,z,angle order.

public String toString()

This method returns a string that contains the values of this axis-angle. The
is (x, y, z, angle).

public boolean equals(AxisAngle4f a1)
public boolean equals(Object o1)

The first method returnstrue if all of the data members of axis-anglea1 are
equal to the corresponding data members in this axis-angle. The second m
returns true if the Objecto1 is of type AxisAngle4f and all of the data member
of o1 are equal to the corresponding data members in this AxisAngle4f.

public boolean epsilonEquals(AxisAngle4f a1, float epsilon)

This method returnstrue if the L∞ distance between this axis-angle an
axis-anglea1 is less than or equal to theepsilon parameter. Otherwise, this
method returnsfalse. The L∞ distance is equal to

MAX abs x1 x2–() abs y1 y2–() abs z1 z2–() abs angle1 angle2–(),,,[]
Java 3D API Specification

MATH OBJECTS GVector ClassA.1.11

. Two
s,

ash

able,

ener-

ctors
the

ati-

and
public int hashCode()

This method returns a hash number based on the data values in this object
different AxisAngle4f objects with identical data values (that i
equals(AxisAngle4f) returnstrue) will return the same hash number. Two
AxisAngle4f objects with different data members may return the same h
value, although this is not likely.

A.1.11 GVector Class

The GVector class represents a double-precision, general, dynamically resiz
one-dimensional vector class. Index numbering begins with zero.

Constructors

public GVector(int length)
public GVector(double vector[])
public GVector(GVector vector)
public GVector(Tuple2f tuple)
public GVector(Tuple3f tuple)
public GVector(Tuple3d tuple)
public GVector(Tuple4f tuple)
public GVector(Tuple4d tuple)
public GVector(double vector[], int length)

These eight constructors each return a new GVector. The first constructor g
ates a generalized mathematical vector with all elements set to 0.0:length rep-
resents the number of elements in the vector. The second and third constru
generate a generalized mathematical vector and copy the initial value from
parametervector. The next four constructors generate a generalized mathem
cal vector and copy the initial value from the tuple parametertuple. The final
method generates a generalized mathematical vector by copyinglength ele-
ments from the array parameter. The parameterlength must be less than or
equal tovector.length.

Methods

public final void add(GVector v1)
public final void add(GVector v1, GVector v2)
public final void sub(GVector v1)
public final void sub(GVector v1, GVector v2)

The firstadd method computes the element-by-element sum of this GVector
GVectorv1 and places the result inthis. The secondadd method computes the
363Version 1.1.2, June 1999

A.1.11 GVector Class MATH OBJECTS

364

n)
1).
out

o

sed,
e vec-

rray
the
c-
element-by-element sum of GVectorsv1 and v2 and places the result inthis.
The firstsub method performs the element-by-element subtraction of GVectorv1

from this GVector and places the result inthis (this = this – v1). The second
sub method performs the element-by-element subtraction of GVectorv2 from
GVectorv1 and places the result inthis (this = v1 – v2).

public final void mul(GMatrix m1, GVector v1)
public final void mul(GVector v1, GMatrix m1)

The firstmul method multiplies matrixm1 times vectorv1 and places the result
into this vector (this = m1 * v1). The secondmul method multiplies the transpose
of vectorv1 (that is,v1 becomes a row vector with respect to the multiplicatio
times matrixm1 and places the result into this vector (this = transpose(v1) * m
The result is technically a row vector, but the GVector class only knows ab
column vectors, so the result is stored as a column vector.

public final void negate()

This method negates the vectorthis and places the resulting vector back int
this.

public final void zero()

This method sets all the values in this vector to zero.

public final void setSize(int length)
public final void int getSize()

This method changes the size of this vector dynamically. If the size is increa
no data values are lost. If the size is decreased, only those data values whos
tor positions were eliminated are lost.

public final void set(double v[])
public final void set(GVector v)
public final void set(Tuple2f t)
public final void set(Tuple3f t)
public final void set(Tuple3d t)
public final void set(Tuple4f t)
public final void set(Tuple4d t)

The firstset method sets the values of this vector to the values found in the a
v: The array should be at least equal in length to the number of elements in
vector. The secondset method sets the values of this vector to the values in ve
tor v. The last 5set methods set the value of this vector to the values in tuplet.
Java 3D API Specification

MATH OBJECTS GVector ClassA.1.11

ctor

of

of

r

. Two

ta

thod
o1
public final double getElement(int index)
public final void setElement(int index, double value)

These methods set and retrieve the specified index value of this vector.

public final double norm()
public final double normSquared()

Thenorm method returns the square root of the sum of the squares of this ve
(its length inn-dimensional space). ThenormSquared method returns the sum of
the squares of this vector (its length inn-dimensional space).

public final void normalize(GVector v1)
public final void normalize()

The firstnormalize method sets the value of this vector to the normalization
vectorv1. The secondnormalize method normalizes this vector in place.

public final void scale(double s, GVector v1)
public final void scale(double s)
public final void scaleAdd(double s, GVector v1, GVector v2)

The firstscale method sets the value of this vector to the scalar multiplication
the scale factors with the vectorv1. The secondscale method scales this vector
by the scale factors. ThescaleAdd method scales the vectorv1 by the scale fac-
tor s, adds the result to the vectorv2, and places the result into this vecto
(this = s*v1 + v2).

public String toString()

This method returns a string that contains the values of this vector.

public int hashCode()

This method returns a hash number based on the data values in this object
different GVector objects with identical data values (that is,equals(GVector)

returnstrue) will return the same hash number. Two objects with different da
members may return the same hash value, although this is not likely.

public boolean equals(GVector vector1)
public boolean equals(Object o1)

The first method returnstrue if all of the data members of GVectorvector1 are
equal to the corresponding data members in this GVector. The second me
returns true if the Object o1 is of type GMatrix and all of the data members of
are equal to the corresponding data members in this GMatrix.
365Version 1.1.2, June 1999

A.1.11 GVector Class MATH OBJECTS

366

s

lue

the

od
public boolean epsilonEquals(GVector v1, double epsilon)

This method returnstrue if the L∞ distance between this vector and vectorv1 is
less than or equal to theepsilon parameter. Otherwise, this method return
false. The L∞ distance is equal to

public final double dot(GVector v1)

This method returns the dot product of this vector and vectorv1.

public final void SVDBackSolve(GMatrix U, GMatrix W, GMatrix V,
GVector x)

public final void LUDBackSolve(GMatrix LU, GVector b,
GVector permutation)

The first method solves forx in Ax = b, wherex is this vector (n × 1), b is an
m × 1 vector, andA is anm × n matrix, defined asA = U * W * transpose(V). U,
W, and V must be precomputed and can be found by taking the singular va
decomposition (SVD) ofA. The second method takes theLU matrix and the per-
mutation vector produced by the GMatrix methodLUD and solves the equation
LU * x = b by placing the solution to the set of linear equations intothis vector
(x).

public final double angle(GVector v1)

This method returns the (n-space) angle, in radians, between this vector and
vectorv1 parameter . The return value is constrained to the range [0,π].

public final void interpolate(GVector v1, GVector v2, float alpha)
public final void interpolate(GVector v1, float alpha)

Deprecated methods. See the next two methods.

public final void interpolate(GVector v1, GVector v2, double alpha)
public final void interpolate(GVector v1, double alpha)

The first method linearly interpolates between vectorsv1 andv2 and places the
result into this vector (this = (1 – alpha) * v1 + alpha * v2). The second meth
linearly interpolates between this vector and vectorv1 and places the result into
this vector (this = (1 – alpha) * this + alpha * v1).

MAX abs x1 x2–() abs y1 y2–() …,,[]
Java 3D API Specification

MATH OBJECTS Matrix Objects A.2

ions.
ses)
and

both
oat-

all
her
rite
A.2 Matrix Objects

Java 3D uses matrix objects to represent rotations and full 3D transformat
The matrix classes (as well as the associated Tuple and AxisAngle clas
include code for accessing, manipulating, and updating the matrix, vector,
AxisAngle classes. Java 3D further subdivides the matrix classes into 3× 3
matrices (mainly to store rotations) and 4× 4 matrices (mainly to store more
complex 3D transformations). These two classes in turn provide support for
single-precision floating-point representations and for double-precision fl
ing-point representations.

Matrix operations try to minimize gratuitous allocation of memory, thus
matrix operations update an existing object. To multiply two matrices toget
and store the result in a third, a Java 3D application or applet would w
matrix3.mul(matrix1, matrix2). Herematrix3 receives the results of multi-
plying matrix1 with matrix2.

The Java 3D model for 3× 3 transformations is

The Java 3D model for 4× 4 transformations is

Note: When transforming a Point3f or a Point3d, the inputw is set to 1. When
transforming a Vector3f or Vector3d, the inputw is set to 0.

m00 m01 m02

m10 m11 m12

m20 m21 m22

x

y

z

⋅
x′
y′
z′

=

x′ m00 x m01 y m02+ z⋅ ⋅+⋅=
y′ m10 x m11 y m12+ z⋅ ⋅+⋅=
z′ m20 x m21 y m22+ z⋅ ⋅+⋅=

m00 m01 m02 m03

m10 m11 m12 m13

m20 m21 m22 m23

m30 m31 m32 m33

x

y

z

w

⋅

x′
y′
z′
w′

=

x′ m00 x m01 y m02+ z m03 w⋅+⋅ ⋅+⋅=
y′ m10 x m11 y m12+ z m13 w⋅+⋅ ⋅+⋅=
z′ m20 x m21 y m22+ z m23 w⋅+⋅ ⋅+⋅=
w′ m30 x m31 y m32+ z m33 w⋅+⋅ ⋅+⋅=
367Version 1.1.2, June 1999

A.2.1 Matrix3f Class MATH OBJECTS

368

tors

blic
t

gen-
en-

rix
A.2.1 Matrix3f Class

The Matrix3f class serves to contain 3× 3 matrices mainly for storing and
manipulating 3D rotation matrices. The class includes five different construc
for creating matrices and several operators for manipulating these matrices.

Variables

The component values of a Matrix3f are directly accessible through the pu
variablesm00, m01, m02, m10, m11, m12, m20, m21, andm22. To access the elemen
in row 2 and column 0 of matrixrotate, a programmer would write
rotate.m20. A programmer would access the other values similarly.

public float m00
public float m01
public float m02
public float m10
public float m11
public float m12
public float m20
public float m21
public float m22

These public variables are the elements of the matrix.

Constructors

public Matrix3f(float m00, float m01, float m02, float m10,
float m11, float m12, float m20, float m21, float m22)

public Matrix3f(float v[])
public Matrix3f(Matrix3d m1)
public Matrix3f(Matrix3f m1)
public Matrix3f()

These constructors each return a new Matrix3f object. The first constructor
erates a 3× 3 matrix from the nine values provided. The second constructor g
erates a 3× 3 matrix from the first nine values in the arrayv. The third and fourth
constructors generate a new matrix with the same values as the passed matm1.
The final constructor generates a 3× 3 matrix with all nine values set to 0.0.

Methods

public final void set(Quat4d q1)
public final void set(Quat4f q1)
Java 3D API Specification

MATH OBJECTS Matrix3f Class A.2.1

sed
the
cop-

in-
of
. The
e

s the

s a

n
the
These twoset methods set the value of the matrixthis to the matrix conversion
of the quaternion argumentq1.

public final void set(Matrix3f m1)
public final void set(Matrix3d m1)

Sets the value of this matrix to the value of the argument.

public final void set(AxisAngle4d a1)
public final void set(AxisAngle4f a1)

These twoset methods set the value of the matrixthis to the matrix conversion
of the axis and angle argumenta1.

public final void set(float scale)
public final void set(float m[])

The first method sets the value of this matrix to a scale matrix with the pas
scale amount. The second method sets the values of this matrix to
row-major array parameter (that is, the first three elements of the array are
ied into the first row of this matrix, and so forth).

public final void setElement(int row, int column, float value)
public final float getElement(int row, int column)

The setElement andgetElement methods provide a means for accessing a s
gle element within a 3× 3 matrix using indices. This is not a preferred method
access, but Java 3D provides these methods for functional completeness
setElement method takes a row indexrow (where a value of 0 represents th
first row and a value of 2 represents the third row), a column indexcolumn

(where a value of 0 represents the first column and a value of 2 represent
third column), and a value. It sets the corresponding element in matrixthis to
the specified value. ThegetElement method also takes a row indexrow and a
column indexcolumn. It returns the element at the corresponding locations a
floating-point value.

public final void setRow(int row, float x, float y, float z)
public final void setRow(int row, Vector3f v)
public final void setRow(int row, float v[])
public final void getRow(int row, Vector3f v)
public final void getRow(int row, float v[])

The threesetRow methods provide a means for constructing a 3× 3 matrix on a
row basis. The row parameterrow determines which row the method invocatio
affects. A row value of 0 represents the first row and a value of 2 represents
369Version 1.1.2, June 1999

A.2.1 Matrix3f Class MATH OBJECTS

370

ent
f
e
trix
to

d
e of

ter,

t

third row. The firstsetRow method specifies the three new values as independ
floating-point values. The secondsetRow method uses the values in the Vector3
v to update the matrix. The thirdsetRow method uses the first three values in th
arrayv to update the matrix. In all three cases the matrix affected is the ma
this. The twogetRow methods copy the matrix values in the specified row in
the vector or array parameter, respectively.

public final void setColumn(int column, float x, float y, float z)
public final void setColumn(int column, Vector3f v)
public final void setColumn(int column, float v[])
public final void getColumn(int column, Vector3f v)
public final void getColumn(int column, float v[])

The threesetColumn methods provide a means for constructing a 3× 3 matrix
on a column basis. Thecolumn parameter determines which column the metho
invocation affects. A column value of 0 represents the first column and a valu
2 represents the third column. The firstsetColumn method specifies the three
new values as independent floating-point values. The secondsetColumn method
uses the values in the Vector3fv to update the matrix. The thirdsetColumn
method uses the first three values in the arrayv to update the matrix. In all three
cases the matrix affected is the matrixthis. The twogetColumn methods copy
the matrix values in the specified column into the vector or array parame
respectively.

public final void setZero()

This method sets this matrix to all zeros.

public final void setIdentity()

This method sets this Matrix3f to identity.

public final void add(Matrix3f m1, Matrix3f m2)
public final void add(Matrix3f m1)
public final void sub(Matrix3f m1, Matrix3f m2)
public final void sub(Matrix3f m1)

The firstadd method adds the matrixm1 to the matrixm2 and places the result
into the matrixthis. The secondadd method adds the matrixthis to the matrix
m1 and places the result into the matrixthis. The firstsub method performs an
element-by-element subtraction of matrixm2 from matrixm1 and places the result
into the matrixthis. The secondsub method performs an element-by-elemen
subtraction of the matrixm1 from the matrixthis and places the result into the
matrix this.
Java 3D API Specification

MATH OBJECTS Matrix3f Class A.2.1

le

s the

e of

ck-
the

this
public final void transform(Tuple3f t)
public final void transform(Tuple3f t, Tuple3f result)

The first method multiplies this matrix by the tuplet and places the result back
into the tuple (t = this*t). The second method multiplies this matrix by the tup
t and places the result into the tupleresult (result = this*t).

public final void transpose()
public final void transpose(Matrix3f m1)

The first method transposes this matrix in place. The second method set
value of this matrix to the transpose of the matrixm1.

public final void invert()
public final void invert(Matrix3f m1)

The first method inverts this matrix in place. The second method sets the valu
this matrix to the inverse of the matrixm1.

public final float determinant()

The determinant method computes the determinant of the matrixthis and
returns the computed value.

public final void rotX(float angle)
public final void rotY(float angle)
public final void rotZ(float angle)

The threerot methods construct rotation matrices that rotate in a counter-clo
wise (right-handed) direction around the axis specified as the last letter of
method name. The constructed matrix replaces the value of the matrixthis. The
rotation angle is expressed in radians.

public final void mul(Matrix3f m1, Matrix3f m2)
public final void mul(Matrix3f m1)

The firstmul method multiplies matrixm1 with matrix m2 and places the result
into the matrixthis. The secondmul method multiplies the matrixthis with the
matrix m1 and places the result into matrixthis.

public final void mulNormalize(Matrix3f m1)
public final void mulNormalize(Matrix3f m1, Matrix3f m2)

The firstmulNormalize method multiplies this matrix by matrixm1, performs an
SVD normalization of the result, and places the result back into this matrix (
= SVDnorm(this ⋅ m1)). The secondmulNormalize method multiplies matrixm1
371Version 1.1.2, June 1999

A.2.1 Matrix3f Class MATH OBJECTS

372

ult

a-

o

is
-

urns

f
d

by matrixm2, performs an SVD normalization of the result, and places the res
into this matrix (this = SVDnorm(m1 ⋅ m2)).

public final void mulTransposeBoth(Matrix3f m1, Matrix3f m2)
public final void mulTransposeRight(Matrix3f m1, Matrix3f m2)
public final void mulTransposeLeft(Matrix3f m1, Matrix3f m2)

ThemulTransposeBoth method multiplies the transpose of matrixm1 (left) times
the transpose of matrixm2 (right) and places the result into this matrix. Themul-

TransposeRight method multiplies matrixm1 times the transpose of matrixm2
and places the result back into this matrix. ThemulTransposeLeft method mul-
tiplies the transpose of matrixm1 times matrixm2 and places the result into this
matrix.

public final void normalize()
public final void normalize(Matrix3f m1)

The firstnormalize method performs a singular value decomposition normaliz
tion of this matrix. The secondnormalize method performs a singular value
decomposition normalization of matrixm1 and places the normalized values int
this.

public final void normalizeCP()
public final void normalizeCP(Matrix3f m1)

The first normalizeCP method performs a cross-product normalization of th
matrix. The secondnormalizeCP method performs a cross-product normaliza
tion of matrixm1 and places the normalized values intothis.

public boolean equals(Matrix3f m1)
public boolean equals(Object o1)

The first method returnstrue if all of the data members of Matrix3fm1 are equal
to the corresponding data members in this Matrix3f. The second method ret
true if the Objecto1 is of type Matrix3f and all of the data members ofo1 are
equal to the corresponding data members in this Matrix3f.

public boolean epsilonEquals(Matrix3f m1, float epsilon)

This method returnstrue if the L∞ distance between this Matrix3f and Matrix3
m1 is less than or equal to theepsilon parameter. Otherwise, this metho
returnsfalse. The L∞ distance is equal to

MAX[i = 0,1,2,… n; j = 0,1,2,… n; abs(this.m(i,j) – m1.m(i,j)]
Java 3D API Specification

MATH OBJECTS Matrix3f Class A.2.1

sec-

nd
the

t the

e

this
is,
public final void negate()
public final void negate(Matrix3f m1)

The first method negates the value of this matrix in place (this = –this). The
ond method sets the value of this matrix equal to the negation of the matrixm1

(this = –m1).

public final float getScale()

This method performs an SVD normalization of this matrix to calculate a
return the uniform scale factor. If the matrix has non-uniform scale factors,
largest of the x, y, and z scale factors will be returned.

public final void setScale(float scale)

This method sets the scale component of the current matrix by factoring ou
current scale (by doing an SVD) and multiplying by the new scale.

public final void add(float scalar)

This method adds a scalar to each component of this matrix.

public final void add(float scalar, Matrix3f m1)

This method adds a scalar to each component of the matrixm1 and places the
result intothis. Matrix m1 is not modified.

public final void mul(float scalar, Matrix3f m1)

This method multiplies each component of the matrixm1 by a scalar and places
the result intothis. Matrix m1 is not modified.

public final void mul(float scalar)

This method multiplies each element of this matrix by a scalar.

public final void transform(Tuple3f t)
public final void transform(Tuple3f t, Tuple3f result)

The first method multiplies this matrix by the tuplet and places the result back
into the tuple (t = this*t). The second method multiplies this matrix by th
tuplet and places the result into the tupleresult (result =this*t).

public int hashCode()

The hashCode method returns a hash number based on the data values in
object. Two different Matrix3f objects with identical data values (that
equals(Matrix3f) returns true) will return the same hash number. Two
373Version 1.1.2, June 1999

A.2.2 Matrix3d Class MATH OBJECTS

374

lue,

f.

tors

blic
t

gen-
en-
Matrix3f objects with different data members may return the same hash va
although this is not likely.

public String toString()

ThetoString method returns a string that contains the values of this Matrix3

A.2.2 Matrix3d Class

The Matrix3d class serves to contain 3× 3 matrices mainly for storing and
manipulating 3D rotation matrices. The class includes five different construc
for creating matrices and several operators for manipulating these matrices.

Variables

The component values of a Matrix3d are directly accessible through the pu
variablesm00, m01, m02, m10, m11, m12, m20, m21, andm22. To access the elemen
in row 2 and column 0 of the matrix namedrotate, a programmer would write
rotate.m20. Other matrix values are accessed similarly.

public double m00
public double m01
public double m02
public double m10
public double m11
public double m12
public double m20
public double m21
public double m22

These public variables are the elements of the matrix.

Constructors

public Matrix3d(double m00, double m01, double m02, double m10,
double m11, double m12, double m20, double m21, double m22)

public Matrix3d(double v[])
public Matrix3d()
public Matrix3d(Matrix3d m1)
public Matrix3d(Matrix3f m1)

These constructors each return a new Matrix3d object. The first constructor
erates a 3× 3 matrix from the nine values provided. The second constructor g
erates a 3× 3 matrix from the first nine values in the arrayv. The third
constructor generates a 3× 3 matrix with all nine values set to 0.0. The fourth
Java 3D API Specification

MATH OBJECTS Matrix3d Class A.2.2

x

in-
of
. The
e

s the

s a
and fifth constructors generate a 3× 3 matrix with the same values as the matri
m1 parameter.

Methods

public final void set(Matrix3f m1)
public final void set(Matrix3d m1)

These methods set the value of this matrix to the value of the argument.

public final void set(double scale)
public final void set(double m[])

These methods set the value of the matrixthis to a scale matrix with the passed
scale amount.

public final void set(AxisAngle4d a1)
public final void set(AxisAngle4f a1)

These twoset methods set the value of the matrixthis to the matrix conversion
of the axis and angle argumenta1.

public final void set(Quat4d q1)
public final void set(Quat4f q1)

These twoset methods set the value of the matrixthis to the matrix conversion
of the quaternion argumentq1.

public final void setElement(int row, int column, double value)
public final double getElement(int row, int column)

The setElement andgetElement methods provide a means for accessing a s
gle element within a 3× 3 matrix using indices. This is not a preferred method
access, but Java 3D provides these methods for functional completeness
setElement method takes a row indexrow (where a value of 0 represents th
first row and a value of 2 represents the third row), a column indexcolumn

(where a value of 0 represents the first column and a value of 2 represent
third column), and a value. It sets the corresponding element in matrixthis to
the specified value. ThegetElement method also takes a row indexrow and a
column indexcolumn and returns the element at the corresponding locations a
floating-point value.

public final void setRow(int row, double x, double y, double z)
public final void setRow(int row, Vector3d v)
public final void setRow(int row, double v[])
375Version 1.1.2, June 1999

A.2.2 Matrix3d Class MATH OBJECTS

376

on
the

ent
d
e
trix
to

d
e of

ter,

t

public final void getRow(int row, Vector3d v)
public final void getRow(int row, double v[])

The threesetRow methods provide a means for constructing a 3× 3 matrix on a
row basis. Therow parameter determines which row the method invocati
affects. A row value of 0 represents the first row and a value of 2 represents
third row. The firstsetRow method specifies the three new values as independ
floating-point values. The secondsetRow method uses the values in the Vector3
v to update the matrix. The thirdsetRow method uses the first three values in th
arrayv to update the matrix. In all three cases the matrix affected is the ma
this. The twogetRow methods copy the matrix values in the specified row in
the array or vector parameter, respectively.

public final void setColumn(int column, double x, double y,
double z)

public final void setColumn(int column, Vector3d v)
public final void setColumn(int column, double v[])
public final void getColumn(int column, Vector3d v)
public final void getColumn(int column, double v[])

The threesetColumn methods provide a means for constructing a 3× 3 matrix
on a column basis. Thecolumn parameter determines which column the metho
invocation affects. A column value of 0 represents the first column and a valu
2 represents the third column. The firstsetColumn method specifies the three
new values as independent floating-point values. The secondsetColumn method
uses the values in the Vector3dv to update the matrix. The thirdsetColumn
method uses the first three values in the arrayv to update the matrix. In all three
cases the matrix affected is the matrixthis. The twogetColumn methods copy
the matrix values in the specified column into the array or vector parame
respectively.

public final void add(Matrix3d m1, Matrix3d m2)
public final void add(Matrix3d m1)
public final void sub(Matrix3d m1, Matrix3d m2)
public final void sub(Matrix3d m1)

The firstadd method adds the matrixm1 to the matrixm2 and places the result
into the matrixthis. The secondadd method adds the matrixthis to the matrix
m1 and places the result into the matrixthis. The firstsub method performs an
element-by-element subtraction of matrixm2 from matrixm1 and places the result
into the matrixthis. The secondsub method performs an element-by-elemen
subtraction of the matrixm1 from the matrixthis and places the result into the
matrix this.
Java 3D API Specification

MATH OBJECTS Matrix3d Class A.2.2

le

s the

e of

ck-
the
public final void add(double scalar)

This method adds a scalar to each component of this matrix.

public final void add(double scalar, Matrix3d m1)

This method adds a scalar to each component of the matrixm1 and places the
result intothis. Matrix m1 is not modified.

public final void transform(Tuple3d t)
public final void transform(Tuple3d t, Tuple3d result)

The first method multiplies this matrix by the tuplet and places the result back
into the tuple (t = this*t). The second method multiplies this matrix by the tup
t and places the result into the tupleresult (result = this*t).

public final void transpose()
public final void transpose(Matrix3d m1)

The first method transposes this matrix in place. The second method set
value of this matrix to the transpose of the matrixm1.

public final void invert()
public final void invert(Matrix3d m1)

The first method inverts this matrix in place. The second method sets the valu
this matrix to the inverse of the matrixm1.

public final double determinant()

The determinant method computes the determinant of the matrixthis and
returns the computed value.

public final void rotX(double angle)
public final void rotY(double angle)
public final void rotZ(double angle)

The threerot methods construct rotation matrices that rotate in a counter-clo
wise (right-handed) direction around the axis specified by the final letter of
method name. The constructed matrix replaces the value of the matrixthis. The
rotation angle is expressed in radians.

public final void mul(Matrix3d m1, Matrix3d m2)
public final void mul(Matrix3d m1)

The firstmul method multiplies matrixm1 with matrix m2 and places the result
into the matrixthis. The secondmul method multiplies matrixthis with matrix
377Version 1.1.2, June 1999

A.2.2 Matrix3d Class MATH OBJECTS

378

this

ult

a-

o

is
-

turns
m1 and places the result into the matrixthis.

public final void mulNormalize(Matrix3d m1)
public final void mulNormalize(Matrix3d m1, Matrix3d m2)

The firstmulNormalize method multiplies this matrix by matrixm1, performs an
SVD normalization of the result, and places the result back into this matrix (
= SVDnorm(this ⋅ m1)). The secondmulNormalize method multiplies matrixm1
by matrixm2, performs an SVD normalization of the result, and places the res
into this matrix (this = SVDnorm(m1 ⋅ m2)).

public final void mulTransposeBoth(Matrix3d m1, Matrix3d m2)
public final void mulTransposeRight(Matrix3d m1, Matrix3d m2)
public final void mulTransposeLeft(Matrix3d m1, Matrix3d m2)

ThemulTransposeBoth method multiplies the transpose of matrixm1 (left) times
the transpose of matrixm2 (right) and places the result into this matrix. Themul-

TransposeRight method multiplies matrixm1 times the transpose of matrixm2
and places the result back into this matrix. ThemulTransposeLeft method mul-
tiplies the transpose of matrixm1 times matrixm2 and places the result into this
matrix.

public final void normalize()
public final void normalize(Matrix3d m1)

The firstnormalize method performs a singular value decomposition normaliz
tion of this matrix. The secondnormalize method performs a singular value
decomposition normalization of matrixm1 and places the normalized values int
this.

public final void normalizeCP()
public final void normalizeCP(Matrix3d m1)

The first normalizeCP method performs a cross-product normalization of th
matrix. The secondnormalizeCP method performs a cross-product normaliza
tion of matrixm1 and places the normalized values intothis.

public boolean equals(Matrix3d m1)
public boolean equals(Object t1)

The first method returnstrue if all of the data members of Matrix3dm1 are equal
to the corresponding data members in this Matrix3d. The second method re
true if the Objectt1 is of type Matrix3d and all of the data members oft1 are
equal to the corresponding data members in this Matrix3d.
Java 3D API Specification

MATH OBJECTS Matrix3d Class A.2.2

d
s

sec-

nd
the

t the

e

public boolean epsilonEquals(Matrix3d m1, double epsilon)

This method returnstrue if the L∞ distance between this Matrix3d and Matrix3
m1 is less than or equal to theepsilon parameter. Otherwise, this method return
false. The L∞ distance is equal to

MAX[i = 0,1,2,;j = 0,1,2,; abs(this.m(i,j) – m1.m(i,j)]

public final void negate()
public final void negate(Matrix3d m1)

The first method negates the value of this matrix in place (this = –this). The
ond method sets the value of this matrix equal to the negation of the matrixm1

(this = –m1).

public final double getScale()

This method performs an SVD normalization of this matrix to calculate a
return the uniform scale factor. If the matrix has non-uniform scale factors,
largest of the x, y, and z scale factors will be returned.

public final void setScale(double scale)

This method sets the scale component of the current matrix by factoring ou
current scale (by doing an SVD) and multiplying by the new scale.

public final void mul(double scalar, Matrix3d m1)

This method multiplies each component of the matrixm1 by a scalar and places
the result intothis. Matrix m1 is not modified.

public final void mul(double scalar)

This method multiplies each element of this matrix by a scalar.

public final void transform(Tuple3d t)
public final void transform(Tuple3d t, Tuple3d result)

The first method multiplies this matrix by the tuplet and places the result back
into the tuple (t = this*t). The second method multiplies this matrix by th
tuplet and places the result into the tupleresult (result = this*t).

public final void setZero()

This method sets this matrix to all zeros.
379Version 1.1.2, June 1999

A.2.3 Matrix4f Class MATH OBJECTS

380

this
is,

lue,

d.

con-
ese

blic

r

public final void setIdentity()

This method sets this Matrix3d to identity.

public int hashCode()

The hashCode method returns a hash number based on the data values in
object. Two different Matrix3d objects with identical data values (that
equals(Matrix3d) returns true) will return the same hash number. Two
Matrix3d objects with different data members may return the same hash va
although this is not likely.

public String toString()

ThetoString method returns a string that contains the values of this Matrix3

A.2.3 Matrix4f Class

The Matrix4f class serves to contain 4× 4 matrices mainly for storing and
manipulating 3D transformation matrices. The class includes seven different
structors for creating matrices and several operators for manipulating th
matrices.

Variables

The component values of a Matrix4f are directly accessible through the pu
variablesm00, m01, m02, m03, m10, m11, m12, m13, m20, m21, m22, m23, m30, m31,
m32, andm33. To access the element in row 2 and column 0 of matrixrotate, a
programmer would writerotate.m20. A programmer would access the othe
values similarly.

public float m00
public float m01
public float m02
public float m03
public float m10
public float m11
public float m12
public float m13
public float m20
public float m21
public float m22
public float m23
public float m30
public float m31
Java 3D API Specification

MATH OBJECTS Matrix4f Class A.2.3

gen-
er-

he

te a

s.

en-

of

f

public float m32
public float m33

These public variables are the elements of the matrix.

Constructors

public Matrix4f(float m00, float m01, float m02, float m03,
float m10, float m11, float m12, float m13,
float m20, float m21, float m22, float m23,
float m30, float m31, float m32, float m33)

public Matrix4f(float v[])
public Matrix4f(Quat4f q1, Vector3f t1, float s)
public Matrix4f(Matrix4d m1)
public Matrix4f(Matrix4f m1)
public Matrix4f(Matrix3f m1, Vector3f t1, float s)
public Matrix4f()

These constructors each return a new Matrix4f object. The first constructor
erates a 4× 4 matrix from the 16 values provided. The second constructor gen
ates a 4× 4 matrix from the first 16 values in the arrayv. The third constructor
generates a 4× 4 matrix from the quaternion, translation, and scale values. T
scale is applied only to the rotational components of the matrix (upper 3× 3) and
not to the translational components. The fourth and fifth constructors genera
4 × 4 matrix with the same values as the passed matrixm1. The sixth constructor
generates a 4× 4 matrix from the rotation matrix, translation, and scale value
The scale is applied only to the rotational components of the matrix (upper 3× 3)
and not to the translational components of the matrix. The final constructor g
erates a 4× 4 matrix with all 16 values set to 0.0.

Methods

public final void set(Quat4f q1)
public final void set(Quat4d q1)
public final void set(Quat4f q1, Vector3f t1, float s)
public final void set(Quat4d q1, Vector3d t1, double s)
public final void set(Matrix4d m1)
public final void set(Matrix4f m1)
public final void set(AxisAngle4f a1)
public final void set(AxisAngle4d a1)

The first twoset methods set the value of this matrix to the matrix conversion
the quaternion argumentq1. The next twoset methods set the value of this
matrix from the rotation expressed by the quaternionq1, the translationt1, and
the scales. The next twoset methods set the value of this matrix to a copy o
381Version 1.1.2, June 1999

A.2.3 Matrix4f Class MATH OBJECTS

382

e

l-
la-

sed
ajor
the

sed

x. In
trix

scale

d by

to
the passed matrixm1. The last twoset methods set the value of this matrix to th
matrix conversion of the axis and angle argumenta1.

public final void set(Matrix3f m1)
public final void set(Matrix3d m1)

These methods set the rotational component (upper 3× 3) of this matrix to the
matrix values in them1 argument. The other elements of this matrix are initia
ized as if this were an identity matrix (that is, an affine matrix with no trans
tional component).

public final void set(float scale)
public final void set(float m[])

The first method sets the value of this matrix to a scale matrix with the pas
scale amount. The second method sets the value of this matrix to the row-m
array parameter (that is, the first four elements of the array are copied into
first row of this matrix, and so forth).

public final void set(Vector3f v1)

This method sets the value of this matrix to a translation matrix with the pas
translation value.

public final void set(float scale, Vector3f t1)
public final void set(Vector3f t1, float scale)

These methods set the value of this matrix to a scale and translation matri
the first method, the scale is not applied to the translation, and all of the ma
values are modified. In the second method, the translation is scaled by the
factor, and all of the matrix values are modified.

public final void set(Matrix3f m1, Vector3f t1, float scale)
public final void set(Matrix3d m1, Vector3d t1, double scale)

These two methods set the value of this matrix from the rotation expresse
the rotation matrixm1, the translationt1, and the scalescale. The translation is
not modified by the scale.

public final void get(Matrix3d m1)
public final void get(Matrix3f m1)
public final float get(Matrix3f m1, Vector3f t1)
public final void get(Quat4f q1)
public final void get(Vector3f trans)

The first two methods perform an SVD normalization of this matrix in order
Java 3D API Specification

MATH OBJECTS Matrix4f Class A.2.3

the
is
.
er-
nal

the

in-
of
. The
e

s the

s a

o

out
ec-
nd
the
acquire the normalized rotational component. The values are placed into
matrix parameterm1. The third method performs an SVD normalization of th
matrix to calculate the rotation as a 3× 3 matrix, the translation, and the scale
None of the matrix values in this matrix are modified. The fourth method p
forms an SVD normalization of this matrix to acquire the normalized rotatio
component. The values are placed into the quaternionq1. The final method
retrieves the translational components of this matrix and copies them into
vectortrans.

public final void setElement(int row, int column, float value)
public final float getElement(int row, int column)

The setElement andgetElement methods provide a means for accessing a s
gle element within a 4× 4 matrix using indices. This is not a preferred method
access, but Java 3D provides these methods for functional completeness
setElement method takes a row indexrow (where a value of 0 represents th
first row and a value of 3 represents the fourth row), a column indexcolumn

(where a value of 0 represents the first column and a value of 3 represent
fourth column), and a value. It sets the corresponding element in matrixthis to
the specified value. ThegetElement method also takes a row indexrow and a
column indexcolumn and returns the element at the corresponding locations a
floating-point value.

public final void getRotationScale(Matrix3f m1)

This method retrieves the upper 3× 3 values of this matrix and places them int
the matrixm1.

public final void setScale(float scale)
public final float getScale()

The first method sets the scale component of the current matrix by factoring
the current scale (by doing an SVD) and multiplying by the new scale. The s
ond method performs an SVD normalization of this matrix to calculate a
return the uniform scale factor. If the matrix has non-uniform scale factors,
largest of the x, y, and z scale factors will be returned.

public final void add(float scalar)

This method adds a scalar to each component of this matrix.

public final void add(float scalar, Matrix4f m1)

This method adds a scalar to each component of the matrixm1 and places the
result intothis. Matrix m1 is not modified.
383Version 1.1.2, June 1999

A.2.3 Matrix4f Class MATH OBJECTS

384

n
the

ent
f

e
trix
to

d
e of

cond

or
public final void mul(float scalar, Matrix4f m1)

This method multiplies each component of the matrixm1 by a scalar and places
the result intothis. Matrix m1 is not modified.

public final void mul(float scalar)

This method multiplies each element of this matrix by a scalar.

public final void setRow(int row, float x, float y, float z,
float w)

public final void setRow(int row, Vector4f v)
public final void setRow(int row, float v[])
public final void getRow(int row, Vector4f v)
public final void getRow(int row, float v[])

The threesetRow methods provide a means for constructing a 4× 4 matrix on a
row basis. The row parameterrow determines which row the method invocatio
affects. A row value of 0 represents the first row and a value of 3 represents
fourth row. The firstsetRow method specifies the four new values as independ
floating-point values. The secondsetRow method uses the values in the Vector4
v to update the matrix. The thirdsetRow method uses the first four values in th
arrayv to update the matrix. In all three cases the matrix affected is the ma
this. The twogetRow methods copy the matrix values in the specified row in
the array or vector parameter, respectively.

public final void setColumn(int column, float x, float y, float z,
float w)

public final void setColumn(int column, Vector4f v)
public final void setColumn(int column, float v[])
public final void getColumn(int column, Vector4f v)
public final void getColumn(int column, float v[])

The threesetColumn methods provide a means for constructing a 4× 4 matrix
on a column basis. Thecolumn parameter determines which column the metho
invocation affects. A column value of 0 represents the first column and a valu
3 represents the fourth column. The firstsetColumn method specifies the four
new values as independent double-precision floating-point values. The se
setColumn method uses the values in the Vector4fv to update the matrix. The
third setColumn method uses the first four values in the arrayv to update the
matrix. In all three cases the matrix affected is the matrixthis. The twogetCol-
umn methods copy the matrix values in the specified column into the array
vector parameter, respectively.
Java 3D API Specification

MATH OBJECTS Matrix4f Class A.2.3

are
per-
s
om-

the
ct’s

ally
gular

y
the

s of
public final void setRotation(Matrix3d m1)
public final void setRotation(Matrix3f m1)
public final void setRotation(Quat4f q1)
public final void setRotation(Quat4d q1)
public final void setRotation(AxisAngle4f a1)

These methods set the rotational component (upper 3× 3) of this matrix to the
matrix values in the passed argument. The other elements of this matrix
unchanged. In the first two methods, a singular value decomposition is
formed on this object’s upper 3× 3 matrix to factor out the scale, then thi
object’s upper 3× 3 matrix components are replaced by the passed rotation c
ponents, and finally the scale is reapplied to the rotational components. In
next two methods, a singular value decomposition is performed on this obje
upper 3× 3 matrix to factor out the scale, then this object’s upper 3× 3 matrix
components are replaced by the matrix equivalent of the quaternion, and fin
the scale is reapplied to the rotational components. In the last method, a sin
value decomposition is performed on this object’s upper 3× 3 matrix to factor
out the scale, then this object’s upper 3× 3 matrix components are replaced b
the matrix equivalent of the axis-angle, and finally the scale is reapplied to
rotational components.

public final void setRotationScale(Matrix3f m1)

This method replaces the upper 3× 3 matrix values of this matrix with the values
in the matrixm1.

public final void setTranslation(Vector3f trans)

This method modifies the translational components of this matrix to the value
the vectortrans. The other values of this matrix are not modified.

public final void setIdentity()

This method sets this Matrix4f to identity.

public final void setZero()

This method sets this matrix to all zeros.

public final void add(Matrix4f m1, Matrix4f m2)
public final void add(Matrix4f m1)
public final void sub(Matrix4f m1, Matrix4f m2)
public final void sub(Matrix4f m1)

The firstadd method adds the matrixm1 to the matrixm2 and places the result
into the matrixthis. The secondadd method adds the matrixthis to the matrix
385Version 1.1.2, June 1999

A.2.3 Matrix4f Class MATH OBJECTS

386

t

t

-

sec-
m1 and places the result into the matrixthis. The firstsub method performs an
element-by-element subtraction of matrixm2 from matrixm1 and places the result
into the matrixthis. The secondsub method performs an element-by-elemen
subtraction of the matrixm1 from the matrixthis and places the result into the
matrix this.

public final void transpose(Matrix4f m1)
public final void transpose()

The firsttranspose method transposes the matrixm1 and places the result into
the matrixthis. The secondtranspose method transposes the matrixthis and
places the result back into the matrixthis.

public final void transform(Point3f point)
public final void transform(Point3f point, Point3f pointOut)

The firsttransform method postmultiplies this matrix by the Point3fpoint and
places the result back intopoint. The multiplication treats the three-elemen
point as if its fourth element were 1. The secondtransform method postmulti-
plies this matrix by the Point3fpoint and places the result intopointOut.

public final void transform(Vector3f normal)
public final void transform(Vector3f normal, Vector3f normalOut)

The first transform method postmultiplies this matrix by the Vector3fnormal
and places the result back intonormal. The multiplication treats the three-ele
ment vector as if its fourth element were 0. The secondtransform method post-
multiplies this matrix by the Vector3fnormal and places the result into
normalOut.

public final void transform(Tuple4f vec)
public final void transform(Tuple4f vec, Tuple4f vecOut)

The first transform method postmultiplies this matrix by the tuplevec and
places the result back intovec. The secondtransform method postmultiplies
this matrix by the tuplevec and places the result intovecOut.

public final void negate()
public final void negate(Matrix4f m1)

The first method negates the value of this matrix in place (this = –this). The
ond method sets the value of this matrix equal to the negation of the matrixm1

(this = –m1).
Java 3D API Specification

MATH OBJECTS Matrix4f Class A.2.3

e of

ck-
the

urns
public final void invert()
public final void invert(Matrix4f m1)

The first method inverts this matrix in place. The second method sets the valu
this matrix to the inverse of the matrixm1.

public final float determinant()

The determinant method computes the determinant of the matrixthis and
returns the computed value.

public final void rotX(float angle)
public final void rotY(float angle)
public final void rotZ(float angle)

The threerot methods construct rotation matrices that rotate in a counter-clo
wise (right-handed) direction around the axis specified as the last letter of
method name. The constructed matrix replaces the value of the matrixthis. The
rotation angle is expressed in radians.

public final void mul(Matrix4f m1, Matrix4f m2)
public final void mul(Matrix4f m1)

The firstmul method multiplies matrixm1 with matrix m2 and places the result
into the matrixthis. The secondmul method multiplies the matrixthis with
matrix m1 and places the result in matrixthis.

public final void mulTransposeBoth(Matrix4f m1, Matrix4f m2)
public final void mulTransposeRight(Matrix4f m1, Matrix4f m2)
public final void mulTransposeLeft(Matrix4f m1, Matrix4f m2)

ThemulTransposeBoth method multiplies the transpose of matrixm1 (left) times
the transpose of matrixm2 (right) and places the result into this matrix. Themul-

TransposeRight method multiplies matrixm1 times the transpose of matrixm2
and places the result back into this matrix. ThemulTransposeLeft method mul-
tiplies the transpose of matrixm1 times matrixm2 and places the result into this
matrix.

public boolean equals(Matrix4f m1)
public boolean equals(Object t1)

The first method returnstrue if all of the data members of Matrix4fm1 are equal
to the corresponding data members in this Matrix4f. The second method ret
true if the Objectt1 is of type Matrix4f and all of the data members oft1 are
equal to the corresponding data members in this Matrix4f.
387Version 1.1.2, June 1999

A.2.4 Matrix4d Class MATH OBJECTS

388

f
s

this
is,

lue,

f.

on-
ese

blic

r

public boolean epsilonEquals(Matrix4f m1, float epsilon)

This method returnstrue if the L∞ distance between this Matrix4f and Matrix4
m1 is less than or equal to theepsilon parameter. Otherwise, this method return
false. The L∞ distance is equal to

MAX[i = 0,1,2,3;j = 0,1,2,3; abs(this.m(i,j) – m1.m(i,j)]

public int hashCode()

The hashCode method returns a hash number based on the data values in
object. Two different Matrix4f objects with identical data values (that
equals(Matrix4f) returns true) will return the same hash number. Two
Matrix4f objects with different data members may return the same hash va
although this is not likely.

public String toString()

ThetoString method returns a string that contains the values of this Matrix4

A.2.4 Matrix4d Class

The Matrix4d class serves to contain 4× 4 matrices mainly for storing and
manipulating 3D transformation matrices. The class includes nine different c
structors for creating matrices and several operators for manipulating th
matrices.

