
Integrating an Oracle Service Bus
Cluster with an IBM WebSphere
MQ Cluster in a Service-Oriented
Architecture

An Oracle White Paper
Updated January 2009

Integrating an Oracle Service Bus Cluster with an IBM WebSphere MQ Cluster in a SOA Page 2

Integrating an Oracle Service Bus Cluster
with an IBM WebSphere MQ Cluster

in a Service-Oriented Architecture

Introduction ... 3
Selecting a Message Infrastructure.. 3

Integrating Oracle Service Bus and WebSphere MQ.............................. 4
Design and Configuration.. 4

Distributed Transactional Integrity .. 5
Oracle Service Bus Distributed Transactional Support 5
WebSphere MQ Cluster Setting ... 6

Transparent Request/Response Messaging Setup and Configuration 6
Sample Installation of a WebSphere MQ Server and a
WebSphere MQ Extended Transactional Client...................................... 6
Configuring Java Message Service—Foreign Java Message Service
Providers .. 9
Configuring Java Message Service—WebSphere MQ Java Message
Service... 10
Configuring Java Message Service—Oracle Service Bus Java
Message Service... 11

Testing the System .. 13
Test Scenario 1: Managed Servers Alive and Connected...................... 15
Test Scenario 2: Oracle Servers Alive, One WebSphere MQ Server
Restarted... 16
Test Scenario 3: Oracle Servers Alive, Entire WebSphere MQ
Cluster Restarted... 16

Conclusion.. 17
Appendix: References and Related Documents ... 18

Integrating an Oracle Service Bus Cluster
with an IBM WebSphere MQ Cluster

in a Service-Oriented Architecture

INTRODUCTION
Service-oriented architecture has become a widely accepted industry paradigm
driven in large part by the increased demand for the asynchronous exchange of
business data. However, messaging middleware can vary across organizations,
which means that Oracle must provide a way to integrate its product families with
each of these middleware solutions. In particular, customers should be able to use
the integrated Oracle Service Bus/IBM WebSphere MQ system to provide
support for messaging interoperability, load balancing, high availability, high
performance, failover, and exactly once quality-of-messaging service (with regard
to request messages).

This white paper discusses the setup and configuration of a clustered Oracle
Service Bus (release 2.1 and later) and WebSphere MQ (release 5.3 and later) with
the IBM WebSphere MQ Extended Transactional Client. It focuses on the
distributed transactional request/response messaging communication between
these products. The example provided allows customers to achieve load balancing
and failover in an Oracle Service Bus cluster domain, as well as load balancing in a
WebSphere MQ cluster.

This white paper discusses the setup and
configuration of a clustered Oracle Service

Bus and WebSphere MQ with the
WebSphere MQ Extended Transactional

Client. It focuses on the distributed
transactional request/response messaging

communication between these products.

SELECTING A MESSAGE INFRASTRUCTURE
Java Message Service (JMS) in Oracle Service Bus is Oracle WebLogic
implementation of JMS 1.1 specification. It is an enterprise-class messaging system
that not only fully supports the JMS 1.1 specification, but also provides numerous
extensions to the standard JMS APIs. Because JMS functionality in Oracle Service
Bus is tightly integrated into the Oracle WebLogic Server platform, customers can
build highly secure Java enterprise applications that can be monitored through the
Oracle Service Bus administration console. In addition to fully supporting extended
architecture (XA) transactions, JMS in Oracle Service Bus offers high availability
through its clustering and server migration features. It also provides seamless
interoperability with third-party messaging vendors.

When deciding to implement an integrated system, it is worth weighing the trade-
offs between using an Oracle Service Bus/WebSphere MQ messaging

Integrating an Oracle Service Bus Cluster with an IBM WebSphere MQ Cluster in a SOA Page 3

conglomerate and using an Oracle Service Bus/Oracle WebLogic JMS. Usually the
main reason for using WebSphere MQ with Oracle Service Bus is to support a
legacy messaging system that is already in place and not easily replaceable.

