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Safe harbor statement 

The following is intended to outline our general product direction. It is intended for information 
purposes only, and may not be incorporated into any contract. It is not a commitment to deliver any 
material, code, or functionality, and should not be relied upon in making purchasing decisions. The 
development, release, timing, and pricing of any features or functionality described for Oracle’s 
products may change and remains at the sole discretion of Oracle Corporation. 
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Package Overview 

OREdm package 

OREmodels package 

OREpredict package 

OREeda package 
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OML4R Analytics Packages 

OREbase 

OREdm 

List package contents: 
lsf.str("package:OREdm") 
ls("package:OREdm") 
help(package = OREdm) 

• Oracle Data Mining algorithms exposed through R interface 

• Attribute Importance, Decision Trees, GLM, KMeans, O-Cluster, Naïve Bayes, SVD, SVM, NMF, 
Association Rules, Explicit Semantic Analysis 

OREeda 

• Functions for exploratory data analysis for Base SAS equivalents 

OREgraphics 

OREmodels 

• ore.lm, ore.stepwise, ore.neural, ore.glm, ore.randomForest 

OREpredict 

• Score R models in the database 

OREstats 

• In-database statistical computations exposed through R interface 

ORExml 
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High performance in-database ML algorithms 

OREdm 

Support Vector Machine 

GLM 

Naïve Bayes 

Decision Trees 

k-Means clustering 

O-Cluster clustering 

Expectation Maximization 

Explicit Semantic Analysis 

Singular Value Decomposition 

Association Rules 

Attribute Importance 

OREmodels 

Random Forest 

Principal Component Analysis 
(overloaded) 

Singular Value Decomposition 
(overloaded) 

Neural Networks 

Linear Regression 

Stepwise Regression 

Generalized Linear Model 
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OREdm Package 
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OREdm Features 

Function signatures conform to R norms 
• Use formula for specifying target and predictor variables 
• Use ore.frame objects as input data set for build and predict 
• Creates R objects for models and ore.frames for prediction results 
• Use parameter names similar to corresponding R functions 
• Function parameters provide explicit default values to corresponding ODM settings, 

where applicable 
As in R, models are treated as transient objects 
• Automatically delete ODM model when corresponding R object no longer exists 
• Can be explicitly saved using datastore, via ore.save 

Implicit variable selection for specific models 
Automatic data preparation available 
Supports partitioned models based on values of one or more columns 
Enables text column analytics for select algorithms 
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Algorithms supporting Implicit Variable Selection 

Decision tree performs automatic variable selection as part of the building 
process itself 
• Variables that are not used in the tree are effectively removed 

• Takes into account the relationship of the variables with the target 

Naïve Bayes performs automatic variable selection when ADP is enabled 
• Takes into account relationship of each variable with target 

GLM performs variable selection (and creation) when the corresponding settings 
for feature selection/creation are used 
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Automatic Data Preparation (ADP) 
Automatic variable transformation is handled by auto data preparation for OREdm algorithms 

• Auto data preparation takes into account the algorithm and data characteristics to prepare data 

• Each algorithm may have different preparation requirements 

Binning: ADP for Naïve Bayes and Decision Tree use the supervised binning transformation in 
the dbms_data_mining_transform package to generate bins prior to model building (that take 
into account the target) 

Normalization: ADP for SVM and GLM uses normalization transformations in the 
dbms_data_mining_transform package to generate a variety of normalization parameters prior 
to model building 

Simplest approach - turn on ADP when building a model and inspect results after 

• If user needs more control over preparation stages before model building, transform the data 
explicitly using OML4R transparency layer 
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Partition Models 
Automates a typical machine learning task for data scientists 

Builds an ensemble model composed of multiple sub-models, one built for each partition of data 

• Potentially achieve better accuracy through multiple targeted models – managed and used as one 

Set parameter ODMS_PARTITION_COLUMNS to the name(s) of the partition column(s) 

• For example, odm.setting = list(odms_partition_columns = "part") 

Simplifies scoring by allowing user to provide the top level model only 

• Proper sub-model chosen by system based on row of data to be scored 

Specify 

Column(s) 

Sub-Model-1 

Sub-Model-2 

Sub-Model-3 

Sub-Model-n 

Top Level Model 

… 

Score data using Partition Partition-
2 

Partition-
3 

In-DB 
Algorithm 

top level model 

… 
Oracle Database Partition-

n 

Table 

Partition-
1 

New 
Data 
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Extensible R Algorithm Models 

Creates an Extensible R Algorithm model using Oracle Data Mining in 
Oracle Database 12.2 or later 

Extensible R Algorithm enables build, score, and view of R model using the 
user-provided R scripts stored in R Script Repository 

Supports classification, regression, clustering, feature_extraction, 
attribute_importance, and association mining functions 

