

A Joint Oracle Teradata White Paper

March 2012

Configuring Oracle Business Intelligence
Enterprise Edition for Teradata Temporal
Tables

Configuring Oracle BI EE for Teradata Temporal Tables

Executive Overview ... 2

Introduction ... 2

“As-is” and “As-was” Example ... 3

Step 1. Define a session variable .. 4

Step 2. Define the temporal table .. 5

Step 3. Pull the table and column definition into the physical layer 6

Step 4. Expose the temporal columns to the end user 9

Step 5. Building the dashboard .. 10

Step 6. Add a new Dashboard prompt ... 11

Step 7. Add a column prompt .. 11

Step 8. Save and test the dashboard ... 13

SQL Examples .. 16

Conclusion .. 18

Configuring Oracle BI EE for Teradata Temporal Tables

2

 Executive Overview

Teradata temporal capabilities allow data warehouse time travel. Temporal supports the
reproduction of a report that ran previously, such as six months ago, even though
numerous changes have been made to the underlying data.

Oracle Business Intelligence Enterprise Edition (OBIEE) supports and can utilize the
temporal capabilities of Teradata and expose them to end users in an easy-to-use fashion.

Introduction

The purpose of this document is to show how to integrate OBIEE with Teradata
Temporal Tables. It details how to set up OBIEE for "as-is" and "as-was" type analysis.
It is a cook book style write-up and assumes the customer has (and knows) OBIEE and
that the customer knows what they want to do with temporal. It does not go into detailed
analysis of different use cases for temporal tables. This write-up was done using OBIEE
11g, although it is completely applicable for OBIEE version 10.1.x. There are some
variations in the setup but the concepts are the same.

Teradata Database 13.10, released in September of 2010, included a number of fully
integrated, in-database data attributes, qualifiers, and predicates that are extremely useful
for automating the management of time-varying data. Also included were a number of
powerful functions to enable native time series analysis and comparison of periods of
time.

Configuring Oracle BI EE for Teradata Temporal Tables

3

“As-is” and “As-was” Example

Temporal tables can be configured as “regular” OBIEE source tables. However, the data
returned for queries will only reflect the current transaction time or valid time. In order to
return data for a specific point in time, regular OBIEE source tables cannot be used.
OBIEE requires special configuration to take advantage of a table’s temporal capabilities.
Basically, a normally defined OBIEE table needs to be converted to a “select” type table
(also known as opaque views). A SQL select statement is defined for the temporal table
and can then include temporal keywords such as “as of”. The following is an example of
an OBIEE dashboard that has a temporal query.

Figure 1. Dashboard with temporal query

“Channel” is defined in Teradata as a temporal table with a valid time column. The
dashboard above queries the channel table with an “as of” date based on the prompt for
“calendar_date”. The temporal columns for valid start date and valid end date are
exposed on the dashboard.

Follow the steps below to see how to put together a temporal dashboard.

Configuring Oracle BI EE for Teradata Temporal Tables

4

Step 1. Define a session variable

The first step is to define a session variable that will be used to determine and store the
“as of” date for the temporal query. The session variable should be set so that any user
can set the value. The default Initializer should be set to “current_date” (without the
quotes). The screen shot below shows the properties for the “as_of_date” variable.

Figure 2. “as_of_date” variable

Configuring Oracle BI EE for Teradata Temporal Tables

5

Step 2. Define the temporal table

Below is the DDL for the channel example table; the vt column (in red) is the temporal
column:

CREATE MULTISET TABLE SAMPLEDATA.channels_t ,NO FALLBACK ,
 NO BEFORE JOURNAL,
 NO AFTER JOURNAL,
 CHECKSUM = DEFAULT,
 DEFAULT MERGEBLOCKRATIO
 (
 CHANNEL_ID FLOAT FORMAT '+9.99999999999999E+999' NOT NULL,
 CHANNEL_DESC VARCHAR(20) CHARACTER SET LATIN NOT CASESPECIFIC NOT NULL,
 CHANNEL_CLASS VARCHAR(20) CHARACTER SET LATIN NOT CASESPECIFIC NOT NULL,
 CHANNEL_CLASS_ID FLOAT FORMAT '+9.99999999999999E+999' NOT NULL,
 CHANNEL_TOTAL VARCHAR(13) CHARACTER SET LATIN NOT CASESPECIFIC NOT NULL,
 CHANNEL_TOTAL_ID FLOAT FORMAT '+9.99999999999999E+999' NOT NULL,
 vt PERIOD(DATE) NOT NULL AS VALIDTIME)
PRIMARY INDEX (CHANNEL_ID);

Configuring Oracle BI EE for Teradata Temporal Tables

6

Step 3. Pull the table and column definition into the physical layer

Use the OBIEE “import metadata” wizard to pull the table and column definition into
the physical layer. The wizard is used so that all of the column definitions do not need to
be manually added into the physical layer. Next, the table type for the physical table
properties needs to switch from “physical table” to “select” and the temporal SQL needs
to be added.