Variables

The component values of a Matrix4d are directly accessible through the pu
variablesm00, m01, m02, m03, m10, m11, m12, m13, m20, m21, m22, m23, m30, m31,
m32, andm33. To access the element in row 2 and column 0 of matrixrotate, a
programmer would writerotate.m20. A programmer would access the othe
values similarly.

public double m00
public double m01
public double m02
public double m03
public double m10
public double m11
public double m12
public double m13
public double m20
public double m21
Java 3D API Specification

MATH OBJECTS Matrix4d Class A.2.4

gen-
er-

le
trix
hth
ix.

to
the
this
public double m22
public double m23
public double m30
public double m31
public double m32
public double m33

These public variables are the elements of the matrix.

Constructors

public Matrix4d(double m00, double m01, double m02, double m03,
double m10, double m11, double m12, double m13, double m20,
double m21, double m22, double m23, double m30, double m31,
double m32, double m33)

public Matrix4d(double v[])
public Matrix4d(Quat4d q1, Vector3d t1, double s)
public Matrix4d(Quat4f q1, Vector3d t1, double s)
public Matrix4d(Matrix3d m1, Vector3d t1, double s)
public Matrix4d(Matrix3f m1, Vector3d t1, double s)
public Matrix4d(Matrix4d m1)
public Matrix4d(Matrix4f m1)
public Matrix4d()

These constructors each return a new Matrix4d object. The first constructor
erates a 4× 4 matrix from the 16 values provided. The second constructor gen
ates a 4× 4 matrix from the first 16 values in the arrayv. The third through sixth
constructors generate a 4× 4 matrix from the quaternion, translation, and sca
values. The scale is applied only to the rotational components of the ma
(upper 3× 3) and not to the translational components. The seventh and eig
constructors generate a 4× 4 matrix with the same values as the passed matr
The final constructor generates a 4× 4 matrix with all 16 values set to 0.0.

Methods

public final void get(Matrix3d m1)
public final void get(Matrix3f m1)
public final double get(Matrix3d m1, Vector3d t1)
public final double get(Matrix3f m1, Vector3d t1)
public final void get(Quat4f q1)
public final void get(Quat4d q1)
public final void get(Vector3d trans)

The first two methods perform an SVD normalization of this matrix in order
acquire the normalized rotational component. The values are placed into
passed parameter. The next two methods perform an SVD normalization of
389Version 1.1.2, June 1999

A.2.4 Matrix4d Class MATH OBJECTS

390

.
VD
he

in-
of
. The
e

s the

s a

on
the

ent
d
e
trix
to

d

matrix to calculate the rotation as a 3× 3 matrix, the translation, and the scale
None of the matrix values are modified. The next two methods perform an S
normalization of this matrix to acquire the normalized rotational component. T
last two methods retrieve the translational components of this matrix.

public final void setElement(int row, int column, double value)
public final double getElement(int row, int column)

The setElement andgetElement methods provide a means for accessing a s
gle element within a 4× 4 matrix using indices. This is not a preferred method
access, but Java 3D provides these methods for functional completeness
setElement method takes a row indexrow (where a value of 0 represents th
first row and a value of 3 represents the fourth row), a column indexcolumn

(where a value of 0 represents the first column and a value of 3 represent
fourth column), and a value. It sets the corresponding element in matrixthis to
the specified value. ThegetElement method also takes a row indexrow and a
column indexcolumn and returns the element at the corresponding locations a
floating-point value.

public final void setRow(int row, double x, double y, double z,
double w)

public final void setRow(int row, Vector4d v)
public final void setRow(int row, double v[])
public final void getRow(int row, Vector4d v)
public final void getRow(int row, double v[])

The threesetRow methods provide a means for constructing a 4× 4 matrix on a
row basis. Therow parameter determines which row the method invocati
affects. A row value of 0 represents the first row and a value of 3 represents
fourth row. The firstsetRow method specifies the four new values as independ
floating-point values. The secondsetRow method uses the values in the Vector4
v to update the matrix. The thirdsetRow method uses the first four values in th
arrayv to update the matrix. In all three cases the matrix affected is the ma
this. The twogetRow methods copy the matrix values in the specified row in
the array or vector parameter, respectively.

public final void setColumn(int column, double x, double y,
double z, double w)

public final void setColumn(int column, Vector4d v)
public final void setColumn(int column, double v[])
public final void getColumn(int column, Vector4d v)
public final void getColumn(int column, double v[])

The threesetColumn methods provide a means for constructing a 4× 4 matrix
on a column basis. Thecolumn parameter determines which column the metho
Java 3D API Specification

MATH OBJECTS Matrix4d Class A.2.4

e of

cond

or

are
per

ale is

are
per

the

x are
per

cale
invocation affects. A column value of 0 represents the first column and a valu
3 represents the fourth column. The firstsetColumn method specifies the four
new values as independent double-precision floating-point values. The se
setColumn method uses the values in the Vector4dv to update the matrix. The
third setColumn method uses the first four values in the arrayv to update the
matrix. In all three cases the matrix affected is the matrixthis. The twogetCol-
umn methods copy the matrix values in the specified column into the array
vector parameter, respectively.

public final void setRotation(Matrix3f m1)
public final void setRotation(Matrix3d m1)

These methods set the rotational component (upper 3× 3) of this matrix to the
matrix values in the passed argument. The other elements of this matrix
unchanged. A singular value decomposition is performed on this object’s up
3 × 3 matrix to factor out the scale, then this object’s upper 3× 3 matrix compo-
nents are replaced by the passed rotation components, and finally the sc
reapplied to the rotational components.

public final void setRotation(Quat4f q1)
public final void setRotation(Quat4d q1)

These methods set the rotational component (upper 3× 3) of this matrix to the
matrix values in the passed argument. The other elements of this matrix
unchanged. A singular value decomposition is performed on this object’s up
3 × 3 matrix to factor out the scale, then this object’s upper 3× 3 matrix compo-
nents are replaced by the matrix equivalent of the quaternion, and finally
scale is reapplied to the rotational components.

public final void setRotation(AxisAngle4d a1)

This method sets the rotational component (upper 3× 3) of this matrix to the
equivalent values in the passed argument. The other elements of this matri
unchanged. A singular value decomposition is performed on this object’s up
3 × 3 matrix to factor out the scale, then this object’s upper 3× 3 matrix compo-
nents are replaced by the matrix equivalent of the axis-angle, and finally the s
is reapplied to the rotational components.

public final void getRotationScale(Matrix3f m1)
public final void getRotationScale(Matrix3d m1)
public final void setRotationScale(Matrix3d m1)
public final void setRotationScale(Matrix3f m1)

The two get methods retrieve the upper 3× 3 values of this matrix and place
391Version 1.1.2, June 1999

A.2.4 Matrix4d Class MATH OBJECTS

392

s of

out
ec-
nd
the

t

them into the matrixm1. The twoset methods replace the upper 3× 3 matrix
values of this matrix with the values in the matrixm1.

public final void setTranslation(Vector3d trans)

This method modifies the translational components of this matrix to the value
the Vector3d argument. The other values of this matrix are not modified.

public final void setScale(double scale)
public final double getScale()

The first method sets the scale component of the current matrix by factoring
the current scale (by doing an SVD) and multiplying by the new scale. The s
ond method performs an SVD normalization of this matrix to calculate a
return the uniform scale factor. If the matrix has non-uniform scale factors,
largest of the x, y, and z scale factors will be returned.

public final void add(double scalar)

This method adds a scalar to each component of this matrix.

public final void add(double scalar, Matrix4d m1)

This method adds a scalar to each component of the matrixm1 and places the
result intothis. Matrix m1 is not modified.

public final void mul(double scalar, Matrix4d m1)

This method multiplies each component of the matrixm1 by a scalar and places
the result intothis. Matrix m1 is not modified.

public final void mul(double scalar)

This method multiplies each element of this matrix by a scalar.

public final void add(Matrix4d m1, Matrix4d m2)
public final void add(Matrix4d m1)
public final void sub(Matrix4d m1, Matrix4d m2)
public final void sub(Matrix4d m1)

The firstadd method adds the matrixm1 to the matrixm2 and places the result
into the matrixthis. The secondadd method adds the matrixthis to the matrix
m1 and places the result into the matrixthis. The firstsub method performs an
element-by-element subtraction of matrixm2 from matrixm1 and places the result
into the matrixthis. The secondsub method performs an element-by-elemen
Java 3D API Specification

MATH OBJECTS Matrix4d Class A.2.4

that
is

ini-
s-

ater-

axis

sed

the
subtraction of the matrixm1 from the matrixthis and places the result into the
matrix this.

public final void set(double m[])

This method sets the value of this matrix to the row-major array parameter (
is, the first four elements of the array will be copied into the first row of th
matrix, and so forth).

public final void set(Matrix3f m1)
public final void set(Matrix3d m1)

These methods set the rotational component (upper 3× 3) of this matrix to the
matrix values in the matrix argument. The other elements of this matrix are
tialized as if this were an identity matrix (that is, an affine matrix with no tran
lational component).

public final void set(Matrix4f m1)
public final void set(Matrix4d m1)

These methods set the value of this matrix to the value of the passed matrixm1.

public final void set(Quat4d q1)
public final void set(Quat4f q1)

These methods set the value of this matrix to the matrix conversion of the qu
nion argument.

public final void set(AxisAngle4d a1)
public final void set(AxisAngle4f a1)

These methods set the value of this matrix to the matrix conversion of the
and angle argument.

public final void set(Vector3d v1)

This method sets the value of this matrix to a translation matrix by the pas
translation value.

public final void set(Quat4d q1, Vector3d t1, double s)
public final void set(Quat4f q1, Vector3d t1, double s)
public final void set(Quat4f q1, Vector3f t1, float s)

These methods set the value of this matrix to the rotation expressed by
quaternionq1, the translationt1, and the scales.
393Version 1.1.2, June 1999

cale

The
ed.

The
ified.

the
public final void set(double scale)

This method sets the value of this matrix to a scale matrix with the passed s
amount.

public final void set(double scale, Vector3d v1)

This method sets the value of this matrix to a scale and translation matrix.
scale is not applied to the translation, and all of the matrix values are modifi

public final void set(Vector3d v1, double scale)

This method sets the value of this matrix to a scale and translation matrix.
translation is scaled by the scale factor, and all of the matrix values are mod

public final void set(Matrix3f m1, Vector3f t1, float scale)
public final void set(Matrix3d m1, Vector3d t1, double scale)

These methods set the value of this matrix from the rotation expressed by
rotation matrixm1, the translationt1, and the scales.

public final void negate(Matrix4d m1)
public final void negate()

The first method sets the value of this matrix to the negation of them1 parameter.
The second method negates the value of this matrix (this = –this).

public final void transpose(Matrix4d m)
public final void transpose()

The firsttranspose method transposes the matrixm and places the result into the
matrix this. The secondtranspose method transposes the matrixthis and
places the result back into the matrixthis.

public final void transform(Tuple4d vec)
public final void transform(Tuple4f vec)
public final void transform(Tuple4d vec, Tuple4d vecOut)
public final void transform(Tuple4f vec, Tuple4f vecOut)

The first twotransform methods postmultiply this matrix by the tuplevec and
place the result back intovec. The last twotransform methods postmultiply
this matrix by the tuplevec and place the result intovecOut.

public final void transform(Point3d point)
public final void transform(Point3f point)
public final void transform(Point3d point, Point3d pointOut)
public final void transform(Point3f point, Point3f pointOut)

MATH OBJECTS Matrix4d Class A.2.4

t

-

e of

ise
thod
The first twotransform methods postmultiply this matrix by the point argumen
point and place the result back intopoint. The multiplication treats the
three-element point as if its fourth element were 1. The last twotransform

methods postmultiply this matrix by the point argumentpoint and place the
result intopointOut.

public final void transform(Vector3d normal)
public final void transform(Vector3f normal)
public final void transform(Vector3d normal, Vector3d normalOut)
public final void transform(Vector3f normal, Vector3f normalOut)

The first twotransform methods postmultiply this matrix by the vector argu
mentnormal and place the result back intonormal. The multiplication treats the
three-element vector as if its fourth element were 0. The last twotransform

methods postmultiply this matrix by the vector argumentnormal and place the
result intonormalOut.

public final void invert()
public final void invert(Matrix4d m1)

The first method inverts this matrix in place. The second method sets the valu
this matrix to the inverse of the matrixm1.

public final double determinant()

The determinant method computes the determinant of the matrixthis and
returns the computed value.

public final void rotX(double angle)
public final void rotY(double angle)
public final void rotZ(double angle)

The rot methods construct rotation matrices that rotate in a counter-clockw
(right-handed) direction around the axis specified as the last letter of the me
name. The constructed matrix replaces the value of the matrixthis. The rotation
angle is expressed in radians.

public final void mul(Matrix4d m1, Matrix4d m2)
public final void mul(Matrix 4d m1)

The firstmul method multiplies matrixm1 with matrix m2 and places the result
into the matrixthis. The secondmul method multiplies matrixthis with matrix
m1 and places the result into the matrixthis.

public final void mulTransposeBoth(Matrix4d m1, Matrix4d m2)
public final void mulTransposeRight(Matrix4d m1, Matrix4d m2)
395Version 1.1.2, June 1999

A.2.4 Matrix4d Class MATH OBJECTS

396

turns

d
s

this
is,

lue,
public final void mulTransposeLeft(Matrix4d m1, Matrix4d m2)

ThemulTransposeBoth method multiplies the transpose of matrixm1 (left) times
the transpose of matrixm2 (right) and places the result into this matrix. Themul-

TransposeRight method multiplies matrixm1 times the transpose of matrixm2
and places the result back into this matrix. ThemulTransposeLeft method mul-
tiplies the transpose of matrixm1 times matrixm2 and places the result into this
matrix.

public final void setZero()

This method sets this matrix to all zeros.

public final void setIdentity()

This method sets this Matrix4d to identity.

public boolean equals(Matrix4d m1)
public boolean equals(Object t1)

The first method returnstrue if all of the data members of Matrix4dm1 are equal
to the corresponding data members in this Matrix4d. The second method re
true if the Objectt1 is of type Matrix4d and all of the data members oft1 are
equal to the corresponding data members in this Matrix4d.

public boolean epsilonEquals(Matrix4d m1, float epsilon)

Deprecated method. See the next method.

public boolean epsilonEquals(Matrix4d m1, double epsilon)

This method returnstrue if the L∞ distance between this Matrix4d and Matrix4
m1 is less than or equal to theepsilon parameter. Otherwise, this method return
false. The L∞ distance is equal to

MAX[i = 0,1,2,3;j = 0,1,2,3; abs(this.m(i,j) – m1.m(i,j)]

public int hashCode()

The hashCode method returns a hash number based on the data values in
object. Two different Matrix4d objects with identical data values (that
equals(Matrix4d) returns true) will return the same hash number. Two
Matrix4d objects with different data members may return the same hash va
although this is not likely.
Java 3D API Specification

MATH OBJECTS GMatrix Class A.2.5

d.

ami-
.

ta-
ough
ating

es an
public String toString()

ThetoString method returns a string that contains the values of this Matrix4

A.2.5 GMatrix Class

The GMatrix class serves to contain a double-precision, general, and dyn
cally resizeableM × N matrix. Row and column numbering begins with zero
The representation is row major.

The GMatrix data members are not public, thus allowing efficient implemen
tions of sparse matrices. However, the data members can be modified thr
public accessors. The class includes three different constructors for cre
matrices and several operators for manipulating these matrices.

Constructors

public GMatrix(int nRow, int nCol)
public GMatrix(int nRow, int nCol, double matrix[])
public GMatrix(GMatrix matrix)

These constructors each return a new GMatrix. The first constructor generat
nRow by nCol identity matrix. The second constructor generates annRow by nCol

matrix initialized to the values in the arraymatrix. The last constructor gener-
ates a new GMatrix and copies the initial values from the parametermatrix

argument.

Methods

public final void mul(GMatrix m1, GMatrix m2)
public final void mul(GMatrix m1)

The firstmul method multiplies matrixm1 with matrix m2 and places the result
into this. The secondmul method multiplies this matrix with matrixm1 and
places the result intothis.

public final void add(GMatrix m1)
public final void add(GMatrix m1, GMatrix m2)
public final void sub(GMatrix m1)
public final void sub(GMatrix m1, GMatrix m2)

The firstadd method adds this matrix to matrixm1 and places the result back into
this. The secondadd method adds matricesm1 andm2 and places the result into
this. The firstsub method subtracts matrixm1 from the matrixthis and places
397Version 1.1.2, June 1999

A.2.5 GMatrix Class MATH OBJECTS

398

sec-

e of

ues

rix.
ix.
in

ll

sed,
hose
the result intothis. The secondsub method subtracts matrixm2 from matrixm1
and places the result into the matrixthis.

public final void negate()
public final void negate(GMatrix m1)

The first method negates the value of this matrix in place (this = –this). The
ond method sets the value of this matrix to the negation of the matrixm1 (this =
–m1).

public final void invert()
public final void invert(GMatrix m1)

The first method inverts this matrix in place. The second method sets the valu
this matrix to the inverse of the matrixm1.

public final void setIdentity()

This method sets this GMatrix to the identity matrix.

public final void setZero()

This method sets all the values in this matrix to zero.

public final void identityMinus()

This method subtracts this matrix from the identity matrix and puts the val
back intothis (this = I – this).

public final void copySubMatrix(int rowSource, int colSource,
int numRow, int numCol, int rowDest, int colDest,
GMatrix target)

This method copies a submatrix derived from this matrix into the target mat
TherowSource andcolSource parameters define the upper left of the submatr
The numRow andnumCol parameters define the number of rows and columns
the submatrix. The submatrix is copied into the target matrix starting at (rowD-

est, colDest). Thetarget parameter is the matrix into which the submatrix wi
be copied.

public final void setSize(int nRow, int nCol)

This method changes the size of this matrix dynamically. If the size is increa
no data values will be lost. If the size is decreased, only those data values w
matrix positions were eliminated will be lost.
Java 3D API Specification

MATH OBJECTS GMatrix Class A.2.5

the
in

r of

to
public final void set(double matrix[])
public final void set(GMatrix m1)
public final void set(Matrix3f m1)
public final void set(Matrix3d m1)
public final void set(Matrix4f m1)
public final void set(Matrix4d m1)

The first set method sets the values of this matrix to the values found in
matrix array parameter. The values are copied in one row at a time,
row-major fashion. The array should be at least equal in length to the numbe
matrix rows times the number of matrix columns in this matrix. The secondset

method sets the values of this matrix to the values found in matrixm1. The last
four set methods set the values of this matrix to the values found in matrixm1.

public final void get(Matrix3d m1)
public final void get(Matrix3f m1)
public final void get(Matrix4d m1)
public final void get(Matrix4f m1)
public final void get(GMatrix m1)

The first two methods place the values in the upper 3× 3 of this matrix into the
matrix m1. The next two methods place the values in the upper 4× 4 of this
matrix into the matrixm1. The final method places the values in this matrix in
the matrixm1. Matrix m1 should be at least as large as this matrix.

public final int getNumRow()
public final int getNumCol()

The getNumRow method returns the number of rows in this matrix. ThegetNum-

Col method returns the number of columns in this matrix.

public final void setElement(int row, int column, double value)
public final double getElement(int row, int column)

These methods set and retrieve the value at the specifiedrow andcolumn of this
matrix.

public final void setRow(int row, double array[])
public final void setRow(int row, GVector vector)
public final void getRow(int row, double array[])
public final void getRow(int row, GVector vector)
public final void setColumn(int col, double array[])
public final void setColumn(int col, GVector vector)
public final void getColumn(int col, double array[])
public final void getColumn(int col, GVector vector)
399Version 1.1.2, June 1999

A.2.5 GMatrix Class MATH OBJECTS

400

his
ray
c-

f

are

. Two

ta

turns
ThesetRow methods copy the values from the array into the specified row of t
matrix. ThegetRow methods place the values of the specified row into the ar
or vertex. ThesetColumn methods copy the values from the array into the spe
ified column of this matrix or vector. ThegetColumn methods place the values o
the specified column into the array or vector.

public final void setScale(double scale)

This method sets this matrix to a uniform scale matrix, and all of the values
reset.

public final void mulTransposeBoth(GMatrix m1, GMatrix m2)
public final void mulTransposeRight(GMatrix m1, GMatrix m2)
public final void mulTransposeLeft(GMatrix m1, GMatrix m2)

ThemulTransposeBoth method multiplies the transpose of matrixm1 (left) times
the transpose of matrixm2 (right) and places the result into this matrix. Themul-

TransposeRight method multiplies matrixm1 times the transpose of matrix m2
and places the result back into this matrix. ThemulTransposeLeft method mul-
tiplies the transpose of matrixm1 times matrixm2 and places the result into this
matrix.

public final void transpose()
public final void transpose(GMatrix m1)

The firsttranspose method transposes this matrix in place. The secondtrans-

pose method places the matrix values of the transpose of matrixm1 into this
matrix.

public String toString()

This method returns a string that contains the values of this GMatrix.

public int hashCode()

This method returns a hash number based on the data values in this object
different GMatrix objects with identical data values (that is,equals(GMatrix)

returnstrue) will return the same hash number. Two objects with different da
members may return the same hash value, although this is not likely.

public boolean equals(GMatrix m1)
public boolean equals(Object o1)

The first method returnstrue if all of the data members of GMatrixm1 are equal
to the corresponding data members in this GMatrix. The second method re
Java 3D API Specification

MATH OBJECTS GMatrix Class A.2.5

s

rix
f

ele-

are
nal

r to
od
was
true if the Objecto1 is of type GMatrix and all of the data members ofo1 are
equal to the corresponding data members in this GMatrix.

public boolean epsilonEquals(GMatrix m1, float epsilon)

Deprecated method. See the next method.

public boolean epsilonEquals(GMatrix m1, double epsilon)

This method returnstrue if the L∞ distance between this GMatrix and GMatrix
m1 is less than or equal to theepsilon parameter. Otherwise, this method return
false. The L∞ distance is equal to

MAX[i = 0,1,2,… n; j = 0,1,2,… n; abs(this.m(i,j) – m1.m(i,j)]

public final double trace()

This method returns the trace of this matrix.

public final int SVD(GMatrix U, GMatrix W, GMatrix V)

The SVD method finds the singular value decomposition (SVD) of this mat
such thatthis = U * W * VT, and returns the rank of this matrix. The values o
U, W, andV are all overwritten. Note that the matrixV is output asV and notVT.
If this matrix ism × n, thenU is m × m, W is a diagonal matrix that ism × n, and
V is n × n. The inverse of this matrix isthis–1 = V * W–1 * UT, whereW–1 is a
diagonal matrix computed by taking the reciprocal of each of the diagonal
ments of matrixW.

public final int LUD(GMatrix LU, GVector permutation)

The LUD method performs an LU decomposition. This matrix must be a squ
matrix, and theLU parameter must be the same size as this matrix. The diago
elements ofL (unity) are not stored. Thepermutation parameter records the
row permutation affected by the partial pivoting, and is used as a paramete
the GVectorLUDBackSolve method to solve sets of linear equations. This meth
returns +1 or –1, depending on whether the number of row interchanges
even or odd, respectively.
401Version 1.1.2, June 1999

Version 1.1.2, June 1999
A P P E N D I X B

n

sed
just
bing
fica-
rt of
pen-

rep-
enta-
gh

t the
ts to
sure
itly
nge
cu-
om-

is
fea-

ille-
”
nta-
of
3D Geometry Compressio

JAVA 3D allows programmers to specify geometry using a binary compres
geometry format. This compression format is used with APIs other than
Java 3D, and can be used both as a runtime in-memory format for descri
geometry, as well as a storage and network format. Eventually the full speci
tion of the compressed geometry format described in this section will be pa
its own stand-alone specification, but for completeness it is included as an ap
dix to the early specification of the Java 3D API.

Java 3D uses a compressed geometry format that allows 3D geometry to be
resented in an order of magnitude less space than most traditional 3D repres
tions, with very little loss in object quality. The compression is achieved throu
several layers of techniques.

For a binary format to be useful as an interchange format, it is essential tha
format be thoroughly and unambiguously documented. This appendix attemp
completely specify all the details of the compressed geometry format. To en
current and future compatibility, it is essential to only use the features explic
specified in this document. For a binary format to be useful as an intercha
format, it is essential that the format be thoroughly and unambiguously do
mented. This appendix attempts to completely specify all the details of the C
pressed Geometry format. To insure current and future compatibility, it
essential to only use the features explicitly specified in this document. Any
tures, fields, usage, etc. not specified in the document should be considered
gal, and their usage would result ininvalid Compressed Geometry data. “Invalid
means that using such a construct will be incompatible with current impleme
tions or will break future implementations. This document will point out many
the constructs that would case the data to be invalid.
403

B.1 Compression 3D GEOMETRY COMPRESSION

404

form,

the
bits

esults
ele-

even

locks
rsing
nner,
ng.

cepts
re an

nd

e-

-

B.1 Compression

First, the geometry to be compressed is converted into a generalized mesh
which allows a triangle to be, on average, specified by 0.80 vertices.

Next the data for each vertex component of the geometry is converted to
most efficient representation format for its type and then quantized to as few
as possible.

These quantized bits are differenced between successive vertices, and the r
are modified Huffman encoded into self-describing variable-bit-length data
ments.

Finally, these variable-length elements are strung together using Java 3D’s s
geometry instructions into a final compressed geometry block.

B.2 Decompression

For pure software implementations, upon receipt, compressed geometry b
are decompressed into the local host’s preferred geometry format by reve
the above process. This decompression can be performed in a lazy ma
avoiding full expansion into memory until the geometry is needed for renderi

B.3 Appendix Organization

Before the bit details of the compression can be specified, several of the con
used in compressed geometry need elaboration. The first several sections a
expansion of our SIGGRAPH '95 paper on compressed geometry.1

• Generalized Triangle Strip. This section is a refresher on the concept a
semantics of a generalized triangle strip.

• Generalized Triangle Mesh. This section introduces the concept and s
mantics of a generalized triangle mesh.

• Position Representation and Quantization. This section describes the
fixed-point format used for 3D positional representation.

• Color Representation and Quantization. This section describes the fixed
point format used for color representation.

1. Deering, Michael. “Geometry Compression.”Computer Graphics Proceedings, Annual
Conference Series, 1995, ACM SIGGRAPH, pp 13–19.
Java 3D API Specification

3D GEOMETRY COMPRESSION Generalized Triangle Strip B.4

l
oint

-

metry

nd
s a
ertex
ce-
sed

erti-

be
cor-

ip).
d,
s the

d,
must
ent

le
truc-
trian-
e

• Normal Representation and Quantization. This section describes a nove
folded table based representation of surface normals, and the fixed-p
format of the resultant normals.

• Modified Huffman Encoding. This section describes the variant of Huff
man delta encoding used for compressed geometry.

• Compressed Geometry Instructions. This section gives an overview of the
seven compressed geometry instructions.

• Semantics of Compressed Geometry Instructions. This section contains
pseudo code to document the detailed semantics of compressed geo
instruction execution.

• Compressed Geometry Assembly Syntax. This section gives an overview of
the assembly syntax for compressed geometry instructions.

B.4 Generalized Triangle Strip

A generalized triangle strip is a generalization of the concept of a “zig-zag” a
“star” triangle strip. It is a sequence of vertices in which each vertex contain
two-bit replacement code. This replacement code defines how the present v
is to be combined with previous vertices to form the next triangle. The repla
ment bits can also be thought of as a generalization of the “move/draw” bit u
for lines.

A stack of the last three vertices used to form a triangle is kept. The three v
ces are labeled oldest, middle, and newest. An incoming vertex of typereplace_

oldest causes the oldest vertex to be replaced by the middle, the middle to
replaced by the newest, and the incoming vertex to become the newest. This
responds to a PHIGS PLUS triangle strip (sometimes called a “zig-zag” str
The replacement typereplace_middle leaves the oldest vertex unchange
replaces the middle vertex by the newest, and the incoming vertex become
newest. This corresponds to a triangle star or fan.

The replacement typerestart marks the oldest and middle vertices as invali
and the incoming vertex becomes the newest. Generalized triangle strips
always start with this code. A triangle will be output only when a replacem
operation results in three valid vertices.

Restart corresponds to a “move” operation in polylines, and allows multip
unconnected variable-length triangle strips to be described by a single data s
ture passed in by the user, greatly reducing the overhead. The generalized
gle strip’s ability to effectively change from “strip” to “star” mode in the middl
405Version 1.1.2, June 1999

B.4 Generalized Triangle Strip 3D GEOMETRY COMPRESSION

406

and
es of
single

ock-
sys-
of a strip allows more complex geometry to be represented compactly,
requires less input data bandwidth. The restart capability allows several piec
disconnected geometry to be passed as one data block. Figure B-1 shows a
generalized triangle strip and the associated replacement codes.

Triangles are normalized such that the front face is always defined by a cl
wise vertex order after transformation (assuming a right-handed coordinate
tem). To support this, there are two flavors of restart:restart_clockwise and
restart_counterclockwise. The vertex order is reversed after everyreplace_

oldest, but remains the same after everyreplace_middle.

Figure B-1 A Generalized Triangle Strip

1

2

3

4

5

6

78

9 10

11

1213

14

15

16

17

18

19

20

22

23

24

25

26

27

28

29

30
31

32

33

21

 1 Restart
 2 RO
 3 RO
 4 RO
 5 RO
 6 RO
 7 Restart
 8 RO
 9 RO
10 RM
11 RM
12 RM
13 RM
14 RM
15 Restart
16 RO
17 RO
18 Restart
19 RO
20 RO
21 RO
22 Restart
23 RO
24 RO
25 RO
26 RO
27 RO
28 RO
29 RM
30 RM
31 RM
32 RM
33 RO

Triangle Strip

Triangle Star

Independent
Triangle

Independent
Quad

Mixed Strip

Vertex Codes

RO = Replace Oldest
RM = Replace Middle
Java 3D API Specification

3D GEOMETRY COMPRESSION Generalized Triangle MeshB.5

effi-

act
, the
data
ata

ng is

at
ry in
B.5 Generalized Triangle Mesh

The first stage of compressed geometry is to convert triangle data into an
cient linear strip form: thegeneralized triangle mesh. This is a near-optimal rep-
resentation of triangle data, given fixed storage.

The existing concept of a generalized triangle strip structure allows for comp
representation of geometry while maintaining a linear data structure. That is
geometry can be extracted by a single monotonic scan over the vertex array
structure. This is very important for pipelined hardware implementations, a d
format that requires random access back to main memory during processi
very problematic.

However, by confining itself to linear strips, the generalized triangle strip form
leaves a potential factor of two (in space) on the table. Consider the geomet
Figure B-2.

Figure B-2 A Generalized Triangle Strip

1
2 3

4 5

6
7

8
9 10 11

12

13
14 15 16

17

18 19 20
21

22
23 24

25 26
27 28

29
30

Generalized Triangle Strip:
R6, O1, O7, O2, O3, M4, M8, O5, O9, O10, M11,
M17, M16, M9, O15, O8, O7, M14, O13, M6,

Start

O12, M18, M19, M20, M14, O21, O15, O22, O16,
O23, O17, O24, M30, M29, M28, M22, O21, M20,
M27, O26, M19, O25, O18

Generalized Triangle Mesh:
R6p, O1, O7p, O2, O3, M4, M8p, O5, O9p, O10, M11,
M17p, M16p, M-3, O15p, O-5, O6, M14p, O13p, M-9,
O12, M18p, M19p, M20p, M-5, O21p, O-7, O22p, O-9,
O23, O-10, O-7, M30, M29, M28, M-1, O-2, M-3,
M27, O26, M-4, O25, O-5

Legend:
First letter: R = Restart, O = Replace Oldest, M = Replace Middle
Trailing “p” = push into mesh buffer
Number is vertex number, -number is mesh buffer reference
where -1 is most recent pushed vertex.
407Version 1.1.2, June 1999

B.5 Generalized Triangle Mesh 3D GEOMETRY COMPRESSION

408

ces
fer-
ffer to
rac-
esh

s this
f-
sup-
nize
g a

ssed
com-
l, but
us a
etry
eral

ment
lock-
der to
esh
ex
esh

s

nd/
stor-
nd

am,
the

d/or
While it can be represented by one triangle strip, many of the interior verti
appear twice in the strip. This is inherent in any approach wishing to avoid re
ences to old data. Some systems have tried using a simple regular mesh bu
support reuse of old vertices, but there is a problem with this approach in p
tice: In general, geometry does not come in a perfectly regular rectangular m
structure.

The generalized technique employed by compressed geometry addresse
problem. Old vertices areexplicitly pushed into a queue, and then explicitly re
erenced in the future when the old vertex is desired again. This fine control
ports irregular meshes of nearly any shape. Any viable technique must recog
that storage is finite; thus the maximum queue length is fixed at 16, requirin
four-bit index. We refer to this queue as themesh buffer. The combination of
generalized triangle strips and mesh buffer references is referred to as ageneral-
ized triangle mesh.

The fixed mesh buffer size requires all tessellators or restripifiers for compre
geometry to break up any runs longer than 16 unique references. Since
pressed geometry is not meant to be programmed directly at the user leve
rather by sophisticated tessellators or reformatters, this is not too onero
restriction. Sixteen old vertices allow up to 94 percent of the redundant geom
to avoid being respecified. Figure B-2 also contains an example of a gen
mesh buffer representation of the surface geometry.

The language of compressed geometry supports the four vertex replace
codes of generalized triangle strips (replace oldest, replace middle, restart c
wise, and restart counterclockwise), and adds another bit in each vertex hea
indicate if this vertex should be pushed into the mesh buffer or not. The m
buffer reference instruction has a four-bit field to indicate which old vert
should be re-referenced, along with the two-bit vertex replacement code. M
buffer reference instructions donot contain a mesh buffer push bit; old vertice
can only be recycled once.

Geometry rarely is composed purely of positional data; generally a normal a
or color are also specified per vertex. Therefore, mesh buffer entries contain
age for all associated per-vertex information (specifically including normal a
color).

For maximum space efficiency, when a vertex is specified in the data stre
(per-vertex) normal and/or color information should be directly bundled with
position information. This bundling is controlled by two state bits:bundle nor-
mals with vertices(bnv), andbundle colors with vertices(bcv). When a vertex is
pushed into the mesh buffer, these bits control whether its bundled normal an
Java 3D API Specification

3D GEOMETRY COMPRESSION Position Representation and QuantizationB.6

cess
ited

tant
is

tion
ed for

er-
to

t the
n a
the
ed;
n of
rted

spec-
l

thout
than

ach
lized
eed

of
com-
situ-
etry.

ere
ll.
color are pushed as well. During a mesh buffer reference instruction, this pro
is reversed. The two bits specify if a normal and/or color should be inher
from the mesh buffer storage, or inherited from thecurrent normalor current
color.

There are explicit instructions for setting these two current values. An impor
exception to this rule occurs when an explicit “set current normal” instruction
followed by a mesh buffer reference, with thebnv state bit active. In this case,
the former overrides the mesh buffer normal. This allows compact representa
of hard edges in surface geometry. The analogous semantics are also defin
colors, allowing compact representation of hard edges in textures.

B.6 Position Representation and Quantization

The 8-bit exponent of 32-bit IEEE floating-point numbers allows positions lit
ally to span the known universe: from a scale of 100 billion light years, down
the radius of subatomic particles. However, for any given tessellated objec
exponent is really specified just once by the current modeling matrix; withi
given modeling space, the object geometry is effectively described with only
24-bit fixed-point mantissa. Visually, in many cases far fewer bits are need
thus the language of compressed geometry supports variable quantizatio
position data down to as little as one bit. The maximum number of bits suppo
is at most 16 bits of precision per component of position.

We still assume that the position and scale of the local modeling spaces are
ified by full 32-bit or 64-bit floating-point coordinates. If sufficient numerica
care is taken, multiple such modeling spaces can be stitched together wi
cracks, forming seamless geometry coordinate systems with much greater
16-bit positional precision.

Most geometry is local, so within the 16-bit (or less) modeling space (of e
object), the delta difference between one vertex and the next in the genera
mesh buffer stream is very likely to be less than 16 bits in significance. Ind
one can histogram the bit length of neighboring position deltas in a batch
geometry and, based on this histogram, assign a variable-length code to
pactly represent the vertices. The typical coding used in many other similar
ations is customized Huffman code; this is the case for compressed geom
The details of the coding of position deltas will be postponed until later, wh
they can be discussed in the context of color and normal delta coding as we
409Version 1.1.2, June 1999

B.7 Color Representation and Quantization 3D GEOMETRY COMPRESSION

410

hus
d a
near
nal
than

ge;
col-

ions.
age

ore
color

com-
es-
ray,
s. In
n the

yed
olor
olor
nsity)

it up
f this
xed.
t or
way

onal
forms
arge
B.7 Color Representation and Quantization

We treat colors similar to positions, but without using negative values. T
RGBα color data is first quantized to 15-bit unsigned fraction components, an
zero sign bit added to form a 16-bit signed number. These are absolute li
reflectivity values, with 1.0 representing 100 percent reflectivity. An additio
parameter allows color data to be quantized effectively to any amount less
16 bits; that is, the colors can all be within a 5-5-5 RGB color space. (Theα field
is optional, controlled by thecolor alpha present(cap) state bit.) Note that this
decision doesnot necessarily cause mach banding on the final rendered ima
individual pixel colors are still interpolated between these quantized vertex
ors, and vertices also are subject to lighting.

The same delta coding is used for color components as is used for posit
Compression of color data is where compressed geometry and traditional im
compression face the most similar problem. However, many of the m
advanced techniques for image compression were rejected for geometry
compression because of the difference in focus.

Image compression makes several assumptions about the viewing of the de
pressed data thatcannotbe made for compressed geometry. In image compr
sion, it is known a priori that the pixels appear in a perfectly rectangular ar
and that when viewed, each pixel subtends a narrow range of visual angle
compressed geometry, one has almost no idea what the relationship betwee
viewer and the rasterized geometry will be.

In image compression, it is known that the spatial frequency of the displa
pixels on the viewer’s eyes is likely higher than the human visual system’s c
acuity. This is why colors are usually converted to yuv space, so that the uv c
components can be represented at a lower spatial frequency than the y (inte
component.

Usually the digital bits representing the subsampled uv components are spl
among two or more pixels. Compressed geometry cannot take advantage o
because the display scale of the geometry relative to the viewer’s eye is not fi
Also, given that compressed triangle vertices are connected to four to eigh
more other vertices in the generalized triangle mesh, there is no consistent
of sharing “half” the color information across vertices.

Similar arguments apply for the more sophisticated transforms used in traditi
image compression, such as the discrete cosine transform. These trans
assume a regular (rectangular) sampling of pixel values, and require a l
amount of random access during decompression.
Java 3D API Specification

3D GEOMETRY COMPRESSION Normal Representation and QuantizationB.8

d of
EE
nsi-

very
ngles
ith

the
.
ri-

ld
. If

ation

ely
The

ving
mal
pe-

han
ined
were
out
nor-
po-

sted
y of
f this
B.8 Normal Representation and Quantization

Probably the most innovative concept in compressed geometry is the metho
compressing surface normals. Traditionally, 96-bit normals (three 32-bit IE
floating-point numbers) are used in calculations to determine 8-bit color inte
ties. Theoretically, 96 bits of information could be used to represent 296 different
normals, spread evenly over the surface of a unit sphere. This is a normal e
2–46 radians in any direction. Such angles are so exact that spreading out a
evenly in every direction from earth, you could point out any rock on Mars w
subcentimeter accuracy.