Predict method executes the score.function specified for the model build and 
returns an ore.frame containing the predictions along with the columns specified 
by the supplemental.cols argument 
• Function predict applicable to classification, regression, clustering, and feature_extraction 

models, only 
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ore.odmRAlg 
Extensible R Algorithm Models 

ore.odmRAlg(data, 

mining.function = c("classification", "regression", "clustering", 

"feature_extraction", "attribute_importance", "association"), 

formula = NULL, 

build.function, 

build.parameter = NULL, 

score.function = NULL, 

detail.function = NULL, 

detail.value = NULL, 

odm.setting = NULL) 

predict(object, newdata, supplemental.cols = NULL, 

type = c("class","raw"), na.action = na.pass,...) 

summary(object,...) 
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Basic Argument Concepts 

data – ore.frame object used for model building 

mining.function – A scalar string to specify the type of mining function: classification, regression, clustering, feature_extraction, 
attribute_importance, and association 

formula – An R formula object or a string representing a formula in characters. This formula can be named or take the default name 'formula'. This 
name is used to pass the specified formula to the R build.function. If formula is NULL, the user-specified R build.function does not take a formula. 

build.function – The name of the user-defined R function in the R Script Repository used to build the model. The R function uses the first argument 
for input data, optionally the second argument for weight numeric vector when parameter odms_row_weight_column_name is specified in 
odm.setting, and matches the remaining arguments by name with the values from build.parameter. The R function returns an R model. 

build.parameter – A list containing build.function parameters excluding input data and weight vector if applicable. The list element names must 
match the name of build.function script input parameter names. Only scalar numeric and character values are valid as parameters. 

score.function– The name of the user-defined R function in the R Script Repository used to score the model. The script takes two arguments: model 
and new data. It returns a data.frame containing prediction results. For regression, the results are predicted values. In classification, clustering, and 
feature exaction, the results are probabilities for each class, cluster, and feature, respectively. Rows of the results match the rows of input data. 

detail.function – The name of the user-defined R function in the R Script Repository used to obtain model details and return them in a data.frame 

detail.value – A data.frame object used to specify the data  types of columns in the returned data.frame from the detail.function 

odm.setting – A list to specify Oracle Data Mining parameter settings. This argument is applicable to building models in Database 12.2 or later. Each 
list element's name/value refers to the parameter setting name/value. The setting value must have type numeric or character. When parameter 
ODMS_PARTITION_COLUMNS is set to the names of the partition columns, a partition model is created from the input data. 
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ore.odmRAlg – model object 

ore.odmRAlg object 
• name name of model in database 

• mining.function The type of the data mining function for the model. 

• details An ore.frame returned by the R detail.function script 

• settings data.frame with settings used to build model 

• attributes data.frame of variable/columns used to build model 

• formula formula used to build the model 

• call specific invocation of the function with arguments 
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ore.odmRAlg 
Extensible R Algorithm Models 

IRIS <- ore.push(iris) 

ore.scriptCreate("glm_build", function(data, form, family) { 

glm(formula = form, data = data, family = family)}) 

ore.scriptCreate("glm_score", function(mod, data) { 

res <- predict(mod, newdata = data); data.frame(res)}) 

ore.scriptCreate("glm_detail", function(mod) { 

data.frame(name=names(mod$coefficients), coef=mod$coefficients)}) 

ralg.mod <- ore.odmRAlg(IRIS, mining.function = "regression", 

formula = c(form="Sepal.Length ~ ."), 

build.function = "glm_build", build.parameter = list(family="gaussian"), 

score.function = "glm_score", 

detail.function = "glm_detail", detail.value = data.frame(name="a", coef=1)) 

summary(ralg.mod) 

ralg.mod$details 

predict(ralg.mod, newdata = head(IRIS), supplemental.cols = "Sepal.Length") 
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OREdm Algorithms 
Algorithm Main R Function Mining Type / Function 

Association Rules ore.odmAssocRules Association Rules 

Minimum Description Length ore.odmAI Attribute Importance for Classification or Regression 

Decision Tree ore.odmDT Classification 

Expectation Maximization (12.2) ore.odmEM Clustering 

Explicit Semantic Analysis (12.2) ore.odmESA Feature Extraction 

Generalized Linear Models ore.odmGLM Classification 
Regression 

K-Means ore.odmKMeans Clustering 

Naïve Bayes ore.odmNB Classification 

Non-negative Matrix 
Factorization 

ore.odmNFM Feature Extraction 

Orthogonal Partitioning ore.odmOC Clustering 

Singular Value Decomposition ore.odmSVD Feature Extraction 

Support Vector Machine ore.odmSVM Classification 
Regression 
Anomaly Detection 
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Attribute Importance 

Compute the relative importance of predictor variables for predicting 
a response (target) variable 

Doc link 

Gain insight into relevance of variables to guide manual variable selection or reduction, 
with the goal to reduce predictive model build time and/or improve model accuracy 