Figure 3. Import metadata

Change from “physical
table” to “select”

Configuring Oracle BI EE for Teradata Temporal Tables

7

The SQL for the “select” table is entered into the text box:

Figure 4. Import metadata

The SQL needs to be carefully formed in order to support any valid “as of date” the user
picks as well as to support the user not picking any value for “as of date”. In the case of
no “as of date”, the query will default to the current date. The SQL is reiterated below
with notes for key points.

Configuring Oracle BI EE for Teradata Temporal Tables

8

A. “coalesce” is used to default the “as of date” when the end-user has not chosen a

date
B. “cast” is used to convert the string returned from the “trim” function to the

“date” data type
C. “trim” is used to get rid of the extra spaces in surrounding the “VALUEOF(…)”

function
D. The string “VALUEOF(NQ_SESSION.as_of_date)” needs spaces surrounding it

in order for the OBIEE to substitute the chosen date for the string. If there are
no spaces around the VALUEOF() function then OBIEE will generate errors like
“the repository variable as_of_date has no value definition. Substituting “sp” for
space, the string needs to be formatted as such:
 ‘spVALUEOF(NQ_SESSION.as_of_date)sp’

E. “current_date” is used to default the “as of date” to today’s date
F. “VALUEOF(NQ_SESSION.as_of_date)” returns the chosen date stored in the

variable that was defined in step 1
G. “as_of_date” is the variable that was defined in step 1
H. “Vt_start” is a derived column. Begin(vt) is a function that returns the beginning

date of the valid time period (see Teradata temporal documentation for more
details). This column is not mandatory in the physical layer. It is shown here as a
way of exposing the data. The column alias name must match the column name
in the physical layer.

I. “vt_end” is a derived column. End(vt) returns the ending date of the valid time
period. This column is not mandatory in the physical layer. It is shown here as a
way of exposing the data. The column alias name must match the column name
in the physical layer.

Configuring Oracle BI EE for Teradata Temporal Tables

9

Step 4. Expose the temporal columns to the end user

If you want to expose the temporal columns to the end user you will need to manually
add columns to the physical definition. In the example above, two columns were
manually added: vt_start and vt_end (valid time start and end). Note that the additional
columns need to be defined in the “select” SQL (as in the example above) as well as actual
physical columns in OBIEE:

Figure 5. Add columns to physical definitions

Note that they are defined as “date” data type columns as the functions return the “date”
data type.

With all of the table and column and variable definitions correctly in place, the “view
data” action (right click on table name) should show data from the table:

Configuring Oracle BI EE for Teradata Temporal Tables

10

Figure 6. View data

That completes the configuration in the OBIEE Administrator. Next up is building the
dashboard.

Step 5. Building the dashboard

In OBI Answers, configure and save your query on the temporal table. This is a standard
dashboard query – there is nothing unique about it.

Figure 7. Save query

Configuring Oracle BI EE for Teradata Temporal Tables

11

Step 6. Add a new Dashboard prompt

In OBI Answers, add a new Dashboard prompt:

Figure 8. Dashboard prompt

Step 7. Add a column prompt

On the dashboard prompt page, add a new column prompt:

Configuring Oracle BI EE for Teradata Temporal Tables

12

The column associated with the prompt is vt_start. Since it has a data type of “date”,
OBIEE allows us to use a calendar type input. Under Options, the “Set a variable” drop-
down should be set to “Request Variable”. Then the name of the variable that was
defined in step 1 is entered, as_of_date, which is used to pick a date from a calendar.

Figure 9. Column prompt

Save the prompt.

“calendar” allows the end-user
drop down

Enter the name of the variable
defined in step 1

Configuring Oracle BI EE for Teradata Temporal Tables

13

Step 8. Save and test the dashboard

Now create and save a dashboard with the query defined in step 5 and the prompt defined
in step 6.

Figure 10. Save dashboard

Configuring Oracle BI EE for Teradata Temporal Tables

14

When the dashboard is run, the data from the query defaults to the current date.

