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Executive Overview 

With an amazing 1,536 threads in a SPARC M5-32 system from Oracle, the number of threads 
in a single system has never been so high. This offers a tremendous processing capacity, but 
one may wonder how to make optimal use of all these resources. 

In this technical white paper, we explain how Oracle’s heavily threaded SPARC T5 and M5 
servers can be deployed to efficiently consolidate and manage workloads using virtualization 
through Oracle Solaris Zones, Oracle VM Server for SPARC, and Oracle Enterprise Manager 
Ops Center, as well as how to improve the performance of a single application through  
multithreading. 

Introduction 

Recently, Oracle raised the bar by introducing the SPARC T5 and M5 servers. With up to 
1,024 and 1,536 threads respectively, these systems provide unprecedented processing power 
within a single system. 

Although in some cases customers will use all of these resources to run a single workload or 
perhaps even one single application, we expect that in some situations these servers will be 
used to consolidate multiple application workloads. Some, or even all, of these applications 
may be multithreaded. 

Oracle provides several solutions to address both needs. That is the topic of this paper.  

The first part gives a brief overview of important concepts related to programming for 
multithreaded systems; the next part covers the SPARC S3 core from Oracle, which supports 
8 hardware threads and is at the heart of all Oracle’s SPARC T4, T5, and M5 systems. 

Next, we show how the SPARC S3 core is used to build shared memory servers through a 
highly optimized cache coherent interconnect that scales with the size of the system. The 
topologies of the SPARC T4-4, T5-8, and M5-32 servers are also shown and discussed. 
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The performance of a single application can be improved through multithreading. This topic is 
quite important and is covered quite extensively, with emphasis on using the Oracle Solaris 
Studio compiler and analysis tools. We use two different parallel programming models to 
illustrate how this can be achieved. After an overview of the OpenMP parallel programming 
model, the POSIX Threads way to parallelize an application is shown. 

The goal of multithreading is performance and scalability, but this is easier said than done. 
This is why we give recommendations on how to write scalable applications. Following these 
rules is a big step towards good parallel performance. 

As mentioned above, these new systems have so much capacity that customers should 
consider using one such system to consolidate and manage workloads. 

Oracle offers a variety of solutions to match the specific consolidation needs. Oracle Solaris 
Zones and Oracle VM Server for SPARC are two different virtualization technologies that 
address this. Oracle Enterprise Manager Ops Center provides an integrated and cost-effective 
solution for complete physical and virtual server lifecycle management. All of these are 
discussed in detail. 

One other important topic that is sometimes overlooked by performance analysts is the impact 
of the operating system. A serious and ongoing engineering effort is required to support these 
very heavily threaded systems. This is the topic of the last section. 

The white paper concludes with a glossary that explains the terminology used. 
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Exploiting Machine Parallelism 

The era of massively multithreaded servers is here. This is due to modern processor technology’s 
success at tracking Moore’s Law [1]. Oracle’s recently introduced Oracle Solaris-based servers with the 
SPARC T5 and M5 processors [2, 3]—which are based on the highly successful SPARC S3 core first 
seen in the SPARC T4 processor—feature scalability exceeding 1,000 high-performance hardware 
threads (HWTs) for processing. This trend—ever more cores per processor and more processors per 
server—is expected to continue. The challenge now is finding methods to exploit the increasing power 
of these systems. With this embarrassment of riches, SPARC customers will welcome some guidance 
in efficiently using all those HWTs. This document provides that guidance. 

Thinking in Parallel and the Advantages of Parallelism 

To speed up the execution of any program and to improve overall system performance, the key issue is 
identifying independent software components and executing them “in parallel,” that is, simultaneously, 
on multiple resources. In nearly all areas of a computer system, exploiting parallelism is essential. Not 
just at the processor level but also I/O and data communication benefit from overlapping and 
simultaneous activities. Therefore, both application developers and IT architects have a need to 
understand where parallelism can be used to enhance the performance, scalability, and reliability of 
their applications and system configurations.  

While this might seem obvious, history shows that both programmers and system architects often 
overlook the potential to exploit parallelism in all its forms. Scalable parallel processing must be used in 
order to realize the potential of cloud computing and big data implementations.  

Additionally, with so much processing power concentrated in modern multiprocessor multicore 
servers, these systems provide a compelling platform for server consolidation through the use of 
virtualization technologies to provide deep savings in financial cost, server count, floor space, software 
licensing, electricity, cooling, and maintenance effort.  In particular, Oracle’s latest SPARC servers can 
be easily subdivided into many hypervisor-based VM domains, and can also use Oracle Solaris’ built-in 
OS virtualization technology—Oracle Solaris Zones. 

Oracle’s Approach: Products and Technologies 

Oracle’s SPARC processors, operating systems, application software, engineered systems (Oracle 
Exadata, Oracle Exalogic, SPARC SuperCluster, Big Data Appliance, and others) [4], and optimized 
solutions [5], are all prime examples of Oracle’s adoption and integration of parallelization concepts 
throughout its entire product line. 

Just a few examples include 

• The SPARC S3 multicore processor design supporting 8 threads per core 

• SPARC T4, T5, and M5 shared memory servers with up to 1,536 hardware threads  

• Oracle Real Application Clusters (Oracle RAC) 

• The extensively multithreaded Oracle Solaris operating system kernel 

• Oracle Solaris 11 Integrated Load Balancer 
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• ZFS (RAID-Z, separate disk for ZIL) 

• SPARC and x86 virtualization 

• Oracle Solaris Studio compilers and tools with full support for multithreading 

• The DTrace [6, 7] system profiling tool with full support for multithreading 

These products and technologies incorporate multiple methods for increasing overall system 
performance, including 

• Improving Oracle Solaris’ use of parallelism and caching 

• Providing multithreading APIs and optimizing compilers for application developers 

• Accelerating processors through intelligent caching, faster clock rates, and instruction parallelism 

• Providing tools that discover opportunities for parallelism, such as DTrace [6, 7] and Oracle Solaris 
Studio [8] 

This document helps developers, system architects, performance analysts, and system administrators 
recognize opportunities to exploit parallelism and it explains how Oracle’s extensively threaded systems 
can be configured for server consolidation. 

It does so by providing information on various underlying parallelism concepts, and it also covers how 
Oracle’s products and technologies can be used to address a variety of use cases. There is a special 
emphasis on the recently introduced SPARC multicore servers. 

The SPARC T4, T5, and M5 Shared Memory Systems 

In this section we give an overview of the SPARC S3 core as well as the SPARC T4, T5, and M5 
systems. All these servers use the same SPARC S3 core as a basic building block, ensuring binary 
compatibility throughout the system family and with earlier SPARC systems. It should be noted that 
only a small selection of key features is highlighted here, such as out-of-order execution and instruction 
level parallelism. For much more information on the SPARC S3 core and the SPARC servers it is used 
in, refer to [9, 10, 11, 12]. 

Out-of-Order Execution 

In a conventional “in order” processor design, instructions are fetched from an instruction cache, 
decoded and executed in exactly the same order as they appear in the code. The downside of this 
approach is that an “expensive” instruction such as a divide, which takes many clock cycles to 
complete, blocks the execution of instructions following, even if they are independent. This easily leads 
to delays, or “stalls,” in the execution flow that could be avoided if there were a way to bypass the 
expensive instruction with instructions that do not depend on it. 

That is exactly what an out-of-order (OOO) architecture does. With OOO execution, the processor 
allows instructions issued later to execute before instructions issued earlier have completed. This is 
allowed because the resulting value will be correct, as long as the instructions are independent. With 
OOO execution, such runtime dependencies are automatically tracked and transparently handled in  
the processor.  
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We illustrate this with a simple example. Below we list a floating point instruction sequence using 
pseudo instructions. We use r<n> to denote register <n>. The instructions below are executed from 
top to bottom, starting with the first instruction. 

fadd r1,r2,r3 # r3 = r1+r2 
fsub r1,r2,r4 # r4 = r1-r2 
load @a,r1 # load the value at memory address "a" into register r1 
load @b,r2 # load the value at memory address "b" into register r2 
fdiv r3,r4,r5 # r5 = r3/r4 = (r1+r2)/(r1-r2) 
fmul r1,r2,r6 # r6 = r1*r2 

The above instruction schedule is non-optimal because independent instructions block each other. The 
instructions causing these stalls are in this case also (potentially) expensive. 

On an in-order architecture, the fdiv instruction performing the division must wait for the two 
memory load instructions to finish, even though it does not need those values. Even if this data is 
cached nearby, it still takes a few cycles to get it. This results in a pipeline stall. Although its input 
values do not depend on it, the fmul instruction still needs to wait for the long latency fdiv 
instruction to finish. Note that the delays are introduced because of the instruction schedule, not 
because of true dependencies. 

Also, the use of r1 and r2 in the load instructions creates an artificial dependence on the fadd and 
fsub instruction, since they also use r1 and r2. This duplicate use is not needed, however. Without 
affecting correctness, the results of the load instructions could go into r7 and r8. This is, therefore, a 
correct, but non-optimal schedule and has stalls that could be reduced or avoided. 

On an OOO architecture, the execution pattern is more dynamic and eliminates these two drawbacks. 
The fdiv instruction only needs to wait for the fadd and fsub instructions to finish. Likewise, the 
fmul instruction has no dependency on the fdiv instruction and starts as soon as the results from 
the two memory loads are available. 

Note that another feature is needed when implementing OOO execution. In order for the two 
memory load instructions to be issued before the fadd and fsub instructions have completed we 
need to consider the multiple use of registers r1 and r2. As just mentioned, this re-use is not needed 
for correctness and should not slow down the execution. The “register renaming” part of the 
processor handles this situation.  

OOO execution not only improves the performance of many applications, but it also makes the 
performance smoother. It is less dependent on the precise details of the order in which instructions are 
scheduled and therefore more tolerant regarding non-optimal instruction scheduling. Another 
advantage is that instructions with a variable latency, such as a memory load instruction that may or 
may not miss in cache, can be overlapped with unrelated work. 