Customers might instead want to use the Oracle Service Bus/Oracle WebLogic
JMS, because it is easy to use, configure, and monitor, and it provides performance
and features that meet or exceed those of other JMS vendors. Using Oracle Service
Bus/Oracle WebLogic JMS offers the following benefits:

Usually the main reason for using
WebSphere MQ with Oracle Service Bus is
to support a legacy messaging system that

is already in place and not easily
replaceable. Customers might instead

want to use the Oracle Service Bus/Oracle
Weblogic JMS, because it is easy to use,

configure, and monitor, and it provides
performance and features that meet or

exceed those of other JMS vendors.

• It runs as an integral part of Oracle WebLogic Server, whereas a foreign JMS
provider must be configured, started, stopped, and monitored using a
separate set of tools.

• It is integrated with the built-in Java Naming and Directory Interface (JNDI)
and clustering support of Oracle WebLogic Server, so there is no need to
configure and manage a separate JNDI infrastructure, whether it is a
collection of files or a Lightweight Directory Access Protocol (LDAP) server.

• It provides strict conformance with the JMS specification, so that
applications can be written in a portable way.

• It provides excellent performance and scalability.

• It provides more-efficient transaction management for JMS. When a foreign
JMS provider is used, both Oracle Service Bus and the foreign provider must
undergo the extra overhead of two-phase commit between Oracle Service
Bus and the JMS provider.

Integrating Oracle Service Bus and WebSphere MQ
The goal of using an integrated system is to connect the WebSphere MQ messaging
system to Oracle Service Bus using the WebSphere MQ JMS interface. The user
will then typically use the WebSphere MQ native protocol for business processes.
Distributed transactional integrity, reliability, scalability, and failover need to be
ensured in the integrated system, and the use of clustered Oracle Service Bus and
WebSphere MQ architectures should be optimized.

DESIGN AND CONFIGURATION
The following sections of this white paper outline the features directly related to
Oracle Service Bus/WebSphere MQ intercluster communication.1

1 For more information on Oracle WebLogic Server clusters and IBM WebSphere MQ
queue manager clusters, see the Appendix.

Integrating an Oracle Service Bus Cluster with an IBM WebSphere MQ Cluster in a SOA Page 4

Distributed Transactional Integrity
For WebSphere MQ release 5.3 and later, support is offered for XA transaction
management in conjunction with an external syncpoint coordinator. This support is
available in both the JMS and C clients. The WebSphere MQ Extended
Transactional Client lets applications participate within a unit of work with other
local resource managers, under the control of an external syncpoint coordinator.
Until the release of the WebSphere MQ Extended Transactional Client in February
2003, this was only possible by using a local MQ server. For the purposes of
pricing, the WebSphere MQ Extended Transactional Client is treated as if it were
an MQ server while the current nontransactional client continues to be provided
free of charge.

When a WebSphere MQ Extended Transactional Client is colocated with each
Oracle Service Bus cluster server, distributed transactional messaging is possible
between Oracle Service Bus and remote WebSphere MQ servers.

When a WebSphere MQ Extended
Transactional Client is colocated with each

Oracle Service Bus cluster server,
distributed transactional messaging is

possible between Oracle Service Bus and
remote WebSphere MQ servers.

Terminology Explanation

Resource manager A computer subsystem that owns and manages resources
that can be accessed and updated by applications (IBM
WebSphere MQ queue manager—queues are its resources;
IBM DB2 database—tables are its resources)

Unit of work

When an application updates the resources of one or more
resource managers, it is often vital that all updates complete
successfully as a group, or none of them will complete.
Updates that complete this way are said to occur within a
“unit of work” or “transaction.”

Syncpoint
coordinator

A syncpoint is the point in time when all updates within a
unit of work are either committed or backed out. The
computer subsystem that manages units of work is called a
syncpoint coordinator.

Extended
architecture (XA)

For a transaction manager to manage a unit of work, an
architected interface to the resource manager must be
present. One such interface is the XA interface, which is
published by X/Open Company Limited (now the Open
Group).

Oracle Service Bus Distributed Transactional Support
When Java transactional APIs are distributed via Oracle WebLogic Server,
transparent request/response messaging is enabled between an Oracle Service Bus
JMS cluster and a WebSphere MQ cluster.