But for normalized normals, the exponent bits are effectively unused. Given
constraint |N| = 1, at least one ofNx, Ny, or Nz must be in the range of 0.5 to 1.0
During rendering, this normal will be transformed by a composite modeling o
entation matrixT: N' = N ⋅ T.

Assuming the typical implementation in which lighting is performed in wor
coordinates, the view transform is not involved in the processing of normals
the normals have been pre-normalized, then to avoid redundant renormaliz
of the normals, the composite modeling transformation matrixT is typically pre-
normalized to divide out any scale changes, and thus

T0,0
2 + T1,0

2 + T2,0
2 = 1, etc.

During the normal transformation, floating-point arithmetic hardware effectiv
truncates all additive arguments to the accuracy of the largest component.
result is that for a normalized normal being transformed by a scale-preser
modeling orientation matrix, the numerical accuracy of the transformed nor
value is reduced to no more than 24-bit fixed-point accuracy in all but a few s
cial cases.

Even 24-bit normal components are still much higher in angular accuracy t
the (repaired) Hubble space telescope. After empirical tests, it was determ
that an angular density of 0.01 radians between normals gave results that
not visually distinguishable from finer representations. This works out to ab
100,000 normals distributed over the unit sphere. In rectilinear space, these
mals still require high accuracy of representation; we chose to use 16-bit com
nents that include one sign and one guard bit.

This still requires 48 bits to represent a normal. But since we are only intere
in 100,000 specific normals, in theory a single 17-bit index could denote an
these normals. The next section shows how it is possible to take advantage o
observation.
411Version 1.1.2, June 1999

B.8.1 Normals as Indices 3D GEOMETRY COMPRESSION

412

mal

d to

ther
s of
sent
e is
ill

s by

with

nly
his
-bit

the
tion
s in
ove

ional

ore
ity
ery

s in
nit
are

ere

not
re-
B.8.1 Normals as Indices

The most obvious hardware implementation for converting an index of a nor
on the unit sphere back into anNx Ny Nz value is by table look-up. The problem
is the size of the table. Fortunately, several symmetry tricks can be applie
greatly reduce the size of the table (by a factor of 48).

First, the unit sphere is symmetrical in the eight quadrants by sign bits. In o
words, if we let three of the normal representation bits be the three sign bit
the XYZ components of the normal, then we only need to find a way to repre
one eighth of the unit sphere. The all positive sign bit octant of the unit spher
shown in bold outline on the left half of Figure B-3. This 000 sign bit octant w
be referred to as theprime octant.

Second, each octant of the unit sphere can be split up into six identical piece
folding about the planesX = Y, X = Z, andY = Z. Such a division of the prime
octant is shown in Figure B-3. The six possible sextants are encoded
another three bits. Now only 1/48 of the sphere remains to be represented.

This reduces the 100,000-entry look-up table by a factor of 48, requiring o
about 2,000 entries, small enough to fit into an on-chip ROM look-up table. T
table needs 11 address bits to index into it, so including our previous two 3
fields, the result is a grand total of 17 bits for all three normal components.

Representing a finite set of unit normals is equivalent to positioning points on
surface of the unit sphere. While no perfectly equal angular density distribu
exists for large numbers of points, many near-optimal distributions exist. Thu
theory one of these with the same sort of 48-way symmetry described ab
could be used for the decompression look-up table. However, several addit
constraints mandate a different choice of encoding:

• We desire a scalable density distribution in which zeroing more and m
of the low-order address bits to the table still results in fairly even dens
of normals on the unit sphere. Otherwise a different look-up table for ev
encoding density would be required.

• We desire a delta-encodable distribution. Statistically, adjacent vertice
geometry will have normals that are nearby on the surface of the u
sphere. Nearby locations on the 2D space of the unit-sphere surface
most succinctly encoded by a 2D offset. We desire a distribution wh
such a metric exists.

• Finally, while the computational cost of the normal encoding process is
too important, in general, distributions with lower encoding costs are p
ferred.
Java 3D API Specification

3D GEOMETRY COMPRESSION Normal Encoding ParameterizationB.8.2

ithin
, all
6-bit
posi-
6-bit
epre-
can

igh-

rdi-

xist
etry,

t, in

ters is

rical
i-
For all these reasons, we decided to use a regular grid in the angular space w
one sextant as our distribution. Thus, rather than a monolithic 11-bit index
normals within a sextant are much more conveniently represented as two
orthogonal angular addresses, revising our grand total to 18 bits. Just as for
tions and colors, if more quantization of normals is acceptable, then these
indices can be reduced to fewer bits, and thus absolute normals can be r
sented using anywhere from 18 to as few as 6 bits. But as will be seen, we
delta-encode this space, further reducing the number of bits required for h
quality representation of normals.

B.8.2 Normal Encoding Parameterization

Points on a unit radius sphere are parameterized by two angles,θ and φ, using
spherical coordinates.θ is the angle about the Y-axis;φ is the longitudinal angle
from the y = 0 plane. The mapping between rectangular and spherical coo
nates is as follows:

(B.1)

Note that many different incompatible definitions of spherical coordinates e
within mathematics and engineering. For the purposes of compressed geom
spherical coordinates used are those defined by equation B.1.

Points on the sphere are folded first by octant, and then by sort order ofxyz into
one of six sextants. All the table encoding takes place in the positive octan
the region bounded by the half spaces:

This triangular-shaped patch runs from 0 toπ/4 radians inθ, and from 0 to as
much as 0.615479709 radians inφ: φmax.

Quantized angles are represented by twon-bit integers and , wheren is in
the range of 0 to 6. The sextant coordinate system defined by these parame
shown in Figure B-4, for the case ofn = 6. For a givenn, the relationship
between these indicesθ andφ is

(B.2)

These two equations show how values of and can be converted to sphe
coordinatesθ andφ, which in turn can be converted to rectilinear normal coord
nate components via equation B.1.

x θcos φcos⋅= y φsin= z θsin φcos⋅=

x z≥ z y≥ y 0≥

θ̂n φ̂n

θ θ̂n() φmax n θ̂n–() 2
n⁄⋅()tanasin=

φ φ̂n() φmax φ̂n 2
n⁄⋅=

θ̂n φ̂n
413Version 1.1.2, June 1999

B.8.3 Special Warping Rules for Delta Normals 3D GEOMETRY COMPRESSION

414

f

ost

es,

t the
. By
n be

ls).

iven
and

mon
three
To reverse the process, for example, to encode a given normaln into and ,
one cannot just invert equation B.2. Instead, then must first be folded into the
canonical octant and sextant, resulting inn'. Then n' must be dotted with all
quantized normals in the sextant. For a fixedn, the values of and that
result in the largest (nearest unity) dot product define the proper encoding on.

Now the complete bit format of absolute normals can be given. The upperm
three bits specify the sextant, the next three bits the octant, and finally twon-bit
fields specify and . The three-bit sextant field takes on one of six valu
the binary codes for which are shown in Figure B-3.

Figure B-3 Encoding of the Six Sextants of Each Octant of a Sphere

This discussion has ignored some details. In particular, the three normals a
corners of the canonical patch are multiply represented (6, 8, and 12 times)
employing the two unused values of the sextant field, these normals ca
uniquely encoded as special normals. Thenormal sub-instruction describes the
special encoding used for two of these corner cases (14 total special norma

This representation of normals is amenable to delta encoding. Within a g
sextant, the delta code between two normals is simply the difference in

: and .

B.8.3 Special Warping Rules for Delta Normals

With some additional work, this can be extended to sextants that share a com
edge. First we must define how sextants border each other. Consider the

θ̂n φ̂n

θ̂n φ̂n

θ̂n φ̂n

001

000

010

011

100

101

x < y

x = y

x >

x > zx = zx < z

y < z

y = z

y > z

X

Y

Z

θ̂n

φ̂n ∆θ̂n ∆φ̂n
Java 3D API Specification

3D GEOMETRY COMPRESSION Special Warping Rules for Delta NormalsB.8.3

xam-
een
lly in
edges of the sextant coordinate system as defined in Figure B-4, and also e
ine Figure B-3 to see the sextant connectivity within an octant and betw
octants. The three possible neighbors of a sextant are shown schematica
Figure B-5.

Figure B-4 Sextant Coordinates

θ̂n

φ̂n

0 8 16 24 32 40 48 56 64
0

8

16

24

32

40

48

56

64
001

000

010

011

100

101
415Version 1.1.2, June 1999

B.8.3 Special Warping Rules for Delta Normals 3D GEOMETRY COMPRESSION

416

tant,
of a
ex-

d by
g-
tant
r

ant
ge
Figure B-5 Sextant Neighbors and Their Relationships

The left edge of a sextant will always be another sextant within the same oc
as will be the diagonal edge of a sextant. Note that the coordinate system
sextant is only defined for coordinate values in the triangular region of the s
tant. For a given value ofn (in the range of 1 to 6), wheren is the number of bits
of quantization of the sextant coordinates, the valid coordinates are bounde

≥ 0, ≥ 0, and + ≤ 2n. For any given sextant number, the left and dia
onal neighbors of that sextant are explicitly known. The bottom edge of a sex
will be the samesextant number, but in a different octant. The octant will diffe
from the current octant by the flip of exactly one of the sign bits. Which oct
sign bit will be flipped is also explicitly known. The rules for finding each ed
neighbor for any sextant are given in Table B-1.

Table B-1 Sextant Neighbors

Sextant Left Neighbor Diagonal Neighbor Bottom Neighbor

sextant 000 sextant 100 sextant 010 flip octant y

sextant 001 sextant 101 sextant 011 flip octant x

sextant 010 sextant 011 sextant 000 flip octant z

sextant 011 sextant 010 sextant 001 flip octant z

sextant 100 sextant 000 sextant 101 flip octant y

sextant 101 sextant 001 sextant 100 flip octant x

sextant

left
neighbor

neighbor
bottom

neighbor
diagonal

flip one bit of octant number

invert θ̂n
θ̂n 2n - and 2n -φ̂n

update sextantupdate sextant

θ̂n φ̂n θ̂n φ̂n
Java 3D API Specification

3D GEOMETRY COMPRESSION Special Warping Rules for Delta NormalsB.8.3

olute
num-
rules
tation
, and
to

om-
lues
or-
nt or
t.

ant

tant

es in

d is

po-
e
rmal-
In Compressed Geometry, all component delta fields and all component abs
fields (except component absolute normal fields) are represented by signed
bers. For each different coordinate component type, there are different wrap
for what happens when a delta component overflows the absolute represen
range. For positions, both positive and negative component values are legal
overflowing past the largest positive component value is explicitly defined
wrap the coordinate to negative values, and overflowing the most negative c
ponent value wraps to the positive values. For colors, negative component va
are illegal, and wrapping out of the positive component values is illegal. For n
mals, special wrapping rules allow delta values to change the current sexta
octant in certain cases, without explicitly specifying the new sextant or octan

The special rules for wrapping during normal deltas are:

• Normal Case:

if + ≥ 0 , + ≥ 0, + + + ≤ 2n :

new ← + , new ← + ,

current sextant and octant unchanged.

• Left Edge Wrap Case:

if + < 0 , + ≥ 0, -(+)+ + ≤ 2n :

new ← −(+), new ← + ,

current sextant updated from left edge rules in Table B-1, current oct
unchanged.

• Diagonal Edge Wrap Case:

if + ≥ 0 , + ≥ 0, + + + > 2n :

new ← 2n - (+) , new ← 2n - (+) ,

current sextant updated from diagonal edge rules in Table B-1, current oc
unchanged.

• Bottom Edge Wrap Case:

if + ≥ 0 , + < 0, + − (+) ≤ 2n :

new ← + , new ← −(+) ,

current sextant unchanged, current octant updated from bottom edge rul
Table B-1.

Any wrap that does not fall into one of these categories is an illegal delta, an
not allowed within a valid Compressed Geometry stream.

(Note that while the wrapping is defined here in terms of a given normal com
nent quantization valuen, in most implementations the wrapping would b
applied after the current component values and delta values have been no
ized into the greatest allowed values, e.g.,n = 6.)

θ̂n ∆θ̂n φ̂n ∆φ̂n θ̂n ∆θ̂n φ̂n ∆φ̂n

θ̂n θ̂n ∆θ̂n φ̂n φ̂n ∆φ̂n

θ̂n ∆θ̂n φ̂n ∆φ̂n θ̂n ∆θ̂n φ̂n ∆φ̂n

θ̂n θ̂n ∆θ̂n φ̂n φ̂n ∆φ̂n

θ̂n ∆θ̂n φ̂n ∆φ̂n θ̂n ∆θ̂n φ̂n ∆φ̂n

θ̂n θ̂n ∆θ̂n φ̂n φ̂n ∆φ̂n

θ̂n ∆θ̂n φ̂n ∆φ̂n θ̂n ∆θ̂n φ̂n ∆φ̂n

θ̂n θ̂n ∆θ̂n φ̂n φ̂n ∆φ̂n
417Version 1.1.2, June 1999

B.9 Modified Huffman Encoding 3D GEOMETRY COMPRESSION

418

bit
ional

nted,
ols.
that
bits,

gs to
is

s of
ed

sent
ese
uter
bits,

label;
lue

both

ce.
is

ag to

ique
gs by

com-

e

B.9 Modified Huffman Encoding

There are many techniques known for minimally representing variable-length
fields. For compressed geometry, we have chosen a variation of the convent
Huffman technique.

The Huffman compression algorithm takes in a set of symbols to be represe
along with frequency of occurrence statistics (histograms) of those symb
From this, variable-length, uniquely identifiable bit patterns are generated
allow these symbols to be represented with a near-minimum total number of
assuming that symbols do occur at the frequencies specified.

Many compression techniques, including JPEG, create unique symbols as ta
indicate the length of a variable-length data field that follows. This data field
typically a specific-length delta value. Thus the final binary stream consist
(self-describing length) variable-length tag symbols, each immediately follow
by a data field whose length is associated with that unique tag symbol.

The binary format for compressed geometry uses this technique to repre
position, normal, and color data fields. For compressed geometry, th
<tag, data> fields are immediately preceded by (a more conventional comp
instruction set) opcode field. These fields, plus potential additional operand
are referred to asgeometry instructions(see Figure B-6).

Traditionally, each value to be compressed is assigned its own associated
for example, an XYZ delta position would be represented by three tag/va
pairs. However, the delta XYZ values are not uncorrelated, and we can get
a denser and simpler representation by taking advantage of this fact.

In general, the XYZ deltas statistically point equally in all directions in spa
This means that if the number of bits to represent the largest of these deltasn,
then statistically the other two delta values require an average ofn – 1.4 bits for
their representation. Thus we made the decision to use a single field-length t
indicate the bit length of∆X, ∆Y, and∆Z.

This also means that we cannot take advantage of another Huffman techn
that saves somewhat less than one more bit per component, but our bit savin
not having to specify two additional tag fields (for∆Y and ∆Z) outweigh this. A
single tag field also means that a hardware decompression engine can de
press all three fields in parallel, if desired.

Similar arguments hold for deltas of RGBα values, and so here also a singl
field-length tag indicates the bit-length of the∆R, ∆G, ∆B, and∆α (if present)
fields.
Java 3D API Specification

3D GEOMETRY COMPRESSION Compressed Geometry InstructionsB.10

(n),

ue
en-
ck
The

data

very
bso-
ren-
s are

ple-
into
sent
time
laced
e

n
spe-
ent.

ed in
rief
ese

ce
Both absolute and delta normals are also parameterized by a single value
which can be specified by a single tag.

We chose to limit the length of the Huffman tag field to the relatively small val
of six bits. This was done to facilitate high-speed, low-cost hardware implem
tations. (A 64-entry tag look-up table allows decoding of tags in one clo
cycle.) Three such tables exist: one each for positions, normals, and colors.
tables contain the length of the tag field, the length of the data field(s), a
normalization coefficient (the up-shift), and an absolute/relative bit.

The tag field can be 0 to 6 bits in length. Zero-length tags are used when e
entry in the table is identical; same data length, same up-shift, and same a
lute/relative bit. The tag becomes irrelevant because there is nothing to diffe
tiate. In general, there are only a few specialized cases where zero length tag
useful.

One additional complication was required to enable reasonable hardware im
mentations. As will be seen in a later section, all instructions are broken up
an eight-bit header and a variable-length body. Sufficient information is pre
in the header to determine the length of the body. But to give the hardware
to process the header information, the header of one instruction must be p
in the stream before the body of the previous instruction. Thus the sequenc…
B0 H1B1 H2B2 H3… has to be encoded as follows:

… H1 B0 H2 B1 H3 B2…

This header forwardingis applied to all instructions. The vertex instructio
optionally had one or two sub-fields that need forwarded headers. In these
cial cases the headers are only six bits in length, because no opcode is pres

B.10 Compressed Geometry Instructions

Java 3D’s compressed geometry protocol defines seven instructions to be us
specifying 3D geometry and certain affiliated attributes. This section gives a b
overview of these instructions and some of their semantics. More detail of th
instructions, including their bit layout, is given in the following sections.

vertex

The primary instruction isvertex. A vertex instruction always specifies a 3D
position, two generalized triangle strip replacement bits (rep), and a mesh buffer
push (mbp) bit, and may optionally specify a normal and/or a color. The presen
419Version 1.1.2, June 1999

B.11 Bit Layout of Compressed Geometry Instructions 3D GEOMETRY COMPRESSION

420

lors:
ith
ls or

or
tant
lor-

ese
ter.

the

an

t
the

d of a

ion
vari-

ents
of normal or color data within avertex instruction is controlled by two state bits
known as the bundling bits:bnv andbcv, respectively.

setNormal, setColor

There are also two stand-alone instructions for specifying normals and co
setNormal and setColor. These instructions may be freely interspersed w
vertex instructions, and semantically have (nearly) the same effect as norma
colors bundled directly with a normal.

Once a color or normal value is specified, either directly or bundled with aver-

tex instruction, that color or normal will remain in effect as the current color
normal until a new value is specified. In this fashion, for example, a cons
material color may be specified to apply to a forthcoming sequence of non-co
bundled vertices.

setState

The setState instruction updates the value of the three state bits. Two of th
bits are the normal and color bundling bits; the other one will be described la

mbr (meshBufferReference)

The mbr instruction allows any of the 16 vertices most recently pushed into
mesh buffer to be reused in place of avertex instruction at this point. Two ver-
tex replacement bits are also present.

setTable

The setTable instruction allows a range of entries in one of the three Huffm
decompression tables all to be set to the same new value.

nop

The variable length no-operationnop instruction allows the compression bi
stream to be padded by a specified number of bits. This allows portions of
compression data to be 32-bit aligned when desired, as is required at the en
compressed geometry block.

B.11 Bit Layout of Compressed Geometry Instructions

Figure B-6 shows the bit-level layout of the eight geometry decompress
instructions. Each instruction has a unique opcode, and then some (possible
able) number of arguments. The actual bit length of many of the compon
Java 3D API Specification

3D GEOMETRY COMPRESSION Compressed Geometry Instruction Bit DetailsB.12

ari-

etry
ruc-
may vary, and if so, a unique (dynamic) Huffman tag at the very start of any v
able-length argument delimits the size of the argument.

B.12 Compressed Geometry Instruction Bit Details

The following subsections describe the bit details of the compressed geom
instructions, and much of their associated semantics. Along with each inst
tion, its assembly (and disassembly) syntax is described.
421Version 1.1.2, June 1999

B.12.1 nop 3D GEOMETRY COMPRESSION

422
Figure B-6 Bit Layout of Compressed Geometry Instructions

B.12.1 nop

Assembly syntax:(nop <Bit count>)

vertex

setNormal

0 1

1 1

rep

m
b
p

setColor

1 0

Position bits 0 – 5 Position bits 6 – n Normal bits Color bits

Normal bits 0 – 5 Normal bits 6 – n

Color bits 0 – 5 Color bits 6 – n

mbr (meshBufferReference)

0 0 Index1
r
e
p

setState

0 0 0 1 1

setTable

0 0 0 1 0

nop

0 0 0 0 0 Bit Count 0s0 0 1

Tag ∆X ∆Y ∆ZPosition:

Tag ∆θt ∆φtNormal:

Tag ∆R ∆G ∆BColor: ∆α

(or absolute index)

b
n
v

b
c
v

c
a
p

Table Range Entry

^ ^

0 0 0

r
e
p

0 0 0 0 0 Bit count 0-31 0’s0 0 1
Java 3D API Specification

3D GEOMETRY COMPRESSION setTableB.12.3

it
le-

e-
s to
out

are,
als

ard

ree

g is
itly
t for

ss/
hift
nge
The variable length no-operation (nop) instruction has an 8-bit opcode, a 5-b
count field, and a 0- to 31-bit field of zeros. The total length of the variab
length no-operation instruction is between 13 and 44 bits.

The variable-lengthnop instruction’s primary use is to align compressed geom
try instructions to word boundaries, when desired. This is useful if one wishe
“patch” a compressed geometry instruction in the middle of a stream with
having to bit-align the patch.

B.12.2 setState

Assembly syntax:(setState {normalsBundled}

{colorsBundled} {alphaBundled})

ThesetState instruction has a 7-bit opcode, 3 bits of state to be set, and a sp
for a total length of 11 bits. The first and second state bits indicate if norm
and/or colors will be bundled withvertex instructions, respectively. The third
state bit indicates if colors will contain an alpha value, in addition to the stand
RGB. The final state bit is unused, and reserved for future use.

In the assembly syntax, the specific unbundling of a value is indicated by th
unbundling tags: {normalsUnbundled} {colorsUnbundled} {alphaUnbun-

dled}. The six possible bundling can be combined in almost any order. If a ta
not present for either bundling or unbundling a value, then the value is implic
unbundled. It is an error to have both a bundled and unbundled tag presen
the same value in the samesetState instruction.

B.12.3 setTable

Assembly syntax:(setTable <Table> <start fill>-<end fill>

<Data Length> <Up-shift> <A/R>)

ThesetTable instruction has a 5-bit op code, a 2-bit table field, a 7-bit addre
range field, a 4-bit data length field, an absolute/relative bit, and a 4-bit up-s
field. The total instruction length is fixed at 23 bits. The table and address/ra

0 0 0 1 1
b
n
v

b
c
v

c
a
p

0 0

0 0 0 1 0 Table Data Length

Address/Range

A/R Up-shift
423Version 1.1.2, June 1999

B.12.3 setTable 3D GEOMETRY COMPRESSION

424

elds

this

le are

The
ies
per

gth of
ny)

is tag
ns of
f the
on.
read
val-
of 0
s and
um
fields specify which decompression table entries to update; the remaining fi
comprise the values to which to update the table entries.

The two-bit table specifies for which of the three decompression tables
update is targeted:

The seven-bit address/range field specifies which entries in the specified tab
to be set to the values in the following fields.

The idea is that table settings are made in aligned power-of-two ranges.
position of the first ‘1’ bit in the address/range field indicates how many entr
are to be consecutively set; the remaining bits after the first ‘1’ are the up
address bits of the base of the table entries to be set. This also sets the len
the “tag” that this entry defines as equal to the number of address bits (if a
after the first ‘1’ bit.

The data length specifies how large the delta values to be associated with th
are; a data length of 12 implies that the upper 4 bits are to be sign extensio
the incoming delta value. Note that the data length describes not the length o
delta value coming in, but the final position of the delta value for reconstructi
In other words, the data length field is the sum of the actual delta bits to be
in plus the up-shift amount. For the position and color tables, the data length
ues of 1 to 15 correspond to lengths of 1 to 15, but the data length value
encodes an actual length of 16, as a length of 0 makes no sense for position
colors. For normals, a length of 0 is sometimes appropriate, and the maxim

00 Position

01 Color

10 Normal

11 Unused—reserved for future use

Address/Range Semantics Implicit Tag
Length

1a5a4a3a2a1a0 set table entry a5a4a3a2a1a0 6

01a5a4a3a2a1 set table entry a5a4a3a2a10 through a5a4a3a2a11 5

001a5a4a3a2 set table entry a5a4a3a200 through a5a4a3a211 4

0001a5a4a3 set table entry a5a4a3000 through a5a4a3111 3

00001a5a4 set table entry a5a40000 through a5a41111 2

000001a5 set table entry a500000 through a511111 1

0000001 set table entry 000000 through 111111 0
Java 3D API Specification

3D GEOMETRY COMPRESSION mbr (meshBufferReference)B.12.4

to 7,

hese
ft is
range
the
tially
as

ual

ming
h of

bits
he

that
t for

bing

h
ine

fine
has
length needed is only 7. Thus for normals, the values 0 to 7 map through 0
and 8 to 15 are not used.

The up-shift value is the number of bits that the delta values described by t
tags will be shifted up before being added to the current value. The up-shi
useful for quantizing the data to save space; it cannot be used to extend the
of the data represented. You are still limited to 16 bits (less for normals) for
resultant data even with a large up-shift value. The up-shift amount is essen
the number of low bits that you don’t need to specify in the incoming data
they will always be zero. It is illegal for the up-shift to be greater than or eq
to the data length.

So, there are three portions of the resultant data: the sign extension, the inco
data, and the up-shift. For example, if you have a position with a data lengt
12 and an up-shift of 4, then the resultant data is made up of 4 sign extension
in the high bits, 8 bits of incoming data, and 4 bits of zero in the low bits, for t
up-shift.

The absolute/relative flag indicates whether this table entry describes values
are to be interpreted as an absolute reference or a relative delta. Note tha
normals, absolute references will have an additional six leading bits descri
the absolute octant and sextant.

B.12.4 mbr (meshBufferReference)

Assembly syntax:(mbr <rep> <index>)

Assembly syntax:<rep>:

The mbr (meshBufferReference) instruction has a 3-bit opcode, a 4-bit mes
buffer index field, and a 2-bit vertex replacement field, for a total length of n
bits.

The index specifies which element of the mesh buffer should be used to de
the current vertex. A value of 0 indicates to use the most recent vertex that

RCW Restart clockwise

RCCW Restart counterclockwise

RMID Replace middle

ROLD Replace oldest

0 0 Index1
r
e
p

r
e
p

425Version 1.1.2, June 1999

B.12.4 mbr (meshBufferReference) 3D GEOMETRY COMPRESSION

426

icate
ssable.

does

nced
still

n is
l to
veral
ever
mesh

dling
ginal

.
The
esh

be
etry

the

rmal
uted
, the
g
mal
been pushed into the mesh buffer (before this instruction). Larger values ind
successively less recent pushes. Only the most recent 16 pushes are addre

The two-bit vertex replacement field has the same triangle semantics as it
within thevertex instruction:

There is no mesh buffer re-push bit; mesh buffer contents may be refere
multiple times until 16 newer vertices have been pushed; if a vertex is
needed it must be resent.

In general, the semantics of executing a mesh buffer reference instructio
nearly the same as executing a vertex instruction with data fields identica
those contained at the indicated mesh buffer location. There are, however, se
subtle differences. First, as previously indicated, a mesh buffer reference n
causes new values to appear in the mesh buffer; nor does it cause any
buffer values to go away.

Second, the effects of any intervening setState instructions changing the bun
bits need to be considered. If normals were bundled when the vertex was ori
pushed into the mesh buffer, but normals arenot bundled when the mbr instruc-
tion is executed, the old normal valuedoes notreplace the current normal value
Instead, the mbr instruction will use the current setting of the normal value.
same logic applies to colors and alpha. A mbr instruction only access the m
buffer for those vertex components that are currently bundled.

The inverse case is considered an error: if normals werenot bundled at the time
the vertex instruction pushed a vertex into the mesh buffer, but normalsare bun-
dled at the time of execution of the mbr instruction, the normal value will
undefined. Such a sequence will result in an invalid Compressed Geom
object. Once again, the same logic applies for colors. Apushin a vertex instruc-
tion causes only the currently bundled vertex components to be stored into
mesh buffer.

There is one more special case: when normals are bundled, if a setNo
instruction was executed before a mbr instruction, and the instructions exec
between these two do not include any vertex or setState (or mbr) instructions
semantics ofnormal overrideapply. The semantics is that rather than inheritin
all the data fields of the vertex from the stored mesh buffer values, the nor

0 0 Restart clockwise

0 1 Restart counterclockwise

1 0 Replace middle

1 1 Replace oldest
Java 3D API Specification

3D GEOMETRY COMPRESSION Position Sub-instructionB.12.5

rmal
The
that
nce
of a
ver-
er in

v-
the

try
be
the
bits.

d of
, the

ssi-

for-
ces-
total
the

ry for
eld

bit
;
that
ases
value is instead taken from the current normal value, as set by the setNo
instruction. This is to allow for hard edges in otherwise shared geometry.
idea is that otherwise there is no logical reason for a setNormal instruction
would have been invalidated by the inheritance within the mbr instruction. O
again, a similar logic applies to setColor instructions, and the generation
color override condition. This supports hard edges in colors. Note that any o
rides are invalidated by setState or vertex instructions, and also are no long
effect after a mbr instruction is encountered.

Another effect of overrides is to override the invalidity of normals or colors ha
ing not been bundled with vertices at the time of vertices being pushed into
mesh buffer.

B.12.5 Position Sub-instruction

Assembly syntax:(Position <Tag> <∆X> <∆Y> <∆Z>)

The position sub-instruction can only appear within a compressed geome
vertex instruction, and always as the first sub-instruction. The tag field can
between 0 and 6 bits in length; all three delta (or absolute) fields will have
same length, between 1 and 16 bits, for a range of lengths between 3 and 54

As usual, the first six bits of the sub-instruction are actually forwarded ahea
the rest of the instruction. Depending on the length of the tag and delta fields
first 6 bits might only contain the tag, or the tag and some of theX field bits, or
any subset up to the entire sub-instruction, if short enough. However, it is po
ble for the entire sub-instruction to betoo short. It is not allowed for the tag
together with the X, Y, and Z fields to be smaller than the six bits that gets
warded ahead. There can be no “empty” bits in the forwarded header. If ne
sary, the tag and/or delta (or absolute) fields must be expanded so that the
number bits used for the entire sub-instruction is at least six. (Note that
expanded fields must be correctly described in the decompression table ent
the tag. On cannot simply add padding within a position sub-instruction to a fi
the was previously specified with a shorter length in a setTable instruction.)

For clarity, because it is by far the most typical case, the three coordinate
fields are labeled∆X ∆Y ∆Z, though more properly they are X, Y, and Z fields
their actual interpretation is absolute or relative depending on the setting of
bit in the decompression table entry corresponding to the tag field. In both c
the fields are signed two’s-complement numbers.

Tag ∆X ∆Y ∆Zposition:
0–6 1–16 1–16 1–16
427Version 1.1.2, June 1999

B.12.6 Color Sub-instruction 3D GEOMETRY COMPRESSION

428

ative
ion.

val-
itions
itive
is
00
s a
dif-

ssion,
000,

6
me
r 70)
rail-

d of
, the
, or
ssi-

t
er. If
at the

bit-
B
tting
You must always specify at least one absolute position before using any rel
positions. It is illegal to have a relative position before the first absolute posit

It appears that, depending on the current position, half of the possible delta
ues are illegal. (For ease of understanding these examples, we will treat pos
as integers.) For instance, going +10,000 from 30,000 will wrap past the pos
limit of 32,767 for signed 16-bit two’s complement arithmetic. However, th
turns out to be very useful. For example, if your current X position is –20,0
and the next X position is 30,000 then the difference that you’d like to use a
delta is +50,000, which is not directly representable. When you compute that
ference using 16-bit arithmetic, the value wraps to –15,536, whichcanbe repre-
sented as a delta. When –15,536 is added back to –20,000 on decompre
instead of getting –35,536, again the 16-bit arithmetic wraps and we get 30,
which is the desired result.

B.12.6 Color Sub-instruction

Assembly syntax:(Color <Tag> <∆R> <∆G> <∆B> {<∆α>})

Thecolor sub-instruction can appear within either a compressed geometryver-

tex instruction orsetColor instruction. The tag field can be between 0 and
bits in length; all three (or four) delta (or absolute) fields will have the sa
length, between 1 and 16 bits, for a range of lengths between 3 and 54 (o
bits. As usual, any sub-instruction with a total length of less than 6 bits has t
ing zeros added to pad the length to a minimum of 6 bits.

As usual, the first six bits of the sub-instruction are actually forwarded ahea
the rest of the instruction. Depending on the length of the tag and delta fields
first six bits might only contain the tag, or the tag and some of the R field bits
any subset up to the entire sub-instruction, if short enough. However, it is po
ble for the entire sub-instruction to betoo short. It is not allowed for the tag
together with the R, G, and B (andα) fields to be smaller than the six bits tha
gets forwarded ahead. There can be no “empty” bits in the forwarded head
necessary, the tag and/or delta (or absolute) fields must be expanded so th
total number bits used for the entire sub-instruction is at least six.

For clarity, because it is by far the most typical case, the color component
fields are labeled∆R ∆G ∆B (∆α), though more properly they are R, G, and
fields; their actual interpretation is absolute or relative depending on the se

0–6 1–16 1–16 1–16
Tag ∆R ∆G ∆Bcolor: ∆α

1–16
Java 3D API Specification

3D GEOMETRY COMPRESSION Normal Sub-instructionB.12.7

oth
d for
d are
imi-

nent
so ill-

col-

try
po-

ing
that

not
rom
of that bit in the decompression table entry corresponding to the tag field. In b
cases the fields are signed two’s-complement numbers. A sign bit is require
absolute color components. Negative color components make no sense an
ill-defined, so the sign bit on absolute components should always be zero. S
larly for delta color components, a negative result from adding a delta compo
to the current component makes no sense, and so negative results are al
defined.

If the most recent setting of thecap bit by a setState instruction is zero, then
no fourth (alpha) field will be expected, and must not be present. If thecap bit
was set, then the alpha field will be processed and must be present.

You must always specify at least one absolute color before using any relative
ors. It is illegal to have a relative color before the first absolute color.

The rest of the graphics pipeline and frame buffer following the geome
decompression stage may choose not to use all (up to) 16 bits of color com
nent information; in this case it is acceptable to truncate the trailing bits dur
decompression. What the geometry decompression format does require is
color setting of any size up to 16 bits be supported, even if all the bits are
used. Typically, implementations may use just 12 bits, 8 bits, or even 5 bits f
each color component.

B.12.7 Normal Sub-instruction

Assembly syntax: absolute:(Normal <Tag><Sextant><Octant>< >< >)

Assembly syntax: relative:(Normal <Tag> <∆ > <∆ >)

Assembly syntax: special:(Normal <Tag> <Special>)

0–6 0–7 0–7

Tag ∆θt ∆φtnormal: (relative) ^ ^

0–6 0–6 0–6

Tag θt φtnormal: (absolute) ^ ^Sextant

3 3

0–6

Tagnormal: (special) 1 1 Special

4

θ̂n φ̂n

θ̂n φ̂n
429Version 1.1.2, June 1999

B.12.7 Normal Sub-instruction 3D GEOMETRY COMPRESSION

430

g

he
Assembly syntax: <Sextant>:0,1,2,3,4,5,6 (as specified in Figure B-3)

Assembly syntax:Table B-2 below shows the assembly format for specifyin
octants in the <octant> field ofNormal sub-instructions (as well assetNormal
instructions).

Assembly syntax:Table B-3 below shows the assembly syntax for specifying t
special normals in the “Special” field ofNormal sub-instructions (as well asset-
Normal instructions).

Table B-2 Syntax for Specifying Octants

Syntax Octant

+++ +X +Y +Z

++- +X +Y –Z

+-+ +X –Y +Z

+-- +X –Y –Z

-++ –X +Y +Z

-+- –X +Y –Z

--+ –X –Y +Z

--- –X –Y –Z

Table B-3 Syntax for Specifying Special Normals

Syntax Special NX NY NZ Comment

+00 0000 1.0 0.0 0.0 +X axis

-00 0010 –1.0 0.0 0.0 –X axis

0+0 0100 0.0 1.0 0.0 +Y axis

0-0 0110 0.0 –1.0 0.0 –Y axis

00+ 1000 0.0 0.0 1.0 +Z axis

00- 1010 0.0 0.0 –1.0 –Z axis

+++ 0001 +X +Y +Z

++- 0011 +X +Y –Z

+-+ 0101 +X –Y +Z

+-- 0111 +X –Y –Z

-++ 1001 –X +Y +Z

-+- 1011 –X +Y –Z

1 3⁄ 1 3⁄ 1 3⁄

1 3⁄ 1 3⁄ 1 3⁄

1 3⁄ 1 3⁄ 1 3⁄

1 3⁄ 1 3⁄ 1 3⁄

1 3⁄ 1 3⁄ 1 3⁄

1 3⁄ 1 3⁄ 1 3⁄
Java 3D API Specification

3D GEOMETRY COMPRESSION Normal Sub-instructionB.12.7

etry
d
n 0
are

l can

d of
, the
eld
r, in

be
bits

st be
is at

the
the

tag
o’s-
the
here)
g a
be
all

s a
nts
fixed
ides.
posi-
The Normal sub-instruction can appear within either a compressed geom
vertex instruction orsetNormal instruction. The tag field can be between 0 an
6 bits in length; the last two angle fields will have the same length, betwee
and 7 bits for deltas and between 0 and 6 bits for absolutes. Six more bits
always present for absolute normals. The range of sizes for a relative norma
be from 6 to 20 bits, and an absolute normal can be from 6 to 24 bits.

As usual, the first six bits of the sub-instruction are actually forwarded ahea
the rest of the instruction. Depending on the length of the tag and delta fields
first six bits might only contain the tag, or the tag and some of the other fi
bits, or any subset up to the entire sub-instruction, if short enough. Howeve
the case of relative normals, it is possible for the entire sub-instruction to betoo
short. It is not allowed for the tag together with the delta angle fields to
smaller than the six bits that gets forwarded ahead. There can be no “empty”
in the forwarded header. If necessary, the tag and/or delta angle fields mu
expanded so that the total number bits used for the entire sub-instruction
least six.

A Normal sub-instruction is interpreted as relative or absolute depending on
current setting of that bit in the decompression table entry corresponding to
tag field. Unlike thePosition andColor sub-instructions, the number of fields
of a Normal instruction differ between the absolute and relative types.

When the sub-instruction is relative, there are two delta angle fields after the
field, both of the same length, up to seven bits. These two fields are signed tw
complement numbers. If after delta addition the resulting angle is outside
current sextant or octant, the sextant/octant wrapping rules (described elsew
apply. If zero-length angle fields are specified, this is equivalent to specifyin
zero value for both fields, i.e., no change from the previous normal. It may
easier to use this method rather than turning off normal bundling for a sm
number of identical normals.

When the sub-instruction is absolute, four bit fields follow the tag. The first i
three-bit (fixed-length) absolute sextant field, indicating in which of six sexta
of an octant of the unit sphere this normal resides. The second field is also
at three bits, and indicates in which octant of the unit sphere the normal res
The last two fields are absolute angles within the sextant, and are unsigned

--+ 1101 –X –Y +Z

--- 1111 –X –Y –Z

Table B-3 Syntax for Specifying Special Normals (Continued)

Syntax Special NX NY NZ Comment

1 3⁄ 1 3⁄ 1 3⁄

1 3⁄ 1 3⁄ 1 3⁄
431Version 1.1.2, June 1999

B.12.7 Normal Sub-instruction 3D GEOMETRY COMPRESSION

432

ed,

als.

nates
hift
the

at
rmal
are

es it
al.

ithin
ve a
ave
tive numbers, up to six bits in length. If zero-length angle fields are specifi
this is equivalent to specifying a zero for both fields.

At least one absolute normal must be specified before using any relative norm
It is an error to have any relative normals before the first absolute normal.

Note that sextants are triangular in shape, thus range of valid angular coordi
within a sextant fills only half the square, plus the diagional. Formally, after s
normilization, angular coordinates in ordinary absolute normals must obey
rule:

A number of normals lie on the edges or corners where sextants meet (e.g.,
= 0 and = 0). These normals do not have a unique encoding; the same no
can be specified using different sextants or octants. All of these encodings
legal; usually the choice of encoding is decided by using the one that mak
the eaisest to compute deltas from the previous and/or to the following norm

Fourteen special absolute normals are encoded by the unused two settings w
the three sextant bits. This is indicated by specifying the angle fields to ha
length of zero (not present), and the first two bits of the sextant field to both h
a value of 1. Table B-4 lists the 14 special normals

Table B-4 The 14 Special Normals

Special NX NY NZ Comment

0000 1.0 0.0 0.0 +X axis

0010 –1.0 0.0 0.0 –X axis

0100 0.0 1.0 0.0 +Y axis

0110 0.0 –1.0 0.0 –Y axis

1000 0.0 0.0 1.0 +Z axis

1010 0.0 0.0 –1.0 –Z axis

0001 +X +Y +Z

0011 +X +Y –Z

0101 +X –Y +Z

0111 +X –Y –Z

1001 –X +Y +Z

1011 –X +Y –Z

1101 –X –Y +Z

1111 –X –Y –Z

θ̂6 φ̂6+ 64≤ 0 θ̂6≤ 64< 0 φ̂6≤ 64<, ,

θ̂n

φ̂n

1 3⁄ 1 3⁄ 1 3⁄

1 3⁄ 1 3⁄ 1 3⁄

1 3⁄ 1 3⁄ 1 3⁄

1 3⁄ 1 3⁄ 1 3⁄

1 3⁄ 1 3⁄ 1 3⁄

1 3⁄ 1 3⁄ 1 3⁄

1 3⁄ 1 3⁄ 1 3⁄

1 3⁄ 1 3⁄ 1 3⁄
Java 3D API Specification

3D GEOMETRY COMPRESSION vertexB.12.8

om a
ddi-

ome
rmal,
er-

try
po-

ing
t nor-
if all

ion-
-
has
Special normals are always absolute normals; they cannot be deltated to fr
previous normal. Unlike ordinary absolute normals, delta normals have the a
tional restriction that they cannot be deltaedfrom. Thus the next normal after any
special normal must always be an absolute normal (ordinary or special). In s
cases this overhead can be avoided by avoiding ever landing on a special no
when this purtibation of the data is does not negitively impact the visual app
ance of the object.