Thanks to OOO execution these dependencies are handled in hardware and the instruction stalls are 
reduced or even eliminated, depending on the number of cycles needed by these instructions. 
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The SPARC S3 Core 

The SPARC S3 core [9, 10, 11, 12] implements OOO execution. It is the first SPARC processor to 
implement this feature and is used in in the SPARC T4, T5, and M5 processors. Figure 1 shows a block 
diagram of this core. 

 
Figure 1. Block diagram of the SPARC S3 core. 

Please note this is the core only. The SPARC T4, T5, and M5 processors not only include multiple cores, 
they also have additional on-chip functionality like the memory controller, I/O, coherence interfaces, etc. 

In the SPARC S3 core, OOO execution is combined with instruction level parallelism (ILP). 
Transparent to the application, the hardware issues up to two instructions to the various execution 
pipelines in the core. For example, two integer add instructions, or an integer add and a memory load 
instruction, can be issued simultaneously.  

This mechanism is also referred to as “2-way superscalar.” At first sight it seems tempting to allow 
many more instructions to be issued in parallel, but it has been found that many real world applications 
only exhibit a modest degree of instruction level parallelism. Supporting the ability to issue two 
instructions per clock cycle has proven to accelerate single thread performance on a wide variety of 
applications. 

Other Processor Features 

Another important performance feature is the very efficient use of eight hardware threads (HWTs, 
sometimes called “strands”) within the SPARC S3 core.  

The basic idea of hardware threads is to avoid wasting processor cycles in case a running application 
experiences a delay in the pipeline. This delay could be a long latency instruction or a cache miss. In a 
more conventional design, all such events cause the core to waste cycles because execution cannot 
proceed until the delay has been resolved.  



READ_ME_FIRST: What Do I Do with All of Those SPARC Threads? 

 

9 

In the SPARC S3 core, idle cycles are automatically used by other hardware threads. This is transparent 
to the application, to Solaris, and to the user. 

This thread selection mechanism is very fine grained and is performed by the hardware. Each 
processor cycle, a selection of one out of eight candidate threads is made. Only threads that are ready 
to run are considered. The selection is based upon a modified least recently used algorithm that ensures 
that each thread gets a fair share of the pipeline(s) and avoids thread starvation.  

Great care has been taken to make this very efficient. For example, each thread has its own instruction 
buffer. The instructions for the selected thread are fetched from this buffer and sent to the OOO part 
of the core.  

The implementation of hardware threading in the SPARC S3 core provides an efficient, adaptive and 
fine-grained usage of the available cycles with the goal of improving system throughput and parallel 
application performance. 

The combination of these features results in a very powerful and flexible core. In the next section we 
shall see how this core is used as a fundamental building block in SPARC T4, T5, and M5 shared 
memory systems. 

SPARC T4, T5, and M5 Systems: Connecting the Dots 

As we have just seen, at the core level there are already two levels of parallelism. At the lowest level, 
the 2-way superscalar feature issues up to two instructions at the same time. This is combined with the 
hardware support for eight hardware threads per core. 

In this section, we see how specific features of the SPARC T4, T5, and M5 systems are used to add a 
third level of parallelism.  

As mentioned earlier, these systems all use the same SPARC S3 core with eight hardware threads per 
core. However, there are differences between the SPARC T4, T5 and M5 processors regarding core clock 
speed, the number of cores within one processor, and the size of the L3 cache1. These processors are 
used in SPARC T4, T5, and M5 systems. The name of the system is based on the processor name 
appended with the number of processors/sockets supported. For example, a SPARC T5-4 system has 
four SPARC T5 processors. 

  

 
 
 
1 There are some other low level differences that are beyond the scope of this paper. 
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Table 1 gives an overview of the various processor features. 

TABLE 1. VARIOUS PROCESSOR LEVEL FEATURES OF SPARC T4, T5 AND M5 SYSTEMS  

SYSTEM 

 

MAX NUMBER OF 

PROCESSORS 

NUMBER OF 

CORES/PROCESSOR 

HWTS/CORE TOTAL HWTS CLOCK SPEED 

(MHZ) 

L3 CACHE (MB) 

SPARC T4 4 8 8 256 2998 4 

SPARC T5 8 16 8 1024 3600 8 

SPARC M5 32 6 8 1536 3600 48 

 

Since the same core is used in all three systems, any optimization performed at the core level benefits 
all three systems. 

All of the systems use a cache coherent network that connects all of the processors, memory and I/O 
in the system. The difference lies in the topology of the network but, as we shall see shortly, the details 
of the network will not impact application development and performance tuning. 

The SPARC T4 and T5 systems use a single hop directly connected network. Diagrams of the 
interconnect networks used in the SPARC T4-4 and T5-8 are shown in Figures 2 and 3 respectively. 

 
Figure 2. The interconnect network of the SPARC T4-4 system. 
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Figure 3. The interconnect network of the SPARC T5-8 system. 

As seen in Figures 2 and 3, processors, memory and I/O are physically distributed across the server, 
but thanks to the cache coherence circuitry, the server has a single system image architecture. In other 
words, it is not a cluster. There is one address space for the entire system and each memory location 
and I/O device is accessible from anywhere in the system. 

This is a very advantageous property because unlike a cluster, resources like memory and I/O are not 
fragmented. An application has no restrictions regarding the usage of these resources. For example, a 
single application can use all of the shared memory, even when using one core only, while a parallel 
application can as easily use all memory and all cores. The same transparency holds for I/O. 

This kind of architecture also provides scalable memory bandwidth. Each processor connects to a 
portion of the shared memory and has its own direct connection to that memory. Therefore, adding 
processors also adds memory bandwidth. This is a huge improvement over older bus based designs 
with a fixed bandwidth. In such a case, adding processors reduces the memory bandwidth available to 
each processor. 

Each core on any processor has transparent access to all of the memory connected to other processors. 
The only difference is that access to “remote” memory takes longer compared to accessing the “local” 
memory connected to the processor on which the core physically resides. 

This difference in memory access time is called NUMA (Non-Uniform Memory Access). Since the 
system also supports cache coherence, it is, therefore, said to have a cc-NUMA architecture. 

Similar to the SPARC T5 memory architecture, the interconnect network of the SPARC M5-32 system 
is shown in Figure 4. 
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Figure 4. The interconnect network of the SPARC M5-32 system. 

From an application development and deployment point of view a cc-NUMA architecture is very easy 
to use. There are no restrictions on the choice of cores to use, nor on the memory access. An 
application can transparently access any memory location to read or write data. 

In addition to the considerations discussed so far, the section “Optimizing for Data Locality” describes 
the ability to use local memory preferentially, either automatically or programmatically. 

Developing Applications for Multicore Systems 

In this section we cover how to take advantage of the shared memory parallelism that multicore based 
hardware offers. All SPARC T4, T5, and M5 based servers are included in this and everything covered 
in this section is therefore immediately applicable to these systems. 

Finding the Parallelism 

Before diving into more details on the “how,” we would like to spend some time on the “where.”  

Unfortunately there is no silver bullet when it comes to identifying the parallelism in an application. 
This is where knowledge of the application and its functionality are a big help.2 

Having said that, what can one do then? 

 
 
 
2 The Oracle Solaris Studio compilers support automatic parallelization through the –xautopar option 
the compiler performs a dependence analysis at the loop level. If the work associated with the loop 
iterations is found to be independent, the compiler automatically generates the parallel code for the user. 
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In the ideal case one has the luxury of developing a new application. If so, we highly recommend 
considering parallelization from the start. This need not be implemented yet, but one could write the 
code such that it is easier to parallelize later on.  

In the case of a newly developed program it is necessary to identify opportunities for parallelization. 
Whether it is an on-line banking system, a scientific simulation, an e-commerce application, a device 
driver, or anything else, it is important to understand the level of parallelism. 

Ideally, this understanding is upfront and could drive some software design choices in order to 
facilitate the parallelization either directly, or at a later stage. 

For example, if there is parallelism at a fairly high level in the application one may consider 
implementing the independent parts that a function calls. Unless these functions are extremely simple, 
one need not worry about the overhead such a function call introduces. The gain is noteworthy, 
because one can simply execute these functions in parallel. When using OpenMP, for example, this 
requires only n+1 pragmas for “n” functions to be executed simultaneously. 

Another design choice could be to carefully decide where to use global data. In general it is a good 
performance principle to use localized data as much as possible and refrain from global data unless 
really needed, but in a parallel application global data that is modified in general requires extra care. 

In many cases, however, one does not have the luxury of writing an application from scratch. There is no 
reason to worry though. It is possible to develop an efficient parallel application in this case as well. 

The first key step is to use a profiling tool like the Oracle Solaris Studio Performance Analyzer to find 
where the execution time is spent. Generally this is an eye opener because more often than not this 
turns out to be in a part of the application that is not expected to be expensive. 

Once it is known where most of the time is spent, the key question to answer is whether the work 
performed in this part has a certain level of independence. If so, there is an opportunity for parallel 
execution. 

For example, maybe there are several function calls that can be executed in any order. If so, and if they 
have no side effects like modifying a shared data structure without the proper locking, they can also be 
executed simultaneously. Perhaps there is a for loop and the work performed across the various 
iterations is independent. If that is the case, the loop can be executed in parallel. 

Of course one needs to be careful there are no gotchas somewhere. Unless the target code fragment is 
quite straightforward, more analysis may be needed and knowledge of the application can be a big help 
then. 

Once the most time consuming part has been parallelized, the second most expensive part needs to be 
tackled in a similar way. In this way one works through the performance profile, gradually parallelizing 
the application. 

Don’t stop too soon with this process, and always remember Amdahl’s Law [18]. 
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Parallel Programming Models for Shared Memory 

There are many shared memory programming models available to express parallelism in an application 
that targets a multicore system.3 

Traditionally, developers have used explicit threading models like POSIX Threads (or Pthreads for short) 
[13] in C/C++ and Java Threads for Java applications. Such models provide a relatively modest set of 
powerful, yet fairly low level functions to implement parallelism in a shared memory environment. 