Integrating an Oracle Service Bus Cluster with an IBM WebSphere MQ Cluster in a SOA Page 5

WebSphere MQ Cluster Setting
If a WebSphere MQ cluster node that serves as a remote message forwarder goes
down and is restarted, it is possible to keep request/response messaging
interoperability uninterrupted and transparent between an Oracle Service Bus JMS
cluster and a WebSphere MQ cluster, by using a clustered MQ setting. This is
because the queue manager that holds the local references to shared queues stays
alive. Oracle Service Bus can still put messages to the request queue and get
messages from the response queue. A business application could still get messages
from the request queue and put messages to the response queue.

However, this is not the case if the queue manager that holds the local references to
shared request and response queues goes down. In that case, messages can still be
put to the queues, but not retrieved from them.

TRANSPARENT REQUEST/RESPONSE MESSAGING SETUP AND
CONFIGURATION
In general, the details of the installation and configuration depend on the operating
system, the number of machines, and the desired cluster sizes of Oracle Service Bus
and WebSphere MQ. In a production environment, each Oracle Service Bus cluster
server is usually hosted on a separate machine. In addition, each WebSphere MQ
cluster node can be hosted on a separate hardware system.

The following section offers an example setup and configuration for transparent
request/response messaging between an Oracle Service Bus JMS cluster and a
WebSphere MQ cluster. Minimal hardware is used—two systems, each running
Microsoft Windows operating systems. The first machine hosts the Oracle Service
Bus domain and the WebSphere MQ Extended Transactional Client. The second
machine hosts a cluster of WebSphere MQ servers.

The following section offers an example
setup and configuration for transparent

request/response messaging between an
Oracle Service Bus JMS cluster and a

WebSphere MQ cluster. Minimal hardware
is used—two systems, each running

Microsoft Windows operating systems.

The Oracle Service Bus domain includes an administration server and a cluster of
two managed servers. The WebSphere MQ cluster includes two nodes. The
example below outlines common configuration steps that can be extrapolated to
suit production requirements.

Sample Installation of a WebSphere MQ Server and a WebSphere MQ
Extended Transactional Client
To install and configure a WebSphere MQ server and a WebSphere MQ Extended
Transactional Client, begin by installing WebSphere MQ 5.3 or 6.0. Follow the
step-by-step installation instructions at the time of installation, and, if needed,
consult the IBM WebSphere MQ information center cited in the Appendix.

Next, create two (or more) queue managers in WebSphere MQ. Setting queue
managers as cluster members offers advantages over distributed queuing. When
clustering is not used, the queue managers are independent and communicate using
distributed queuing. In that case, if one queue manager needs to send messages to
another, it must define both a transmission queue and a channel to the remote
queue manager.

Integrating an Oracle Service Bus Cluster with an IBM WebSphere MQ Cluster in a SOA Page 6

Figure 1: The components required for distributed queuing

However, if queue managers are grouped in a cluster, the queue managers can make
the queues that they host available to every other queue manager in the cluster. Any
queue manager can send a message to any other queue manager in the same cluster
without explicit channel definitions, remote queue definitions, or transmission
queues for each destination. Every queue manager in a cluster has a single
transmission queue from which it can transmit messages to any other queue
manager in the cluster. Each queue manager in a cluster only needs to define one
cluster-receiver channel on which to receive messages, and one cluster-sender
channel with which it introduces itself and learns about the cluster. Figure 2 shows
a small cluster of queue managers.

Any queue manager can send a message
to any other queue manager in the same

cluster without explicit channel
definitions, remote queue definitions, or

transmission queues for each destination.

Figure 2: A small cluster of two queue managers

Next, create a cluster and include the queue managers as cluster nodes. Then
specify both queue managers as hosting repositories.

The full repository queue managers, QM1 and QM2, host repositories of
information about the queue managers in the cluster. (The repositories are
represented in Figure 2 by the shaded cylinders.) QM1 hosts some queues that are
accessible to any other queue manager in the cluster. These are called cluster
queues. (The cluster queues are represented in Figure 2 by the shaded queues.)

As with distributed queuing, applications use the MQPUT call to put a message on
a cluster queue at any queue manager. Applications use the MQGET call to retrieve
messages from a cluster queue on the local queue manager.

Integrating an Oracle Service Bus Cluster with an IBM WebSphere MQ Cluster in a SOA Page 7

Including queue managers in the cluster involves creating system channels between
them. Each queue manager has a definition for the receiving end of a channel called
TO.qmgr on which it can receive messages. This is a cluster-receiver channel. A
cluster-receiver channel is similar to a receiver channel used in distributed queuing,
but in addition to carrying messages, this channel can also carry information about
the cluster.