The rest of the graphics pipeline and frame buffer following the geome
decompression stage may choose not to use all (up to) 16 bits of normal com
nent information; in this case it is acceptable to truncate the trailing bits dur
decompression. What the compressed geometry format does require is tha
mal settings of any size up to 18-bit absolute normals be supported, even
the decompressed bits are not used.

B.12.8 vertex

Assembly syntax:(vertex <rep> {push}

<position sub-instruction>

{<normal sub-instruction>}

{<color sub-instruction>})

Assembly syntax:<rep>:

The vertex instruction has a two-bit opcode, aposition sub-instruction
(always), a two-bit vertex replacement field, a mesh buffer push bit, and, opt
ally, a normal sub-instruction and/or acolor instruction, depending on the cur
rent setting of the state bundling bits. The two-bit vertex replacement field
the same triangle semantics as it does within thembr instruction:

RCW Restart clockwise

RCCW Restart counterclockwise

RMID Replace middle

ROLD Replace oldest

0 0 Restart clockwise

0 1 Restart counterclockwise

1 0 Replace middle

1 1 Replace oldest

0 1 rep

m
b
pPosition bits 0-5 Position bits 6–n Normal bits Color bits
433Version 1.1.2, June 1999

B.12.9 setNormal 3D GEOMETRY COMPRESSION

434

the

u-

2.7,

r for

ub-

t in
The mesh buffer push bit indicates whether this vertex should be pushed into
mesh buffer so as to be eligible for later re-reference.

The Position, Normal, and Color sub-instructions have the semantics doc
mented in their individual sections.

B.12.9 setNormal

Assembly syntax: absolute:(setNormal <Tag> <Sextant> <Octant>

< > < >)

Assembly syntax: relative:(setNormal <Tag> <∆ > <∆ >)

Assembly syntax: special:(setNormal <Tag> <Special>)

Assembly syntax:<Sextant>, <Octant>, <Special>: same as for normal sub-
instruction.

ThesetNormal instruction has a two-bit opcode, and aNormal sub-instruction.

The Normal sub-instruction has the semantics documented in Section B.1
“Normal Sub-instruction.”

If a SetNormal instruction is present immediately before ambr instruction, then
the new normal value overrides the normal data present in the mesh buffe
that particular mesh buffer reference.

B.12.10 setColor

Assembly syntax:(setColor <Tag> <∆R> <∆G> <∆B> {<∆α>})

ThesetColor instruction has a two-bit opcode, and acolor sub-instruction. The
color sub-instruction semantics are documented in Section B.12.6, “Color S
instruction.”

If a setColor instruction is present immediately before ambr (meshBufferRef-
erence) instruction, then the new color value overrides the color data presen
the mesh buffer for that particular mesh buffer reference.

1 1 Normal bits 0–5 Normal bits 6–n

θ̂n φ̂n

θ̂n φ̂n

1 0 Color bits 0–5 Color bits 6–n
Java 3D API Specification

3D GEOMETRY COMPRESSION Header and Body to Variable-Length InstructionB.13.1

by a
these
ple-

tion
ssed
the

exam-

bits
be

eam.
s),
ny).
ch

ied

five
ode
s is
s

g with
ded.
of
am,

are
oft-
l for-
B.13 Semantics of Compressed Geometry Instructions

The formal semantics of the compressed geometry format is best described
state description of the decompression process. It must be emphasized that
state descriptions are given to show the formal semantics, not an efficient im
mentation.

The next few sections will present such a state description. While this descrip
is intended to be a complete and unambiguous description of the compre
geometry format and decompression semantics, in practice studying both
compression process and the decompression process, and studying code
ples for both, is a better approach for the human understanding process.

B.13.1 Header and Body to Variable-Length Instruction

Compressed geometry instructions have a minimum length of eight bits (six
for sub-instructions). This allows all geometry decompression instructions to
split into two physically separate bit sequences within the compressed str
The first bit sequence is always of eight bits in length (six for sub-instruction
the second bit sequence contains the remaining bits of the instruction (if a
Thus a logical stream ofN compressed geometry instructions, where ea
instruction is split into two bit sequences Hi and Bi (i being from 0 toN – 1) is
physically represented as:

H0 B–1 H1 B0 H2 B1 … Hn–1 Bn–2 Hn Bn–1

OK, so what is this “B–1”? All compressed geometry sequences have an impl
(not physically present) H–1 of a nop opcode, thus B–1 is always present (starting
at the eighth bit of the stream) as any valid variable-length nop body. (Just
zeros, the minimum-length nop, is a good default.) Thus the implied nop opc
“jump starts” the header-forwarded decompression process. This proces
reversed at the end of the stream. Hn is a nop opcode, but no body is present, a
Bn–1 is the last bits of the stream. (As will be described below, Bn–1 must end on
a 32-bit aligned boundary.)

This is viable because all compressed geometry streams are presented alon
a total bit length of their contents, so no explicit end-of-stream marker is nee
Streamsmustbe rounded up to the nearest full 64-bit word multiple by use
additional nop instructions of appropriate lengths (within the body of the stre
that is, their headers appear before Hn).

This “header-forwarding” shuffled representation is necessary for hardw
decompressors to operate efficiently. While this is not an issue for purely s
ware-based decompressor implementations, in order to have one canonica
435Version 1.1.2, June 1999

B.13.2 Variable-Length Instruction to Instruction 3D GEOMETRY COMPRESSION

436

only
ion
dds
en-

te bit
s the

half
man-

or
com-
tion
with
tion
the

the
ext

tag
and
mat for both hard and soft decompressors, all decompressors must operate
on the header-forwarded representation; this is the only “official” compress
bit-format specified. For a software decompressor, the extra unshuffling a
only slightly to the overall overhead of decompression; for hardware, it is ess
tial.

Thus the first stage in the decompression process is to put the two separa
sequences for each instruction back together. The next paragraph describe
flavor of this process, going around the loop approximately one and one-
times. The actual process is more accurately described in state machine se
tics.

First the fixed-length eight- (or six-) bit header for the next full instruction (
sub-instruction) to be processed is detached from the current head of the
pressed stream. Next, the variable-length body bits for the previous instruc
(or sub-instruction) are detached from the compressed stream and combined
the already extracted header for the previous instruction; the previous instruc
is now complete and can be processed. Now the fixed-length header for
instruction after the next is detached from the bit stream, and then finally
variable-length body for the next full instruction can be detached; the n
instruction is now complete and can be processed.

// pseudocode for converting bitstream into sequences of
// instructions
decompress(stream) {
 previous_header <- nop
 while (not_empty(stream)) {
 current_header <- get_8_bits(stream)
 previous_body <- get_n_bits(stream,

body_length(previous_header))
 process_instruction(previous_header, previous_body)
 previous_header <- current_header
 }
}

One slight complexity: theget_8_bits() only extracts six bits of header for
color or normal sub-instructions of avertex instruction. It extracts a full eight
bits of header in all other cases.

B.13.2 Variable-Length Instruction to Instruction

The three decompression tables contain entries for each different numeric
describing whether the value in the stream is absolute or relative, and length
Java 3D API Specification

3D GEOMETRY COMPRESSION Encoded Delta Normal to Encoded NormalB.13.5

to a
s is
its
shift constants describing how to convert the variable-length bit field back in
fixed-length value. The fixed-length value for position and color component
16 bits in length (sign, unit, 14 fraction); the fields for normal angles are 7 b
(signed), and 3 each for sextant and octant (if present).

B.13.3 Delta Position to Position

absolute_position(x, y, z):
cur_x ← x, cur_y ← y, cur_z ← z

relative_position(∆x, ∆y, ∆z):
cur_x ← cur_x + ∆x, cur_y ← cur_y + ∆y, cur_z ← cur_z + ∆z

B.13.4 Delta Color to Color

absolute_color(r, g, b {, α}):
cur_r ← r, cur_g ← g, cur_b ← b, {cur_α ← α }

relative_color(∆r, ∆g, ∆b {, ∆α}):
cur_r ← cur_r + ∆r, cur_g ← cur_g + ∆g, cur_b ← cur_b + ∆b,
{cur_α ← cur_α + ∆α }

B.13.5 Encoded Delta Normal to Encoded Normal

State:cur_oct, cur_sex, cur_u, cur_v

absolute_normal(oct, sex, u, v):
cur_oct ← oct, cur_sex ← sex, cur_u ← u, cur_v ← v,

relative_normal(∆u, ∆v):

cur_u ← cur_u + ∆u, cur_v ← cur_v + ∆v,
if (cur_u < 0)

cur_u ← -cur_u, cur_sex ← flip_u[cur_sex]
else if (cur_v < 0)

cur_v ← -cur_v, cur_oct ← cur_oct <xor> flip_v[cur_sex]
else if (cur_u + cur_v > 64)

cur_u ← 64 - cur_u, cur_v ← 64 - cur_v,
cur_sex ← flip_uv[cur_sex]

flip_u[6] = { 4, 5, 3, 2, 0, 1 }
flip_v[6] = { 2, 4, 1, 1, 2, 4 }
flip_uv[6] = { 2, 3, 0, 1, 5, 4 }
437Version 1.1.2, June 1999

B.13.6 Encoded Normal to Rectilinear Normal 3D GEOMETRY COMPRESSION

438

of

state
d that
cient

tion to
rnal
olor,
a

B.13.6 Encoded Normal to Rectilinear Normal

nx ← norms[v,u].nx, ny ← norms[v,u].ny, nz ←
norms[v,u].nz,
if (cur_sex & 4) t ← nx, nx ← nz, nz ← t
if (cur_sex & 2) t ← ny, ny ← nz, nz ← t
if (cur_sex & 1) t ← nx, nx ← ny, ny ← t
if (cur_oct & 1) nz ← -nz
if (cur_oct & 2) ny ← -ny
if (cur_oct & 4) nx ← -nx

The contents of thenorms[] table is exactly specified, and the next revision
this specification will contain an exact listing of the values.

B.14 Semantics of Vertices

The formal semantics of the vertex processing is best described by a
description of the decompression process. Once again it must be emphasize
these state descriptions are given to show the formal semantics, not an effi
implementation.

B.14.1 Instruction to Vertex

This section describes the state change semantics caused by each instruc
generate the next output vertex, prior to assembly into triangles. The inte
state consists of the three bundling bits, a current normal and current c
normal_override andcolor_override bits, the 16 mesh buffer vertices, and
current internal-cycling mesh buffer index.

normal(n):
current_normal ← n, normal_override ← 1

color(c):
current_color ← c, color_override ← 1

vertex(rep, mbp, p {, n} {, c}):

current_position ← p,
if (bnv) current_normal ← n,
if (bcv) current_color ← c,
output_vertex(rep, current_position, current_normal,
 current_color)
Java 3D API Specification

3D GEOMETRY COMPRESSION Vertex to Intermediate TriangleB.14.2

lace-
tri-
if (mbp) mesh_buffer[mesh_index].position ← p
if (mbp && bnv) mesh_buffer[mesh_index].normal ← n
if (mbp && bcv) mesh_buffer[mesh_index].color ← c
if (mbp) mesh_index ← (mesh_index+1) & 15
normal_override ← 0, color_override ← 0

mesh buffer reference(rep, i):

current_position ←
mesh_buffer[(mesh_index - i - 1) & 15].position

if (bcv && !color_override)
current_color ← mesh_buffer[(mesh_index - i - 1) & 15].color

normal_override ← 0, color_override ← 0
output_vertex(rep, current_position, current_normal,

current_color)

set state(new_bnv, new_bcv, new_cap):

bnv ← new_bnv,
bcv ← new_bcv,
cap ← new_cap,

set table(address, range, entry):
…

nop(length):
 (null)

B.14.2 Vertex to Intermediate Triangle

This section describes the formal semantics of assembling vertices with rep
ment instructions into nearly finished triangles: the semantics of generalized
angle strips.

output_vertex(restart clockwise, newv):
newest ← newv, number_of_vertices ← 1, ccw = 0

output_vertex(restart counterclockwise, newv):
newest ← newv, number_of_vertices ← 1, ccw = 1
439Version 1.1.2, June 1999

B.14.3 Intermediate Triangle to Final Triangle 3D GEOMETRY COMPRESSION

440

, the
ices
output_vertex(replace_middle, newv):

if (number_of_vertices < 2)
midlest ← newest, newest ← newv, number_of_vertices++

else if (number_of_vertices < 3)
oldest ← midlest, midlest ← newest, newest ← newv,
number_of_vertices++,
intermediate_triangle(ccw, oldest, midlest, newest)

else if (number_of_vertices == 3)
midlest ← newest, newest ← newv,
intermediate_triangle(ccw, oldest, midlest, newest)

output_vertex(replace_oldest, newv):

if (number_of_vertices < 2)
midlest ← newest, newest ← newv, number_of_vertices++

else if (number_of_vertices < 3)
oldest ← midlest, midlest ← newest, newest ← newv,
number_of_vertices++,
intermediate_triangle(ccw, oldest, midlest, newest)

else if (number_of_vertices == 3)
oldest ← midlest, midlest ← newest, newest ← newv,
ccw = 1 - ccw,
intermediate_triangle(ccw, oldest, midlest, newest)

B.14.3 Intermediate Triangle to Final Triangle

The final stage is to take into account the current counterclockwise bit; thus
final triangles can always be assumed to be front facing when their vert
appear in counterclockwise order.

intermediate_triangle(ccw, v1, v2, v3):

if (ccw)
 final_triangle(v1.position, v1.normal, v1.color,

 v2.position, v2.normal, v2.color,
 v3.position, v3.normal, v3.color)

else if (!ccw)
 final_triangle(v2.position, v2.normal, v2.color,

 v1.position, v1.normal, v1.color,
 v3.position, v3.normal, v3.color)
Java 3D API Specification

3D GEOMETRY COMPRESSION PositionB.15.3

om-
ssed
cifica-

rmat,

such
in
ular-
i-

eral-
sis-
time,
ipify,
and
r will
gle

nor-
lic-

ox
n all
the
g

ing
B.15 Outline of Geometry Process

Java 3D only formally defines the compressed geometry format and the dec
pression semantics. Authoring tools are free to employ whatever compre
geometry algorithms they choose, as long as the results adhere to the spe
tions described in the previous sections.

However, to further document the semantics of the compressed geometry fo
an overview of one particular compressed geometry algorithm is given here.

B.15.1 Compressing Geometry Data

Group the geometry to be compressed into separate rigid objects. Typically
objects will be individually culled during rendering, so you should not jo
objects too extensively prior to compression. In optimized systems, the gran
ity of object splitting will be computed by an algorithm that takes culling optim
zation into account.

B.15.2 Convert to Generalized Mesh Format

Once a group of geometry has been identified, it is next converted into gen
ized mesh format. This is a complex step, and a number of topological analy
based algorithms have been applied to it. Note that to reduce compression
when space is a less important issue than time, a compressor might only str
not meshify. Alternatively, the triangles have to have come from somewhere,
that in many cases is a tessellator of higher order surfaces. Such a tessellato
implicitly know the mesh connectivity, and may be able to generate the trian
data directly in the generalized mesh format.

The next step is the quantization of the geometry positions, colors, and/or
mals. All these quantizations can be varied within the geometry, but for simp
ity a single fixed quantization of each is assumed here.

B.15.3 Position

Normalize the position data.

The containing bounding box for the object is computed. This is the minimal b
such that all geometry vertices are contained within it. The vertices are the
normalized to be contained within this bounding box by first subtracting
XYZ location of the bounding box center from the vertex XYZ and then dividin
all the XYZ vertex values by the half length of the longest side of the bound
box. Thus all normalized positions will be within the±1 unit cube. A constant
441Version 1.1.2, June 1999

B.15.4 Normals 3D GEOMETRY COMPRESSION

442

ox,
box

more
t the

zed
lize
t.

may
iven
e.

-
2

nal
ays
ro-
pper
is
matrix transform corresponding to an offset to the center of the bounding b
and an inverse scale by the half length of the longest side of the bounding
are created as a prologue for the geometry data. Note that in practice a little
care must be taken; Compressed Geometry can always represent -1, bu
greatest positive value is actually , when positions are quanti
to n bits. Thus when computing the scale factor (and center) that will norma
the geometry, the actual representation range needs to be taken into accoun

Quantize the position data.

Assuming that position data is to be quantized ton bits, each vertex position
component should be multiplied by the value of 2n and then rounded down to the
nearest integer. If rounded to the nearest integer, or rounded up, the value
overflow the representation. Once again the goal is to take numbers from a g
floating point range, and represent all of them within an n-bit fixed point rang

B.15.4 Normals

Normalize the normals.

Each normal should be normalized to unit length.

Quantize the XYZ components of the normal to 14 bits accuracy

Each normal component should be multiplied by 214, rounded to the nearest inte
ger, and then converted back to floating-point representation and divided by14.

Fold the XYZ components of the normal to the positive (prime) octant

If an XYZ component of the normal is negative, invert it and save the origi
sign bits as a three-bit octant value. It is important when compressing to alw
strip the sign bits off first before applying sextant folding, and to reverse the p
cess when decompressing. Note that the octant bits read left to right: the u
bit is for the x-axis, the middle for the y-axis, and the lowermost of the three
for the z-axis.

oct = 0;
if(nx < 0.0) oct |= 4, nx = -nx
if(ny < 0.0) oct |= 2, ny = -ny
if(nz < 0.0) oct |= 1, nz = -nz

2n 1– 1–() 2n 1–⁄
Java 3D API Specification

3D GEOMETRY COMPRESSION ColorsB.15.5

als
al

duct
sex-
ults.)
fer-
his is

the
cial

r spe-
Fold the normal to the nX≥ nZ ≥ nY sextant

Check (in exactly the following order):

sex = 0;
if (nx < ny) t = nx, nx = ny, ny = t, sex |= 1
if (nz < ny) t = ny, ny = nz, nz = t, sex |= 2
if (nx < nz) t = nx, nx = nz, nz = t, sex |= 4

Match the nearest quantized normal representation

Take the dot product of the normal with each of the quantized reference norm
in the table for the specified number of quantized normal bits. That UV norm
index for the reference normal that gives the greatest (nearest unity) dot pro
result is the new quantized normal representation (along with the octant and
tant representation). (There are more efficient was to compute this same res
At this point there are no specific tie breaking rules when two (or more) re
ence normals produce the same candidate dot product results. Technically t
purely a compressor internal issue.

Check for special normals

The u, v normal index generated by the previous stage will generally be in
full 7-bit range of the normal grid space. In this space, the two classes of spe
normals occur when u = 64, v = 0, and when u = 0, v = 64. When this is
detected, the sextant and octant bits must be examined to produce the prope
cial normal encoding:

if (u == 64 && v == 0) { /* Six coordinate axis case */
 if (sex == 0 || sex == 2) /* +/- x-axis */
 special = ((oct & 4)?0x2:0);

 else if (sex == 3 || sex == 1) /* +/- y-axis */
 special = 4 | ((oct & 2)?0x2:0);

 else if (sex == 5 || sex == 4) /* +/- z-axis */
 special = 0x8 | ((oct & 1)?0x2:0);

} else
 if (u == 0 && v == 64) /* Eight mid point case */

 special = (oct<<1) | 1;

B.15.5 Colors

The colors are assumed to be in a 0.0 to 0.9 representation to begin with.
443Version 1.1.2, June 1999

B.15.6 Collect Delta Code Statistics 3D GEOMETRY COMPRESSION

444

epre-

. For
onent

bit

de.
is

e
ding

sex-

this
this

nor-
rap-

an
the

sex-
Quantize the color values.

Assuming that color data is to be quantized ton bits, each vertex color compo-
nent (R, G, B, and optionallyα) should be multiplied by the value of 2n and then
rounded down to the nearest integer. Just as with positions, there is no true r
sentation of positive unity.

B.15.6 Collect Delta Code Statistics

Make a pass in generalized mesh order through all vertices in the geometry
each successive pair of vertices, compute the difference between their comp
values, compute the bit length of this (signed) difference, and histogram this
length. Specifics for each component type are detailed in the next sections.

B.15.7 Position Delta Code Statistics

Compute∆X, ∆Y, and∆Z. Determine which of these has the greatest magnitu
Compute the number of bits for this component, including one sign bit. This
the length to be histogrammed for positions.

B.15.8 Color Delta Code Statistics

Compute∆R, ∆G, ∆B, and ∆α (if present). Determine which of these has th
greatest magnitude. Compute the number of bits for this component, inclu
one sign bit. This is the length to be histogrammed for colors.

B.15.9 Normal Delta Code Statistics

For a given pair of normals, check to see if they have the same octant and
tant, and that neither is a special normal. If so, compute∆U and∆V. Determine
which of these has the greatest magnitude. Compute the number of bits for
component, including one sign bit. This is the length to be histogrammed for
pair of normals.

If the normals have different sextants and/or octants, but neither is a special
mal, check to see if their sextants share an edge. If so, the special normal w
ping rules from Section B.8.3, “Special Warping Rules for Delta Normals” c
be applied. Depending on what type of edge they share, the delta including
change in edges is encoded in one of three ways: U +∆U < 0, V + ∆V < 0, and
U + ∆U + V + ∆V > 64. Each case is discussed in the paragraphs below. The
tant numbers are from the binary codes shown in Figure B-3.
Java 3D API Specification

3D GEOMETRY COMPRESSION Normal Delta Code StatisticsB.15.9

g this

other
s the

due
rmal
tant
e by
if
and
is to

t the
n an
rules
fault
on a

) nor-
sex-

his

e in
ping
ecial
pact
s /
Sextants 0 and 4, 1 and 5, and 2 and 3 share the U = 0 edge. When crossin
boundary,∆U becomes ~U –last_u. This will generate a negativecur_u value
during decompression, which causes the decompressor to invertcur_u and look
up the new sextant in a table.

Sextants 0 and 2, 1 and 3, and 4 and 5 share the U + V = 64edge. ∆U becomes
64 – U –last_u and∆V becomes 64 – V –last_v. Whencur_u + cur_v > 64,
the decompressor setscur_u = 64 –cur_u andcur_v = 64 –cur_v, and a table
lookup determines the new sextant.

Each sextant shares the V = 0 edge with its corresponding sextant in an
octant. When in sextants 1 or 5, the normal moves across the X-axis, acros
Y-axis for sextants 0 or 4, and across the Z-axis for sextants 2 or 3.∆V becomes
~V – last_v. The decompressor inverts a negativecur_v and performs a table
lookup for a mask to exclusive-OR with the current octant value.

Note: When using the normal wrapping rules, a subtle bug can be introduced
to the ambiguity of normals on a shared edge between two sextants. The no
encoding rules have unambiguous tie breaking rules to determine which oc
and sextant a given normal resides in. However, the wrapping rules assum
default that a delta-ed normal is in thesamesextant and octant as its predecessor
the delta only landed on an edge. This is subtly different than the sextant
octant that the encoding rules might have suggested. The proper procedure
keep track of which octant and sextant a decompressor would believe tha
normals being generated would lie in, and when the normal to delta to lands o
edge of this region, change its sextant and octant from the what the encoding
suggested to be the same as where it is now delta-ing from. This change in de
encoding is permissible because the rectilinear normal encoded by values
sextant edge are identical no matter which sextant claims ownership.

Otherwise the normals cannot be delta encoded, and so the second (target
mal must be represented by an absolute reference to its three octant, three
tant, and 2 N-bit U V addresses. This is the length to be histogrammed for t
pair of normals.

Note: Slightly higher compression density can be achieved at a slight expens
representation accuracy by avoiding special normals when delta and wrap
differences are generating compact results. Instead of generating the sp
normal, a near-by non-special normal can be generated allowing for com
deltas. As with any compression technique that intentionally further modifie
445Version 1.1.2, June 1999

B.15.10Assign Huffman Tags 3D GEOMETRY COMPRESSION

446

e of

pres-
their

ed in

. The
in the

man

must
asing

ions,
or’s

er for
ssed

rmat
an
SCII

t of
pro-
pres-
test

C pro-
distorts the input data, doing this normal perturbation must be a policy choic
the compressor itself, and subject to quality constraints of the user.

B.15.10 Assign Huffman Tags

Encode data into variable-bit length compressed geometry instructions.

One can use an algorithm similar to the one used by the JPEG image com
sion standard. The main differences are how codes are reassigned when
lengths exceed the maximum code length and how the data bits are encod
the compressed data stream.

The frequencies of the data lengths are used as leaf nodes in a binary tree
algorithm used to generate the tree places the less frequent codes deeper
tree. After the tree is built, the traversal path to a leaf node becomes its Huff
code, and the depth in the tree becomes its code length.

Codes generated with a length greater than six, the maximum code length,
be shortened. These nodes are merged with more frequent nodes by incre
the number of sign bits included with the smaller data length.

B.15.11 Assemble the Pieces into a Bit Stream

Given the sequence of variable-bit-length compressed geometry instruct
shuffle the first eight (six) bits of each instruction ahead of its predecess
body.

B.16 Compressed Geometry Assembly Syntax

This section describes the assembly syntax for both the input to an assembl
Compressed Geometry, and for the output of a disassembler of Compre
Geometry.

The concept of a verbose ASCII assembly syntax for a compressed binary fo
may seem like an oxymoron, but in fact a well defined assembly format is
invaluable aid to debugging both compressors and decompressors. The A
assembly format isnot meant to a representation ever used for the transpor
Compressed Geometry; rather it is a debugging aid for those involved in
gramming compressors and decompressors, and building hardware decom
sors. The assembly format is also useful for generating and understanding
vectors. Both an assembler and a disassembler are available as stand alone
Java 3D API Specification

3D GEOMETRY COMPRESSION Compressed Geometry Assembly SyntaxB.16

num-
the

these
diate
ssly
man
bled

dis-
orm
om-
uring
not a
are

rinted
ats
just

ers
ds
hat
s to
der

gth
ing

an
and
is

te

nd
wn.
fter
grams as tools. For generating Compressed Geometry programmatically, a
ber of C and Java based low level compression tools are also available. With
possible exception of test vectors, software based compressors should use
direct binary output routines; having a compressor generate an interme
ASCII file representation only to then be assembled into binary is needle
inefficient. If these is a need to examine the output of a compressor in a hu
readable form, a binary Compressed Geometry file can always be disassem
into ASCII by the disassembler when needed.

Because Compressed Geometry is a tightly encoded binary format, to make
sembled output more understandable, it is appropriate to optionally perf
some partial decompression before generating the text output. Thus the C
pressed Geometry disassembler supports multiple levels of decompression d
disassembly. On the other hand, the Compressed Geometry assembler is
compressor, and thus only supports as input the lowest level syntax. There
five layers successively more decompressed disassembly, with each level p
using either decimal or hex numbers. The five layers and two numeric form
are expressed as ten different levels of disassembly (with every other level
indicating that hex output for integer fields):

1. Nearly raw. After a symbolic opcode, decimal (or optionally, hex) numb
are printed for the modified huffman tag field, and for all data fiel
without any additional interpretation, scaling, or un-delta-ing, except t
proper signed/unsigned semantics is followed. The only processing i
parse the incoming bit stream into bit fields, and undo the effects of hea
forwarding. The modified huffman tag is only used to determine the len
of the tag field and the following data fields. The opcode have no trail
letter modifiers (as documented below); this indicates level 1.

2. Same as level 1, but printed using hex numbers (proceeded with a0x
suffix).

3. Modified Huffman tag expanded. The properties of the modified huffm
tag are shown in line: the length of the tag, the length of the data fields,
the left normalization shift for the field. The absolute/relative bit value
shown by appending the letter ‘A’ or ‘R’ to the opcode (or ‘S’ for absolu
‘special’ normals).

4. Same as level 3, but printed using hex numbers (proceeded with the0x
suffix).

5. Normalized. The left normalization shift is applied to the data fields, a
the specific properties of the modified huffman tag are no longer sho
To differentiate level 2, the letter ‘N’ is appended to the opcode name, a
the absolute/relative/special letter.
447Version 1.1.2, June 1999

B.16 Compressed Geometry Assembly Syntax 3D GEOMETRY COMPRESSION

448

tal
are
to

-bit
ere

ese
es,

is
n a

bers

the

r be
etic

ents

id:
6. Same as level 5, but printed using hex numbers (proceeded with the0x
suffix).

7. Un-delta-ed. Like level 3, but relative values have had the running to
added to them, to show what the current full value is. Absolute values
unchanged from level 3. To differentiate level 4, an ‘A’ suffix is added
the lengthening opcode name.

8. Same as level 7, but printed using hex numbers (proceeded with the0x
suffix).

9. Floating point. While up to now all values have been subsets of 16
integers, before conversion to integer and quantization, most values w
floating point numbers in the 0 to 1.0 or−1.0 to 1.0 range. Level 5 shows
the values as floating point numbers, but it must be cautioned that th
data fields, while similar to the input un-compressed un-quantized valu
will usually be slightly different in value than the original data. Th
floating point output format is primarily included as a convenience whe
user wants to understand the data closer to the original space.

10. Same as level 9, but non floating-point numbers printed using hex num
(proceeded with the0x suffix).

Once again while the dissembler supports all 10 levels of output options,
assembler only supports levels 1 and 2.

The syntax is fairly simple. Because the setting Colors or Normals can eithe
stand-alone instructions, or components of a vertex instruction, parenth
instruction grouping (lisp style) are used to make the ownership of argum
clear.

As an example, below is the disassembly (print level 1) of a four sided pyram

(nop 0)
(setTable Position 32-47 2 4 Rel)
(setTable Position 56-63 3 4 Rel)
(setTable Position 0-31 12 4 Rel)
(setTable Position 48-55 12 4 Abs)
(setTable Normal 0-31 5 0 Rel)
(setTable Normal 32-63 6 0 Abs)
(setTable Color 32-63 2 8 Rel)
(setTable Color 0-31 8 8 Abs)
(setState normalsBundled colorsUnbundled alphaUnbundled)
(setState normalsBundled colorsUnbundled alphaUnbundled)
(setColor 0 127 51 12)
(setState normalsBundled colorsUnbundled alphaUnbundled)
(setColor 32 0 0 0)
(vertex RCCW (Position 48 -2047 -2047 -205)
Java 3D API Specification

3D GEOMETRY COMPRESSION Compressed Geometry Instruction VerifierB.17

is a
mati-
ram
ver-
a
run

ssed
tice
tion
ys be
r is

ning

ge is
nta-
ial-

fol-
t:
(Normal 32 4 --+ 44 0))
(vertex RMID (Position 0 2047 -2 0)

(Normal 32 5 +++ 44 0))
(vertex ROLD (Position 0 0 -2047 409)

(Normal 0 14 0))
(vertex ROLD (Position 0 2047 -2047 -409)

(Normal 32 4 +-+ 44 0))
(vertex ROLD (Position 56 2 0 0)

(Normal 32 4 --+ 44 0))
(vertex RCCW (Position 0 2047 -2 0)

(Normal 32 00-))
(vertex RMID (Position 0 -2047 2 0)

(Normal 32 00-))
(vertex ROLD (Position 32 -2 0 0)

(Normal 32 00-))
(nop 19)
(nop 29)

B.17 Compressed Geometry Instruction Verifier

This sections describes the rules for determining if a given binary sequence
valid Compressed Geometry block or not. These rules have been program
cally implemented in a Compressed Geometry verifier, a stand alone C prog
that can validate a given file containing a Compressed Geometry object. The
ifier is also available in a utility package in both C and Java for use within
larger systems. In theory, every producer of Compressed Geometry should
such a verifier on its output as a final check; and every consumer of Compre
Geometry should run such a verifier on any input as an initial check. In prac
for well debugged programs and hardware implementations with error detec
a separate verification pass may not always be necessary, but it should alwa
available as an option. (It is also important to note the just passing the verifie
not sufficient to indicate that a Compressed Geometry compressor is functio
properly; the output must also be examined visually for other types of error.)

When the stand alone verifier finds a violation, and appropriate error messa
printed out. This is quite useful when debugging compressors. The impleme
tion of the verifier is effectively an augmented decompressor, in which un-init
ized state is kept track of, and additional error checking is applied.

For a Compressed Geometry object to be valid, it must adhere to at least the
lowing rules, along with the restrictions described in the rest of this documen
449Version 1.1.2, June 1999

B.17 Compressed Geometry Instruction Verifier 3D GEOMETRY COMPRESSION

450

ur 8-
ork

nop
nop
can
nd

owed
be

pe,
ieve
n(s)
that

from
Note
the
lso a
ssed
y can

etry

alid

ined
tate
able
Rule 1: Size and Alignment and Indianian-ness

Every Compressed Geometry is a sequence of binary data a multiple of fo
bit bytes in size, starting on an aligned 32-bit boundary, represented in netw
byte order.

Rule 2: Beginnings

Every Compressed Geometry sequence starts with the body field of a
instruction. Initial process proceeds as if a forwarded header of a
instruction had just been seen. The length field of this nop instruction body
be of any legal length, though usually by convention the length field is 0, a
thus the first body consists of five zeros.

Rule 3: Endings

The last header in a Compressed Geometry sequence is a nop. This is foll
by the body of the next to last instruction. This next to last instruction can
any instruction, and its body can be of any valid length for that instruction ty
but the body must end on a four byte 32-bit word aligned boundary. To ach
this usually the next to last, and possible the next to next to last instructio
are also nops, with lengths chosen to satisfy the ending requirement. Note
the body for the last instruction (the nop) isnot present in the Compressed
Geometry sequence. The end of the Compressed Geometry is determined
a separately specified size outside of the Compressed Geometry proper.
that this ending convention is symmetrical with the starting convention;
sequential concatenation of two valid Compressed Geometry objects is a
valid Compressed Geometry object. For hardware, after a valid Compre
Geometry object has been executed, another valid Compressed Geometr
be executed without any pipeline flushes if desired.

Rule 4: Reserved Bits

Any bits or bit fields described as reserved in a Compressed Geom
instruction must be filled with zeros.

Rule 5: Valid Opcodes

Only the seven defined instruction opcodes that may be present in a v
Compressed Geometry object.

Rule 6: No Defaults

All state used in the processing of Compressed Geometry must be def
before it is used; there are no implicit defaults for any of the state. The s
include the contents of the decompression tables as defined by the setT
Java 3D API Specification

3D GEOMETRY COMPRESSION Compressed Geometry Instruction VerifierB.17

, the
ush
d by
olor
to be
ose
x or
ied
ertex
ed
are
d the
in a
g on

s for
l or

that
sed
tate.

ble as
re
ots.)

a
te.

mal
t, u
et of
are

ed.

ub-
bit
instruction, the three bundling bits as defined by the setState instruction
contents of the mesh buffer as defined by vertex instructions with p
enabled, and the current position, normal, and color (and alpha), as define
absolute settings in vertex instructions, setNormal instructions, and setC
instructions. Note that this does not mean that all possible state needs
defined within a Compressed Geometry object. For example, only th
portions of the decompression tables actually referenced by a verte
setNormal or setColor instruction need be initialized first. The bits specif
by setState always need to be referenced, unless there are no v
instructions, which would only occur in a geometry-less Compress
Geometry object. Mesh buffer elements need only be defined if they
accessed by mesh buffer reference instructions. The current normal an
current color (and alpha) are special cases; if they are not used with
Compressed Geometry object they may not need to be initialized dependin
the semantics of the outer incorporating graphics API.

Specifically in a valid Compressed Geometry sequence no relative value
positions, normals, colors (or alpha) may appear in a vertex or setNorma
setColor instruction until after an absolute value has appeared for
particular item. There is no inheritance between different Compres
Geometry objects, each must be entirely stand-alone when it comes to s

Rule 7: State Changes Immediate

State changed by setState and setTable instructions is in force and availa
of next instruction. (This specifically disallows pipelined hardwa
implementations from changing the semantics to force user visible delay sl

Rule 8: Valid XYZ Positions

Executing the position field of a vertex instruction will always result in
signed sixteen bit fixed point value for the current X, Y, and Z position sta
All possible bit values are valid for these fields.

Rule 9: Valid Sextant Octant u v Normals

Executing a setNormal instruction, or executing (when present) the nor
sub-instruction of a vertex instruction will result in updated sextant, octan
and v fields. The wrapping semantics described earlier define the subs
valid values and delta operations allowed for these fields. If these fields
valid, then a valid conversion back to a rectilinear Nx Ny Nz values is defin

Rule 10: Valid RGB{α} Color

Executing a setColor instruction, or executing (when present) the color s
instruction of a vertex instruction will always result in a signed sixteen
451Version 1.1.2, June 1999

B.17 Compressed Geometry Instruction Verifier 3D GEOMETRY COMPRESSION

452

s in a
and
r

ssing
For
not
ation
sed
is is
ally
PI.
nt
tion
is of

fol-
m-
fixed point value for the current R, G, B (and sometimesα) color state. Only
positive values are valid for these fields.

Rule 11: What Is Outside the Scope of these Rules

The results of executing a sequence of Compressed Geometry instruction
valid Compressed Geometry object is a sequence of specific vertex values
connectivity information for triangles (or lines or points). What furthe
processing this output stream is subject to, and the semantics of this proce
is outside the scope of the specification of Compressed Geometry.
example, the semantics of transformation, lighting, and shading are
specified by Compressed Geometry. Note that even the semantic interpret
of what type of color parameter the “color” values generated by Compres
Geometry is left undefined by the Compressed Geometry specification; th
up to the lighting equation (or for realistic rendering systems, more gener
the programmable shader) of the outer incorporating graphics A
Specifically no implication is made as to if the “color” value is an ambie
color, a diffuse color, a specular color, an emissive color, some combina
thereof, or a more generalized value used by a programmable shader. Th
course also applies to any interpretation of theα value, which may or may not
be a opacity value.

As described above, for a Compressed Geometry object to be valid, it must
low these rulesplus adhere to the other constraints describing individual Co
pressed Geometry instructions described in the rest of this document.
Java 3D API Specification

Version 1.1.2, June 1999
A P P E N D I X C
on
ust

sing
must
model

er to
ove,
do
odel

ix-
ker,
ges

ase,
y
and
ter
In

that
ome-
View Model Details

AN application programmer writing a 3D graphics program that will deploy
a variety of platforms must anticipate the likely end-user environments and m
carefully construct the view transformations to match those characteristics u
a low-level API. This appendix addresses many of the issues an application
face and describes the sophisticated features that Java 3D’s advanced view
provides.

C.1 An Overview of the Java 3D View Model

Both camera-based and Java 3D–based view models allow a programm
specify the shape of a view frustum and, under program control, to place, m
and re-orient that frustum within the virtual environment. However, how they
this varies enormously. Unlike the camera-based system, the Java 3D view m
allows slaving the view frustum’s position and orientation to that of a s
degrees-of-freedom tracking device. By slaving the frustum to the trac
Java 3D can automatically modify the view frustum so that the generated ima
match the end-user’s viewpoint exactly.

Java 3D must handle two rather different head-tracking situations. In one c
we rigidly attach a tracker’sbase, and thus its coordinate frame, to the displa
environment. This corresponds to placing a tracker base in a fixed position
orientation relative to a projection screen within a room, relative to a compu
display on a desk, or relative to the walls of a multiple-wall projection display.
the second head-tracking situation, we rigidly attach a tracker’ssensor, not its
base, to the display device. This corresponds to rigidly attaching one of
tracker’s sensors to a head-mounted display and placing the tracker base s
where within the physical environment.
453

C.2 Physical Environments and Their Effects VIEW MODEL DETAILS

454

lica-
t’s

m
but

ntly

ith a
rpet

en
derer
ctly
ad-
ence

oom
et’s
flu-
then
if the
rep-

om-
the

nifi-
rdly

er’s
C.2 Physical Environments and Their Effects

Imagine an application where the end user sits on a magic carpet. The app
tion flies the user through the virtual environment by controlling the carpe
location and orientation within the virtual world. At first glance, it might see
that the application also controls what the end user will see—and it does,
only superficially.

The following two examples show how end-user environments can significa
affect how an application must construct viewing transformations.

C.2.1 A Head-mounted Example

Imagine that the end user sees the magic carpet and the virtual world w
head-mounted display and head tracker. As the application flies the ca
through the virtual world, the user may turn to look to the left, right, or ev
toward the rear of the carpet. Because the head tracker keeps the ren
informed of the user’s gaze direction, it might not need to draw the scene dire
in front of the magic carpet. The view that the renderer draws on the he
mount’s display must match what the end user would see had the experi
occurred in the real world.

C.2.2 A Room-mounted Example

Imagine a slightly different scenario, where the end user sits in a darkened r
in front of a large projection screen. The application still controls the carp
flight path; however, the position and orientation of the user’s head barely in
ences the image drawn on the projection screen. If a user looks left or right,
he or she only sees the darkened room. The screen does not move. It’s as
screen represents the magic carpet’s “front window” and the darkened room
resents the “dark interior” of the carpet.

By adding a left and right screen, we give the magic carpet rider a more c
plete view of the virtual world surrounding the carpet. Now our end user sees
view to the left or right of the magic carpet by turning left or right.

C.2.3 Impact of Head Position and Orientation on the Camera

In the head-mounted example, the user’s head position and orientation sig
cantly affects a camera model’s camera position and orientation but has ha
any effect on the projection matrix. In the room-mounted example, the us
Java 3D API Specification

VIEW MODEL DETAILS Room-mounted Coordinate SystemsC.3.1

osi-

ct the
the
ent

sate

g on
ead-
nted
ced

sys-
sys-
the

nce
head position and orientation contributes little to a camera model’s camera p
tion and orientation; however, it does affect the projection matrix.

From a camera-based perspective, the application developer must constru
camera’s position and orientation by combining the virtual-world component (
position and orientation of the magic carpet) and the physical-world compon
(the user’s instantaneous head position and orientation).

Java 3D’s view model incorporates the appropriate abstractions to compen
automatically for such variability in end-user hardware environments.

C.3 The Coordinate Systems

The basic view model consists of eight or nine coordinate systems, dependin
whether the end-user environment consists of a room-mounted display or a h
mounted display. First we define the coordinate systems used in a room-mou
display environment. Next we define the added coordinate system introdu
when using a head-mounted display system.

C.3.1 Room-mounted Coordinate Systems

The room-mounted coordinate system is divided into the virtual coordinate
tem and the physical coordinate system. Figure C-1 shows these coordinate
tems graphically. The coordinate systems within the grayed area exist in
virtual world; those outside exist in the physical world. Note that the coexiste
coordinate system exists in both worlds.

