ORACLE

Integrating Oracle9/AS Reports in
Oracle9/AS Forms

An Oracle White Paper

Updated version for Forms 61 patch 5and higher, covering
Oracle9i Application Server integration and the new Forms
Listener Serviet Architecture

September 2001

Forms Services 61 Reports Integration

EXECUTIVE OVERVIEW 2

SECTION 1: INTRODUCTION TO FORMS SERVICES AND THE BASICS
OF CALLING EMBEDDED REPORTS IN FORMS ON THE WEB------------ 4

Understanding Forms 6i Services in Oracle9i Application Server ----------------- 4
Client Server Architecture vs. Web Architecture 4
Forms Listener Architecture 6

7
7

Forms Listener Servlet Architecture
Section Summary

Understanding Reports 6i Services in Oracle 9i Application Server --------------- 8

Oracle9iAS Forms Services and Oracle9iAS Reports Services - Installation and

Configuration 8
Environment Variables 9
Net8 Configuration (tnsnames.ora) 9
Example 9

Web Server settings 9
Oracle HTTP Configuration (httpd.conf) 9
jserv.properties 10
Apache JServ (zone.properties) 11
Forms Applications Configuration File (6i Server.conf) 12
Forms Services .env file 12
Introducing the RUN _REPORT OBJECT Built-in 12
Using Parameter Listsin RUN_REPORT_OBJECT 13
Section Summary 14

SECTION 2: FORMS SERVICES APPLICATIONS WITH INTEGRATED
CALLS TO ORACLE REPORTS USING THE REPORTS RUNTIME

ENGINE 15
Common configurations when using the Reports client Runtime Engine --------- 15
Configuration with Forms Listener 15
Configuration with Forms Listener Servlet 15
Using the RUN_PRODUCT Built-in 15
Registry Settings 16
Forms60_output 16
Forms60_mapping 16

Forms60_repformat 16

Syntax 16

Using the RUN_REPORT OBJECT Built-in 17

Passing Forms Parameter Lists With RUN_REPORT_OBJECT --------------- 18
Printing Reports on the Web 18
Section Summary 18

SECTION 3: FORMS SERVICES APPLICATIONS WITH INTEGRATED

CALLS TO ORACLE REPORTS USING REPORTS SERVICES -------------- 19
RUN _REPORT OBJECT with Reports 6i Services 19
Run_Report_Obnject Example 20
Passing Forms parameter listsin Run_Reports Object 22
Using Run_Reports Object When Calling a Report Containing a Parameter
Form 22
Solution 23
Intercepting Reports error messages using RUN_REPORT_OBJECT with
Reports Services 27
WEB.SHOW DOCUMENT with Reports 6i Services 30
Example 1 - Web.show_document () 31
Example 2 - Web.show_document () with relative addressing ------------------ 31
Example 3 - WEB.SHOW_DOCUMENT () with encrypted URL parameters32
Printing Reports on the Web 33
Printing on Network Printers 34
Printing on aLoca Printer With the orarrp Utility 34
Section Summary 34
SUMMARY 35
APPENDIX A: USABILITY MATRIX 36

APPENDIX B: PASSING FORMS PARAMETER LISTS IN
RUN_REPORT_OBJECT 37

APPENDIX C: TROUBLESHOOTING 39

Forms Services 6iis a component of Oracle9i
Application Server. The official component name
is Oracle9iAS Forms Services. Therefore, Forms
Services 6/ and Oracle9/AS Forms Services are
synonymous and may be used interchangeably
throughout this paper.

Integrating Oracle9ZAS Reports in Oracle9ZAS Forms

EXECUTIVE OVERVIEW
Oracle9/AS Forms Services 67 can be used to Web deploy Oracle Forms

applications built in a client-server architecture. More and more companies are
moving from client-server computing to a pure Web architecture while trying to
leverage existing programming skills.

Feedback from Oracle customers, user groups, trade shows, and the customer
advisory boatd indicate that companies want to leverage Forms-built applications
when moving towards a 100 % Web architecture rather than redevelop their
business applications for the Web from scratch.

This paper focuses on deploying client-server Forms applications with integrated
Oracle9/AS Repotts to the Web. The target audience for this paper includes
technical software managers, consultants, and project leads who want to learn
about the benefits of such a configuration.

After reading this paper you’ll be able to identify areas in your application that can
better scale on the Web. You'll also be able to incrementally move applications
with embedded report calls to the Web for a 100 % three-tier architecture solution.

Experienced Forms developers can use the coding examples and deployment tips
in this paper to help guide them towards Web deployment. If you are new to
Oracle9iAS Forms Services and Oracle9iAS Reports Services, but are familiar with
running client-server Forms applications from previous or current releases, you’ll
learn about the basic Web architectures provided by these products and how to
use them in your own applications.

Furthermore, this paper covers changes in your programming calls to integrated
Oracle9iAS Reports in preparation for future upgrades to Oracle9iAS Forms

Services.

Page 2

Start here if you are new to running Forms
applications on the Web

Start here if you already know how to run Forms
on the Web but still run client-server
applications. Use these recommendations to run
embedded calls to Reports without modifying
Forms application modules.

Start here if you already run your Forms
applications on the Web but don’t use Reports
Services for integrated calls to Oracle Reports as
recommended by Oracle.

HOW THIS PAPER IS STRUCTURED

This paper is structured into three main sections depending on your level of
experience.

Section 1: Introduction to Forms Services and the Basics of Calling
Embedded Repotts in Forms on the Web

This section introduces the Forms and Reports Setvices architecture,
explaining the differences between the client-server and the Web architecture.
It covers installation and configuration of Forms and Reports Services and
explains the configuration files involved. Although the installer configures
Forms and Repotts services out-of-the-box, including all settings required to
run embedded reports on the Web, a basic understanding of these settings is
considetred helpful. The RUN_REPORT_OBJECT built-in also is re-
introduced in this section.

Section 2: Forms Services Applications With Integrated Calls to Oracle
Reports Using the Reports Runtime Engine

This section explains how to use integrated calls to Oracle Reports in Forms
Web applications, using the reports runtime engine in the same way it is used
in client-server. You'll learn that the reports runtime engine is no longer
located on the local client but resides on the middle-tier server.

The Forms built-ins RUN_PRODUCT and RUN_REPORT_OBJECT are
explained using the reports runtime engine on the Web. This section helps
users who want to move their Forms client-server applications to the Web but
don’t want to change embedded calls to Oracle Reports. Not changing
embedded calls to Oracle Reports is a considerable but intermediate step
when migrating large Forms client-server applications to the Web.

Section 3: Forms Services applications With Integrated calls to Oracle
Reports Using Reports Services

This final section helps you become an expert. You learn how to use the
RUN_REPORT_OBJECT and the WEB.SHOW_DOCUMENT built-in to
access Oracle97AS Reports Services for embedded calls to Oracle Reports in
Forms. This implementation is recommended by Oracle when running Web-
deployed Forms applications. You learn how to handle Reports parameter
forms in the Web when called from Forms applications and how to gain
access to local printers from the Web. Hints, tips, and examples are provided
to make reporting on the Web as comfortable as reporting on the client-server
architecture.

Page 3

Oracle9i Application Server Enterprise Edition
integrates the Forms Server and the Reports
Server. Their official names as part of Oracle9iAS
product branding are Oracle9/AS Forms Services
and Oracle9/AS Reports Services.

In this document, both the old product names
and the new product names are used
interchangeably.

More information about client platform support
and Jinitiator can be found at

http://otn.oracle.com

SECTION 1: INTRODUCTION TO FORMS SERVICES AND THE BASICS
OF CALLING EMBEDDED REPORTS IN FORMS ON THE WEB

When you use Oracle9iAS Forms Setvices to migrate your existing Forms
applications from a client-server architecture to the Web, you may wonder how to
include calls to Oracle Repotts that are currently handled by a client-side report
runtime environment. Once the Web architecture is in place, the client-side
runtime environment no longer exists. As a result, reporting must be done on the

server side.

There are several ways to start a report from a Forms application running on the
Web. Coming from the client-server paradigm, most Forms applications use one of
the following built-ins to create a report using the Reports client runtime engine:

* RUN_PRODUCT built-in
* RUN_REPORT_OBJECT built-in

Technically, the same runtime engine can still perform reporting on the Web.
However, a mote enhanced solution would be to have a Forms Server application
call Oracle Reports Services to print reports on the Web using the following built-

ins:
e RUN_REPORT_OBJECT built-in
e WEB.SHOW_DOCUMENT built-in

This white paper explores various ways to implement calls to Oracle Reports from
Forms applications running on the Web.