Attribute Importance uses a Minimum Description Length (MDL) based algorithm 
that ranks the relative importance of predictor variables in predicting a specified 
response (target) variable 

Pairwise only – each predictor with the target 

Supports categorical target (classification) and numeric target (regression) 
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ore.odmAI 
Attribute Importance 

ore.odmAI( 

formula,    # formula specifying attributes for model build 

data,   # ore.frame of the training dataset 

auto.data.prep = TRUE,   # Setting to perform automatic data preparation 

na.action = na.pass,    # Allows missing values (na.pass), or removes rows with 

#  missing values (na.omit) 

odm.setting = NULL)   # A list to specify Oracle Data Mining parameter settings 

) 
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Basic Argument Concepts 

formula 

• Form response ~ terms where 'response' is the numeric or character response vector and 
'terms’ is a series of terms, i.e., column names, to include in the analysis 

• Multiple terms are specified using '+' between column names 

• Use response ~ . if all columns in 'data' should be used for model building.  Functions can 
be applied to 'response' and 'terms' to realize transformations.  To exclude columns, use '-' 
before each column name to exclude. 
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Basic Argument Concepts 

auto.data.prep 

• If TRUE, automatically performs the data transformations required by the algorithm 

• Transformation instructions are embedded in the in-database model 

Types of transformations 

• Binning 

- reduces cardinality of continuous and discrete data 

- improve resource utilization and model build response time dramatically without significant 
loss in model quality 

- can improve model quality by strengthening relationships between attributes 

• Normalization 

- reduces range of numerical data, e.g., between 0 and 1 
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Basic Argument Concepts 

na.action 

• By default, allows missing values ('na.pass'), or removes rows with missing values ('na.omit') 

odm.setting 

• Use to build a partition model 

• Set parameter ODMS_PARTITION_COLUMNS to the name(s) of the partition column(s) 

• For example, odm.setting = list(odms_partition_columns = "part") 
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ore.odmAI - Example 
Attribute Importance 

LONGLEY <- ore.push(longley) 

head(LONGLEY) 

ore.odmAI(Employed ~ ., LONGLEY) 

STATE <-

ore.push(as.data.frame(state.x77)) 

head(STATE) 

ore.odmAI(Murder ~ ., STATE) 

R> LONGLEY <- ore.push(longley) 

R> head(LONGLEY) 

GNP.deflator GNP Unemployed Armed.Forces Population Year Employed 

1947   83.0 234.289 235.6 159.0   107.608 1947  60.323 

1948   88.5 259.426 232.5 145.6   108.632 1948  61.122 

1949   88.2 258.054 368.2 161.6   109.773 1949  60.171 

1950   89.5 284.599 335.1 165.0   110.929 1950  61.187 

1951   96.2 328.975 209.9 309.9   112.075 1951  63.221 

1952 98.1 346.999 193.2 359.4 113.270 1952 63.639 

R> ore.odmAI(Employed ~ ., LONGLEY) 

Call: 

ore.odmAI(formula = Employed ~ ., data = LONGLEY) 

Importance: 

importance rank 

Year 0.4901166 1 

Population 0.4901166 1 

GNP 0.4901166 1 

GNP.deflator 0.4901166 1 

Armed.Forces 0.3648186 2 

Unemployed 0.1318046 3 
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ore.odmAI - Example 
Attribute Importance 

R> STATE <- ore.push(as.data.frame(state.x77)) 

R> head(STATE) 

Population Income Illiteracy Life Exp Murder HS Grad Frost  Area 

Alabama  3615   3624  2.1  69.05   15.1  41.3  20 50708 

Alaska    365   6315  1.5  69.31   11.3  66.7 152 566432 

Arizona  2212   4530  1.8  70.55 7.8  58.1  15 113417 

Arkansas  2110   3378  1.9  70.66   10.1  39.9  65 51945 

California 21198   5114  1.1  71.71   10.3  62.6  20 156361 

Colorado  2541   4884  0.7  72.06 6.8  63.9 166 103766 

R> ore.odmAI(Murder ~ ., STATE) 

Call: 

ore.odmAI(formula = Murder ~ ., data = STATE) 

Importance: 

importance rank 

Life Exp  0.10872845  1 

HS Grad  0.06915643  2 

Illiteracy  0.05760828  3 

Frost  0.05051389  4 

Area -0.04538736  5 

Income  -0.06720964  6 

Population -0.12554537  7 
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Attribute Importance - results 

importance 

• Relative metric indicating how much the variable contributes to predicting the target 

• Values > 0 contribute to prediction 

• Values <= do not contribute or add noise 

rank 

• Ordering of variables / attributes from most significant to least 
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Naïve Bayes 
Doc link 

Classification algorithm – simple probabilistic classifier 

Relies on Bayes’ theorem 

Assumes independence of predictors 

• May not be the case, but works well in practice 

Conditional probabilities between each predictor and target 
multiplied to obtain prediction 

