

Bookbinding with Oracle BI
Publisher

An Oracle White Paper

May 2010

Bookbinding with Oracle BI Publisher Page 2

Bookbinding with Oracle BI Publisher

Introduction ... 3
Binding Options .. 3

Simple Binding .. 4
Sophisticated Binding .. 4
Binding other Formats .. 6
Bookbinder under the Covers .. 6

Volume Splitting .. 10
Cross Linking ... 11
Binding Templates ... 11

Implementing Binding ... 12
Document Storage ... 14
Demonstration Examples ... 14

Conclusion .. 14

Bookbinding with Oracle BI Publisher Page 3

Bookbinding with Oracle BI Publisher

INTRODUCTION

Many organizations need to be able to create consolidated documents; these are made

up of a set of sub documents that may have come from disparate systems. The

documents must to be brought together into a single combined document and made to

look like they are a single contiguous document. Examples of such documents might

be, a yearly budget book presented by government agencies or a shipping document

that is made up of the main document plus supporting material documents.

This process is typically a manual one requiring significant investments of time and

effort to bring the sub documents together and then to create a consolidated master

document.

Oracle Business Intelligence Publisher (BI Publisher) is an enterprise reporting solution

to author, manage, and deliver all types of highly formatted documents eliminating the

need for costly point solutions. End users can easily design report layouts using familiar

desktop tools, dramatically reducing the time and cost needed to develop and maintain

reports. Built on open standards, IT staff and developers can create data models against

practically any data source and use BI Publisher APIs to build custom applications

leveraging existing data sources and infrastructure. Extremely efficient and highly

scalable, BI Publisher can generate tens of thousands of documents per hour with

minimal impact to transactional systems.

Oracle Business Intelligence Publisher offers the ability to simplify and automate the

consolidation of documents. It provides a set of application program interfaces to allow

customers to provide various levels of sophistication in their combined documents.

Whether for simple document concatenation or combining documents containing table

of contents, cover pages, section covers, section page numbering and master page

numbering BI Publisher offers the full gamut to satisfy almost any consolidation

requirement.

BINDING OPTIONS

BI Publisher offers multiple ways to bind documents together, from the simple

concatenation of files to the more sophisticated joining of files with overlays on top of

the final document including multiple document features. The various binding options

are achieved by using BI Publisher‟s java APIs. There is currently no out-of-the-box

user interface to achieve the bind. It must be handled using either a java class or a

servlet approach.

Oracle BI Publisher provides the ability to

take multiple disparate documents and

merge them into a single PDF output.

Bookbinding with Oracle BI Publisher Page 4

 This document will cover the simpler API calls to combined documents through to the

more sophisticated use of the bookbinding API.

Simple Binding

Using the published java doc available from BI Publisher‟s home page:

http://download.oracle.com/docs/cd/E12844_01/doc/bip.1013/e12693/toc.htm.

One can see the two available binding classes, the PDFDocMerger class and the more

sophisticated, PDFBookbinder class.

The simpler API offers the ability to bind multiple PDF documents together and to

overlay page numbering and provide background images to the document. User

requirements might be more complicated, requiring more features in the final

document. Such as cover pages, chapter page numbering, table of contents, bookmarks,

etc. To achieve this, the PDFBookbinder API must be used.

For simpler concatenations the PDFDocMerger class can be used.

Its usage is as follows:

// PDF documents to be merged.

 InputStream[] inStreams;

 // Output destination of the merged PDF document.

 OutputStream outStream;

 :

 :

 :

 // Create PDFDocMerger instance.

 PDFDocMerger pdfMerger = new PDFDocMerger(inStreams, outStream);

pdfMerger.setConfi(props);

 // Run the merging process.

 pdfMerger.mergePDFDocs();

As can be seen from the example code, the API requires an array of input stream PDF

documents. These can be brought in from the disc or from URLs but they must be

converted into java InputStreams for the API to work upon them. The result is a

concatenated PDF output file. The API provides the ability to add page numbering on

top of the output document; this is achieved by calling setPageNumberXXX methods,

on the same API. A background image can be added to every page of the resulting

document by using the setBackground and setWaterMark methods. The setConfig method

allows the user to set further properties on the final document, such as document

security settings.