Understanding Forms 6i Services in Oracle9i Application Server

Before discussing the integration of Oracle97AS Reports in Oracle97AS Forms,
when transitioning from a Forms client-server application to the Web, you must
understand the technical differences of both architectures.

Firstly, the Web is a request model; nothing is sent to the client without the client
first requesting it. This is also true for the output from integrated Reports in
Forms. In a client-server architecture, when the report call is handled by the client
runtime engine, the preview screen is automatically displayed once the report has
finished running. This is possible because Forms Services and Reports Services are
installed on the same machine. The Web is server centric; there are no local
installations other than Oracle JInitiator, a certified client-side Java Virtual Machine
to execute Forms Web application interfaces, if needed.

Client Server Architecture vs. Web Architecture

In a client-setver architecture, the locally installed Forms runtime engine interprets
the application code stored in Forms application modules. The user interface is
rendered with native operating system interface classes such as Motif on UNIX or
Windows on the Microsoft platform. The Forms runtime engine handles the

Page 4

More information about the Forms Services Web
architecture can be found at

http://otn.oracle.com/products/forms

business logic and communicates with the generic user interface to display the
application’s graphical elements. Access to the file system is handled locally.

On the Web, the business logic is separate from the user interface. The business
logic and the Forms runtime engine operate on the server, while the user interface
gets downloaded to the Web client rendered through generic Java classes.

ogeneric
Java Applet <—————
Java enabled

browser

Oracle 9iAS

HTTP g

HTTFS FormsM cdules

Client Middle Tia Saver Database

Figure 1: Forms Web architecture

The goal of this paper is to understand the impact that the Web architecture has
on Oracle Reports integrated in Forms applications. A report called by a Forms
application on the Web is executed on the server and the output is sent to the
server first. In addition, Oracle9iAS Reports configurations are set on the server,
not on the client.

You can migrate an Oracle report integrated in a Forms application running in a
client-server architecture to the Web without any modifications. The same report
definition file (rdf or rep file) operates on the Web using cither the reports
background engine ot the Oracle9/AS Repotts Services (Reports Setver).

The main difference is that the report output needs to be downloaded to the client
browser in a Web enabled format like HTML, HITMLCSS, XML, RTF, CSV, or
PDF. The download can be performed automatically using a synchronous call like
in RUN_PRODUCT built-in or programmatically when using Oracle97AS Reports
Services, which is the recommended method. Using Reports Services, the Report
definition files can be on the same or different machine from the Forms Services.

In a Web architecture, the business logic for both applications, Forms and Reports,
is located on the middle-tier server and the database connection is established
using SQL*Net.

The Forms Setvices application calls integrated Oracle Reports with a server-side
call and downloads the Reports output to the client, using the WEB.SHOW_
DOCUMENT() built-in.

Page 5§

In the next section, a description of the two available Forms Services architectures
on the Web are presented:

* Forms Listener architecture
* Forms Listener Servlet architecture (as of Forms 6/ patch 4 and above)

Depending on the architecture you choose, configuring embedded Oracle Reports
for Web deployment in Forms applications differs.

Forms Listener Architecture

The Forms Listener architecture was first introduced in Oracle Forms release 4.5.
The Forms Listener passes a user request for a Forms application to the setvet-
side Forms Web runtime engine. The Forms Listener and the Web runtime are
standalone HTTP servers handling all HT'TP traffic between the Forms client and
the associated user process on the server.

Fi

r =n HTTP Listener

— Forms Listener

Figure 2: Forms Listener architecture

The Oracle Forms environment variables including Forms60_Path, Report60_
Path, and ORACLE_HOME are set either in the Windows registry or in the
environment on UNIX.

The environment in which the Forms Listener is started defines the configurations
for the user’s Web processes. All configurations for Reports integrated in Forms
on the Web are set with the Forms Listener unless Reports Services are used. If
your application supports different languages, then one Forms Listener process is
required for each individual language.

The Forms Listener is automatically configured when Oracle97 Application Server
Enterprise Edition Release 1.02.x is installed and will be supported throughout the
lifecycle of Forms 67 However, starting with Oracle9/AS Forms Services Release 2,
the Forms Listener architecture will be desupported.

Page 6

For more information about the Forms Listener
architecture, see the architecture White Paper
available on the Oracle Technology Network at
http:/iotn.oracle.com/products/forms

For more information about the Forms Listener Servlet
architecture, see the Forms Listener Servlet
architecture White Paper available at
http://otn.oracle.com/products/forms.

Oracle therefore recommends that you use the Forms Listener Servlet architecture
described below when migrating client-server applications with integrated reports
to the Web.

Forms Listener Servlet Architecture

The difference between the Forms Listener and the Forms Listener Servlet
architecture is that the latter uses the same port as the Oracle HT'TP Server powered
by Apache when communicating with the browser client. With the Forms Listener
Servlet, you can run an application with different language settings by configuring
the Forms Listener Servlet instead of starting a Forms Listener process for each
language.

All the requests go through
the HTTF Listener

Figure 3: Forms Listener Servlet architecture

The environment settings for the Forms Listener Servlet, and the Forms Web
processes, are set in either the HT'TP Server configuration files or the new user
defined Forms 61 environment files introduced with patch 5. On the Microsoft
platform the registry is searched for all vatiables not set in the configuration files.
This is not the case for Unix system. If you are using Forms applications Web
deployed on Unix, then environment settings have to be created cither in a Forms
environment file referenced by the Servlet or in the Apache Jserv.properties
configuration file.

The Forms Listener Servlet is automatically configured when Oracle97 Application
Server Enterprise Edition Release 1.02.x is installed.

Section Summary

In this section, you learned that it is possible to migrate existing Forms
applications to the Web while leveraging integrated calls to Oracle Repotts. The
configuration of environment variables depends on the choice of architecture for
deploying your Forms applications: Forms Listener or the Forms Listener Servlet.
Oracle recommends using the Forms Listener Servlet architecture.

Page 7

Understanding Reports 6i Services in Oracle 9i Application Server

Oracle9iAS Repotts Setrvices is a three-tier Web architecture enabling deployment
of Oracle Reports applications in Oracle97 Application Server.

HTML,
HTMLCSS,
XML, PDF ...
Web Browser Oracle 9i
Oracle 9iAS
j— 1
HTTP Reports Services S QLANET
HTTPS
Reports Modules

Client Middle Tier Server Database

Figure 4: Reports Services Web architecture

Oracle Reports, integrated in Forms Services ~ When a user requests a report’s output via a Web URL or from a call issued by an
applications, can also be generated using the Report ~ Oracle Forms Services application, this request is passed on to Oracle97AS Reports
client runtime environment located on the server. Services (Repotts 67 Services). Repotts Services is a management instance for

However, the goal of this paper is to encourage multiple reports runtime environments maintaining its own file cache.

customers to use Orarcle9iAS Reports Services
instead as this will be supported in the upcoming Similar to the client-server model, the Reports modules, .rdf or .rep files, are
Oracle9iAS Release 2.0 which includes Oracle9iAS jnterpreted by the Reports engine producing the formatted output and passing a
Forms Services. reference back to the Reports 67 Services. The user request gets redirected to the
Reportts output file on the middle tier server. Output formats can be generated in

HTML, HTMLCSS, XML, CSV, and PDF.

When using Reports Services, reports are generated on the server instead of on the
user desktop. Thus, all printed output is sent to a network printer configured on
the middle-tier server. Oracle provides, although does not officially suppott, a free
utility which enables using local printers with Reports Services calls integrated in
Forms. More information about this solution is provided later in this document.

Oracle9iAS Forms Services and Oracle9iAS Reports Services -
Installation and Configuration

As part of Oracle97 Application Server Enterprise Edition, you can choose to
install Oracle97AS Forms Setrvices and Oracle9ZAS Reportts Services. Both services
are automatically configured out-of-the-box if you choose to install them. This
section presents the settings that ate automatically configured for you.

Page 8

If you are working with multiple Oracle Homes
and have set a tns_admin entry in the registry or
environment, make sure that access to the
reports is defined in the shared tnsnames.ora
file.

Environment Variables

A Forms application deployed to the Web can use the Oracle Repotts client
runtime engine to generate reports output, similar to the client-server method.
Since the Web does not support preview screens, the reports’ output is rendered
directly in the client browser in HTML or PDF format or sent to another device

such as printers. However, you must first set envitonment variables including

FORMSG60_MAPPING, FORMS60_REPFORMAT, and FORMS60_OUTPUT.

If you are using Reports Services, then the Forms application must read the
network configuration file, t NSNAN®ES. 0Or a, which contains connect
information for Reports Services. The vatiables and locations required to integrate
reports in Oracle97AS Forms on the Web are explained below.