Copyright © 2020 Oracle and/or its affiliates. 

https://docs.oracle.com/en/database/oracle/oracle-database/12.2/dmapi/naive-bayes.html#GUID-BB77D68D-3E07-4522-ACB6-FD6723BDA92A


ore.odmNB & predict.ore.odmNB 
Naïve Bayes 

ore.odmNB( 

formula,  

data,  

auto.data.prep = TRUE,  

class.priors = NULL,  

na.action = na.pass,  

odm.setting = NULL)  

predict( 

object,  

newdata,  

supplemental.cols = NULL,  

type = c("class","raw"),  

na.action = na.pass) 

# formula specifying attributes for model build 

# ore.frame of the training dataset 

# Setting to perform automatic data preparation 

# Numeric vector with named elements for target class priors 

# Allows missing values (na.pass), or removes rows with 

#  missing values (na.omit) 

# A list to specify Oracle Data Mining parameter settings 

# Object of type "ore.naiveBayes" 

# Data used for scoring 

# Columns to retain in output 

# "raw" – cond. a-posterior probs for each class returned 

# "class" - class with max prob 
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Basic Argument Concepts 

class.priors 

• Optional user-specified priors for the target classes 

• Specifying prior probabilities offsets distribution differences between training data and 
real population (scoring data) 

Use when one target value dominates in frequency 

• For example 

- telephone marketing campaign positive responses may be < 2% 

- occurrence of fraud in credit card transactions may be < 1%. 

• A classification model built with so few positive cases may not be able to distinguish 
characteristics of the two classes, resulting in a model that predicts the frequent class 
every time  use stratified sampling to balance the data set and set priors 

• Such models may be accurate, but not be very useful 

• Do not rely solely on accuracy when judging the quality of a classification model 

Stratified sampling and anomaly detection are alternatives to compensating for 
data distribution issues 
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nb.res  <- predict (nb, t3.test,"survived") 

head(nb.res,10) 

with(nb.res, table(survived,PREDICTION, dnn = c("Actual","Predicted"))) 

Score data using ore.frame with 
OREdm model object. 

Display first 10 rows of data frame 
using transparency layer 

Compute confusion matrix 

ore.odmNB – Example 
Naïve Bayes 

Login to database for transparent 
access via OML4R library(ORE) 

ore.connect("rquser","orcl","localhost","rquser",all=TRUE) 

data(titanic3,package="PASWR") 

Push data to db for transparent 
access 

t3 <- ore.push(titanic3) 

t3$survived <- ifelse(t3$survived == 1, "Yes", "No") 

Recode column from 0/1 to 
n.rows <- nrow(t3) No/Yes 

keeping data in database set.seed(seed=6218945) 

random.sample <- sample(1:n.rows, ceiling(n.rows/2)) 

t3.train <- t3[random.sample,] 

t3.test <- t3[setdiff(1:n.rows,random.sample),] 

Sample keeping data in 
database 

Create priors for 
model building priors <- c(Yes=0.1, No=0.9) 

nb <- ore.odmNB(survived ~ pclass+sex+age+fare+embarked, 

t3.train, class.priors=priors) 

Copyright © 2020 Oracle and/or its affiliates. 

Build model using R 
formula with 
transparency layer 
data 

library(verification) using transparency layer 

res <- ore.pull(nb.res) 

perf.auc <- roc.area(ifelse(res$survived == "Yes", 1, 0), res$"'Yes'") using verification package 
Retrieve result from database for 

auc.roc <- signif(perf.auc$A, digits=3) 

auc.roc.p <- signif(perf.auc$p.value, digits=3) 

roc.plot(ifelse(res$survived == "Yes", 1, 0), res$"'Yes'", binormal=T, 

plot="both", 

xlab="False Positive Rate", 

ylab="True Postive Rate", main= "Titanic survival ODM NB model 

ROC Curve") 

text(0.7, 0.4, labels= paste("AUC ROC:", signif(perf.auc$A, digits=3))) 

text(0.7, 0.3, labels= paste("p-value:", signif(perf.auc$p.value, 

digits=3))) 

summary(nb) 
View model object 

ore.disconnect() summary 

Disconnect from database 

Model, train and test objects are automatically 
removed when session ends or R objects are 
removed 



ROC Curve 
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Naïve Bayes – model object 

ore.odmNB object 

• name of the model 

• settings used to build the model 

• attributes used to build the model: name, type (numerical or categorical), data type, 
data length (size), precision and scale for numeric data, and whether the variable is 
the target 

• apriori table with class distribution for the dependent variable 

• tables is a list with one for each predictor variable with conditional probabilities 

• levels is a vector of unique target class values 
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Doc link Support Vector Machine 

Suite of algorithms, adaptable for use with a variety of problems and data 

By swapping one kernel for another, SVM can fit diverse problem spaces 

Concept 

• Data records with N attributes can be thought of as points in N-dimensional space 

• SVM attempts to separate the points into subsets with homogeneous target values, by 
hyperplanes in the linear case, and in the non-linear case (Gaussian) by non-linear separators 

• SVM finds the vectors that define the separators giving the widest separation of classes (the 
“support vectors”). 