Each queue manager also has a definition for the sending end of a channel, which
connects to the cluster-receiver channel of one of the full repository queue
managers. This is a cluster-sender channel. In Figure 2, QM1 and QM2 have
cluster-sender channels that connect to TO.QM2. QM2 has a cluster-sender
channel that connects to TO.QM1. A cluster-sender channel is similar to a sender
channel used in distributed queuing, but in addition to carrying messages, this
channel can also carry information about the cluster.

Once both the cluster-receiver end and the cluster-sender end of a channel have
been defined, the channel starts automatically.

Once both the cluster-receiver end and the
cluster-sender end of a channel have been

defined, the channel starts automatically. On Windows systems, creating queue managers and a cluster, and including queue
managers in the cluster, can be done from the WebSphere MQ Explorer interface
or by using the command-line interface (CLI) tool (runmqsc) found in the
…/WebSphere MQ/bin directory. On UNIX systems, use the CLI tool runmqsc.

Example for the Windows operating system:

The next step is to create two local queues (request and response) on one of the
queue managers using the WebSphere MQ Explorer interface or runmqsc, and
share them on the cluster.

Integrating an Oracle Service Bus Cluster with an IBM WebSphere MQ Cluster in a SOA Page 8

Example:

Next, install the WebSphere MQ Extended Transactional Client 5.3 on a second
machine. The WebSphere MQ Extended Transactional Client 5.3 comes as a
separate installation package for release 5.3. It enables global transactions between
Oracle WebLogic Server and WebSphere MQ hosted on separate machines. The
Appendix section of this document points to a complete explanation.

The WebSphere MQ Extended
Transactional Client 5.3 comes as a

separate installation package for release
5.3. It enables global transactions between

Oracle WebLogic Server and WebSphere
MQ hosted on separate machines.

Then install the Oracle Service Bus cluster domain on the same machine where the
WebSphere MQ Extended Transactional Client 5.3 is installed.

The above setup is somewhat simplified, because in production each managed
server will be on a separate machine and has to be colocated with its own
installation of the WebSphere MQ Extended Transactional Client.

Configuring Java Message Service—Foreign Java Message Service
Providers
To explain the configuration of JMS using JNDI, this white paper uses information
from the “Using Foreign JMS Providers with WebLogic Server” document, which
can be found at http://ftpna2.bea.com/pub/downloads/jmsproviders.pdf.

A JMS client needs to look up an initial connection factory object and destination
objects—queues and topics—using JNDI. Therefore, a JMS client can use a
WebSphere MQ JMS provider when two key settings are implemented:

• JNDI binding of the WebSphere MQ JMS objects using WebSphere MQ
command-line utility. Besides connection factories and destinations, the
WebSphere MQ JMS provider uses JNDI to store its own configuration
information, such as the IP address and port of the server, type of transport,
destination attributes, and other special options.

• Configuration of the foreign JMS provider for WebSphere MQ using the
Oracle WebLogic Server administration console.

This configuration supplies the following information to the Oracle Service
Bus server:

• Initial context factory. This is the name of the JNDI class that will be
created to perform the lookup. The JNDI class can be part of the Java
Development Kit, it can be provided by Sun Microsystems, or it can be
provided by the JMS vendor.

• Provider URL. This URL tells the initial context factory where to find the
directory information. It can refer to a server using a protocol such as LDAP,
it can refer to a file in the file system, or it can refer to something else.

Integrating an Oracle Service Bus Cluster with an IBM WebSphere MQ Cluster in a SOA Page 9

• Connection factory JNDI name. This is the name of the connection
factory object that is stored in JNDI. Each JMS provider creates its own tool
to create this object and store it in JNDI. Once it is stored there, any JMS
client program (including Oracle Service Bus and Oracle WebLogic Server)
can look up the object.

• Destination JNDI name. This object represents a JMS destination, a queue,
or a topic, as stored in JNDI. Like the connection factory, each JMS provider
will provide its own tool to create the object and place it in JNDI.