Net8 Configuration (thsnames.ora)

Reports Services are referenced in Forms Services via an entry in the network
configuration file, t nsnames. or a. The Oracle9/AS installation creates a TNS
entry named Rep60_<hostname> for the Reports Services. The location of the
network file is as follows:

<Oracl e_9i AS Reports_Servi ces_Hone>\ net 80\ t nsnanes. or
a

Example

Rep60_<host> Rep60_<host>.world=(ADDRESS=PROTOCOL=tcp)(HOST=
<host or IP address>)(PORT=1949))

Web Server settings

Web server settings are configured in the Oracle HTTP Server powered by Apache
which is installed as part of Oracle97 Application Server. Oracle97AS Forms
Services and Oracle97AS Reports Services uses the following configuration files:

e httpd.conf

* jserv.properties
* zone.properties
e OGiServer.conf

e Forms Services .env file

Oracle HTTP Configuration (httpd.conf)

The ht t pd. conf file is whete general Web settings such as virtual path
mappings, CGI mappings, proxy configurations, listening ports, server names, and
MIME Type definitions ate configured. In addition, you can link to external
configuration files from this file.

Page 9

These settings can be included directly in the
httpd.conf file. Default Forms and Reports Services
environment settings are linked in the httpd.conf
file using the 6iServer.conf file located in
<Forms_Services_Home>\conf

The Forms and Reports CGl Interface
environment variables are set in the httpd.conf file
because the HTTP listener is not installed in the
same Oracle Home as Forms 6i Services.

The term “Alias” is used to define a virtual directory mapped to a physical
directory, while “ScriptAlias” is used to define a CGI directory.

The ht t pd. conf file is located in the following directory:

<9i AS_Home>\ Apache\ Apache\ conf

In Forms Services and Reports Services, the following entries are automatically set:
Example

Alias /dev60html/ "D:\Oracle\ 6iServices\ tools\web60\html/"

Alias /jinitiator/ "D:\Oracle\6iServices \JINIT/"

Alias /forms60java/ "D:\Oracle\GiServices \FORMSG60\java/"

Alias /dev60temp/ "D:\Oracle\6iServices \tools\web60\temp/"

cgl settings

ScriptAlias /dev60cgi/ "D:\Oracle\6iServices \tools\web60\cgi/"

Forms and Reports CGI needs to have ORACLE_HOME set

SetEnvIf Request URI "twegi60" ORACLE_HOME=D:\Oracle\GiSetvices
SetEnvIf Request_URI "rwcgi60" RWG60=D:\Oracle\GiServices\report60
SetEnvIf Request URI "ifcgi60" ORACLE_HOME=D:\Oracle\GiSetvices
SetEnvIf Request_URI "ifcgi60" FORMSG60=D:\Oracle\6iServices\forms60

Forms CGI needs location of formsweb.cfg file
SetEnv FORMS60_WEB_CONFIG_FILE
D:\Oracle\6iServices\ forms60\server\formsweb.cfg
Mime types for Forms and Repotts

AddType video/avi avi

AddType application/x-orartp rrpa trpp tept trpr

jserv.properties

The j serv. properti es file defines environment variables for the Forms
Servlet and the Forms Listener Servlet architectures.

To define environment variables, path and classpath settings, Wr apper . env,
wr apper . pat h, and w apper . cl asspat h are used. All variables that are
defined in the j serv. properti es file ate set globally for all Forms Setvlet

instances.

Page 10

Oracle recommends that you read the White Paper
on the Forms Listener Servlet architecture
published at http://otn.oracle.com/products/forms.

The jserv.properties file is located in the following directory:

<9i AS_Home>\ Apache\ Jser v\ conf

Example

Oracle Forms and Reports Servers

wrappet.path=d:\oracle\ GiSetrvices\BIN;D: \iSuites
wrappet.classpath=D:\ oracle\ 6iServices \FORMSG0\java\ f60stv.jar
wrappet.classpath=D:\oracle\6iServices\FORMSG60\java\setvlet.jar
wrappet.classpath=D:\oracle\ 6iServices\FORMSG60\ java
wrappet.env=ORACLE_HOME=D:\oracle\(iSetvices
wrappet.env=FORMS60=D:\oracle\ 6iServices\FORMSG60

wrappet.env=configFileName=D:\oracle\ 6iSetvices \FORMS60\ setver \ formswe
b.cfg

(.)

When running a Forms Services application with the Forms Listener Servlet
architecture, the environment variables for integrated reports which include
FORMSG60_REPFORMAT, FORMS60_MAPPING, FORMS60_OUTPUT,
RW60, and REPORTS60_PATH, are set in the] Serv. properti es file.

Apache JServ (zone.properties)

The zone. pr oper ti es file defines alias names for the Forms Listener Servlet
and sets initial arguments. For example, the enVFi | e parameter passed to the
Forms Listener Servlet as an initial argument sets the configuration filename for
Forms applications run by this architecture.

The Forms Listener Servlet architecture lets you define different environment
settings for the same application. For example, you can set different language
settings by defining an alias for the Listener Servlet. For each aliased servlet, the
Forms Services environment file overwrites the settings in the
jserv.properties fie.

If integrated reports are executed by the background engine in the Forms Listener
Servlet architecture with aliased Servlets, then the Forms Services environment file
sets the necessary FORMS60_REPFORMAT, FORMS60_OUTPUT, and
FORMSG60_MAPPING wvariables.

The Apache JServ configuration file is located in the following directory:

<9i AS_Home>\ Apache\ Jserv\servlets

Page 11

Environment files were introduced in Forms 6i
patch 5

Forms Applications Configuration File (6iServer.conf)

The 6i server . conf file contains the web-related settings in Forms Setvices
and Repotts Services that are linked in the Apache ht t pd. conf file.

The 6i server . conf file is located in the following ditectoty:

<9i AS Forns_Servi ces_Home>\ conf

Forms Services .env file

Although not a Web server configuration file, it is worth to mention the Forms
Setvices configuration file in this context. This file contains a user-defined name
with a .env file extension. For the Forms Listener Servlet or one of its defined
servlet alias names to use the environment file, the following settings are required
in the zone. properti es fie:

#defining an Alias “reptest” for the Servlet
servlet.reptest.code=oracle.forms.servlet.ListenerServlet

setting the environment file to “reptest.env’”
servlet.reptest.initArgs=EnvFile=d:\oracle\6iServices\ forms60\setrver\reptest.env

For a successful integrated Report to work, the entries in I ept €St . env should
be similat to the following:

FORMSG60_PATH=d:\www\ forms\ fmx
FORMS60_OUTPUT=D:\Oracle\806\tools\web60\ temp
FORMSG60_MAPPING=/dev60temp/
FORMS60_REPFORMAT=pdf
REPORTS60_PATH=d:\www\teports\tdf

The search order of environment files is envFi | e,j serv. properti es, and
registry settings (on Windows systems only).

Introducing the RUN_REPORT_OBJECT Built-in

The RUN_REPORT_OBJECT built-in was first introduced in Forms Developer
Release 2.1. It extends the functionality of RUN_PRODUCT through the addition
of Repotts Setver access and some new procedutes to read and write the Reports
object properties.

RUN_REPORT_OBJECT was created to be used with Web deployed Forms
applications.

In Forms Developer 67 repotts are included as Report Objects located below the
new Reports node in the Forms Developer object navigator. Each Report Object
gets a logical name in addition to the Report’s physical filename. The logical name
is used to call the Report from PL/SQL.

Page 12

After creating a Report_Object node in
Forms Developer, the properties can also
be set by editing the Forms object property
sheet itself. It is important to have a dummy
value set for the “Reports Server” name
attribute in the properties, even if the
Reports Server is not used.

List of System Parameters in
RUN_REPORT_OBJECT

Example

/* The following example runs a report using the RUN_REPORT_OBJECT
built-in. The report object node defined in Forms Developer is named
“report_nodel”. A user-defined Reports parameter “p_deptno” is passed by
Forms using the value in the “dept.deptno” field. The parameter form is
suppressed. */

report_id Report _Obj ect;
report_job_id VARCHAR2(100) ;
BEG N

report _id:= find_report_object(’'report_nodel’);

SET_REPORT_OBJECT PROPERTY(report _i d, REPORT_EXECUTI ON_MODE, RUNTI ME) ;
SET_REPORT_OBJECT _PROPERTY(report _i d, REPORT_COVM MODE, ASYNCHRONOUS) ;
SET_REPORT_OBJECT PROPERTY(report i d, REPORT _DESTYPE, PREVI EW ;
SET_REPORT_OBJECT _PROPERTY(report i d, REPORT _SERVER,’ ');

SET_REPORT_OBJECT_PROPERTY(report_i d, REPORT_OTHER, ' p_dept no="| | : Dept. De
ptno| |’ paranfornFno’);
report_job_id:=run_report_object(report_id);

END;

The RUN_REPORT_OBJECT built-in is well documented in the Oracle Forms
Services reference manuals and online help.