SVM solves regression problems by defining an N-dimensional “tube” around the data 
points, determining the vectors giving the widest separation 

SVM can emulate some traditional methods, such as linear regression and neural 
networks, but goes far beyond those methods in flexibility, scalability, and speed 

• For example, SVM can act like a neural net in calculating predictions, while a neural net might 
mistake a local change in direction as a point of minimum error, SVM works to find the global 
point of minimum error 
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ore.odmSVM 
Support Vector Machine 

ore.odmSVM( 

formula,  

data, 

mining.function, 
"anomaly.detection“ 

auto.data.prep = TRUE,

class.priors = NULL,

active.learning = TRUE,

 # specifies attributes for model build 

 # ore.frame containing the training dataset 

# Type of model: "classification", "regression " or 

 # Setting to perform automatic data preparation 

 # Data frame containing target class priors 

 # Setting for enabling active learning 

complexity.factor = "system.determined",# Setting for complexity factor for SVM 

conv.tolerance = 0.0001, # Setting for convergence tolerance for SVM 

epsilon = "system.determined“,  # Setting for epsilon for SVM Regression 

kernel.function = "system.determined",# Setting for kernel function (SVMS_GAUSSIAN or SVMS_LINEAR) 

std.dev = "system.determined",  # Setting for standard deviation for SVM Gaussian kernel 

outlier.rate = 0.1,  # Setting for desired rate of outliers in dataset (1class SVM) 

na.action = na.pass # Allow missing values in rows by default, or na.omit 

odm.setting = NULL,  # A list to specify ODM parameter settings 

ctx.setting = NULL   # A list to specify Oracle Text attribute-specific settings 

) 
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Basic Argument Concepts 

class.priors 

active.learning - enabled by default 
• optimization method to control model growth and reduce model build time 

• without active learning, SVM models grow as the size of the build data set increases, 
which effectively limits SVM models to small and medium size training sets (less than 
100,000 cases 

• with active learning, SVM models can be built on very large training sets. 

• active learning forces the SVM algorithm to restrict learning to the most informative 
training examples and not to attempt to use the entire body of data. In most cases, the 
resulting models have predictive accuracy comparable to that of a standard (exact) SVM 
model 

• active learning provides a significant improvement in both linear and Gaussian SVM 
models, whether for classification, regression, or anomaly detection. However, active 
learning is especially advantageous for the Gaussian kernel, because nonlinear models 
can otherwise grow to be very large and can place considerable demands on memory 
and other system resources 
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Basic Argument Concepts 

complexity.factor 

• regularization setting that balances complexity of the model against model robustness 
to achieve good generalization on new data 

• data-driven approach to automatically determine the complexity factor 

conv.tolerance 

• convergence tolerance criterion for completing the model training process, default .001 

epsilon 

• regularization setting for regression, similar to complexity factor 

• specifies the allowable residuals, or noise, in the data 
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Basic Argument Concepts 

kernel.function – linear or Gaussian 

• a kernel is a function that transforms the input data to a high-dimensional space where 
the problem is solved. Kernel functions can be linear or nonlinear. 

• algorithm automatically uses the kernel function that is most appropriate to the data if 
not specified 

• linear kernel when # attributes > 100 in training data, else Gaussian kernel 

- # attributes reflects categorical columns exploded to numeric attributes 

kernel.cache.size 

• memory allocated to Gaussian kernel cache maintained in memory to improve model 
build time, default 50 MB 

std.dev 

• controls spread of Gaussian kernel function 

outlier.rate 

• for anomaly detection 

• expected outlier rate in anomaly detection, default 0.1 
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Basic Argument Concepts 

odm.setting – A list to specify Oracle Data Mining parameter settings. This 
argument is applicable to building a model in Database 12.2 or later. Each list 
element's name and value refer to the parameter setting name and value, 
respectively. The setting values must be numeric or string. To perform text mining, 
parameter ODMS_TEXT_POLICY_NAME must be set to a text policy name. When 
parameter ODMS_PARTITION_COLUMNS is set to the name(s) of the partition 
column(s), a partition model with a sub-model in each partition is created from the 
input data. 

ctx.setting – A list to specify Oracle Text attribute-specific settings. This argument 
is applicable to building model in Database 12.2 or later. The name of each list 
element refers to the text column while the list value specifies the text 
transformation. 

