
Session 5:
Oracle Machine Learning for R
Machine Learning Algorithms

Mark Hornick, Senior Director

Oracle Machine Learning Product Management

November 2020

Safe harbor statement

The following is intended to outline our general product direction. It is intended for information
purposes only, and may not be incorporated into any contract. It is not a commitment to deliver any
material, code, or functionality, and should not be relied upon in making purchasing decisions. The
development, release, timing, and pricing of any features or functionality described for Oracle’s
products may change and remains at the sole discretion of Oracle Corporation.

Copyright © 2020 Oracle and/or its affiliates.

Agenda

1

2

3

4

5

Package Overview

OREdm package

OREmodels package

OREpredict package

OREeda package

Copyright © 2020 Oracle and/or its affiliates.

OML4R Analytics Packages

OREbase

OREdm

List package contents:
lsf.str("package:OREdm")
ls("package:OREdm")
help(package = OREdm)

• Oracle Data Mining algorithms exposed through R interface

• Attribute Importance, Decision Trees, GLM, KMeans, O-Cluster, Naïve Bayes, SVD, SVM, NMF,
Association Rules, Explicit Semantic Analysis

OREeda

• Functions for exploratory data analysis for Base SAS equivalents

OREgraphics

OREmodels

• ore.lm, ore.stepwise, ore.neural, ore.glm, ore.randomForest

OREpredict

• Score R models in the database

OREstats

• In-database statistical computations exposed through R interface

ORExml

Copyright © 2020 Oracle and/or its affiliates.

High performance in-database ML algorithms

OREdm

Support Vector Machine

GLM

Naïve Bayes

Decision Trees

k-Means clustering

O-Cluster clustering

Expectation Maximization

Explicit Semantic Analysis

Singular Value Decomposition

Association Rules

Attribute Importance

OREmodels

Random Forest

Principal Component Analysis
(overloaded)

Singular Value Decomposition
(overloaded)

Neural Networks

Linear Regression

Stepwise Regression

Generalized Linear Model

Copyright © 2020 Oracle and/or its affiliates.

OREdm Package

Copyright © 2020 Oracle and/or its affiliates.

OREdm Features

Function signatures conform to R norms
• Use formula for specifying target and predictor variables
• Use ore.frame objects as input data set for build and predict
• Creates R objects for models and ore.frames for prediction results
• Use parameter names similar to corresponding R functions
• Function parameters provide explicit default values to corresponding ODM settings,

where applicable
As in R, models are treated as transient objects
• Automatically delete ODM model when corresponding R object no longer exists
• Can be explicitly saved using datastore, via ore.save

Implicit variable selection for specific models
Automatic data preparation available
Supports partitioned models based on values of one or more columns
Enables text column analytics for select algorithms

Copyright © 2020 Oracle and/or its affiliates.

Algorithms supporting Implicit Variable Selection

Decision tree performs automatic variable selection as part of the building
process itself
• Variables that are not used in the tree are effectively removed

• Takes into account the relationship of the variables with the target

Naïve Bayes performs automatic variable selection when ADP is enabled
• Takes into account relationship of each variable with target

GLM performs variable selection (and creation) when the corresponding settings
for feature selection/creation are used

Copyright © 2020 Oracle and/or its affiliates.

Automatic Data Preparation (ADP)
Automatic variable transformation is handled by auto data preparation for OREdm algorithms

• Auto data preparation takes into account the algorithm and data characteristics to prepare data

• Each algorithm may have different preparation requirements

Binning: ADP for Naïve Bayes and Decision Tree use the supervised binning transformation in
the dbms_data_mining_transform package to generate bins prior to model building (that take
into account the target)

Normalization: ADP for SVM and GLM uses normalization transformations in the
dbms_data_mining_transform package to generate a variety of normalization parameters prior
to model building

Simplest approach - turn on ADP when building a model and inspect results after

• If user needs more control over preparation stages before model building, transform the data
explicitly using OML4R transparency layer

Copyright © 2020 Oracle and/or its affiliates.

Partition Models
Automates a typical machine learning task for data scientists

Builds an ensemble model composed of multiple sub-models, one built for each partition of data

• Potentially achieve better accuracy through multiple targeted models – managed and used as one

Set parameter ODMS_PARTITION_COLUMNS to the name(s) of the partition column(s)

• For example, odm.setting = list(odms_partition_columns = "part")

Simplifies scoring by allowing user to provide the top level model only

• Proper sub-model chosen by system based on row of data to be scored

Specify

Column(s)

Sub-Model-1

Sub-Model-2

Sub-Model-3

Sub-Model-n

Top Level Model

…

Score data using Partition Partition-
2

Partition-
3

In-DB
Algorithm

top level model

…
Oracle Database Partition-

n

Table

Partition-
1

New
Data

Copyright © 2020 Oracle and/or its affiliates.

Extensible R Algorithm Models

Creates an Extensible R Algorithm model using Oracle Data Mining in
Oracle Database 12.2 or later

Extensible R Algorithm enables build, score, and view of R model using the
user-provided R scripts stored in R Script Repository

Supports classification, regression, clustering, feature_extraction,
attribute_importance, and association mining functions

Predict method executes the score.function specified for the model build and
returns an ore.frame containing the predictions along with the columns specified
by the supplemental.cols argument
• Function predict applicable to classification, regression, clustering, and feature_extraction

models, only

Copyright © 2020 Oracle and/or its affiliates.

ore.odmRAlg
Extensible R Algorithm Models

ore.odmRAlg(data,

mining.function = c("classification", "regression", "clustering",

"feature_extraction", "attribute_importance", "association"),

formula = NULL,

build.function,

build.parameter = NULL,

score.function = NULL,

detail.function = NULL,

detail.value = NULL,

odm.setting = NULL)

predict(object, newdata, supplemental.cols = NULL,

type = c("class","raw"), na.action = na.pass,...)

summary(object,...)

Copyright © 2020 Oracle and/or its affiliates.

Basic Argument Concepts

data – ore.frame object used for model building

mining.function – A scalar string to specify the type of mining function: classification, regression, clustering, feature_extraction,
attribute_importance, and association

formula – An R formula object or a string representing a formula in characters. This formula can be named or take the default name 'formula'. This
name is used to pass the specified formula to the R build.function. If formula is NULL, the user-specified R build.function does not take a formula.

build.function – The name of the user-defined R function in the R Script Repository used to build the model. The R function uses the first argument
for input data, optionally the second argument for weight numeric vector when parameter odms_row_weight_column_name is specified in
odm.setting, and matches the remaining arguments by name with the values from build.parameter. The R function returns an R model.

build.parameter – A list containing build.function parameters excluding input data and weight vector if applicable. The list element names must
match the name of build.function script input parameter names. Only scalar numeric and character values are valid as parameters.

score.function– The name of the user-defined R function in the R Script Repository used to score the model. The script takes two arguments: model
and new data. It returns a data.frame containing prediction results. For regression, the results are predicted values. In classification, clustering, and
feature exaction, the results are probabilities for each class, cluster, and feature, respectively. Rows of the results match the rows of input data.

detail.function – The name of the user-defined R function in the R Script Repository used to obtain model details and return them in a data.frame

detail.value – A data.frame object used to specify the data types of columns in the returned data.frame from the detail.function

odm.setting – A list to specify Oracle Data Mining parameter settings. This argument is applicable to building models in Database 12.2 or later. Each
list element's name/value refers to the parameter setting name/value. The setting value must have type numeric or character. When parameter
ODMS_PARTITION_COLUMNS is set to the names of the partition columns, a partition model is created from the input data.

Copyright © 2020 Oracle and/or its affiliates.

ore.odmRAlg – model object

ore.odmRAlg object
• name name of model in database

• mining.function The type of the data mining function for the model.

• details An ore.frame returned by the R detail.function script

• settings data.frame with settings used to build model

• attributes data.frame of variable/columns used to build model

• formula formula used to build the model

• call specific invocation of the function with arguments

Copyright © 2020 Oracle and/or its affiliates.

ore.odmRAlg
Extensible R Algorithm Models

IRIS <- ore.push(iris)

ore.scriptCreate("glm_build", function(data, form, family) {

glm(formula = form, data = data, family = family)})

ore.scriptCreate("glm_score", function(mod, data) {

res <- predict(mod, newdata = data); data.frame(res)})

ore.scriptCreate("glm_detail", function(mod) {

data.frame(name=names(mod$coefficients), coef=mod$coefficients)})

ralg.mod <- ore.odmRAlg(IRIS, mining.function = "regression",

formula = c(form="Sepal.Length ~ ."),

build.function = "glm_build", build.parameter = list(family="gaussian"),

score.function = "glm_score",

detail.function = "glm_detail", detail.value = data.frame(name="a", coef=1))

summary(ralg.mod)

ralg.mod$details

predict(ralg.mod, newdata = head(IRIS), supplemental.cols = "Sepal.Length")

Copyright © 2020 Oracle and/or its affiliates.

OREdm Algorithms
Algorithm Main R Function Mining Type / Function

Association Rules ore.odmAssocRules Association Rules

Minimum Description Length ore.odmAI Attribute Importance for Classification or Regression

Decision Tree ore.odmDT Classification

Expectation Maximization (12.2) ore.odmEM Clustering

Explicit Semantic Analysis (12.2) ore.odmESA Feature Extraction

Generalized Linear Models ore.odmGLM Classification
Regression

K-Means ore.odmKMeans Clustering

Naïve Bayes ore.odmNB Classification

Non-negative Matrix
Factorization

ore.odmNFM Feature Extraction

Orthogonal Partitioning ore.odmOC Clustering

Singular Value Decomposition ore.odmSVD Feature Extraction

Support Vector Machine ore.odmSVM Classification
Regression
Anomaly Detection

Copyright © 2020 Oracle and/or its affiliates.

Attribute Importance

Compute the relative importance of predictor variables for predicting
a response (target) variable

Doc link

Gain insight into relevance of variables to guide manual variable selection or reduction,
with the goal to reduce predictive model build time and/or improve model accuracy

Attribute Importance uses a Minimum Description Length (MDL) based algorithm
that ranks the relative importance of predictor variables in predicting a specified
response (target) variable

Pairwise only – each predictor with the target

Supports categorical target (classification) and numeric target (regression)

Copyright © 2020 Oracle and/or its affiliates.

https://docs.oracle.com/en/database/oracle/oracle-database/12.2/dmapi/minimum-description-length.html#GUID-96A38D67-2F09-4659-976D-4DDF478555E0

ore.odmAI
Attribute Importance

ore.odmAI(

formula, # formula specifying attributes for model build

data, # ore.frame of the training dataset

auto.data.prep = TRUE, # Setting to perform automatic data preparation

na.action = na.pass, # Allows missing values (na.pass), or removes rows with

missing values (na.omit)

odm.setting = NULL) # A list to specify Oracle Data Mining parameter settings

)

Copyright © 2020 Oracle and/or its affiliates.

Basic Argument Concepts

formula

• Form response ~ terms where 'response' is the numeric or character response vector and
'terms’ is a series of terms, i.e., column names, to include in the analysis

• Multiple terms are specified using '+' between column names

• Use response ~ . if all columns in 'data' should be used for model building. Functions can
be applied to 'response' and 'terms' to realize transformations. To exclude columns, use '-'
before each column name to exclude.

Copyright © 2020 Oracle and/or its affiliates.

Basic Argument Concepts

auto.data.prep

• If TRUE, automatically performs the data transformations required by the algorithm

• Transformation instructions are embedded in the in-database model

Types of transformations

• Binning

- reduces cardinality of continuous and discrete data

- improve resource utilization and model build response time dramatically without significant
loss in model quality

- can improve model quality by strengthening relationships between attributes

• Normalization

- reduces range of numerical data, e.g., between 0 and 1

Copyright © 2020 Oracle and/or its affiliates.

Basic Argument Concepts

na.action

• By default, allows missing values ('na.pass'), or removes rows with missing values ('na.omit')

odm.setting

• Use to build a partition model

• Set parameter ODMS_PARTITION_COLUMNS to the name(s) of the partition column(s)

• For example, odm.setting = list(odms_partition_columns = "part")

Copyright © 2020 Oracle and/or its affiliates.

ore.odmAI - Example
Attribute Importance

LONGLEY <- ore.push(longley)

head(LONGLEY)

ore.odmAI(Employed ~ ., LONGLEY)

STATE <-

ore.push(as.data.frame(state.x77))

head(STATE)

ore.odmAI(Murder ~ ., STATE)

R> LONGLEY <- ore.push(longley)

R> head(LONGLEY)

GNP.deflator GNP Unemployed Armed.Forces Population Year Employed

1947 83.0 234.289 235.6 159.0 107.608 1947 60.323

1948 88.5 259.426 232.5 145.6 108.632 1948 61.122

1949 88.2 258.054 368.2 161.6 109.773 1949 60.171

1950 89.5 284.599 335.1 165.0 110.929 1950 61.187

1951 96.2 328.975 209.9 309.9 112.075 1951 63.221

1952 98.1 346.999 193.2 359.4 113.270 1952 63.639

R> ore.odmAI(Employed ~ ., LONGLEY)

Call:

ore.odmAI(formula = Employed ~ ., data = LONGLEY)

Importance:

importance rank

Year 0.4901166 1

Population 0.4901166 1

GNP 0.4901166 1

GNP.deflator 0.4901166 1

Armed.Forces 0.3648186 2

Unemployed 0.1318046 3

Copyright © 2020 Oracle and/or its affiliates.

ore.odmAI - Example
Attribute Importance

R> STATE <- ore.push(as.data.frame(state.x77))

R> head(STATE)

Population Income Illiteracy Life Exp Murder HS Grad Frost Area

Alabama 3615 3624 2.1 69.05 15.1 41.3 20 50708

Alaska 365 6315 1.5 69.31 11.3 66.7 152 566432

Arizona 2212 4530 1.8 70.55 7.8 58.1 15 113417

Arkansas 2110 3378 1.9 70.66 10.1 39.9 65 51945

California 21198 5114 1.1 71.71 10.3 62.6 20 156361

Colorado 2541 4884 0.7 72.06 6.8 63.9 166 103766

R> ore.odmAI(Murder ~ ., STATE)

Call:

ore.odmAI(formula = Murder ~ ., data = STATE)

Importance:

importance rank

Life Exp 0.10872845 1

HS Grad 0.06915643 2

Illiteracy 0.05760828 3

Frost 0.05051389 4

Area -0.04538736 5

Income -0.06720964 6

Population -0.12554537 7

Copyright © 2020 Oracle and/or its affiliates.

Attribute Importance - results

importance

• Relative metric indicating how much the variable contributes to predicting the target

• Values > 0 contribute to prediction

• Values <= do not contribute or add noise

rank

• Ordering of variables / attributes from most significant to least

Copyright © 2020 Oracle and/or its affiliates.

Naïve Bayes
Doc link

Classification algorithm – simple probabilistic classifier

Relies on Bayes’ theorem

Assumes independence of predictors

• May not be the case, but works well in practice

Conditional probabilities between each predictor and target
multiplied to obtain prediction

Copyright © 2020 Oracle and/or its affiliates.

https://docs.oracle.com/en/database/oracle/oracle-database/12.2/dmapi/naive-bayes.html#GUID-BB77D68D-3E07-4522-ACB6-FD6723BDA92A

ore.odmNB & predict.ore.odmNB
Naïve Bayes

ore.odmNB(

formula,

data,

auto.data.prep = TRUE,

class.priors = NULL,

na.action = na.pass,

odm.setting = NULL)

predict(

object,

newdata,

supplemental.cols = NULL,

type = c("class","raw"),

na.action = na.pass)

formula specifying attributes for model build

ore.frame of the training dataset

Setting to perform automatic data preparation

Numeric vector with named elements for target class priors

Allows missing values (na.pass), or removes rows with

missing values (na.omit)

A list to specify Oracle Data Mining parameter settings

Object of type "ore.naiveBayes"

Data used for scoring

Columns to retain in output

"raw" – cond. a-posterior probs for each class returned

"class" - class with max prob

Copyright © 2020 Oracle and/or its affiliates.

Basic Argument Concepts

class.priors

• Optional user-specified priors for the target classes

• Specifying prior probabilities offsets distribution differences between training data and
real population (scoring data)

Use when one target value dominates in frequency

• For example

- telephone marketing campaign positive responses may be < 2%

- occurrence of fraud in credit card transactions may be < 1%.

• A classification model built with so few positive cases may not be able to distinguish
characteristics of the two classes, resulting in a model that predicts the frequent class
every time  use stratified sampling to balance the data set and set priors

• Such models may be accurate, but not be very useful

• Do not rely solely on accuracy when judging the quality of a classification model

Stratified sampling and anomaly detection are alternatives to compensating for
data distribution issues

Copyright © 2020 Oracle and/or its affiliates.

nb.res <- predict (nb, t3.test,"survived")

head(nb.res,10)

with(nb.res, table(survived,PREDICTION, dnn = c("Actual","Predicted")))

Score data using ore.frame with
OREdm model object.

Display first 10 rows of data frame
using transparency layer

Compute confusion matrix

ore.odmNB – Example
Naïve Bayes

Login to database for transparent
access via OML4R library(ORE)

ore.connect("rquser","orcl","localhost","rquser",all=TRUE)

data(titanic3,package="PASWR")

Push data to db for transparent
access

t3 <- ore.push(titanic3)

t3$survived <- ifelse(t3$survived == 1, "Yes", "No")

Recode column from 0/1 to
n.rows <- nrow(t3) No/Yes

keeping data in database set.seed(seed=6218945)

random.sample <- sample(1:n.rows, ceiling(n.rows/2))

t3.train <- t3[random.sample,]

t3.test <- t3[setdiff(1:n.rows,random.sample),]

Sample keeping data in
database

Create priors for
model building priors <- c(Yes=0.1, No=0.9)

nb <- ore.odmNB(survived ~ pclass+sex+age+fare+embarked,

t3.train, class.priors=priors)

Copyright © 2020 Oracle and/or its affiliates.