Using Parameter Lists in RUN_REPORT_OBJECT

With the RUN_PRODUCT built-in Reports system parameters and user defined
parameters are passed in a parameter list. The same parameter lists can be used
with RUN_REPORT_OBJECT, except for the system parameters that need to be
set by SET_REPORT_OBJECT_PROPERTY (). The following is a list of
Reports System parameters that need to be set when needed.

REPORT_EXECUTION_MODE BATCH or RUNTIME

REPORT_COMM_MODE SYNCHRONOUS
ASYNCHRONOUS

REPORT_DESTYPE PREVIEW, FILE, PRINTER, MAIL,
CACHE, or SCREEN

Page 13

Note that having DESTYPE defined in the
parameter list and in SET_REPORT_OBJECT
_PROPERTIES does compile but doesn’t run

When you are planning to use Forms 6i Services
for Web deployment, but want to use Forms 9i in
the future, Oracle recommends using the Forms
Listener Servlet architecture. In this case, the
environment settings required to integrate Reports
are defined in the jserv.properties file and the
environment file, referenced by the Servlet
definition in the zone.properties file.

REPORT_FILENAME The report filename

REPORT _DESNAME The report destination name

REPORT_DESFORMAT The report destination format

REPORT_SERVER

The repott server name

If your existing parameter list already contains definitions for system parameters
then it will overwrite the configuration in
SET_REPORT_OBJECT_PROPERTY(). To avoid confusion or unwanted
behavior we recommend to modify the parameter list itself, removing the entries
for DESNAME and DESTYPE, or add

delete_parameter(<parameter list>,'<name>'");
to your code before using SET_REPORT_OBJECT_PROPERTIES().

Important: When migrating, Oracle recommends using RUN_REPORT_
OBJECT instead of RUN_PRODUCT patticulatly if you plan on using
Oracle9iAS Forms Services. In Oracle9/AS Release 2.0, RUN_PRODUCT will not
be supported when calling an integrated Oracle Reports in Forms.

Section Summary

In this section, you learned that the environment settings for Reports integrated in
Forms are either configured in the registry (the environment on UNIX systems) ot
set in the Apache HTTP Setver configuration files,j Serv. properti es and
zone. properti es. If running the Oracle9/AS installet, default settings ate
applied. Also, the] serv. properti es and zone. properti es ate the
configuration files used by the Forms Servlet and the Forms Listener Setvlet
architecture. The envFi | e parameter defined in the zone. properti es file
takes precedence over the j Serv. properti es and the registry settings.

If you use the Forms Listener architecture, then the Forms environment variables
are defined solely in the registry or the environment in which the Forms Listener is
started (on UNIX Systems).

We also introduced the RUN_REPORT_OBJECT built-in as the recommended
call to integrated Oracle Reports in Forms.

Page 14

Note that all registry settings mentioned here have
to be set in the jserv.properies or the .env file if
using the Forms Listener Servlet architecture.

SECTION 2: FORMS SERVICES APPLICATIONS WITH INTEGRATED
CALLS TO ORACLE REPORTS USING THE REPORTS RUNTIME
ENGINE

In a client-setver architecture, the Reports runtime engine (also referred to as
background engine) is a single-user environment that resides on the uset's desktop and
handles report requests. To start a report from a form, the Forms application calls
the Reports runtime engine (rwrun60.exe), which prints report output rendered on
the screen, to a file, to a printer, ot to the mail system.

Once you move a Forms application to the Web, the Reports runtime engine can
reside on the middle-tier which sends reports output to the client's Web browset.
However, this is not best practice since the reports runtime engine can service only

one user at a time.

Middle-tier Web deployment caters to a multi-user environment. With the Reports
runtime engine handling one request at a time, the system is not scaleable enough
and performance is not satisfactory to serve a Web architecture. For this reason,
Oracle recommends that you limit the use of the runtime engine solution for
application migration to the Web.

Common configurations when using the Reports client Runtime Engine
When using the Reports client runtime engine for executing integrated Repotts in
Forms on the Web, the configuration for both built-ins, RUN_PRODUCT and
RUN_REPORT_OBJECT, is the same.

Configuration with Forms Listener

The Forms Listener reads the following Reports settings: REPORTS60,
REPORTSG60_ PATH, FORMS60_MAPPING, FORMS_60_OUTPUT,
FORMS_REP-FORMAT, and RW60 from the registry on Windows systems or
the Listener environment on UNIX.

Configuration with Forms Listener Servlet

The Forms Listener Servlet reads the following Reports settings: REPORTSG60,
REPORTSG60_ PATH, FORMS60_MAPPING, FORMS_60_OUTPUT,
FORMS_REPFORMAT, and RW60 from the j serv. properti es and
zone. properti es files, where the Zzone. pr operti es file references the
Forms Services environment files located in the following directory:

<9i AS Forns_Servi ces_Home>\ For ns60\ Ser ver

Using the RUN_PRODUCT Built-in

If you are already using RUN_PRODUCT to call reports from an existing client-
server Forms application, you can use Forms Setver to run the application on the
Web without changing existing application code. Use the Forms 6/ installer to

Page 15

install the Reports runtime engine on the middle-tier server rather than on the
client. The installer sets the following registry entries to tun a report on the Web
using the RUN_PRODUCT built-in.

Registry Settings
Under HKEY_LOCAL_MACHI NE\ SOFTWARE\ Or acl e

Forms60_output
This variable defines the physical address where temporary Web files are stored.

For example:

<ORACLE HOVE>\t ool s\ Wb60\t enp

Forms60_mapping

This variable defines the virtual mapping of a Web directory that points to the
physical address defined in Forms60_output, where temporary reports output files
are located. The default value is / dev60t enp/ .

Forms60_repformat

This variable determines the format of the report’s output, either HIML or PDF.
For HTML output, set the value to ht M . For PDF output, set the value to pdf .

In order for RUN_PRODUCT to display the report output in a Web browser, you
must set the Report Comruni cati on node to synchr onous and the
dest ype to Screen or previ ew.

Syntax
Below is an example of the syntax for RUN_PRODUCT and a brief description of

its associated arguments:

Run_Pr oduct (Reports, Report_Nane, Cormuni cati on_Mde, Executi on_M
de, Report_Mbddul e_Location, List_id)

Reports Defines the called application to be Reports
Report_Name Name of the Report definition file (*.tdf or *.rep)
Communication_Mode Synchronous or asynchronous

Execution_Mode Allowable values include Bat ch and Runt i me

Report_Module_Location Location of the Report module (filesystem)

List_id Internal ID associated with the Forms parameter list

Page 16

RUN_PRODUCT is well documented in the Forms Setvices reference manuals
and online help.

Example

/* Assumes a parameter list 1s available that contains all user-defined parameters. */
ADD_PARAMETER(par am i st _i d, ' DESTYPE' , TEXT_PARAMETER, ' SCREEN) ;

ADD_PARAMETER(par ant i st _i d, ’ PARAMFORM , TEXT_PARAMETER, ' NO) ;

RUN_PRODUCT(REPORTS, ' report _nane. rdf’, synchronous, runti ne,

filesystemparamist_id);

Using the RUN_REPORT_OBJECT Built-in

In client-server computing, the behavior of RUN_REPORT_OBJECT is similar to
RUN_PRODUCT. Both built-ins use a client-side runtime engine for report
execution. Although RUN_PRODUCT is still available in Forms 67, Oracle
recommends that you use RUN_REPORT_OBJECT for new applications, and in
some cases re-code existing applications before moving them to the Web. The
RUN_REPORT_OBJECT built-in is better at running reports on the Web than
RUN_PRODUCT and the former is expected to have a longer lifecycle in Forms.

Set the following properties, using the SET_REPORT_OBJECT_PROPERTY()
command, to run a report successfully from the Web:

REPORT_EXECUTION_MODE RUNTIME

REPORT_COMM_MODE SYNCHRONOUS
REPORT_DESTYPE SCREEN (ot PREVIEW)
REPORT_OTHER Additional Report parameters such as user-

defined variables

RUN_REPORT_OBJECT is called in Forms using the logical name of it’s Reports
node in the Forms object navigator.

report _id:= find_report_object(’report_nodel');

¢.)

report_job_id:=run_report_object(report_id);

Page 17

Passing Forms Parameter Lists With RUN_REPORT_OBJECT

With RUN_PRODUCT in client-server Forms, application patameters and values
are passed in parameter lists to integrated Oracle Reports. Although all system
parameters in RUN_REPORT_OBJECT must be set using the SET_REPORT_
OBJECT_PROPERTY built-in, parameter lists can still be used for all other

patameters.