Figure C-1 Display Rigidly Attached to the Tracker Base

Coexistence

Virtual

ViewPlatform Vworld

Head Head Tracker Tracker Base Other Trackers

Image Plate
LCC

RCC

Fishtank Mode
455Version 1.1.2, June 1999

C.3.1 Room-mounted Coordinate Systems VIEW MODEL DETAILS

456

stem
vir-
the

tem

the

of
ab-
ithin
ld.
ual
coor-

the
sys-
for-
ical
rld

the
va 3D
ify-
C.3.1.1 The Virtual Coordinate Systems

The Virtual World Coordinate System

The virtual world coordinate system encapsulates the unified coordinate sy
for all scene graph objects in the virtual environment. For a given View, the
tual world coordinate system is defined by the Locale object that contains
ViewPlatform object attached to the View. It is a right-handed coordinate sys
with +x to the right, +y up, and +z toward the viewer.

The ViewPlatform Coordinate System

The ViewPlatform coordinate system is the local coordinate system of
ViewPlatform leaf node to which the View is attached.

The Coexistence Coordinate System

A primary implicit goal of any view model is to map a specified local portion
the physical world onto a specified portion of the virtual world. Once est
lished, one can legitimately ask where the user’s head or hand is located w
the virtual world, or where a virtual object is located in the local physical wor
In this way the physical user can interact with objects inhabiting the virt
world, and vice versa. To establish this mapping, Java 3D defines a special
dinate system, calledcoexistencecoordinates, that is defined to exist inboth the
physical world and the virtual world.

The coexistence coordinate system exists half in the virtual world and half in
physical world. The two transforms that go from the coexistence coordinate
tem to the virtual world coordinate system and back again contain all the in
mation needed to expand or shrink the virtual world relative to the phys
world, as well as the information needed to position and orient the virtual wo
relative to the physical world.

Modifying the transform that maps the coexistence coordinate system into
virtual world coordinate system changes what the end user can see. The Ja
application programmer moves the end user within the virtual world by mod
ing this transform.
Java 3D API Specification

VIEW MODEL DETAILS Head-mounted Coordinate SystemsC.3.2

ead
rame

sys-
t the

left
fined
ordi-

edom
ystem

with
lative
tial
d to

tems
stems
sys-
the
both
om-
rdi-

sys-
C.3.1.2 The Physical Coordinate Systems

The Head Coordinate System

The head coordinate system allows an application to import its user’s h
geometry. The coordinate system provides a simple consistent coordinate f
for specifying such factors as the location of the eyes and ears.

The Image Plate Coordinate System

The image plate coordinate system corresponds with the physical coordinate
tem of the image generator. The image plate is defined as having its origin a
lower left-hand corner of the display area and as lying in the display area’sXY
plane. Note that image plate is a different coordinate system than either
image plate or right image plate. These last two coordinate systems are de
in head-mounted environments only (see Section C.3.2, “Head-mounted Co
nate Systems”).

The Head Tracker Coordinate System

The head tracker coordinate system corresponds to the six-degrees-of-fre
tracker’s sensor attached to the user’s head. The head tracker’s coordinate s
describes the user’s instantaneous head position.

The Tracker Base Coordinate System

The tracker base coordinate system corresponds to the emitter associated
absolute position/orientation trackers. For those trackers that generate re
position/orientation information, this coordinate system is that tracker’s ini
position and orientation. In general, this coordinate system is rigidly attache
the physical world.

C.3.2 Head-mounted Coordinate Systems

Head-mounted coordinate systems divide the same virtual coordinate sys
and the physical coordinate systems. Figure C-2 shows these coordinate sy
graphically. As with the room-mounted coordinate systems, the coordinate
tems within the grayed area exist in the virtual world; those outside exist in
physical world. Once again, the coexistence coordinate system exists in
worlds. The arrangement of the coordinate system differs from those for a ro
mounted display environment. The head-mounted version of Java 3D’s coo
nate system differs in another way. It includes two image plate coordinate
tems, one for each of an end-user’s eyes.
457Version 1.1.2, June 1999

C.4 The ViewPlatform Object VIEW MODEL DETAILS

458

with
left

t the

l
e
iron-

The
es
scene
tion
ce
l-
m-

f a
be

ectly
ct
Figure C-2 Display Rigidly Attached to the Head Tracker (Sensor)

The Left Image Plate and Right Image Plate Coordinate Systems

The left image plate and right image plate coordinate systems correspond
the physical coordinate system of the image generator associated with the
and right eye, respectively. The image plate is defined as having its origin a
lower left-hand corner of the display area and lying in the display area’sXY
plane. Note that the left image plate’sXY plane does not necessarily lie paralle
to the right image plate’sXY plane. Note that left image plate and right imag
plate are different coordinate systems than the room-mounted display env
ment’s image plate coordinate system.

C.4 The ViewPlatform Object

The ViewPlatform object is a leaf object within the Java 3D scene graph.
ViewPlatform object is the only portion of Java 3D’s viewing model that resid
as a node within the scene graph. Changes to TransformGroup nodes in the
graph hierarchy above a particular ViewPlatform object move the view’s loca
and orientation within the virtual world (see Section 8.4, “ViewPlatform: A Pla
in the Virtual World”). The ViewPlatform object also contains a ViewAttachPo
icy and an ActivationRadius (see Section 5.10, “ViewPlatform Node,” for a co
plete description of the ViewPlatform API).

C.5 The View Object

The View object is the central Java 3D object for coordinating all aspects o
viewing situation. All parameters that determine the viewing transformation to
used in rendering on a collected set of canvases in Java 3D are either dir
contained within the View object, or within objects pointed to by a View obje

LCC

RCC

Left Image Plate

Right Image Plate
Head Tracker

Head

Tracker Base

Other Trackers ViewPlatform Vworld

Virtual

Head-mounted Display (HMD) Mode

Coexistence
Java 3D API Specification

VIEW MODEL DETAILS View Policy C.5.1

tive

most

f six-

This
rans-
ad-

tedly

the
sfor-

The
ew
(or pointed to by these, etc.). Java 3D supports multiple simultaneously ac
View objects, each of which controls its own set of canvases.

The Java 3D View object has several instance variables and methods, but
are calibration variables or user-helping functions.

Methods

public final void setTrackingEnable(boolean flag)
public final boolean getTrackingEnable()

These methods set and retrieve a flag specifying whether to enable the use o
degrees-of-freedom tracking hardware.

public final void getUserHeadToVworld(Transform3D t)

This method retrieves the user-head-to-vworld coordinate system transform.
Transform3D object takes points in the user’s head coordinate system and t
forms them into points in the virtual world coordinate system. This value is re
only. Java 3D continually generates it, but only if enabled by using thesetUser-

HeadToVworldEnable method.

public final void setUserHeadToVworldEnable(boolean flag)
public final boolean getUserHeadToVworldEnable()

These methods set and retrieve a flag that specifies whether or not to repea
generate the user-head-to-vworld transform (initiallyfalse).

public String toString()

This method returns a string that contains the values of this View object.

C.5.1 View Policy

The view policy informs Java 3D whether it should generate the view using
head-tracked system of transformations or the head-mounted system of tran
mations. These policies are attached to the Java 3D View object.

Methods

public final void setViewPolicy(int policy)
public final int getViewPolicy()

These two methods set and retrieve the current policy for view computation.
policy variable specifies how Java 3D uses its transforms in computing n
viewpoints, as follows:
459Version 1.1.2, June 1999

C.5.2 Screen Scale Policy VIEW MODEL DETAILS

460

ints
based
jec-

s-
nvi-
e

n the

icy

ach
.

when

on-
on

The
t can
• SCREEN_VIEW: Specifies that Java 3D should compute new viewpo
using the sequence of transforms appropriate to nonattached, screen-
head-tracked display environments, such as fishtank VR, multiple-pro
tion walls, and VR desks. This is the default setting.

• HMD_VIEW: Specifies that Java 3D should compute new viewpoints u
ing the sequence of transforms appropriate to head-mounted display e
ronments. This policy is not available in compatibility mode (se
Section C.11, “Compatibility Mode”).

C.5.2 Screen Scale Policy

The screen scale policy specifies where the screen scale comes from whe
view attach policy isNOMINAL_SCREEN_SCALED (see Section 8.4.3, “View Attach
Policy”). The policy can be one of the following:

• SCALE_EXPLICIT: Specifies that the scale used for a view attach pol
of NOMINAL_SCREEN_SCALED is taken from the user-providednomi-
nalScreenScale variable.

• SCALE_SCREEN_SIZE: Specifies that the scale used for a view att
policy of NOMINAL_SCREEN_SCALED is derived from the physical screen
This is the default policy.

public final void setScreenScalePolicy(int policy)
public final int getScreenScalePolicy()

These methods set and retrieve the current screen scale policy.

public final void setScreenScale(double scale)
public final double getScreenScale()

These methods set and retrieve the screen scale value. This value is used
the view attach policy isNOMINAL_SCREEN_SCALED and the screen scale policy is
SCALE_EXPLICIT.

C.5.3 Window Eyepoint Policy

The window eyepoint policy comes into effect in a non-head-tracked envir
ment. The policy tells Java 3D how to construct a new view frustum based
changes in the field of view and in the Canvas3D’s location on the screen.
policy only comes into effect when the application changes a parameter tha
change the placement of the eyepoint relative to the view frustum.
Java 3D API Specification

VIEW MODEL DETAILS Monoscopic View PolicyC.5.4

is
ified
li-
his

tire
a 3D
that
of a

ma-
es a
tive
ere

w is

non-
ues:
Constants

public static final int RELATIVE_TO_FIELD_OF_VIEW

This variable tells Java 3D that it should modify the eyepoint position so it
located at the appropriate place relative to the window to match the spec
field of view. This implies that the view frustum will change whenever the app
cation changes the field of view. In this mode, the eye position is read-only. T
is the default setting.

public static final int RELATIVE_TO_SCREEN

This variable tells Java 3D to interpret the eye’s position relative to the en
screen. No matter where an end user moves a window (a Canvas3D), Jav
continues to interpret the eye’s position relative to the screen. This implies
the view frustum changes shape whenever an end user moves the location
window on the screen. In this mode, the field of view is read-only.

public static final int RELATIVE_TO_WINDOW

This variable specifies that Java 3D should interpret the eye’s position infor
tion relative to the window (Canvas3D). No matter where an end user mov
window (a Canvas3D), Java 3D continues to interpret the eye’s position rela
to that window. This implies that the frustum remains the same no matter wh
the end user moves the window on the screen. In this mode, the field of vie
read-only.

Methods

public final int getWindowEyepointPolicy()
public final void setWindowEyepointPolicy(int policy)

This variable specifies how Java 3D handles the predefined eyepoint in a
head-tracked application. The variable can contain one of three val
RELATIVE_TO_FIELD_OF_VIEW, RELATIVE_TO_SCREEN, or RELATIVE_TO_WINDOW.
The default value isRELATIVE_TO_FIELD_OF_VIEW.

C.5.4 Monoscopic View Policy

This policy specifies how Java 3D generates a monoscopic view.
461Version 1.1.2, June 1999

C.5.5 Sensors and Their Location in the Virtual World VIEW MODEL DETAILS

462

ifies
sec-
from

e the
left

world
sen-
tes.
vir-

com-
ith-
play
dis-
Constants

public final static int LEFT_EYE_VIEW
public final static int RIGHT_EYE_VIEW
public final static int CYCLOPEAN_EYE_VIEW

These constants specify the monoscopic view policy. The first constant spec
that the monoscopic view should be the view as seen from the left eye. The
ond constant specifies that the monoscopic view should be the view as seen
the right eye. The third constant specifies that the monoscopic view should b
view as seen from the “center eye,” the fictional eye half-way between the
and right eyes. This is the default setting.

Methods

public final void setMonoscopicViewPolicy(int policy)
public final int getMonoscopicViewPolicy()

These methods set and return the monoscopic view policy, respectively.

C.5.5 Sensors and Their Location in the Virtual World

public final void getSensorToVworld(Sensor sensor, Transform3D t)
public final void getSensorHotSpotInVworld(Sensor sensor,

Point3d position)
public final void getSensorHotSpotInVworld(Sensor sensor,

Point3f position)

The first method takes the sensor’s last reading and generates a sensor-to-v
coordinate system transform. This Transform3D object takes points in that
sor’s local coordinate system and transforms them into virtual world coordina
The next two methods retrieve the specified sensor’s last hotspot location in
tual world coordinates.

C.6 The Screen3D Object

A Screen3D object represents one independent display device. The most
mon environment for a Java 3D application is a desktop computer with or w
out a head tracker. Figure C-3 shows a scene graph fragment for a dis
environment designed for such an end-user environment. Figure C-4 shows a
play environment that matches the scene graph fragment in Figure C-3.
Java 3D API Specification

VIEW MODEL DETAILS The Screen3D Object C.6

ch
ws a
e cor-

nd
with
oex-
Figure C-3 A Portion of a Scene Graph Containing a Single Screen3D Object

Figure C-4 A Single-Screen Display Environment

A multiple-projection wall display presents a more exotic environment. Su
environments have multiple screens, typically three or more. Figure C-5 sho
scene graph fragment representing such a system and Figure C-6 shows th
responding display environment.

A multiple-screen environment requires more care during the initialization a
calibration phase. Java 3D must know how the Screen3D’s are placed
respect to one another, the tracking device, and the physical portion of the c
istence coordinate system.

VP
View Canvas3D Screen3D

Physical
Body

Physical
Environment

TGTransformGroup

ViewPlatform
463Version 1.1.2, June 1999

C.6.1 Screen3D Calibration Parameters VIEW MODEL DETAILS

464

8.8,
gram
thods
ers.

pro-
Figure C-5 A Portion of a Scene Graph Containing Three Screen3D Objects

Figure C-6 A Three-Screen Display Environment

C.6.1 Screen3D Calibration Parameters

The Screen3D object is the 3D version of AWT’s screen object (see Section
“The Screen3D Object”). To use a Java 3D system, someone or some pro
must calibrate the Screen3D object with the coexistence volume. These me
allow that person or program to inform Java 3D of those calibration paramet

Measured Parameters

These calibration parameters are set once, typically by a browser, calibration
gram, system administrator, or system calibrator, not by an applet.

VP
View Canvas3D Screen3D

Physical
Body

Physical
Environment

TGTransformGroup

ViewPlatform

Canvas3D Screen3D

Canvas3D Screen3D
Java 3D API Specification

VIEW MODEL DETAILS The Canvas3D Object C.7

ht in
alues
ead-
the

ystem
t. If
y in
rel-

acker-
king

not

late
ation
te a
he
om-
ition
public final void setPhysicalScreenWidth(double width)
public final void setPhysicalScreenHeight(double height)

These methods store the screen’s (image plate’s) physical width and heig
meters. The system administrator or system calibrator must provide these v
by measuring the display’s active image width and height. In the case of a h
mounted display, this should be the display’s apparent width and height at
focal plane.

C.6.2 Accessing and Changing Head Tracker Coordinates

public void setTrackerBaseToImagePlate(Transform3D t)
public void getTrackerBaseToImagePlate(Transform3D t)

These methods set and get the tracker-base-to-image-plate coordinate s
transform. If head tracking is enabled, this transform is a calibration constan
head tracking is not enabled, this transform is not used. This is used onl
SCREEN_VIEW mode. Users must recalibrate whenever the image plate moves
ative to the tracker.

public void setHeadTrackerToLeftImagePlate(Transform3D t)
public void getHeadTrackerToLeftImagePlate(Transform3D t)
public void setHeadTrackerToRightImagePlate(Transform3D t)
public void getHeadTrackerToRightImagePlate(Transform3D t)

These methods set and get the head-tracker-to-left-image-plate and head-tr
to-right-image-plate coordinate system transforms, respectively. If head trac
is enabled, these transforms are calibration constants. If head tracking is
enabled, these transforms are not used. They are used only inHMD_VIEW mode.

C.7 The Canvas3D Object

Java 3D provides special support for those applications that wish to manipu
an eye position even in a non-head-tracked display environment. One situ
where such a facility proves useful is an application that wishes to genera
very high-resolution image composed of lower-resolution tiled images. T
application must generate each tiled component of the final image from a c
mon eye position with respect to the composite image but a different eye pos
from the perspective of each individual tiled element.
465Version 1.1.2, June 1999

C.7.1 Scene Antialiasing VIEW MODEL DETAILS

466

vail-

ye’s
. It
age

es in
head
in

nter
The
ese

ge

tem
C.7.1 Scene Antialiasing

public final boolean getSceneAntialiasingAvailable()

This method returns a status flag indicating whether scene antialiasing is a
able.

C.7.2 Accessing and Modifying an Eye’s Image Plate Position

A Canvas3D object provides sophisticated applications with access to the e
position information in head-tracked, room-mounted runtime environments
also allows applications to manipulate the position of an eye relative to an im
plate in non-head-tracked runtime environments.

public final void setLeftManualEyeInImagePlate(Point3d position)
public final void setRightManualEyeInImagePlate(Point3d position)
public final void getLeftManualEyeInImagePlate(Point3d position)
public final void getRightManualEyeInImagePlate(Point3d position)

These methods set and retrieve the position of the manual left and right ey
image plate coordinates. These values determine eye placement when a
tracker is not in use and the application is directly controlling the eye position
image plate coordinates. In head-tracked mode or when thewindowEyepoint-

Policy is RELATIVE_TO_FIELD_OF_VIEW, this value is ignored. When thewin-
dowEyepointPolicy is RELATIVE_TO_WINDOW, only theZ value is used.

public final void getLeftEyeInImagePlate(Point3d position)
public final void getRightEyeInImagePlate(Point3d position)
public final void getCenterEyeInImagePlate(Point3d position)

These methods retrieve the actual position of the left eye, right eye, and ce
eye in image plate coordinates and copy that value into the object provided.
center eye is the fictional eye half-way between the left and right eye. Th
three values are a function of thewindowEyepointPolicy, the tracking enable
flag, and the manual left, right, and center eye positions.

public final void getPixelLocationInImagePlate(int x, int y,
Point3d position)

This method computes the position of the specified AWT pixel value in ima
plate coordinates and copies that value into the object provided.

public final void getVworldToImagePlate(Transform3D t)

This method retrieves the current virtual-world-to-image-plate coordinate sys
transform and places it into the specified object.
Java 3D API Specification

VIEW MODEL DETAILS The PhysicalBody Object C.8

tem

, in

cter-
ecify
n so
ead
istent
thus

ym-
ad

and
public final void getImagePlateToVworld(Transform3D t)

This method retrieves the current image-plate-to-virtual-world coordinate sys
transform and places it into the specified object.

C.7.3 Canvas Width and Height

public final double getPhysicalWidth()
public final double getPhysicalHeight()

These methods retrieve the physical width and height of this canvas window
meters.

C.8 The PhysicalBody Object

The PhysicalBody object contains information concerning the physical chara
istics of the end-user’s body. The head parameters allow end users to sp
their own head’s characteristics and thus to customize any Java 3D applicatio
that it conforms to their unique geometry. The PhysicalBody object defines h
parameters in the head coordinate system. It provides a simple and cons
coordinate frame for specifying such factors as the location of the eyes and
the interpupilary distance.

The Head Coordinate System

The head coordinate system has its origin on the head’s bilateral plane of s
metry, roughly half-way between the left and right eyes. The origin of the he
coordinate system is known as thecenter eye. The positiveX-axis extends to the
right. The positiveY-axis extends up. The positiveZ-axis extends into the skull.
Values are in meters.

Constructors

public PhysicalBody()

Constructs a default user PhysicalBody object with the following default eye
ear positions:

Parameter Default Value

leftEyePosition (–0.033, 0.0, 0.0)

rightEyePosition (0.033, 0.0, 0.0)

leftEaPosition (–0.080, –0.030, 0.095)

rightEarPosition (0.080, –0.030, 0.095)
467Version 1.1.2, June 1999

C.8 The PhysicalBody Object VIEW MODEL DETAILS

468

d ear

ser’s

posi-

from
oni-

tion
ture
public PhysicalBody(Point3d leftEyePosition,
Point3d rightEyePosition)

public PhysicalBody(Point3d leftEyePosition,
Point3d rightEyePosition, Point3d leftEarPosition,
Point3d rightEarPosition)

These methods construct a PhysicalBody object with the specified eye an
positions.

Methods

public void getLeftEyePosition(Point3d position)
public void setLeftEyePosition(Point3d position)
public void getRightEyePosition(Point3d position)
public void setRightEyePosition(Point3d position)

These methods set and retrieve the position of the center of rotation of a u
left and right eyes in head coordinates.

public void getLeftEarPosition(Point3d position)
public void setLeftEarPosition(Point3d position)
public void getRightEarPosition(Point3d position)
public void setRightEarPosition(Point3d position)

These methods set and retrieve the position of the user’s left and right ear
tions in head coordinates.

public double getNominalEyeHeightFromGround()
public void setNominalEyeHeightFromGround(double height)

These methods set and retrieve the user’s nominal eye height as measured
the ground to the center eye in the default posture. In a standard computer m
tor environment, the default posture would be seated. In a multiple-projec
display room environment or a head-tracked environment, the default pos
would be standing.

nominal eye height from ground 1.68

nominal eye offset from nominal
screen

0.4572

head to head tracker transform identity

Parameter Default Value
Java 3D API Specification

VIEW MODEL DETAILS The PhysicalEnvironment Object C.9

of the
the

trans-
ead
both

ject.

ical
out

am-
public double getNominalEyeOffsetFromNominalScreen()
public void setNominalEyeOffsetFromNominalScreen(double offset)

These methods set and retrieve the offset from the center eye to the center
display screen. This offset distance allows an “over the shoulder” view of
scene as seen by the end user.

public void setHeadToHeadTracker(Transform3D t)
public void getHeadToHeadTracker(Transform t)

These methods set and retrieve the head-to-head-tracker coordinate system
form. If head tracking is enabled, this transform is a calibration constant. If h
tracking is not enabled, this transform is not used. This transform is used in
SCREEN_VIEW andHMD_VIEW modes.

public String toString()

This method returns a string that contains the values of this PhysicalBody ob

C.9 The PhysicalEnvironment Object

The PhysicalEnvironment object contains information about the local phys
world of the end-user’s physical environment. This includes information ab
audio output devices and tracking sensor hardware, if present.

Constructors

public PhysicalEnvironment()

Constructs and initializes a new PhysicalEnvironment object with default par
eters:

Parameter Default Value

sensorCount 3

sensors null (for all array elements)

headIndex 0

rightHandIndex 1

leftHandIndex 2

dominantHandIndex 1

nondominantHandIndex 2

tracking available false

audio device null
469Version 1.1.2, June 1999

C.9 The PhysicalEnvironment Object VIEW MODEL DETAILS

470

ices
stick
,” for
ous
g”).

ws
than
red
lds

soci-

to

ugh

put
public PhysicalEnvironment(int sensorCount)

Constructs and initializes a new PhysicalEnvironment object.

The sensor information provides real-time access to continuous-input dev
such as joysticks and trackers. It also contains two-degrees-of-freedom joy
and six-degrees-of-freedom tracker information. See Section 10.2, “Sensors
more information. Java 3D uses Java AWT’s event model for noncontinu
input devices such as keyboards (see Chapter 10, “Input Devices and Pickin

Audio device information associated with the PhysicalEnvironment object allo
the application a mechanism to choose a particular audio device (if more
one is available) and explicitly set the type of audio playback for sound rende
using this device. See Chapter 11, “Audio Devices,” for more details on the fie
and methods that set and initialize the device driver and output playback as
ated with the audio device.

Methods

The PhysicalEnvironment object specifies the following methods pertaining
audio output devices and input sensors.

public void setAudioDevice(AudioDevice device)

This method selects the specified AudioDevice object as the device thro
which audio rendering for this PhysicalEnvironment will be performed.

public AudioDevice getAudioDevice()

This method retrieves the specified AudioDevice object.

public final void addInputDevice(InputDevice device)
public final void removeInputDevice(InputDevice device)

These methods add and remove an input device to or from the list of in
devices.

input device list empty

coexistence to tracker base
transform

identity

coexistence center in pworld
policy

View.NOMINAL_SCREEN

Parameter Default Value
Java 3D API Specification

VIEW MODEL DETAILS The PhysicalEnvironment Object C.9

ithin
. It

ment

sform.
ck-

ble.

ided.
public final Enumeration getAllInputDevices()

This method creates an enumerator that produces all input devices.

public void setSensorCount(int count)
public int getSensorCount()

These methods set and retrieve the count of the number of sensors stored w
the PhysicalEnvironment object. It defaults to a small number of sensors
should be set to the number of sensors available in the end-user’s environ
before initializing the Java 3D API.

public void setCoexistenceToTrackerBase(Transform3D t)
public void getCoexistenceToTrackerBase(Transform3D t)

These methods set the coexistence-to-tracker-base coordinate system tran
If head tracking is enabled, this transform is a calibration constant. If head tra
ing is not enabled, this transform is not used. This is used in bothSCREEN_VIEW

andHMD_VIEW modes.

public boolean getTrackingAvailable()

This method returns a status flag indicating whether or not tracking is availa

public void setSensor(int index, Sensor sensor)
public Sensor getSensor(int index)

The first method sets the sensor specified by the index to the sensor prov
The second method retrieves the specified sensor.

public void setDominantHandIndex(int index)
public int getDominantHandIndex()

These methods set and retrieve the index of the dominant hand.

public void setNonDominantHandIndex(int index)
public int getNonDominantHandIndex()

These methods set and retrieve the index of the nondominant hand.

public void setHeadIndex(int index)
public int getHeadIndex()
public void setRightHandIndex(int index)
public int getRightHandIndex()
public void setLeftHandIndex(int index)
public int getLeftHandIndex()
471Version 1.1.2, June 1999

C.10 Viewing in Head-tracked Environments VIEW MODEL DETAILS

472

and.

phys-
ye-
ss.

for a
ribe
iron-
or a
how
isplay

(for
nta-
3D

user’s
orre-

e’s
tive
will
ter-
end-

lso
cked,
These methods set and retrieve the index of the head, right hand, and left h
Theindex parameter refers to the sensor index.

Physical Coexistence Policy

public int getCoexistenceCenterInPworldPolicy()
public void setCoexistenceCenterInPworldPolicy(int policy)

These methods set and retrieve the physical coexistence policy used in this
ical environment. This policy specifies how Java 3D will place the user’s e
point as a function of current head position during the calibration proce
Java 3D permits one of three values:NOMINAL_HEAD, NOMINAL_FEET, or NOMI-
NAL_SCREEN. Note:NOMINAL_SCREEN_SCALED is not allowed for this policy.

C.10 Viewing in Head-tracked Environments

Section 8.5, “Generating a View,” describes how Java 3D generates a view
standard flat-screen display with no head tracking. In this section, we desc
how Java 3D generates a view in a room-mounted, head-tracked display env
ment—either a computer monitor with shutter glasses and head tracking
multiple-wall display with head-tracked shutter glasses. Finally, we describe
Java 3D generates view matrices in a head-mounted and head-tracked d
environment.

C.10.1 A Room-mounted Display with Head Tracking

When head tracking combines with a room-mounted display environment
example, a standard flat screen display), the ViewPlatform’s origin and orie
tion serves as a base for constructing the view matrices. Additionally, Java
uses the end-user’s head position and orientation to compute where an end-
eyes are located in physical space. Each eye’s position serves to offset the c
sponding virtual eye’s position relative to the ViewPlatform’s origin. Each ey
position also serves to specify that eye’s frustum since the eye’s position rela
to a Screen3D uniquely specifies that eye’s view frustum. Note that Java 3D
access the PhysicalBody object to obtain information describing the user’s in
pupilary distance and tracking hardware, values it needs to compute the
user’s eye positions from the head position information.

C.10.2 A Head-mounted Display with Head Tracking

In a head-mounted environment, the ViewPlatform’s origin and orientation a
serves as a base for constructing view matrices. And, as in the head-tra
Java 3D API Specification

VIEW MODEL DETAILS Compatibility Mode C.11

n and
a

o not
move
rad-
he
on
oes
play

esult.

e in
ces

the
hose
ori-
f the
of

ed,
sing

in

by

’s
ods
room-mounted environment, Java 3D also uses the end-user’s head positio
orientation to further modify the ViewPlatform’s position and orientation. In
head-tracked, head-mounted display environment, an end-user’s eyes d
move relative to their respective display screens, rather, the display screens
relative to the virtual environment. A rotation of the head by an end user can
ically affect the final view’s orientation. In this situation, Java 3D combines t
position and orientation from the ViewPlatform with the position and orientati
from the head tracker to form the view matrix. The view frustum, however, d
not change since the user’s eyes do not move relative to their respective dis
screen, so Java 3D can compute the projection matrix once and cache the r

If any of the parameters of a View object are updated, this will effect a chang
the implicit viewing transform (and thus image) of any Canvas3D that referen
that View object.

C.11 Compatibility Mode

A camera-based view model allows application programmers to think about
images displayed on the computer screen as if a virtual camera took t
images. Such a view model allows application programmers to position and
ent a virtual camera within a virtual scene, to manipulate some parameters o
virtual camera’s lens (specify its field of view), and to specify the locations
the near and far clipping planes.

Java 3D allows applications to enable compatibility mode for room-mount
non-head-tracked display environments, or to disable compatibility mode u
the following methods. Camera-based viewing functions are only available
compatibility mode.

Methods

public final void setCompatibilityModeEnable(boolean flag)
public final boolean getCompatabilityModeEnable()

This flag turns compatibility mode on or off. Compatibility mode is disabled
default.

Note: Use of these view-compatibility functions will disable some of Java 3D
view model features and limit the portability of Java 3D programs. These meth
are primarily intended to help jump-start porting of existing applications.
473Version 1.1.2, June 1999

C.11.1 Overview of the Camera-based View Model VIEW MODEL DETAILS

474

tual
iew
tem
the

on,
.

ecify
ated
he
dis-
frus-
es.

ith
tings,
stum
ping

m-
rom
lose
ing
ich
C.11.1 Overview of the Camera-based View Model

The traditional camera-based view model, shown in Figure C-7, places a vir
camera inside a geometrically specified world. The camera “captures” the v
from its current location, orientation, and perspective. The visualization sys
then draws that view on the user’s display device. The application controls
view by moving the virtual camera to a new location, by changing its orientati
by changing its field of view, or by controlling some other camera parameter

The various parameters that users control in a camera-based view model sp
the shape of a viewing volume (known as a frustum because of its trunc
pyramidal shape) and locate that frustum within the virtual environment. T
rendering pipeline uses the frustum to decide which objects to draw on the
play screen. The rendering pipeline does not draw objects outside the view
tum and it clips (partially draws) objects that intersect the frustum’s boundari

Though a view frustum’s specification may have many items in common w
those of a physical camera, such as placement, orientation, and lens set
some frustum parameters have no physical analog. Most noticeably, a fru
has two parameters not found on a physical camera: the near and far clip
planes.

The location of the near and far clipping planes allow the application progra
mer to specify which objects Java 3D should not draw. Objects too far away f
the current eyepoint usually do not result in interesting images. Those too c
to the eyepoint might obscure the interesting objects. By carefully specify
near and far clipping planes, an application programmer can control wh
objects the renderer will not be drawing.

Figure C-7 The Camera-based View Model

Near Clipping Plane

Far Clipping Plane

View Frustum
Java 3D API Specification

VIEW MODEL DETAILS Using the Camera-based View ModelC.11.2

cor-
ld of

isting
odel
ins

ping
d to
thus
cts

ing

ing
e

hin
ew’s
e

ro-
or-
d the

pex
s to
ans-
From the perspective of the display device, the virtual camera’s image plane
responds to the display screen. The camera’s placement, orientation, and fie
view determine the shape of the view frustum.

C.11.2 Using the Camera-based View Model

The camera-based view model allows Java 3D to bridge the gap between ex
3D code and Java 3D’s view model. By using the camera-based view m
methods, a programmer retains the familiarity of the older view model but ga
some of the flexibility afforded by Java 3D’s new view model.

The traditional camera-based view model is supported in Java 3D by hel
methods in the Transform3D object. These methods were explicitly designe
resemble as closely as possible the view functions of older packages, and
should be familiar to most 3D programmers. The resulting Transform3D obje
can be used to set compatibility-mode transforms in the View object.

C.11.2.1 Creating a Viewing Matrix

The Transform3D object provides the following method to create a view
matrix.

public void lookAt(Point3d eye, Point3d center, Vector3d up)

This is a utility method that specifies the position and orientation of a view
transform. It works very similarly to the equivalent function in OpenGL. Th
inverse of this transform can be used to control the ViewPlatform object wit
the scene graph. Alternatively, this transform can be passed directly to the Vi
VpcToEc transform via the compatibility-mode viewing functions (se
Section C.11.2.3, “Setting the Viewing Transform”).

C.11.2.2 Creating a Projection Matrix

The Transform3D object provides the following three methods for creating a p
jection matrix. All three map points from eye coordinates (EC) to clipping co
dinates (CC). Eye coordinates are defined such that (0, 0, 0) is at the eye an
projection plane is atz = –1.

public void frustum(double left, double right, double bottom,
double top, double near, double far)

Thefrustum method establishes a perspective projection with the eye at the a
of a symmetric view frustum. The transform maps points from eye coordinate
clipping coordinates. The clipping coordinates generated by the resulting tr
475Version 1.1.2, June 1999

C.11.2 Using the Camera-based View Model VIEW MODEL DETAILS

476

tems

tion:

in-
ee

the

era-
ping
re in

tion:

f

tion
aps
form are in a right-handed coordinate system (as are all other coordinate sys
in Java 3D).

The arguments define the frustum and its associated perspective projec
(left, bottom, -near) and(right, top, -near) specify the point on the near
clipping plane that maps onto the lower-left and upper-right corners of the w
dow, respectively. The-far parameter specifies the far clipping plane. S
Figure C-8.

Figure C-8 A Perspective Viewing Frustum

public void perspective(double fovx, double aspect, double zNear,
double zFar)

Theperspective method establishes a perspective projection with the eye at
apex of a symmetric view frustum, centered about theZ-axis, with a fixed field of
view. The resulting perspective projection transform mimics a standard cam
based view model. The transform maps points from eye coordinates to clip
coordinates. The clipping coordinates generated by the resulting transform a
a right-handed coordinate system.

The arguments define the frustum and its associated perspective projec
-near and-far specify the near and far clipping planes;fovx specifies the field
of view in theX dimension, in radians; andaspect specifies the aspect ratio o
the window. See Figure C-9.

public void ortho(double left, double right, double bottom,
double top, double near, double far)

The ortho method establishes a parallel projection. The orthographic projec
transform mimics a standard camera-based video model. The transform m

near

far

top

bottom
right

left
Java 3D API Specification

VIEW MODEL DETAILS Using the Camera-based View ModelC.11.2

tes
.

e
ely.

ate
points from eye coordinates to clipping coordinates. The clipping coordina
generated by the resulting transform are in a right-handed coordinate system

Figure C-9 Perspective View Model Arguments

The arguments define a rectangular box used for projection:(left, bottom,
-near) and (right, top, -near) specify the point on the near clipping plan
that maps onto the lower-left and upper-right corners of the window, respectiv
The-far parameter specifies the far clipping plane. See Figure C-10.

Figure C-10 Orthographic View Model

C.11.2.3 Setting the Viewing Transform

The View object provides the following compatibility-mode methods that oper
on the viewing transform.

zNear

zFar

aspect = x/y

fovx

Θ x
y

bottom

near far

left

top

rightToward the
Viewpoint

View Volume
477Version 1.1.2, June 1999

C.11.2 Using the Camera-based View Model VIEW MODEL DETAILS

478

C)
his

ate

nd
. If
public final void setVpcToEc(Transform3D vpcToEc)
public final void getVpcToEc(Transform3D vpcToEc)

This compatibility-mode method specifies the ViewPlatform coordinates (VP
to eye coordinates viewing transform. If compatibility mode is disabled, t
transform is derived from other values and is read-only.

C.11.2.4 Setting the Projection Transform

The View object provides the following compatibility-mode methods that oper
on the projection transform.

public final void setLeftProjection(Transform3D projection)
public final void getLeftProjection(Transform3D projection)
public final void setRightProjection(Transform3D projection)
public final void getRightProjection(Transform3D projection)

These compatibility-mode methods specify a viewing frustum for the left a
right eye that transforms points in eye coordinates to clipping coordinates
compatibility mode is disabled, aRestrictedAccessException is thrown. In
monoscopic mode, only the left eye projection matrix is used.
Java 3D API Specification

Version 1.1.2, June 1999
A P P E N D I X D
rrors
h as

rious
n of

e
ons
s.

the

oup
or a

ect
-to-
ith

on-
Exceptions

THE Java 3D API uses the standard Java exception model for handling e
or exceptional conditions. In addition to using existing exception classes, suc
ArrayIndexOutOfBoundsException and IllegalArgumentException, Java 3D
defines several new runtime exceptions. These exceptions are thrown by va
Java 3D methods or by the Java 3D renderer to indicate an error conditio
some kind.

The exceptions defined by Java 3D, as part of thejavax.media.j3d package, are
described in the following sections. They all extendRuntimeException and, as
such, need not be declared in thethrows clause of methods that might cause th
exception to be thrown. This appendix is not an exhaustive list of all excepti
expected for Java 3D. Additional exceptions will be added as the need arise

D.1 BadTransformException

Indicates an attempt to use a Tranform3D object that is inappropriate for
object in which it is being used. For example:

• Transforms that are used in the scene graph, within a TransformGr
node, must be affine. They may optionally contain a nonuniform scale
shear, subject to other listed restrictions.

• All transforms in the TransformGroup nodes above a ViewPlatform obj
must be congruent. This ensures that the Vworld-coordinates
ViewPlatform-coordinates transform is angle- and length-preserving w
no shear and only uniform scale.

• Most viewing transforms other than those in the scene graph can only c
tain translation and rotation.
479

D.2 CapabilityNotSetException EXCEPTIONS

480

be

e first
ring to

bject

e first
ring to

s
ph is
nce
two
• The projection transform is allowed to be non-affine, but it must either
a single-point perspective projection or a parallel projection.

Constructors

public BadTransformException()
public BadTransformException(String str)

These create the exception object that outputs the exception message. Th
form uses the default message. The second form specifies the message st
be output.

D.2 CapabilityNotSetException

This exception indicates an access to a live or compiled Scene Graph o
without the required capability set.

Constructors

public CapabilityNotSetException()
public CapabilityNotSetException(String str)

These create the exception object that outputs the exception message. Th
form uses the default message. The second form specifies the message st
be output.

D.3 DanglingReferenceException

This exception indicates that during acloneTree call, an updated reference wa
requested for a node that did not get cloned. This occurs when a subgra
duplicated viacloneTree and has at least one leaf node that contains a refere
to a node with no corresponding node in the cloned subgraph. This results in
leaf nodes wanting to share access to the same node.

If dangling references are to be allowed during thecloneTree call, cloneTree
should be called with theallowDanglingReferences parameter set totrue.
Java 3D API Specification

EXCEPTIONS IllegalSharingException D.5

e first
ring to

b-

e first
ring to

. For

me-

ys:

etry
Constructors

public DanglingReferenceException()
public DanglingReferenceException(String str)

These create the exception object that outputs the exception message. Th
form uses the default message. The second form specifies the message st
be output.

D.4 IllegalRenderingStateException

This exception indicates an illegal state for rendering. This includes:

• Lighting without specifying normals in a geometry array object

• Texturing without specifying texture coordinates in a geometry array o
ject

public illegalRenderingStateException()
public illegalRenderingStateException(String str)

These create the exception object that outputs the exception message. Th
form uses the default message. The second form specifies the message st
be output.

D.5 IllegalSharingException

This exception indicates an illegal attempt to share a scene graph object
example, the following are illegal:

• Referencing a shared subgraph in more than one virtual universe

• Using the same component object both in the scene graph and in an im
diate-mode graphics context

• Including an unsupported type of leaf node within a shared subgraph

• Referencing a BranchGroup node in more than one of the following wa
• Attaching it to a (single) Locale

• Adding it as a child of a Group node within the scene graph

• Referencing it from a (single) Background leaf node as background geom
481Version 1.1.2, June 1999

D.6 MismatchedSizeException EXCEPTIONS

482

e first
ring to

ause

e first
ring to

e.

e first
ring to

hout
t

Constructors

public IllegalSharingException()
public IllegalSharingException(String str)

These create the exception object that outputs the exception message. Th
form uses the default message. The second form specifies the message st
be output.

D.6 MismatchedSizeException

This exception indicates that an operation cannot be completed properly bec
of a mismatch in the sizes of the object attributes.

public MismatchedSizeException()
public MismatchedSizeException(String str)

These create the exception object that outputs the exception message. Th
form uses the default message. The second form specifies the message st
be output.

D.7 MultipleParentException

This exception extendsIllegalSharingException and indicates an attempt to
add a node that is already a child of one group node into another group nod

Constructors

public MultipleParentException()
public MultipleParentException(String str)

These create the exception object that outputs the exception message. Th
form uses the default message. The second form specifies the message st
be output.

D.8 RestrictedAccessException

This exception indicates an attempt to access or modify a state variable wit
permission to do so. For example, invoking aset method for a state variable tha
is currently read-only.
Java 3D API Specification

EXCEPTIONS SingularMatrixException D.10

e first
ring to

able
d, as

ren-
cle is

e first
ring to

a

e first
ring to
Constructors

public RestrictedAccessException()
public RestrictedAccessException(String str)

These create the exception object that outputs the exception message. Th
form uses the default message. The second form specifies the message st
be output.

D.9 SceneGraphCycleException

This exception indicates that one of the live scene graphs attached to a view
Locale has a cycle in it. Java 3D scene graphs are directed acyclic graphs an
such, do not permit cycles. This exception is either thrown by the Java 3D
derer at scene graph traversal time or when a scene graph containing a cy
made live (added as a descendant of a Locale object).

Constructors

public SceneGraphCycleException()
public SceneGraphCycleException(String str)

These create the exception object that outputs the exception message. Th
form uses the default message. The second form specifies the message st
be output.

D.10 SingularMatrixException

This exception, in thejavax.vecmath package, indicates that the inverse of
matrix cannot be computed.