Build model using R
formula with
transparency layer
data

library(verification) using transparency layer

res <- ore.pull(nb.res)

perf.auc <- roc.area(ifelse(res$survived == "Yes", 1, 0), res$"'Yes'") using verification package
Retrieve result from database for

auc.roc <- signif(perf.auc$A, digits=3)

auc.roc.p <- signif(perf.auc$p.value, digits=3)

roc.plot(ifelse(res$survived == "Yes", 1, 0), res$"'Yes'", binormal=T,

plot="both",

xlab="False Positive Rate",

ylab="True Postive Rate", main= "Titanic survival ODM NB model

ROC Curve")

text(0.7, 0.4, labels= paste("AUC ROC:", signif(perf.auc$A, digits=3)))

text(0.7, 0.3, labels= paste("p-value:", signif(perf.auc$p.value,

digits=3)))

summary(nb)
View model object

ore.disconnect() summary

Disconnect from database

Model, train and test objects are automatically
removed when session ends or R objects are
removed

ROC Curve

Copyright © 2020 Oracle and/or its affiliates.

Naïve Bayes – model object

ore.odmNB object

• name of the model

• settings used to build the model

• attributes used to build the model: name, type (numerical or categorical), data type,
data length (size), precision and scale for numeric data, and whether the variable is
the target

• apriori table with class distribution for the dependent variable

• tables is a list with one for each predictor variable with conditional probabilities

• levels is a vector of unique target class values

Copyright © 2020 Oracle and/or its affiliates.

Doc link Support Vector Machine

Suite of algorithms, adaptable for use with a variety of problems and data

By swapping one kernel for another, SVM can fit diverse problem spaces

Concept

• Data records with N attributes can be thought of as points in N-dimensional space

• SVM attempts to separate the points into subsets with homogeneous target values, by
hyperplanes in the linear case, and in the non-linear case (Gaussian) by non-linear separators

• SVM finds the vectors that define the separators giving the widest separation of classes (the
“support vectors”).

SVM solves regression problems by defining an N-dimensional “tube” around the data
points, determining the vectors giving the widest separation

SVM can emulate some traditional methods, such as linear regression and neural
networks, but goes far beyond those methods in flexibility, scalability, and speed

• For example, SVM can act like a neural net in calculating predictions, while a neural net might
mistake a local change in direction as a point of minimum error, SVM works to find the global
point of minimum error

Copyright © 2020 Oracle and/or its affiliates.

https://docs.oracle.com/en/database/oracle/oracle-database/12.2/dmapi/support-vector-machines.html#GUID-FD5DF1FB-AAAA-4D4E-84A2-8F645F87C344

ore.odmSVM
Support Vector Machine

ore.odmSVM(

formula,

data,

mining.function,
"anomaly.detection“

auto.data.prep = TRUE,

class.priors = NULL,

active.learning = TRUE,

 # specifies attributes for model build

 # ore.frame containing the training dataset

Type of model: "classification", "regression " or

 # Setting to perform automatic data preparation

 # Data frame containing target class priors

 # Setting for enabling active learning

complexity.factor = "system.determined",# Setting for complexity factor for SVM

conv.tolerance = 0.0001, # Setting for convergence tolerance for SVM

epsilon = "system.determined“, # Setting for epsilon for SVM Regression

kernel.function = "system.determined",# Setting for kernel function (SVMS_GAUSSIAN or SVMS_LINEAR)

std.dev = "system.determined", # Setting for standard deviation for SVM Gaussian kernel

outlier.rate = 0.1, # Setting for desired rate of outliers in dataset (1class SVM)

na.action = na.pass # Allow missing values in rows by default, or na.omit

odm.setting = NULL, # A list to specify ODM parameter settings

ctx.setting = NULL # A list to specify Oracle Text attribute-specific settings

)

Copyright © 2020 Oracle and/or its affiliates.

Basic Argument Concepts

class.priors

active.learning - enabled by default
• optimization method to control model growth and reduce model build time

• without active learning, SVM models grow as the size of the build data set increases,
which effectively limits SVM models to small and medium size training sets (less than
100,000 cases

• with active learning, SVM models can be built on very large training sets.

• active learning forces the SVM algorithm to restrict learning to the most informative
training examples and not to attempt to use the entire body of data. In most cases, the
resulting models have predictive accuracy comparable to that of a standard (exact) SVM
model

• active learning provides a significant improvement in both linear and Gaussian SVM
models, whether for classification, regression, or anomaly detection. However, active
learning is especially advantageous for the Gaussian kernel, because nonlinear models
can otherwise grow to be very large and can place considerable demands on memory
and other system resources

Copyright © 2020 Oracle and/or its affiliates.

Basic Argument Concepts

complexity.factor

• regularization setting that balances complexity of the model against model robustness
to achieve good generalization on new data

• data-driven approach to automatically determine the complexity factor

conv.tolerance

• convergence tolerance criterion for completing the model training process, default .001

epsilon

• regularization setting for regression, similar to complexity factor

• specifies the allowable residuals, or noise, in the data

Copyright © 2020 Oracle and/or its affiliates.

Basic Argument Concepts

kernel.function – linear or Gaussian

• a kernel is a function that transforms the input data to a high-dimensional space where
the problem is solved. Kernel functions can be linear or nonlinear.

• algorithm automatically uses the kernel function that is most appropriate to the data if
not specified

• linear kernel when # attributes > 100 in training data, else Gaussian kernel

- # attributes reflects categorical columns exploded to numeric attributes

kernel.cache.size

• memory allocated to Gaussian kernel cache maintained in memory to improve model
build time, default 50 MB

std.dev

• controls spread of Gaussian kernel function

outlier.rate

• for anomaly detection

• expected outlier rate in anomaly detection, default 0.1

Copyright © 2020 Oracle and/or its affiliates.

Basic Argument Concepts

odm.setting – A list to specify Oracle Data Mining parameter settings. This
argument is applicable to building a model in Database 12.2 or later. Each list
element's name and value refer to the parameter setting name and value,
respectively. The setting values must be numeric or string. To perform text mining,
parameter ODMS_TEXT_POLICY_NAME must be set to a text policy name. When
parameter ODMS_PARTITION_COLUMNS is set to the name(s) of the partition
column(s), a partition model with a sub-model in each partition is created from the
input data.

ctx.setting – A list to specify Oracle Text attribute-specific settings. This argument
is applicable to building model in Database 12.2 or later. The name of each list
element refers to the text column while the list value specifies the text
transformation.

(See ODM documentation for specific settings options.)

Copyright © 2020 Oracle and/or its affiliates.

predict.ore.odmSVM
Support Vector Machine

predict (

object,

newdata,

supplemental.cols = NULL, # Columns to retain in the output

type = c("class","raw"), # "raw" – cond. a-posterior probs for each class returned,

else class with max prob (TBD for compaitbility with e1071)

na.action = na.pass,...) # allow missing vlaues in rows by default, or na.omit

Copyright © 2020 Oracle and/or its affiliates.

prediction result

Basic Argument Concepts

supplemental.cols

• Columns from newdata to include as columns in the ore.frame

• Use to include specific columns in the prediction result for easier analysis

type = c("class","raw"), if a classification model…
• "raw" provides probability for each class returned

• "class" returns the class with the maximum probability

• default c("class","raw") returns both

Copyright © 2020 Oracle and/or its affiliates.

ore.odmSVM – Example
Support Vector Machine

x <- seq(0.1, 5, by = 0.02)

y <- log(x) + rnorm(x, sd = 0.2)

dat <-ore.push(data.frame(x=x, y=y))

Regression

svm.mod <- ore.odmSVM(y~x,dat,"regression", kernel.function="linear")

summary(svm.mod)

coef(svm.mod)

svm.res <- predict(svm.mod,dat,supplemental.cols="x")

head(svm.res,6)

Copyright © 2020 Oracle and/or its affiliates.

ore.odmSVM – Example
Support Vector Machine

Classification # Set up data set
svm.mod <- ore.odmSVM(gear ~ .-ID,

m <- mtcars
MTCARS,"classification",

m$gear <- as.factor(m$gear) kernel.function="linear")

m$cyl <- as.factor(m$cyl)

m$vs <- as.factor(m$vs)

m$ID <- 1:nrow(m)

MTCARS <- ore.push(m)

summary(svm.mod)

coef(svm.mod)

svm.res <- predict (svm.mod, MTCARS,"gear")

head(svm.res)

svm.res <- predict (svm.mod, MTCARS,"gear",type="raw")

head(svm.res)

svm.res <- predict (svm.mod, MTCARS,"gear",type="class")

head(svm.res)

with(svm.res, table(gear,PREDICTION)) # confusion matrix

Anomaly Detection

svm.mod <- ore.odmSVM(~ .-ID, MTCARS,"anomaly.detection",

kernel.function="system.determined")

summary(svm.mod)

svm.res <- predict (svm.mod, MTCARS, "ID")

head(svm.res)

table(svm.res$PREDICTION)

Copyright © 2020 Oracle and/or its affiliates.

SVM – model object

ore.odmSVM object
• name of the model

• settings used to build the model

• attributes used to build the model: name, type (numerical or categorical), data type, data length
(size), precision and scale for numeric data, and whether the variable is the target

• fit.values is an ore.frame of the actual column and predicted column. For regression, the
columns are 'ACTUAL' and 'PREDICTED'. For classification, the columns are
'ACTUAL','PREDICTED','PROBABILITY'. For anomaly detection, the columns are 'PREDICTED' and
'PROBABILITY'.

• residuals for regression models, an ore.numeric vector containing the residual values
(PREDICTED - ACTUAL).

• formula is the symbolic description of the model fitted

• call is the invocation parameters of the function

If built with a linear kernel, the following are also returned
• coefficients of the SVM model, one for each predictor variable. If auto.data.prep is set to TRUE,

these coefficients will be in the transformed space (after automatic outlier-aware normalization is
applied)

Copyright © 2020 Oracle and/or its affiliates.

Cluster Description

C1

C2

AGE INCOME
C2

INCOME

AGE
C1

INCOME
AGE

Centroids Histograms

Copyright © 2020 Oracle and/or its affiliates.

Cluster Rules

INCOME

C1

C2

AGE
Cluster 1:

0 < age  35 AND 0 < income  50K

Cluster 2:

30 < age  55 AND 40K < income  80K

Copyright © 2020 Oracle and/or its affiliates.

1

2 3

4 5

6 7

Clustering Hierarchy

Binary tree

• balanced
MALE

1

2 3

4 5

FEMALE • unbalanced

Splitting predicates SMOKE ~SMOKE

AGE < 40 AGE  40

6 7

Copyright © 2020 Oracle and/or its affiliates.

K-Means clustering

Identify distinct segments of a population

Doc link

Explain the common characteristics of members of a cluster

Determine what distinguishes members of one cluster from members of
another cluster

Partitions a set of observations into k partitions, or clusters

Each observations belongs to the cluster with the nearest centroid or center,
which is the mean of the observations variables

Distance can be computed in various ways,
e.g., Euclidean or cosine

Copyright © 2020 Oracle and/or its affiliates.

https://docs.oracle.com/en/database/oracle/oracle-database/12.2/dmapi/k-means.html#GUID-AA5D4D4E-936F-474A-8919-5E7FF5EE69B1

ore.odmKMeans
K-Means Clustering

ore.odmKMeans(

formula,

data,

auto.data.prep = TRUE,

num.centers = 10,

block.growth = 2,

conv.tolerance = 0.01,

distance.function = "euclidean",

iterations = 3,

min.pct.attr.support = 0.1,

num.bins = 10,

split.criterion = "variance",

na.action = na.pass,

odm.setting = NULL)

 # Setting to perform automatic data preparation

 # number of clusters

 # Numeric growth factor for memory to hold cluster data

 # Numeric convergence tolerance setting

 # Distance function: cosine, euclidean, or fast.cosine

 # Maximum number of iterations

 # Minimum percent required for variables to appear in rules

 # Number of histogram bins

Split clusters by variance or size

 # Allow missing values in rows by default, or na.omit

A list to specify ODM parameter settings

Copyright © 2020 Oracle and/or its affiliates.

Basic Argument Concepts

num.centers – number of clusters to create, > 1, default 10

block.growth – numeric growth factor for memory to hold cluster data, [1..5],
default 2

conv.tolerance – numeric convergence tolerance setting, (0..0.5], default 0.01

distance.function

• distance function between instances and centroids

• options: cosine, euclidean, or fast.cosine

• default: euclidean

iterations – maximum number of iterations, [1..20], default 3

Copyright © 2020 Oracle and/or its affiliates.

Basic Argument Concepts

min.pct.attr.support

• minimum percent required for variables to appear in rules, [0,1], default 0.1

• The fraction of attribute values that must be non-null for variable to be included in rule description for
cluster

• Setting the parameter value too high in data with missing values can result in very short or even
empty rules

num.bins

• number of histogram bins, > 0, default 10

• specifies the number of bins in the variable histogram produced by k-Means

• bin boundaries for each variable are computed globally on entire training data set

• binning method is equi-width

• all attributes have same number of bins except variables with a single value, which have only one bin

split.criterion

• split clusters by variance or size, default variance

• use size for more balanced clusters, e.g., with text mining

Copyright © 2020 Oracle and/or its affiliates.

ore.odmKMeans
K-Means Clustering

x <- rbind(matrix(rnorm(100, sd = 0.3), ncol = 2),

matrix(rnorm(100, mean = 1, sd = 0.3), ncol = 2))

colnames(x) <- c("x", "y")

X <- ore.push (data.frame(x))

km.mod1 <- ore.odmKMeans(~., X, num.centers=2, num.bins=5)

summary(km.mod1)

rules(km.mod1)

clusterhists(km.mod1)

histogram(km.mod1)

Copyright © 2020 Oracle and/or its affiliates.

ore.odmKMeans – results

Copyright © 2020 Oracle and/or its affiliates.

ore.odmKMeans – results

Copyright © 2020 Oracle and/or its affiliates.

ore.odmKMeans
K-Means Clustering

km.res1 <- predict(km.mod1,X,type="class",supplemental.cols=c("x","y"))

head(km.res1,3)

km.res1.local <- ore.pull(km.res1)

plot(data.frame(x=km.res1.local$x, y=km.res1.local$y), col=km.res1.local$CLUSTER_ID)

points(km.mod1$centers2, col = rownames(km.mod1$centers2), pch = 8, cex=2)

head(predict(km.mod1,X))

head(predict(km.mod1,X,type=c("class","raw"),supplemental.cols=c("x","y")),3)

head(predict(km.mod1,X,type="raw",supplemental.cols=c("x","y")),3)

Copyright © 2020 Oracle and/or its affiliates.

ore.odmKMeans – results

Copyright © 2020 Oracle and/or its affiliates.

K-Means – model object

ore.odmKMeans object

• name …

• settings …

• attributes …

• cluster contain general per-cluster information

• leaf.cluster.count leaf clusters with support

• taxonomy is the parent-child cluster relationship

• centers are per cluster-attribute center (centroid) information

• formula …

• call …

Copyright © 2020 Oracle and/or its affiliates.

ore.odmKMeans with text mining
K-Means Clustering

dat <- scan("SOTU-2009.txt", what=character(), sep="\n")

df <- data.frame(ID = seq(length(dat)), PARAGRAPH = dat)

SOTU_TEXT <- ore.push(df)

ore.exec("begin ctx_ddl.create_policy('MY_TXTPOL'); end;") # CTXSYS.CTX_DDL privilege required

km.mod <- ore.odmKMeans(~ PARAGRAPH, data = SOTU_TEXT, num.centers = 10L,

odm.settings = list(ODMS_TEXT_POLICY_NAME = "MY_TXTPOL",

ODMS_TEXT_MIN_DOCUMENTS = 2,

ODMS_TEXT_MAX_FEATURES = 20,

kmns_distance ="dbms_data_mining.kmns_cosine",

kmns_details = "kmns_details_all"),

ctx.settings = list(PARAGRAPH="TEXT(TOKEN_TYPE:STEM)"))

Copyright © 2020 Oracle and/or its affiliates.

Orthogonal Partitioning Clustering
O-Cluster

Uses grid-based approach

Doc link

Finds natural data clusters

Creates unbalanced hierarchical trees

Uses active sampling

INCOME

AGE

Copyright © 2020 Oracle and/or its affiliates.

https://docs.oracle.com/en/database/oracle/oracle-database/12.2/dmapi/o-cluster.html#GUID-4CA9F5BD-8CA4-41A0-88D7-8C85F2CB816F

 O-Cluster Grid-Based Partitioning

Copyright © 2020 Oracle and/or its affiliates.

When to Use O-Cluster?

High number of records

• needed for detailed histogram computation

High number of attributes

Presence of noise

Numeric and categorical attributes

Multi-modal density data

• finds “natural” clusters, may not reach max number of
clusters
set by the user

Copyright © 2020 Oracle and/or its affiliates.

Orthogonal Partitioning Clustering
Creates a hierarchical grid-based clustering model
• creates axis-parallel (orthogonal) partitions in the input attribute space

• operates recursively

• resulting hierarchical structure represents irregular grid that tessellates attribute space into clusters

• resulting clusters define dense areas in the attribute space

Clusters described by intervals along the attribute axes and corresponding centroids and
histograms

Parameter 'sensitivity' defines a baseline density level
• Only areas with peak density above this baseline level can be identified as clusters

O-Cluster separates areas of high density by placing cutting planes through areas of low
density
• O-Cluster needs multi-modal histograms (peaks and valleys)

• If an area has projections with uniform or monotonically changing density, O-Cluster does not
partition it

Copyright © 2020 Oracle and/or its affiliates.

Orthogonal Partitioning Clustering

O-Cluster reads the data in batches (the default batch size is 50000)

• Only read another batch if, based on statistical tests, there may still exist clusters that it has not yet
uncovered.

• Since O-Cluster may stop the model build before it reads all of the data, it is highly recommended
that the data be randomized

• Binary attributes should be declared as categorical

• O-Cluster maps categorical data to numerical values

• Recommend to use ODM’s equi-width binning transformation with automated estimation of the
required number of bins

• Outliers can significantly impact clustering algorithms

- Use a clipping transformation before binning or normalizing

- Outliers with equi-width binning can prevent O-Cluster from detecting clusters - as a result, the
whole population appears to falls within a single cluster.

Copyright © 2020 Oracle and/or its affiliates.

ore.odmOC
Orthogonal Partitioning Clustering

ore.odmOC(formula,

data,

auto.data.prep = TRUE,

num.centers = 10,

max.buffer = 50000,

sensitivity = 0.5,

na.action = na.pass,

odm.setting = NULL

S3 method for class 'ore.odmOC'

predict(object,

newdata,

supplemental.cols = NULL,

type = c("class","raw"),

na.action = na.pass,...)