The syntax for using parameter lists in RUN_REPORT_OBJECT is
report_job_ id:=run_report_object(report_id, paranlist_id);
where paramlist_id is the same id used with RUN_PRODUCT.

Please see Appendix B for a coding example.

Printing Reports on the Web

The reports client runtime engine has moved from the client desktop to the server
in a Web architecture. The reports-formatted output cannot be sent to a local
printer because it is not accessible. Instead, the report can be sent to a network
ptinter addressed with the desname parametet in the call to repotts.

Section Summary
In this section, you learned how to configure the environment parameters for the
Forms Listener or the Forms Listener Servlet to address the Reports client runtime

on the Server from a Forms application running on the Web, using either the
RUN_PRODUCT built-in ot the RUN_REPORT_OBJECT built-in.

Page 18

SECTION 3: FORMS SERVICES APPLICATIONS WITH INTEGRATED
CALLS TO ORACLE REPORTS USING REPORTS SERVICES

Oracle recommends using the Reports Multi-tier Server for integrating calls to
Oracle Repotts in Forms on the Web. The Oracle Reports Multi-tier Setver is a
logical unit that manages multiple reports runtime engines in parallel on the
middle-tier server. Parallel runtime engines allow many repotts to process at the
same time. Performance is increased if you install the Reports Server on a different
physical machine from the Forms Server (remote server).

The Reports Server can be accessed via an alias added to the t NnSnanes. or a
file in the <Or acl e Honme> \ net 80\ admi n ditectory. If no other name is
specified during installation, the Oracle97AS Installer defines this entry
automatically as “Rep60_ <hostname>"".

Rep60_<host nane>, Rep60_<host name>. worl d =
(ADDRESS =

(PROTOCOL = TCP)

(HOST = <host nane>)
(PORT = 1949)
)

To use Reports Server in combination with the Forms RUN_REPORT_
OBJECT() built-in, the Reports Server alias should not contain a number or an
underscore in its name. Instead, add a second alias for the same Reports Server to
the t nsnanes. or a. For example:

RepSRV.world =
(ADDRESS =
(PROTOCOL = TCP)
(HOST <hostname>)
(PORT = 1949)

)

RUN_REPORT_OBJECT with Reports 6i Services

The most secure approach for calling Reports from Forms on the Web is to use
the Reports Multi-tier Server in combination with RUN_REPORT_OBJECT.
Because the user’s database connection is implicitly passed from Forms to Reports

on the Server, there is no risk of interception as there would be if it were passed in

the URL.

Page 19

To access a remote Reports Server using RUN_REPORT_OBJECT, the

t nsnanes. or a entry for this server must be recognized by the Report Object.
You can do this dynamically, using the Set_Report_Object_Property built-in, or
statically, by entering the Reports Server thsnames string into the propetty sheet of
the Report Object.

Run_Report_Object Example

/* This example uses a synchronous call to RUN_REPORT_OBJECT to run a
Report. It expects the name of the Report node, the tnsname.ora entry of the
Reportts Server, and the desired output format (PDF, HTML, HTMLCSS) to be

passed as a parameter. */

PROCEDURE RUN_REPORT_OBJECT_PRCC (vc_reportnane Var char 2,
vc_reportserver varchar2, vc_runformat varchar2) IS

v_report_id Report _Obj ect;

vc_report_job_id VARCHAR2(100); /* unique id for each Report
request */

vc_rep_status VARCHAR2(100); /* status of the Report job */

BEG N

/* Get 2 handle to the Report Object itself. */

v_report_id: = FI ND_REPORT_OBJECT(vc_reportnane);
SET_REPORT_OBJECT _PROPERTY(Vv_report i d, REPORT COVM MODE,
SYNCHRONCUS) ;

SET_REPORT_CBJECT_PROPERTY(v_report _i d, REPORT_DESTYPE, CACHE) ;

/* Define the Report output format and the name of the Reports Server as well as a user-defined parameter,
passing the department number from Forms to the Report. We don’t need a parameter form to be displayed,

and therefore paramform is set to “no”. */

SET_REPORT_OBJECT_PROPERTY(v_report_i d, REPORT_DESFORMAT, vc_runformat);

SET_REPORT_OBJECT_PROPERTY(v_report i d, REPORT SERVER,
vC_reportserver);

SET_REPORT_OBJECT_PROPERTY(v_report _i d, REPORT_OTHER,
' p_dept no="| | : dept . dept no| | * par anf or nEno’) ;

vc_report_job_i d: =RUN_REPORT_COBJECT(report_id);

Page 20

/* Check the report status if finished. */

vc_rep_status : = REPORT_OBJECT_STATUS(vc_report_job_id);

I F vc_rep_status="FI Nl SHED THEN

/* Call the Report output to be displayed in a separate browser window. 'The URL for relative addressing is
only valid when the Reports Server is on the same host as the I'orms Server. or accessing a Remote Reports

Scrver on a different machine, you must use the prefix http://hostname:port/ */

Web. show_docunent (’ /dev60cgi / rwegi 60. exe/ getj obi d="| |
vc_report_job_id ||'?server='vc_reportserver,'_blank’);

ELSE
message (‘Report failed with error message ‘||rep_status);
END IF;

END;

To use the procedure described above, you would pass the following information
in the case of a “When-Button-Pressed Trigger.”

RUN_REPORT_OBJECT_PROC(<‘REPORT_NODE"> <'REPORT _
SERVER_TNS'>'<'FORMAT">)

Repott_Node Forms Repott node name containing the r df filename for
the Report

Report_Server_tns Name of the Reports Server in the t NsSnanes. or a file

Format Any of these formats: html | htmlcss | pdf|xml | delimited | rtf

Calling a report synchronously makes the user wait while the report gets processed
on the server. For long-running Repotts, we recommend that you start the Report
asynchronously, by setting the REPORT_COMM_MODE property to

asynchr onous and the REPORT_EXECUTION_ MODE to bat ch.

SET_REPORT_OBJECT_PROPERTY(report_id, REPORT_EXECUTION_MODE,BATCH);

SET_REPORT_OBJECT_PROPERTY(report_id, REPORT_COMM_MODE,ASYNCHRONOUS);

Page 21

See Appendix B for a coding example.

After calling the RUN_REPORT_OBJECT built-in, a timer must be created to
run frequent checks on the current REPORT_OBJECT_STATUS in a When-
Timer-Expired trigger. The timer should not fire more than four times a minute.
After the report is generated, the When-Timer-Expired trigger calls the
WEB.SHOW_DOCUMENT built-in to load the Reports output file, identified by

a unique job_id, to the client’s browset.

The following desctibes the When-Timer-Expired trigger that checks for the
Report_Object_Status.

()

/* :global.ve_report_job_id needs to be global because the information about the Report job_id is shared
between the trigger code that starts the Report and the When-1'rigeer-Lixpired trigger that checks the current

Report status. */
vc_rep_status: = REPORT_OBJECT_STATUS(: gl obal . vc_report _job_id);
I F vc_rep_status="FI Nl SHED THEN

web. show_docunent
(' /dev60cgi / rwegi 60. exe/ getjobid="||:global.vc_report_job_id

|I'?server="vc_reportserver,'_blank");
ELSIF vc_rep_status not in (RUNNING',OPENING_REPORT'ENQUEUED’) THEN
message (vc_rep_status||' Report output aborted’);

END IF;

Note: Do not forget to delete the timer when it is no longer needed.

Passing Forms parameter lists in Run_Reports_Object

Parameter lists used with RUN_PRODUCT in client-server can also be used with
RUN_REPORT_OBJECT calling Reportts Setvices to petform integrated Reports
in Forms on the Web. Note that system parameters must be set by
Set_Report_Object_Property. The syntax for using parameter lists in
RUN_REPORT_OBJECT is as follows:

report_job_id:=run_report_object(report_id,paramlist_id);

where paramlist_id is the same id used with RUN_PRODUCT.

Using Run_Reports_Object When Calling a Report Containing a Parameter Form

When you use the RUN_REPORT_OBJECT built-in to create a Repott output in
Forms, the Reports Server is called directly on the server side, rather than from the
Web. The Reports Setrver is unawate of the Web access path to the machine that

Page 22

hosts the Reports Server Web interface because this information is not passed with
the RUN_REPORT_OBJECT call.

When you use a server side call to run a Report that contains a parameter form, the
Reportts parameter form in the Web is displayed but is not functional when the
user clicks the Submit button. The reason for this can be identified by analyzing
the parameter form HTML source code that is generated by Oracle Reports
Server.