Constructors

public SingularMatrixException()
public SingularMatrixException(String str)

These create the exception object that outputs the exception message. Th
form uses the default message. The second form specifies the message st
be output.
483Version 1.1.2, June 1999

D.11 SoundException EXCEPTIONS

484

e first
ring to
D.11 SoundException

This exception indicates a problem in loading or playing a sound sample.

Constructors

public SoundException()
public SoundException(String str)

These create the exception object that outputs the exception message. Th
form uses the default message. The second form specifies the message st
be output.
Java 3D API Specification

Version 1.1.2, June 1999
A P P E N D I X E
and

e

Equations

THIS appendix contains the Java 3D equations for fog, lighting, sound,
texture mapping. Many of the equations use the following symbols:

E.1 Fog Equations

The ideal fog equation is as follows:

(E.1)

The fog coefficient,f, is computed differently for linear and exponential fog. Th
equation for linear fog is as follows:

(E.2)

The equation for exponential fog is as follows:

(E.3)

The parameters used in the fog equations are as follows:

⋅ Multiplication

• Function operator for sound equations,
Dot product for all other equations

C = Color of the pixel being fogged

Cf = Fog color

d = Fog density

F = Front fog distance, measured in eye coordinates

C′ C f C f 1 f–()⋅+⋅=

f
B z–
B F–
-------------=

f e d z⋅–=
485

E.2 Lighting Equations EQUATIONS

486

or-
lor

by
o
.

r-
ap-

ace
ple-

g

Fallbacks and Approximations

1. An implementation may approximate per-pixel fog by calculating the c
rect fogged color at each vertex and then linearly interpolating this co
across the primitive.

2. An implementation may approximate exponential fog using linear fog
computing values ofF andB that cause the resulting linear fog ramp t
most closely match the effect of the specified exponential fog function

3. An implementation will ideally perform the fog calculations in eye coo
dinates, which is an affine space. However, an implementation may
proximate this by performing the fog calculations in a perspective sp
(such as, device coordinates). As with other approximations, the im
mentation should match the specified function as closely as possible.

E.2 Lighting Equations

The ideal lighting equation is as follows:

(E.4)

(E.5)

(E.6)

Note: If (Li • N) ≤ 0, thendiffi andspeci are set to 0.

(E.7)

Note: For directional lights,atteni is set to 1.

(E.8)

B = Back fog distance, measured in eye coordinates

z = The z-coordinate distance from the eyepoint to the pixel bein
fogged, measured in eye coordinates

f = Fog coefficient

Me Ma+ Lci() atteni spoti diff i speci+()⋅ ⋅()
i

Numlt

∑+
i

Numamb

∑⋅

diff i Li N•() Lci Md⋅ ⋅=

speci Si N•()shin Lci Ms⋅ ⋅=

atteni 1 Kci K l i di Kqi di
2⋅+⋅+()⁄=

spoti max Li– Di⋅() 0,()
expi=
Java 3D API Specification

EQUATIONS Lighting Equations E.2

gle,

are

fer-
ple,
ht
and
tion
most
Note: If the vertex is outside the spot light cone, as defined by the cutoff an
spoti is set to 0. For directional and point lights,spoti is set to 1.

This is a subset of OpenGL in that the Java 3D ambient and directional lights
not attenuated and only ambient lights contribute to ambient lighting.

The parameters used in the lighting equation are as follows:

The per-light values are as follows:

Fallbacks and Approximations

1. An implementation may approximate the specular function using a dif
ent power function that produces a similar specular highlight. For exam
the PHIGS+ lighting model specifies that the reflection vector (the lig
vector reflected about the vertex normal) is dotted with the eye vector,
that this dot product is raised to the specular power. An implementa
that uses such a model should map the shininess into an exponent that
closely matches the effect produced by the ideal equation.

E = Eye vector

Ma = Material ambient color

Md = Material diffuse color

Me = Material emissive color

Ms = Material specular color

N = Vertex normal

shin = Material shininess

di = Distance from vertex to light

Di = Spot light direction

expi = Spot light exponent

Kci = Constant attenuation

Kli = Linear attenuation

Kqi = Quadratic attenuation

Li = Direction from vertex to light

Lci = Light color

Si = Specular half-vector = || (Li + E) ||
487Version 1.1.2, June 1999

E.3 Sound Equations EQUATIONS

488

may
lor.

nce

ation

ignal.

ct
back

ls are
ner’s

ted
s an
dif-

ear
ad
2. Implementations that do not have a separate ambient and diffuse color
fall back to using an ambient intensity as a percentage of the diffuse co
This ambient intensity should be calculated using the NTSC lumina
equation:

I = 0.30⋅ Red +0.59⋅ Green +0.11⋅ Blue (E.9)

E.3 Sound Equations

There are different sets of sound equations, depending on whether the applic
uses headphones or speakers.

E.3.1 Headphone Playback Equations

For each sound source, Java 3D calculates a separate left and right output s
Each left and right sound image includes differences in theinteraural intensity
and aninteraural delay. The calculation results are a set of direct and indire
(delayed) sound signals mixed together before being sent to the audio play
system’s left and right transducers.

E.3.1.1 Interaural Time Difference (Delay)

For each PointSound and ConeSound source, the left and right output signa
delayed based on the location of the sound and the orientation of the liste
head. The time difference between these two signals is called theinteraural time
difference (ITD). The time delay of a particular sound reaching an ear is affec
by the arc the sound must travel around the listener’s head. Java 3D use
approximation of the ITD using a spherical head model. The interaural path
ference is calculated based on the following cases:

1. The signal from the sound source to only one of the ears is direct. The
farthest from the sound is shadowed by the listener’s he
(); see Figure E-1:

(E.10)

where

sinα De 2Dh⁄≥

Ec Vc=

Ef Vt P+=

P
De
2

------- π
2
--- γ α–()–

 =
Java 3D API Specification

EQUATIONS Headphone Playback EquationsE.3.1

ound

the
Figure E-1 Signal to Only One Ear Is Direct

2. The signals from the sound source reach both ears by indirect paths ar
the head (); see Figure E-2:

(E.11)

where

The time from the sound source to the closest ear is , and the time from
sound source to the farthest ear is , whereS is the current AuralAttribute
region’s speed of sound.

If the sound is closest to the left ear, then

(E.12)

If the sound is closest to the right ear, then

(E.13)

De Va

Vt

Vc

Dh Vh

α

P

γ

sinα De 2Dh⁄<

Ec Vt P′+=

Ef Vt P+=

P
De
2

------- π
2
--- γ α–()–

 =

P'
De
2

------- π
2
--- γ α+()–

 =

Ec S⁄
Ef S⁄

IT Dl Ec S⁄=

IT Dr Ef S⁄=

IT Dl Ef S⁄=

IT Dr Ec S⁄=
489Version 1.1.2, June 1999

E.3.1 Headphone Playback Equations EQUATIONS

490

st to
ste-

an

d

Figure E-2 Signals to Both Ears Are Indirect

The parameters used in the ITD equations are as follows:

E.3.1.2 Interaural Intensity (Gain) Difference

For each active and playing Point and ConeSound source,i, separate calculations
for the left and right signal (based on which ear is closest and which is farthe
the source) are combined with nonspatialized BackgroundSound to create a

α = The smaller of the angles betweenVh (or –Vh) andVa in radians

γ = Angle betweenVh and radius to tangent point onVt in radians

De = Distance between ears (interaural distance)

Dh = Distance from interaural center to sound source

Ec = Distance from sound source to ear closest to sound

Ef = Distance from sound source to ear farthest from sound

P, P' = Arc path around the head an indirect signal must travel to reach
ear

S = Speed of sound for the current AuralAttribute region

Va = Vector from center ear forward parallel toZ axis of head coordi-
nates

Vc = Vector from sound source to ear closest to sound

Vh = Vector from center ear to sound source

Vt = Vector from sound source to tangent point on the listener’s hea

De

VtVh

Vt

γ

Dh

P

Va

γ

P'

α

Java 3D API Specification

EQUATIONS Headphone Playback EquationsE.3.1

and

he

ction
r’s
d the

ction
reo sound image. Each equation below is calculated separately for the left
right ear.

(E.14)

Note: For BackgroundSound sourcesITDi is an identity function so there is no
delay applied to the sample for these sources.

(E.15)

Note: For BackgroundSound sourcesGdi = Gai = 1.0. For PointSound sources
Gai = 1.0.

(E.16)

Note: For BackgroundSound sourcesFdi and Fai are identity functions. For
PointSound sourcesFai is an identity function.

If the sound source is on the right side of the head,Ec is used for leftG andF
calculations andEf is used for right. Conversely, if the Sound source is on t
left side of the head,Ef is used for left calculations andEc is used for right.

Attenuation

For sound sources with a single distanceGain array defined, the interse
points of Vh (the vector from the sound source position through the listene
position) and the spheres (defined by the distanceGain array) are used to fin
indexk wheredk ≤ L ≤ dk+1. See Figure E-3.

For ConeSound sources with two distanceGain arrays defined, the interse
points of Vh and the ellipsi (defined by both the front and backdistanceGain

arrays) closest to the listener’s position are used to determine the indexk. See
Figure E-4.

The equation for the distance gain is

(E.17)

I t()
Gi Fi ITDi Sample t()•[]•()⋅[]

i

numS

∑
maxNumS

--=

Gi Gii Gdi Gai Gri⋅ ⋅ ⋅=

Fi Fdi Fai•=

Gd Gdk

Gdk 1+ Gdk–() d2 d1–()⋅
L d1–

---+=
491Version 1.1.2, June 1999

E.3.1 Headphone Playback Equations EQUATIONS

492

ical.

the
Figure E-3 ConeSound with a Single Distance Gain Attenuation Array

Figure E-4 ConeSound with Two Distance Attenuation Arrays

Angular attenuation for both the spherical and elliptical cone sounds is ident
The angular distances in the attenuation array closest toα are found and define
the indexk into the angular attenuation array elements. The equation for
angular gain is

(E.18)

Listener

Vh

C

D

α

B

A

A = (dk, Gdk)
B = (dk+1, Gdk+1)
C = (αk, Gak)
D = (αk+1, Gak+1)

Listener

Vh

C

D

frontDistanceAttenuation[]

α

backDistanceAttenuation[]

A

B

A = (d1, Gdk)
B = (d2, Gdk+1)
C = (αk, Gak)
D = (αk+1, Gak+1)

Ga Gak

Gak 1+ Gak–() αk 1+ αk–()⋅
α αk–

--+=
Java 3D API Specification

EQUATIONS Headphone Playback EquationsE.3.1

the

nce
are
ure

ex-
ne-
one

wo-
er
nd
ired.

e as

le

in

he

ce
Filtering

Similarly, the equations for calculating the AuralAttributes distance filter and
ConeSound angular attenuation frequency cutoff filter are

(E.19)

(E.20)

An N-pole lowpass filter may be used to perform the simple angular and dista
filtering defined in this version of Java 3D. These simple lowpass filters
meant only as an approximation for full, FIR filters (to be added in some fut
version of Java 3D).

Fallbacks and Approximations

1. If more than one lowpass filter is to be applied to the sound source (for
ample, both an angular filter and a distance filter are applied to a Co
Sound source) it is only necessary to use a single filter, specifically the
that has the lowest cutoff frequency.

2. There is no requirement to support anything higher than very simple t
pole filtering. Any type of multipole lowpass filter can be used. If high
N-pole or compound filtering are available on the device on which sou
rendering is being performed, use of these is encouraged, but not requ

The parameters used in the interaural intensity difference (IID) equations ar
follows:

A, B = Triples containing DistanceGain linear distance, gain sca
factor, and AuralAttribute cutoff frequency

C, D = Triples containing AngularAttenuation angular distance, ga
scale factor, and cutoff frequency

α = Angle betweenVh andVa in radians

Ec = Distance from sound source to ear closest to sound from t
ITD equation

Ef = Distance from sound source to ear farthest from sound sour
from the ITD equation

Fa = Angular filter from ConeSound definition

Fd Fdk

Fdk 1+ Fdk–() d2 d1–()⋅
L d1–

--+=

Fa Fak

Fak 1+ Fak–() αk 1+ αk–()⋅
α αk–

---+=
493Version 1.1.2, June 1999

E.3.1 Headphone Playback Equations EQUATIONS

494

delta
e has
er this

d, the

tio is

tio is

at

n,
E.3.1.3 Doppler Effect Equations

Between two snapshots of the head and the sound source positions some
time apart, the distance between the head and source is compared. If ther
been no change in the distance between the head and the sound source ov
delta time, the Doppler effect equation is as follows:

(E.21)

If there has been a change in the distance between the head and the soun
Doppler effect equation is as follows:

(E.22)

When the head and sound are moving towards each other (the velocity ra
greater than 1.0), the velocity ratio equation is as follows:

(E.23)

When the head and sound are moving away from each other (the velocity ra
less than 1.0), the velocity ratio equation is as follows:

(E.24)

Fd = Distance filter from AuralAttributes

Ga = Angular gain attenuation scale factor

Gd = Distance gain attenuation scale factor

Gi = Initial gain scale factor

Gr = Current AuralAttribute region’s gain scale factor

I = Stereo sound image

L = Listener distance from sound source

maxNumS= Maximum number of sound sources for the audio device th
the application is using for playback

numS = Number of sound sources

sample = Sound digital sample with a specific sample rate, bit precisio
and an optional encoding and/or compression format

Vh = Vector from center ear to sound source

f′ f=

f′ f Af v⋅ ⋅=

v
S Ar⋅() ∆v h t,() Av⋅()+
S Ar⋅() ∆v s t,() Av⋅()–

---=

v
S Ar⋅() ∆v h t,() Av⋅()–
S Ar⋅() ∆v s t,() Av⋅()+

---=
Java 3D API Specification

EQUATIONS Headphone Playback EquationsE.3.1

d is

ce in
sound

and
und
f the
not
tion
The parameters used in the Doppler effect equations are as follows:

Note: If the adjusted velocity of the head or the adjusted velocity of the soun
greater than the adjusted speed of sound, is undefined.

E.3.1.4 Reverberation Equations

The overall reverberant sounds, used to give the impression of the aural spa
which the active/enabled source sources are playing, is added to the stereo
image output from equation E.14.

(E.25)

Reverberation for each sound is approximated in the following:

(E.26)

Note that the reverberation calculation outputs the same image to both left
right output signals (thus there is a single monaural calculation for each so
reverberated). Correct first-order (early) reflections, based on the location o
sound source, the listener, and the active AuralAttribute’s bounds, are
required for this version of Java 3D. Approximations based on the reverbera

Af = AuralAttribute frequency scale factor

Ar = AuralAttribute rolloff scale factor

Av = AuralAttribute velocity scale factor

∆v = Delta velocity

f = Frequency of sound

h = Listener’s head position

v = Ratio of delta velocities

Vh = Vector from center ear to sound source

s = Sound source position

S = Speed of sound

t = Time

f′

I ′ t() l r,[] I t() l r,[] Ri
i

numS

∑+=

Ri Gr j Sample t()i⋅() D t Tr j⋅()+()•[]
j

fLoop

∑=
495Version 1.1.2, June 1999

E.3.2 Speaker Playback Equations EQUATIONS

496

elay

oop
e

ing
re
r of

be
ach

ec-
all
nd

ystem

n,

e

delay time, either suppled by the application or calculated as the average d
time within the selected AuralAttribute’s application region, will be used.

The feedback loop is repeated until AuralAttribute’s reverberation feedback l
count is reached orGrj ≤ 0.000976 (effective zero amplitude, –60 dB, using th
measure of –6 dB drop for every doubling of distance).

Fallbacks and Approximations

1. Reducing the number of feedback loops repeated while still maintain
the overall impression of the environment. For example, if –10 dB we
used as the drop in gain for every doubling of distance, a scale facto
0.015625 could be used as the effective zero amplitude, which can
reached in only 15 loop iterations (rather than the 25 needed to re
0.000976).

2. Using preprogrammed “room” reverberation algorithms that allow sel
tion of a fixed set of “reverberation types” (for example, large hall, sm
living room), which have implied reflection coefficients, delay times, a
feedback loop durations.

The parameters used in the reverberation equations are as follows:

E.3.2 Speaker Playback Equations

Different speaker playback equations are used depending on whether the s
uses monaural or stereo speakers.

D = Delay function

fLoop = Reverberation feedback loop count

Gr = Reverberation coefficient acting as a gain scale-factor

I = Stereo image of unreflected sound sources

R = Reverberation for each sound sources

Sample= Sound digital sample with a specific sample rate, bit precisio
and an optional encoding and/or compression format

t = Time

Tr = Reverberation delay time (approximating first-order delay in th
AuralAttribute region)
Java 3D API Specification

EQUATIONS Speaker Playback EquationsE.3.2

ingle
e is
and

uded

eard
time

st be
ated

nal for
s for

rs are
the

ed for

n-

ad-

D,
E.3.2.1 Monaural Speaker Output

The equations for headphone playback need only be modified to output a s
signal, rather than two signals for left and right transducers. Although ther
only one speaker, distance and filter attenuation, Doppler effect, elevation,
front and back cues can be distinguished by the listener and should be incl
in the sound image generated.

E.3.2.2 Stereo Speaker Output

In a two-speaker playback system, the signal from one speaker is actually h
by both ears and this affects the spectral balance and interaural intensity and
differences heard by each of the listener’s ears. Cross-talk cancellation mu
performed on the right and left signal to compensate for the delayed attenu
signal heard by the ear opposite the speaker. Thus a delayed attenuated sig
each of the stereo signals must be added to the output from the equation
headphone playback.

The equations for stereo speaker playback assume that the two speake
placed symmetrically about the listener (at the same off-axis angle from
viewing axis at an equal distance from the center of the listener’s head).

(E.27)

(E.28)

The parameters used in the cross-talk equations, expanding on the terms us
the equations for headphone playback, are as follows:

α = Angle between vectors from speaker to near and far ears

D = Delay function of signal variant over time

G = Gain attenuation scale factors function taking initial distance and a
gular gain scale factors into account

I = Sound image for left and right stereo signals calculated as for he
phone output

P = Distance difference between near ear and far ear as defined for IT
the speaker substituted for the sound source in equation

t = Time

I ′ t()l I t()l D t() G P α,() I t()r⋅[]•[]+=

I ′ t()r I t()r D t() G P α,() I t()l⋅[]•[]+=
497Version 1.1.2, June 1999

E.4 Texture Mapping Equations EQUATIONS

498

ans-
e,
oking
com-
ode

rim-

ple

up the
re fil-
t

s:
E.4 Texture Mapping Equations

Texture mapping can be divided into two steps. The first step takes the tr
formed s and t (and possiblyr) texture coordinates, the current texture imag
and the texture filter parameters, and computes a texture color based on lo
up the texture coordinates in the texture map. The second step applies the
puted texture color to the incoming pixel color using the specified texture m
function.

E.4.1 Texture Lookup

The texture lookup stage maps a texture image onto a geometric polygonal p
itive. The most common method for doing this is to reverse map thes andt coor-
dinates from the primitive back onto the texture image, then filter and resam
the image. In the simplest case, a point ins, t space is transformed into au, v
address in the texture image space (E.29), then this address is used to look
nearest texel value in the image. This method, used when the selected textu
ter function isBASE_LEVEL_POINT, is called nearest-neighbor sampling or poin
sampling.

(E.29)

(E.30)

(E.31)

If the texture boundary mode isREPEAT, then only the fractional bits ofs and t
are used, ensuring that boths andt are less than 1.

If the texture boundary mode isCLAMP, then thes andt values are clamped to be
in the range [0, 1] before being mapped intou andv values. Further, ifs ≥ 1, then
i is set towidth– 1; if t ≥ 1, thenj is set toheight– 1.

The parameters in the point-sampled texture lookup equations are as follow

width = Width, in pixels, of the texture image

height = Height, in pixels, of the texture image

s = Interpolateds coordinate at the pixel being textured

t = Interpolatedt coordinate at the pixel being textured

v t height⋅=

u s width⋅=

i trunc u()=

j trunc v()=

Ct Ti j,=
Java 3D API Specification

EQUATIONS Texture Lookup E.4.1

ither

tex-
x-

ingle
is
aps
gni-
g:

e

f
age

lev-
xture
The above equations are used when the selected texture filter function—e
the minification or the magnification filter function—isBASE_LEVEL_POINT.
Java 3D selects the appropriate texture filter function based on whether the
ture image is minified or magnified when it is applied to the polygon. If the te
ture is applied to the polygon such that more than one texel maps onto a s
pixel, then the texture is said to be minified and the minification filter function
selected. If the texture is applied to the polygon such that a single texel m
onto more than one pixel, then the texture is said to be magnified and the ma
fication filter function is selected. The selected function is one of the followin
BASE_LEVEL_POINT, BASE_LEVEL_LINEAR, MULTI_LEVEL_POINT, or MULTI_

LEVEL_LINEAR. In the case of magnification, the filter will always be one of th
two base level functions (BASE_LEVEL_POINT or BASE_LEVEL_LINEAR).

If the selected filter function isBASE_LEVEL_LINEAR, then a weighted average o
the four texels that are closest to the sample point in the base level texture im
is computed.

(E.32)

(E.33)

(E.34)

If the selected filter function isMULTI_LEVEL_POINT or MULTI_LEVEL_LINEAR,
the texture image needs to be sampled at multiple levels of detail. If multiple
els of detail are needed and the texture object only defines the base level te
image, Java 3D will compute multiple levels of detail as needed.

u = u coordinate in texture image space

v = v coordinate in texture image space

i = Integer row address into texture image

j = Integer column address into texture image

T = Texture image

i0 trunc u 0.5–()=

j0 trunc v 0.5–()=

i1 i0 1+=

j1 j0 1+=

α frac u 0.5–()=

β frac v 0.5–()=

Ct 1 α–() 1 β–() Ti0 j0,⋅ ⋅ α 1 β–() Ti1 j0,⋅ ⋅+=

1 α–() β Ti0 j1, α β Ti1 j1,⋅ ⋅+⋅ ⋅+
499Version 1.1.2, June 1999

E.4.2 Texture Application EQUATIONS

500

els
g a
erly-
os-

for

per-
er

ng,
or

ing
po-
ded

the
Mipmapping is the most common filtering technique for handling multiple lev
of detail. If the implementation uses mipmapping, the equations for computin
texture color based on texture coordinates are simply those used by the und
ing rendering API (such as OpenGL or PEX). Other filtering techniques are p
sible as well.

Fallbacks and Approximations

1. If the texture boundary mode isCLAMP, an implementation may either use
the closest boundary pixel or the constant boundary color attribute
those values ofs or t that are outside the range [0, 1].

2. An implementation can choose a technique other than mipmapping to
form the filtering of the texture image when the texture minification filt
is MULTI_LEVEL_POINT or MULTI_LEVEL_LINEAR.

3. If mipmapping is chosen by an implementation as the method for filteri
it may approximate trilinear filtering with another filtering technique. F
example, an OpenGL implementation may choose to useLINEAR_MIPMAP_

NEAREST or NEAREST_MIPMAP_LINEAR in place ofLINEAR_MIPMAP_LIN-
EAR.

E.4.2 Texture Application

Once a texture color has been computed, this color is applied to the incom
pixel color. If lighting is enabled, only the emissive, ambient, and diffuse com
nents of the incoming pixel color are modified. The specular component is ad
into the modified pixel color after texture application.

The equations for applying that color to the original pixel color are based on
texture mode, as follows:

REPLACE Texture Mode

(E.35)

MODULATE Texture Mode

(E.36)

C′ Ct=

C′ C Ct⋅=
Java 3D API Specification

EQUATIONS Texture Application E.4.2

,

r

end-

-

olor

or

n

DECAL Texture Mode

(E.37)

Note that the texture format must be eitherRGB or RGBA.

BLEND Texture Mode

(E.38)

Note that if the texture format isINTENSITY, alpha is computed identically to red
green, and blue:

(E.39)

The parameters used in the texture mapping equations are as follows:

Note thatCrgb indicates the red, green, and blue channels of colorC and thatCα
indicates the alpha channel of colorC. This convention applies to the other colo
variables as well.

If there is no alpha channel in the texture, a value of 1 is used forCtα in BLEND

andDECAL modes.

When the texture mode is one ofREPLACE, MODULATE, or BLEND, only certain of
the red, green, blue, and alpha channels of the pixel color are modified, dep
ing on the texture format, as described below.

• INTENSITY: All four channels of the pixel color are modified. The inten
sity value is used for each ofCtr, Ctg, Ctb, andCtα in the texture applica-
tion equations, and the alpha channel is treated as an ordinary c
channel—the equation forC´rbg is also used forC´α.

• LUMINANCE: Only the red, green, and blue channels of the pixel col
are modified. The luminance value is used for each ofCtr, Ctg, andCtb in

C = Color of the pixel being texture mapped (if lighting is enabled, the
this does not include the specular component)

Ct = Texture color

Cb = Blend color

C′rgb Crgb 1 Ctα–() Ctrgb Ctα⋅+⋅=

C′α Cα=

C′rgb Crgb 1 Ctrgb–() Cbrgb Ctrgb⋅+⋅=

C′α Cα Ctα⋅=

C′α Cα 1 Ctα–() Cbα Ctα⋅+⋅=
501Version 1.1.2, June 1999

E.4.2 Texture Application EQUATIONS

502

r is

d,

di-

or,
enta-

the
ent
the texture application equations. The alpha channel of the pixel colo
unmodified.

• ALPHA: Only the alpha channel of the pixel color is modified. The re
green, and blue channels are unmodified.

• LUMINANCE_ALPHA: All four channels of the pixel color are modified.
The luminance value is used for each ofCtr, Ctg, andCtb in the texture ap-
plication equations, and the alpha value is used forCtα.

• RGB: Only the red, green, and blue channels of the pixel color are mo
fied. The alpha channel of the pixel color is unmodified.

• RGBA: All four channels of the pixel color are modified.

Fallbacks and Approximations

An implementation may apply the texture to all components of the lit col
rather than separating out the specular component. Conversely, an implem
tion may separate out the emissive and ambient components in addition to
specular component, potentially applying the texture to the diffuse compon
only.
Java 3D API Specification

s in a
rson.

ate

iled
m-

va 3D
des

ode,
been
Glossary

avatar
The software representation of a person as the person appears to other
shared virtual universe. The avatar may or may not resemble an actual pe

branch graph
A graph rooted to a BranchGroup node. See alsoscene graphand shared
graph.

CC
Clipping coordinates.

center ear
Midpoint between left and right ears of listener.

center eye
Midpoint between left and right eyes of viewer. This is the head coordin
system origin.

compiled
A subgraph may be compiled by an application using thecompile method of
the root node—a BranchGroup or a SharedGroup—of the graph. A comp
object is any object that is part of a compiled graph. An application can co
pile some or all of the subgraphs that make up a complete scene graph. Ja
compiles these graphs into an internal format. Additionally, Java 3D provi
restricted access to methods of compiled objects or graphs. See alsolive.

compiled-retained mode
One of three modes in which Java 3D objects are rendered. In this m
Java 3D renders the scene graph, or a portion of the scene graph, that has
previously compiled into an internal format. See alsoretained mode, immediate
mode.
503Version 1.1.2, June 1999

GLOSSARY

504

ral

ode
cene

ude
ars.

al

al

raph
f a
the
DAG
Directed acyclic graph. Ascene graph.

EC
Eye coordinates.

frustum
Seeview frustum.

group node
A node within ascene graphthat composes, transforms, selects, and in gene
modifies its descendant nodes. See alsoleaf node, root node.

HMD
Head-mounted display.

image plate
The display area; the viewing screen or head-mounted display.

immediate mode
One of three modes in which Java 3D objects are rendered. In this m
objects are rendered directly, under user control, rather than as part of a s
graph traversal. See alsoretained mode, compiled-retained mode.

IID
Interaural intensity difference. The difference between the perceived amplit
(gain) of the signal from a source as it reaches the listener’s left and right e

ITD
Interaural time difference. The difference in time in the arrival of the sign
from a sound source as it reaches the listener’s left and right ears.

leaf node
A node within ascene graphthat contains the visual, auditory, and behavior
components of the scene. See alsogroup node, root node.

live
A live graph is any graph that is attached to a Locale object, or a shared g
that is referenced by a live graph. A live object is any object that is part o
live graph. Live objects are subject to being traversed and rendered by
Java 3D API Specification

hods

lect

ode,
graph.

lso

or

orld
cts
lly
Java 3D renderer. Additionally, Java 3D provides restricted access to met
of live objects or graphs. See alsocompiled.

LOD
Level of detail. A predefined Behavior that operates on a Switch node to se
from among multiple versions of an object or collection of objects.

polytope
A bounding volume defined by a closed intersection of half-spaces.

retained mode
One of three modes in which Java 3D objects are rendered. In this m
Java 3D traverses the scene graph and renders the objects that are in the
See alsocompiled-retained mode, immediate mode.

root node
A node within ascene graphthat establishes the default environment. See a
group node, leaf node.

scene graph
A collection of branch graphs rooted to a Locale. A virtual universe has one
more scene graphs. See alsobranch graphandshared graph.

shared graph
A graph rooted to a SharedGroup node. See alsobranch graphand scene
graph.

stride
The part of an interleaved array that defines the length of a vertex.

three space
Three-dimensional space.

view frustum
A truncated, pyramid-shaped viewing area that defines how much of the w
the viewer sees. Objects not within the view frustum are not visible. Obje
that intersect the boundaries of the viewing frustum are clipped (partia
drawn).