Sophisticated Binding

The PDFBookbinder class provides many more features for the final document. The

available features and their description are as follows:

Bookbinding with Oracle BI Publisher Page 5

 Page numbering – this can be master page numbering for the complete

document and/or „chapter‟ page numbering.

 Table of Contents – a table of contents based on the child documents can be

created to ease navigation around the document.

 Bookmarks – an extension of the table of contents, „bookmarks‟ can also be

created to ease document navigation when viewing within Adobe Reader (or

similar PDF viewer.)

 Start/ End pages – the document can have cover and ending pages providing

the flexibility to provide dynamic cover pages depending on the document to

be generated.

 Section or Chapter Start/End pages – each child document or set of child

documents can be specified as a chapter or section within the master

document. These can each be wrapped by a section start and end page.

 Graphic/Text Overlays – to help the document look more cohesive one can

add a common graphic or overlay on every page of the document e.g. logo or

header text.

 Cross references – if the master document contains both summarized and

detail data. Cross reference links can be added to enable the reader to drill

down from a summary to a detail page when viewing the document in a PDF

reader.

 Document splitting – consolidated documents that become very large can

become unwieldy for users to open. Publisher provides the ability to split the

document into smaller documents. Upon opening the user is still able to see

and navigate the table of contents and bookmarks. If they click on a link that is

stored in another file, that file is loaded silently in the background.

The binding process needs the sub documents, any overlay or template files for the

common header, footer, table of contents, etc. These templates are all created using

either MSWord and the RTF format or PDF files. To control the merging of the

documents a control file needs to be created, this will instruct the binding engine on all

aspects of the final document creation such as, the order of the documents, the

overlays to be used, page numbering position, master/section page numbering, etc.

Once the binding process is complete the output document can be written to an

accessible directory on a server or local machine. Alternatively, it could be printed or

delivered by some other delivery channel.

The final document consumer does not require any client side install on their machine

to read the document other than Adobe Reader. It is an Adobe PDF format and

therefore the user needs only Adobe Reader or a similar software application to read

the document.

Bookbinding with Oracle BI Publisher Page 6

If the document needs to be secured; Oracle BI Publisher can apply password

protection to the document (at both Reader and Acrobat Professional levels.) Users can

be prevented from copying text from or printing the document; it can be encrypted and

a digital signature added. This is all achieved by setting the appropriate properties for

the document prior to generation.

Binding other Formats

In the current release, 10.1.3.4.1, BI Publisher is capable of binding sub PDF

documents. If the user wishes to bind other document formats, then they must first be

converted to the PDF format. Oracle Universal Content Manager currently provides

the Outside In API's to achieve this conversion, this requires a further license. More

information on the Outside In technology is available here,

http://www.oracle.com/us/products/middleware/content-management/outside-in-

tech/index.html

The Outside In java API can be used to convert the base documents prior to calling the

PDF bookbinder API. This document conversion technology will be incorporated into

the BI Publisher binding API in a future release.

Once the Outside In APIs are installed the java API can be called to convert many of

the major document formats to PDF.

Bookbinder under the Covers

The bookbinding process can source documents from multiple systems and in multiple

formats (currently with the user of the InsideOut API) such as MSOffice, PDF, and

HTML. It can also pull image formats such as jpg, gif, png, etc and merge those into

the final document.

As with the PDFDocmerger, the API is accessed via a java call. The use of the API is

as follows:

String xmlInputPath = "c:\\tmp\\ctrl.xml";

String pdfOutputPath = "c:\\tmp\\final_book.pdf";

PDFBookBinder bookBinder = new PDFBookBinder(xmlInputPath, pdfOutputPath);

 bookBinder.setConfig(new Properties());

 bookBinder.process();

During the binding process, the binding

API reads the control file. The control file

defines the sub document locations and the

order in which they will appear. It also

defines the required document features

that should be added to the final document.