(...) <torm method=post action=""> (...)

Notice that the HTML form "action" tag contains an empty string. For the form
to properly generate the final Report output, a valid action entry is needed, for

example:

<form method=post acdon="http://<hostname>/cgi /twcgi60.exe?">

Similarly, the hidden_run_parameters string value which is used to store parameter
values getting passed implicitly with each subsequent Report call, also has an
empty value:

<i nput nane="hi dden_run_par anet ers" type=hi dden
val ue="">

A valid string for the hidden_run_parameters is as follows:

<i nput nane="hi dden_run_paranet ers" type=hi dden
val ue="report

%3Dr ept est +dest ype¥BDcache+desf or mat ¥8Dht ml css+
useri d¥3Dscot t %2 Fti ger %40f ni nphi u+server %
3DRepSRV' >

Once you identify the soutce of the problem, you can fix it with Forms and
Reports Developer. Unfortunately, you cannot resolve this without modifying the
Reports module.

Solution

The solution to the above-mentioned issue includes some programming in both
Reportts and Forms.

In Forms

For a parameter form to wortk, three pieces of information are required that cannot
be retrieved in Reports when called by the RUN_REPORT_OBJECT using
Reports Server:

username/password@connect_string

Page 23

Report Server name
Web access path to the Reports Setver used.

Consequently, this information must be passed in addition to all other Reports
runtime parameters using the "othet" parameter in the RUN_REPORT_OBJECT
built-in.

In this example, let’s use a procedure in Forms to call RUN_REPORT_OBJECT.
The procedure gets a value passed for the report_id, the Reports Server name, and
the output format: runformat.

Parameters Values

report_id Identifier of the Report Object
reportserver TNS name of the Reports Server
runformat html, htmlcss, pdf, xml ...
Example

PROCLEDURL RUN_REPORT_OBJECT PROC(report_id REPORT_OBJLECT, reportserver

varchar2 runformat varchar2) IS

report_job_id VARCHAR2(100);
rep_status VARCHAR2(100);
vC_user_name VARCHAR2(100); /* used for creating parameter form */

ve_uscr_password VARCHAR2(100); /* used for creating parameter form */

vC_user_connect VARCHAR2(100); /* used for creating parameter form */
ve_connect VARCHAR2(300); /* used for creating parameter form */
BLEGIN

/* get user connect string */
ve_uscr_name:=get_application_property(uscrnamce);
ve_uscr_password:=get_application_property(password);
ve_uscr_connect:=get_application_property(connect_string);
/* creating complete connect string */

ve_connect:=ve_user_namc| |'/'] | ve_uscr_password | |'@'

| | ve_user_connect;

/*sct Reports propertics for run_report_object*/

Page 24

SET_REPORT_OBJECT_PROPERTY (report_id, REPORT_COMM_MODE,
SYNCHRONOUS);

SET_REPORT_OBJECT_PROPERTY (report_id, REPORT_DESTYPE,CACHE);
SET_REPORT_OBJECT_PROPERTY (report_id, REPORT_DESFORMAT,
runformat);
SET_REPORT_OBJECT_PROPERTY (report_id REPORT_SERVER,

reportserver);

/* P_USER_CONNECT and P_SERVERNAME are custom parameters in the

Reports module */

P_ACTTON is also a user defined variable in Reports and takes the Web access path to the

Report (don't need to be hard coded as in this sample) */

SET_REPORT_OBJECT_PROPERTY (report_id, REPORT_OTITER,'p_deptno="] |
Dept.Deptno| |' paramform=yes P_USER_CONNECT='| | vc_connect| |’
P_SERVERNAME-='| | reportserver| | 'P_ACTION=http://fnimphiu-lap'

| |'.de.oracle.com/cgi/rwcgi60.exe?");
report_job_id:=run_report_object(report_id);
rep_status := report_object_status(report_job_id);
TF rep_status='FINISHED' then

Web.show_document('/cgi/rwegi60.exe/getjobid="| | report_job_id | |'?

server=RepSRV',' _blank');

ELSE
message (rep_status| |' Report output aborted');
END TF;
END;
In Reports

In Reports, the following uset-defined variables must be declared:

P_ACTIONS Value for the empty “action” parameter

P_USER_CONNECT usetname/password@database used as hidden parameter

P_SERVER_NAME Reports Server Name

Page 25

All user parameters are of type character. Don't
forget to clear the “Restrict list to predetermined
values” check box.

P_ACTIONS has an initial value of _action_ .
Omitting this breaks the Report in standalone
mode when called with a URL

Use the following code in a Report “before form” trigger to substitute the default
form values (as presented in the Reports module attributes) with your own string.

Example

function BeforePForm return boolean is
ve_parameter_form varchar2(4000);
ve_hidden_runtime_values varchar2(1000);
vc_report_name varchar2(100);
begin

/* Tf Reports is called from the URI and not from Forms then p_action is set to it's default value. Tn this

case the hidden_value has to keep the default value too */

If (:;p_action="_action_") then
ve_hidden_runtime_values:='_hidden_";
else
/* The Report is started from Run_Report_Object and the hidden parameter has to be set */
/* 1. get the report module name */
sTw.get_report_name(ve_report_name);
/* 2. the name needs to be cut off blanks up to the length that it has in characters */
ve_report_name:=substr(vc_report_name, 1,instr
(ve_report_name,' ")-1);

/* Note that I'm not using any custom defined parameters except for :p_action,;p_user_connect,
:p_servername. If you have additional user defined parameters in your Report output then this

parameter needs to be added to the "ve_hidden_runtime _values" string */
ve_hidden_runtime_values:='report="| | ve_report_name]| |
‘&destype="| |:destype| | '&desformat="| |:desformat| |
&userid="| | :p_user_connect| | '&server="| | :;p_servername;

end 1f;

/* build the parameter forms TTTML code */

ve_parameter_form:='<html><body bgcolor="#ffffff"><form method=post

action=""| [:P_ACTION| |"'>'| | '<input name="hidden_run_parameters" type=hidden
value=""| | ve_hidden_runtime_values| |">'| | '<center><p><table border=0 cellspacing=0

cellpadding=0><tr><td>'| | '<input type=submit></td><td> width=15><td><input

type=reset></td>' | |'</tr></table><p><hr><p>';

Page 26

/* set the modified before form value, to overwrite the default */
srw.set_before_form_html (srw.text_escape, ve_parameter_form)
return (TRUE);

end;

The next time you run a Report with an integrated parameter form from
Run_Report_Object, the empty values in the HTML source will get replaced. For
example:

<form method=post
action="http://fnimphiu-lap.de.oracle.com/ cgi/rwcgi60.exer">

and

<input name="hidden_run_parameters" type=hidden
value="report=Reptest&destype=Cache&desformat=HTMLCSS&
userid=SCOTT/TIGER@fnimphiu&server=RepSRV">

The HTML template code for building the Report HTML form, as used in the
above example, can be copied from the Reports “before Form value” property.

Intercepting Reports error messages using RUN_REPORT_OBJECT with Reports
Services

Running integrated Oracle Repotts in Forms on the Web, using Run_Report
_Object with Reports Services, does not return detailed error messages when a
report fails. This is because error messages like:

REP-0736: There exist uncompiled program unit(s).
REP-1247: Repott contains uncompiled PL/SQL.

are sent to Reports Services instead of to the client browser or the Forms
application. Though Forms on the Web recognizes that an integrated repotts
failed, the error message displayed is “Frm-41214: unable to run report” which
does not specify the exact problem.

The following explains how to retrieve detailed error messages from the server side
Reportts background engine at the same level as client-setver, using the Reports
Services Queue table.

After installing Oracle97AS, the SQL file, r w_ser ver . sql , used to install the
Repotts Services Queue table, is located in the <9iAS_Reports_Services_Home>\
The following example code expects the Queue table to Reports60\SQL directory. Using SQL*Plus, install this file into the database
be in the application schema. You have to modify the schema used by the application ot into another schema whete your application has

code if you are using another schema for the table.
read access.

Page 27

The Queue table is cleared whenever the Reports
Server is restarted.

Enter the following parameter in the Reports Services configuration file
(Rep60_<hostname>.ora) located in the
<9iAS_Reportts_Setvices_ Home>\Reports60\Setver ditectory :

reposi t oryconn=<schena
name>/ <passwor d>@ ns_nane

The username/password pair should match the schema where you installed the
Reports Queue table. After restarting the Reports Services, all actions performed
by the Reports Server are now logged in the database.

Three columns in the Queue table are read by the following example code, when a
Reports call integrated in Forms fails:

e status_code

* status_message

* job_id

The job_id is the unique identifier for each report requested to the Repotts

Setvices. The following function uses the job_id as an argument to retrieve error
messages from the Queue table.