Configuring Java Message Service—WebSphere MQ Java Message
Service
To configure WebSphere MQ JMS, perform identical JNDI binding of the
WebSphere MQ JMS objects on both machines—with WebSphere MQ server and
the WebSphere MQ Extended Transactional Client installations. Alternatively, the
shared data structure can be used.

First, select the JNDI service provider and the URL of the service provider’s initial
context by uncommenting them in the following file:
…/Java/bin/JMSAdmin.config.

INITIAL_CONTEXT_FACTORY=com.sun.jndi.fscontext.RefFSContextFactory
PROVIDER_URL=file:/C:/JNDI-Directory

Second, bind JMS objects into the JNDI tree using the JMS admin file
…/Java/bin/JMSAdmin.bat. The bindings will be stored in the file C:\JNDI-
Directory\.binding. Namely:

• Bind two WebSphere MQ XA connection factories (one for each WebSphere
MQ server node) indicating the name of the factory, the name of the queue
manager, host name, port, and client transport. For example:

• Bind two MQ queues (request and response) indicating the name of the
queue and the name of the queue manager holding the local reference to the
queue and persistence mode. If the client that dequeues the queue will be a
native WebSphere MQ client, the TARGCLIENT(MQ) option must be
specified. This option ensures that the client will be able to retrieve proper
WebSphere MQ headers for the message. For example:

Integrating an Oracle Service Bus Cluster with an IBM WebSphere MQ Cluster in a SOA Page 10

Finally, to see the resulting WebSphere MQ JMS bindings, give the command dis
ctx:

Configuring Java Message Service—Oracle Service Bus Java Message
Service
The simplest setting is to configure the Oracle Service Bus cluster domain in
production mode with an Oracle database and two colocated managed servers.

Edit setDomainEnv.cmd or setDomainEnv.sh.
ADD EXTENSION TO PRE_CLASSPATH.

For example:

Integrating an Oracle Service Bus Cluster with an IBM WebSphere MQ Cluster in a SOA Page 11

Optionally, for demonstration purposes, to reduce the memory consumption,
change the default memory settings.

For example:

Start the administration and clustered (managed) servers.

To have all relevant JMS objects in a separate JMS system module, use the Oracle
WebLogic Server administration console to create a new JMS system module that is
deployed on the cluster.

In this JMS system module, create

• A foreign JMS server deployed on the cluster with two WebSphere MQ XA
connection factories corresponding to two WebSphere MQ cluster nodes—
XAQCF0 and XAQCF1—and two queues, the WebSphere MQ request and
response queues REQUESTQUEUE1 and RESPONSEQUEUE1

• An XA connection factory with default delivery mode set to PERSISTENT

• A proxy request Gateway Uniform Distributed Queue (UDQ) deployed on
the cluster

• A proxy response UDQ deployed on the cluster
The purpose behind creating the local

queue on which the first proxy service will
be deployed is to route the message to the

second proxy service deployed on the
UDQ. This is purely optional, but can be

done to see all cluster servers that
participate in sending messages to the

WebSphere MQ server.

Optionally, if using a Plain Old Java Object (POJO) JMS client to send request
messages for testing the system, create a local queue that is deployed on one of the
managed servers as an entry point. The purpose behind creating the local queue
on which the first proxy service will be deployed is to route the message to the
second proxy service deployed on the UDQ. This is purely optional, but can be
done to see all cluster servers that participate in sending messages to the
WebSphere MQ server.

Next, verify that the JNDI panel in the Oracle WebLogic Server administration
console shows the JNDI tree with all foreign JMS server objects (WebSphere MQ
connection factories and queues) and the newly created Oracle Service Bus JMS
connection factory and queues.

Using the Oracle Service Bus console (sbconsole), carry out the following actions:

• Configure the first JMS proxy service with the local queue as JMS endpoint
(MDB will be deployed on that local queue). This is optional if using POJO
JMS client to send the initial message.

• Configure the second JMS proxy service with the Gateway UDQ as JMS
endpoint (MDB deployed on the Gateway UDQ). This JMS proxy service
requires a response to the response UDQ.

• Configure the router from the first JMS proxy service to the second one.

Integrating an Oracle Service Bus Cluster with an IBM WebSphere MQ Cluster in a SOA Page 12

• Configure the JMS business service deployed on the WebSphere MQ request
queue that requires response to the WebSphere MQ response queue. This
business service has two endpoints, each pointing to one of the two
WebSphere MQ queue managers for WebSphere MQ cluster load balancing.