Publisher

Oracle

Reports

Hyperion

Reporting

Publisher

Reports

External

Documents

Control

File

PublisherPublisher

Oracle

Reports

Hyperion

Reporting

Publisher

Reports

External

Documents

Control

File

O
u

ts
id

e
 In

 A
P

I

Bookbinding with Oracle BI Publisher Page 7

As mentioned earlier, the API employs the use of a control file to control the binding

process. This is an XML file that defines the sub documents and the features that need

to be added to the final document. Once invoked, the API will parse the control file,

bringing in the sub documents and applying the requested features to the output

document. The setConfig method allows the application of further features to the

document such as security.

Typically, the API is called from an embedded Java class, or from a servlet listening for

binding requests. The API could equally be wrapped up inside a web service or could

be wrapped inside a PL/SQL call.

The API has a couple of requirements; when called, the sub documents need to be

accessible either via the file system or a URI. Other overlay or template files must also

be accessible via the same means.

The other requirement of the API, is the control file; this is an XML file that defines

how the bind should proceed, the order of the documents, start/end pages, etc.

Here is a snippet of a control file:

<outline xmlns="http://xmlns.oracle.com/oxp/book/">

<!--Here is the title page reference 

 <title-page type="rtf">templates/title_page.rtf</title-page>

 <toc-template>templates/toc-template.rtf</toc-template>

 <item>

 <title>Oracle Database Overview</title>

 <content>../oracle_books/database_overview.pdf</content>

 <cover-page type="rtf">templates/chapter-cover.rtf</cover-page>

 <pagenum-template type="rtf">templates/pagenum.rtf</pagenum-template>

 <template type="pdf">templates/overlay.pdf</template>

 <template type="rtf">templates/overlay.rtf</template>

 <header xmlns="">Oracle Database</header>

 <footer xmlns="">Oracle Database</footer>

 <description xmlns="">Oracle Database 11g ...</description>

 <closing-page type="rtf">templates/chapter-closing.rtf</closing-page>

 <children>

<item>

<title>Oracle Database Enterprise Edition</title>

<content>../oracle_books/Database10gR2_EE.pdf</content>

<cover-page type="rtf">templates/chapter-cover.rtf</cover-page>

The control file is simply built up sequentially adding the sub documents and the

features that are required by the binding specification. This can be done by hand if the

format and structure of the final document is known. It can also be built up based on a

set of user inputs (custom UI.) Code can be written to construct the control file on an

ad-hoc basis prior to calling the API. Some examples follow later on in this document.

Once called, the binding engine will read the control file and then start constructing the

final document. It will analyze the incoming document formats and carry out necessary

conversions of documents prior to the bind. As the final document is constructed the

required features are added based on the control file.

Bookbinding with Oracle BI Publisher Page 8

Once completed it is then written to the disk. If the file needs to be delivered to users

via email or perhaps put onto a web server, Publisher provides a rich set of APIs to

deliver the document to its final destination.

The basic structure of the control file is as follows:

 title-page – is the element for a consolidated document title page.

 <title-page type="rtf|pdf">template file location</title-page>

Bookbinding with Oracle BI Publisher Page 9

The type attribute can be either pdf or rtf. The file location is then referenced

in the element. Optional. Single entry.

 toc-template – is the element for the location of the table of contents template.

<toc-template>templates/toc-template.rtf</toc-template>

This can only be an RTF template. Optional. Single entry.

 item – this is the container group for the documents that will make up the sub

documents of the consolidated document. Each item represents a sub

document and the attributes that need to be added to that document, such as

an opening/closing page, page numbering, etc. These are defined as sub

elements.

o title – this is a string that will be used by the cover page entry

 <title>Oracle Database Overview</title>

o content – a reference to the sub document. Needs to be a pdf.

<content>../oracle_books/database_overview.pdf</content>

o cover-page – this is the cover page template. It can use the title,

header, footer and description elements. It is just like a regular rtf or

pdf template in its capabilities to reference data items.