Figure 11. Run dashboard report

Configuring Oracle BI EE for Teradata Temporal Tables

15

Clicking on the calendar brings up the prompt:

Figure 12. Date prompt

Click “OK” on the prompt.

Configuring Oracle BI EE for Teradata Temporal Tables

16

Click “Apply” on the dashboard. The data in the query now reflects the date selected on
the calendar prompt.

Figure 13. Temporal report run

This completes the tutorial on temporal dashboard set-up. This technique can be applied
to many different temporal tables. They can use a common date, or dates can be set up
for each table.

SQL Examples

The SQL that was generated by OBIEE for the above query is below. The temporal bits
are in red:

select distinct 0 as c1,
 D1.c1 as c2,
 D1.c2 as c3,
 D1.c3 as c4,
 D1.c4 as c5,
 D1.c5 as c6
 from
 (select T2489."CHANNEL_CLASS" as c1,
 T2489."CHANNEL_ID" as c2,
 T2489."CHANNEL_TOTAL" as c3,
 T2489."vt_end" as c4,
 T2489."vt_start" as c5
 from
 (as of coalesce(cast (trim(' 2011-12-09 ') as date),current_date)

Configuring Oracle BI EE for Teradata Temporal Tables

17

 select
 channel_class,channel_class_id,channel_desc,channel_id,
 channel_total,channel_total_id,begin(vt) vt_start,end(vt) vt_end
 from channels_t
) T2489
) D1
 order by 2, 3, 6, 5, 4

A query that was generated by OBIEE that includes the temporal dimension “channel”
and a fact table “sales” is shown below:

select distinct 0 as c1,
 D1.c2 as c2,
 D1.c3 as c3,
 D1.c1 as c4
from
 (select sum(T2086."AMOUNT_SOLD") as c1,
 T2489."CHANNEL_CLASS" as c2,
 T2489."CHANNEL_TOTAL" as c3
 from
 (as of coalesce(cast (trim(' 2011-12-15 ') as date),current_date)
select
channel_class,channel_class_id,channel_desc,channel_id,
channel_total,channel_total_id,begin(vt) vt_start,end(vt) vt_end
from channels_t
) T2489,
 "sales" T2086
 where (T2086."CHANNEL_ID" = T2489."CHANNEL_ID")
 group by T2489."CHANNEL_CLASS", T2489."CHANNEL_TOTAL"
) D1
order by 3, 2

Configuring Oracle BI EE for Teradata Temporal Tables

18

Conclusion

Teradata 13.10 (and subsequent releases) allows organizations to gather, manage, and
analyze “time varying” data with very little administration.

Using the above techniques allows Oracle Business Intelligence Enterprise Edition to
utilize the temporal capabilities of Teradata and expose them to end users in an easy-to-
use fashion.

This capability can be vital, for example, when responding to inquiries from regulators
who want to know what information organizations had and when they had it.

Configuring Oracle BI EE for Teradata

Temporal Tables

March 2012

Author: Stephen Kamyszek, Teradata

Corporation

Contributing Authors:

Alan Lee, Oracle

Ragnar Edholm, Oracle

Oracle Corporation

World Headquarters

500 Oracle Parkway

Redwood Shores, CA 94065

U.S.A.

Worldwide Inquiries:

Phone: +1.650.506.7000

Fax: +1.650.506.7200

oracle.com

Copyright © 2012, Teradata Corporation, Oracle and/or its affiliates. All rights reserved. This document is provided for information

purposes only and the contents hereof are subject to change without notice. This document is not warranted to be error-free, nor

subject to any other warranties or conditions, whether expressed orally or implied in law, including implied warranties and conditions

of merchantability or fitness for a particular purpose. We specifically disclaim any liability with respect to this document and no

contractual obligations are formed either directly or indirectly by this document. This document may not be reproduced or transmitted

in any form or by any means, electronic or mechanical, for any purpose, without our prior written permission.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Teradata and the Teradata logo are registered trademarks of Teradata Corporation and/or its affiliates in the U.S. and worldwide.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and

are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are

trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark licensed through X/Open

Company, Ltd. 0611

	Executive Overview
	Introduction
	“As-is” and “As-was” Example
	Step 1. Define a session variable
	Step 2. Define the temporal table
	Step 3. Pull the table and column definition into the physical layer
	Step 4. Expose the temporal columns to the end user
	Step 5. Building the dashboard
	Step 6. Add a new Dashboard prompt
	Step 7. Add a column prompt
	Step 8. Save and test the dashboard
	SQL Examples
	Conclusion