VPC
View platform coordinates.
505Version 1.1.2, June 1999

Index
2D texture coordinates, 133, 171

3D texture coordinates, 133, 171

A
absolute method

Tuple2d, 318

Tuple2f, 323

Tuple3d, 331

Tuple3f, 337

Tuple4d, 346

Tuple4f, 353

acceleration of alpha, 249

accessing an object, 278

activation radius, 89

activation volume, 89

add method
GMatrix, 397

GVector, 363

HiResCoord, 35

Matrix3d, 376

Matrix3f, 370, 373

Matrix4d, 392

Matrix4f, 383, 385

Transform3D, 161

Tuple2d, 317

Tuple2f, 322

Tuple3d, 330

Tuple3f, 336

Tuple4d, 345

Tuple4f, 352

addAudioDevice method (deprecated),

215

addBranchGraph method, 33

addCanvas3D method, 214

addChild method, 39

addInputDevice method
PhysicalEnvironment, 470

View (deprecated), 214

addLight method, 311

addScope method
Fog, 60

Light, 64

addSound method, 313

addSwitch method, 269

AFFINE flag, 156

ALIGN_CENTER flag, 196

ALIGN_FIRST flag, 196

ALIGN_LAST flag, 196

allAudioDevices method (deprecated),

215

allElements method, 234

allInputDevices method (deprecated),

214

ALLOW_ALIGNMENT_READ flag,

194

ALLOW_ALIGNMENT_WRITE flag,

194

ALLOW_ALPHA_TEST_FUNCTION_
READ flag, 119

ALLOW_ALPHA_TEST_FUNCTION_
WRITE flag, 119

ALLOW_ALPHA_TEST_VALUE_
READ flag, 119
507Version 1.1.2, June 1999

INDEX

508
ALLOW_ALPHA_TEST_VALUE_
WRITE flag, 119

ALLOW_ANGULAR_
ATTENUATION_READ flag, 81

ALLOW_ANGULAR_
ATTENUATION_WRITE flag,

81

ALLOW_ANTIALIASING_READ flag
LineAttributes, 114

PointAttributes, 116

ALLOW_ANTIALIASING_WRITE flag
LineAttributes, 114

PointAttributes, 116

ALLOW_APPEARANCE_READ flag
Morph, 91

Shape3D, 51

ALLOW_APPEARANCE_WRITE flag
Morph, 91

Shape3D, 51

ALLOW_APPLICATION_BOUNDS_
READ flag

Background, 55

Clip, 57

Soundscape, 87

ALLOW_APPLICATION_BOUNDS_
WRITE flag

Background, 55

Clip, 57

Soundscape, 87

ALLOW_ATTENUATION_READ
flag, 66

ALLOW_ATTENUATION_WRITE
flag, 66

ALLOW_ATTRIBUTE_GAIN_READ
flag, 138

ALLOW_ATTRIBUTE_GAIN_WRITE
flag, 138

ALLOW_ATTRIBUTES_READ flag,
87

ALLOW_ATTRIBUTES_WRITE flag,
87

ALLOW_AUTO_COMPUTE_
BOUNDS_READ flag, 19

ALLOW_AUTO_COMPUTE_
BOUNDS_WRITE flag, 19

ALLOW_BACK_DISTANCE_READ
flag, 57

ALLOW_BACK_DISTANCE_WRITE
flag, 57

ALLOW_BLEND_COLOR_READ
flag, 121

ALLOW_BLEND_COLOR_WRITE
flag, 121

ALLOW_BOUNDARY_COLOR_READ
flag, 127

ALLOW_BOUNDARY_MODE_READ
flag, 127

ALLOW_BOUNDING_BOX_READ
flag, 194

ALLOW_BOUNDS_READ flag, 19

ALLOW_BOUNDS_WRITE flag, 19

ALLOW_CACHE_READ flag, 135

ALLOW_CACHE_WRITE flag, 135

ALLOW_CHANNELS_USED_READ
flag, 70

ALLOW_CHARACTER_SPACING_
READ flag, 194

ALLOW_CHARACTER_SPACING_
WRITE flag, 194

ALLOW_CHILDREN_EXTEND flag,

38

ALLOW_CHILDREN_READ flag, 38

ALLOW_CHILDREN_WRITE flag, 38

ALLOW_COLLIDABLE_READ flag,

20

ALLOW_COLLIDABLE_WRITE
flag, 20

ALLOW_COLLISION_BOUNDS_
READ flag

Group, 38

Morph, 91

Shape3D, 51

ALLOW_COLLISION_BOUNDS_
WRITE flag

Group, 38

Morph, 91

Shape3D, 51
Java 3D API Specification

INDEX
ALLOW_COLOR_INDEX_READ
flag, 180

ALLOW_COLOR_INDEX_WRITE
flag, 180

ALLOW_COLOR_READ flag
Background, 55

ColoringAttributes, 113

Fog, 58

GeometryArray, 170

Light, 63

ALLOW_COLOR_WRITE flag
Background, 55

ColoringAttributes, 113

Fog, 59

GeometryArray, 170

Light, 63

ALLOW_COLORING_ATTRIBUTES_
READ flag, 110

ALLOW_COLORING_ATTRIBUTES_
WRITE flag, 110

ALLOW_COMPONENT_READ flag,
125

ALLOW_COMPONENT_WRITE flag,
125

ALLOW_CONCENTRATION_READ
flag, 68

ALLOW_CONCENTRATION_WRITE
flag, 68

ALLOW_CONT_PLAY_READ flag,
69

ALLOW_CONT_PLAY_WRITE flag,
70

ALLOW_COORDINATE_INDEX_
READ flag, 180

ALLOW_COORDINATE_INDEX_
WRITE flag, 180

ALLOW_COORDINATE_READ flag,
170

ALLOW_COORDINATE_WRITE
flag, 170

ALLOW_COUNT_READ flag
CompressedGeometry, 187

GeometryArray, 171

ALLOW_CULL_FACE_READ flag,
117

ALLOW_CULL_FACE_WRITE flag,
117

ALLOW_DATA_READ flag, 147

ALLOW_DENSITY_READ flag, 60

ALLOW_DENSITY_WRITE flag, 60

ALLOW_DEPTH_COMPONENT_
READ flag, 190

ALLOW_DEPTH_COMPONENT_
WRITE flag, 190

ALLOW_DEPTH_ENABLE_READ
flag, 119

ALLOW_DETACH flag, 41

ALLOW_DIRECTION_READ flag
ConeSound, 80

DirectionalLight, 65

SpotLight, 68

ALLOW_DIRECTION_WRITE flag
ConeSound, 81

DirectionalLight, 65

SpotLight, 68

ALLOW_DISTANCE_FILTER_READ
flag, 138

ALLOW_DISTANCE_FILTER_WRITE
flag, 138

ALLOW_DISTANCE_GAIN_READ
flag, 76

ALLOW_DISTANCE_GAIN_WRITE
flag, 76

ALLOW_DISTANCE_READ flag, 61

ALLOW_DISTANCE_WRITE flag, 61

ALLOW_DOPPLER_SCALE_
FACTOR_READ flag
(deprecated), 139

ALLOW_DOPPLER_SCALE_
FACTOR_WRITE flag
(deprecated), 139

ALLOW_DOPPLER_VELOCITY_
READ flag (deprecated), 139

ALLOW_DOPPLER_VELOCITY_
WRITE flag (deprecated), 139

ALLOW_DURATION_READ flag, 70

ALLOW_ENABLE_READ flag
509Version 1.1.2, June 1999

INDEX

510
Sound, 70

TexCoordGeneration, 132

Texture, 127

ALLOW_ENABLE_WRITE flag
Sound, 70

TexCoordGeneration, 132

Texture, 127

ALLOW_FILTER_READ flag, 127

ALLOW_FONT3D_READ flag, 194

ALLOW_FONT3D_WRITE flag, 194

ALLOW_FORMAT_READ flag
GeometryArray, 171

ImageComponent, 143

TexCoordGeneration, 132

ALLOW_FREQUENCY_SCALE_
FACTOR_READ flag, 138

ALLOW_FREQUENCY_SCALE_
FACTOR_WRITE flag, 139

ALLOW_GEOMETRY_ARRAY_READ
flag, 91

ALLOW_GEOMETRY_ARRAY_
WRITE flag, 91

ALLOW_GEOMETRY_READ flag
Background, 55

CompressedGeometry, 187

Shape3D, 51

ALLOW_GEOMETRY_WRITE flag
Background, 55

Shape3D, 51

ALLOW_HEADER_READ flag, 187

ALLOW_IMAGE_READ flag
Background, 55

ImageComponent, 143

Raster, 190

Texture, 127

ALLOW_IMAGE_WRITE flag
Background, 55

Raster, 190

ALLOW_INFLUENCING_BOUNDS_
READ flag

Fog, 58

Light, 63

ALLOW_INFLUENCING_BOUNDS_
WRITE flag

Fog, 58

Light, 63

ALLOW_INITIAL_GAIN_READ flag ,

69

ALLOW_INITIAL_GAIN_WRITE
flag, 69

ALLOW_INTERSECT flag, 168

ALLOW_IS_PLAYING_READ flag, 70

ALLOW_IS_READY_READ flag, 70

ALLOW_LINE_ATTRIBUTES_READ
flag, 110

ALLOW_LINE_ATTRIBUTES_WRITE
flag, 110

ALLOW_LOCAL_TO_VWORLD_
READ flag, 20

ALLOW_LOOP_READ flag, 69

ALLOW_LOOP_WRITE flag, 69

ALLOW_MATERIAL_READ flag, 109

ALLOW_MATERIAL_WRITE flag,

109

ALLOW_MIPMAP_MODE_READ
flag, 127

ALLOW_MODE_READ flag
PolygonAttributes, 117

TexCoordGeneration, 132

TextureAttributes, 121

TransparencyAttributes, 123

ALLOW_MODE_WRITE flag
PolygonAttributes, 117

TextureAttributes, 121

TransparencyAttributes, 123

ALLOW_NORMAL_FLIP_READ
flag, 117

ALLOW_NORMAL_FLIP_WRITE
flag, 117

ALLOW_NORMAL_INDEX_READ
flag, 181

ALLOW_NORMAL_INDEX_WRITE
flag, 181

ALLOW_NORMAL_READ flag, 170

ALLOW_NORMAL_WRITE flag, 170
Java 3D API Specification

INDEX
ALLOW_OFFSET_READ flag
PolygonAttributes, 117

Raster, 190

ALLOW_OFFSET_WRITE flag
PolygonAttributes, 117

Raster, 190

ALLOW_PATH_READ flag, 194

ALLOW_PATH_WRITE flag, 194

ALLOW_PATTERN_READ flag, 114

ALLOW_PATTERN_WRITE flag, 114

ALLOW_PICK flag (deprecated), 19

ALLOW_PICKABLE_READ flag, 20

ALLOW_PICKABLE_WRITE flag, 20

ALLOW_PLANE_READ flag, 132

ALLOW_POINT_ATTRIBUTES_READ
flag, 110

ALLOW_POINT_ATTRIBUTES_
WRITE flag, 110

ALLOW_POLICY_READ flag, 89

ALLOW_POLICY_WRITE flag, 89

ALLOW_POLYGON_ATTRIBUTES_
READ flag, 110

ALLOW_POLYGON_ATTRIBUTES_
WRITE flag, 110

ALLOW_POSITION_READ flag
PointLight, 66

PointSound, 76

Raster, 190

Text3D, 194

ALLOW_POSITION_WRITE flag
PointLight, 66

PointSound, 76

Raster, 190

Text3D, 194

ALLOW_PRIORITY_READ flag, 70

ALLOW_PRIORITY_WRITE flag, 70

ALLOW_REFLECTION_
COEFFICIENT_READ flag, 138

ALLOW_REFLECTION_
COEFFICIENT_WRITE flag, 138

ALLOW_REGION_READ flag, 54

ALLOW_REGION_WRITE flag, 54

ALLOW_RELEASE_READ flag, 69

ALLOW_RELEASE_WRITE flag, 69

ALLOW_RENDERING_
ATTRIBUTES_READ flag, 110

ALLOW_RENDERING_
ATTRIBUTES_WRITE flag, 110

ALLOW_REVERB_DELAY_READ
flag, 138

ALLOW_REVERB_DELAY_WRITE
flag, 138

ALLOW_REVERB_ORDER_READ
flag, 138

ALLOW_REVERB_ORDER_WRITE
flag, 138

ALLOW_ROLLOFF_READ flag, 138

ALLOW_ROLLOFF_WRITE flag, 138

ALLOW_SCHEDULING_BOUNDS_
READ flag, 70

ALLOW_SCHEDULING_BOUNDS_
WRITE flag, 70

ALLOW_SCOPE_READ flag
Fog, 59

Light, 63

ALLOW_SCOPE_WRITE flag
Fog, 59

Light, 63

ALLOW_SHADE_MODEL_READ
flag, 113

ALLOW_SHADE_MODEL_WRITE
flag, 113

ALLOW_SHARED_GROUP_READ
flag, 98

ALLOW_SHARED_GROUP_WRITE
flag, 98

ALLOW_SIZE_READ flag
DepthComponent, 147

ImageComponent, 143

PointAttributes, 116

Raster, 190

ALLOW_SIZE_WRITE flag
PointAttributes, 116

Raster, 190
511Version 1.1.2, June 1999

INDEX

512
ALLOW_SOUND_DATA_READ
flag, 69

ALLOW_SOUND_DATA_WRITE
flag, 69

ALLOW_SPREAD_ANGLE_READ
flag, 68

ALLOW_SPREAD_ANGLE_WRITE
flag, 68

ALLOW_STATE_READ flag, 63

ALLOW_STATE_WRITE flag, 63

ALLOW_STRING_READ flag, 194

ALLOW_STRING_WRITE flag, 194

ALLOW_SWITCH_READ flag, 46

ALLOW_SWITCH_WRITE flag, 46

ALLOW_TEXCOORD_INDEX_READ
flag, 181

ALLOW_TEXCOORD_INDEX_WRITE
flag, 181

ALLOW_TEXCOORD_READ flag,
170

ALLOW_TEXCOORD_WRITE flag,
170

ALLOW_TEXGEN_READ flag, 109

ALLOW_TEXGEN_WRITE flag, 109

ALLOW_TEXTURE_ATTRIBUTES_
READ flag, 109

ALLOW_TEXTURE_ATTRIBUTES_
WRITE flag, 110

ALLOW_TEXTURE_READ flag, 109

ALLOW_TEXTURE_WRITE flag, 109

ALLOW_TRANSFORM_READ flag
TextureAttributes, 121

TransformGroup, 43

ALLOW_TRANSFORM_WRITE flag
TextureAttributes, 121

TransformGroup, 43

ALLOW_TRANSPARENCY_
ATTRIBUTES_READ flag, 110

ALLOW_TRANSPARENCY_
ATTRIBUTES_WRITE flag, 110

ALLOW_TYPE_READ flag, 190

ALLOW_URL_READ flag, 135

ALLOW_URL_WRITE flag, 135

ALLOW_VALUE_READ flag, 123

ALLOW_VALUE_WRITE flag, 123

ALLOW_VELOCITY_SCALE_
FACTOR_READ flag, 139

ALLOW_VELOCITY_SCALE_
FACTOR_WRITE flag, 139

ALLOW_WEIGHTS_READ flag, 91

ALLOW_WEIGHTS_WRITE flag, 91

ALLOW_WIDTH_READ flag, 114

ALLOW_WIDTH_WRITE flag, 114

alpha
acceleration of, 249

test, 120

ALPHA flag, 128

Alpha object, 249

ALPHA_IN_BUFFER flag, 188

alphaAtOneDuration parameter, 251

alphaAtZeroDuration parameter, 251

ALWAYS flag, 120

ambient light
color, 125

source, 65

AmbientLight leaf node, 65

amplitude scale factor, 69, 140

angle flag
AxisAngle4d, 359

AxisAngle4f, 361

angle method
Gvector, 366

Vector2d, 321

Vector2f, 326

Vector3D, 335

Vector3f, 340

Vector4d, 349

Vector4f, 357

angular attenuation, 80, 86

animating rigid objects, 227

animation, 227–273

antialiasing, 116, 117

Appearance object, 8, 109, 311

applets, support for building, 5

application region, 56, 58, 88
Java 3D API Specification

INDEX
application scene graph, 7

ArrayIndexOutOfBoundsException, 479

atmospheric conditions, 140

atmospheric rolloff, 136

attachViewPlatform method, 214

attenuation, pointlight, 67

audio device driver, 291

data, 294

initialization, 292

audio devices, 291–300

AudioDevice object, 291–300

aural attributes, 88, 313

AuralAttributes node component object,

136, 139, 313

avatar, 209

AxisAngle4d class, 199, 359

AxisAngle4f class, 199, 361

B
back clip policy, 217, 218

background color, 311

background geometry, 56

Background leaf node, 54, 311

BACKGROUND_SOUND flag, 295

BackgroundSound leaf node, 75

BadTransformException, 479

BASE_LEVEL flag, 128

BASE_LEVEL_LINEAR flag, 129, 499

BASE_LEVEL_POINT flag, 129, 499

Behavior leaf node, 90, 227, 232

behaviors, 227–273

Billboard behavior node, 271

BLEND flag, 122

BLENDED flag, 124

blocking driver, 276

BLOCKING flag, 276

boundary mode, 129, 132

bounding region, 54

BoundingBox node component object,

150

BoundingLeaf node, 53

BoundingPolytope node component
object, 154

BoundingSphere node component
object, 152

Bounds node component objects, 149

BranchGroup node, 8, 40, 287

browser support, 5

bufferDataPresent constant, 189

BUFFERED_AUDIO_DATA flag, 295

bufferType constant, 189

bundle colors with vertices state bit, 408

bundle normals with vertices state bit,

408

C
cache data flag, 136

calibration parameters, 464

camera-based view model, 473, 475

helping methods, 475

canvas sizing and movement, 216

Canvas3D object, 25, 204, 205, 222, 465

CapabilityNotSetException, 480

CC (Clipping Coordinates), 478

center eye, 467

CHILD_ALL flag , 46

CHILD_MASK flag, 46

CHILD_NONE flag, 46

CLAMP flag
Texture, 129

Texture3D, 132

clamp method
Tuple2d, 318

Tuple2f, 323

Tuple3d, 332

Tuple3f, 337

Tuple4d, 346

Tuple4f, 353

clampMax method
Tuple2d, 318
513Version 1.1.2, June 1999

INDEX

514
Tuple2f, 323

Tuple3d, 332

Tuple3f, 337

Tuple4d, 346

Tuple4f, 353

clampMin method
Tuple2d, 318

Tuple2f, 323

Tuple3d, 332

Tuple3f, 337

Tuple4d, 346

Tuple4f, 353

clear method, 313

clearCapability method, 18

clearSound method, 296

Clip leaf node, 56

clip policies, 217

Clipping Coordinates (CC), 478

clipping plane, 56, 57, 217

clone method
BoundingBox, 151

BoundingPolytope, 155

BoundingSphere, 153

Bounds, 149

cloneNode method, 104

BranchGroup, 42

DecalGroup, 45

Group, 39

Node, 22

OrderedGroup, 44

Shape3D, 52

SharedGroup, 97, 98

Switch, 47

cloneNodeComponent method
Appearance, 112

ColoringAttributes, 114

LineAttributes, 116

Material, 126

NodeComponent, 24

PointAttributes, 117

PolygonAttributes, 119

RenderingAttributes, 121

subclassing nodes, 104

TexCoordGeneration, 135

Texture2D, 131

Texture3D, 132

TextureAttributes, 123

TransparencyAttributes, 124

cloneTree method, 99

Leaf, 50

Node, 23

cloning subgraphs, 99–107

close method
AudioDevice, 292

InputDevice, 277

closestIntersection method
BoundingBox, 152

BoundingPolytope, 156

BoundingSphere, 153

Bounds, 149

code structure, 228

coexistence coordinates, 456

collision detection, 16

color
alpha present state bit, 410

component information, 113

diffuse, 125, 126

emissive, 125

light, 126

material, 126

parameter, 173

specular, 125

specular highlight, 126

sub-command, 428

COLOR_3 flag, 171

COLOR_4 flag, 171

COLOR_IN_BUFFER flag, 188

Color3b class, 329

Color3f class, 341

Color4b class, 343

Color4f class, 355

ColoringAttributes object, 113
Java 3D API Specification

INDEX
ColorInterpolator object, 258

colors parameter, 174

combine method
BoundingBox, 151

BoundingPolytope, 155

BoundingSphere, 153

Bounds, 150

compatability mode, 473

compile method
BranchGroup, 42

SharedGroup, 97

compiled-retained mode, 3, 302

component objects,See node component
objects

CompressedGeometry node component
object, 187

CompressedGeometryHeader node
component object, 188

compression
geometry, 403–452

image, 410

computePathInterpolation method, 263

concentration, spotlight, 69

CONE_SOUND flag, 295

ConeSound leaf node, 80

CONGRUENT flag, 156

conjugate method
Quat4d, 350

Quat4f, 357

coordinate systems, 29, 455–458

head, 457, 459, 467

head tracker, 457

high-resolution, 33

image plate, 457

left image plate, 458

physical, 457

right image plate, 458

tracker base, 457

ViewPlatform, 456

virtual world, 456, 459

COORDINATES flag, 171

copySubMatrix method, 398

cross method
Vector3d, 334

Vector3f, 340

cross-product normalization, 166, 372,

378

CULL_BACK flag, 118

CULL_FRONT flag, 118

CULL_NONE flag, 118

currentChild method, 47

currentInterpolationValue flag, 263

currentKnotIndex flag, 263

CYCLOPEAN_EYE_VIEW flag, 462

D
dangling references, 103

DanglingReferenceException, 480

dashed line, 114

dashed-dotted line, 115

DECAL flag, 122

decal geometry, 45

DecalGroup node, 45

decompress method, 188

decompression, 404

DECREASING_ENABLE flag, 251

decreasingAlphaDuration parameter,

251

decreasingAlphaRampDuration
parameter, 251

DEFAULT_SENSOR_READ_
COUNT, 279

defaultWakeupCriterion flag, 254

DEMAND_DRIVEN flag, 276

depth buffer
enable flag, 120

freezing, 221

mode, 120

write enable flag, 120

DepthComponent object, 147

DepthComponentFloat object, 147

DepthComponentInt object, 148
515Version 1.1.2, June 1999

INDEX

516
DepthComponentNative object, 148

detach method, 42

determinant method
Matrix3d, 377

Matrix3f, 371

Matrix4d, 395

Matrix4f, 387

Transform3D, 165

difference method, 35

diffuse color, 125, 126

direction, spotlight, 69

directional light, 65

DirectionalLight leaf node, 65

discrete cosine transform, 410

distance attenuation, 80

distance frequency filtering, 136

distance method
HiResCoord, 35

Point2d, 320

Point2f, 325

Point3d, 333

Point3f, 338

Point4d, 347

Point4f, 355

distanceL1 method
Point2d, 320

Point2f, 325

Point3d, 333

Point3f, 339

Point4d, 348

Point4f, 355

distanceLinf method
Point2d, 320

Point2f, 325

Point3d, 333

Point3f, 339

Point4d, 348

Point4f, 355

DistanceLOD behavior node, 269

distanceSquared method
Point2d, 320

Point2f, 325

Point3d, 333

Point3f, 338

Point4d, 347

Point4f, 355

Doppler
effect equations, 494

scale factor, 142

dot method
GVector, 366

Vector2d, 321

Vector2f, 326

Vector3d, 334

Vector3f, 340

Vector4d, 349

Vector4f, 357

dotted line, 115

double buffering enable flag, 224

draw method, 313

duplicateNode method, 104

Behavior, 233

BranchGroup, 42

DecalGroup, 45

Group, 39

Leaf, 53

Node, 22

OrderedGroup, 44

SharedGroup, 97

Switch, 47

duplicateNodeComponent method
Appearance, 112

ColoringAttributes, 114

LineAttributes, 116

Material, 126

MediaContainer, 135

NodeComponent, 24

PointAttributes, 117

PolygonAttributes, 119

RenderingAttributes, 121

subclassing nodes, 104

Texture2D, 131
Java 3D API Specification

INDEX
Texture3D, 132

TextureAttributes, 123

TransparencyAttributes, 124

DURATION_UNKNOWN flag, 70

E
EC (Eye Coordinates), 478

emissive color, 125

ENABLE_COLLISION_REPORTING
flag, 20, 285

ENABLE_PICK_REPORTING flag, 20,

285

environment, sound, 86

epsilonEquals method
AxisAngle4d, 360

AxisAngle4f, 362

GMatrix, 401

GVector, 366

Matrix3d, 379

Matrix3f, 372

Matrix4d, 396

Matrix4f, 388

Transform3D, 167

Tuple2d, 319

Tuple2f, 324

Tuple3d, 331

Tuple3f, 337

Tuple4d, 346

Tuple4f, 353

EQUAL flag, 120

equals method
AxisAngle4d, 360

AxisAngle4f, 362

GMatrix, 400

GVector, 365

HiResCoord, 35

Matrix3d, 378

Matrix3f, 372

Matrix4d, 396

Matrix4f, 387

SceneGraphPath, 287

Transform3D, 166

Tuple2d, 319

Tuple2f, 324

Tuple3b, 328

Tuple3d, 331

Tuple3f, 337

Tuple4b, 343

Tuple4d, 346

Tuple4f, 353

equations, 485–502

Doppler effect, 494

exponential fog, 485

fog, 485

headphone playback, 488

lighting, 486

reverberation, 495

sound, 488

speaker playback, 496

texture application, 500

texture lookup, 498

texture mapping, 498

error handling, 479

Euler angles, 160

exceptions, 479–484

execution and rendering model, 301–303

execution culling, 231

exponential fog equation, 485

ExponentialFog leaf node, 60

extensibility, 3

Eye Coordinates (EC), 478

eye position manipulation, 465

EYE_LINEAR flag, 133

eyepoint policy, 460

F
face culling flag, 118

FASTEST flag
ColoringAttributes, 114

Texture, 129
517Version 1.1.2, June 1999

INDEX

518
TextureAttributes, 123

TransparencyAttributes, 124

field of view, 218

FIELD_ALL flag, 308

FIELD_LEFT flag, 308

FIELD_RIGHT flag, 308

finished method, 254

fog equations, 485

Fog leaf node, 58, 311

Font3D object, 192

FontExtrusion object, 193

forceDuplicate parameter, 99

FORMAT_CHANNEL8 flag, 145

FORMAT_LUM4_ALPHA4 flag, 144

FORMAT_LUM8_ALPHA8 flag, 145

FORMAT_R3_G3_B2 flag, 145

FORMAT_RGB flag, 144

FORMAT_RGB4 flag, 144

FORMAT_RGB5 flag, 144

FORMAT_RGB5_A1 flag, 144

FORMAT_RGB8 flag, 144

FORMAT_RGBA flag, 144

FORMAT_RGBA4 flag, 144

FORMAT_RGBA8 flag, 144

front clip policy, 217, 218

frustum, 474

frustum method, 168, 475

G
gain scale factor, 78, 85, 136

game support, 5

generalized triangle mesh, 407

generalized triangle strip, 405

geometry
component information, 168

compression, 302, 403–452

grouping, 302

instructions, 418

types
GeometryArray, 169

Raster, 189

Geometry object, 8, 168, 313

GeometryArray object, 169

GeometryStripArray object, 178

get method
AxisAngle4d, 360

AxisAngle4f, 362

GMatrix, 399

Matrix4d, 389

Matrix4f, 382

PickBounds, 289

PickPoint, 289

PickRay, 290

PickSegment, 290

SensorRead, 283

Transform3D, 164, 165

Tuple2d, 317

Tuple2f, 322

Tuple3b, 328

Tuple3d, 330

Tuple3f, 336

Tuple4b, 342

Tuple4d, 344

Tuple4f, 352

getActivationRadius method, 89

getAlignment method, 196

getAlignmentAxis method, 272

getAlignmentMode method, 272

getAllBranchGraphs method, 33

getAllCanvas3Ds method, 214

getAllChildren method, 39

getAllInputDevices method, 471

getAllLights method, 312

getAllLocales method, 32

getAllScopes method
Fog, 60

Light, 64

getAllSounds method, 313

getAllSwitches method, 269

getAlpha method, 255

getAlphaAtOneDuration method, 253
Java 3D API Specification

INDEX
getAlphaAtZeroDuration method, 254

getAlphaTestFunction method, 120

getAlphaTestValue flag, 120

getAlternateCollisionTarget method, 40

getAmbientColor method, 125

getAngleOffsetToSpeaker method, 293

getAngularAttenuation method, 85

getAngularAttenuationLength method,

85

getAppearance method
GraphicsContext3D, 310

Morph, 92

Shape3D, 52

getApplicationBoundingLeaf method
Background, 56

Clip, 58

Soundscape, 88

getApplicationBounds method
Background, 56

Clip, 58

Soundscape, 88

getArmingBounds method
WakeupOnCollisionEntry, 240

WakeupOnCollisionExit, 241

WakeupOnCollisionMovement, 242

getArmingPath method
WakeupOnCollisionEntry, 240

WakeupOnCollisionExit, 241

WakeupOnCollisionMovement, 242

getArrayLengths method, 263

getAsTriangles method (deprecated),

192

getAttenuation method, 67

getAttributeGain method, 140

getAudioDevice method, 470

getAudioPlaybackType method, 293

getAuralAttributes method
GraphicsContext3D, 312

Soundscape, 88

getAutoNormalize method, 159

getAWTEvent method, 235

getAxisOfRotation method

RotationInterpolator, 257

RotationPathInterpolator, 268

getAxisOfRotPos method, 266

getAxisOfRotPosScale method, 267

getAxisOfScale method, 260

getAxisOfTranslation method
PositionInterpolator, 256

PositionPathInterpolator, 264

getBackClipDistance method, 218

getBackClipPolicy method, 217

getBackDistance method
Clip, 57

LinearFog, 62

getBackFaceNormalFlip method, 119

getBackground method, 311

getBehavior method, 236

getBestConfiguration method, 226

getBestType method, 159

getBlueSize method, 225

getBoundaryColor method, 130

getBoundaryModeR method, 132

getBoundaryModeS method, 128

getBoundaryModeT method, 128

getBoundingBox method
Font3D, 193

Text3D, 196

getBounds method
Font3D (deprecated), 193

Node, 21

WakeupOnSensorEntry, 238

WakeupOnSensorExit, 239

WakeupOnViewPlatformEntry, 242

WakeupOnViewPlatformExit, 243

getBoundsAutoCompute method, 21

getButtons method, 283

getByteCount method, 187

getCacheEnable method, 136

getCanvas3D method
GraphicsContext3D, 310

View, 214

getCapability method, 18
519Version 1.1.2, June 1999

INDEX

520
getCenter method, 152

getCenterEarToSpeaker method, 293

getCenterEyeInImagePlate method, 466

getChannelsAvailable method, 294

getChannelsUsedForSound method
(deprecated), 294

getCharacterSpacing method, 197

getChild method, 38

getChildMask method, 47

getCoexistenceCenterInPworldPolicy
method, 472

getCoexistenceToTrackerBase method,

471

getCollidable method, 22

getCollisionBounds method
Group, 40

Morph, 92

Shape3D, 52

getColor method
Background, 56

ColoringAttributes, 113

Fog, 59

GeometryArray, 173

Light, 64

getColorIndex method, 182

getColorIndices method, 182

getColoringAttributes method, 111

getColors method, 173, 174

getColumn method
GMatrix, 399

Matrix3d, 376

Matrix3f, 370

Matrix4d, 390

Matrix4f, 384

getCompatabilityModeEnable method,

473

getCompressedGeometry method, 188

getCompressedGeometryHeader
method, 187

getConcentration method, 69

getContinuousEnable method, 72

getCoordinate method, 172

getCoordinateIndex method, 181

getCoordinateIndices method, 181

getCoordinates method, 172

getCullFace method, 118

getCurrentFrameStartTime method, 219

getCurrentSensorRead method, 282

getDecreasingAlphaDuration method,

253

getDecreasingAlphaRampDuration
method, 254

getDensity method, 61

getDepth method, 146

getDepthBufferEnable method, 120

getDepthBufferFreezeTransparent
method, 221

getDepthBufferWriteEnable flag, 120

getDepthComponent method, 192

getDepthData method
DepthComponentFloat, 148

DepthComponentInt, 148

getDepthSize method, 225

getDeterminantSign method, 159

getDevice method, 282

getDiffuseColor method, 126

getDirection method
ConeSound, 85

DirectionalLight, 66

SpotLight, 69

getDistance method, 270

getDistanceFilter method, 141

getDistanceFilterLength method, 141

getDistanceGain method
ConeSound, 83

PointSound, 78

getDistanceGainLength method, 78

getDominantHandIndex method, 471

getDopplerScaleFactor method
(deprecated), 142

getDopplerVelocity method
(deprecated), 142

getDoubleBuffer method, 225

getDoubleBufferAvailable method, 224
Java 3D API Specification

INDEX
getDoubleBufferEnable method, 224

getDuplicateOnCloneTree method, 23,

100

getDuration method, 75

getElapsedFrameCount method, 237

getElapsedFrameTime method, 238

getElement method
GMatrix, 399

GVector, 365

Matrix3d, 375

Matrix3f, 369

Matrix4d, 390

Matrix4f, 383

getEmissiveColor method, 126

getEnable method
Behavior, 255

Light, 64

Sound, 74

TexCoordGeneration, 134

Texture, 130

getEndColor method, 258

getEndPosition method, 256

getExtrusionShape method, 194

getFieldOfView method, 218

getFirstChildIndex method, 261

getFog method, 311

getFont method, 193

getFont3D method, 195

getFontExtrusion method, 193

getFormat method
ImageComponent, 145

TexCoordGeneration, 134

getFrameNumber method, 219

getFrameStartTimes method, 220

getFrequencyScaleFactor method, 142

getFrontClipDistance method, 218

getFrontClipPolicy method, 217

getFrontDistance method, 62

getGenMode method, 134

getGeometry method
Background, 56

Shape3D, 52

getGeometryArray method, 92

getGraphicsContext3D method, 308

getGreenSize method, 225

getHeadIndex method, 471

getHeadToHeadTracker method, 469

getHeadTrackerToLeftImagePlate
method, 465

getHeadTrackerToRightImagePlate
method, 465

getHeight method
DepthComponent, 147

ImageComponent, 145

getHiRes method
GraphicsContext3D, 312

Locale, 33

getHiResCoord method, 34

getHiResCoordX method, 34

getHiResCoordY method, 34

getHiResCoordZ method, 34

getHotspot method, 281

getImage method
Background, 56

ImageComponent2D, 146

ImageComponent3D, 147

Raster, 192

Texture, 130

getImagePlateToVworld method, 467

getIncreasingAlphaDuration method,

253

getIncreasingAlphaRampDuration
method, 253

getIndexCount method, 182

getInfluencingBoundingLeaf method
Fog, 60

Light, 64

getInfluencingBounds method
Fog, 59

Light, 64

getInitialGain method, 71

getKnot method, 263

getLastChildIndex method, 261

getLastFrameDuration method, 219
521Version 1.1.2, June 1999

INDEX

522
getLeftEarPosition method, 468

getLeftEyeInImagePlate method, 466

getLeftEyePosition method, 468

getLeftHandIndex method, 471

getLeftManualEyeInImagePlate
method, 466

getLeftProjection method, 478

getLight method, 311

getLightingEnable method, 126

getLineAntialiasingEnable method, 115

getLineAttributes method, 112

getLinePattern method, 115

getLineWidth method, 115

getLocale method, 286

getLocalEyeLightingEnable method,

215

getLocalToVworld method, 21

getLocationOnScreen method, 223

getLoop method, 71

getLoopCount method, 252

getLower method, 151

getMagFilter method, 129

getMaterial method, 111

getMaxFrameStartTimes method, 219

getMaximumAngle method, 257

getMaximumScale method, 259

getMaximumTransparency method, 262

getMinFilter method, 129

getMinimumAngle method, 257

getMinimumScale method, 259

getMinimumTransparency method, 262

getMipMapMode method, 130

getMode method, 253

getModelTransform method, 312

getMonoscopicViewPolicy method, 462

getNewNodeReference method
(deprecated), 103, 105

getNewObjectReference method, 103,

105

getNode method, 286

getNominalEyeHeightFromGround
method, 468

getNominalEyeOffsetFromNominalScree
n method, 469

getNonDominantHandIndex method,

471

getNormal method, 174

getNormalIndex method, 182

getNormalIndices method, 182

getNormals method, 175

getNumberOfChannelsUsed method
AudioDevice3D, 296

Sound, 75

getNumCol method, 399

getNumPlanes method, 155

getNumRow method, 399

getNumStrips method
GeometryStripArray, 179

IndexedGeometryStripArray, 185

getObject method, 286

getOffset method, 191

getParent method, 21

getPath method, 196

getPerspectiveCorrectionMode method,

122

getPhaseDelayDuration method, 253

getPhysicalBody method, 213

getPhysicalEnvironment method
AudioDevice, 293

View, 214

getPhysicalHeight method, 467

getPhysicalScreenHeight method, 222

getPhysicalScreenWidth method, 222

getPhysicalWidth method, 467

getPickable method, 22

getPixelLocationInImagePlate method,

466

getPlaneR method, 135

getPlaneS method, 134

getPlanes method, 154

getPlaneT method, 134

getPointAntialiasingEnable method, 117

getPointAttributes method, 112

getPointSize method, 117
Java 3D API Specification

INDEX
getPolygonAttributes method, 112

getPolygonMode method, 118

getPolygonOffset method, 119

getPosition method
DistanceLOD, 270

PointLight, 67

PointSound, 78

PositionPathInterpolator, 264

Raster, 191

RotPosPathInterpolator, 266

RotPosScalePathInterpolator, 267

Text3D, 195

getPostId method, 236

getPredictionPolicy method, 282

getPredictor method, 281

getPriority method, 73

getProcessingMode method, 277

getProjectionPolicy method, 215

getQuat method
RotationPathInterpolator, 268

RotPosPathInterpolator, 265

RotPosScalePathInterpolator, 267

getRadius method, 152

getRead method, 281

getRedSize method, 225

getReflectionCoefficient method, 140

getRegion method, 54

getReleaseEnable method, 72

getRenderingAttributes method, 112

getReverbDelay method, 140

getReverbOrder method, 141

getRightEarPosition method, 468

getRightEyeInImagePlate method, 466

getRightEyePosition method, 468

getRightHandIndex method, 471

getRightManualEyeInImagePlate
method, 466

getRightProjection method, 478

getRolloff method, 140

getRotationPoint method, 273

getRotationScale method
Matrix4d, 391

Matrix4f, 383

Transform3D, 161

getRow method
GMatrix, 399

Matrix3d, 376

Matrix3f, 369

Matrix4d, 390

Matrix4f, 384

getSampleDuration method, 296

getScale method
Matrix3d, 379

Matrix3f, 373

Matrix4d, 392

Matrix4f, 383

RotPosScalePathInterpolator, 267

Transform3D, 160, 161

getSceneAntialiasingAvailable method,

224, 466

getSceneAntialiasingEnable method,

221

getSchedulingBoundingLeaf method
Behavior, 233

Sound, 73

getSchedulingBounds method
Behavior, 233

Sound, 72

getScope method
Fog, 60

Light, 64

getScreen3D method, 224

getScreenScale method, 460

getScreenScalePolicy method, 460

getSensor method
InputDevice, 277

PhysicalEnvironment, 471

getSensorButtonCount method, 280

getSensorCount method
InputDevice, 277

PhysicalEnvironment, 471

getSensorHotSpotInVworld method, 462

getSensorReadCount method, 280

getSensorToVworld method, 462
523Version 1.1.2, June 1999

INDEX

524
getShadeModel method, 113

getSharedGroup method, 98

getShininess method, 126

getSize method
Canvas3D, 223

GVector, 364

Raster, 192

Screen3D, 222

getSound method, 313

getSoundData method, 71

getSpecularColor method, 126

getSpreadAngle method, 69

getStartColor method, 258

getStartPosition method, 256

getStartTime method
Alpha, 252

AudioDevice3D, 297

getStereo method, 225

getStereoAvailable method, 223

getStereoEnable method, 223

getString method, 195

getStripIndexCounts method, 185

getStripVertexCounts method, 179

getSwitch method, 269

getTarget method
Billboard, 272

ColorInterpolator, 258

PositionInterpolator, 256

PositionPathInterpolator, 265

RotationInterpolator, 257

RotationPathInterpolator, 268

RotPosPathInterpolator, 266

RotPosScalePathInterpolator, 267

ScaleInterpolator, 260

SwitchValueInterpolator, 261

TransparencyInterpolator, 262

getTexCoordGeneration method, 112

getTexture method, 111

getTextureAttributes method, 111

getTextureBlendColor method, 122

getTextureCoordinate method, 175

getTextureCoordinateIndex method, 182

getTextureCoordinateIndices method,

182

getTextureCoordinates method, 176

getTextureMode method, 122

getTextureTransform method, 122

getTime method, 283

getTotalChannels method, 294

getTrackerBaseToImagePlate method,

465

getTrackingAvailable method, 471

getTrackingEnable method, 459

getTransform method
SceneGraphPath, 287

TransformGroup, 43

getTransformGroup method, 243

getTransparency method, 124

getTransparencyAttributes method, 111

getTransparencyMode method, 124

getTriggeringBehavior method, 236

getTriggeringBounds method
WakeupOnCollisionEntry, 240

WakeupOnCollisionExit, 241

WakeupOnCollisionMovement, 242

getTriggeringPath method
WakeupOnCollisionEntry, 240

WakeupOnCollisionExit, 241

WakeupOnCollisionMovement, 242

getTriggeringPostId method, 236

getTriggerTime method, 253

getType method
Raster, 191

Transform3D, 159

getUpper method, 151

getURL method, 136

getUserData method, 19

getUserHeadToVworld method, 459

getUserHeadToVworldEnable flag, 459

getVelocityScaleFactor method, 142

getVertexCount method, 172

getVertexFormat method, 172

getView method
Java 3D API Specification

INDEX
Behavior, 234

Canvas3D, 224

getViewAttachPolicy method, 90, 208

getViewPlatform method, 214

getViewPolicy method, 459

getVirtualUniverse method, 33

getVpcToEc method, 478

getVworldToImagePlate method, 466

getWeights method, 92

getWhichChild method, 47

getWidth method
DepthComponent, 147

ImageComponent, 145

getWindowEyepointPolicy method, 461

getWindowMovementPolicy method,

216

getWindowResizePolicy method, 216

glossary, 503–506

GMatrix class, 199, 397

graphics context, 313

GraphicsConfigTemplate3D class, 224

GraphicsConfiguration, 224

GraphicsContext3D object, 308, 310

great circle interpolation, 351, 359

GREATER flag, 121

GREATER_OR_EQUAL flag, 121

Group node object, 38

group nodes, 15, 37–48

BranchGroup, 40

DecalGroup, 45

OrderedGroup, 44

SharedGroup, 48

Switch, 46

TransformGroup, 42

GVector class, 199, 363

H
HAND_PREDICTOR flag, 279

hardware platforms, 4

hashCode method

AxisAngle4d, 361

AxisAngle4f, 363

GMatrix, 400

GVector, 365

Matrix3d, 380

Matrix3f, 373

Matrix4d, 396

Matrix4f, 388

SceneGraphPath, 287

Transform3D, 167

Tuple2d, 319

Tuple2f, 324

Tuple3b, 328

Tuple3d, 331

Tuple3f, 338

Tuple4b, 343

Tuple4d, 347

Tuple4f, 354

hasTriggered method, 235

head
coordinate system, 457, 459, 467

parameters, 226, 467

position, 454

tracker coordinate system, 457

tracking, 469

HEAD_PREDICTOR flag, 279

head-mounted coordinate system, 457

headphone playback equations, 488

HEADPHONES flag, 292

hierarchical scope, 60, 64

high-resolution coordinates, 27, 29, 33,

312

HiResCoord object, 25, 33

HMD_VIEW flag, 460

Huffman
compression algorithm, 418

decompression tables, 420

encoding, 404, 409, 418
525Version 1.1.2, June 1999

INDEX

526
I
IDENTITY flag, 156

identityMinus method, 398

IllegalArgumentException, 479

IllegalRenderingStateException, 481

IllegalSharingException, 481

image compression, 410

image plate coordinate system, 457

left, 458

right, 458

ImageComponent node component
object, 143

ImageComponent2D node component
object, 145

ImageComponent3D node component
object, 146

immediate mode, 3, 301

API for, 310

rendering, 305–314

INCREASING_ENABLE flag, 251

increasingAlphaDuration parameter, 250

increasingAlphaRampDuration
parameter, 250

indexCount parameter, 184

IndexedGeometryArray object, 180

IndexedGeometryStripArray object, 184

IndexedLineArray object, 183

IndexedLineStripArray object, 185

IndexedPointArray object, 182

IndexedQuadArray object, 184

IndexedTriangleArray object, 183

IndexedTriangleFanArray object, 186

IndexedTriangleStripArray object, 185

infinite eye lighting, 215

influencing region, 60, 64

initialization method, 227

initialize method
AudioDevice, 292

Behavior, 232

Billboard, 273

DistanceLOD, 271

InputDevice, 276

Interpolator, 255

input devices, 275–290

InputDevice object, 275

insertCanvas3D method, 214

insertChild method, 38

insertLight method, 311

insertScope method
Fog, 60

Light, 64

insertSound method, 313

insertSwitch method, 269

instantiating and registering a new
device, 277, 300

INTENSITY flag, 128

interaural
delay, 488

intensity, 488

intensity difference (IID), 490

time difference (ITD), 488

interpolate method
GVector, 366

Quat4d, 351

Quat4f, 359

Tuple2d, 318

Tuple2f, 324

Tuple3d, 332

Tuple3f, 338

Tuple4d, 345

Tuple4f, 354

Interpolator object, 254

interpupilary distance, 226, 467

intersect method
BoundingBox, 151

BoundingPolytope, 155

BoundingSphere, 153

Bounds, 149

Morph, 92

Shape3D, 52

introduction to Java 3D, 1–13

inverse method
Quat4d, 350
Java 3D API Specification

INDEX
Quat4f, 358

invert method
GMatrix, 398

Matrix3d, 377

Matrix3f, 371

Matrix4d, 395

Matrix4f, 387

Transform3D, 165

isBehaviorSchedulerRunning method,

220

isCompiled method, 18

isEmpty method
BoundingBox, 152

BoundingPolytope, 156

BoundingSphere, 154

Bounds, 150

isGraphicsConfigSupported method, 226

isLive method, 18

isPlaying method, 74

isPlayingSilently method, 75

isReady method, 74

isSamePath method, 287

isSoundPlaying method, 313

isViewRunning method, 220

J
joystick input processing, 275

K
keyboard input processing, 227

L
L – 1 distance, 320, 325, 333, 339, 348,

355

L – infinite distance, 320, 325, 333, 339,

348, 355, 396, 401

lastButtons method, 281

lastRead method, 281

lastTime method, 281

Leaf node, 49

leaf nodes, 15, 49–93

AmbientLight, 65

Background, 54

BackgroundSound, 75

Behavior, 90, 227, 232

BoundingLeaf, 53

Clip, 56

ConeSound, 80

DirectionalLight, 65

ExponentialFog, 60

Fog, 58, 311

Light, 62

LinearFog, 61

Link, 93, 95, 98

Morph, 90

PointLight, 66

PointSound, 76

Shape3D, 51

Sound, 69, 90

Soundscape, 86

SpotLight, 67

ViewPlatform, 89, 205–209, 458

LEFT_EYE_VIEW flag, 462

length method
Vector2d, 321

Vector2f, 326

Vector3d, 335

Vector3f, 340

Vector4d, 349

Vector4f, 356

lengthSquared method
Vector2d, 321

Vector2f, 326

Vector3d, 335

Vector3f, 340

Vector4d, 349

Vector4f, 356

LESS flag, 121
527Version 1.1.2, June 1999

INDEX

528
LESS_OR_EQUAL flag, 121

light
ambient source, 65

color, 126

directional, 65

list of, 312

spot, 67

Light leaf node, 62

lighting equations, 486

line
antialiasing flag, 116

pattern, 115

strip primitive, 178

LINE_BUFFER flag, 188

LinearFog leaf node, 61

LineArray object, 177

LineAttributes object, 114

LineStripArray object, 179

Link leaf node, 93, 95, 98

local eye lighting, 215

Locale object, 24, 32

locales, 27

LOD (level of detail) behavior nodes,

269

lookAt method, 168, 475

loop points, sound, 71

loopCount parameter, 249

LU decomposition, 401

LUD method, 401

LUDBackSolve method, 366

LUMINANCE flag, 128

LUMINANCE_ALPHA flag, 128

M
mach banding, 410

magnification filter, 129

majorVersionNumber constant, 188

Manhattan distance
Point2f, 320, 325

Point3d, 333

Point3f, 339

Point4d, 348

Point4f, 355

material color, 126

Material object, 111, 124

math node component objects, 197, 315–

401

matrix multiplication, 156

matrix objects, 199, 367–401

Matrix3d class, 199, 374

Matrix3f class, 199, 368

Matrix4d class, 199, 388

Matrix4f class, 199, 380

MAXIMUM_SENSOR_BUTTON_
COUNT flag, 282

MediaContainer node component
object, 135

mesh buffer, 408

meshBufferReference command, 425

minification filter function, 129

minimum environment, 212

minorMinorVersionNumber constant,

188

minorVersionNumber constant, 188

mipmap level, 130

MismatchedSizeException, 482

mixed mode rendering, 307

mode parameter, 250

model transform, 210, 312

MODULATE flag, 122

MONO_SPEAKER flag, 292

monoscopic view policy, 461

Morph leaf node, 90