• Configure the pipeline between the second JMS proxy service and the JMS
business service with the router that will route messages from the second
JMS proxy service to the JMS business service.

• Configure the Request and Response Logging Actions for logging messaging
headers. The logging will show how many request/response messages would
be passing the request/response pipelines.

Figure 3 shows an example of an Oracle Service Bus/WebSphere MQ setup.

Figure 3: Test setup—request/response messaging communication between an Oracle Service Bus

cluster domain and a WebSphere MQ cluster

TESTING THE SYSTEM
The next step is to test the newly integrated system. Verifying the messaging
between the Oracle Service Bus and WebSphere MQ clusters with Oracle Service
Bus XA transactional managers and the WebSphere MQ XA resource manager
requires the following:

Integrating an Oracle Service Bus Cluster with an IBM WebSphere MQ Cluster in a SOA Page 13

• XA connection factories in both WebSphere MQ and Oracle Service Bus
Verifying the messaging between the

Oracle Service Bus and WebSphere MQ
clusters with Oracle Service Bus XA

transactional managers and the
WebSphere MQ XA resource manager

requires some configuration.

• A PERSISTENT delivery mode

• A JMS client that sends a request to the Oracle Service Bus proxy service

• A business service based on WebSphere MQ APIs, which receives the
request message and sends a response message

• A JMS client that receives the response message

The business service can be written as a class, based on WebSphere MQ Java APIs;
the service gets the request message from the request queue and puts the response
message in the response queue. If the WebSphere MQ class is hosted remotely to
the WebSphere MQ server, a server connection channel and a corresponding client
channel must be created on the WebSphere MQ server to which the WebSphere
MQ client connects.

The WebSphere MQ class takes care of setting environment variables, initializing
WebSphere MQ resources, measuring the current depth of the request queue,
looping through, and getting the messages from the request queue. It sets the
correlation ID on each response message to the request correlation ID, puts
the response messages in the response queue, and releases the WebSphere
MQ resources.

If and when the common messaging request/response pattern is supported in the
Oracle Service Bus JMS request/response implementation, the WebSphere MQ
class will set the correlation ID on the response message to the request message ID.

It is possible to write POJO JMS clients. One POJO JMS client will send the
request (for example, an XML file) to the first proxy service. Each of the two
additional POJO JMS clients will listen to one of the two members of the proxy
service’s response UDQ.

These are the settings:

• The client sends request messages to WebSphere MQ via Oracle Service Bus.
It uses the standard JMS API protocol or enhanced WebLogic JMS APIs. An
Oracle Service Bus proxy service receives the client’s messages and
dispatches them to the business service deployed on WebSphere MQ.

• Oracle Service Bus uses the underlying Oracle WebLogic JMS—an
enterprise-class messaging system that supports the JMS 1.1 specification and
also provides important and useful extensions of the standard JMS APIs.

• The business service uses native WebSphere MQ as the transport protocol.

• A WebSphere MQ cluster queue was created by creating a local queue on one
of the queue managers and sharing it with a second cluster member. The
second cluster member will be a remote forwarder to the shared queue.
WebSphere MQ is essentially a store-and-forward message-passing
middleware protocol.

Integrating an Oracle Service Bus Cluster with an IBM WebSphere MQ Cluster in a SOA Page 14

• Requests from Oracle Service Bus can be load balanced by sending messages
in a round-robin fashion to the members of the cluster. However, getting the
response message (dequeue the response queue that is shared on a cluster) is
only possible by accessing the WebSphere MQ server node that holds the
local reference to the queue. In other words, when sending a request
message, Oracle Service Bus can iterate through a list of the JMS destinations.
But it can receive a response message only from one JMS destination.

Test Scenario 1: Managed Servers Alive and Connected
First, test the scenario in which all the managed servers in the Oracle Service Bus
cluster are alive and connected, and all WebSphere MQ cluster servers are also alive
and connected.

Messages can be sent directly to the
second Oracle Service Bus JMS proxy

service deployed on the Gateway UDQ, if
the sender is capable of distributing the

messages between the members of
the distributed queue.

