1.LOB Performance Guidelines

An Oracle White Paper
May 2004

ORACLE

LLOB Performance Guidelines

EXECUVE OVEIVIEW .ottt ettt ettt ettt ae et seereanans 3
TLOB OVEIVIEW vttt et e eete et eesenseseereesessesenseneneaneas 3
Important Storage Parameters.......ocoviiiiiiciccccciicccece 4
CHUNK ..ottt ettt ettt et et ea b et eteete v e b sserseaennenea 4
D INIHON 1ottt ettt ettt ettt anas 4
POINES 10 INOLE wvveuvieiiciieeieecteeete ettt ettt ettt ettt eaae e 4
RecomMmMENAatioNocviovieieeccieeeeeeeeeeeee et 4
In-line and Out-of-Line storage: ENABLE STORAGE IN ROW and
DISABLE STORAGE IN ROW ..ottt 4
DEFINTHON 1ottt ettt ettt et re et et eeeanas 4
POINES 1O INOTE wvveeveetiiieeeteecteeete ettt ettt ettt ettt etreetaeeaeeaveereenneen 5
RecommENdationoececiceeecieececeecteeeet ettt 5
CACHE, NOCACHE ..ottt 5
DEFINTHON 1ottt ettt ettt et eeeanas 5
POINES 1O INOTE wvveuveetiitieeteeete ettt ettt ettt ettt eaeeaeeaveereenneen 5
RecommENdationiececicieceeieeceeceeteeett ettt 6
Consistent Reads on LOBs: RETENTION and PCTVERSION......... 6
DEFINTHON 1ottt ettt ettt ettt et ee s 6
POINES 1O INOTE wvveveerietieeteeeteeete ettt ettt ettt eaaeeaeeareereenneen 6
RecommENdation ..ottt 7
LOGGING, NOLOGGING ..ottt 7
DEFINTHON 1ottt ettt et ettt ee s 7
POINES 1O INOTE wvvireeriitieeteecte ettt ettt ettt et eteetr e e eteeeaveetreenneen 7
RecommeENndation ...ttt 7
Performance GUIDELINE — LOB Loadingcccoceeeevvnieerrinicenninieen 7
POINES 10 INOTE .eeuvietiitiecte ettt ettt et e be et e re e b ens 7
Use array operations for LOB INSErts ..o 7
LONG API access to LOB datatype.........ccoouveuvviinininiccininccneninnens 8
APPENDIX Bttt et ens 9
Migration from in-line to out-of-line (and out-of-line to in-line)
SEOTAZE. cveuvrreterisei ettt a s b e 9
APPENDIX Coooovietteeeeteteeteet ettt ettt ettt et et eve s eas s eveevenea 10
How LOB data 1S StOLed....cuivuieieierierierereeeeeeteeeeeteeveeveeete e e eeee e enens 10
In-line LOB — LOB size less than 3964 bytesccccccecevvvininininnee. 10
In-line LOB — LOB size = 3965 bytes (1 byte greater than 3964) 10
In-line LOB — LOB size greater than 12 chunk addresses 11
Out-of-line LOBs — All LOB S1ZES...ccvivvivveuieriereereeeecveeeeeeeeveevennen, 11

LOB Performance Guidelines Page 2

9792 is the object_id of the parent table
FOO (if a table has more than one LOB
column, LOB segment names are
generated differently, use dbajuser_lobs

view to get parent table association).

1.OB Performance Guidelines

EXECUTIVE OVERVIEW

This document gives a brief overview of Oracle’s LOB data structure, emphasizing
various storage parameter options and describes scenatrios where those storage
parameters are best used. The purpose of the latter is to describe the effects of

LOB storage options.

LOBs were designed to efficiently store and retrieve large amounts of data. Small
LOBs (< 1MB) petform better than LONGs for inserts, and comparable on
selects. Large LOBs perform better than LONGS in general.

Oracle recommends the use of LOBs to store unstructured or semi-structured data,
and has provided a LONG API to allow ease of migration from LONGs to LOBs.
Oracle plans to de-support LONGs in the future.