Copyright © 2020 Oracle and/or its affiliates.

Basic Argument Concepts

num.centers – number of clusters to create, > 1, default 10

max.buffer – maximum buffer size, >0, default 50000

sensitivity – A fraction that specifies the peak density required for separating a
new cluster. The fraction is related to the global uniform density. Value [0,1].
(default: 0.5)

Copyright © 2020 Oracle and/or its affiliates.

OCluster – model object

ore.odmOC object

• name name of model in database

• settings data.frame with settings used to build model

• attributes data.frame of variable/columns used to build model

• clusters contain general per-cluster information

• leaf.cluster.count data.frame of leaf clusters with support

• taxonomy parent-child cluster relationship

• centers per cluster-attribute center (centroid) information

• centers2 simplified cluster centroids (means)

• histogram per cluster attribute histogram information

• rules rules defining clusters

• formula formula used to build the model

• call specific invocation of the function with arguments

Copyright © 2020 Oracle and/or its affiliates.

ore.odmOC
O-Cluster Clustering

x <- rbind(matrix(rnorm(100, sd = 0.3), ncol = 2),

matrix(rnorm(100, mean = 2, sd = 0.3), ncol = 2))

colnames(x) <- c("x", "y")

X <- ore.push (data.frame(x))

oc.mod1 <- ore.odmOC(~., X, num.centers=2)

summary(oc.mod1)

rules(oc.mod1)

clusterhists(oc.mod1)

histogram(oc.mod1)

Copyright © 2020 Oracle and/or its affiliates.

ore.odmOC
O-Cluster Clustering

oc.res1 <- predict(oc.mod1,X,type="class",

supplemental.cols=c("x","y"))

head(oc.res1,3)

oc.res1.local <- ore.pull(oc.res1)

plot(data.frame(x=oc.res1.local$x,

y=oc.res1.local$y),

col=oc.res1.local$CLUSTER_ID)

points(oc.mod1$centers2,

col = rownames(oc.mod1$centers2),

pch = 8, cex=2)

Copyright © 2020 Oracle and/or its affiliates.

Expectation Maximization Clustering

Popular probability density estimation technique

EM used to implement a distribution-based clustering algorithm (EM-
clustering)

Copyright © 2020 Oracle and/or its affiliates.

Expectation Maximization Clustering
ore.odmEM

Automated model search to find number of clusters / components (enabled via
EMCS_MODEL_SEARCH)

Protection against overfitting

Supports numeric and multinomial distributions

High quality probability estimates

Generates cluster hierarchy, rules, and other statistics

Supports both Gaussian and multi-value Bernoulli distributions

Includes heuristics that automatically choose distribution types

Doc link

Copyright © 2020 Oracle and/or its affiliates.

https://docs.oracle.com/en/database/oracle/oracle-database/12.2/dmapi/expectation-maximization.html#GUID-F4D117F3-FA0C-4CA4-9034-67D12339AE90

When to Use EM?

In general, EM is a significantly more expensive algorithm than k-Means. If you have a large
dataset, k-Means should be the first choice. However, Oracle’s EM is very scalable relative to other
EM implementations.

Parallel implementation allows this EM algorithm to scale linearly with the number of rows. High
column dimensionality is handled through the feature selection or random projections.

Provides a component clustering capability to group overlapping EM components into higher
level clusters, enabling discovery of arbitrarily shaped clusters. This feature is on by default and
may result in fewer clusters than the maximum size. It is also important to distinguish between
EM components and the concept of clusters which can include multiple components.

Performs automatic feature selection by removing statistically independent columns, which
effectively removes irrelevant noisy columns

Nested columns (ODM SQL only) and text use random projections and are modeled in a lower
dimensional space

Copyright © 2020 Oracle and/or its affiliates.

ore.odmEM
Expectation Maximization Clustering

ore.odmEM(formula,

data,

num.centers = NULL,

auto.data.prep = TRUE,

na.action = na.pass,

odm.setting = NULL)

histogram(x,

data=NULL,

cluster.id="all",...)

predict (object,

newdata,

supplemental.cols = NULL,

type = c("class","raw"),

na.action = na.pass,...)

Copyright © 2020 Oracle and/or its affiliates.

Basic Argument Concepts

num.centers – number of clusters to create, > 1, default NULL – system
determined

auto.data.prep – default TRUE

odm.setting – A list to specify Oracle Data Mining parameter settings. This
argument is applicable to building a model in Database 12.2 or later. Each list
element's name and value refer to the parameter setting name and value,
respectively. The setting values must be numeric or string. When parameter
ODMS_PARTITION_COLUMNS is set to the name(s) of the partition column(s), a
partition model with a sub-model in each partition is created from the input data.
(See ODM documentation for specific settings options.)

Copyright © 2020 Oracle and/or its affiliates.

EM – model object

ore.odmEM object

• name name of model in database

• settings data.frame with settings used to build model

• attributes data.frame of variable/columns used to build model

• clusters contain general per-cluster information

• leaf.cluster.count data.frame of leaf clusters with support

• taxonomy parent-child cluster relationship

• centers per cluster-attribute center (centroid) information

• centers2 simplified cluster centroids (means)

• formula formula used to build the model

• call specific invocation of the function with arguments

Copyright © 2020 Oracle and/or its affiliates.

ore.odmEM
Expectation Maximization Clustering

x <- rbind(matrix(rnorm(100, sd = 0.3), ncol = 2),

matrix(rnorm(100, mean = 1, sd = 0.3), ncol = 2))

colnames(x) <- c("x", "y")

X <- ore.push(cbind(data.frame(x),

part = as.integer(x[,2] * 100)\%\%2))

em.mod <- ore.odmEM(~. -part, X, num.centers = 3)

em.mod

summary(em.mod)

rules(em.mod)

clusterhists(em.mod)

histogram(em.mod)

Copyright © 2020 Oracle and/or its affiliates.

ore.odmEM
Expectation Maximization Clustering

em.res1 <- predict(em.mod,X,type="class",

supplemental.cols=c("x","y"))

head(em.res1,3)

em.res1.local <- ore.pull(em.res1)

plot(data.frame(x=em.res1.local$x,

y=em.res1.local$y),

col=em.res1.local$CLUSTER_ID)

points(em.mod$centers2, col =rownames(em.mod$centers2),

pch = 8, cex=2)

head(predict(em.mod,X))

head(predict(em.mod,X,type=c("class","raw"),

supplemental.cols=c("x","y")),3)

Copyright © 2020 Oracle and/or its affiliates.

ore.odmEM
Expectation Maximization Clustering with partitioned model

em.pmod <- ore.odmEM(~. , X, num.centers = 3,

odm.setting = list(odms_partition_columns = "part"))

partitions(em.pmod)

summary(em.pmod)

rules(em.pmod)

clusterhists(em.pmod)

histogram(em.pmod, part = "DM$$_P1")

head(predict(em.pmod,X))

head(predict(em.pmod,X,type=c("class","raw"),

supplemental.cols=c("x","y")),3)

head(predict(em.pmod,X,type="raw",

supplemental.cols=c("x","y")),3)

Copyright © 2020 Oracle and/or its affiliates.

Doc link

Decision Tree

Classification algorithm

• Predicts a discrete value for each case: 0 or 1, Yes or No, Low Medium or High, with
corresponding probability

• Based on classification component of well-known C&RT algorithm

• Enhancement of supplying Surrogate splitting attributes, if possible, at each node

Uses include

• Prediction

• Segmentation

• Understanding predictions

Copyright © 2020 Oracle and/or its affiliates.

https://docs.oracle.com/en/database/oracle/oracle-database/12.2/dmapi/decision-tree.html#GUID-14DE1A88-220F-44F0-9AC8-77CA844D4A63

Decision Tree Example

Customer Months

Cell Phone Churners vs. Loyal Customers

Segment #1
IF CUST_MO > 14 AND INCOME
< $90K, THEN Prediction = Cell
Phone Churner

Confidence = 100%
Support = 8/39

Segment #3
IF CUST_MO > 7 AND INCOME <
$175K, THEN
Prediction = Cell Phone Churner,

Confidence = 83%
Support = 6/39

Source: Inspired from Data Mining Techniques: For Marketing, Sales, and Customer Relationship Management by Michael J. A. Berry, Gordon S. Linoff

Copyright © 2020 Oracle and/or its affiliates.

ore.odmDT
Decision Tree

ore.odmDT(

formula,

data,

auto.data.prep = TRUE,

cost.matrix = NULL,

impurity.metric = "gini",

max.depth = 7,

min.rec.split = 20,

min.pct.split = 0.1,

min.rec.node = 10,

min.pct.node = 0.05,

na.action = na.pass,

odm.setting = NULL)

)

 # formula specifying attributes for model build

 # ore.frame of the training dataset

 # Setting to perform automatic data preparation

 # numerical sq matrix for costs of incorrect prediction

gini or entropy

 # maximum depth of tree from root to leaf inclusive [2..20]

 # minimum number of cases required to split a node

 # minimum percent of cases required to split a node

 # minimum number of cases required in a child node

 # minimum percent of cases required in child node

 # Allows missing values (na.pass), or removes rows with

missing values (na.omit)

 # A list to specify Oracle Data Mining parameter settings

Copyright © 2020 Oracle and/or its affiliates.

Basic Argument Concepts
cost.matrix – default NULL

impurity.metric
• options: gini or entropy, default "gini“
• measure of node purity

• tree algorithms seek the best test question for splitting data at each node. The best
splitter and split value are those that result in the largest increase in target value
homogeneity (purity) for the entities in the node

max.depth
• default 7

• Criteria for splits: maximum tree depth (the maximum number of nodes between the
root and any leaf node, including the leaf node)

min.rec.split – default 20

min.pct.split – default 0.1

min.rec.node – default 10

min.pct.node – default 0.05

Copyright © 2020 Oracle and/or its affiliates.

> dt.mod <- ore.odmDT(gear ~ ., MTCARS)

ore.odmDT
Decision Tree Classification

> summary(dt.mod)

Call:

ore.odmDT(formula = gear ~ ., data = MTCARS)

n = 32

Nodes:

parent node.id row.count prediction

1 NA 0 32 3

2 0 1 16

3 0 2 16 3

split

<NA>

4 (disp <= 196.2999)

(disp > 196.2999)

m <- mtcars

m$gear <- as.factor(m$gear)

m$cyl <- as.factor(m$cyl)

m$vs <- as.factor(m$vs)

m$ID <- 1:nrow(m)

MTCARS <- ore.push(m)

row.names(MTCARS) <- MTCARS

dt.mod <- ore.odmDT(gear ~ ., MTCARS)

summary(dt.mod)

dt.res <- predict (dt.mod, MTCARS,"gear")

confusion matrix

with(dt.res, table(gear,PREDICTION))

surrogate full.splits

1 <NA> <NA>

2 (cyl in ("4" "6")) (disp <= 196.299999999999995)

3 (cyl in ("8")) (disp > 196.299999999999995)

Settings:

value

prep.auto on

impurity.metric impurity.gini

term.max.depth 7

term.minpct.node 0.05

term.minpct.split 0.1

term.minrec.node 10

term.minrec.split 20

> dt.res <- predict (dt.mod, MTCARS,"gear")

> with(dt.res, table(gear,PREDICTION))

PREDICTION

gear 3 4

3 14 1

4 0 12

5 2 3

Copyright © 2020 Oracle and/or its affiliates.

Decision Tree – model object

ore.odmDT object

• name …

• settings …

• attributes …

• costs a data.frame containing the cost matrix supplied at model build

• Distributions target class distributions at each tree node

• nodes a data.frame with tree node details, including: parent node id, node id,
number of rows assigned to that node, predicted value, split predicate, surrogate
variables (if applicable), and full split predicates from current node to root node

• formula …

• call …

Copyright © 2020 Oracle and/or its affiliates.

Generalized Linear Models

Linear Models

Assumes Y is normally distributed with constant
variance

Linear models fit
μY = βo + Σp

j=1β j X j

No assumptions about predictors X j distributions,
e.g., need not be normally distributed

Nonlinear functions on predictors allowed

Advantages

• Computational simplicity

• Interpretable model form

• ability to compute certain diagnostic
information about the quality of the fit

Generalized Linear Models

Doc link

Addresses target variables that are
non-normal

• Assume Y follows distribution from exponential
family

• Specify link function and probability distribution,
or variance function

GLM fits models of the form
g(μY) = βo + Σp

j=1β j X j

g(μY) is a function of the conditional mean, a.k.a.
link function

http://en.wikipedia.org/wiki/Exponential_family

Copyright © 2020 Oracle and/or its affiliates.

https://docs.oracle.com/en/database/oracle/oracle-database/12.2/dmapi/generalized-linear-models.html#GUID-5E59530F-EBD9-414E-8C8B-63F8079772CE
http://en.wikipedia.org/wiki/Exponential_family

ore.odmGLM
Generalized Linear Model

ore.odmGLM(

formula, # formula specifying attributes for model build

data, # ore.frame of the training dataset

weights = NULL,

type = c("normal", "logistic"),

na.treatment = c("delete.row", "mean.or.mode"),

reference = NULL,

ridge = FALSE,

ridge.value = NULL,

ridge.vif = FALSE,

auto.data.prep = TRUE, # Setting to perform automatic data preparation

odm.setting = NULL) # A list to specify Oracle Data Mining parameter settings

)

Copyright © 2020 Oracle and/or its affiliates.

Basic Argument Concepts

weights
• An optional character string representing the column name in the data argument to use as

analytical weights in the model fit, Default NULL

type
• the type of generalized linear model, default “normal”

- "normal" (Gaussian) - identify link function and variance function = 1
(constant over range of response values)

- "logistic" (binomial) - logit link function and binomial variance function

na.treatment
• The missing value treatment; either "delete.row" (delete entire row) or "mean.or.mode"

(replace missing values with the mean in numeric predictors and the mode in categorical
predictors) , Default "delete.row"

reference
• An optional response variable category to use as the reference value (non-case/failure

code) in a binary logistic regression model

• By default, reference is taken to be the category with the highest prevalence, default NULL

Copyright © 2020 Oracle and/or its affiliates.

Basic Argument Concepts

ridge
• Compensates for multicollinearity

• TRUE to enable ridge estimation of the coefficients, FALSE otherwise, default FALSE

• Applies both to regression and classification

• When enabled, no prediction bounds can be produced

ridge.value
• The value for the ridge parameter used by the algorithm

• Used when ridge regression explicitly enabled

• If ridge regression is enabled internally by the algorithm, the ridge parameter is
determined by the algorithm, default NULL

ridge.vif
• (Linear regression only) Optional logical indicator for whether to produce

Variance Inflation Factor (VIF) statistics for the ridge estimates

• VIFs can only be produced if enough Oracle database system resources are available

• Default FALSE

Copyright © 2020 Oracle and/or its affiliates.

ore.odmGLM
Generalized Linear Model Regression

Linear regression using the longley data set

LONGLEY <- ore.push(longley)

longfit1 <- ore.odmGLM(Employed ~ ., data = LONGLEY)

summary(longfit1)

> longfit1 <- ore.odmGLM(Employed ~ ., data = LONGLEY)

> summary(longfit1)

Call:

ore.odmGLM(formula = Employed ~ ., data = LONGLEY)

Residuals:

Min 1Q Median 3Q Max

-0.41011 -0.15767 -0.02816 0.10155 0.45539

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -3.482e+03 8.904e+02 -3.911 0.003560 **

GNP.deflator 1.506e-02 8.492e-02 0.177 0.863141

GNP -3.582e-02 3.349e-02 -1.070 0.312681

Unemployed -2.020e-02 4.884e-03 -4.136 0.002535 **

Armed.Forces -1.033e-02 2.143e-03 -4.822 0.000944 ***

Population -5.110e-02 2.261e-01 -0.226 0.826212

Year 1.829e+00 4.555e-01 4.016 0.003037 **

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.3049 on 9 degrees of freedom

Multiple R-squared: 0.9955, Adjusted R-squared: 0.9925

F-statistic: 330.3 on 6 and 9 DF, p-value: 4.984e-10

Copyright © 2020 Oracle and/or its affiliates.

ore.odmGLM
Generalized Linear Model Regression

Ridge regression using the longley data set

longfit2 <- ore.odmGLM(Employed ~ ., data = LONGLEY,

ridge = TRUE,

ridge.vif = TRUE)

summary(longfit2)

> # Ridge regression using the longley data set

> longfit2 <- ore.odmGLM(Employed ~ ., data = LONGLEY,

+ ridge = TRUE,

+ ridge.vif = TRUE)

> summary(longfit2)

Call:

ore.odmGLM(formula = Employed ~ ., data = LONGLEY,

ridge = TRUE, ridge.vif = TRUE)

Residuals:

Min 1Q Median 3Q Max

-0.4100 -0.1579 -0.0271 0.1017 0.4575

Coefficients:

Estimate VIF

(Intercept) -3.466e+03 0.000

GNP.deflator 1.479e-02 0.077

GNP -3.535e-02 0.012

Unemployed -2.013e-02 0.000

Armed.Forces -1.031e-02 0.000

Population -5.262e-02 0.548

Year 1.821e+00 2.212

Residual standard error: 0.3049 on 9 degrees of freedom

Multiple R-squared: 0.9955, Adjusted R-squared: 0.9925

F-statistic: 330.2 on 6 and 9 DF, p-value: 4.986e-10

Copyright © 2020 Oracle and/or its affiliates.

ore.odmGLM
Generalized Linear Model Regression

Logistic regresion using the infert data set

INFERT <- ore.push(infert)

infit1 <- ore.odmGLM(

case ~ age+parity+education+spontaneous+induced,

data = INFERT,

type = "logistic")

infit1

R> # Logistic regresion using the infert data set

R> INFERT <- ore.push(infert)

R> infit1 <- ore.odmGLM(case ~ age+parity+education+spontaneous+induced,

+ data = INFERT, type = "logistic")

R> infit1

Response:

case == "1"

Call: ore.odmGLM(formula = case ~ age + parity + education + spontaneous +

induced, data = INFERT, type = "logistic")

Coefficients:

(Intercept) age parity education0-5yrs

-2.19348 0.03958 -0.82828 1.04424

education12+ yrs spontaneous induced

-0.35896 2.04590 1.28876

Degrees of Freedom: 247 Total (i.e. Null); 241 Residual

Null Deviance: 316.2

Residual Deviance: 257.8 AIC: 271.8

Copyright © 2020 Oracle and/or its affiliates.

ore.odmGLM – other functions
Generalized Linear Model

residuals(object,

type = c("deviance", "pearson", "response"), ...)

fitted(object, ...)

predict(object, newdata, supplemental.cols = NULL,

confint = FALSE, level = 0.95,

na.action = na.pass,...)

confint(object, parm, level = 0.95, ...)

deviance(object, ...)

extractAIC(fit, scale = 0, k = 2, ...)

logLik(object, ...)

nobs(object, ...)

confint: A logical indicator for whether to produce
confidence intervals for the predicted values.

level: A numeric value within [0, 1] to use for the
confidence level.

na.action: Function to use for missing value handling;
either 'na.pass' (allow missing values) or 'na.omit'
(remove rows with missing values).

parm: An optional character vector that specifies which
coefficients to include in the set of confidence
intervals.

scale: An optional numeric scale parameter.

k: An optional numeric weight of the equivalent
degrees of freedom.