Given the conceptual similarities between these models and the scope of this paper we have chosen to 
only cover Pthreads as an example of an explicit threading model, but many of the topics discussed 
here carry over to other such models. 

On the other side of this spectrum is OpenMP [14, 15]. At a high level, the developer uses pragmas to 
express the parallelism in the application. The compiler then translates this into the appropriate 
underlying infrastructure to create a parallel application. 

Both OpenMP and Pthreads are covered in the remainder of this section. 

The OpenMP Parallel Programming Model 

The first OpenMP 1.0 specification was released in 1997. Since then it has evolved significantly, and 
the 4.0 specifications that were released in July 2013 are another major step forward. 

So what is OpenMP then? 

It is a shared memory parallel programming model available for C, C++ and Fortran. The user 
specifies the parallelism by adding directives in the source. In C/C++ these are pragmas, while in 
Fortran specific language comment syntax is used. In both cases the advantage is portability. A 
compiler that does not support OpenMP simply ignores the pragmas and special comment lines. 

A simple example of a parallel version of “Hello World” is shown below. The source code changes 
specific to OpenMP have been color coded blue. 
  

 
 
 
3 We refer to a program as being “parallel” or “multithreaded” if there are multiple independent instruction 
streams that could execute simultaneously. These streams are also loosely defined to be a “thread.” 
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#include <stdio.h> (1) 
#include <stdlib.h> (2) 
 
#ifdef _OPENMP (3) 
#include <omp.h> (4) 
#endif (5) 
 
int main() (6) 
{ (7) 
 #pragma omp parallel (8) 
 { (9) 
  printf ("Hello OpenMP World, I am thread %d\n",omp_get_thread_num()); (10) 
 } // End of parallel region (11) 
} (12) 

As simple as it is, this code already has several of the key features to be found in every  
OpenMP application. 

The first new element can be found at lines 3–5. Here we include an OpenMP specific file (omp.h) 
that defines all the OpenMP runtime functions. If no such functions are used this file need not be 
included. Note that the inclusion is under the condition that _OPENMP is defined. This is guaranteed 
to be the case if an application is compiled for OpenMP. In this way, one can also compile the 
program without enabling OpenMP because then the file will not be included. 

Lines 8–11 form the core part of the parallel code. They define what is called a parallel region. This is 
the key construct in OpenMP. It is defined by the #pragma omp parallel keywords. All 
threads execute the code in the parallel region. Outside parallel regions the main “master” thread 
executes the serial portions of the code. 

In this case the parallel region starts with the opening curly brace at line 9 and ends with the closing 
curly brace at line 11. Although not required, we prefer to mark it with a comment string to underline 
the end of the parallelism. 

Since the printf statement at line 10 is part of the parallel region, each thread executes it. To 
distinguish who prints the line we include the unique thread number in the output. This value is 
returned by the omp_get_thread_num() runtime function. 

Now that we have our parallel code we need to compile it. This is easily achieved by using a specific 
compiler option, which is –xopenmp for the Oracle Solaris Studio C, C++ and Fortran compilers. 
Assuming we stored our program in file hello.omp.c we simply compile it as follows: 

$ cc -o hello -fast -xopenmp hello.omp.c 

The –fast option activates many advanced serial optimizations. As just mentioned, the -xopenmp 
option activates OpenMP support in the Oracle Solaris Studio compilers. 

It is worth spending a little bit of time on what actually happens under the hood of the compiler. 
Thanks to the –xopenmp option, the compiler recognizes the pragmas (or directives in Fortran) with 
the appropriate syntax, which is #pragma omp <keyword(s)> in C/C++. 

A simple pragma as shown on line 8 translates to a quite complicated library call structure to generate 
the code that executes in parallel at runtime. All thread creation, management and execution is handled 
transparently to the user. All the developer needs to do is to use the pragmas to tell the compiler where 
the parallelism is and how to distribute the work. 
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As we will see later, OpenMP provides a much richer functionality than just this, but the general 
philosophy remains. The level of abstraction is very high, relieving the developer from worrying about 
all sorts of low level details. 

The program we just compiled and linked can now be run as usual. The only difference is that we use an 
OpenMP specific environment variable called OMP_NUM_THREADS to inform the runtime system how 
many threads we like to use. If this variable is not set, a system dependent value is used. 

Here’s how to run this code using 2 and 4 threads: 
$ export OMP_NUM_THREADS=2 (1) 
$ ./hello  (2) 
Hello OpenMP World, I am thread 0 (3) 
Hello OpenMP World, I am thread 1 (4) 
$ export OMP_NUM_THREADS=4 (5) 
$ ./hello (6) 
Hello OpenMP World, I am thread 0 (7) 
Hello OpenMP World, I am thread 3 (8) 
Hello OpenMP World, I am thread 2 (9) 
Hello OpenMP World, I am thread 1 (10) 
$ 

At line 1 we set the number of threads to 2 and run the program as usual (line 2). Lines 3 and 4 show 
the output for each thread. In OpenMP it is guaranteed that the main “master” thread has a thread ID 
of zero. The other threads are integers, numbered consecutively from one. 

At line 5 we change the number of threads to be 4 and run the same program in exactly the same way, 
but now four lines are printed, one for each thread (lines 7–10). 

Note that the output is not sorted by thread ID. This is an aspect of parallel computing. Various 
threads execute at different times and most likely not in the same order across runs. If a code block is 
truly parallel this should not affect correctness of the results.  

There is one thing we have not mentioned yet. In any shared memory parallel program there is not 
only a need to have data shared by all threads, but each thread needs private data too. Private data is 
only visible to the thread that owns it and cannot be read or written by other threads. The loop counter 
in a for loop is an example of this. It would be really bad if one thread can modify the loop variable 
used by another thread. 

In OpenMP, the shared and private clauses are used to label data accordingly.  

Additionally, in C/C++ any variables local to a code block are automatically privatized. A simple 
example of this is a re-written version of our example program: 
#pragma omp parallel (1) 
 { (2) 
  int thread_id = omp_get_thread_num(); (3) 
  printf ("Hello OpenMP World, I am thread %d\n",thread_id); (4) 
 } // End of parallel region (5) 

Variable thread_id is declared locally at line 3 and, therefore, is automatically a private variable  
in OpenMP. 

Now that we have seen a first and admittedly simple example of OpenMP, it is time to look at the 
bigger picture and cover the main functionality available. There are three major components and we 
have already seen an example of each. 
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• Directives – The fundamental concept is the parallel region. An application can have an arbitrary 
number of these. Within each region the developer can select how to distribute the work over  
the threads.  

For example by using the #pragma omp for construct the iterations of the loop to which it 
applies are executed in parallel where each thread operates on a subset of all iterations. However, 
there is much more. 

Through parallel sections (#pragma omp sections), multiple independent code blocks can 
be identified. These blocks can contain any type of code and are executed in parallel. This for 
example can be used to set up a pipeline overlapping I/O and processing. 

As of OpenMP 3.0, tasks have been introduced. Through the #pragma omp task construct 
one identifies tasks in the source. The assumption is that code blocks identified as tasks can execute 
independently. The compiler and runtime system handle the creation and parallel execution of the 
tasks. Tasks are ideally suited for more dynamic and irregular types of parallelism. 

• Runtime functions – An extensive set of runtime functions are available to query and modify the 
runtime environment. The omp_get_thread_num() function we saw earlier is an example. It 
returns the thread ID. There are many more functions though, providing great flexibility to adapt or 
change the execution to the specific situation. 

• Environment variables – Several environment variables are supported. These can be used to define 
the initial environment. We already saw one. Variable OMP_NUM_THREADS can be used to set the 
initial number of threads to be used in a parallel region. All environment variables take a default. 
Unless one prefers to change a setting, there is no need to set them. 

Aside from the high level of abstraction and ease of use, OpenMP has another major advantage over a 
programming model that relies on explicit library calls. It is possible to write the parallel application 
such that the original, serial version is still “built in” and can be used by not compiling with the option 
to invoke OpenMP (e.g. –xopenmp on the Oracle Solaris Studio compilers). 

This is a good safety net that can be used in the development phase, as well as when encountering a 
last minute regression. The code will still run serially if the –xopenmp option is omitted. Those parts 
not compiled with –xopenmp obviously execute serially, but at least the application will run. 

Another important feature of OpenMP is that the specifications continue to adapt to the rapid changes 
in the architecture of microprocessors and computer systems. A case in point is the release of 
OpenMP 4.0 in July 2013. Major new functionality added includes support for heterogeneous systems 
(e.g. attached accelerators), cc-NUMA architectures, thread cancellation and an extension of the tasking 
model. 

In this section we only touched upon OpenMP. For much more in-depth information we refer to [16]. 
The Oracle Solaris Studio OpenMP User’s Guide can be found at [17]. 

  



READ_ME_FIRST: What Do I Do with All of Those SPARC Threads? 

 

18 

POSIX Threads 

For many years, POSIX Threads (also referred to as Pthreads) provided the only portable, standardized 
parallel programming model for shared memory systems.  

Thanks to its portability and flexibility it has become a very popular way to parallelize applications. 

It is an explicit programming model. The developer has to handle all of the details. The Pthreads API 
provides functions that can be used to create and manage threads, synchronize threads, and so on, but 
there is no higher-level functionality. 

A question that arises often is whether one should use OpenMP or Pthreads. 

While OpenMP provides an easy to use and flexible way to develop parallel programs, control over the 
threads and their behavior is not always explicit. This is by design and sufficient for many, but 
sometimes a developer wants to control the threading model in a very detailed manner. In this case, 
Pthreads provide a natural and portable solution. 

The Pthreads API contains a large number of functions and features—too many to discuss in this paper. 
Instead, the remainder of this section will cover the core subset of thread creation and mutual exclusion. 