<cover-page type="rtf">chapter-cover.rtf</cover-page>

o pagenum-template – the template used to position and apply the page

numbers for the sub document. Optional. RTF or PDF

<pagenum-template type="rtf">pagenum.rtf</pagenum-template>

o template – multiple layout or overlay templates can be added at this

point. This might include common graphics or text to be applied to

every page in the sub document. Optional RTF or PDF

<template type="pdf">templates/overlay.pdf</template>

<template type="rtf">templates/volume-overlay.rtf</template>

o header – text for header

<header xmlns="">Oracle Database</header>

o footer – text for footer

<footer xmlns="">Oracle Database</footer>

o description – text to describe the sub document

<description xmlns="">Oracle Database 10g </description>

o closing-page – reference to closing page template. Optional. RTF or

PDF

<closing-page type="rtf">chapter-closing.rtf</closing-page>

Bookbinding with Oracle BI Publisher Page 10

o children – the structure of the document may require parent-child

relationships between the sub documents. To achieve this the

<children> element can be inserted. Then start adding more <item>

entries for the child documents. The levels of nesting are unlimited.

Using this approach a hierarchy of sub documents can be built up to make up the

structure of the consolidated document.

<outline>

 <title-page>

 <toc-template>

 <item>

 <title>

 <content>

 <cover-page>

 <pagenum-template>

 <template>

 <template>

 <header>

 <footer>

 <description>

 <closing-page>

 <children>

 <item>

 <title>

 <content>

 …

 </item>

 <item>

 <title>

 <content>

 …

 </item>

 <item>

 <title>

 <content>

 …

 </item>

 </children>

 </item>

 <item>

 <title>

 <content>

 …

 </item>

</outline>

Volume Splitting

If the generated PDF document is likely to be large; greater than 10 Mb, it can then it

can be split into volumes. Users can load any one of the volumes into their PDF reader

software. The complete set of navigational bookmarks will be present in any of the

volumes. If a particular bookmark points to another volume document, it will be loaded

automatically into the reader.

To achieve the volume splitting place the following entry into the control file at the

position the document should be split.

 <volume-break>

 <filename>Volume3.pdf</filename>

 <label>III</label>

Bookbinding with Oracle BI Publisher Page 11

 <volume-cover-page type="rtf">volume-cover.rtf</volume-cover-page>

 <volume-title xmlns="">Volume 3</volume-title>

 </volume-break>

 filename – this is the name given to the volume. Required.

 label – this value can be referenced in a cover page template. Optional.

 volume-cover-page – a reference to the cover page template RTF or PDF.
Optional.

 volume-title – a title for the volume that can be referenced by the cover page.
Optional.

Cross Linking

Cross links or references can be created in the consolidated document. This allows
users to navigate from one sub document to another sub document section using a
clickable link.
To create a link to a sub document, add an extra attribute, “id”, at the item level in the
control file. The value can be any string or number value but it must be unique to the
control file.
<item id="odb">

The document where the link will be place requires a <link> element placed inside the
closing </item> tag.

 <link>

 <text>Oracle Database Overview</text>

 <destination>odb</destination>

 </link>

 </item>

 text – this is the text that will appear in the link

 destination – this is the pointer to the id that the link will take the user to.
The link itself will appear on the last page of the subdocument as a hyperlink in the
PDF document.

Binding Templates

As has been seen in the control file structure, BI Publisher templates can be used to

create overlays and to format the table of contents.

 Title Page – this can be either an RTF or PDF document. Typically, this will

be a static cover page for the consolidated document.

 Table of Contents – this can only be an RTF template. The commands to

create the table of contents are fixed. However the look and feel of the TOC

text can be modified using MSWord functionality. An example of the table of

contents template is available in the templates directory of the demonstration

files that accompany this paper.

 Chapter Opening/Closing and Overlays – these templates can be RTF or

PDF formats. These can include images, static text; these are similar to the

regular RTF templates in terms of MSWord features that can be used. These

templates can reference the values in the control file for their specific section

Bookbinding with Oracle BI Publisher Page 12

i.e. the <item> section in which they appear. The data points can be the title,

header, footer and description text. To include these values in the templates a

specific namespace must be declared within the template:

<?namespace:xdobb=http://xmlns.oracle.com/oxp/book/?>

Values can then be referenced using the xdobb: prefix to the XML element

value.

<?xdobb:title?>

At runtime values will be brought into the final output and placed in the cover

pages. An example of this template is available in the templates directory of

the demonstration files that accompany this paper.

 Page Number – this template must be an RTF document. It needs only

include the commands to add the page numbers. The master document page

numbering and the sub document numbering can be included in the template.