Copyright © 2020 Oracle and/or its affiliates.

ore.odmGLM
Generalized Linear Model Prediction

res <- predict(infit1, newdata = INFERT, confint=TRUE, level = 0.97)

head(res)

head(residuals(infit1))

extractAIC(infit1)

logLik(infit1)

nobs(infit1)

R> res <- predict(infit1, newdata = INFERT, confint=TRUE, level = 0.97)

R> head(res)

PREDICTION LOWER.CONF UPPER.CONF

1 0.5721917 0.1767983 0.8928118

2 0.7258536 0.2887066 0.9452694

3 0.1194461 0.5546963 0.9775927

4 0.3684102 0.2546444 0.8958629

5 0.5104286 0.3632442 0.6558268

6 0.6322268 0.4007028 0.8154924

R>

R> head(residuals(infit1))

[1] 1.0566751 0.8005085 2.0614994 1.4131937 1.1597452 0.9576085

R> extractAIC(infit1)

[1] 7.0000 271.7977

R> logLik(infit1)

'log Lik.' -128.8988 (df=7)

R> nobs(infit1)

[1] 248

Copyright © 2020 Oracle and/or its affiliates.

ore.odmGLM
Generalized Linear Model Regression

Changing the reference value to 1

infit2 <- ore.odmGLM(

case ~ age+parity+education+spontaneous+induced,

data = INFERT,

type = "logistic",

reference = 1)

infit2

R> # Changing the reference value to 1

R> infit2 <- ore.odmGLM(case ~ age+parity+education+spontaneous+induced,

+ data = INFERT, type = "logistic", reference = 1)

R> infit2

Response:

case == "0"

Call: ore.odmGLM(formula = case ~ age + parity + education + spontaneous +

induced, data = INFERT, type = "logistic", reference = 1)

Coefficients:

(Intercept) age parity education0-5yrs

2.19348 -0.03958 0.82828 -1.04424

education12+ yrs spontaneous induced

0.35896 -2.04590 -1.28876

Degrees of Freedom: 247 Total (i.e. Null); 241 Residual

Null Deviance: 316.2

Residual Deviance: 257.8 AIC: 271.8

Copyright © 2020 Oracle and/or its affiliates.

Generalized Linear Model – model object
ore.odmGLM object

• name …

• settings …

• attributes …

• coefficients a named vector of coefficients

• residuals ore.frame containing 3 types of residuals: "deviance", "pearson", and
"response”

• fitted.values an ore.vector containing the fitted values

• rank numeric rank of the fitted model

• type type of model fit

• deviance minus twice the maximized log-likelihood, up to a constant

• aic same version of Akaike's An Information Criterion as used by glm

• null.deviance deviance for the null (intercept only) model

• prior.weights weights initially supplied or 1 if none were

• df.residual residual degrees of freedom

Copyright © 2020 Oracle and/or its affiliates.

Generalized Linear Model – model object (2)

ore.odmGLM object
• df.null residual degrees of freedom for the null model

• y ore.vector containing the response variable

• converged indicator for whether the model converged

• model ore.frame containing the model frame

• na.treatment how missing values were treated

• na.action number of rows with missing values that were removed

• terms terms object used

• data data argument

• nonreference in logistic regression, the response values that represents success

• ridge ridge argument

• auto.data.prep whether or not auto data preparation should be used

• fit.name internal name for the in-database model

• fit.details model details

• formula …
• call …

Copyright © 2020 Oracle and/or its affiliates.

To Ridge or not to Ridge

If the data has a large number of attributes AND accuracy is more important than a compact
model ridge is the preferred approach

If having a compact model is important, then feature selection is the preferred approach

If the problem is believed to be non-linear in nature or the user does not know, then it is also
a good idea to create a model with feature generation on

• Will generate compact polynomial (quadratic or cubic) models that may fit the data better

User can also easily create these 3 types of models in a single model build node in Oracle
Data Miner and then compare models to select best model

Copyright © 2020 Oracle and/or its affiliates.

GLM Analysis of Variance tables (SQL)

Stats from Analysis can be obtained from the global statistics:

SELECT *

FROM TABLE(dbms_data_mining.get_model_details_global('<model_name>'))

order by global_detail_name;

The stats from the parameter table can be obtained through attribute level details

SELECT *

FROM TABLE(dbms_data_mining.get_model_details_glm('<model_name>'));

Copyright © 2020 Oracle and/or its affiliates.

Doc link

Association Rules – Market Basket Analysis

Apriori algorithm (Agrawal and Srikant 1994)

Finds frequent itemsets and generates association models

• Finds co-occurrence of items in large volumes of data: both transactional and relational

Produces rules

• Set of items in a transactional record implies the existence of another set of items

• Groups of items form rules if they pass a minimum threshold

• Thresholds include: how frequently they occur (support) and how often the consequent
follows the antecedent (confidence)

Apriori algorithm is efficient, and scales well with respect to the number of
transactions, number of items, and number of itemsets and rules produced

Copyright © 2020 Oracle and/or its affiliates.

https://docs.oracle.com/en/database/oracle/oracle-database/12.2/dmapi/apriori.html#GUID-B7D12599-FB4C-45E3-BCE4-E54A3C6F0E64

Association (Market Basket Analysis)

Transactional Data and Rule Example

Input Data: User ID Movies Viewed

1 {Movie1, Movie2, Movie3}

2 {Movie1, Movie4}

3 {Movie1, Movie3}

4 {Movie2, Movie5, Movie6}

… …
N {Movie3, Movie4, Movie6}

Movie1 and Movie2  Movie3
with support of .12 and confidence .78

Copyright © 2020 Oracle and/or its affiliates.

Association Rules Support (A  B)
= P(AB)

Support and Confidence = count (A & B) / totalCount

User ID Movies Viewed
1 {1, 2, 3}
2 {1, 4}
3 {1, 3}
4 {2, 5, 6}

Confidence (A  B)
= P(AB)/P(A)
= count (A & B) / count (A)

1  3 :

Support = 2/4 = 50%

Confidence = 2/3 = 66%

3  1 :

Support = 2/4 = 50%

Confidence = 2/2 = 100%

Copyright © 2020 Oracle and/or its affiliates.

ore.odmAssocRules
Association Rules

ore.odmAssocRules(formula,

data,

case.id.column,

item.id.column = NULL,

item.value.column = NULL,

min.support = 0.05,

min.confidence = 0.05,

max.rule.length = 2,

na.action = na.pass,

odm.setting = NULL)

S3 method for class 'ore.odmAssocRules'

rules(object, ...)

S3 method for class 'ore.odmAssocRules'

itemsets(object, ...)

Copyright © 2020 Oracle and/or its affiliates.

Basic Argument Concepts

case.id.column
• Column name in 'data' that contains unique case identifiers

item.id.column
• Column in 'data' that contains item IDs. If NULL (default), 'data' treated as single-record case

relational table, where each row considered a transaction and column values of that row are
converted to items for that transaction; if specified, treated as transactional or multi-record case
table where each row corresponds to an item in transaction, and model ignores any columns in
'data' other than item ID and item value.

item.value.column
• Column name in 'data' that contains the value of the item. (default: NULL)

min.support
• Numeric value that specifies the minimum support for rules in the model

min.confidence
• Numeric value that specifies the minimum confidence for rules in the model

max.rule.length
• Numeric value that specifies the maximum number of items in rule

Copyright © 2020 Oracle and/or its affiliates.

Association Rules – model object

ore.odmAssocRules object

• name – name of in-database model

• settings - data.frame of settings used to build model

• attributes - named 'vector' of the types of input item values

• inputType: The type of input data table. It is "trans","tranWithValue", or "relational"
for a multi-record case table, a multi-record case table with the values specified, or a
single-record case table, respectively

• formula: A formula specified by users

Copyright © 2020 Oracle and/or its affiliates.

Association Rules – model object

ore.itemsets object - returned by itemsets() that describes the property of each itemset

• ITEMSET_ID: numerical identifier associated with each itemset

• NUMBER_OF_ITEMS: number of items in the itemset

• ITEMS: names of items in the itemset

• SUPPORT: number of transactions containing this itemset

ore.rules object - returned by rules() that describes the property of each rule

• RULE_ID

• NUMBER_OF_ITEMS

• LHS: left hand side of rule (antecedent)

• RHS: right hand side of rule (consequent)

• SUPPORT

• CONFIDENCE

• LIFT

Copyright © 2020 Oracle and/or its affiliates.

ore.odmAssocRules
Association Rules

id <- c(1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3)

item <- c("b", "d", "e", "a", "b", "c", "e", "b", "c", "d", "e")

data.ore <- ore.push(data.frame(ID = id, ITEM = item))

ar.mod1 <- ore.odmAssocRules(~., data.ore, case.id.column =
"ID",item.id.column = "ITEM", min.support = 0.6, min.confidence =
0.6,max.rule.length = 3)

Generate itemsets and rules of the model

itemsets <- itemsets(ar.mod1)

rules <- rules(ar.mod1)

subsetting

sub.itemsets <- subset(itemsets, min.support=0.7, items=list("b"))

sub.rules <- subset(rules, min.confidence=0.7,

lhs=list("b", "c"))

library(arules)

Convert the rules to the rules object in arules package

rules.arules <- ore.pull(rules)

inspect(rules.arules)

R> inspect(rules.arules)

lhs rhs support confidence lift

1 {b} => {e} 1.0000000 1.0000000 1

2 {e} => {b} 1.0000000 1.0000000 1

3 {c} => {e} 0.6666667 1.0000000 1

4 {d,

e} => {b} 0.6666667 1.0000000 1

5 {c,

e} => {b} 0.6666667 1.0000000 1

6 {b,

d} => {e} 0.6666667 1.0000000 1

7 {b,

c} => {e} 0.6666667 1.0000000 1

8 {d} => {b} 0.6666667 1.0000000 1

9 {d} => {e} 0.6666667 1.0000000 1

10 {c} => {b} 0.6666667 1.0000000 1

11 {b} => {d} 0.6666667 0.6666667 1

12 {b} => {c} 0.6666667 0.6666667 1

13 {e} => {d} 0.6666667 0.6666667 1

14 {e} => {c} 0.6666667 0.6666667 1

15 {b,

e} => {d} 0.6666667 0.6666667 1

16 {b,

e} => {c} 0.6666667 0.6666667 1

Copyright © 2020 Oracle and/or its affiliates.

ore.odmAssocRules
Association Rules

Convert itemsets to the itemsets object in arules package

itemsets.arules <- ore.pull(itemsets)

inspect(itemsets.arules)

library(arulesViz)

plot(rules.arules, method = "graph",interactive=TRUE)

R> inspect(itemsets.arules)

items support

1 {b} 1.0000000

2 {e} 1.0000000

3 {b,

e} 1.0000000

4 {c} 0.6666667

5 {d} 0.6666667

6 {b,

c} 0.6666667

7 {b,

d} 0.6666667

8 {c,

e} 0.6666667

9 {d,

e} 0.6666667

10 {b,

c,

e} 0.6666667

11 {b,

d,

e} 0.6666667

Copyright © 2020 Oracle and/or its affiliates.

ore.odmAssocRules – multi-record case with value
Association Rules

id <- c(1, 1, 2, 2, 3, 3, 3, 4, 4, 5, 5, 6, 6, 7, 8, 8, 9, 9, 10, 11, 12, 12, 13, 14, 15, 16, 17)

item <- c("a","b","a","b","a","c","d","c","d","c","d","c","d","d","d","a","d","e","a",

"a","d","e","d","e","d","d","d")

value <- c(1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 3, 2, 1, 2, 3, 1, 2, 2, 3, 2, 3, 2, 3, 3)

data2.ore <- ore.push(data.frame("ID" = id, "ITEM" = item, "VALUE" = value))

ar.mod2 <- ore.odmAssocRules(~., data2.ore, case.id.column = "ID",

item.id.column = "ITEM", item.value.column = "VALUE", max.rule.length = 3)

rules <- rules(ar.mod2)

itemsets <- itemsets(ar.mod2)

itemsets.arules <- ore.pull(itemsets)

inspect(itemsets.arules)

rules.arules <- ore.pull(rules)

plot(rules.arules, method = "graph",interactive=TRUE)

Copyright © 2020 Oracle and/or its affiliates.

ore.odmAssocRules
Association Rules

Relational data in a single-record case table.

ar.mod3 <- ore.odmAssocRules(~., NARROW,
case.id.column = "ID",

min.support=0.25, min.confidence=0.15,
max.rule.length = 2)

rules = rules(ar.mod3)

itemsets = itemsets(ar.mod3)

itemsets.arules <- ore.pull(itemsets)

inspect(itemsets.arules)

rules.arules <- ore.pull(rules)

plot(rules.arules, method =
"graph",interactive=TRUE)

R> inspect(itemsets.arules)

items support

1 {COUNTRY=United States of America} 0.8960000

2 {CLASS=0} 0.7466667

3 {CLASS=0,

COUNTRY=United States of America} 0.6646667

4 {GENDER=M} 0.5866667

5 {COUNTRY=United States of America,

GENDER=M} 0.5273333

6 {MARITAL_STATUS=Married} 0.4133333

7 {CLASS=0,

GENDER=M} 0.3986667

8 {COUNTRY=United States of America,

MARITAL_STATUS=Married} 0.3646667

9 {GENDER=M,

MARITAL_STATUS=Married} 0.3140000

10 {GENDER=F} 0.2806667

11 {EDUCATION=HS-grad} 0.2806667

12 {MARITAL_STATUS=NeverM} 0.2793333

13 {CLASS=0,

MARITAL_STATUS=NeverM} 0.2633333

14 {COUNTRY=United States of America,

EDUCATION=HS-grad} 0.2586667

15 {CLASS=1} 0.2533333

16 {COUNTRY=United States of America,

MARITAL_STATUS=NeverM} 0.2533333

17 {CLASS=0,

GENDER=F} 0.2520000

18 {COUNTRY=United States of America,

GENDER=F} 0.2520000

Copyright © 2020 Oracle and/or its affiliates.

http:min.confidence=0.15
http:min.support=0.25

plot(rules.arules, method = "graph",

interactive = TRUE)

Copyright © 2020 Oracle and/or its affiliates.

Feature Extraction

Copyright © 2020 Oracle and/or its affiliates.

Singular Value Decomposition

Feature extraction algorithm

Orthogonal linear transformations capture the underlying variance of data by
decomposing a rectangular matrix into three matrixes: U, D and V

Matrix D is a diagonal matrix and its singular values reflect the amount of data
variance captured by the bases

Copyright © 2020 Oracle and/or its affiliates.

Singular Value Decomposition
ore.odmSVD

Supports narrow data via Tall and Skinny solvers

Supports wide data via stochastic solvers

Provides eigensolvers for faster analysis with sparse data

Provides traditional SVD for more stable results

Doc link

Copyright © 2020 Oracle and/or its affiliates.

https://docs.oracle.com/en/database/oracle/oracle-database/12.2/dmapi/singular-value-decomposition.html#GUID-703B237F-D9C5-4543-97DD-31A914BB6A05

ore.odmSVD
Singular Value Decomposition

ore.odmSVD(formula,

data,

auto.data.prep = TRUE,

na.action = na.pass,

odm.setting = NULL,

ctx.setting = NULL)

features(object,...)

feature_compare(object,

newdata,

compare.cols = NULL,

supplemental.cols = NULL)

Copyright © 2020 Oracle and/or its affiliates.

predict(object,

newdata,

supplemental.cols = NULL,

type = c("class","raw"),

na.action = na.pass,...)

u(object)

v(object)

d(object)

Basic Argument Concepts

num.centers – number of clusters to create, > 1, default NULL – system determined

auto.data.prep – default TRUE

odm.setting – A list to specify Oracle Data Mining parameter settings. This argument is
applicable to building a model in Database 12.2 or later. Each list element's name and value
refer to the parameter setting name and value, respectively. The setting values must be
numeric or string. To perform text mining, parameter ODMS_TEXT_POLICY_NAME must be set
to a text policy name. When parameter ODMS_PARTITION_COLUMNS is set to the name(s) of
the partition column(s), a partition model with a sub-model in each partition is created
from the input data

ctx.setting – A list to specify Oracle Text attribute-specific settings. This argument is
applicable to building model in Database 12.2 or later. The name of each list element refers
to the text column while the list value specifies the text transformation.

See ODM documentation for specific settings options.

Copyright © 2020 Oracle and/or its affiliates.

SVD – model object

ore.odmSVD object

• name name of model in database

• settings data.frame with settings used to build model

• attributes data.frame of variable/columns used to build model

• formula formula used to build the model

• call specific invocation of the function with arguments

Copyright © 2020 Oracle and/or its affiliates.

ore.odmSVD
Singular Value Decomposition

IRIS <- ore.push(cbind(ID = seq_along(iris[[1L]]), iris))

svd.mod <- ore.odmSVD(~. -ID, IRIS)

summary(svd.mod)

d(svd.mod)

v(svd.mod)

head(predict(svd.mod, IRIS, supplemental.cols = "ID"))

svd.pmod <- ore.odmSVD(~. -ID, IRIS,

odm.setting = list(odms_partition_columns = "Species"))

summary(svd.pmod)

d(svd.pmod)

v(svd.pmod)

head(predict(svd.pmod, IRIS, supplemental.cols = "ID"))

Copyright © 2020 Oracle and/or its affiliates.