The Pthreads way to create a new thread is to call function pthread_create(). The key 
parameter it takes is a pointer to the routine that the new thread will execute. When a thread completes 
its work, it waits to be “joined” so that it can pass back a return value. 

The API call pthread_join()waits for a particular thread to complete, and makes the return value 
from the child thread available to the calling thread. The code below shows a thread being created, 
executing, and returning a value. The Pthread specific code fragments are color coded blue. 
#include <pthread.h> 
#include <stdio.h> 
 
void * work(void * param) 
{ 
   printf("In child thread\n"); 
   return (void*)8; 
} 
 
int main() 
{ 
   pthread_t childthread; 
   pthread_create(&childthread, 0, work, 0); 
 
   printf("In parent thread\n"); 
 
   long value; 
   pthread_join(childthread,(void*)&value); 
 
   printf("Child returned %i\n",value); 
} 

A disadvantage of using Pthreads is that the developer is responsible for managing all aspects of the 
interactions between the various threads. For example, if there are two threads that manipulate the 
same variable, then one needs to ensure that these two threads cannot update it at the same time. The 
easiest (but also least efficient) way of doing this is to place the updates to the variable under the 
control of a mutually exclusive lock, or “mutex” (lock).  
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This mutex lock can only be acquired by a single thread at a time. To update the shared variable, a 
thread needs to acquire the mutex lock, update the variable, and then release the mutex lock. The API 
provides for the functionality to acquire and release the lock. It is guaranteed that only one thread at a 
time can do so. 

A mutex lock has a lifecycle. It needs to be initialized before it can be used, and destroyed once it is no 
longer needed. The example below demonstrates how two threads increment a shared variable using a 
mutex lock. Pthreads specific code fragments are color coded in blue. 
#include <pthread.h> 
#include <stdio.h> 
 
pthread_mutex_t mutex; 
volatile int value=0; 
 
void *work(void * param) 
{ 
   for(int i=0;i<200; i++) 
   { 
      pthread_mutex_lock(&mutex); 
         value++; 
      pthread_mutex_unlock(&mutex); 
   } 
} 
 
int main() 
{ 
   pthread_t childthread[2]; 
 
   pthread_mutex_init(&mutex,0); 
 
   for (int i=0;i<2; i++)  
   { 
      pthread_create(&childthread[i], 0, &work, 0); 
   } 
   for (int i=0;i<2; i++)  
   { 
      pthread_join(childthread[i],0); 
   } 
 
   printf("Value of shared variable = %i\n",value); 
 
   pthread_mutex_destroy(&mutex); 
} 

In the example, the threads increment a shared variable. This type of update occurs in quite a few 
situations. For example, if statistics are being kept for the amount of work completed, or the time 
taken to complete the work. 
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Rather than use a mutex lock for these situations, it may be more efficient to use atomic operations. 
These are typically very efficient, but non-portable. On Oracle Solaris they are declared in the 
atomic.h header file. So the previous example can be recoded to use atomics as shown next. The 
code specific to the use of the atomic operation(s) is color coded in blue. 
#include <pthread.h> 
#include <stdio.h> 
#include <atomic.h> 
 
volatile unsigned int value=0; 
 
void *work(void * param) 
{ 
   for(int i=0;i<200; i++) 
   { 
      atomic_add_int(&value,1); 
   } 
} 
 
int main() 
{ 
   pthread_t childthread[2]; 
   for (int i=0;i<2; i++)  
   { 
      pthread_create(&childthread[i], 0, &work, 0); 
   } 
   for (int i=0;i<2; i++)  
   { 
      pthread_join(childthread[i],0); 
   } 
   printf("Value of shared variable = %i\n",value); 
} 

In this example, we have declared the variable value to be volatile. This tells the compiler that the 
variable should not be cached in a register. Instead, it should be fetched from memory whenever it is 
used, and immediately stored back to memory after it has been modified. The volatile keyword is not 
strictly necessary in this situation—the fact that we are making function calls in the loop will ensure 
that the variable is stored back to memory before the mutex lock is released, but in other situations it 
may be necessary for shared variables to be declared this way.  
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Consider the code below: 
#include <pthread.h> 
#include <stdio.h> 
 
int ready = 0; 
 
void *work(void * param) 
{ 
   while (!ready) {} 
} 
 
int main() 
{ 
   pthread_t childthread; 
 
   printf("Started\n"); 
 
   pthread_create(&childthread, 0, &work, 0); 
   printf("Continue\n"); 
 
   ready=1; 
 
   pthread_join(childthread,0); 
 
   printf("Finished\n"); 
} 
The thread executing the routine work() waits for variable ready to become non-zero. Since 
variable ready is not declared as volatile, the compiler is free to optimize the loop so that the variable 
is only read once.  

This is a perfectly valid optimization, but in a parallel program it has an unwanted and unpleasant  
side effect. 

If the variable is read before it is set to one, then the child thread will never read it again, and so will 
loop forever. If the variable is set to one by the time the child thread starts, it will immediately return.  

The difficulty with the code is that most of the time the variable ready is set correctly, and the code 
behaves as expected; however, on rare occasions, if the variable is not set at the “right” time, the 
program will get stuck in an infinite loop. It is this kind of unpredictability that makes multithreaded 
applications hard to debug.4 

 

  

 
 
 
4 This is an area where OpenMP has more safety nets. The “flush” concept provides a well-defined and 
portable way to force consistency of variable values throughout the system. Since the flush construct is 
built-in with all major constructs (e.g. the barrier), there is usually no need to declare shared variables  
as volatile. 
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Other Synchronization Mechanisms 

In addition to mutex and atomic operations, there are a number of other mechanisms for coordinating 
between threads.  

The readers-writer lock is a variant of a mutex where multiple reader threads can hold the lock and 
read the protected variables, or one writer can hold the lock to modify the protected variables.  

Semaphores are counters where a “post” increments the counter, and a “wait” waits until the counter is 
greater than zero. This mechanism can be used to make a thread wait until there is work ready for it. 

Condition variables are a mechanism similar to semaphores in that they allow a thread to signal other 
threads, and the other threads wait until they are signaled. However, condition variables also allow 
protected access to a shared variable. So it is easy to communicate data, as well as indicate that there is 
data available. 

How to Develop Scalable Applications 

Many misconceptions surround writing a well performing application, both for serial as well as 
multithreaded execution.  

This is actually no surprise, because the hardware continues to evolve and compilers are increasingly 
getting more advanced. As a result, many of the guidelines that were valid until recently are no longer 
needed, or can even backfire, resulting in non-optimal code. 

This is why in this section we prefer to focus on coding techniques with a long lasting performance 
benefit. In some cases, it may not only be challenging for compilers to fix these performance issues, 
but sometimes it is even fundamentally impossible to address them. This is especially true for data 
layout and cc-NUMA related performance bottlenecks. 

Serial Performance 

It seems strange to write about this in a paper on massively threaded systems, but that is exactly why 
we put it in here. All too often, developers take serial performance for granted and immediately jump 
to the parallelization. Although understandable, skipping serial performance may inhibit scalability and 
often sooner rather than later. 

The reason is quite simple. If an application does not perform well using a single thread, what would 
you expect when that code runs in parallel? It would be rather naïve to assume things would then go 
very well. 

Instead, scalability most likely suffers. This is because poor serial performance is almost always caused 
by non-optimal use of the cache(s) and memory system. This results in more memory transactions than 
necessary. Not only do these take extra time, the bandwidth (and sometimes the latency) requirements 
become stricter as well because more data than needed has to be fetched or written back. 

In a parallel version of the same application this quickly puts additional strain on the bandwidth since 
multiple threads now use the interconnect at the same time. The more threads that are used, the more 
pronounced this problem will be and the bandwidth saturates sooner than needed. 
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This is why we highly recommend first ensuring that the serial application performs reasonably well. 
Very often this effort does not go beyond exploring some additional compiler options. 

Modern compilers such as the Oracle Solaris Studio compilers can perform magic when tuning an 
application. The key to this lies in the ability for the compiler to determine the intent of the code. What 
do we mean by that? It is quite easy to write very cryptic code that is not only hard to read for humans, 
but also difficult for compilers to find out what is really going on. As a result, it may fail to generate 
optimal code. 

Another reason compilers may find it hard to deliver the best performance is in the area of data 
structures. It is beyond the scope of this paper to elaborate on this, but we can summarize the  
problem here.  

Any data structure (e.g. an array of structures) is stored in a certain way in memory. The best 
performance is obtained if data access smoothly follows the storage order in memory. This is when 
caches are used in an optimal way and techniques like data prefetch can hide cache and memory 
latencies very well. 

If this is not the case, however, performance can quickly take a turn for the worse. This results in 
longer memory access times and increased bandwidth requirements.  

A standard example is accessing an array. The code snippet below reads 2-dimensional array a one row 
after the other. This is the correct way for performance in C/C++ since the array is stored row by row 
in memory. 

for (int i=0; i<nRows; i++) 
  for (int j=0; j<nColumns; j++) 
    sum += a[i][j]; 

If these two loops were reversed, the performance would be much worse. Especially for large matrices 
there will be many more data cache and data Translation Look-Aside Buffer (TLB) misses. 

In general, an optimizing compiler will try to restructure the code to improve memory access, by 
interchanging the order of the loops in the above-shown nested loop, for example. It may, however, be 
limited in what it can do because it lacks the information needed to validate a specific optimization. 
For example, what if certain elements in an array of records are not used? This loads more data in the 
cache than needed, but fixing this requires re-arranging the storage of the data structure(s) in memory, 
perhaps by setting them up differently. Unless the compiler has full visibility of this throughout the 
entire code, it would stretch limits too far to expect the compiler to handle this. 

This is where the developer can help by reconsidering the data layout and data structure definitions. 