LOB OVERVIEW

Whenever a table containing a LOB column is created, two segments are created to
hold the specified LOB column. These segments are of type LOBSEGMENT and
LOBINDEX. The LOBINDEX segment is used to access LOB chunks/pages that
are stored in the LOBSEGMENT segment.

CREATE TABLE foo (pkey NUMBER, bar BLOB);

SELECT segment name, segment type FROM user extents;

SEGMENT_NAME SEGMENT_TYPE

FOO TABLE

SYS_I1.0000009792C00002$$ LOBINDEX

SYS_LOB0000009792C00002$$ LOBSEGMENT (also referred as LOB chunks/pages)

The LOBSEGMENT and the LOBINDEX segments are stored in the same
tablespace as the table containing the LOB, unless otherwise specified.!

I In Oracle8i, users can specify storage parameters for LOB index, but from Oracle9i onwards,
specifying storage parameters for a LOB index is ignored without any error and the index is
stored in the same tablespace as the LOB segment, with an Oracle generated index name.

LOB Performance Guidelines Page 3

IMPORTANT STORAGE PARAMETERS

This section defines the important storage parameters of a LOB column (or a LOB
attribute) - for each definition we describe the effects of the parameter,

recommendation for better performance and to avoid errors.

CHUNK

Definition
CHUNK is the smallest unit of LOBSEGMENT allocation. It is a multiple
of DB_BLOCK_SIZE.

Points to Note

e For example, if the value of CHUNK is 8K and an inserted LLOB is only
1K in size, then 1 chunk is allocated and 7K are wasted in that chunk.
The CHUNK option does NOT affect in-line LOBs (see the definition in

the next section)

e Choose an appropriate chunk size for best performance also to avoid

space wastage. The maximum chunk size is 32K.

e The CHUNK parameter cannot be altered.

Recommendation

Choose a chunk size for optimal performance and minimum space wastage.
For LOBs that are less than 32K, a chunk size that is 60% (or more) of the
LOB size is a good starting point. For LOBs larger than 32K, choose a
chunk size equal to the frequent update size.

In-line and Out-of-Line storage: ENABLE STORAGE IN ROW and
DISABLE STORAGE IN ROW

Definition

LLOB storage is said to be in-line when the LOB data is stored with the other

column data in the row. A LOB can only be stored inline if its size is less
than ~4000 bytes. For in-line LOB data, space is allocated in the table
segment (the LOBINDEX and LOBSEGMENT segments are empty).

LLOB storage is said to be out-of-line when the LOB data is stored, in
CHUNK sized blocks in the LOBSEGMENT segment, separate from the

other columns’ data.

ENABLE STORAGE IN ROW allows LOB data to be stored in the table
segment provided it is less than ~4000 bytes.

DISABLE STORAGE IN ROW prevents LOB data from being stored in-
line, regardless of the size of the LOB. Instead only a 20-byte LOB locator is

stored with the other column data in the table segment.

LOB Performance Guidelines Page 4

Points to Note

In-line LOBs are subject to normal chaining and row migration rules
within Oracle. If you store a 3900 byte LOB in a row with 2K block size
then the row will be chained across two or more blocks. Both REDO and
UNDO are written for in-line LOBs as they are part of the normal row
data. The CHUNK option does not affect in-line LOBs.

With out-of-line storage, UNDO is written only for the LOB locator and
LOBINDEX changes. No UNDO is generated for chunks/pages in the
LOBSEGMENT. Consistent Read is achieved by using page versions (see
the RETENTION or PCTVERSION options).

DML operations on out-of-line LOBs can generate high amounts of redo
information, because redo is generated for the entire chunk. For example,
in the extreme case, ‘DISABLE STORAGE IN ROW CHUNK 32K’
would write redo for the whole 32K even if the LOB changes were only 5
bytes.

When in-line LOB data is updated, and if the new LOB size is greater than
3964 bytes, then it is migrated and stored out-of-line. If this migrated
LLOB is updated again and its size becomes less than 3964 bytes, it is not
moved back in-line (except when we use LONG API for update).