Non-negative Matrix Factorization

State-of-the-art algorithm for Feature Extraction

Dimensionality reduction technique

• Creates new features of existing attributes

• Compare to AI which reduces attributes by taking a subset

• NMF derives fewer new “features” taking into account interactions
among original attributes

Supports text mining, life sciences, marketing applications

Copyright © 2020 Oracle and/or its affiliates.

NMF, intuitively…

Useful where there are many attributes

• Each has weak predictability, even ambiguous

• But when taken in combination, produce meaningful patterns, topics, or
themes

Example: Text

• Same word can predict different documents
e.g., “hike” can be applied to the outdoors or interest rates

• NMF introduces context which is essential for predictive power
e.g., “hike” + “mountain” -> “outdoors sports”

“hike” + “interest” -> “interest rates”

Copyright © 2020 Oracle and/or its affiliates.

Conceptual view…

Attributes values

a
b
c
d
e
f
g
h

x
y
z

…

1

2

Target values

a
b
c
d
e
f
g
h

x
y
z

…

1

2

Attributes values

Target values f1
f2
f3
f4

Extracted
features

Copyright © 2020 Oracle and/or its affiliates.

original

Feature Extraction
Face representation with Vector Quantization

VQ

(0,0,0,…,1,…,0,0)

= 
encoding reconstruction

Copyright © 2020 Oracle and/or its affiliates.

Feature Extraction
Face representation with Principal Component Analysis

PCA

(.9,.6,-.5,…,.9,-.3)

= 
encoding reconstruction

original

Copyright © 2020 Oracle and/or its affiliates.

Feature Extraction
Face representation with NMF

NMF

(0,.5,.3,0,1,…,.3,0)

= 
encoding reconstruction

original

Copyright © 2020 Oracle and/or its affiliates.

ore.odmNMF
Non-negative Matrix Factorization

ore.odmNMF(formula,

data,

auto.data.prep = TRUE,

num.features = NULL,

conv.tolerance = NULL,

num.iter = NULL,

rand.seed = NULL,

nonnegative.scoring = TRUE,

na.action = na.pass,

odm.setting = NULL,

ctx.setting = NULL)

predict(object,

newdata,

supplemental.cols = NULL,

type = c("class","raw"),

na.action = na.pass,...)

Doc link

Copyright © 2020 Oracle and/or its affiliates.

https://docs.oracle.com/en/database/oracle/oracle-database/12.2/dmapi/non-negative-matrix-factorization.html#GUID-76F89641-E1D3-4B11-8319-4A152389D510

Basic Argument Concepts

num.features – number of features to be extracted

conv.tolerance – convergence tolerance

num.iter – maximum number of iterations

rand.seed – random seed

nonnegative.scoring – non-negative values allowed in scoring

Copyright © 2020 Oracle and/or its affiliates.

ore.odmNMF
Non-negative Matrix Factorization

training.set <- ore.push(npk[1:18, c("N","P","K")])

scoring.set <- ore.push(npk[19:24, c("N","P","K")])

nmf.mod <- ore.odmNMF(~., training.set, num.features = 3)

features(nmf.mod)

summary(nmf.mod)

predict(nmf.mod, scoring.set)

R> features(nmf.mod)

FEATURE_ID ATTRIBUTE_NAME ATTRIBUTE_VALUE COEFFICIENT

1 1 K 0 3.723468e-01

2 1 K 1 1.761670e-01

3 1 N 0 7.469067e-01

4 1 N 1 1.085058e-02

5 1 P 0 5.730082e-01

6 1 P 1 2.797865e-02

7 2 K 0 4.107375e-01

8 2 K 1 2.193757e-01

9 2 N 0 8.065393e-03

10 2 N 1 8.569538e-01

11 2 P 0 4.005661e-01

12 2 P 1 4.124996e-02

13 3 K 0 1.918852e-01

14 3 K 1 3.311137e-01

15 3 N 0 1.547561e-01

16 3 N 1 1.283887e-01

17 3 P 0 9.791965e-06

18 3 P 1 9.113922e-01

Copyright © 2020 Oracle and/or its affiliates.

ore.odmNMF
Non-negative Matrix Factorization

R> predict(nmf.mod, scoring.set)

'1' '2' '3' FEATURE_ID

19 0.1972489 1.2400782 0.03280919 2

20 0.7298919 0.0000000 1.29438165 3

21 0.1972489 1.2400782 0.03280919 2

22 0.0000000 1.0231268 0.98567623 2

23 0.7298919 0.0000000 1.29438165 3

24 1.5703239 0.1523159 0.00000000 1

R> summary(nmf.mod)

Call:

ore.odmNMF(formula = ~., data = training.set, num.features = 3)

Settings:

value

feat.num.features 3

nmfs.conv.tolerance .05

nmfs.nonnegative.scoring nmfs.nonneg.scoring.enable

nmfs.num.iterations 50

nmfs.random.seed -1

prep.auto on

Features:

FEATURE_ID ATTRIBUTE_NAME ATTRIBUTE_VALUE COEFFICIENT

1 1 K 0 3.723468e-01

2 1 K 1 1.761670e-01

3 1 N 0 7.469067e-01

4 1 N 1 1.085058e-02

5 1 P 0 5.730082e-01

6 1 P 1 2.797865e-02

7 2 K 0 4.107375e-01

8 2 K 1 2.193757e-01

9 2 N 0 8.065393e-03

10 2 N 1 8.569538e-01

11 2 P 0 4.005661e-01

12 2 P 1 4.124996e-02

13 3 K 0 1.918852e-01

14 3 K 1 3.311137e-01

15 3 N 0 1.547561e-01

16 3 N 1 1.283887e-01

17 3 P 0 9.791965e-06

18 3 P 1 9.113922e-01

Copyright © 2020 Oracle and/or its affiliates.

Explicit Semantic Analysis (ESA)

Oracle Advanced Analytics 12.2+

Copyright © 2020 Oracle and/or its affiliates.

Explicit Semantic Analysis (ESA)

In NLP and information retrieval, ESA is a vectorial representation of text (individual
words or entire documents) that uses a document corpus as a knowledge base
• A word is represented as a column vector in the TF-IDF matrix of the text corpus

• A document (string of words) is represented as the centroid of the vectors representing its words

Text corpus often is English Wikipedia, though other corpora can be used

Designed to improve text categorization
• Computes "semantic relatedness" using cosine similarity between aforementioned vectors,

collectively interpreted as a space of "concepts explicitly defined and described by humans“

• Wikipedia articles are equated with concepts

The name "explicit semantic analysis" contrasts with latent semantic analysis (LSA),
because use of a knowledge base makes possible to assign human-readable labels to
concepts comprising the vector space

Copyright © 2020 Oracle and/or its affiliates.

Explicit Semantic Analysis (ESA)

Data
• Text documents

• Data with mixed set of columns, i.e., text + categorical + numerical

Examples
• Calculate semantic similarity between text documents or between mixed data

• Explicit topic modeling for text

Copyright © 2020 Oracle and/or its affiliates.

Case 1: Calculate semantic similarity between
text documents or between mixed data

Requires Wikipedia or another encyclopedic source to create a model

Model source data should cover all aspects of language usage

• E.g., number of articles in the source data should be comparable to
dictionary size

• A dictionary of size 200K is often sufficient

• Ideally source data is ~orthogonal, i.e. without overlapping articles

Copyright © 2020 Oracle and/or its affiliates.

Case 1: Example

The following two paragraphs score a high similarity at 0.695 according to a Wikipedia-based ESA model:

• The Securities and Exchange Commission sued Tesla's CEO on Thursday for making 'false and misleading' statements to investors. It's asking a federal
judge to prevent Musk from serving as an officer or a director of a public company, among other penalties. The complaint hinges on a tweet Musk sent
on August 7 about taking Tesla private. 'Am considering taking Tesla private at $420,' Musk said. 'Funding secured.' The SEC said he had not actually
secured the funding. 'In truth and in fact, Musk had not even discussed, much less confirmed, key deal terms, including price, with any potential
funding source,' the SEC said in its complaint. That tweet, and subsequent tweets from Musk over the next three hours, caused 'significant confusion
and disruption in the market for Tesla's stock,' as well as harm to investors, the SEC said. On the day of Musk's tweet, Tesla's stock shot up nearly 9%. It
has declined substantially since then.

• The Securities and Exchange Commission filed a lawsuit Thursday against Elon Musk, the chief executive of Tesla, accusing him of making false public
statements with the potential to hurt investors. The lawsuit, filed in federal court in New York, seeks to bar Mr. Musk from serving as an executive or
director of publicly traded companies. Tesla, the electric-car maker of which Mr. Musk was a co-founder, is publicly traded. The suit relates to an Aug. 7
Twitter post by Mr. Musk, in which he said he had 'funding secured' to convert Tesla into a private company. The S.E.C. said Mr. Musk 'knew or was
reckless in not knowing' that his statements were false or misleading. 'In truth and in fact, Musk had not even discussed, much less confirmed, key deal
terms, including price, with any potential funding source,' the S.E.C. said in its lawsuit..‘

In contrast, similarity between the first paragraph and this paragraph is only 0.051:

• If humans had lived 200 million years ago, they would have marveled at the largest dinosaur of its time. It's name means 'a giant thunderclap at dawn.'
The recently discovered fossil of a new dinosaur species in South Africa revealed a relative of the brontosaurus that weighed 26,000 pounds, about
double the size of a large African elephant. The researchers have named it Ledumahadi mafube, which is Sesotho for 'a giant thunderclap at dawn.'
Sesotho is an official South African language indigenous to the part of the country where the dinosaur was found. 'The name reflects the great size of
the animal as well as the fact that its lineage appeared at the origins of sauropod dinosaurs,' said Jonah Choiniere, study author and paleontology
professor at the University of the Witwatersrand in Johannesburg, South Africa. 'It honors both the recent and ancient heritage of southern Africa.'

Copyright © 2020 Oracle and/or its affiliates.

Case 2: Explicit topic modeling for text

Discover the most relevant topics for a given text document
• Not really applicable to mixed data

Using Wikipedia as the model source data is typical

Explicit topic modeling benefits from domain-specific data
• E.g., medicine, biology, physics and all other science branches

Requires that data source is encyclopedic for the selected domain
• If domain topic coverage is insufficient, results will be poor

Copyright © 2020 Oracle and/or its affiliates.

Case 2: Example

"The more things change... Yes, I'm inclined to agree, especially with regards to the historical relationship
between stock prices and bond yields. The two have generally traded together, rising during periods of
economic growth and falling during periods of contraction. Consider the period from 1998 through 2010,
during which the U.S. economy experienced two expansions as well as two recessions: Then central banks
came to the rescue. Fed Chairman Ben Bernanke led from Washington with the help of the bank's current
$3.6T balance sheet. He's accompanied by Mario Draghi at the European Central Bank and an equally
forthright Shinzo Abe in Japan. Their coordinated monetary expansion has provided all the sugar needed
for an equities moonshot, while they vowed to hold global borrowing costs at record lows“

Top topics (concepts, people, organizations, events) discovered by ESA using
Wikipedia as model source data
• Recession, Ben Bernanke , Lost Decade Japan, Mario Draghi, Quantitative easing, Long Depression,

Great Recession, Federal Open Market Committee, Bank of Canada, Monetary policy, Japanese asset
price bubble, Money supply, Great Depression, Central bank, Federal Reserve System

If instead of using the entire Wikipedia, we limit ourselves to the source dataset
comprised of concepts only, this result would translate to:
• Recession, Quantitative easing, Monetary policy, Money supply, Central bank, Federal Reserve System

Copyright © 2020 Oracle and/or its affiliates.

ESA vs. LDA (Latent Dirichlet Allocation)
ESA is more interpretable than LDA

Topics discovered by LDA are latent, meaning
difficult to interpret

• Topics are defined by their keywords, i.e., they have no
names, no abstract descriptions

• To give meaning to topics, keywords can be extracted by
LDA

• Definitions solely based on keywords are fuzzy, and
keywords for different topics usually overlap

• Extracted keywords can be just generic words

• Set of automatically extracted keywords for a topic does not
map to a convenient English topic name

Biggest problem with LDA: set of topics is fluid

• Topic set changes with any changes to the training data

• Any modification of training data changes topic boundaries

•  topics cannot be mapped to existing knowledge base or
topics understood by humans if training data not static

• Training data is almost never static

ESA discovers topics from a given set of topics
in a knowledge base

• Topics are defined by humans  topics are well
understood.

• Topic set of interest can be selected and augmented if
necessary  full control of the selection of topics

• Set of topics can be geared toward a specific task, .e.g.,
knowledge base for topic modeling of online messages
possibly related to terrorist activities, which is different
than one for topic modeling of technical reports from
academia

• Can combine multiple knowledge bases, each with its
own topic set, which may or may not overlap

• Topic overlapping does not affect ESA's capability to
detect relevant topics

Copyright © 2020 Oracle and/or its affiliates.

ore.odmESA
Explicit Semantic Analysis

ore.odmESA(formula,

data,

auto.data.prep = TRUE,

Doc link

na.action = na.pass,

odm.setting = NULL,

ctx.setting = NULL)

features(object,...)

feature_compare(object, newdata, compare.cols = NULL, supplemental.cols = NULL)

predict(object,

newdata,

supplemental.cols = NULL,

type = c("class","raw"),

na.action = na.pass,...)

}

Copyright © 2020 Oracle and/or its affiliates.

https://docs.oracle.com/en/database/oracle/oracle-database/12.2/dmapi/explicit-semantic-analysis.html#GUID-7DC30272-E234-4C7C-B7D2-29D0E5448BA6

Basic Argument Concepts

odm.setting – A list to specify Oracle Data Mining parameter settings. This argument is
applicable to building a model in Database 12.2 or later. Each list element's name and value
refer to the parameter setting name and value, respectively. The setting values must be
numeric or string. Parameter CASE_ID_COLUMN_NAME must specify the name of the
column containing unique identifier. Parameter ODMS_TEXT_POLICY_NAME specifies the
name of a valid Oracle text policy used for text mining. When parameter
ODMS_PARTITION_COLUMNS is set to the names of the partition columns, then a
partition model with sub-model in each partition is created from the input data.

ctx.setting – A list to specify Oracle Text attribute-specific settings. This argument is
applicable to building model in Database 12.2 or later. The name of each list element refers
to the text column while the list value specifies the text transformation.

(See ODM documentation for specific settings options.)

Copyright © 2020 Oracle and/or its affiliates.

ESA – model object

ore.odmESA object

• name name of model in database

• settings data.frame with settings used to build model

• attributes data.frame of variable/columns used to build model

• formula formula used to build the model

• call specific invocation of the function with arguments

Copyright © 2020 Oracle and/or its affiliates.

ore.odmESA
Explicit Semantic Analysis

title <- c('Aids in Africa: Planning for a long war',

'Mars rover maneuvers for rim shot',

'Mars express confirms presence of water at Mars south pole',

'NASA announces major Mars rover finding',

'Drug access, Asia threat in focus at AIDS summit',

'NASA Mars Odyssey THEMIS image: typical crater',

'Road blocks for Aids')

ESA_TEXT <- ore.push(data.frame(CUST_ID = seq(length(title)),

TITLE = title))

create text policy (CTXSYS.CTX_DDL privilege is required)

ore.exec("begin ctx_ddl.create_policy('ESA_TXTPOL'); end;")

Copyright © 2020 Oracle and/or its affiliates.

ore.odmESA
Explicit Semantic Analysis

esa.mod <- ore.odmESA(~., data = ESA_TEXT,

odm.setting = list(case_id_column_name = "CUST_ID",

ODMS_TEXT_POLICY_NAME = "ESA_TXTPOL",

ESAS_MIN_ITEMS = 1),

ctx.setting = list(TITLE = c("MIN_DOCUMENTS:1", "MAX_FEATURES:3")))

esa.mod

class(esa.mod)

summary(esa.mod)

settings(esa.mod)

predict(esa.mod, ESA_TEXT, type = "class", supplemental.cols = "CUST_ID")

ore.exec("begin ctx_ddl.drop_policy('ESA_TXTPOL'); end;")

Copyright © 2020 Oracle and/or its affiliates.

OREmodels Package

Copyright © 2020 Oracle and/or its affiliates.

OREmodels Algorithms

Algorithm Main R Function

Linear Regression ore.lm

Stepwise Linear Regression ore.stepwise

Generalized Linear Models ore.glm

Feedforward Neural Networks ore.neural

Random Forest ore.randomForest

Singular Value Decomposition svd overloaded

Principal Component Analysis prcomp overloaded

princomp
overloaded

Copyright © 2020 Oracle and/or its affiliates.

ore.lm and ore.stepwise
Overview

ore.lm performs least squares regression

ore.stepwise performs stepwise least squares regression with
marginal t-tests for variable selection – similar to SAS

Uses database data represented by ore.frame objects

In-database algorithm

• Estimates model using block update QR decomposition with column pivoting

• Once coefficients have been estimated, a second pass of the data estimates
model-level statistics

• If collinear terms in data, ore.lm and ore.stepwise will not estimate coefficient
values for the collinear set of terms

• For ore.stepwise, this collinear set of terms will be excluded throughout the
procedure

Copyright © 2020 Oracle and/or its affiliates.

lm
For comparison with ore.lm

Fit full model

fit1 <- lm(Employed ~ ., data = longley)

summary(fit1)

Coefficient Armed.Forces significant at p < .001
indicates for a 1 unit increase in Armed.Forces, Employed
decreases by 0.01 units when all other predictors held constant

Multiple R-squared of 0.9955 indicates the model accounts for
99.55% of the variance in the target

Adjusted R-squared takes into account the number of predictors
to
account for chance improvement of R-squared simply be
increasing
number of predictors

Residual standard error is the average error in predicting the
target

F-statistic indicates if predictors predict target beyond chance
Copyright © 2020 Oracle and/or its affiliates.

ore.lm

To limit overhead caused by parallelism

options(ore.parallel=1)

LONGLEY <- ore.push(longley)

Fit full model

oreFit1 <- ore.lm(Employed ~ ., data = LONGLEY)

summary(oreFit1)

Since data is small, turn off parallelism by setting ore.parallel to 1

Copyright © 2020 Oracle and/or its affiliates.

lm and ore.lm results side-by-side
They’re identical

Copyright © 2020 Oracle and/or its affiliates.