In summary, there are many opportunities to optimize serial performance of your code, and the 
compiler’s options are a great place to start. Once the program performs sufficiently well serially, it is 
time to consider the parallel performance. This is the topic of the remainder of this section. 
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Amdahl’s Law 

There is a rule that can be used to predict the speedup of a parallel application. It has been named after 
Gene Amdahl, a famous computer architect, and is generally referred to as Amdahl’s Law [18]. 

What this law basically says is that any serial, that is, non-parallel, part of a program dominates the 
performance sooner than later. 

Expressed in a formula, this law gives the expected speed-up as a function of two parameters: P  
and f: 

 SP(f) = 1/(1-f + f/P) (Amdahl's Law) 

In this formula, SP(f) is the parallel speedup as a function of P and f, where P denotes the number 
of threads used, while f is the fraction of time spent in those part(s) of the application that can be 
parallelized. Obviously, f is in the interval [0,1] and both endpoints are corner cases. The case f=0 
denotes a purely sequential program, and no speedup due to parallelization is possible. A value of f=1 
means the entire application can be parallelized from start to end, and is, therefore, linearly scalable 
based on the number of available threads. This type of application is often referred to as 
“embarrassingly parallel.” 

In a more realistic scenario, the value of f is somewhere between zero and one, and hopefully closer to 
the latter! 

There is an important thing we did not mention yet: Amdahl’s Law does not include any parallel 
overhead. This is not a realistic assumption though and does imply that this law actually presents a 
best-case scenario. 

As simple as this formula seems, its implications should not be ignored. 

In Figure 5 we show the expected speedup as a function of various values for the fraction f. It is 
assumed up to 16 threads are used. Note that in this chart, f is expressed as a percentage. 

 
Figure 5. The expected parallel speedup as a function of various values for the fraction f. 
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The two dashed lines are the parallel speedup values for the corner cases f = 0% and f = 100%. 
As to be expected, the curve for f = 0% shows no speedup at all. The opposite situation, f = 
100%, gives a perfectly linear speedup. As just mentioned it is, however, more realistic to assume f is 
neither of these, but somewhere in between. 

The ruthlessness of Amdahl’s Law is demonstrated through the 3 solid curves. As one can see, if 99% 
of the execution time in the serial application can be parallelized, the speedup using 16 threads is 14, 
not 16. Now this is not bad at all, but adding more threads quickly gives a diminishing return. 

The other two curves are for f = 75% and f = 50%, respectively. As one can see, the speedup 
does not exceed 4 and 2 respectively, no matter how many threads are used. 

This is a general property of Amdahl’s Law. As we can derive from the formula, the parallel speedup is 
always less than 1/(1-f). 

We conclude this section with a practical tip. By just using two timings, one can estimate the fraction f 
for any application. 

Amdahl’s Law can be rewritten to express f in terms of things we either know or can measure: 

f = (1-1/SP)/(1-1/P) 

In this formula, we obviously know P, the number of threads used, and we can measure the parallel 
speedup. 

For example, assume the single thread time of a job is 100 seconds. Also assume that when using two 
threads we measure 57 seconds of elapsed time. Applying the formula above gives: 

f = (1-1/(100/57))/(1-1/2) = 0.86 = 86%. 

We can now use this value for f and apply Amdahl’s Law. According to this, the estimated speedup on 
4 threads is S4(0.86) = 1/(1-0.86 + 0.86/4) = 2.82. 

In a similar way, we estimate the speedup on 8 threads to be 4.04. Although still faster than the run 
using 4 threads, there is a diminishing return. 

Amdahl’s Law should not be used as a reason to not parallelize an application at all. A growing group 
of developers achieves great results going down the path of parallel computing. What Amdahl’s Law 
says, is that when aiming for a very scalable application, one needs to be aware of any serial part in the 
application and find ways to parallelize it. Very often this is possible and very rewarding.  

In that respect a classical “gotcha” are the synchronization primitives, like locks and barriers. Although 
part of the parallel infrastructure, these are serial operations at a certain point deep down inside the 
system. To make matters worse, the cost of these primitives grows as more threads are added. 
Therefore, they must be used with great care, as described next. 
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Synchronization 

As just discussed, in order for an application to scale well it needs to spend little time in the serial, 
single-threaded part of the code. 

Synchronization typically implies serial execution. For example, suppose all the threads complete some 
work, then need to update a common state that is protected by a mutex lock, before all of them can 
resume their work.  

Only one thread at a time executes the code protected through the mutex lock. All other threads that 
have not executed this code yet need to wait, but that means execution is serialized: one thread 
executes after another, not simultaneously.  

The more threads that require synchronization, the longer the synchronization takes, and the larger 
proportion of the runtime is spent synchronizing.  

To produce codes that scale, the threads should spend as little time as possible synchronizing, and as 
much time as possible doing independent work.  

There are multiple degrees of intrusiveness of synchronization, and they can be classified as follows: 

• No synchronization. Every thread completes its own work without interactions with other threads. 
This is the ideal approach because the resulting application should be able to scale to large numbers 
of threads with no synchronization costs. 

• Local copies of shared data. In some instances there is some shared state to maintain, but each 
thread can update their own copy of this data, and the final value can be computed only when it is 
necessary. For example, to calculate the total value of an array of numbers, each thread can have a local 
variable that holds the partial sum resulting from adding up a segment of the array. Once all threads 
have completed their work, these partial sums can be combined into a single value. Although the act of 
combining the partial sums is quite expensive, it is less expensive than attempting to hold the resulting 
sum in a single variable and protect each update through a lock. 

• Lightweight synchronization. Some synchronization primitives, like atomic operations, are lower 
cost, but obviously still more expensive than not synchronizing. 

• Pthreads synchronization primitives. The synchronization primitives provided by the Pthreads 
API are portable, but heavier weight than atomic operations. They often require calls into the 
operating system kernel, and sometimes cause a thread to sleep rather than loop while waiting for an 
event. Waking up the thread again is relatively expensive. 

• “Stop the world synchronization.” The worst kind of synchronization is the type where all the 
threads stop working until they all have completed a lock-protected block of code. This is very 
inefficient because not only is execution serialized (Amdahl’s Law), the cost of the synchronization 
increases as threads are added.  
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One advantage of using higher-level parallelization approaches like OpenMP is that the support 
libraries provide efficient algorithms for solving common data sharing problems.  

For example, in OpenMP the above-mentioned summation of the elements of an array can be simply 
handled through the reduction clause. The compiler then handles this is in the most efficient way, taking 
advantage of local storage to avoid excessive synchronization. 

Optimizing for Data Locality 

All contemporary parallel computer systems have a cc-NUMA architecture. The reason is simple. To 
provide scalable memory bandwidth, all modern general-purpose microprocessors have the memory 
controller on the chip. As we’ve seen earlier, through cache coherence all of the memory is visible 
throughout the entire system. 

This works very well for applications. Even a serial application can use all of the memory in the system. 

However, there is one issue: accessing another processor’s memory takes longer. Access to data is 
totally transparent to the application, since it is simply a load (or store) instruction with a specific 
address. The hardware resolves where the data is and moves it to the thread that needs it, but this takes 
longer if the data has to come from the memory on another socket.  

On SPARC T4, T5, and M5 based systems the difference between local and remote access is not as 
large as on older cc-NUMA systems, but not to be ignored if one wants to achieve a high degree of 
scalable performance, that is, scaling to a large number of threads. 

To achieve the fastest memory access for serial applications, Oracle Solaris allocates memory using the 
“First Touch” policy. This means that the process or thread touching the data for the first time owns 
the data. It has the data in the memory connected to the processor where the process runs at the time 
the data is touched and with “touch” being defined as creating the TLB entries for the first time. 

This default choice works very well because in a serial application there is only one thread executing 
and therefore it has all the data in its local memory. In case the data does not fit, it overflows to nearby 
memory. For many years, Oracle Solaris has increasingly been made cc-NUMA aware and the system is 
smart enough to handle such overflow in the most efficient way. 

For a parallel application, things are slightly different because it is no longer obvious that one thread 
should own all the data. On the contrary, this is probably not desirable, as threads executing on a 
different processor may need to access remote memory to get to their data. 

Luckily, in many cases the First Touch policy can also come to the rescue here, but it may require 
source code changes in the data initialization part. 

Given how First Touch works, you must find where data is initialized for the first time and see how 
this part can be parallelized. The best strategy is to determine the relationship between the threads and 
data and make sure a thread initializes its portion of the data. 
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To make this a little more specific we show a very simple example using OpenMP. Assume that the 
threads use a subset of a vector called a. If we were to have a initialized by a single thread, all others 
threads need to access the memory where a resides. Instead, we use the OpenMP #pragma omp 
parallel for construct to perform the data initialization in parallel like this: 
#pragma omp parallel for schedule(static) 
 for (int i=0; i<n; i++) 
  a[i] = 0; 

The OpenMP runtime system distributes the loop iterations over the threads. By virtue of the 
schedule(static) clause, the first thread initializes the first section of a, the second thread the 
next chunk, etc. As a result, each thread now “owns” a section of this array and has it in its local 
memory, wherever that may be on the system. 

This approach provides a portable and easy way to optimize data placement, but it is not applicable to 
all situations and for every application. It may be, for example, that the data access pattern changes 
during the execution. For cases like this and for the utmost flexibility, Oracle Solaris provides the 
madvise (3C) system call.  

This function takes a starting address, a length, and a keyword as arguments. The keyword is the advice 
what to do with the data. For example, you might advise the system to migrate data to the next thread 
that uses the data, not the first thread that initialized it.  

Last, but not least, it should be mentioned that data placement is controlled at the page level. 

False Sharing 

False sharing is one of the least understood factors that negatively impact scalability. This may be 
because it is not very common, luckily, but if it happens, the performance degradation is noticeable. 

To explain false sharing we should take a closer look at what is happening at the level of the data 
cache(s). Data at this level is organized in “cache lines.” The size of a cache line is architecture 
dependent and need not even be the same across all cache levels. Typical sizes are 32 or  
64 bytes. 