ENABLE | DISABLE STORAGE IN ROW parameters cannot be altered.

Recommendation

Use ENABLE STORAGE IN ROW, except in cases where the LOB data is
not retrieved as much as other columns’ data. In this case, if the LOB data is
stored out-of-line, the biggest gain is achieved while performing full table

scans, as the operation does not retrieve the LOB’s data.

CACHE, NOCACHE

Definition

The CACHE storage parametet causes LOB data blocks to be read/wtitten

via the buffer cache.

With the NOCACHE storage parameter, LOB data is read/written using
direct reads/writes. This means that the LOB data blocks are never in the

buffer cache and the Oracle server process performs the reads/writes.

Points to Note

With the CACHE option, LOB data reads show up as wait event ‘db file
sequential read’, writes are performed by the DBWR process. With the
NOCACHE option, LOB data reads/writes show up as wait events ‘direct
path read (lob)’/’direct path write (lob)’. Corresponding statistics are
‘physical reads direct (lob)” and ‘physical writes direct (lob)’.

LOB Performance Guidelines Page 5

e In-line LOBs are not affected by the CACHE option as they reside with
the other column data, which is typically accessed via the buffer cache.

e The CACHE option gives better read/write performance than the
NOCACHE option.

e The CACHE option for LOB columns is different from the CACHE
option for tables. This means that caution is required otherwise the read
of a large LOB can effectively flush the buffer cache.

e The CACHE |NOCACHE option can be altered.

Recommendation
Enable caching, except for cases where caching LOBs would severely impact
performance for other online users, by forcing these users to perform disk
reads rather than getting cache hits.

Consistent Reads on LOBs: RETENTION and PCTVERSION

Consistent Read (CR) on LOBs uses a different mechanism than that used for
other data blocks in Oracle. Older versions of the LOB are retained in the LOB
segment and CR is used on the LOB index to access these older versions (for in-
line LOBs which are stored in the table segment, the regular UNDO mechanism is

used). There are two ways to control how long older versions are maintained.

Definition
e RETENTION - time-based: this specifies how long older versions are to
be retained.

e PCTVERSION - space-based: this specifies what percentage of the LOB

segment is to be used to hold older versions.

Points to Note

e RETENTION is a keyword in the LOB column definition. No value can
be specified for RETENTION. The RETENTION value is implicit. If a
LLOB is created with database compatibility set to 9.2.0.0 or higher,
undo_management=TRUE and PCTVERSION is not explicitly specified,
time-based retention is used. The LOB RETENTION value is always
equal to the value of the UNDO_RETENTION database instance

parameter.
e You cannot specify both PCTVERSION and RETENTION.

e PCTVERSION is applicable only to LOB chunks/pages allocated in
LOBSEGMENTS. Other LOB related data in the table column and the
LOBINDEX segment use regular undo mechanism.

e PCTVERSION=0: the space allocated for older versions of LOB data in
LOBSEGMENTS can be reused by other transactions and can cause
“snapshot too old” errors.

LOB Performance Guidelines Page 6

e PCTVERSION=100: the space allocated by older versions of LOB data
can never be reused by other transactions. LOB data storage space is

never reclaimed and it always increases.

o RETENTION and PCTVERSION can be altered

Recommendation

Time-based retention using the RETENTION keyword is preferred.
A high value for RETENTION or PCTVERSION may be needed to avoid

“snapshot too old” errors in environments with high concurrent read/write
LOB access.

LOGGING, NOLOGGING

Definition

LOGGING: enables logging of LOB data changes to the redo logs.

NOLOGGING: changes to LOB data (stored in LOBSEGMENTS) are not
logged into the redo logs, however in-line LOB changes are still logged as

normal.

Points to Note

e The CACHE option implicitly enables LOGGING.

e If NOLOGGING was set, and if you have to recover the database, then
sections of the LOBSEGMENT will be marked as corrupt during
recovery (LOBINDEX changes are logged to redo logs and are recovered,
but the corresponding LOBSEGMENTS are not logged for recovery).

e LOGGING|NOLOGGING can be altered. The NOCACHE option is
required to turn off LOGGING, e.g. NOCACHE NOLOGGING).