Other functions on ore.lm model

summary(object, correlation = FALSE, symbolic.cor = FALSE, ...)
• Return the call, residuals, coefficients, and various statistics

predict(object, newdata, se.fit = FALSE, scale = NULL, df = Inf,
interval = c("none", "confidence", "prediction"), level = 0.95, type = c("response", "terms"),
terms = NULL, na.action = na.pass, pred.var = NULL, weights = NULL, ...)

vcov(object, ...)
• Returns the variance-covariance matrix of the main parameters of a fitted model object

logLik(object, ...)
• Returns object of class logLik – a number with at least one attribute, "df"(degrees of freedom), giving number of

(estimated) parameters in model

hatvalues(model, ...)
• Returns measure of high leverage for observations. Observations with value > 2x or 3x average hat value should be

examined for possible removal. Average hat value = p / n, where p is number of parameters (including intercept) and n is
number of observations

add1(object, scope, scale = 0, test = c("none", "Chisq", "F"), x = NULL, k = 2, ...)

drop1(object, scope, scale = 0, all.cols = TRUE, test = c("none", "Chisq", "F"), k = 2, ...)
• Compute all single terms in scope argument that can be added to / dropped from model, fit those models and compute

table of changes in fit

Copyright © 2020 Oracle and/or its affiliates.

Other functions on ore.lm model

anova(object,…)

coef(object, ...) & coefficients(object, ...)

• Return the coefficients for the model

confint(object, parm, level = 0.95, ...)

• Return the confidence interval of the coefficients

deviance(object, ...)

• Returns the deviance of the model

extractAIC(fit, scale, k = 2, ...)

• Returns the (generalized) Akaike Information Criterion for
a fitted parametric model

fitted(object, ...) & fitted.values(object, ...)

• Returns the predicted values on each of the training data
observations/rows

formula(x, ...)
• Returns the formula used to specify the model

model.frame(formula, ...)
• Returns the training data used to build the model

nobs(object, ...)
• Returns the number of observations in the training data

resid(object, ...) & residuals(object, ...)
• Returns the residual values from the predictions

(predicted – actual) for each observation

plot(object,…)
• Produces diagnostic plots to assess model fit

• Plot of residuals against fitted values, a Scale-Location
plot of sqrt(| residuals |) against fitted values, a Normal Q-
Q plot, a plot of Cook's distances versus row labels, a plot
of residuals against leverages, and a plot of Cook's
distances against leverage/(1-leverage)

Copyright © 2020 Oracle and/or its affiliates.

Stepwise Regression: ore.stepwise
Motivation

Automatically selects predictive variables

Produces models with fewer terms

Enable handling data with complex patterns
• Even for relatively small data sets (e.g., < 1M rows) R may not yield satisfactory

results

Increases performance
• Side benefit of handling complex patterns is to dramatically boost performance

• No need to pull data into memory from database

• Leverage more powerful database machine

Provide a stepwise regression that maps to SAS PROC REG
• Uses marginal t-tests for variable selection as opposed to AIC, which is used for R’s

step() function. Note R’s step function can be used with ore.lm.

Copyright © 2020 Oracle and/or its affiliates.

ore.stepwise – parameters

ore.stepwise(formula, data, scope,

direction = c("both", "backward", "forward", "alternate", "none"),

add.p = 0.50, drop.p = 0.10, nbest = 1, steps = 1000,

contrasts = NULL, xlev = NULL, ...)

scope – range of models to examine, either single formula object, or list containing lower and upper
formula object elements

direction – The stepwise search mode; one of '"both"' (first try to add a term using the 'add.p' argument
value and then try repeatedly to drop terms using the 'drop.p' argument value), '"backward"', '"forward"',
'"alternate"' (similar to '"both"' but only one drop is attempted per add attempt) or '"none"' with a default
of '"both"'

add.p – F-test p-value threshold for adding term to model

drop.p – F-test p-value threshold for dropping term from model

nbest – number of best models to report at each step

steps – maximum number of steps

contrasts – named list to be supplied to the contrasts.arg argument of model.matrix

xlev – a named list of character vectors specifying the levels for each ore.factor variable

Copyright © 2020 Oracle and/or its affiliates.

ore.stepwise – example

LONGLEY <- ore.push(longley) Build model with interaction terms

Using ore.stepwise

oreStep1 <-

ore.stepwise(Employed ~ .^2, data = LONGLEY,

add.p = 0.1, drop.p = 0.1)

oreStep1

Using R step with ore.lm

oreStep2 <-

step(ore.lm(Employed ~ 1, data = LONGLEY),

scope = terms(Employed ~ .^2, data = LONGLEY))

oreStep2

Copyright © 2020 Oracle and/or its affiliates.

ore.stepwise – results

Copyright © 2020 Oracle and/or its affiliates.

step with ore.lm – results

Akaike information criterion (AIC)
• Measure of quality of a model
• Used for model selection

Copyright © 2020 Oracle and/or its affiliates.

How to use Akaike's Information Criterion (AIC) as a
selection criterion for stepwise regression
AIC cannot be used with ore.stepwise, since the ore.stepwise function uses marginal t-tests for variable selection

ore.lm integrates with R's step function, which does use AIC

It is not as fast as ore.stepwise, but will get the job done

R> LONGLEY <- ore.push(longley)

R> mod <- ore.lm(Employed ~ ., data = LONGLEY)

R> step(mod)

Start: AIC=-33.22

Employed ~ GNP.deflator + GNP + Unemployed + Armed.Forces +

Population + Year

Df Sum of Sq RSS AIC

- GNP.deflator 1 0.00292 0.83935 -35.163

- Population 1 0.00475 0.84117 -35.129

- GNP 1 0.10631 0.94273 -33.305

<none> 0.83642 -33.219

- Year 1 1.49881 2.33524 -18.792

- Unemployed 1 1.59014 2.42656 -18.178

- Armed.Forces 1 2.16091 2.99733 -14.798

Step: AIC=-35.16

Employed ~ GNP + Unemployed + Armed.Forces + Population + Year

Df Sum of Sq RSS AIC

- Population 1 0.01933 0.8587 -36.799

<none> 0.8393 -35.163

- GNP 1 0.14637 0.9857 -34.592

- Year 1 1.52725 2.3666 -20.578

- Unemployed 1 2.18989 3.0292 -16.628

- Armed.Forces 1 2.39752 3.2369 -15.568

Step: AIC=-36.8

Employed ~ GNP + Unemployed + Armed.Forces + Year

Df Sum of Sq RSS AIC

<none> 0.8587 -36.799

- GNP 1 0.4647 1.3234 -31.879

- Year 1 1.8980 2.7567 -20.137

- Armed.Forces 1 2.3806 3.2393 -17.556

- Unemployed 1 4.0491 4.9077 -10.908

Call:

ore.lm(formula = Employed ~ GNP + Unemployed + Armed.Forces +

Year, data = LONGLEY)

Coefficients:

(Intercept) GNP Unemployed Armed.Forces Year

-3.599e+03 -4.019e-02 -2.088e-02 -1.015e-2 1.887e+00

Copyright © 2020 Oracle and/or its affiliates.

http:AIC=-35.16
http:AIC=-33.22

Linear Model Example

Copyright © 2020 Oracle and/or its affiliates.

An example using the R state.x77 data set

library(car)

?state.x77

state.df <-

as.data.frame(state.x77)

scatterplotMatrix(state.df)

Scatterplot of pairs of variables (bivariate analysis)
Fitted loess curve (red)
Fitted linear model (green)
Diagonals show density and run plot per variable

Copyright © 2020 Oracle and/or its affiliates.

http:scatterplotMatrix(state.df
http:state.df

An example using the R state.x77 data set
options(digits=3)

cor(state.df)

also with in-database execution

STATE <- ore.push(state.df)

cor(STATE)

Copyright © 2020 Oracle and/or its affiliates.

http:ore.push(state.df
http:cor(state.df

Interpreting correlation

http://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient

Copyright © 2020 Oracle and/or its affiliates.

http://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient

An example using the R state.x77 data set

fit <- lm(Murder ~ .,

state.df)

summary(fit)

Life Exp is significant, but we would expect this

Remove it from the model, then HS Grad and Income

Copyright © 2020 Oracle and/or its affiliates.

http:state.df

An example using the R state.x77 data set

Rename vars to remove space

names(state.df)[4] <- "LifeExp"

names(state.df)[6] <- "HSGrad"

fit <- lm(Murder ~ .-LifeExp,

state.df)

summary(fit)

fit <- lm(Murder ~ .-LifeExp -

Income - HSGrad, state.df)

summary(fit)

Copyright © 2020 Oracle and/or its affiliates.

http:state.df
http:state.df

An example using the R state.x77 data set

fit2 <- lm(Murder ~ .^2,

state.df)

summary(fit2)

Copyright © 2020 Oracle and/or its affiliates.

http:state.df

An example using the R state.x77 data set

STATE <- ore.push(state.df)

fit3 <- ore.stepwise(Murder ~

.^2, STATE)

summary(fit3)

Copyright © 2020 Oracle and/or its affiliates.

http:ore.push(state.df

Formula specification option
Class formula accepts the following options

Symbol Description Example

separates response/target variables from explanatory/predictor ~
variables

y ~ x

y ~ a + b + c separates predictors +

specify interaction terms between predictors y ~ a + c + a:c :

Specify all possible interactions between specific predictors y ~ a * b * c *

Specify interactions up to a specific degree y ~ (a + b + c)^2 ^
y ~ a + b + c + a:b + a:c + b:c

Represents all other variables beside target variable y ~ . .

Remove the specified predictor(s) y ~ (a + b + c)^3 – a:b – b:c -
y ~ a + b + c + a:c + a:b:c

Suppresses the intercept from the model, forcing the regression line y ~ a + b - 1 -1
through the origin at a = 0

Interpret contents arithmetically y ~ a + I(b-c)^3) I()
y ~ a + v, where v = (b-c)^3

function Mathematical function sqrt(y) ~ a + log(b)

Copyright © 2020 Oracle and/or its affiliates.

Fitting Linear Models

Copyright © 2020 Oracle and/or its affiliates.

Ordinary Least Squares Regression Assumptions

Normality –
for fixed values of predictor variables, target variable is normally distributed

Independence –
target values are independent of each other – one does not influence others

Linearity –
target is linearly related to the predictor variables

Homoscedasticity –
target variance doesn’t change with different ranges of predictor variables

Violating assumptions may mean statistical significance tests and confidence
intervals may be inaccurate

Copyright © 2020 Oracle and/or its affiliates.

Assessing the quality of a linear model

confint(fit)

par(mfrow=c(2,2))

plot(fit)

Interpreting results:
The interval 2.26 to 5.47 is 95% likely
to contain the true Murder rate change
given a 1% change in illiteracy

Copyright © 2020 Oracle and/or its affiliates.

Assessing Normality

Normal Q-Q plot should be a
straight line if the data meets
the normality assumption

Data do not fall on this line, so
normality assumption violated

Copyright © 2020 Oracle and/or its affiliates.

Assessing Linearity

Residuals should be randomly
distributed if target is linearly
related to predictors

Only “random noise” should
remain

There appears to be a curved
relationship, indicating the
need for quadratic terms

Copyright © 2020 Oracle and/or its affiliates.

Assessing Homoscedasticity

Sqrt of standardized residuals
should be randomly
distributed about a horizontal
line

There appears to be a curved
relationship, indicating the
need for quadratic terms

Copyright © 2020 Oracle and/or its affiliates.

Should some data be removed from the data set?

Outliers

• Have large residual value

• Model doesn’t predict well

High Leverage Values

• Predictor values are unusual
relative to other observations

Influential Observations

• row has unusually high impact
on model parameters

• Indicated by Cook’s distance

Copyright © 2020 Oracle and/or its affiliates.

Package car and qqPlot and outlierTest
More accurate assessment of
normality assumption

95% confidence bound drawn
around 45o line

Outliers can be manually selected

Iteratively remove outliers and
reinvoke outlierTest

library(car)

qqPlot(fit,

labels=row.names(state.df),

id.method="identify",

simulate=TRUE,

main="state.df Q-Q Plot")

outlierTest(fit)

Select points and hit ESC

Copyright © 2020 Oracle and/or its affiliates.

http:main="state.df
http:labels=row.names(state.df

Other options…

See package gvlma and function gvlma for overall assessment of
model assumptions

Copyright © 2020 Oracle and/or its affiliates.

More on Multicollinearity

One variable is closely correlated (or determined by) another

• E.g., age & data of birth
year & population

Use variance inflation factor (VIF)

• Use car package function vif

• Use sqrt(vif) > 2, then there is a multicollinearity problem

Problematic for interpreting individual predictor variables, but
not for prediction

Copyright © 2020 Oracle and/or its affiliates.

Package car and vif

library(car)

vif(fit)

sqrt(vif(fit)) > 2

fit2 <- lm(Murder~., state.df)

vif(fit2)

sqrt(vif(fit2)) > 2

Copyright © 2020 Oracle and/or its affiliates.

http:state.df

Remedies for common problems

Multicollinearity
• Deleting one of the predictors involved or where sqrt(vif) > 2

• Use ridge regression

Transform target and/or predictor variables
• Yλ, where, for example, λ in {-2, -1, -0.5, 0==log, .5, none, 2}

• log(Y)

• Remember – a transformation should “make sense” for interpretation of result
Normality assumption
• Use a non-parametric algorithm; Use GLM

• In car package, use powerTransform on target to get estimate of power λ
Linearity assumption
• Use a non-linear regression algorithm

• In car package, use boxTidwell on predictors to get estimate of power λ
Homoscedasticity assumption – homogeneity of variance
• In car package, use spreadLevelPlot on model to get estimate of power λ on for Yλ

Copyright © 2020 Oracle and/or its affiliates.

Parametric vs. non-parametric algorithms

Parametric Non-parametric

Fixed family of functions Learned function based on observation data

Fixed number of parameters that are E.g. KNN classifier, SVM
independent of the number of observations

E.g., linear regression

http://www.iro.umontreal.ca/~lisa/twiki/bin/view.cgi/Public/NonParametric

Copyright © 2020 Oracle and/or its affiliates.

http://www.iro.umontreal.ca/~lisa/twiki/bin/view.cgi/Public/NonParametric

Is one model better than another?

anova(fit, fit2)

AIC(fit, fit2)

ANOVA requires nested models
Look for significant p-value

AIC does not require nested models
Models with smaller AIC values are better

http://en.wikipedia.org/wiki/Akaike_information_criterion

Copyright © 2020 Oracle and/or its affiliates.

http://en.wikipedia.org/wiki/Akaike_information_criterion

RandomForest

Copyright © 2020 Oracle and/or its affiliates.

Random Forest Algorithm

Ensemble learning technique for classification and regression

Known for high accuracy models

Constructs many “small” decision trees

For classification, predicts mode of classes predicted by individual trees

For regression, predicts mean prediction of individual trees

Avoids overfitting, which is common for decision trees

Developed by Leo Breiman and Adele Cutler combining the ideas of “bagging” and
random selection of variables resulting in a collection of decision trees with controlled
variance

Copyright © 2020 Oracle and/or its affiliates.

ore.randomForest supports classification

Enables performance and scalability for larger data sets

Executes in parallel for model building and scoring

• ore.parallel global option used for preferred DOP

Oracle R Distribution new randomForest function

• Reduces memory requirements over standard R (~7X)

• As a result, reduces memory requirements for ore.randomForest

• ORD randomForest supports classification only

Can use Oracle R Distribution’s or R’s randomForest package

Copyright © 2020 Oracle and/or its affiliates.

Random Forest

ore.randomForest(formula, data, ntree=500, mtry = NULL,

replace = TRUE, classwt = NULL, cutoff = NULL,

sampsize = if(replace) nrow(data) else ceiling(0.632*nrow(data)),

nodesize = 1L, maxnodes = NULL, confusion.matrix = FALSE,

na.action = na.fail, ...)

grabTree(object, k = 1L, labelVar = FALSE, ...)

predict(object, newdata,

type = c("response", "prob", "vote", "all"),

norm.votes = TRUE,

supplemental.cols = NULL,

cache.model = TRUE, ...)

Copyright © 2020 Oracle and/or its affiliates.

Random Forest

ntree – total number of trees to grow

mtry – number of variables randomly sampled as candidates at each tree node split

replace – a logical value indicating whether to execute sampling with replacement

classwt – a vector of priors of the classes. If specified, the length of the vector should be equal to the number of
classes in the target column. The vector does not need to add up to 1.

cutoff – a vector of cutoff values. If specified, the length of the vector should be equal to the number of classes in the
target column. When determining the prediction class for an observation, the one with the maximum ratio of proportion
of votes to cutoff is selected. If not specified, the default is '1/k' where 'k' is the number of classes.

sampsize – size of the sample to draw for growing trees

nodesize – minimum size of terminal nodes

maxnodes – maximum number of terminal nodes of each tree to be grown. If not specified, trees can be grown to the
maximum size subject to the limits of 'nodesize'.

confusion.matrix – a logical value indicating whether to calculate the confusion matrix. Note that this confusion matrix is
not based on OOB (out-of-bag), it is the result of applying the built random forest model to the entire training data.

Copyright © 2020 Oracle and/or its affiliates.