(See ODM documentation for specific settings options.) 
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predict.ore.odmSVM 
Support Vector Machine 

predict ( 

object, 

newdata, 

supplemental.cols = NULL, # Columns to retain in the output 

type = c("class","raw"),  # "raw" – cond. a-posterior probs for each class returned, 

#   else class with max prob (TBD for compaitbility with e1071) 

na.action = na.pass,...)  # allow missing vlaues in rows by default, or na.omit 
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prediction result 

Basic Argument Concepts 

supplemental.cols 

• Columns from newdata to include as columns in the ore.frame 

• Use to include specific columns in the prediction result for easier analysis 

type = c("class","raw"), if a classification model… 
• "raw" provides probability for each class returned 

• "class" returns the class with the maximum probability 

• default c("class","raw") returns both 
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ore.odmSVM – Example 
Support Vector Machine 

x <- seq(0.1, 5, by = 0.02) 

y <- log(x) + rnorm(x, sd = 0.2) 

dat <-ore.push(data.frame(x=x, y=y)) 

# Regression 

svm.mod <- ore.odmSVM(y~x,dat,"regression", kernel.function="linear") 

summary(svm.mod) 

coef(svm.mod) 

svm.res <- predict(svm.mod,dat,supplemental.cols="x") 

head(svm.res,6) 
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ore.odmSVM – Example 
Support Vector Machine 

# Classification # Set up data set 
svm.mod  <- ore.odmSVM(gear ~ .-ID, 

m <- mtcars 
MTCARS,"classification", 

m$gear <- as.factor(m$gear) kernel.function="linear") 

m$cyl <- as.factor(m$cyl) 

m$vs <- as.factor(m$vs) 

m$ID <- 1:nrow(m) 

MTCARS <- ore.push(m) 

summary(svm.mod) 

coef(svm.mod) 

svm.res  <- predict (svm.mod, MTCARS,"gear") 

head(svm.res) 

svm.res  <- predict (svm.mod, MTCARS,"gear",type="raw") 

head(svm.res) 

svm.res  <- predict (svm.mod, MTCARS,"gear",type="class") 

head(svm.res) 

with(svm.res, table(gear,PREDICTION))  # confusion matrix 

# Anomaly Detection 

svm.mod  <- ore.odmSVM(~ .-ID, MTCARS,"anomaly.detection", 

kernel.function="system.determined") 

summary(svm.mod) 

svm.res  <- predict (svm.mod, MTCARS, "ID") 

head(svm.res) 

table(svm.res$PREDICTION) 
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SVM – model object 

ore.odmSVM object 
• name of the model 

• settings used to build the model 

• attributes used to build the model: name, type (numerical or categorical), data type, data length 
(size), precision and scale for numeric data, and whether the variable is the target 

• fit.values is an ore.frame of the actual column and predicted column. For regression, the 
columns are 'ACTUAL' and 'PREDICTED'. For classification, the columns are 
'ACTUAL','PREDICTED','PROBABILITY'. For anomaly detection, the columns are 'PREDICTED' and 
'PROBABILITY'. 

• residuals for regression models, an ore.numeric vector containing the residual values 
(PREDICTED - ACTUAL). 

• formula is the symbolic description of the model fitted 

• call is the invocation parameters of the function 

If built with a linear kernel, the following are also returned 
• coefficients of the SVM model, one for each predictor variable. If auto.data.prep is set to TRUE, 

these coefficients will be in the transformed space (after automatic outlier-aware normalization is 
applied) 
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Cluster Description 

C1 

C2 

AGE INCOME 
C2 

INCOME 

AGE 
C1 

INCOME 
AGE 

Centroids Histograms 
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Cluster Rules 

INCOME 

C1 

C2 

AGE 
Cluster 1: 

0 < age  35 AND 0 < income  50K 

Cluster 2: 

30 < age  55 AND 40K < income  80K 

Copyright © 2020 Oracle and/or its affiliates. 



1

2 3

4 5

6 7

Clustering Hierarchy 

Binary tree 

• balanced 
MALE 

1

2 3

4 5 

FEMALE • unbalanced 

Splitting predicates SMOKE ~SMOKE 

AGE < 40 AGE  40 

6 7 
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K-Means clustering 

Identify distinct segments of a population 

Doc link 

Explain the common characteristics of members of a cluster 

Determine what distinguishes members of one cluster from members of 
another cluster 

Partitions a set of observations into k partitions, or clusters 

Each observations belongs to the cluster with the nearest centroid or center, 
which is the mean of the observations variables 

Distance can be computed in various ways, 
e.g., Euclidean or cosine 
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ore.odmKMeans 
K-Means Clustering 

ore.odmKMeans( 

formula, 

data, 

auto.data.prep = TRUE,

num.centers = 10, 

block.growth = 2, 

conv.tolerance = 0.01,

distance.function = "euclidean",

iterations = 3,

min.pct.attr.support = 0.1, 

num.bins = 10,

split.criterion = "variance", 

na.action = na.pass,  

odm.setting = NULL) 