When the processor needs a data element, not only this element is fetched, but also the entire line 
containing the data needed is brought into the (level 1) cache. The reason to do it this way is to 
amortize the cost of the transfer. For good performance all elements in the same cache line should be 
used before a new line is brought in. 

In a parallel application, it can easily happen that multiple copies of the same line exists. One reason 
this may occur is that multiple threads read different variables that are all part of the same line. 

So far there is nothing to worry about, but what to do if one of these threads changes a variable in such 
a shared line? At that point there is an inconsistency between the newly modified line and the other 
copies. The way the system handles this is by “invalidating” these other copies. In this way, a thread 
knows it cannot use this line anymore and needs to get the most recent copy from elsewhere in the 
system. 
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Note that this could in fact be overkill because perhaps the portion of the cache line a thread is 
interested in has not been modified, but since this status is maintained on a line basis, not at the byte 
level, there is no way for the thread to know this and it will fetch a fresh copy. 

The result of this false sharing is increased coherence traffic and cache lines travelling through the 
system. This can be costly, even though great efforts are made to handle this situation as efficiently as 
possible. 

False sharing is always taking place and is not really noticeable. It gets to be a problem if multiple 
writes to the same cache line happen very frequently and in a relatively short time span, such as in the 
core part of an application.5 

This is a situation that should be avoided and very often this can be done. Often the easiest solution is 
to “localize” updates and only write the final result to a shared variable. 

You can achieve this in OpenMP very easily by using variables that are private to a thread. 

Tips and Tricks 

We conclude this section by giving additional advice about obtaining good performance. 

• Good performance starts by using the right compiler. This is true for both serial and parallel 
performance. The Oracle Solaris Studio compilers are continuously tuned to generate optimal code. 
The teams work closely together with the SPARC engineers to ensure the best possible performance.  

• Use the Oracle Solaris Studio Performance Analyzer that is bundled with these compilers. This 
tool easily identifies the performance hot spots in any serial or parallel application written in C, C++, 
Java or Fortran. The tool not only helps the user prioritize optimization opportunities, it also quickly 
shows communication bottlenecks, time spent in synchronization, etc. 

• Experiment with compiler options. In addition to identifying “hot” sections in the code, also 
indicates optimizations the compiler has carried out. This may point at the need to explore some 
other options tailored to the situation. 

• Write clear code. Try to think what you would do if you were the compiler. Looking at the source 
only, could you really figure out what the goal of this part of the code is? If it is clear to the compiler 
what the intention of a certain code block is it can generate more efficient code. Obscure coding can 
make this much harder. In that respect you may want to find another purpose for that older book 
with tuning tips. Many of these are no longer needed and can actually mask the intentions to the 
extent that the compiler will not generate the best possible code. 

• Verify your data structures. Compilers can do a lot for you, but cannot fix every data structure 
issue. Make sure to set up your data structures such that cache lines are used in the optimal way. This 
is achieved by ensuring consecutive data accesses are also consecutive in memory. 

 
 
 
5 Note that false sharing does not occur on read only data.  
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• Look at the bigger picture. It is best to leave low level details to the compiler. It knows the 
characteristics of the processor in detail and can very well decide what kind of code to generate. 
Your responsibility is to make sure the compiler targets the right processor. By default it will 
optimize for the processor performing the compilation. If this is a different processor than the one 
used for deployment, use the –xtarget option on the Oracle Solaris Studio compiler to be 
specific what to optimize for. 

• Never forget Amdahl’s Law. This has been as true as ever and as ruthless too. Most scalability 
issues go back to this law. Therefore, avoid serial parts in the program as much as possible. 

• Use private data as much as possible. Sharing of data is very convenient and at times necessary in a 
parallel application, but only share data if it is really needed. Using private data has several performance 
advantages. There is no risk multiple threads access the same memory spot at the same time and false 
sharing is avoided. It is also easier to place private data in the memory of the thread that needs it. This 
kind of local memory access is highly recommended for cc-NUMA systems. 

• Avoid excessive use of locks and barriers. We see too many applications that make excessive use 
of locks. They are definitely needed at times and convenient to use, but few realize how expensive 
they are. The cost of locking also increases as more threads are used and can soon become a 
scalability bottleneck. 

• Think Parallel. Last, but certainly not least, think in a parallel way when developing new code. Is it 
really necessary that only one thread performs the work, or can it be distributed? Why not have each 
thread do similar work as opposed to have one thread do all of it while the others are waiting in a 
potentially expensive synchronization construct such as a lock or barrier [20].  

Many Cores Make Virtualization Work 

One reason to use systems with many threads is to deploy parallel programs, but perhaps the scalability 
of the application is limited and not all threads can be used efficiently, or the workload consists of a 
mix of serial and parallel jobs. 

This is where virtualization, resource partitioning and workload isolation comes into the picture. 

The idea is to consolidate multiple applications that each use a single or limited number of threads on 
the same server. If the applications don’t all have peak loads at the same time or were over-provisioned, 
the aggregate compute resources they share can be much lower than the sum of the separate machines. 
This can provide deep savings in financial cost, server count, floor space, software licensing, electricity, 
cooling, and maintenance effort. 

A traditional way to do this is to combine multiple applications on the same multiprogramming 
operating system instance. This can be problematic if the different applications require incompatible 
operating system versions, different maintenance windows, or as is very common, application owners 
require independence and freedom from performance and security interference. The answer to this is 
the increasingly popular option of workload isolation provided by server virtualization. While server 
virtualization has been available on some platforms for many years, it is an increasingly popular 
deployment method used for workload isolation on modern UNIX servers. 
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Multiple models of workload isolation exist. Some methods, e.g., physical partitioning, provide 
complete electrical isolation. All of the components in one partition can fail in one instant, or degrade 
gradually, and the other partitions will be unaffected. Another method, virtual machines (VMs), uses a 
hypervisor to create a fiction of separate computers, when in reality those virtual machines share 
components such as HWTs, DIMMs, a memory bus, system interconnect, and an I/O subsystem. A 
third model, called "operating system virtualization" or "OS virtualization" provides the fiction of 
multiple operating system instances, even though multiple sets of distinct processes share the same OS 
kernel. 

Virtualization 

Oracle’s server virtualization products support x86 and SPARC architectures and a variety of operating 
systems, such as Linux, Windows, and Oracle Solaris. In addition to solutions that are hypervisor-
based, Oracle also offers virtualization built into hardware and Oracle operating systems to deliver the 
most complete and optimized solutions for your entire computing environment. 

Oracle’s SPARC T5 and M5 servers cover the entire range of virtualization methods, including 
Dynamic Hardware Domains, Oracle VM Server for SPARC (hypervisor-based), and Oracle Solaris 
Zones (OS-based). As a result of the SPARC T5 and M5’s extreme level of multithreading, these 
features provide unprecedented flexibility and efficient scalability for server consolidation and cloud  
computing infrastructure. 

Oracle Solaris Zones 

Oracle Solaris Zones is the most widely recognized form of OS virtualization technology in the 
industry. First released in Oracle Solaris 10 in 2005, Oracle Solaris Zones began with a security 
boundary—isolation—that prevents a workload in one zone from interacting with a process in a 
different zone. Since then, features have been added on a regular basis, and integration with other 
innovations in Oracle Solaris have made this form of virtualization very popular. Oracle estimates that 
40% of SPARC-based Oracle Solaris systems use Oracle Solaris Zones. 

A zone is a virtualized operating system environment created within a single instance of the Oracle 
Solaris system; it is not a full OS kernel. When you create a zone, you produce an application execution 
environment in which processes are isolated from the rest of the system. This isolation prevents 
processes that are running in one zone from monitoring or affecting processes that are running in 
other zones. Even a process running with superuser credentials cannot view or affect activity in other 
zones. 

A zone also provides an abstract layer that separates applications from the physical attributes of the 
machine on which they are deployed. Examples of these attributes include physical device paths. 

Zones can be used on any machine that is running at least the Oracle Solaris 10 release. The upper 
limit for the number of zones on a system is 8192. The number of zones that can be effectively hosted 
on a single system is determined by the total resource requirements of the application software running 
in all of the zones.  
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Integrated and related features provide Oracle Solaris Zones with the following benefits [22]: 

• Configurable security boundary, enabling you to fine-tune functionality, increasing or decreasing a 
zone’s abilities and security 

• Management control of a zone’s resource utilization, including HWT use, quantity of HWTs 
available to a zone, quantity of RAM and virtual or shared memory available to a zone, network 
bandwidth consumed, and many others 

• A wide variety of methods to access storage, including many different file systems and access to  
raw storage 

• Ability to create “branded zones” that run binaries and use configurations from earlier versions  
of Oracle Solaris 

OS virtualization uses a model of server virtualization that has, at its core, the assumption that 
multiple, independent sets of processes share a common kernel. The benefits of a common  
kernel include better efficiency and observability and simpler management, when compared with 
virtual machines. 

Performance Advantages of Zones 

OS virtualization does not need a hypervisor or other layer of software to implement isolation. Such 
software hypervisors can cause performance overhead of various types. These include the time the 
hypervisor runs on HWTs that would otherwise be running real workloads, inefficiencies caused by 
cache-flushing, and any operations that the hypervisor must perform on behalf of a VM, such as I/O 
using shared I/O resources. Instead, Oracle Solaris Zones do not suffer from these  
performance-draining effects because the individual processes do not follow a different code path just 
because they are running in a zone. 

Security Advantages of Zones 

Instead of using a hypervisor, isolation between zones is managed by the OS kernel. The kernel 
understands the isolation boundaries of zones, and prevents actions that would cross a boundary. 
Those security checks are performed whether a process is running in a non-global zone or in the global 
zone—the environment and set of processes that run when Oracle Solaris first boots. In this way, 
Oracle Solaris Zones can achieve the highest security rating achieved by general-purpose operating 
systems, and it does so without incurring a virtualization performance penalty. 