Recommendation

Use NOLOGGING only when doing bulk loads or migrating from LONG
to LOB. Backup is recommended after bulk operations.

PERFORMANCE GUIDELINE — LOB LOADING
In the rest of the document, you will notice LOB API and LONG API methods

being referenced many times. The difference between these APIs is as follows:
LLOB API: the LOB data is accessed by first selecting the LOB locator.
LONG API: the LOB data is accessed without using the LOB locator.

Points to Note

Use array operations for LOB inserts

LOB Performance Guidelines Page 7

When doing the LONG to LOB migration.
The alter table migration statement runs
serially in 9i. Indexes need to be rebuilt
and statistics recollected.

APPENDIX A

LONG API access to LOB datatype

Oracle provides transparent access to LOBs from applications that use LONG and
LONG RAW datatypes. If your application uses DML (INSERT, UPDATE,
DELETE) statements from OCI or PL/SQL (PRO*C etc) for LONG or LONG
RAW data, no application changes are required after the column is converted to a
LOB.

For example, you can SELECT a CLLOB into a character variable, or a BLOB into a
RAW variable. You can define a CLOB column as SQLT_CHR or a BLOB
column as SQLT_BIN and select the LOB data directly into a CHARACTER or
RAW buffer without selecting out the locator first.

The following example demonstrates this concept:

create table foo (pkey number(10) not null, bar long raw) ;

set serveroutput on

declare
in_buf raw(32767);
out_buf raw(32767);
out pkey number;
begin

in_buf ;= utl raw.cast_to_raw (rpad('FF', 32767, 'FF"));

forjin 1..10 loop
insert into foo values (j, in_buf) ;
commit;
end loop;
dbms_output.put_line ("Write test finished ');

forjin 1..10 loop

select pkey, bar into out_pkey, out_buf from foo where pkey=j ;
end loop;
dbms_output.put_line ('Read test finished ');

end;
/

Now migrate LONG RAW column to BLOB column
alter table foo modify (bar blob);

After the LONG to LOB migration, the above PL/SQL block will work without
any modifications.

Advanced LOB features may require the use of the LOB API, described in the

Oracle Documentation?

2 Large Objects (LOBs) in Oracle9/ Application Developer's Guide, DBMS_LOB
package in Oracle97 Supplied PL/SQL Packages and Types Reference, LOB and FILE
Operations in Oracle Call Interface Programmer’s guide

LOB Performance Guidelines Page 8

APPENDIX B

Migration from in-line to out-of-line (and out-of-line to in-line) storage

This section explains one major difference between the LOB API and LONG API
methods.

If a change to the in-line LOB data makes it larger than 3964 bytes, then it is
automatically moved out of table segment and stored out-of-line. If during future

operations, the LOB data shrinks to under 3964 bytes, it will remain out-of-line.

In other words, once a LOB is migrated out, it is always stored out-of-line

irrespective of its size, with the following exception scenario.

Consider a scenario where you used the LONG API to update the LOB datatype
(]

begin
in_buf :=utl raw.cast_to_raw (rpad('FF', 3964, 'FF"));
insert into foo values (1, in_buf) ;
commit;

(-]

Above LOB is stored in-line, update the LOB to a size more than 3964 bytes

[-]
in_buf :=utl raw.cast to raw (rpad('FF', 4500, 'FF"));
update foo set bar=buffer where pkey=1;
commit;

[-]

After the update LOB is stored out-of-line, now update the LOB to a size smaller than
3964 bytes

[-]
in_buf := utl raw.cast to_raw (rpad('FF', 3000, 'FF"));
update foo set bar=buffer where pkey=1;
commit;

[-]

LOB is stored in-line again.