 # Setting to perform automatic data preparation 

 # number of clusters 

 # Numeric growth factor for memory to hold cluster data 

 # Numeric convergence tolerance setting 

 # Distance function: cosine, euclidean, or fast.cosine 

 # Maximum number of iterations 

 # Minimum percent required for variables to appear in rules 

 # Number of histogram bins 

# Split clusters by variance or size 

 # Allow missing values in rows by default, or na.omit 

# A list to specify ODM parameter settings 
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Basic Argument Concepts 

num.centers – number of clusters to create, > 1, default 10 

block.growth – numeric growth factor for memory to hold cluster data, [1..5], 
default 2 

conv.tolerance – numeric convergence tolerance setting, (0..0.5], default 0.01 

distance.function 

• distance function between instances and centroids 

• options:  cosine, euclidean, or fast.cosine 

• default: euclidean 

iterations – maximum number of iterations, [1..20], default 3 
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Basic Argument Concepts 

min.pct.attr.support 

• minimum percent required for variables to appear in rules, [0,1], default 0.1 

• The fraction of attribute values that must be non-null for variable to be included in rule description for 
cluster 

• Setting the parameter value too high in data with missing values can result in very short or even 
empty rules 

num.bins 

• number of histogram bins, > 0,  default 10 

• specifies the number of bins in the variable histogram produced by k-Means 

• bin boundaries for each variable are computed globally on entire training data set 

• binning method is equi-width 

• all attributes have same number of bins except variables with a single value, which have only one bin 

split.criterion 

• split clusters by variance or size, default variance 

• use size for more balanced clusters, e.g., with text mining 
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ore.odmKMeans 
K-Means Clustering 

x <- rbind(matrix(rnorm(100, sd = 0.3), ncol = 2), 

matrix(rnorm(100, mean = 1, sd = 0.3), ncol = 2)) 

colnames(x) <- c("x", "y") 

X <- ore.push (data.frame(x)) 

km.mod1 <- ore.odmKMeans(~., X, num.centers=2, num.bins=5) 

summary(km.mod1) 

rules(km.mod1) 

clusterhists(km.mod1) 

histogram(km.mod1) 
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ore.odmKMeans – results 
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ore.odmKMeans – results 
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ore.odmKMeans 
K-Means Clustering 

km.res1 <- predict(km.mod1,X,type="class",supplemental.cols=c("x","y")) 

head(km.res1,3) 

km.res1.local <- ore.pull(km.res1) 

plot(data.frame(x=km.res1.local$x, y=km.res1.local$y), col=km.res1.local$CLUSTER_ID) 

points(km.mod1$centers2, col = rownames(km.mod1$centers2), pch = 8, cex=2) 

head(predict(km.mod1,X)) 

head(predict(km.mod1,X,type=c("class","raw"),supplemental.cols=c("x","y")),3) 

head(predict(km.mod1,X,type="raw",supplemental.cols=c("x","y")),3) 
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ore.odmKMeans – results 
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K-Means – model object 

ore.odmKMeans object 

• name … 

• settings … 

• attributes … 

• cluster contain general per-cluster information 

• leaf.cluster.count leaf clusters with support 

• taxonomy is the parent-child cluster relationship 

• centers are per cluster-attribute center (centroid) information 

• formula … 

• call … 
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ore.odmKMeans with text mining 
K-Means Clustering 

dat <- scan("SOTU-2009.txt", what=character(), sep="\n") 

df <- data.frame(ID = seq(length(dat)), PARAGRAPH = dat) 

SOTU_TEXT <- ore.push(df) 

ore.exec("begin ctx_ddl.create_policy('MY_TXTPOL'); end;") # CTXSYS.CTX_DDL privilege required 

km.mod <- ore.odmKMeans( ~ PARAGRAPH, data = SOTU_TEXT, num.centers = 10L, 

odm.settings = list(ODMS_TEXT_POLICY_NAME = "MY_TXTPOL", 

ODMS_TEXT_MIN_DOCUMENTS = 2, 

ODMS_TEXT_MAX_FEATURES = 20, 

kmns_distance ="dbms_data_mining.kmns_cosine", 

kmns_details = "kmns_details_all"), 

ctx.settings = list(PARAGRAPH="TEXT(TOKEN_TYPE:STEM)")) 
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Orthogonal Partitioning Clustering 
O-Cluster 

Uses grid-based approach 

Doc link 

Finds natural data clusters 

Creates unbalanced hierarchical trees 

Uses active sampling 

  

 

 

INCOME 

AGE 
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 O-Cluster Grid-Based Partitioning 
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When to Use O-Cluster? 