Troubleshooting Advantages of Zones 

Because all (non-global) zones are managed from the global zone of the system, a global zone user with 
sufficient privileges must be able to control each zone and its contents. Because the processes in a zone 
are, in one sense, one set of processes managed by one kernel, the privileged global zone user can see 
all of the processes in all of the zones. This is a great advantage of zones: when it is time to 
troubleshoot a system problem, the usual Oracle Solaris tools can be used to determine the process—
in any zone—that is causing the problem. There is no need to first determine the guest that is causing 
the problem, and then login the guest to determine the process that is causing the problem. The latter 
method must be used when troubleshooting a hypervisor-based virtual machine environment. 
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Zones are typically, but not always, used to consolidate many workloads into one Solaris instance. That 
instance might be an entire computer (SPARC or x86), a hardware domain on an enterprise-class 
SPARC server, or a logical domain on any current SPARC server. In all of those cases, the HWT usage 
of workloads in each zone is managed by the Oracle Solaris scheduler and other parts of the kernel. 
The Oracle Solaris scheduler is one of those components that has received modifications regularly, 
enhancing its ability to scale to large number of HWTs. 

By default, all of the processes of the zones of one Oracle Solaris instance can, theoretically, run on 
any of the cores available to the Oracle Solaris instance. With that configuration, the scheduler does an 
excellent job of maintaining HWT and memory locality. In other words, it tries to maximize the benefit 
of a core’s cache by running the same process on the same core, each time the process is assigned a 
time slice. It also tries to minimize memory latency by assigning physical memory blocks that have the 
lowest latency when accessed by the HWT on which that process typically runs. 

With Oracle Solaris’ history of linear performance gains from an increasing quantity of cores, and the 
zero-overhead efficiency of zones, it is no surprise that zones scale as linearly as Oracle Solaris does. 
By default the Oracle Solaris scheduler treats all processes in different zones equally. In fact, it doesn’t 
consider the association between a process and a zone—by default—when making scheduling 
decisions. On the other hand, there are several resource controls from which to choose, and the use of 
those tools modifies the scheduling outcomes in predictable ways. 

Any compute environment should provide predictable performance. If a workload performs 100 
transactions per second this week, its users will expect it to provide the same performance next week. 
In a single-workload environment, a stable system will deliver that predictable performance. However, 
in multitenant environments, the consumption of resources such as HWT capacity and RAM must  
be managed. Resource controls are needed to provide predictable performance of multiple  
workload environments. 

Although Oracle Solaris tries to be fair when allotting resources to running workloads, an uncontrolled 
workload can consume enough resources that other workloads will not perform well. This is not a new 
problem, and resource controls have been added to Oracle Solaris gradually during the two decades it 
has been in the market. 

Oracle Solaris has many resource controls, including items in the following list. All of these can be 
applied to Oracle Solaris Zones. 

• HWT capacity: processor sets, HWT caps, multiple scheduling algorithms and priorities 

• RAM usage: a RAM cap limits the amount of RAM that a zone’s processes can use 

• Virtual memory: a VM cap limits the amount of VM (RAM plus swap space) that a zone’s processes 
can use 

Oracle Solaris considers each hardware thread in a processor to be a “CPU” when it counts CPUs and 
when it schedules a process onto a HWT. SPARC systems in the current generation are equipped with 
a very large number of hardware threads. This gives the scheduler more flexibility when making 
scheduling decisions, and gives you more flexibility when deciding on a quantity of HWTs to assign to 
a workload—if you decide that method is appropriate for a set of workloads sharing a computer. 
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Consider the following example. A SPARC T5-4 has 4 processors, 64 cores, and 512 hardware 
threads.6 One can quite easily create and run hundreds of Oracle Solaris Zones on that SPARC T5-4 
system, and it is likely that they will run very well without the use of any resource controls. However, a 
set of 30 workloads, each in a zone, might include a small number that have specific performance 
needs. The Oracle Solaris resource controls can then be used to assign a set of 8 cores to one 
production database zone, and four sets of 8 cores to four production application servers, but leave the 
rest of the zones to share the remaining 24 cores. 

Oracle Corporation charges license fees for its software based on the quantity of cores in the target 
computer. The licensing policy allows customers to limit the quantity of cores needed for a license if 
“hard partitioning” is used. At the time this paper was written, Oracle Solaris Zones that use a 
processor set (i.e. a resource pool) qualify as “hard partitions” and licensing fees can be reduced by 
using these “capped Containers.” However, be aware that capped Containers as mentioned in the 
public licensing document uses processor sets, and do not use the capped-cpu feature of Oracle 
Solaris Zones [19]. 

Oracle VM Server for SPARC 

Oracle VM Server for SPARC (previously called Sun Logical Domains) is a virtualization technology 
supported on Oracle’s SPARC servers. Oracle VM Server for SPARC allows server processor 
resources to be partitioned and allocated to separate virtual machines, also called “domains.” 

Oracle VM Server for SPARC has a novel architecture that reduces overhead and makes it ideal for 
systems with many hardware threads. Traditional hypervisors virtualize multiple “virtual CPUs” onto a 
smaller number of physical HWTs. This causes overhead from software-based time-slicing and the 
need to emulate the guest operating system’s use of “privileged instructions.” This is necessary to 
prevent guests from changing the physical state of shared HWTs (like memory mapping and interrupt 
status). Every time the guest OS wants to perform certain privileged instructions, it has to trap and 
context switch into the hypervisor or perform a binary rewrite of the instruction. This causes 
substantial overhead, but has been the traditional model of virtualization for over 40 years. 

In contrast, Oracle VM Server for SPARC is designed for and ideally suited for systems with many 
HWTs, for example, the SPARC T5-8 with 1,024 HWTs. Unlike a traditional hypervisor, hardware 
threads and memory are allocated directly to the logical domains. The guest OS (Oracle Solaris) running 
in that logical domain runs on “bare metal” and can perform the aforementioned privileged operations 
directly, without the need to context switch into the hypervisor. This key differentiator illustrates why 
the logical domain model does not carry the “virtualization tax” of HWT and memory overhead as the 
traditional model does. Guest domains run on their own dedicated hardware threads with full  
bare-metal performance. 

 
 
 
6 As a rough comparison, the compute capacity of such a system compares favorably with 20 UltraSPARC 
Sun Fire E10000’s from 1999. 
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Another difference is that traditional VM systems depend on a monolithic hypervisor that combines 
management control point, resource manager, user interface, and device drivers along with the task of 
providing virtual machines. The architecture of Oracle VM Server for SPARC, on the other hand, is 
modular and consists of these main components: 

1. A firmware based hypervisor that allocates resources (HWT, memory and optionally I/O devices) 
directly to logical domains.  

2. A “control domain” that serves as a management control point, either via a command line interface 
(CLI) or via optional management suites such as Oracle Enterprise Manager Ops Center 12c or 
Oracle VM Manager 3.2 or later. 

3. Software based I/O virtualization, which runs in a “service domain” and provides virtual I/O 
services to the guest domains. The control domain is typically used for this purpose. For redundancy 
there can be additional domains providing virtual I/O. This is an optional component, since I/O 
devices and PCI busses can be provisioned directly to domains.  

 

 
Figure 6. A guest logical domain with redundant service domains. 
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Oracle VM Server for SPARC delivers the following: 

• Leading Price/Performance. The low-overhead architecture provides scalable performance under 
increasing workloads without additional license cost. 

• Secure Live Migration. Lets you migrate an active domain from one physical SPARC server to 
another while the guest continues to operate and provide application services to users. Memory 
contents are always compressed and encrypted while transmitted from source to destination server, 
thereby guaranteeing security and privacy. On-chip cryptographic accelerators in the S3 core deliver 
secure, wire-speed encryption for live migration without any additional hardware investment.  

• Single-Root I/O Virtualization (SR-IOV). Delivers superior I/O throughput to guest domains 
with qualified PCIe devices. Such devices can appear as if they were separate I/O devices, each of 
which can be directly assigned to a domain. SR-IOV enables efficient sharing of PCIe network 
devices so applications can achieve native I/O performance. 

• Dynamic Reconfiguration (DR). Allows computing resources to be dynamically added to or 
removed from an active domain. You can make resource assignment changes to processors, virtual 
I/O, and memory on an active domain. These capabilities help organizations to better align IT and 
business priorities. 

• Advanced RAS. Each logical domain is an entirely independent virtual machine with its own OS, as 
is expected in a VM environment. The logical domain supports virtual disk multipathing and 
failover, as well as network failover with IP multipathing (IPMP) support. The logical domain can 
also handle path failure between an I/O domain and storage. When virtual I/O is used, multiple 
service domains can be used to provision virtual I/O to client guests. This provides device and path 
redundancy, and also permits rolling upgrades without service interruption: when one service 
domain is taken down for maintenance, virtual I/O is routed through the active service domain. 
Domains are fully integrated with the Oracle Solaris FMA (Fault Management Architecture), which 
enables Predictive Self Healing. 

• Whole Core Allocation and Core and Memory Affinity. Permits higher performance by avoiding 
false cache sharing between guest domains, and reducing the non-uniform memory access (NUMA) 
effects on latency between HWTs and RAM. This enables organizations to deliver higher and more 
predictable performance for all workloads.  

• HWT Dynamic Resource Management (DRM). Enables a resource management policy and 
domain workload to trigger automatic addition and removal of HWTs based on domain resource 
requirements and priorities. A policy could be set to add HWTs to a domain, up to a maximum 
preset number, as long as it has HWT utilization above a specified threshold, or conversely, remove 
HWTs from domains that are mostly idle. Priorities can be specified to establish which domains 
have preferential access to HWTs. This helps you to better align your IT and business priorities. 