The previous section explained how to use Reports parameter forms with
Run_Reports_Object and the Reports Services. Running an integrated Oracle
Reports with a parameter form creates a job_id for both the parameter form and
the subsequent Report run. In this case, only the parameter form is subject to error

message retrieval.

You don’t get a notification even if the subsequent Reports run failed. However, a
message appears in the client browser if an error occurs. If your program is
dependent on a report’s success, then you can check for failure by incrementing
the job_id retrieved for the parameter form (see code example below) and
querying the Queue table for the status_code column. A successful Reports run
inserts a status of ‘0 ‘ while a failed Reports run inserts an error number.

The following function checks the Reports Services Queue table for error
messages associated with a passed job_id:

FUNCTION check for_crrors (unique_identifier varchar2) return varchar2 IS
crror_message varchar2 (4000):=""
CURSOR check for_crrors 1S sclect status_code | |"-"'| | status_message from rw_scrver_queue where

job_id = to_number(unique_identifier);

BLGIN

open checkfor_crrors;

Page 28

Synchronized is used instead of a timer waiting for the
Reports Services to write the error messages to the
Queue table. If you don’t receive the error message in
your code then you may want to check using a timer

firing once instead.

The report_job_id variable contains the job_id added to
the Reports Server name. For example, the Reports
Server name is ‘RepServ’ and the job_id is ‘1’ then the

variable report_job_id has a value of ‘RepSRV_1’.

Substr() is used to filter the job_id out of this string.

fetch check_for_errors into error_message;
close check_for_errors;

return error_message;
— &

END;

The following sample code is an excerpt of the code sample used throughout this
document. When a Reports call succeeds, then the message ‘Finished’ is returned
by the built-in function report_object_status(), indicating a successful Reports run..

PROCEDURLE RUN_REPORT OBJECT PROC(teport_id REPORT OBJLECT, reportserver varchar2,

user_interface varchar2 runformat varchar2) IS

report_job_id VARCHAR2(100);

rep_status VARCHAR2(100);

CITOr_Message VARCHAR2(4000);

vijob_id VARCHAR2(4000);
BLGIN

rep_status := report_object_status(report_job_id);
/* call the Reports output if report run was successful

II rep_status="'INISHLED' then
Web.show_document('/ cgi/rwegi60.exe/getjobid="| | report_job_id | |"?scrver="'
| | tepottserver,' blank');
synchronize;
/* retrieve the Reports Scrvices Job_id */
vjob_id :=substr(rcport_job_id length(reportserver)+2 length(report_job_id));

/* calling the function to retricve error message */

crror_message:=check_for_crrors(vijob_id);

Page 29

/* do something with the error message, e.g. print it to a text field
:control.error:=" Error: '| | error_message;
END IF;

)

LND;

WEB.SHOW_DOCUMENT with Reports 6i Services

Use the WEB.SHOW_DOCUMENT built-in procedure to access any Web site
from a forms application on the Web.

SYNTAX

The following table provides the syntax for WEB.SHOW_DOCUMENT and a
brief description of its associated arguments:

Web. show_docunent (URL, DESTI NATI ON) ;

URL The URL is passed as a string (http://www.oracle.com), in a
variable, or as a combination of both. If the addressed Web
page is located on the same host as the Forms Setver, a

relative addressing could be used (/virtual path/page. HIML)

DESTINATION Definition of the target where the addressed Web page
should be displayed. Values must be single quoted

_blank

Displays the Web page in a new browser window.

_parent

Displays the Web page in the parent frame of the current
page.
<target_name>

Displays the Web page in a frame specified by the

target_name.

Page 30

A Report Server is accessible on the Web through the use of the Reports Server
Web interface file, r wcgi 60. exe, which is located in the <or acl e

home>\ t ool s\ Web60\ cgi directory. During installation, the Oracle
Installer maps this directotry to the virtual name dev60cgi, which is also used as a

component of the Reports Server URL:

http://<hostname>:<port>/dev60cgi/rwcgi60.exe?server=<tepottserver_tns>&t
eport=<report>.rdf&desformat=[htmlcss | pdf|xml | delimited | |&destype=cache&
userid=<user/pw(@database>¶mform=[no | yes]

The following example calls this Report from Forms on the Web. It assumes that
the user parameter “p_deptno” is read from a Forms item “deptno” in the block
“dept.”

Example 1 - Web.show_document ()

/* WITEN-BUTTON-PRESSED */
DECLARE

vc_url varchar2(100);

BEG N

vc_url:="http://<hostname><port>/dev60cgi/rwcgi60.exe?server='

Il
‘repSRV&report=reptest.rdf&desformat=htmlcss&destype=cache ’

Il
‘&userid=user/pw@database&p_deptno='||:dept.deptno||'¶mform

=no’,

Web.show_document(vc_url,’_blank’);

END;

Example 2 - Web.show_document () with relative addressing

Use relative addressing if the Reports Server is installed on the same host as the Forms Server.
/* WITEN-BUTTON-PRESSED */

DECLARE

vc_url varchar2(100);

BEGIN

Page 31

vc_url:='/dev60cgi/rwcgi60.exe?server=repSRV&report=reptest.rdf
&desformat=htmlcss’

‘&destype=cache&userid=user/pw@database&p_deptno='||
:dept.deptno

Il
‘¶mform=no’;
Web.show_document(vc_url,’_blank’);

END;

Example 3 - WEB.SHOW_DOCUMENT () with encrypted URL parameters

Passing the uset’s name and password to the URL in a human readable format
might lead to a loss of security. When you call Reports from Forms, you can use a
hexadecimal enctyption of the connect string in the URL that is passed by
WEB.SHOW_DOCUMENT(). This encryption is useful for hiding the connect
string from human readability but it does not provide teal protection.

/* This procedure expects the teport output format [html, htmlcss, pdf, rtf, xml,
delimited] and the name of the Reports definidon file. */

PROCEDURE WEB_SHOW_DOCUMENT_PROC (runformat varchar2,reportname
varchar2) IS

vc_user_name VARCHAR2(30) := get_application_property(username);
vC_user_pw VARCHAR2(30) :=get_application_property(password);
ve_url VARCHAR2(200);

vc_url_temp VARCHAR2(300);

v_a VARCHAR2(10);
v_b VARCHAR2(10);
i NUMBER(10);

vC_user_connect
VARCHAR2(30):=get_application_property(connect_string);
BEGIN
/* Create the users database connect string. */

vc_url :="userid="||vc_user_name||'/'||vc_user_pw||'@’||

Page 32

vc_user _connect ’
/* Convert the connect string into a hexadecimal character string. */

FOR i IN 1..LENGTH(vc_url) LOOP

v_a := ltrimto_char(trunc(ascii(substr(vc_url,i,1))/16)));
if v.a="10 THENv_a :="A;
elsif v.a="11 THENv_a :='B';
elsif v.a="12" THENv_a :="'C;
elsif v.a="13 THENv_a :="'D;
elsif v.a="14 THENv_a :="FE;
elsif v.a="15" THENv_a :="'F;
end if;
v_b :=1ltrimto_char(nod(ascii(substr(vc_url,i,1)),16)));
if vb="10 THENvV b := A
elsif v.b =11 THENv_b :="'B;
elsif v.b ="12" THENv_b :="'C;
elsif v.b ='13 THENv_b :="'D;
elsif v.b =14 THENv_b :="FE;
elsif v.b ="15" THENv_b :="F;
end if;
vce_url _temp := vc_url _tenp|| % ||v_al|v_b;
END LOOP;
/* Create the Reports URL. */
vc_url:="/dev60cgi / rwegi 60. exe?server =repSRV+report="| |
r epor t name
|| ' +destype=Cache+desformat="||runformat||’ + ||vc_url _tenp

||’ +p_dept no="| | : dept. dept no;

/* Call the Report in a new browser window using Web.show_document(). */
WEB. SHOW DOCUMENT(vc_url, ' _blank’);

END;

Printing Reports on the Web

The Web is a request model and as such no Repotts output is delivered to a printer
without a request. The Web is also server centric, which means that reporting
occurs on the middle-tier server rather the user desktop.

Page 33

orarrp is a free utility available at
http://otn.oracle.com/products/reports. Get a
White Paper about orarrp in the Reports product
area on OTN.

Printing on Network Printers

Network printers can be accessed by a Reports output when the network printer is
configured on the server where Reports services are installed. Use desname=
<network printer access name> and destype=printer to send the Reports output
to a network printer.