mouse input processing, 227

moveTo method, 39

moving objects semantics, 31

mul method
GMatrix, 397

GVector, 364

Matrix3d, 377, 379

Matrix3f, 371, 373

Matrix4d, 392, 395
Java 3D API Specification

INDEX
Matrix4f, 384, 387

Quat4d, 350

Quat4f, 358

Transform3D, 165

mulInverse method
Quat4d, 350

Quat4f, 358

Transform3D, 166

mulNormalize method
Matrix3d, 378

Matrix3f, 371

MULTI_LEVEL_LINEAR flag , 129,

499

MULTI_LEVEL_MIPMAP flag, 128

MULTI_LEVEL_POINT flag, 129

MultipleParentException, 482

multiplyModelTransform method, 312

mulTransposeBoth method
GMatrix, 400

Matrix3d, 378

Matrix3f, 372

Matrix4d, 395

Matrix4f, 387

Transform3D, 166

mulTransposeLeft method
GMatrix, 400

Matrix3d, 378

Matrix3f, 372

Matrix4d, 396

Matrix4f, 387

Transform3D, 166

mulTransposeRight method
GMatrix, 400

Matrix3d, 378

Matrix3f, 372

Matrix4d, 395

Matrix4f, 387

Transform3D, 166

muteSample method, 298

N
negate method

GMatrix, 398

GVector, 364

HiResCoord, 35

Matrix3d, 379

Matrix3f, 373

Matrix4d, 394

Matrix4f, 386

Tuple2d, 317

Tuple2f, 322

Tuple3d, 330

Tuple3f, 336

Tuple4d, 345

Tuple4f, 352

NEGATIVE_DETERMINANT flag,

156

NEVER flag, 120

NICEST flag
ColoringAttributes, 114

Texture, 129

TextureAttributes, 123

TransparencyAttributes, 124

NO_FILTER flag, 70

NO_PREDICTOR flag, 279

node component objects, 109–199

Appearance, 109

AuralAttributes, 136, 139, 313

BoundingBox, 150

BoundingPolytope, 154

BoundingSphere, 152

Bounds, 149

ColoringAttributes, 113

CompressedGeometry, 187

CompressedGeometryHeader, 188

DepthComponent, 147

DepthComponentFloat, 147

DepthComponentInt, 148

DepthComponentNative, 148

Font3D, 192

FontExtrusion, 193
529Version 1.1.2, June 1999

INDEX

530
Geometry, 168

GeometryArray, 169

GeometryStripArray, 178

ImageComponent, 143

ImageComponent2D, 145

ImageComponent3D, 146

IndexedGeometryArray, 180

IndexedGeometryStripArray, 184

IndexedLineArray, 183

IndexedLineStripArray, 185

IndexedPointArray, 182

IndexedQuadArray, 184

IndexedTriangleArray, 183

IndexedTriangleFanArray, 186

IndexedTriangleStripArray, 185

LineArray, 177

LineAttributes, 114

LineStripArray, 179

Material, 124

math, 197, 315–401

matrix, 199

MediaContainer, 135

NodeReferenceTable, 105

PointArray, 177

PointAttributes, 116

PolygonAttributes, 117

QuadArray, 178

Raster, 189

references to, 100

RenderingAttributes, 119

TexCoordGeneration, 132

Text3D, 194

Texture, 127

Texture2D, 130

Texture3D, 131

TextureAttributes, 121

Transform3D, 156

TransparencyAttributes, 123

TriangleArray, 177

TriangleFanArray, 180

TriangleStripArray, 179

tuple, 197

Node object, 19, 20

node objects,See group nodes, leaf nodes
NodeComponent object, 23

nodeCount method, 286

NodeReferenceTable object, 105

NOMINAL_FEET flag, 208

NOMINAL_HEAD flag, 208

NOMINAL_SCREEN flag, 208

NOMINAL_SCREEN_SCALED flag
(deprecated), 208

NON_BLOCKING flag, 276

NONE flag, 124

nop command, 423

norm method, 365

normal
command, 434

parameter, 175

sub-command, 431

NORMAL_IN_BUFFER flag, 188

normalize method
GVector, 365

Matrix3d, 378

Matrix3f, 372

Quat4d, 350

Quat4f, 358

Transform3D, 166

Vector2d, 321

Vector2f, 326

Vector3d, 334

Vector3f, 340

Vector4d, 349

Vector4f, 357

normalizeCP method
Matrix3d, 378

Matrix3f, 372

Transform3D, 166

NORMALS flag, 171

normals parameter, 175

normSquared method, 365

NOT_EQUAL flag, 121

NTSC luminance equation, 488
Java 3D API Specification

INDEX
numBranchGraphs method, 33

numChildren method, 38

numDistances method, 270

numLights method, 312

numLocales method, 32

numScopes method
Fog, 60

Light, 64

numSounds method, 313

numSwitches method, 269

O
object hierarchy, 6

OBJECT_LINEAR flag, 133

occlusion culling, 16

OrderedGroup node, 44

ortho method, 168, 476

ORTHOGONAL flag, 156

orthographic projection matrix, 168

P
parallel projection matrix, 168

PARALLEL_PROJECTION flag, 215

PATH_DOWN flag, 196

PATH_LEFT flag, 196

PATH_RIGHT flag, 196

PATH_UP flag, 196

PathInterpolator object, 262

PATTERN_DASH flag, 114

PATTERN_DASH_DOT flag, 115

PATTERN_DOT flag, 115

PATTERN_SOLID flag, 114

pauseSample method, 298

perspective
correction mode, 123

method, 168, 476

projection matrix, 168

PERSPECTIVE_PROJECTION flag,

215

phaseDelayDuration parameter, 250

physical
body, 26

coexistence policy, 472

coordinate systems, 457

environment, 26

world, 203

PHYSICAL_EYE flag, 217

PHYSICAL_SCREEN flag, 217

PHYSICAL_WORLD flag, 216

PhysicalBody object, 26, 204, 205, 226,

306, 467

PhysicalEnvironment object, 26, 204,

205, 226, 306, 469

pickAll method, 288

pickAllSorted method, 288

pickAny method, 288

PickBounds object, 288

pickClosest method, 288

picking, 283

PickPoint object, 289

PickRay object, 289

PickSegment object, 290

PickShape object, 288

playing state, sound, 74

point antialiasing flag, 117

point size, 117

POINT_BUFFER flag, 188

POINT_SOUND flag, 295

Point2d class, 319

Point2f class, 324

Point3d class, 333

Point3f class, 338

Point4d class, 347

Point4f class, 354

PointArray object, 177

PointAttributes object, 116

PointLight leaf node, 66

PointSound leaf node, 76

policies
531Version 1.1.2, June 1999

INDEX

532
back clip, 217

clip, 217

eyepoint, 460

front clip, 217

physical coexistance, 472

projection, 215

view, 459

view attach, 89, 208

window resize, 216

pollAndProcessInput method, 277

POLLED flag (deprecated), 276

polygon offset, 119

polygon rasterization mode, 118

POLYGON_FILL flag, 118

POLYGON_LINE flag, 118

POLYGON_POINT flag, 118

polygonal bounding region, 154

PolygonAttributes object, 117

polytope, 154

position sub-command, 427

position, pointlight, 67

PositionInterpolator object, 255

PositionPathInterpolator object, 264

postId method, 233

postRender method, 308

postSwap method, 309

PREDICT_NEXT_FRAME_TIME
flag, 279

PREDICT_NONE flag, 279

predictor policy, 281

predictor type, 282

prepareSound method, 296

preRender method, 308

priority, 73

processing mode, 277

processStimulus method
Behavior, 232

Billboard, 273

ColorInterpolator, 259

DistanceLOD, 271

PositionInterpolator, 256

PositionPathInterpolator, 265

RotationInterpolator, 258

RotationPathInterpolator, 268

RotPosPathInterpolator, 266

RotPosScalePathInterpolator, 267

ScaleInterpolator, 260

SwitchValueInterpolator, 261

TransparencyInterpolator, 262

processStreamInput method, 277

programming conventions, xv

programming paradigm, 2

project method
Point3d, 334

Point3f, 339

Point4d, 348

Point4f, 355

projection policy, 215

proximity detection, 16

pure immediate mode rendering, 305

Q
QuadArray object, 178

quadrilateral, 178, 184

quantization of color data, 410

Quat4d class, 349

Quat4f class, 357

R
R coordinate plane equation, 135

Raster node component object, 189

RASTER_COLOR flag, 190

RASTER_COLOR_DEPTH flag, 190

RASTER_DEPTH flag, 190

readRaster method, 313

reflection coefficient, 137

reflection vector, 487

region
application, 56, 58, 88

of influence, 60, 64
Java 3D API Specification

INDEX
scheduling, 72, 73, 233

RELATIVE_TO_FIELD_OF_VIEW
flag, 461

RELATIVE_TO_SCREEN flag, 461

RELATIVE_TO_WINDOW flag, 461

removeBranchGraph method, 33

removeCanvas3D method, 214

removeChild method, 38

removeInputDevice method, 470

removeLight method, 311

removeScope method
Fog, 60

Light, 64

removeSound method, 313

removeSwitch method, 269

render loop, 303

renderField method, 309

rendering, 17

immediate mode, 305–314

modes, 301

RenderingAttributes object, 119

REPLACE flag, 122

replace_middle, 406

replace_oldest, 406

replaceBranchGraph method, 33

restart_clockwise, 406

restart_counterclockwise, 406

RestrictedAccessException, 482

retained mode, 3, 302

reverberation, 86, 137

delay, 137, 141

equations, 495

order, 137, 141

RGB flag, 128

RGBA flag, 128

RIGHT_EYE_VIEW flag, 462

RIGID flag, 156

ROTATE_ABOUT_AXIS flag, 271

ROTATE_ABOUT_POINT flag, 271

rotation, 156

rotation matrices
Matrix3d, 377

Matrix4d, 395

Matrix4f, 387

RotationInterpolator object, 256

RotationPathInterpolator object, 267

RotPosPathInterpolator object, 265

RotPosScalePathInterpolator object, 266

rotX method
Matrix3d, 377

Matrix3f, 371

Matrix4d, 395

Matrix4f, 387

Transform3D, 162

rotY method
Matrix3d, 377

Matrix3f, 371

Matrix4d, 395

Matrix4f, 387

Transform3D, 162

rotZ method
Matrix3d, 377

Matrix3f, 371

Matrix4d, 395

Matrix4f, 387

Transform3D, 162

S
S coordinate plane equation, 134

scale constant, 189

SCALE flag, 156

scale method
GVector, 365

HiResCoord, 35

Tuple2d, 318

Tuple2f, 323

Tuple3d, 331

Tuple3f, 336

Tuple4d, 345

Tuple4f, 353

SCALE_EXPLICIT flag, 460

SCALE_SCREEN_SIZE flag, 460
533Version 1.1.2, June 1999

INDEX

534
scaleAdd method
GVector, 365

Transform3D, 161

Tuple2d, 318

Tuple2f, 323

Tuple3d, 331

Tuple3f, 336

Tuple4d, 345

Tuple4f, 353

ScaleInterpolator object, 259

scaling, 156

scene antialiasing, 221, 466

scene graph, 15–26

flattening, 302

node component objects, 109–199

objects, 17

reusing, 95–103

structure, 15

superstructure objects, 24

viewing objects, 25

SceneGraphCycleException, 483

SceneGraphObject, 17

SceneGraphPath object, 285

scheduling
behavior, 230

region, 72, 73, 227, 231, 233

volume tree, 231

screen scale policy, 460

screen scale value, 460

SCREEN_DOOR flag, 124

SCREEN_VIEW flag, 460

Screen3D object, 25, 204, 205, 221, 462

calibration parameters, 464

screen-door transparency, 124

Sensor object, 279

SensorRead object, 282

sensors, 278

set method
AxisAngle4d, 360

AxisAngle4f, 362

BoundingBox, 151

BoundingPolytope, 155

BoundingSphere, 153

Bounds, 149

GMatrix, 399

GVector, 364

ImageComponent2D, 146

ImageComponent3D, 147

Matrix3d, 375

Matrix3f, 368

Matrix4d, 393, 394

Matrix4f, 381

PickBounds, 289

PickPoint, 289

PickRay, 290

PickSegment, 290

Quat4d, 351

Quat4f, 358

SceneGraphPath, 286

SensorRead, 283

Transform3D, 162, 164

Tuple2d, 317

Tuple2f, 322

Tuple3b, 328

Tuple3d, 330

Tuple3f, 336

Tuple4b, 342

Tuple4d, 344

Tuple4f, 352

set state command, 420

set table command, 420

setActivationRadius method, 89

setAlignment method, 196

setAlignmentAxis method, 272

setAlignmentMode method, 272

setAlpha method, 255

setAlphaAtOneDuration method, 253

setAlphaAtZeroDuration method, 254

setAlphaTestFunction method, 120

setAlphaTestValue flag, 120

setAlternateCollisionTarget method, 40

setAmbientColor method, 125
Java 3D API Specification

INDEX
setAngleOffsetToSpeaker method, 293

setAngularAttenuation method
AudioDevice3D, 299

ConeSound, 85

setAppearance method
GraphicsContext3D, 310

Morph, 92

Shape3D, 52

setApplicationBoundingLeaf method
Background, 56

Clip, 58

Soundscape, 88

setApplicationBounds method
Background, 56

Clip, 58

Soundscape, 88

setAttenuation method, 67

setAttributeGain method, 140

setAudioDevice method, 470

setAudioPlaybackType method, 293

setAuralAttributes method
GraphicsContext3D, 312

Soundscape, 88

setAutoNormalize method, 159

setAxisOfRotation method
RotationInterpolator, 257

RotationPathInterpolator, 268

setAxisOfRotPos method, 266

setAxisOfRotPosScale method, 267

setAxisOfScale method, 260

setAxisOfTranslation method
PositionInterpolator, 256

PositionPathInterpolator, 264

setBackClipDistance method, 218

setBackClipPolicy method, 217

setBackDistance method
Clip, 57

LinearFog, 62

setBackDistanceGain method, 83

setBackFaceNormalFlip method, 119

setBackground method, 311

setBlueSize method, 225

setBoundaryColor method, 130

setBoundaryModeR method, 132

setBoundaryModeS method, 128

setBoundaryModeT method, 128

setBounds method, 21

setBoundsAutoCompute method, 21

setButtons method, 283

setCacheEnable method, 136

setCanvas3D method, 214

setCapability method, 18

setCenter method, 152

setCenterEarToSpeaker method, 293

setCharacterSpacing method, 197

setChild method, 38

setChildMask method, 47

setCoexistenceCenterInPworldPolicy
method, 472

setCoexistenceToTrackerBase method,

471

setCollidable method, 22

setCollisionBounds method
Group, 40

Morph, 92

Shape3D, 52

setColor
command, 420, 434

setColor method
Background, 56

ColoringAttributes, 113

Fog, 59

GeometryArray, 173

Light, 64

setColorIndex method, 182

setColorIndices method, 182

setColoringAttributes method, 111

setColors method, 173, 174

setColumn method
GMatrix, 399

Matrix3d, 376

Matrix3f, 370

Matrix4d, 390
535Version 1.1.2, June 1999

INDEX

536
Matrix4f, 384

setCompatibilityModeEnable method,

473

setConcentration method, 69

setContinuousEnable method, 72

setCoordinate method, 172

setCoordinateIndex method, 181

setCoordinateIndices method, 181

setCoordinates method, 172

setCullFace method, 118

setDecreasingAlphaDuration method,

253

setDecreasingAlphaRampDuration
method, 254

setDensity method, 61

setDepthBufferEnable method, 120

setDepthBufferFreezeTransparent
method, 221

setDepthBufferWriteEnable method, 120

setDepthComponent method, 192

setDepthData method
DepthComponentFloat, 148

DepthComponentInt, 148

setDepthSize method, 225

setDevice method, 282

setDiffuseColor method, 126

setDirection method
AudioDevice3D, 298

ConeSound, 85

DirectionalLight, 66

SpotLight, 69

setDistance method, 270

setDistanceFilter method
AudioDevice3D, 297

AuralAttributes, 141

setDistanceGain method
AudioDevice3D, 297

ConeSound, 83

PointSound, 78

setDominantHandIndex method, 471

setDopplerScaleFactor method
(deprecated), 142

setDopplerVelocity method
(deprecated), 142

setDoubleBuffer method, 225

setDoubleBufferEnable method, 224

setDuplicateOnCloneTree method, 23,

100

setElement method
GMatrix, 399

GVector, 365

Matrix3d, 375

Matrix3f, 369

Matrix4d, 390

Matrix4f, 383

setEmissiveColor method, 126

setEnable method
Behavior, 255

Light, 64

Sound, 74

TexCoordGeneration, 134

Texture, 130

setEndColor method, 258

setEndPosition method, 256

setEuler method, 160

setExtrusionShape method, 194

setFieldOfView method, 218

setFirstChildIndex method, 261

setFog method, 311

setFont3D method, 195

setFormat method, 134

setFrequencyScaleFactor method
AudioDevice3D, 299

AuralAttributes, 142

setFrontClipDistance method, 218

setFrontClipPolicy method, 217

setFrontDistance method, 62

setGenMode method, 134

setGeometry method
Background, 56

Shape3D, 52

setGeometryArrays method, 92

setGreenSize method, 225

setHeadIndex method, 471
Java 3D API Specification

INDEX
setHeadToHeadTracker method, 469

setHeadTrackerToLeftImagePlate
method, 465

setHeadTrackerToRightImagePlate
method, 465

setHiRes method
GraphicsContext3D, 312

Locale, 33

setHiResCoord method, 34

setHiResCoordX method, 34

setHiResCoordY method, 34

setHiResCoordZ method, 34

setHotspot method, 281

setIdentity method
GMatrix, 398

Matrix3d, 380

Matrix3f, 370

Matrix4d, 396

Matrix4f, 385

Transform3D, 159

setImage method
Background, 56

Raster, 192

Texture, 130

setIncreasingAlphaDuration method,

253

setIncreasingAlphaRampDuration
method, 253

setInfluencingBoundingLeaf method
Fog, 60

Light, 64

setInfluencingBounds method
Fog, 59

Light, 64

setInitialGain method, 71

setKnot method, 263

setLastChildIndex method, 261

setLeftEarPosition method, 468

setLeftEyePosition method, 468

setLeftHandIndex method, 471

setLeftManualEyeInImagePlate
method, 466

setLeftProjection method, 478

setLight method, 311

setLightingEnable method, 126

setLineAntialiasingEnable method, 115

setLineAttributes method, 112

setLinePattern method, 115

setLineWidth method, 115

setLocale method, 286

setLocalEyeLightingEnable method, 215

setLoop method
AudioDevice3D, 298

Sound, 71

setLoopCount method, 252

setLower method, 151

setMagFilter method, 129

setMaterial method, 111

setMaximumAngle method, 257

setMaximumScale method, 259

setMaximumTransparency method, 262

setMinFilter method, 129

setMinimumAngle method, 257

setMinimumScale method, 259

setMinimumTransparency method, 262

setMipMapMode method, 130

setMode method, 253

setModelTransform method, 312

setMonoscopicViewPolicy method, 462

setNextSensorRead method, 282

setNode method, 286

setNodes method, 286

setNominalEyeHeightFromGround
method, 468

setNominalEyeOffsetFromNominalScree
n method, 469

setNominalPositionAndOrientation
method, 277

setNonDominantHandIndex method,

471

setNonUniformScale method
(deprecated), 161

setNormal
command, 420
537Version 1.1.2, June 1999

INDEX

538
setNormal method, 174

setNormalIndex method, 182

setNormalIndices method, 182

setNormals method, 175

setObject method, 286

setOffset method, 191

setPath method, 196

setPerspectiveCorrectionMode method,

122

setPhaseDelayDuration method, 253

setPhysicalBody method, 213

setPhysicalEnvironment method, 214

setPhysicalScreenHeight method, 465

setPhysicalScreenWidth method, 465

setPickable method, 22

setPlaneR method, 135

setPlaneS method, 134

setPlanes method, 154

setPlaneT method, 134

setPointAntialiasingEnable method, 117

setPointAttributes method, 112

setPointSize method, 117

setPolygonAttributes method, 112

setPolygonMode method, 118

setPolygonOffset method, 119

setPosition method
AudioDevice3D, 298

DistanceLOD, 270

PointLight, 67

PointSound, 78

PositionPathInterpolator, 264

Raster, 191

RotPosPathInterpolator, 266

RotPosScalePathInterpolator, 267

Text3D, 195

setPredictionPolicy method, 282

setPredictor method, 281

setPriority method, 73

setProcessingMode method, 277

setProjectionPolicy method, 215

setQuat method
RotationPathInterpolator, 268

RotPosPathInterpolator, 265

RotPosScalePathInterpolator, 267

setRadius method, 152

setRedSize method, 225

setReflectionCoefficient method
AudioDevice3D, 299

AuralAttributes, 140

setRegion method, 54

setReleaseEnable method, 72

setRenderingAttributes method, 112

setReverbDelay method
AudioDevice3D, 299

AuralAttributes, 140

setReverbOrder method
AudioDevice3D, 299

AuralAttributes, 141

setRightEarPosition method, 468

setRightEyePosition method, 468

setRightHandIndex method, 471

setRightManualEyeInImagePlate
method, 466

setRightProjection method, 478

setRolloff method
AudioDevice3D, 299

AuralAttributes, 140

setRotation method
Matrix4d, 391

Matrix4f, 385

Transform3D, 160

setRotationPoint method, 273

setRotationScale method
Matrix4d, 391

Matrix4f, 385

Transform3D, 161

setRow method
GMatrix, 399

Matrix3d, 375

Matrix3f, 369

Matrix4d, 390

Matrix4f, 384

setSampleGain method, 297

setScale method
Java 3D API Specification

INDEX
GMatrix, 400

Matrix3f, 373

Matrix4d, 392

Matrix4f, 383

RotPosScalePathInterpolator, 267

Transform3D, 160, 161

setSceneAntialiasingEnable method, 221

setSchedulingBoundingLeaf method
Behavior, 233

Sound, 73

setSchedulingBounds method
Behavior, 233

Sound, 72

setScope method
Fog, 60

Light, 64

setScreenScale method, 460

setScreenScalePolicy method, 460

setSensor method, 471

setSensorCount method, 471

setSensorReadCount method, 280

setShadeModel method, 113

setSharedGroup method, 98

setShininess method, 126

setSize method
GMatrix, 398

GVector, 364

Raster, 192

setSound method, 313

setSoundData method
Sound, 71

setSpecularColor method, 126

setSpreadAngle method, 69

setStartColor method, 258

setStartPosition method, 256

setStartTime method, 252

setState command, 423

setStereo method, 225

setStereoEnable method, 223

setString method, 195

setSwitch method, 269

setTable command, 423

setTarget method
Billboard, 272

ColorInterpolator, 258

PositionInterpolator, 256

PositionPathInterpolator, 265

RotationInterpolator, 257

RotationPathInterpolator, 268

RotPosPathInterpolator, 266

RotPosScalePathInterpolator, 267

ScaleInterpolator, 260

SwitchValueInterpolator, 261

TransparencyInterpolator, 262

setTexCoordGeneration method, 112

setTexture method, 111

setTextureAttributes method, 111

setTextureBlendColor method, 122

setTextureCoordinate method, 175

setTextureCoordinateIndex method, 182

setTextureCoordinateIndices method,

182

setTextureCoordinates method, 176

setTextureMode method, 122

setTextureTransform method, 122

setTime method, 283

setTrackerBaseToImagePlate method,

465

setTrackingEnable method, 459

setTransform method
SceneGraphPath, 287

TransformGroup, 43

setTranslation method
Matrix4d, 392

Matrix4f, 385

Transform3D, 162

setTransparency method, 124

setTransparencyAttributes method, 111

setTransparencyMode method, 124

setTriggerTime method, 253

setType method, 191

setUpper method, 151

setURL method, 136
539Version 1.1.2, June 1999

INDEX

540
setUserData method, 19

setUserHeadToVworldEnable method,

459

setVelocityScaleFactor method
AudioDevice3D, 300

AuralAttributes, 142

setView method, 295

setViewAttachPolicy method, 90, 208

setViewPolicy method, 459

setVpcToEc method, 478

setVworldXfrm method, 298

setWeights method, 92

setWhichChild method, 47

setWindowEyepointPolicy method, 461

setWindowMovementPolicy method,

216

setWindowResizePolicy method, 216

setZero method
GMatrix, 398

Matrix3d, 379

Matrix3f, 370

Matrix4d, 396

Matrix4f, 385

Transform3D, 159

shade model component information,

113

SHADE_FLAT flag, 114

SHADE_GOURAUD flag, 114

Shape3D leaf node, 17, 51, 313

shared subgraphs, 95–98

SharedGroup node, 48, 95

shininess, 125

singular value decomposition, 372, 391,

401

SingularMatrixException, 483

size constant, 189

solid line, 114

sound
caching, 71

enable, 74

environment, 86

equations, 488

list, 313

loop points, 71

playing state, 74

reflection, 140

reverberation, 137

sample, 69

scheduling region, 72, 73, 233

speed, 140

Sound leaf node, 69, 90

SoundException, 484

Soundscape leaf node, 86

spatial separation, 15

speaker playback equations, 496

specular
color, 125

highlight color, 126

scattering exponent, 126

speed of sound, 140

SPHERE_MAP flag, 133

spherical bounding volume, 152

spot light, 67

SpotLight leaf node, 67

spread angle, spotlight, 69

start flag, 189

startBehaviorScheduler method, 220

startRenderer method, 309

startSample method, 297

startView method, 220

state change clustering, 302

state inheritance, 16

stereo enabled flag, 223

STEREO_SPEAKERS flag, 292

StereoAvailable, 224

stimulus method, 228

stopBehaviorScheduler method, 220

stopRenderer method, 309

stopSample method, 297

stopView method, 220

STREAMING flag (deprecated), 276

STREAMING_AUDIO_DATA flag,

295

stripIndexCounts parameter, 184
Java 3D API Specification

INDEX
stripVertexCounts parameter, 178

style conventions, xv

sub method
GMatrix, 397

GVector, 363

HiResCoord, 35

Matrix3d, 376

Matrix3f, 370

Matrix4d, 392

Matrix4f, 385

Transform3D, 161

Tuple2d, 317

Tuple2f, 322

Tuple3d, 330

Tuple3f, 336

Tuple4d, 345

Tuple4f, 352

subclassing nodes, 104

subgraphs
cloning, 99–107

shared, 95–98

surface normal compression, 411

SVD method, 401

SVDBackSolve method, 366

swap method, 309

Switch group node, 46

SwitchValueInterpolator object, 260

T
T coordinate plane equation, 135

texCoord parameter, 175

TexCoord2f class, 326

TexCoord3f class, 340

TexCoordGeneration node component
object, 132

texCoords parameter, 176

text
alignment policy, 196

position, 195

Text3D object, 194

texture
application equations, 500

blend color, 122

boundary color, 130

coordinate generation mode, 134

filter parameters, 498

lookup equations, 498

map, 111, 129, 498

mapping, 127

equations, 498

mode, 122

node component object, 127

object, 111

transform object, 122

Texture node component object, 127

TEXTURE_COORDINATE_2 flag
GeometryArray, 171

TexCoordGeneration, 133

TEXTURE_COORDINATE_3 flag
GeometryArray, 171

TexCoordGeneration, 133

Texture2D node component object, 130

Texture3D node component object, 131

TextureAttributes object, 121

toString method
AxisAngle4d, 360

AxisAngle4f, 362

BoundingSphere, 154

GMatrix, 400

GVector, 365

Material, 127

Matrix3d, 380

Matrix3f, 374

Matrix4d, 397

Matrix4f, 388

PhysicalBody, 469

SceneGraphPath, 287

Transform3D, 161

Tuple2d, 319

Tuple2f, 324

Tuple3b, 328

Tuple3d, 331
541Version 1.1.2, June 1999

INDEX

542
Tuple3f, 336

Tuple4b, 342

Tuple4d, 346

Tuple4f, 353

View, 459

trace method, 401

tracker, 275

base coordinate system, 457

input processing, 275

transform method
BoundingBox, 151

BoundingPolytope, 155

BoundingSphere, 153

Bounds, 150

Matrix3d, 377, 379

Matrix3f, 371, 373

Matrix4d, 394

Matrix4f, 386

Transform3D, 167

Transform3D node component object,

156

TransformGroup node, 8, 17, 42, 284

translation, 156

TRANSLATION flag, 156

transparency, 123, 126, 262

mode, 124

value, 124

TransparencyAttributes object, 123

TransparencyInterpolator object, 261

transpose method
GMatrix, 400

Matrix3d, 377

Matrix3f, 371

Matrix4d, 394

Matrix4f, 386

Transform3D, 162

triangle fan primitive, 178

triangle strip primitive, 178

TRIANGLE_BUFFER flag, 188

TriangleArray node component object,

177

TriangleFanArray node component
object, 180

TriangleStripArray node component
object, 179

triggeredElements method, 234

triggerTime parameter, 249

tuple objects, 197

Tuple2d class, 315

Tuple2f class, 198, 321

Tuple3b class, 198, 327

Tuple3d class, 198, 329

Tuple3f class, 198, 335

Tuple4b class, 198, 341

Tuple4d class, 198, 343

Tuple4f class, 199, 351

U
unmuteSample nethod, 298

unpauseSample method, 298

updateNodeReferences method, 102

Behavior, 233

Leaf, 49

ScaleInterpolator, 260

Shape3D, 53

updateSample method, 300

USE_BOUNDS flag
WakeupOnCollisionEntry, 239

WakeupOnCollisionExit, 240

WakeupOnCollisionMovement, 241

USE_GEOMETRY flag
WakeupOnCollisionEntry, 239

WakeupOnCollisionExit, 240

WakeupOnCollisionMovement, 241

V
value method, 252

Vector2d class, 320

Vector2f class, 325
Java 3D API Specification

INDEX
Vector3d class, 334

Vector3f class, 339

Vector4d class, 348

Vector4f class, 356

velocity-activated Doppler effect, 136

vertex command, 419, 433

vertexCount parameter
GeometryArray, 171

GeometryStripArray, 178

IndexedGeometryStripArray, 184

vertexFormat parameter
GeometryArray, 171

IndexedGeometryStripArray, 184

IndexedLineStripArray, 185

IndexedTriangleFanArray, 186

IndexedTriangleStripArray, 186

view
attach policy, 89, 208

frustum, 453, 474

culling, 16

model, 201–226, 453–478

platform transform, 210

policy, 459

View object, 25, 26, 204, 205, 212, 213,

306, 458

viewing
matrices, 209

semantics, 31

ViewPlatform
coordinate system, 456

Coordinates (VPC), 478

leaf node, 89, 205–209, 458

virtual camera, 474

virtual universe, 27–35

loading, 29

virtual world, 203

coordinate system, 456, 459

coordinates, 30

VIRTUAL_EYE flag, 217

VIRTUAL_SCREEN flag, 217

VIRTUAL_WORLD flag, 216

VirtualUniverse object, 7, 24, 32, 301

vnop command, 429, 434

VPC (ViewPlatform Coordinates), 478

W
w flag

Tuple4b, 342

Tuple4d, 344

Tuple4f, 351

wakeup
conditions, 228, 231

criterion, 229

WakeupAnd object, 243

WakeupAndOfOrs object, 244

WakeupCondition object, 234

WakeupCriterion object, 230, 234

wakeupOn method, 233

WakeupOnActivation object, 235

WakeupOnAWTEvent object, 235

WakeupOnBehaviorPost object, 236

WakeupOnCollisionEntry object, 239

WakeupOnCollisionExit object, 240

WakeupOnCollisionMovement object,

241

WakeupOnDeactivation object, 237

WakeupOnElapsedFrames object, 237

WakeupOnElapsedTime object, 238

WakeupOnSensorEntry object, 238

WakeupOnSensorExit object, 239

WakeupOnTransformChange object,

243

WakeupOnViewPlatformEntry object,

242

WakeupOnViewPlatformExit object,

243

WakeupOr object, 244

WakeupOrOfAnds object, 244

window
resize policy, 216

sizing and movement, 216
543Version 1.1.2, June 1999

INDEX

544
window system provided parameters,

223

WRAP flag
Texture, 129

Texture3D, 132

X
x flag

AxisAngle4d, 359

AxisAngle4f, 361

Tuple2d, 316

Tuple2f, 322

Tuple3b, 327

Tuple3d, 329

Tuple3f, 335

Tuple4b, 342

Tuple4d, 344

Tuple4f, 351

xOffset constant, 189

Y
y flag

AxisAngle4d, 359

AxisAngle4f, 361

Tuple2d, 316

Tuple2f, 322

Tuple3b, 327

Tuple3d, 329

Tuple3f, 335

Tuple4b, 342

Tuple4d, 344

Tuple4f, 351

yOffset constant, 189

Z
z flag

AxisAngle4d, 359

AxisAngle4f, 361

Tuple3b, 327

Tuple3d, 329

Tuple3f, 335

Tuple4b, 342

Tuple4d, 344

Tuple4f, 351

ZERO flag, 156

zero method
GVector, 364

zOffset constant, 189
Java 3D API Specification

	Contents
	Figures
	Preface
	Introduction to Java�3D
	1.1 Goals
	1.2 Programming Paradigm
	1.2.1 The Scene Graph Programming Model
	1.2.2 Rendering Modes
	1.2.3 Extensibility

	1.3 High Performance
	1.3.1 Layered Implementation
	1.3.2 Target Hardware Platforms

	1.4 Support for Building Applications and Applets
	1.4.1 Browsers
	1.4.2 Games

	1.5 Overview of Java�3D Object Hierarchy
	1.6 Structuring the Java�3D Program
	1.6.1 Java�3D Application Scene Graph
	1.6.2 Recipe for a Java�3D Program
	1.6.3 HelloUniverse: A Sample Java�3D Program

	Scene Graph Basics
	2.1 Scene Graph Structure
	2.1.1 Spatial Separation
	2.1.2 State Inheritance
	2.1.3 Rendering

	2.2 Scene Graph Objects
	2.2.1 Node Objects
	2.2.2 NodeComponent Objects

	2.3 Scene Graph Superstructure Objects
	2.3.1 VirtualUniverse Object
	2.3.2 Locale Object

	2.4 Scene Graph Viewing Objects
	2.4.1 Canvas3D Object
	2.4.2 Screen3D Object
	2.4.3 View Object
	2.4.4 PhysicalBody Object
	2.4.5 PhysicalEnvironment Object

	Scene Graph Superstructure
	3.1 The Virtual Universe
	3.2 Establishing a Scene
	3.3 Loading a Virtual Universe
	3.4 Coordinate Systems
	3.5 High-resolution Coordinates
	3.5.1 Java�3D High-resolution Coordinates
	3.5.2 Java�3D Virtual World Coordinates
	3.5.3 Details of High-resolution Coordinates

	3.6 API for Superstructure Objects
	3.6.1 VirtualUniverse Object
	3.6.2 Locale Object
	3.6.3 HiResCoord Object

	Group Node Objects
	4.1 Group Node
	4.2 BranchGroup Node
	4.3 TransformGroup Node
	4.4 OrderedGroup Node
	4.5 DecalGroup Node
	4.6 Switch Node
	4.7 SharedGroup Node

	Leaf Node Objects
	5.1 Leaf Node
	5.2 Shape3D Node
	5.3 BoundingLeaf Node
	5.4 Background Node
	5.5 Clip Node
	5.6 Fog Node
	5.6.1 ExponentialFog Node
	5.6.2 LinearFog Node

	5.7 Light Node
	5.7.1 AmbientLight Node
	5.7.2 DirectionalLight Node
	5.7.3 PointLight Node
	5.7.4 SpotLight Node

	5.8 Sound Node
	5.8.1 BackgroundSound Node
	5.8.2 PointSound Node
	5.8.3 ConeSound Node

	5.9 Soundscape Node
	5.10 ViewPlatform Node
	5.11 Behavior Node
	5.12 Morph Node
	5.13 Link Node

	Reusing Scene Graphs
	6.1 Sharing Subgraphs
	6.1.1 SharedGroup Node
	6.1.2 Link Leaf Node

	6.2 Cloning Subgraphs
	6.2.1 References to Node Component Objects
	6.2.2 References to Other Scene Graph Nodes
	6.2.3 Dangling References
	6.2.4 Subclassing Nodes
	6.2.5 NodeReferenceTable Object
	6.2.6 Example User Behavior Node

	Node Component Objects
	7.1 Node Component Objects: Attributes
	7.1.1 Appearance Object
	7.1.2 ColoringAttributes Object
	7.1.3 LineAttributes Object
	7.1.4 PointAttributes Object
	7.1.5 PolygonAttributes Object
	7.1.6 RenderingAttributes Object
	7.1.7 TextureAttributes Object
	7.1.8 TransparencyAttributes Object
	7.1.9 Material Object
	7.1.10 Texture Object
	7.1.11 Texture2D Object
	7.1.12 Texture3D Object
	7.1.13 TexCoordGeneration Object
	7.1.14 MediaContainer Object
	7.1.15 AuralAttributes Object
	7.1.16 ImageComponent Object
	7.1.17 ImageComponent2D Object
	7.1.18 ImageComponent3D Object
	7.1.19 DepthComponent Object
	7.1.20 DepthComponentFloat Object
	7.1.21 DepthComponentInt Object
	7.1.22 DepthComponentNative Object
	7.1.23 Bounds Object
	7.1.24 BoundingBox Object
	7.1.25 BoundingSphere Object
	7.1.26 BoundingPolytope Object
	7.1.27 Transform3D Object

	7.2 Node Component Objects: Geometry
	7.2.1 GeometryArray Object
	7.2.2 PointArray Object
	7.2.3 LineArray Object
	7.2.4 TriangleArray Object
	7.2.5 QuadArray Object
	7.2.6 GeometryStripArray Object
	7.2.7 LineStripArray Object
	7.2.8 TriangleStripArray Object
	7.2.9 TriangleFanArray Object
	7.2.10 IndexedGeometryArray Object
	7.2.11 IndexedPointArray Object
	7.2.12 IndexedLineArray Object
	7.2.13 IndexedTriangleArray Object
	7.2.14 IndexedQuadArray Object
	7.2.15 IndexedGeometryStripArray Object
	7.2.16 IndexedLineStripArray Object
	7.2.17 IndexedTriangleStripArray Object
	7.2.18 IndexedTriangleFanArray Object
	7.2.19 CompressedGeometry Object
	7.2.20 CompressedGeometryHeader Object
	7.2.21 Raster Object
	7.2.22 Font3D Object
	7.2.23 FontExtrusion Object
	7.2.24 Text3D Geometry Object

	7.3 Math Component Objects
	7.3.1 Tuple Objects
	7.3.2 Matrix Objects

	View Model
	8.1 Why a New Model?
	8.1.1 The Physical Environment Influences the View

	8.2 Separation of Physical and Virtual
	8.2.1 The Virtual World
	8.2.2 The Physical World

	8.3 The Objects That Define the View
	8.4 ViewPlatform: A Place in the Virtual World
	8.4.1 Moving Through the Virtual World
	8.4.2 Dropping In on a Favorite Place
	8.4.3 View Attach Policy
	8.4.4 Associating Geometry with a ViewPlatform

	8.5 Generating a View
	8.5.1 Composing Model and Viewing Transformations
	8.5.2 Multiple Locales

	8.6 A Minimal Environment
	8.7 The View Object
	8.7.1 Projection Policy
	8.7.2 Clip Policies
	8.7.3 Projection and Clip Parameters
	8.7.4 Frame Start Time, Duration, and Number
	8.7.5 View Traversal and Behavior Scheduling
	8.7.6 Scene Antialiasing
	8.7.7 Depth Buffer

	8.8 The Screen3D Object
	8.9 The Canvas3D Object
	8.9.1 Window System–Provided Parameters
	8.9.2 Other Canvas3D Parameters
	8.9.3 GraphicsConfig�Temp�late�3D Object

	8.10 The PhysicalBody Object
	8.11 The PhysicalEnvironment Object

	Behaviors and Interpolators
	9.1 Behavior Object
	9.1.1 Code Structure
	9.1.2 WakeupCondition Object
	9.1.3 WakeupCriterion Object
	9.1.4 Composing WakeupCriterion Objects

	9.2 Composing Behaviors
	9.3 Scheduling
	9.4 How Java�3D Performs Execution Culling
	9.5 The Behavior API
	9.5.1 The Behavior Node
	9.5.2 WakeupCondition Object
	9.5.3 The WakeupCriterion Objects

	9.6 Interpolator Behaviors
	9.6.1 Mapping Time to Alpha
	9.6.2 Acceleration of Alpha
	9.6.3 The Alpha Class
	9.6.4 The Interpolator Base Class
	9.6.5 PositionInterpolator Object
	9.6.6 RotationInterpolator Object
	9.6.7 ColorInterpolator Objectpl
	9.6.8 ScaleInterpolator Object
	9.6.9 SwitchValueInterpolator Object
	9.6.10 TransparencyInterpolator Object
	9.6.11 PathInterpolator Object
	9.6.12 PositionPathInterpolator Object
	9.6.13 RotPosPathInterpolator Object
	9.6.14 RotPosScalePathInterpolator Object
	9.6.15 RotationPathInterpolator Object

	9.7 Level-of-Detail Behaviors
	9.7.1 LOD Object
	9.7.2 DistanceLOD Object

	9.8 Billboard Behavior

	Input Devices and Picking
	10.1 InputDevice Interface
	10.1.1 The Abstract Interface
	10.1.2 Instantiating and Registering a New Device

	10.2 Sensors
	10.2.1 Using and Assigning Sensors
	10.2.2 Behind the (Sensor) Scenes
	10.2.3 The Sensor Object
	10.2.4 The SensorRead Object

	10.3 Picking
	10.3.1 SceneGraphPath Object
	10.3.2 BranchGroup Node and Locale Node Pick Methods
	10.3.3 PickShape Object
	10.3.4 PickBounds Object
	10.3.5 PickPoint Object
	10.3.6 PickRay Object
	10.3.7 PickSegment Object

	Audio Devices
	11.1 AudioDevice Interface
	11.1.1 Initialization
	11.1.2 Audio Playback
	11.1.3 Device-Driver-Specific Data

	11.2 AudioDevice3D Interface
	11.3 Instantiating and Registering a New Device

	Execution and Rendering Model
	12.1 Three Major Rendering Modes
	12.1.1 Immediate Mode
	12.1.2 Retained Mode
	12.1.3 Compiled-retained Mode

	12.2 Instantiating the Render Loop
	12.2.1 An Application-level Perspective
	12.2.2 Retained and Compiled-retained Rendering Modes

	Immediate-Mode Rendering
	13.1 Two Styles of Immediate-Mode Rendering
	13.1.1 Pure Immediate-Mode Rendering
	13.1.2 Mixed-Mode Rendering

	13.2 Canvas3D Methods
	13.3 API for Immediate Mode
	13.3.1 GraphicsContext3D

	Math Objects
	A.1 Tuple Objects
	A.1.1 Tuple2d Class
	A.1.2 Tuple2f Class
	A.1.3 Tuple3b Class
	A.1.4 Tuple3d Class
	A.1.5 Tuple3f Class
	A.1.6 Tuple4b Class
	A.1.7 Tuple4d Class
	A.1.8 Tuple4f Class
	A.1.9 AxisAngle4d Class
	A.1.10 AxisAngle4f Class
	A.1.11 GVector Class

	A.2 Matrix Objects
	A.2.1 Matrix3f Class
	A.2.2 Matrix3d Class
	A.2.3 Matrix4f Class
	A.2.4 Matrix4d Class
	A.2.5 GMatrix Class

	3D Geometry Compression
	B.1 Compression
	B.2 Decompression
	B.3 Appendix Organization
	B.4 Generalized Triangle Strip
	B.5 Generalized Triangle Mesh
	B.6 Position Representation and Quantization
	B.7 Color Representation and Quantization
	B.8 Normal Representation and Quantization
	B.8.1 Normals as Indices
	B.8.2 Normal Encoding Parameterization
	B.8.3 Special Warping Rules for Delta Normals

	B.9 Modified Huffman Encoding
	B.10 Compressed Geometry Instructions
	B.11 Bit Layout of Compressed Geometry Instructions
	B.12 Compressed Geometry Instruction Bit Details
	B.12.1 nop
	B.12.2 setState
	B.12.3 setTable
	B.12.4 mbr (meshBufferReference)
	B.12.5 Position Sub-instruction
	B.12.6 Color Sub-instruction
	B.12.7 Normal Sub-instruction
	B.12.8 vertex
	B.12.9 setNormal
	B.12.10 setColor

	B.13 Semantics of Compressed Geometry Instructions
	B.13.1 Header and Body to Variable-Length Instruction
	B.13.2 Variable-Length Instruction to Instruction
	B.13.3 Delta Position to Position
	B.13.4 Delta Color to Color
	B.13.5 Encoded Delta Normal to Encoded Normal
	B.13.6 Encoded Normal to Rectilinear Normal

	B.14 Semantics of Vertices
	B.14.1 Instruction to Vertex
	B.14.2 Vertex to Intermediate Triangle
	B.14.3 Intermediate Triangle to Final Triangle

	B.15 Outline of Geometry Process
	B.15.1 Compressing Geometry Data
	B.15.2 Convert to Generalized Mesh Format
	B.15.3 Position
	B.15.4 Normals
	B.15.5 Colors
	B.15.6 Collect Delta Code Statistics
	B.15.7 Position Delta Code Statistics
	B.15.8 Color Delta Code Statistics
	B.15.9 Normal Delta Code Statistics
	B.15.10 Assign Huffman Tags
	B.15.11 Assemble the Pieces into a Bit Stream

	B.16 Compressed Geometry Assembly Syntax
	B.17 Compressed Geometry Instruction Verifier

	View Model Details
	C.1 An Overview of the Java�3D View Model
	C.2 Physical Environments and Their Effects
	C.2.1 A Head-mounted Example
	C.2.2 A Room-mounted Example
	C.2.3 Impact of Head Position and Orientation on the Camera

	C.3 The Coordinate Systems
	C.3.1 Room-mounted Coordinate Systems
	C.3.2 Head-mounted Coordinate Systems

	C.4 The ViewPlatform Object
	C.5 The View Object
	C.5.1 View Policy
	C.5.2 Screen Scale Policy
	C.5.3 Window Eyepoint Policy
	C.5.4 Monoscopic View Policy
	C.5.5 Sensors and Their Location in the Virtual World

	C.6 The Screen3D Object
	C.6.1 Screen3D Calibration Parameters
	C.6.2 Accessing and Changing Head Tracker Coordinates

	C.7 The Canvas3D Object
	C.7.1 Scene Antialiasing
	C.7.2 Accessing and Modifying an Eye’s Image Plate Position
	C.7.3 Canvas Width and Height

	C.8 The PhysicalBody Object
	C.9 The PhysicalEnvironment Object
	C.10 Viewing in Head-tracked Environments
	C.10.1 A Room-mounted Display with Head Tracking
	C.10.2 A Head-mounted Display with Head Tracking

	C.11 Compatibility Mode
	C.11.1 Overview of the Camera-based View Model
	C.11.2 Using the Camera-based View Model

	Exceptions
	D.1 BadTransformException
	D.2 CapabilityNotSetException
	D.3 DanglingReferenceException
	D.4 IllegalRenderingStateException
	D.5 IllegalSharingException
	D.6 MismatchedSizeException
	D.7 MultipleParentException
	D.8 RestrictedAccessException
	D.9 SceneGraphCycleException
	D.10 SingularMatrixException
	D.11 SoundException

	Equations
	E.1 Fog Equations
	E.2 Lighting Equations
	E.3 Sound Equations
	E.3.1 Headphone Playback Equations
	E.3.2 Speaker Playback Equations

	E.4 Texture Mapping Equations
	E.4.1 Texture Lookup
	E.4.2 Texture Application

	Glossary
	Index