Random Forest

na.action – the manner in which 'NA' values are handled. With the default 'na.fail', it fails if the training data contains
'NA'.

k – an integer indicating which tree's information to extract

labelVar – a logical value indicating whether the 'split var' and 'prediction' columns in the returned frame use meaningful
labels.

newdata – an 'ore.frame' object, the test data

type – specifies the type of the output: 'response', 'prob', 'votes', or 'all' returning predicted values, matrix of class
probabilities, matrix of vote counts, or both the vote matrix and predicted values, respectively.

norm.votes – a logical value indicating whether the vote counts in the output vote matrix should be normalized. The
argument is ignored if 'type' is 'response' or 'prob'.

supplemental.cols – additional columns to include in the prediction result from the 'newdata' data set

cache.model – a logical value indicating whether the entire random forest model is cached in memory during prediction

Copyright © 2020 Oracle and/or its affiliates.

ore.randomForest

ore.randomForest() builds a random forest model by growing trees in parallel

Scoring method 'predict' runs in parallel

options(ore.parallel=4)

IRIS <- ore.push(iris)

mod <- ore.randomForest(Species~., IRIS)

tree10 <- grabTree(mod, k = 10, labelVar = TRUE)

ans <- predict(mod,IRIS,type="all",supplemental.cols="Species", cache.model=FALSE)

table(ans$Species, ans$prediction)

Copyright © 2020 Oracle and/or its affiliates.

ore.randomForest Results

Copyright © 2020 Oracle and/or its affiliates.

Memory vs. Speed

ore.randomForest for 1.5 is architected for speed

• Relying on OML4R embedded R, parallelism of ore.randomForest achieves many times speedup, but at the cost of memory

• ore.randomForest loads a copy of the training data for each extproc

For example, building 100M rows with DOP=72

• Needs at least 72 x C x datasetSize, where C is a small constant (3-5) required by the algorithm

• Hitting memory limitations with a 10M or 100M dataset with DOP=72 is expected for most machines

ORD’s randomForest improves memory usage over R's randomForest (~7X less)

Recommendations

• Reduce ore.parallel for large datasets to complete

• Set memory limit to prevent system memory overrun

• Recommendation for all embedded R-based OML4R algorithms, though particularly critical for current

version of ore.randomForest

Copyright © 2020 Oracle and/or its affiliates.

ore.randomForest – how it works

ore.randomForest() builds a random forest model by growing trees in parallel

Returns an 'ore.randomForest' object

Requires Oracle R Distribution (ORD) or 'randomForest' package be installed
• Oracle R Distribution is preferred to the package 'randomForest’ for better performance and

compatibility.

• A warning is issued if the package 'randomForest' is used

Scoring method 'predict' runs in parallel
• The default value of cache.model 'TRUE' is recommended when sufficient memory is available

• Otherwise, 'cache.model' should be set to 'FALSE' to prevent memory overuse

ore.parallel global option is used by 'ore.randomForest’ to determine preferred
DOP

Copyright © 2020 Oracle and/or its affiliates.

Neural Network

Copyright © 2020 Oracle and/or its affiliates.

Artificial Neural Networks

Neural network (NN) is a mathematical model inspired by biological neural networks
and in some sense mimics the functioning of a brain

• Consists of an interconnected group of artificial neurons (nodes)

• Non-linear statistical data modeling tools

• Model complex nonlinear relationships between input and output variables

Find patterns in data:

• Function approximation: regression analysis, including time series prediction, fitness
approximation, and modeling

• Classification: including pattern and sequence recognition, novelty detection and sequential
decision making

• Data processing: including filtering, clustering, blind source separation and compression

• Robotics: including directing manipulators, computer numerical control

Copyright © 2020 Oracle and/or its affiliates.

Artificial Neural Networks

Well-suited to data with noisy and complex sensor data

Problem characteristics

• Potentially many (numeric) predictors, e.g., pixel values

• Target may be discrete-valued, real-valued, or a vector of such

• Training data may contain errors – robust to noise

• Fast scoring

• Model transparency not required – models difficult to interpret

Universal approximator

• Adding more neurons can lower error to be as small as desired

• Not always the desired behavior

Copyright © 2020 Oracle and/or its affiliates.

Steps to Neural Network modeling

Architecture specification

Data preparation

Building the model

• Stopping criteria: iterations, error on validation set
within tolerance

Viewing statistical results from model

Improving the model

Copyright © 2020 Oracle and/or its affiliates.

Architecture Specification
Input Layer

• Numerical or categorical

• No automatic normalization of data

• Supports up to 1000 actual columns (due to database table limit)

• No fixed limit on interactions

• No fixed limit on cardinality of categorical variables

Hidden Layers

• Any number of hidden layers - k

• All nodes from previous layer are connected to nodes of next

• Activation function applies to one layer

- Bipolar Sigmoid default for hidden layers

Output Layer

• Currently single numeric target or binary categorical

• Linear activation function default, all others also supported

Calculate number of weights

• (# input units) x (# L1 nodes) + (# L1 nodes bias) +
(# L1 nodes) x (# L2 nodes) + (# L2 nodes bias) +
…
(# Lk nodes) x (# output nodes)

Initialize weights

• Change initialization with random seed

• Set lower and upper bound, typically -0.25, 0.25

Input Layer

bL1,1

Layer 1

…

Layer k

X1 X2 Xi Xn
… …

L-11 L-1i L-1m

L-k1 L-ki L-kp

…

… …

…

WL1,k1 WLm,kp

bL1,i

bL1m,m

bLk,1 bLk,i bLk,p

W

Y1

k1,Y1 Wkp,Y1

Output

Copyright © 2020 Oracle and/or its affiliates.

Unique aspects of ore.neural

Hidden layer structure complexity

Wide range of activation functions - 15

Support for categorical variables and transformations of all variables – predictors and targets

Support for logistic regression through entropy activation function

No competitive CRAN package available for neural networks

Extraordinary scalability on several dimensions including HYPER SPARSE data sets

• Scale-up and Scale-out

Compared to SAS’s HPNeural, ore.neural can work with data sets that do not fit in memory

• SAS requires complete data set to fit into distributed memory before it can solve any HP* models

Copyright © 2020 Oracle and/or its affiliates.

Architecture Guidelines

Start

• one hidden layer with one neuron/node

• number of nodes less than sqrt(#observations x #variables)

Test different number of hidden nodes and number of layers

Test different activation functions

Restart (rebuild) model multiple times with different weight initializations
to escape local minima, keep model with lowest objective function value,
e.g., fit$objValue

Perfecting neural networks is an art

Copyright © 2020 Oracle and/or its affiliates.

Data Preparation
Data preparation may be unnecessary if appropriate activation functions are used -
especially for targets (outputs)

• Bipolar sigmoid can model values from -1 ... 1 range

• Hyperbolic tangent can model values from -1 ... 1 range

• Logistic sigmoid can model values from 0 ... 1 range

Output preparation

• If target (output) is not scaled (normalized) into ranges above, then linear activation function is
appropriate

• If output activation function is non-linear, targets must be scaled

Scaling is recommended for faster convergence, however experimentation is key

For predictors (input data), choose standard R facilities, for instance

• data <- iris
data$Petal.Length <- scale(data$Petal.Length)

• To normalize Petal.Length around 0
> sd(data$Petal.Length)

[1] 1

> mean(data$Petal.Length)

[1] -2.895326e-17

Copyright © 2020 Oracle and/or its affiliates.

Copyright © 2020 Oracle and/or its affiliates.

Activation Functions
If specified, must include one for each hidden layer and output layer

Activation Function Activation
Setting

Definition Notes

Arctangent atan f(x) = arctan x

Bipolar Sigmoid bSigmoid f(x) = (1 - e^{-x})/(1 + e^{-x}}) Use in input data with different signs or unscaled
Use on output layer when values [-1, 1]

Cosine cos f(x) = cos x

Gaussian gaussian f(x) = e^{-x^2}

Gauss error gaussError f(x) = 2/sqrt(pi) integral e^{-t2}dt

Gompertz gompertz f(x) = e^{-e^{-x}}

Linear linear f(x) = x Applicable across all data ranges

Logistic Sigmoid sigmoid f(x) = 1 / (1 + e^{-x}) Use on output layer when values [0..1]

Reciprocal reciprocal f(x) = 1 / x Value should not include 0 value

Sigmoid Modulus sigmoidModulus f(x) = x / (1 + |x|)

Sigmoid Square Root sigmoidSqrt f(x) = x / (1 + sqrt{1+x^2)

Sine sin f(x) = sin x

Square square f(x) = x^2

Hyperbolic Tangent tanh f(x) = tanh x

Wave wave f(x) = x / (1 + x2)

Entropy (output only) entropy f(x) = log(1 + exp(x)) – yx Use with logistic regression

Copyright © 2020 Oracle and/or its affiliates.

ore.neural
Artificial Neural Network

ore.neural(

formula,

data,

weight

xlev

hiddenSizes

activations

gradTolerance

maxIterations

objMinProgress

lowerBound

upperBound

nUpdates

scaleHessian

trace

= NULL,

= NULL,

= NULL,

= NULL,

= 1E-1,

= 200L,

= 1E-6,

= -0.7,

= 0.7,

= 20L,

= TRUE,

= FALSE)

initial vector of weights

named list of character vectors specifying levels for each ore.factor var

vector of nodes per layer, or none, e.g., 2 layers c(20,5)

vector activation functions, including one for output

numerical optimization stopping crit.

select value >= 5

Stopping criterion: | f_current - f_previous | / (1 + |f|)

weight initialization range

weight initialization range

number of L-BFGS update pairs

logical whether to scale inverse of Hessian matrix in L-BFGS updates

repot iteration log for big data solver

Copyright © 2020 Oracle and/or its affiliates.

Stopping Criteria

gradTolerance
• Affects how quickly model can converge

• Valid values: > 10-9

• If > 1M observations, set to 1

• If # observations < 1000, set to between .01 and .001

objMinProgress
• Valid values [10-1, 10-6]

• Indicates required change from one iteration to next

• Computed as
| f_current - f_previous | / (1 + |f|)

maxIterations
• Valid values >= 5

• Upper limit on the number of iterations

Copyright © 2020 Oracle and/or its affiliates.

Local Minima

Local Minima are non-optimal states that can improve no further with current settings and weights

To determine if a neural network is possibly in a local minima, rebuild model with different weights

• Change random seen to different value

• Change upper/lower bound of weight initialization values

• Select model with best objective function value, e.g, fit$objValue

Copyright © 2020 Oracle and/or its affiliates.

Local Minima

d <- data.frame(A=c(0,1,0,1),

B=c(1,0,0,1),

T=c(1,1,0,0))

Run the model below 5 ~ 10 times and observe the resulting objective

function value - the smaller, the better

library(nnet)

fit.nn <- nnet(formula = T ~ A + B, data = d, size=2)

predict(fit.nn,d)

fit.ore <- ore.neural(formula = T ~ A + B, data = ore.push(d),

hiddenSizes = c(5000, 10, 10),

lowerBound=-1, upperBound=1)

predict(fit.ore,ore.push(d))

Copyright © 2020 Oracle and/or its affiliates.

Local Minima - results
R> fit.nn <- nnet(formula = T ~ A + B, data = d,
size=2)

weights: 9

initial value 1.046487

iter 10 value 0.997966

iter 20 value 0.569304

iter 30 value 0.502784

iter 40 value 0.500426

iter 50 value 0.500050

final value 0.500041

converged

R>

R> predict(fit.nn,d)

[,1]

1 0.499970251

2 0.999986345

3 0.002586049

4 0.500004855

Copyright © 2020 Oracle and/or its affiliates.

R> fit.ore <- ore.neural(formula = T ~ A + B, data =

ore.push(d),

+ hiddenSizes = c(5000, 10, 10),

+ lowerBound=-1, upperBound=1)

R> predict(fit.ore,ore.push(d))

pred_T

1 0.913355525

2 1.035549253

3 -0.020444140

4 -0.001179834

Optimization argument: nUpdates

Optimization parameter for L-BFGS solver

Indicates number of matrix adjustments to occur before updating
Hessian matrix

Recommended ranges

• Usual models: 7..25

• If # weights > 1M: 3..25

• If highly non-linear behavior, use > 10

If you’re unfamiliar with underlying techniques, don’t touch

Copyright © 2020 Oracle and/or its affiliates.

Example
ans <- predict(fit, newdata = IRIS,

supplemental.cols = 'Petal.Length')

localPredictions <- ore.pull(ans)

Inspect some predictions

head(localPredictions)

Compute RMSE

ore.rmse <- function (pred, obs) {

sqrt(mean((pred-obs)^2,na.rm=TRUE))

}

IRIS <- ore.push(iris)

fit <- ore.neural(Petal.Length ~ Petal.Width + Sepal.Length,

data = IRIS, hiddenSizes = c(20, 5),

activations = c('bSigmoid', 'tanh', 'linear'))

print(fit)

R> print(fit)

Number of input units 2

Number of output units 1

Number of hidden layers 2

Objective value 6.431877E+00

Solution status Optimal

Hidden layer [1] number of neurons 20, activation

'bSigmoid'

Hidden layer [2] number of neurons 5, activation 'tanh'

Output layer number of neurons 1, activation 'linear'

Optimization solver L-BFGS

Scale Hessian inverse 1

Number of L-BFGS updates 20

R> ore.rmse(localPredictions$pred_Petal.Length,

localPredictions$Petal.Length)

[1] 0.00148768

Copyright © 2020 Oracle and/or its affiliates.

Example – linear regression
No hidden structure in network

fit <- ore.neural(Petal.Length ~ Petal.Width + Sepal.Length, data = IRIS)

print(fit)

Print fit object

R> print(fit)

Number of input units 2

Number of output units 1

Number of hidden layers 0

Objective value 1.311757E+01

Solution status Optimal

Output layer number of neurons 1, activation 'linear'

Optimization solver L-BFGS

Scale Hessian inverse 1

Number of L-BFGS updates 20

Copyright © 2020 Oracle and/or its affiliates.

Model Details: Solution Status

optimal
• meets all stopping criteria

numerical difficulties encountered
• TBD

maximum iterations reached
• more iterations may be needed to improve model

insufficient memory

• could not build model with current settings due to memory

no progress
• change in objective function insufficient to make process

unbounded
• one of model parameters (weights) is greater than 1E+24

(check input data, unlikely to happen)

Copyright © 2020 Oracle and/or its affiliates.

Model Details: Objective Value

Error statistic on the model

ore.neural tries to minimize this value

Calculated as sum((predicted – actual)^2)

Copyright © 2020 Oracle and/or its affiliates.

ore.neural vs. nnet

OML4R…

• Is scalable

• Allows choosing wide range of activation functions

• Provides generic topology
- unrestricted number of hidden layers, including none

• Has a parallel implementation

Copyright © 2020 Oracle and/or its affiliates.

Generalized Linear Models

Copyright © 2020 Oracle and/or its affiliates.

Generalized Linear Models

Fits generalized linear models using a Fisher scoring iteratively re-weighted least squares (IRLS) algorithm for
logistic regression, probit regression, and poisson regression

Instead of the traditional step halving to prevent the selection of less optimal coefficient estimates, a line search
is used to select new coefficient estimates at each iteration starting from the current coefficient estimates and
moving through the Fisher scoring suggested estimates using the formula (1 - alpha) * old + alpha * suggested
where alpha in [0, 2]

When the 'interp' control argument is 'TRUE', the deviance is approximated by a cubic spline interpolation; and
when 'FALSE', the deviance is calculated using a follow-up data scan

Each iteration consists of two or three embedded R map/reduce operations: an IRLS operation, an initial line
search operation, and an optional follow-up line search operation if 'interp = FALSE'

The IRLS map/reduce operations are on the matrix cross-products based off of 'model.matrix' or
'sparse.model.matrix' function calls depending on the underlying scarcity of the model matrix.

After the algorithm has either converged or reached the maximum number of iterations, a final embedded R
map/reduce operation is used to generate the complete set of model-level statistics.

Copyright © 2020 Oracle and/or its affiliates.

ore.glm
Generalized Linear Model

ore.glm(formula,

data,

weights,

family = gaussian(),

start = NULL,

control = list(...),

contrasts = NULL,

xlev = NULL,

ylev = NULL,

yprob = NULL,

...)

'formula' object representing the model to be fit

'ore.frame' object specifying the data for the model

optional 'ore.number' object specifying the model’s analytic weights

'family' object specifying the generalized linear model family details.

Same type of object used for 'glm' function in the 'stats' package

optional 'numeric' vector specifying initial coefficient estimates in

the linear predictor

optional 'list' object containing a list of fit control parameters to

be interpreted by the 'ore.glm.control' function

optional named 'list' to be supplied to 'contrasts.arg' argument of 'model.matrix‘

optional named 'list' of 'character' vectors specifying the 'levels'

for each 'ore.factor' variable

optional 'character' vector to specify the response variable levels

in 'binomial' generalized linear models

optional numeric value between 0 and 1 specifying overall probability

of 'y != ylev[1]' in 'binomial' linear models

Copyright © 2020 Oracle and/or its affiliates.

ore.glm examples
Generalized Linear Model

library(rpart)

Logistic regression

KYPHOSIS <- ore.push(kyphosis)

kyphFit1 <- ore.glm(Kyphosis ~ ., data = KYPHOSIS, family = binomial())

kyphFit2 <- glm(Kyphosis ~ ., data = kyphosis, family = binomial())

summary(kyphFit1)

summary(kyphFit2)

Poisson regression

SOLDER <- ore.push(solder)

solFit1 <- ore.glm(skips ~ ., data = SOLDER, family = poisson())

solFit2 <- glm(skips ~ ., data = solder, family = poisson())

summary(solFit1)

summary(solFit2)

Copyright © 2020 Oracle and/or its affiliates.

ore.glm results
Generalized Linear Model

R> summary(kyphFit1)

Call:

ore.glm(formula = Kyphosis ~ ., data = KYPHOSIS, family = binomial())

Deviance Residuals:

Min 1Q Median 3Q Max

-2.3124 -0.5484 -0.3632 -0.1659 2.1613

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.036934 1.449622 -1.405 0.15998

Age 0.010930 0.006447 1.696 0.08997 .

Number 0.410601 0.224870 1.826 0.06786 .

Start -0.206510 0.067700 -3.050 0.00229 **

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 83.234 on 80 degrees of freedom

Residual deviance: 61.380 on 77 degrees of freedom

AIC: 69.38

Number of Fisher Scoring iterations: 4

R> summary(kyphFit2)

Call:

glm(formula = Kyphosis ~ ., family = binomial(), data =
kyphosis)

Deviance Residuals:

Min 1Q Median 3Q Max

-2.3124 -0.5484 -0.3632 -0.1659 2.1613

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.036934 1.449575 -1.405 0.15996

Age 0.010930 0.006446 1.696 0.08996 .

Number 0.410601 0.224861 1.826 0.06785 .