Messages can be sent directly to the second Oracle Service Bus JMS proxy service
deployed on the Gateway UDQ, if the sender is capable of distributing the
messages between members of the distributed queue. Otherwise, use a POJO JMS
client to send the predefined amount of request messages (perhaps reading them
from XML files) to the first JMS proxy service.

• The first JMS proxy service routes the request message to the second JMS
proxy service.

• The second JMS proxy service is deployed on the Gateway UDQ and
requires response to the response UDQ.

• The second JMS proxy service routes the request message to the JMS
business service.

• The JMS business service is deployed on the WebSphere MQ request queue
and requires response to the WebSphere MQ response queue.

• The JMS business service has two endpoints, each on one of the two
WebSphere MQ queue managers. The round-robin algorithm is selected for
the load balancing between these two endpoints.

• A Java client based on the WebSphere MQ APIs measures the current depth
of the request queue and loops through the messages to get the request
message from the request queue and puts the response message in the
response queue. As required for Oracle Service Bus 2.1, it reads the request
correlation ID as byte[] and sets it as byte[] correlation ID on the response
message.

• To find out whether a traditional enterprise application integration messaging
request/response pattern is supported, consult the user documentation for
Oracle Service Bus 2.5. If so, in Oracle Service Bus 2.5, the business service
application should read request message ID as byte[]. Set it as byte[]
correlation ID on the response message.

Integrating an Oracle Service Bus Cluster with an IBM WebSphere MQ Cluster in a SOA Page 15

• A response MDB listens on the WebSphere MQ response queue, processes
response messages, and puts them in the response pipeline to be delivered to
the response UDQ.

• Two POJO JMS clients listen, each to one of the two members of the
response UDQ. They receive messages, read their correlation ID, and log it
along with the current count of the received messages.

Test Scenario 2: Oracle Servers Alive, One WebSphere MQ Server
Restarted
Second, test the scenario in which all managed servers in the Oracle Service Bus
cluster are alive, but one of the WebSphere MQ cluster servers is stopped and
restarted. To implement it, carry out these instructions:

The Java client based on MQ APIs
measures the current depth of the request
queue and loops through the messages to
move them from the request queue to the

response queue.
• Start the Oracle Service Bus administration server and two managed servers.

• Stop one of the WebSphere MQ queue managers of the cluster (on which
local request/response queues were configured).

• Send a predefined number of messages (XML files) to the first JMS proxy
service using a POJO JMS client.

• Start the WebSphere MQ queue manager that was stopped.

• Observe that all messages sent to WebSphere MQ were successfully delivered
to the WebSphere MQ request queue—through the second WebSphere MQ
cluster node that stayed alive.

• The Java client based on WebSphere MQ APIs measures the current depth
of the request queue and loops through the messages to move them from the
request queue to the response queue. It reads the request correlation ID as
byte and sets it as byte[] correlation ID on the response message.

• A response MDB listens on the WebSphere MQ response queue, processes
response messages, and puts them in the response pipeline to be delivered to
the proxy service response UDQ.

• Two POJO JMS clients listen to one of the two members of the proxy
service response UDQ. They receive messages, read their correlation ID, and
log it and the current count of the received messages.

Test Scenario 3: Oracle Servers Alive, Entire WebSphere MQ Cluster
Restarted
Third, test the scenario in which all managed servers in the Oracle Service Bus
cluster are alive, but the WebSphere MQ cluster is stopped and restarted. To
implement it, carry out these instructions:

• Start the Oracle Service Bus administration server and two managed servers.

• Stop WebSphere MQ services on the remote machine. Expect to receive
repeated disconnect-related exceptions on both managed servers.

Integrating an Oracle Service Bus Cluster with an IBM WebSphere MQ Cluster in a SOA Page 16

• Send a predefined number of messages (XML files) to the first JMS proxy
service using a POJO JMS client.

• Start the WebSphere MQ cluster.

• Observe that all messages that were sent to WebSphere MQ were successfully
delivered to the WebSphere MQ request queue by Oracle Service Bus.

CONCLUSION
This white paper describes an example of the configuration of the messaging
communication between Oracle Service Bus and WebSphere MQ queue manager
clusters. It is an initial attempt to find the best way of configuring such a system.
Descriptions of real-life installations of WebSphere MQ clusters from field
engineers would be much appreciated (so they can be reproduced at Oracle). If
those configurations are significantly different from the type of WebSphere MQ
cluster described in this paper, the additional information can be appended to the
white paper.