• Physical-to-virtual (P2V) Conversion. Quickly convert an existing SPARC server that runs the 
Oracle Solaris 8, Oracle Solaris 9, or Oracle Solaris 10 OS into a virtualized Oracle Solaris 10 image. 
Domains can also host branded zones, in which an Oracle Solaris 11 OS hosts both Oracle Solaris 
11 and Oracle Solaris 10 zones, or an Oracle Solaris 10 OS hosts Oracle Solaris 10 zones along with 
Oracle Solaris 9 and Oracle Solaris 8 branded zones. 
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• Server Power Management. Implements power saving by disabling each core that has all of its 
hardware threads idle or adjust HWT clock speed and memory power consumption. 

For further guidance about virtualizing your SPARC Solaris environment, see [22] and the Oracle white 
paper Best Practices for Building a Virtualized SPARC Computing Environment [23]. 

Oracle Enterprise Manager Ops Center  

Oracle Enterprise Manager provides an integrated and cost-effective solution for complete physical 
and virtual server lifecycle management. It delivers comprehensive provisioning, patching, monitoring, 
administration, and configuration management capabilities via a web-based user interface, and 
significantly reduces the complexity and cost associated with managing Oracle VM, Linux, UNIX, and 
Windows operating system environments. It helps accelerate the adoption of virtualization and cloud 
computing to optimize IT resources, improve hardware utilization, streamline IT processes, and  
reduce costs. 

Oracle Enterprise Manager Ops Center 12c provides a comprehensive solution for operating system, 
firmware and BIOS configuration, bare-metal and virtual machine provisioning, hardware fault 
analysis, automatic My Oracle Support service request generation, and performance management. 

The Oracle Enterprise Manager Ops Center Virtualization Management Pack provides full lifecycle 
management of virtual guests, including resource management and mobility orchestration. It helps 
customers streamline operations and reduce downtime. Together, the Virtualization Management Pack 
and the Oracle Enterprise Manager Ops Center Provisioning and Patch Automation Pack provide an 
end-to-end management solution for physical and virtual systems through a single web-based console. 
This solution automates the lifecycle management of virtual systems and is the most effective systems 
management solution for Oracle’s Sun infrastructure. 

Oracle Solaris 11 Scalability 

None of the advanced features of the SPARC multicore processors would be of much use if the 
operating system were unable to take advantage of them. And as the number of processor cores and 
hardware threads increases dramatically, OS algorithms for managing huge physical and virtual memory 
and page sizes, for scheduling thousands of processes and software threads, and for handling large 
numbers of physical and virtual devices, all have to be made scalable. 

Oracle Solaris engineers also use a powerful kernel observability tool—DTrace [6]—to examine and 
improve every aspect of Oracle Solaris to maximize OS performance and scalability as the underlying 
hardware evolves. For example, as the number of interacting software threads increases, lock 
contention can become a major problem; the Oracle Solaris 11 lock management algorithm now scales 
linearly with the number of hardware threads. Additionally, the Oracle Solaris virtual memory system 
has been enhanced to better handle very large pages and to predict and optimize page replacement, as 
well as allocating both kernel and user memory close to the processor cores where the related 
processes are running, significantly reducing memory latency. 
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Kernel tunables in /etc/system, in particular maxusers, max_nprocs, and pidmax, now 
automatically scale with the number of available hardware threads and memory on the system; Oracle 
Solaris 11.1 now supports more than one million software threads. 

Conclusion 

In this paper, we have covered many of the key concepts and techniques of parallel programming.  
We have emphasized the great value and some of the limitations of multiprogramming and 
multithreading for applications, and have focused specifically on the advantages of Oracle’s new 
massively multithreaded SPARC T5 and M5 processors. We also highlighted important developer tools 
such as OpenMP, Oracle Solaris Studio compilers, and the Oracle Solaris Studio Performance Analyzer 
that assist developers in finding and exploiting parallelism in their applications. 

In addition to explaining how the SPARC processors enhance multithreaded applications, we also 
discussed how Oracle’s virtualization technologies—Oracle VM Server for SPARC and Oracle Solaris 
Zones—allow system managers and IT architects to efficiently consolidate multiple application 
environments onto a single server. 

In summary, Oracle’s new SPARC T5 and M5 processors, and the servers built with them, provide 
unprecedented scalability and opportunities to exploit both application and system parallelism. The 
proof of this is not only in the many computing world records these systems have achieved [21], but 
also in the wide and successful deployment of these systems in a wide variety of scenarios. 
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Glossary 

API 

API stands for “Application Programming Interface.” It specifies how software components interact. 
An API typically provides a library with (optional) specific data structures and object classes. The 
functions in the library provide the toolkit one can draw upon. Examples in parallel programming are 
POSIX Threads, Java Threads, OpenMP, and MPI (Message Passing Interface). 

Atomic Operations 

These are low-level operations used in parallel programming. They are called “atomic” because several 
related actions act as an indivisible unit.  

Unfortunately, atomic operations are not part of the Pthreads API, however, there are many (non-
portable) APIs for atomic operations available. OpenMP also provides support for atomic operations. 

Barrier  

This is a point in a parallel application where no thread can continue until the last one has arrived. 
Barriers are definitely very useful and needed, but use them with care. The cost grows as more threads 
are added and this can quickly dominate the performance. 

Cache 

This is a memory buffer with a shorter access time than main memory. It is used for data and 
instructions. The goal is to keep frequently referenced data (or instructions) in cache, greatly speeding 
up accesses. In contemporary microprocessors one can find multiple levels of cache, typically denoted 
with L1, L2, etc. The notation is such that access to an L1 cache is faster than an L2 cache. It is similar 
for the L2 cache versus L3 cache. A unified cache stores both data and instructions. 

Cache Coherence 

This is a crucial part of the design of a shared memory parallel system. Since it can easily happen that 
multiple copies of the same cache line are present in the various caches in the system, maintaining 
consistency of the same cache line across the entire system needs to be handled. This is what cache 
coherence does. To this end, each cache line has state bits and they are used to describe the status of 
the line. The cache coherence protocol dictates how cache lines change state as a result of a certain 
action. For example when an element in a line is modified not only the state bits of the modified line 
need to be changed, but any other copy of the same line needs to be invalidated. This is achieved by 
changing the state bits of those lines accordingly. 

Container  

See Zone 
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CPU 

This stands for “central processing unit,” an archaic term referring to the computational component 
(ALU) of a processor. Modern processors consist of many cores, each including multiple “hardware 
threads” (equivalent to a traditional CPU). 

HWT 

A hardware thread, equivalent to the traditional concept of a CPU. Modern processors consist of 
multiple core units, each including multiple HWTs. This is also referred to as a “strand” or “virtual 
processor” in some Oracle Solaris tools (e.g., the psrinfo command). 

Mutliprogramming 

The technique of running multiple processes on a single HWT (or CPU); the operating system 
schedules each of the processes a limited amount of time to execute, then switches to a  
different process. 

Multithreaded  

This is another word for a parallel application. Such a program is said to be multithreaded. This means 
that the code has a software infrastructure to create and execute multiple threads. 

Parallelization 

The process of identifying those parts in an application that are independent and can be executed in 
any order without affecting correctness of the results. If this is the case, those parts can also be 
executed at the same time, or “in parallel.” Once such program sections have been identified one needs 
to select a suitable parallel programming model to implement this type of concurrent execution. How 
to express the parallelism strongly depends on the model chosen. 

Parallel Programming Model  

This provides the software toolbox to implement the parallelism in an application. It also defines what 
kind of functionality is available. There are many models available, both for single systems as well as 
clusters. Typically, a parallel programming model provides a way to create threads, execute work in 
parallel, exchange data, synchronize threads and terminate parallel execution. 

Pragma 

This provides for a portable way to pass on additional information to a C/C++ compiler. A pragma 
starts with the #pragma keyword, followed by one or more qualifiers. Such qualifiers can either be 
compiler-specific or portable across platforms, in the case of OpenMP, for example.  

A pragma does not affect portability because a compiler ignores a pragma it does not support. In this 
way, one can give specific information to a compiler without violating portability. 
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OpenMP is built upon this model. All language constructs start with #pragma omp. If a compiler is 
not instructed to recognize these, the source code can still be built with a compiler that does not 
support OpenMP. The pragmas are ignored and the runtime functions can be handled through an 
appropriate #ifdef. 

Processor Pipeline 

Each instruction goes through various stages. For example, in the fetch stage, the instruction is fetched 
from the instruction cache. It is then decoded in the decode stage. Collectively, these stages form a 
pipeline. The hardware automatically advances an instruction from stage to stage. It flows through the 
pipeline, but the cost of certain stages may vary. Like a data look up stage, depending on where the 
data is, this can be very quick or take a much longer time (more clock cycles). These delays in the 
pipeline are also called “stalls” or “bubbles.” 

RAS 

This stands for reliability, availability, and serviceability. 

Shared and Private Data 

In a shared memory parallel program there are two fundamental types of data: shared and private. 

Shared data is accessible by all threads. Each thread can read and/or write such data at any point 
during the execution. It is the responsibility of the developer to ensure this occurs in the right way. 
Depending on the parallel programming model chosen there are specific ways to do so. 

Private data is only accessible to the thread that owns it. Even if the variable names are the same, 
threads cannot read or write each other’s private data. If this is needed, one has to copy such data to a 
shared buffer. 

In OpenMP the “shared” and “private” clauses on the relevant pragmas can be used to label variables 
as such. 

Thread  

In the context of this paper we often refer to a software thread simply as “a thread.” With this we 
mean a sequence of instructions with an independent Program Counter (PC) to keep track of the point 
of execution. Multiple threads can execute simultaneously and are scheduled by the operating system 
onto the hardware. In the case of the SPARC T4, T5 and M5 system, Oracle Solaris first selects a core 
to run on and then a hardware thread (“virtual processor”) within this core. 

TLB  

This stands for “Translation Look-Aside Buffer.” It is a special type of cache the stores mapping 
information between the virtual and physical memory addresses. It is possible to have separate TLBs 
for instructions (I-TLB) and data (D-TLB). 
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Zone 

The Oracle Solaris Zones virtualization technology is used to virtualize operating system services and 
to provide an isolated and secure environment for running applications.  
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