Printing on a Local Printer With the orarrp Utility

Local printers that are not configured on the middle-tier server can’t be accessed
by Oracle Reports Services. However, configuring all available printers in an
enterptise to one server can be cumbersome. Actually the Web doesn’t yet offer a
native solution for this so that a workaround, though not officially supported, has
been invented by Oracle. To achieve the same printing behavior on the Web like in
client-server you can use the Oracle Remote Printing Utility (orarrp) published on
the Oracle Technology Network at http://otn.oracle.com.

Orarrp takes the output of a Report run on the middle tier and causes it to be
ptinted “locally”d to a printer you choose. Orattp can use any printer you can
normally use, be it a workgroup printer or a printer directly attached to your
machine. The way Oratrp handles printing depends on the output type provided
from the middle tier.

If the Report creates Adobe Acrobat (PDF) output, then Oratrp invokes the print
mechanism for Acrobat, which will include all of the print options provided by
that application. The same is true if the output is Rich Text Format. In this case,
Orarrp uses your word processor print facility, which will include all of the print
options it provides. If the middle tier output is plain text, Postsctipt, or PCL, then
you choose the destination printer and Orarrp handles the rest.

A White Paper is available which further explains how it works and how you can
set it up. Because of the idea behind oratrp is simple, you can easily build your own
version of it tailoring this solution to your requitements. The MIME type used by
orarrp is already set up in the Oracle HT'TP Server powered by Apache after installing
Oracle9: Application Server.

Section Summary
In this section, you learned to identify the different options of using Reports

Services to perform calls to integrated Reports in Forms on the Web.

We demonstrated how to use RUN_REPORT_OBJECT with Reports Services
and how to create Reports parameter forms being used with
RUN_REPORT_OBJECT calling Reports Services. You also learned to intercept
server side Repotts runtime error messages on the Web.

You learned an alternative solution to call an Oracle Reports on the Web and how
to use of WEB.SHOW_DOCUMENT built-in to access Reports Services.

Page 34

Also, you learned that printing on the Web doesn’t natively access local printers.
As a workaround, Oracle provides the Oracle Remote Printing Utility (orartp).
You can also print on a local printer by configuring the local printers as network
printers to the middle-tier server where Repotts Setvices are installed.

SUMMARY

When you migrate a client-server Forms Developer application to the Web, it is
possible to run an integrated report without rewriting the report execution code.
Use the reports client runtime engine installed to the middle-tier server. Set the
communication mode to synchronous and the destype parameter to SCI €€n or
previ ew. However, this solution is limited since only one user can run a repott
at any given time.

When you use the Forms RUN_PRODUCT built-in to call a report in a client-
server environment, Oracle recommends that you replace it with the equivalent
RUN_REPORT_OBJECT built-in when you move to Web deployment and
upgrade to Forms 64

Forms on the Web is a multi-user environment, and reporting should be multi-user
enabled, too. For achieving the best Forms-Reports integration on the Web,
Oracle strongly recommends that you use the Reports Multi-tier Server in
combination with RUN_REPORT_OBJECT.

Page 35

APPENDIX A: USABILITY MATRIX

This function matrix compares the options desctibed in this paper for running

Reportts from Forms on the Web.

Run_Product Run_Report Run_Report Object |Web.Show

q q Object Document
Functionality

Multi User enabled @

Parallel Reports processing

V]

Scalable

V]

Asynchronous reporting

NN NN

Reports parameter form support

A

Using Forms parameter lists

Secure uset name/ password

NN

Report status notification

User defined parameters

NN NN

Running Reports on a host other

than the Forms Services

NN NN N

NN

Multiple output formats

Recommended

Nf N

Nf N

* Requires additional coding as explained in this paper

Page 36

APPENDIX B: PASSING FORMS PARAMETER LISTS IN
RUN_REPORT_OBJECT

The way a parameter is passed to a Report when you use
RUN_REPORT_OBJECT has changed. However, it is still possible to use the
parameter lists created to run with RUN_PRODUCT in combination with
RUN_REPORT_OBJECT.

The following example code includes an example parameter list in a call to
RUN_REPORT_OBJECT to submit a Report to the Reports Multi-tier Server.

Example

PROCEDURE RUN_REPORT_OBJECT_LI ST(report_id REPORT_OBJECT, reportserver
var char 2,

runformat varchar2) 1S

report_job_id VARCHAR2(100) ;
vc_rep_status VARCHAR2(20) ;
paramist_id Par anii st;

parani i st_nane VARCHAR2(10): ="tnplist’;
BEG N

/* The Reports_Object Properties needs to be set for using the Reports Server */

SET_REPORT_OBJECT_PROPERTY(report _i d, REPORT_COMM MODE,
SYNCHRONOUS) ;

SET_REPORT_OBJECT_PROPERTY(r eport _i d, REPORT_SERVER,
reportserver);

/* Check for and delete parameterlist. */

param ist_id:= get_paraneter_|ist(paranist_nane);

I'F NOT id_null (paramist_id) THEN

destroy_paraneter _|ist(paramist_id);

END | F;

param i st_id: =create_paraneter_|ist(paranist_nane);

/* The parameterlist determines the destype, the Reports output format, and the user defined

variable read from a Forms file’s :dept.deptno. */

Page 37

add_par anet er (param i st _i d, ' DESTYPE' , TEXT_PARAMETER, ' CACHE') ;
add_par anet er (param i st _i d, " PARAMFORM , TEXT_PARAMETER, ' NO) ;

add_par anet er (param i st _i d,’ p_DEPTNO , TEXT_PARAMETER,
: DEPT. DEPTNO) ;

add_paranet er (param i st_id, "’ desformat’, TEXT_PARAMETER,
runformat);

report_job_id: =RUN_REPORT_OBJECT(report_id, paramist_id);
END;

The procedure is called from a WHEN-BUTTON-Pressed trigger.

/* WHEN_BUTTON_PRESSED trigger. */

DECLARE

report_id Report_QObject;

BEG N

/* The Report Object name is “reptest”. */

report_id:= find_report_object('reptest’);

/*'I'he Reports Server is accessed by the name “eccpSRV”. */

PROCEDURE RUN_REPORT_OBJECT_LI ST(report_id , 'repSRV , ’'pdf’);
END,

Important: If your existing parameter list already contains definitions for system
parameters then it will overwrite the configuration in SET_REPORT_OBJECT
_PROPERTY(). To avoid confusion or unwanted behavior we recommend to

Note that having DESTYPE defined inthe ~ modify the parameter list itself, removing the entries for DESNAME and
parameter list and in SET_REPORT_OBJECT DESTYPE, or add

_PROPERTIES does compile but doesn’t run)
delete_parameter(<parameter list>,'<name>');

to your code before using SET_REPORT_OBJECT_PROPERTIES().

Page 38

APPENDIX C: TROUBLESHOOTING

Refer to this appendix if you encounter problems using
RUN_REPORT_OBJECT to call the Reports Server.

Problem

Suggested Solution

No access to the report output file
using 'getjobid'

The Forms Server could not access the
Reports Server

1) Have the Forms Setver and Reports
Server started as a Windows NT services

using the same account.

2) In the Reports Server configuration file,
set the SECURITY parameter to 0.

1) If the Forms and Reports Servers are
on different machines, check that the full
Reportts Server t NSnanme entry is the

same on both machines.

2) Check that the Reports Server
t nsnanes alias does not contain any

underscores or numbers.

Note: If you installed the default Reports
Setver, it does include underscores and

numbers in the name.

To fix this, create an additional alias for
the Reports Server in the t nsnanes file
that does not contain any of those

characters, for example:
Rep60_foo.world, myrepsrv.world=
(ADDRESS=
(PROTOCOL=tcp)
(HOST=<hostname>)

(PORT=1949)

Page 39

Problem Suggested Solution

RUN_REPORT_OBJECT and Verify that the environment settings for

RUN_PRODUCT don’t work with Reports, REPORTS60_PATH,

the Forms Listener Servlet when using REPORTS60, FORMS60_MAPPING,

the Reports Client Server engine FORMS60_OUTPUT, and
FORMSG60_REPFORMAT are set either
in the j serv. properti es or Forms

Services environment file.

Page 40

ORACLE

Integrating Oracle9/AS Reports in Oracle9iAS Forms
September 2001

Author: Frank Nimphius

Contributing Authors: Susan Leveille

Oracle Corporation

World Headquarters

500 Oracle Parkway
Redwood Shores, CA 94065
US.A.

Worldwide Inquiries:
Phone: +1.650.506.7000
Fax: +1.650.506.7200
www.oracle.com

Oracle Corporation provides the software
that powers the internet.

Oracle is a registered trademark of Oracle Corporation. Various
product and service names referenced herein may be trademarks
of Oracle Corporation. All other product and service names
mentioned may be trademarks of their respective owners.

Copyright © 2001 Oracle Corporation
All rights reserved.