Start -0.206510 0.067699 -3.050 0.00229 **

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 83.234 on 80 degrees of freedom

Residual deviance: 61.380 on 77 degrees of freedom

AIC: 69.38

Number of Fisher Scoring iterations: 5

Copyright © 2020 Oracle and/or its affiliates.

--- ---

Compare
ore.glm
results

R> summary(solFit1)

Call:

ore.glm(formula = skips ~ ., data = SOLDER, family = poisson())

Deviance Residuals:

Min 1Q Median 3Q Max

-3.4105 -1.0897 -0.4408 0.6406 3.7927

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.25506 0.10069 -12.465 < 2e-16 ***

OpeningM 0.25851 0.06656 3.884 0.000103 ***

OpeningS 1.89349 0.05363 35.305 < 2e-16 ***

SolderThin 1.09973 0.03864 28.465 < 2e-16 ***

MaskA3 0.42819 0.07547 5.674 1.40e-08 ***

MaskB3 1.20225 0.06697 17.953 < 2e-16 ***

MaskB6 1.86648 0.06310 29.580 < 2e-16 ***

PadTypeD6 -0.36865 0.07138 -5.164 2.41e-07 ***

PadTypeD7 -0.09844 0.06620 -1.487 0.137001

PadTypeL4 0.26236 0.06071 4.321 1.55e-05 ***

PadTypeL6 -0.66845 0.07841 -8.525 < 2e-16 ***

PadTypeL7 -0.49021 0.07406 -6.619 3.61e-11 ***

PadTypeL8 -0.27115 0.06939 -3.907 9.33e-05 ***

PadTypeL9 -0.63645 0.07759 -8.203 2.35e-16 ***

PadTypeW4 -0.11000 0.06640 -1.657 0.097591 .

PadTypeW9 -1.43759 0.10419 -13.798 < 2e-16 ***

Panel 0.11818 0.02056 5.749 8.97e-09 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 6855.7 on 719 degrees of freedom

Residual deviance: 1165.4 on 703 degrees of freedom

AIC: 2781.6

Number of Fisher Scoring iterations: 4

R> summary(solFit2)

Call:

glm(formula = skips ~ ., family = poisson(), data = solder)

Deviance Residuals:

Min 1Q Median 3Q Max

-3.4105 -1.0897 -0.4408 0.6406 3.7927

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.25506 0.10069 -12.465 < 2e-16 ***

OpeningM 0.25851 0.06656 3.884 0.000103 ***

OpeningS 1.89349 0.05363 35.305 < 2e-16 ***

SolderThin 1.09973 0.03864 28.465 < 2e-16 ***

MaskA3 0.42819 0.07547 5.674 1.40e-08 ***

MaskB3 1.20225 0.06697 17.953 < 2e-16 ***

MaskB6 1.86648 0.06310 29.580 < 2e-16 ***

PadTypeD6 -0.36865 0.07138 -5.164 2.41e-07 ***

PadTypeD7 -0.09844 0.06620 -1.487 0.137001

PadTypeL4 0.26236 0.06071 4.321 1.55e-05 ***

PadTypeL6 -0.66845 0.07841 -8.525 < 2e-16 ***

PadTypeL7 -0.49021 0.07406 -6.619 3.61e-11 ***

PadTypeL8 -0.27115 0.06939 -3.907 9.33e-05 ***

PadTypeL9 -0.63645 0.07759 -8.203 2.35e-16 ***

PadTypeW4 -0.11000 0.06640 -1.657 0.097590 .

PadTypeW9 -1.43759 0.10419 -13.798 < 2e-16 ***

Panel 0.11818 0.02056 5.749 8.97e-09 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 6855.7 on 719 degrees of freedom

Residual deviance: 1165.4 on 703 degrees of freedom

AIC: 2781.6

Number of Fisher Scoring iterations: 5

Copyright © 2020 Oracle and/or its affiliates.

Singular Value Decomposition (SVD)

Copyright © 2020 Oracle and/or its affiliates.

Singular Value Decomposition

svd overloaded

• Execute in parallel

• Accept ore.frame objects

In-database execution to improve scalability and performance

No data movement

Copyright © 2020 Oracle and/or its affiliates.

SVD

See ?svd

• svd(x,
nu = min(n, p),
nv = min(n, p))

• x: a numeric ore.frame

• nu: number of left singular
vectors to be computed
0 < nu < n=nrow(x)

• nv: number of right singular
vectors to be computed
0 < nv < p=ncol(x)

Copyright © 2020 Oracle and/or its affiliates.

hilbert <- function(n) {

i <- 1:n

1 / outer(i - 1, i, "+")

}

X <- ore.push(as.data.frame(hilbert(9)[, 1:6]))

(s <- svd(X))

SVD example using ore.frame
Set up the data

dat <- iris[,-5]; mat <- as.matrix(dat); dat$IDX <- seq_len(nrow(dat))

ore.create(dat,table="DAT")

ore.exec("alter table DAT add constraint DAT primary key (\"IDX\")")

ore.sync(table = "DAT", use.keys = TRUE)

Compute svd on ore.frame

sol <- svd(DAT[,-5])

plot(cumsum(sol$d^2/sum(sol$d^2)),col="red") # % explained variance

Derive the U matrix since not provided with model

sol.U <- as.matrix(DAT[,-5]) %*% (sol$v) %*% diag(1./sol$d)

class(sol.U) # ore.tblmatrix

k<-1 # use one singular vector

recon1 <- (sol.U)[,1:k,drop=FALSE] %*%

diag((sol$d)[1:k,drop=FALSE],nrow=k,ncol=k) %*%

t((sol$v)[,1:k,drop=FALSE])

class(recon1) # ore.tblmatrix

myviz(mat,ore.pull(recon1),lab1="Iris data", lab2="Recon 1")
Example inspiration: StackExchange Cross Validated

Copyright © 2020 Oracle and/or its affiliates.

Visualization function

myviz <- function(m1,m2,lab1, lab2) {

x11(6,6)

par(mfcol=c(1,2), mar=c(1,1,1,1), oma=c(0,3,1,0))

zlim=range(m1, m2)

image(m1, zlim=zlim, yaxt="n", xaxt="n", ylab="",

xlab="", main=lab1)

axis(2, at=seq(0,1,,ncol(m1)), labels=colnames(m1))

image(m2, zlim=zlim, yaxt="n", xaxt="n", ylab="",

xlab="", main=lab2)

}

Example inspiration: StackExchange Cross Validated

Copyright © 2020 Oracle and/or its affiliates.

prcomp and princomp

Copyright © 2020 Oracle and/or its affiliates.

Principal Component Analysis

See ?prcomp and ?princomp

Overloaded prcomp uses ORE’s parallel SVD

Overloaded princomp uses Eigen decomposition of the correlation matrix, and
an ORE-specific scheme to calculate a small correlation matrix, and call R's Eigen
decomposition

Copyright © 2020 Oracle and/or its affiliates.

OREpredict Package

Copyright © 2020 Oracle and/or its affiliates.

Exadata storage tier scoring for R models

R-generated
Predictive Model

ore.predict()  SQL

Data

Oracle Database

R Object
Datastore

Fastest way to operationalize R-based models for
scoring in Oracle Database

Go from model to SQL scoring in one step

• No dependencies on PMML or any other plugins

R models supported out-of-the-box include

• glm, glm.nb, hclust, kmeans,
lm, multinom, nnet, rpart

Models can be managed in-database using
OML4R datastore

Copyright © 2020 Oracle and/or its affiliates.

OREpredict Package

Provide a commercial grade scoring engine

• High performance

• Scalable

• Simplify application workflow

Use R-generated models to score in-database on ore.frame

Maximizes use of Oracle Database as compute engine

Function ore.predict

• S4 generic function

• A specific method for each model OML4R supports

Copyright © 2020 Oracle and/or its affiliates.

ore.predict supported algorithms

Class Package Description

glm stats Generalized Linear Model

negbin

hclust

kmeans

lm

MASS

stats

stats

stats

Negative binomial Generalized Linear Model

Hierarchical Clustering

K-Means Clustering

Linear Model

multinom

nnet

nnet

nnet

Multinomial Log-Linear Model

Neural Network

rpart rpart Recursive Partitioning and Regression Tree

Copyright © 2020 Oracle and/or its affiliates.

Interface function signatures

lm, based on stats:::predict.lm

ore.predict(object, newdata, se.fit = FALSE, scale = NULL,

df = Inf, interval = c("none","confidence","prediction"),

level = 0.95, na.action = na.pass, pred.var = NULL,

weights = NULL, ...)

glm, based on stats:::predict.glm

ore.predict(object, newdata, type = c("link", "response"),

se.fit = FALSE, dispersion = NULL, na.action = na.pass,

...)

rpart, based on rpart:::predict.rpart

ore.predict(object, newdata, type = c("vector", "prob",

"class", "matrix"),na.action = na.pass, ...)

matrix (for use in hclust problems)

ore.predict(object, newdata, type = c("classes",

"distances"), method = "euclidean", p = 2,

na.action = na.pass, ...)

kmeans

ore.predict(object, newdata, type = c("classes",

"distances"), na.action = na.pass, ...)

nnet, based on nnet:::predict.nnet

ore.predict(object, newdata, type = c("raw", "class"),

na.action = na.pass, ...)

multinom, based on nnet:::predict.multinom

ore.predict(object, newdata, type = c("class", "probs"),

na.action = na.pass, ...)

Copyright © 2020 Oracle and/or its affiliates.

http:stats:::predict.lm

Example using lm

irisModel <- lm(Sepal.Length ~ ., data = iris)

IRIS <- ore.push(iris)

IRISpred <- ore.predict(irisModel, IRIS, se.fit = TRUE,

interval = "prediction")

IRIS <- cbind(IRIS, IRISpred)

head(IRIS)

Build a typical R lm model

Use ore.predict to score data in
Oracle Database using
ore.frame, e.g., IRIS

Copyright © 2020 Oracle and/or its affiliates.

Build an R glm model
Example using glm Use ore.predict to score data in Oracle

Database using ore.frame, e.g., INFERT

infertModel <- glm(case ~ age + parity + education + spontaneous + induced,

data = infert, family = binomial())

INFERT <- ore.push(infert)

INFERTpred <- ore.predict(infertModel, INFERT, type = "response", se.fit = TRUE)

INFERT <- cbind(INFERT, INFERTpred)

head(INFERT)

R> head(INFERT)

education age parity induced case spontaneous stratum pooled.stratum PRED SE.PRED

1 0-5yrs 26 6 1 1 2 1 3 0.5721916 0.20630954

2 0-5yrs 42 1 1 1 0 2 1 0.7258539 0.17196245

3 0-5yrs 39 6 2 1 0 3 4 0.1194459 0.08617462

4 0-5yrs 34 4 2 1 0 4 2 0.3684102 0.17295285

5 6-11yrs 35 3 1 1 1 5 32 0.5104285 0.06944005

6 6-11yrs 36 4 2 1 1 6 36 0.6322269 0.10117919

Copyright © 2020 Oracle and/or its affiliates.

OREeda Package: Exponential Smoothing

Copyright © 2020 Oracle and/or its affiliates.

Time Series Exponential Smoothing

Used to produce smoothed data for presentation or for forecasting, i.e.,
making predictions

Assigns exponentially decreasing weights over time

Commonly applied to financial market and economic data

Simplest form

http://en.wikipedia.org/wiki/Exponential_smoothing

Copyright © 2020 Oracle and/or its affiliates.

http://en.wikipedia.org/wiki/Exponential_smoothing

Time Series Exponential Smoothing

Used to produce smoothed data for presentation or for forecasting, i.e., making
predictions

Assigns exponentially decreasing weights over time

Commonly applied to financial market and economic data

Simplest form

http://en.wikipedia.org/wiki/Exponential_smoothing

Copyright © 2020 Oracle and/or its affiliates.

http://en.wikipedia.org/wiki/Exponential_smoothing

ore.esm function signature

ore.esm(x,
interval = NULL,
model = "simple",
accumulate = "NONE",
setmissing = "PREV",
optim.start = c(alpha=0.3, beta=0.1),
optim.control = list())

fitted(object, start = NULL, end = NULL, ...)

predict(object, n.ahead = 12L, ...)

forecast.ore.esm(object, h = 12L, ...)

Copyright © 2020 Oracle and/or its affiliates.

ore.esm arguments
x – An ordered 'ore.vector' of time series data or transactional data. The ordering column could be
either integers from 1 to the length of the time series or of type 'ore.datetime'.

interval – The interval of the time series, or the time interval by which the transactional data is to
be accumulated. If the ordering column of the argument 'x' is of type 'ore.datetime', 'interval'
must be specified.
• Possible values: '"YEAR"', '"QTR"', '"MONTH"', '"WEEK"', '"DAY"', '"HOUR"', '"MINUTE"', '"SECOND"‘

model – The exponential smoothing model name. Possible values: '"simple"', '"double"‘
accumulate – The method of accumulation. Possible values:
• NONE No accumulation occurs. Argument 'x' is required to be equally spaced time series observations.

• TOTAL Accumulation based on the sum of the observed values

• AVERAGE Accumulation based on the average of the observed values. The value could be abbreviated to
'"AVG"'.

• MINIMUM Accumulation based on the minimum of the observed values. The value could be abbreviated to
'"MIN"'.

• MAXIMUM Accumulation based on the maximum of the observed values. The value could be abbreviated to
'"MAX"‘

• NOBSAccumulation based on the number of observations

• NMISS Accumulation based on the number of missing observations

Copyright © 2020 Oracle and/or its affiliates.

ore.esm arguments

setmissing: The method of treating missing values. Possible values:

• AVERAGE Missing values are set to average of the accumulated values. The value could be abbreviated to '"AVG"'

• MINIMUM Missing values are set to minimum of the accumulated values. The value could be abbreviated to
'"MIN“’

• MAXIMUM Missing values are set to maximum of the accumulated values. The value could be abbreviated to
'"MAX“’

• MEDIAN Missing values are set to median of the accumulated values. The value could be abbreviated to
'"MED"'.

• FIRSTMissing values are set to first accumulated non-missing value

• LAST Missing values are set to last accumulated non-missing value

• PREVIOUS Missing values are set to previous accumulated non-missing value. The value could be abbreviated to
'"PREV"'

• NEXT Missing values are set to the next accumulated non-missing value.

optim.start: A vector with named components 'alpha' and 'beta’ containing the starting values for the
optimizer. Ignored in the 'simple' model case.

optim.control: Optional list with additional control parameters passed to 'optim' in the 'double' model case.
Ignored in the 'simple' model case.

Copyright © 2020 Oracle and/or its affiliates.

predict and forecast arguments for ore.esm

predict(object, n.ahead = 12L, ...)

forecast.ore.esm(object, h = 12L, ...)

object: object of type 'ore.esm‘

n.ahead: number of time periods to forecast

h: number of time periods to forecast

Copyright © 2020 Oracle and/or its affiliates.

Stock Data with ore.esm

library(TTR)

library(zoo)

Get data for selected stocks in XTS format

stocks <- c("orcl","ibm","sap","msft")

list.data <- vector("list",length(stocks))

for(s in stocks) {

xts.data <- getYahooData(s, 20050101, 20180206)

df.data <- data.frame(xts.data)

df.data$date <- index(xts.data)

df.data$symbol <- s

df.data$Split <- NULL

list.data[[s]] <- df.data

}

stock.data <- data.frame(do.call("rbind",list.data))

ore.drop("STOCKS")

ore.create(stock.data,table="STOCKS")

rownames(STOCKS) <- STOCKS$date

head(STOCKS)

Copyright © 2020 Oracle and/or its affiliates.

Stock Data with ore.esm
orcl.stock <- ore.pull(STOCKS[STOCKS$symbol=='orcl',c("date","Close","symbol")])

ts.orcl.stock <- ts(orcl.stock$Close)

ts.sm.orcl <-ts(SMA(ts.orcl.stock,n=30),frequency=365, start=c(2008,1))

plot(orcl.stock$date,orcl.stock$Close,type="l",col="red",xlab="Date",ylab="US$",

main="ORCL Stock Close CLIENT-side Smoothed Series n=30 days")

lines(orcl.stock$date,ts.sm.orcl,col="blue")

legend("topleft", c("Closing","MA(30) of Closing"),

col=c("red","blue"),lwd=2,title = "Series",bty="n")

orcl.stock <- STOCKS[STOCKS$symbol=='orcl',c("date","Close")]

dESM.mod <- ore.esm(orcl.stock$Close, "DAY", model = "double")

dESM.predict <- predict(dESM.mod, 30)

plot(orcl.stock,type="l")

lines(dESM.predict,col="red",lwd=4)

Copyright © 2020 Oracle and/or its affiliates.

Using supplemental functions

dESM.mod <- ore.esm(orcl.stock$Close, "DAY",

model = "double",

optim.start=c(alpha=0.5,beta=0.5))

dESM.predict <- predict(dESM.mod, 30)

dESM.fitted <- fitted(dESM.mod)

plot(orcl.stock,type="l",lwd=2)

lines(dESM.predict,col="red",lwd=2)

lines(orcl.stock[,1], dESM.fitted, col='red',lwd=1)

row.idx = 1500:2722

plot(orcl.stock[row.idx,], type="l",lwd=3)

lines(orcl.stock[row.idx,1], dESM.fitted[row.idx], col='red')

lines(dESM.predict,col="red",lwd=2)

Copyright © 2020 Oracle and/or its affiliates.

Summary

OREdm
• Oracle Data Mining algorithms exposed through R interface

• Attribute Importance, Decision Trees, GLM, KMeans, O-Cluster,
Naïve Bayes, SVD, SVM, NMF, Association Rules, Explicit Semantic Analysis

OREeda
• Functions for exploratory data analysis for Base SAS equivalents

OREmodels
• ore.lm, ore.stepwise, ore.neural, ore.glm, ore.randomForest

OREpredict
• Score R models in the database

OREstats
• In-database statistical computations exposed through R interface

Copyright © 2020 Oracle and/or its affiliates.

For more information…

oracle.com/machine-learning

See also AskTOM OML Office Hours

Copyright © 2020 Oracle and/or its affiliates.

https://asktom.oracle.com/pls/apex/asktom.search?office=6801#sessions

Thank You

Mark Hornick
Oracle Machine Learning Product Management