When using the LONG API for update, the older LOB is deleted (or space is
reclaimed as per RETENTION or PCTVERSION setting) and a new LOB is
created, with a new LOB locator. This is different from using LOB API, where
DML on LOB is possible only using the LOB locator (the LOB locator doesn’t
change)

LOB Performance Guidelines Page 9

APPENDIX C

How LOB data is stored

The purpose of this section is to differentiate how the ENABLE STORAGE IN
ROW option is different from the DISABLE STORAGE IN ROW option for
LLOB data size greater than 3964 bytes. It also highlights when LOBINDEX is
actually used (following example scenarios assume Solaris OS and Oracle 9204 — 32

bit version).

In-line LOB — LOB size less than 3964 bytes
LOB can be NULL, EMPTY_BLOB, and actual LOB data

create table foo (pkey number(10) not null, bar BLOB)
lob (bar) store as (enable storage in row chunk 2k);

declare
inbuf raw(3964);

begin
inbuf :=utl raw.cast_to _raw(rpad('FF', 3964, 'FF"));
insert into foo values (1, NULL);
insert into foo values (2, EMPTY BLOB());
insert into foo values (3, inbuf);
commit;
end;
/

Foo table rows

Pkey=1 Bar=0 byte (nothing is stored)

Pkey=2 Bar=36 byte

Pkey=3 Bar=4000 byte (36 byte + 3964 byte of LOB data, nothing
stored in LOBINDEX and LOBSEGMENT

Lobld — LOB Locator

In-line LOB - LOB size = 3965 bytes (1 byte greater than 3964)

LOB is defined as in-line, but actual data is greater than 3964 bytes, so moved
out — please note this is different from LOB being defined as out-of-line.

[-]
inbuf := utl_raw.cast_to raw(rpad('FF', 3965, 'FF"));
insert into foo values (4, inbuf);

[-]

Foo table row

Pkey=4 Bar=40 bytes.
Oracle directly accesses LOB data in LOBSEGMENT.
Nothing stored in LOBINDEX

LOB Performance Guidelines Page 10

In-line LOB - LOB size greater than 12 chunk addresses

With in-line LOB option, we store the first 12 chunk addresses in the table
row. This takes 84 bytes of size in table row. LOBs that are less than 12
chunks in size will not have entries in the LOBINDEX if ENABLE
STORAGE IN ROW is used
[-]
inbuf := utl_raw.cast_to_raw(rpad('FF', 32767, 'FF"));
insert into foo values (5, inbuf);

[-]

Here, we are inserting 32767 bytes of LOB data, given our chunk size of 2k, we
need approximately 16 blocks (32767/2048). So we store first 12 chunk addresses
in table row and the rest in LOBINDEX

Foo table row

Pkey=5 Bar=84 bytes.

Oracle directly accesses 12 LOB chunks in
LOBSEGMENT. Then Oracle looks up LOBINDEX to get
the rest of the LOB chunk addresses.

Out-of-line LOBs — All LOB sizes

With out-of-line LOB option, only LOB locator is stored in table row. Using
LLOB locator, we lookup LOBINDEX and find the range of chunk addresses,
using these addresses we read LOB data from the LOBSEGMENT

create table foo (pkey number(10) not null, bar BLOB)
lob (bar) store as (disable storage in row chunk 2k);

[-]
inbuf := utl_raw.cast_to_raw(rpad('FF', 20, 'FF"));
insert into foo values (6, inbuf);

(-]

Foo table rows
Pkey=6 Bar=20 bytes.
All chunk addresses are stored in LOBINDEX.

LOB Performance Guidelines Page 11

ORACLE

LOB Performance Guidelines

May 2004

Author: V. Jegraj

Contributing authors: Geoff Lee, Vishy Karra, Krishna Kunchithapadam, Cecilia Gervasio

Oracle Corporation

World Headquarters

500 Oracle Parkway
Redwood Shores, CA 94065
US.A.

Worldwide Inquiries:
Phone: +1.650.506.7000
Fax: +1.650.506.7200
www.oracle.com

Oracle is a registered trademark of Oracle Corporation. Various
product and service names referenced herein may be trademarks
of Oracle Corporation. All other product and service names
mentioned may be trademarks of their respective owners.

Copyright © 2004 Oracle Corporation
All rights reserved.