It uses the xdobb: prefix, which must be declared in the template. The

following commands are then used to add the page numbering.

<?for-each:xdobb:page?>

Book page <?xdobb:page-number?> of <?xdobb:page-total?>

Chapter page <?xdobb:section-page-number?> of <?xdobb:section-

page-total?>

<?split-by-page-break:?>

<?end for-each?>

 An example of this template is available in the templates directory of the

demonstration files that accompany this paper.

Implementing Binding

The binding API can be run by creating a java class or a servlet or any other java based

implementation.

String xmlInputPath = "c:\\tmp\\ctrl.xml";

String pdfOutputPath = "c:\\tmp\\final_book.pdf";

PDFBookBinder bookBinder = new PDFBookBinder(xmlInputPath, pdfOutputPath);

 bookBinder.setConfig(new Properties());

 bookBinder.process();

In a servlet situation, the binding API can be set up to accept input files and a control

file. It can then process the files and return the consolidated document. A user interface

can be created to allow users to select the documents they wish to bind and the

document features they want in the final output.

Bookbinding with Oracle BI Publisher Page 13

Once the user clicks the Create Budget Book button, the document selections and

features are passed to a servlet for processing. The sub-document order and parent-

child relationships could be defined in a more sophisticated user interface. Processing

code within the servlet then creates a control file on the fly. The bookbinding API is

called to process the documents using the newly created control file; the consolidated

document is returned to the browser.

Typically, budget books are very large documents. In the example, a „run and receive‟

model will probably not be practical and the process may need to be run offline or

scheduled for off hours.

If the input sub-documents are not in the PDF format the servlet can check the

document formats and convert them using the OutsideIn APIs if available.

The binding API can also be called directly from the command line if necessary. It

takes the following format:

java -debug true|false -tmp ..\temp_dir -xml control.xml -pdf output.pdf

 debug – turn debug information on or off. It can be directed to a log file if

required.

 tmp – this is the temporary work directory for the binding process

 xml – the location and name of the control file

 pdf – the location and name of the output pdf file

Bookbinding with Oracle BI Publisher Page 14

Document Storage

The source documents can be referenced via a URL, by a directory location or from a

database. Some customers may wish to store the source documents in a document

repository. The documents can either be pulled from the repository using an API or the

documents pushed to the API using a zipped format that standard APIs can be used to

unpack them prior to being bound.

Demonstration Examples

To accompany this paper there is a set of worked examples.

 Example1 - Simple merge plus front page

 Example2 - Cover and Closing page for each document

 Example3 - Header - Footer Overlay

 Example4 - Master - document page numbering

 Example5 - Table of Contents

 Example6 - Creating Chapters

 Example7 - Cross Links

 Example8 - Volumes

Each demonstration builds on the previous example taking the user from a simple

example through to a more complex bind with all of the available features.

CONCLUSION

Many organizations need to be able to periodically create consolidated documents for

everything from financial briefing books to drug trial results. These are typically made

up of multiple disparate documents that must be assembled in a specific order and

bound together into a cohesive single document. For many organizations,

accomplishing this is a time consuming and labor intensive manual process. Using

Oracle BI Publisher‟s binding capabilities; an organization can streamline and automate

this effort.

Bookbinding with Oracle BI Publisher

May 2010

Author:Tim Dexter

Oracle Corporation

World Headquarters

500 Oracle Parkway

Redwood Shores, CA 94065

U.S.A.

Worldwide Inquiries:

Phone: +1.650.506.7000

Fax: +1.650.506.7200

oracle.com

Copyright © 2005, Oracle. All rights reserved.

This document is provided for information purposes only and the

contents hereof are subject to change without notice.

This document is not warranted to be error-free, nor subject to any

other warranties or conditions, whether expressed orally or implied

in law, including implied warranties and conditions of merchantability

or fitness for a particular purpose. We specifically disclaim any

liability with respect to this document and no contractual obligations

are formed either directly or indirectly by this document. This document

may not be reproduced or transmitted in any form or by any means,

electronic or mechanical, for any purpose, without our prior written permission.

Oracle, JD Edwards, and PeopleSoft are registered trademarks of

Oracle Corporation and/or its affiliates. Other names may be trademarks

of their respective owners.