Starting from Oracle Service Bus 2.1, users can configure request/response queues
that are shared on the WebSphere MQ cluster and separate XA connection
factories for each WebSphere MQ server, and send messages to those WebSphere
MQ servers in a round-robin manner. In this way, WebSphere MQ load balancing
is driven by Oracle Service Bus.

Users can verify that the request messages are delivered to different servers. When
a message arrives to the WebSphere MQ server that holds the local reference at the
cluster request queue, it stays there. When a message arrives at the remote
forwarder, the remote forwarder immediately forwards it to the server that holds
the local reference to the cluster request queue. Browsing that cluster queue from
the local queue manager shows all messages that were sent to the cluster.

A JMS service in Oracle Service Bus can get a response message from only one
destination—the cluster response queue on its local queue manager.

In a request/response XA transactional clustered Oracle Service Bus/clustered
WebSphere MQ scenario, messages are not lost when one of the WebSphere MQ
cluster servers is shut down and restarted. In fact, if the server that is shut down is
a remote forwarder, operations continue smoothly because messages continue to
arrive to the local queue manager of the cluster request queue. In addition, the
response messages are retrieved from its cluster response queue. The messages are
not lost when the entire WebSphere MQ cluster is shut down and restarted.

In a request/response XA transactional
clustered Oracle Service Bus/clustered

WebSphere MQ scenario, messages are
not lost when one of the WebSphere MQ

cluster servers is shut down and restarted.

Integrating an Oracle Service Bus Cluster with an IBM WebSphere MQ Cluster in a SOA Page 17

APPENDIX: REFERENCES AND RELATED DOCUMENTS
• Messaging (JMS) for Oracle WebLogic Server 10.3

e-docs.bea.com/wls/docs103/messaging.html

• Configure Foreign Servers
e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/jms_modules/
foreign_servers/ConfigureForeignServers.html

• Accessing Foreign Server Providers
e-docs.bea.com/wls/docs103/jms_admin/advance_config.html#1075917

• FAQ: Integrating Remote JMS Providers
e-docs.bea.com/wls/docs81/faq/interop.html

• Using Foreign JMS Providers with Oracle WebLogic Server
ftpna2.bea.com/pub/downloads/jmsproviders.pdf

• Using Oracle WebLogic Server Clusters
e-docs.bea.com/wls/docs103/cluster/index.html

• Communications in a Cluster
e-docs.bea.com/wls/docs9103/cluster/features.html

• IBM WebSphere MQ Information Center
publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp

• WebSphere MQ: Information Roadmap for All Users
www-128.ibm.com/developerworks/websphere/zones/businessintegration/
roadmaps/wmq/

• WebSphere MQ Queue Manager Clusters
publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp

• IBM WebSphere MQ Extended Transactional Client
www-306.ibm.com/software/integration/wmq/transclient.html

• Meet the Experts: Mark Taylor on WebSphere MQ
www-128.ibm.com/developerworks/websphere/library/techarticles/
0302_taylor/taylor.html

Integrating an Oracle Service Bus Cluster with an IBM WebSphere MQ Cluster in a SOA Page 18

Integrating an Oracle Service Bus Cluster Domain with an
IBM WebSphere MQ Cluster in a Service-Oriented Architecture
Updated January 2009

Oracle Corporation
World Headquarters
500 Oracle Parkway
Redwood Shores, CA 94065
U.S.A.

Worldwide Inquiries:
Phone: +1.650.506.7000
Fax: +1.650.506.7200
oracle.com

Copyright © 2009, Oracle and/or its affiliates. All rights reserved.
This document is provided for information purposes only and the
contents hereof are subject to change without notice.
This document is not warranted to be error-free, nor subject to any
other warranties or conditions, whether expressed orally or implied
in law, including implied warranties and conditions of merchantability
or fitness for a particular purpose. We specifically disclaim any
liability with respect to this document and no contractual obligations
are formed either directly or indirectly by this document. This document
may not be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without our prior written permission.
Oracle is a registered trademark of Oracle Corporation and/or its affiliates.
Other names may be trademarks of their respective owners. 0408