High number of records 

• needed for detailed histogram computation 

High number of attributes 

Presence of noise 

Numeric and categorical attributes 

Multi-modal density data 

• finds “natural” clusters, may not reach max number of 
clusters 
set by the user 
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Orthogonal Partitioning Clustering 
Creates a hierarchical grid-based clustering model 
• creates axis-parallel (orthogonal) partitions in the input attribute space 

• operates recursively 

• resulting hierarchical structure represents irregular grid that tessellates attribute space into clusters 

• resulting clusters define dense areas in the attribute space 

Clusters described by intervals along the attribute axes and corresponding centroids and 
histograms 

Parameter 'sensitivity' defines a baseline density level 
• Only areas with peak density above this baseline level can be identified as clusters 

O-Cluster separates areas of high density by placing cutting planes through areas of low 
density 
• O-Cluster needs multi-modal histograms (peaks and valleys) 

• If an area has projections with uniform or monotonically changing density, O-Cluster does not 
partition it 
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Orthogonal Partitioning Clustering 

O-Cluster reads the data in batches (the default batch size is 50000) 

• Only read another batch if, based on statistical tests, there may still exist clusters that it has not yet 
uncovered. 

• Since O-Cluster may stop the model build before it reads all of the data, it is highly recommended 
that the data be randomized 

• Binary attributes should be declared as categorical 

• O-Cluster maps categorical data to numerical values 

• Recommend to use ODM’s equi-width binning transformation with automated estimation of the 
required number of bins 

• Outliers can significantly impact clustering algorithms 

- Use a clipping transformation before binning or normalizing 

- Outliers with equi-width binning can prevent O-Cluster from detecting clusters - as a result, the 
whole population appears to falls within a single cluster. 
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ore.odmOC 
Orthogonal Partitioning Clustering 

ore.odmOC(formula, 

data, 

auto.data.prep = TRUE, 

num.centers = 10, 

max.buffer = 50000, 

sensitivity = 0.5, 

na.action = na.pass, 

odm.setting = NULL 

## S3 method for class 'ore.odmOC' 

predict(object, 

newdata, 

supplemental.cols = NULL, 

type = c("class","raw"), 

na.action = na.pass,...) 
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Basic Argument Concepts 

num.centers – number of clusters to create, > 1, default 10 

max.buffer – maximum buffer size, >0, default 50000 

sensitivity – A fraction that specifies the peak density required for separating a 
new cluster. The fraction is related to the global uniform density. Value [0,1]. 
(default: 0.5) 
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OCluster – model object 

ore.odmOC object 

• name name of model in database 

• settings data.frame with settings used to build model 

• attributes data.frame of variable/columns used to build model 

• clusters contain general per-cluster information 

• leaf.cluster.count data.frame of leaf clusters with support 

• taxonomy parent-child cluster relationship 

• centers per cluster-attribute center (centroid) information 

• centers2 simplified cluster centroids (means) 

• histogram per cluster attribute histogram information 

• rules rules defining clusters 

• formula formula used to build the model 

• call specific invocation of the function with arguments 
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ore.odmOC 
O-Cluster Clustering 

x <- rbind(matrix(rnorm(100, sd = 0.3), ncol = 2), 

matrix(rnorm(100, mean = 2, sd = 0.3), ncol = 2)) 

colnames(x) <- c("x", "y") 

X <- ore.push (data.frame(x)) 

oc.mod1 <- ore.odmOC(~., X, num.centers=2) 

summary(oc.mod1) 

rules(oc.mod1) 

clusterhists(oc.mod1) 

histogram(oc.mod1) 
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ore.odmOC 
O-Cluster Clustering 

oc.res1 <- predict(oc.mod1,X,type="class", 

supplemental.cols=c("x","y")) 

head(oc.res1,3) 

oc.res1.local <- ore.pull(oc.res1) 

plot(data.frame(x=oc.res1.local$x, 

y=oc.res1.local$y), 

col=oc.res1.local$CLUSTER_ID) 

points(oc.mod1$centers2, 

col = rownames(oc.mod1$centers2), 

pch = 8, cex=2) 
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Expectation Maximization Clustering 

Popular probability density estimation technique 

EM used to implement a distribution-based clustering algorithm (EM-
clustering) 

Copyright © 2020 Oracle and/or its affiliates. 



  

 

Expectation Maximization Clustering 
ore.odmEM 

Automated model search to find number of clusters / components (enabled via 
EMCS_MODEL_SEARCH) 

Protection against overfitting 

Supports numeric and multinomial distributions 

High quality probability estimates 

Generates cluster hierarchy, rules, and other statistics 

Supports both Gaussian and multi-value Bernoulli distributions 

Includes heuristics that automatically choose distribution types 

Doc link 
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When to Use EM? 

In general, EM is a significantly more expensive algorithm than k-Means. If you have a large 
dataset, k-Means should be the first choice. However, Oracle’s EM is very scalable relative to other 
EM implementations. 

Parallel implementation allows this EM algorithm to scale linearly with the number of rows. High 
column dimensionality is handled through the feature selection or random projections. 

Provides a component clustering capability to group overlapping EM components into higher 
level clusters, enabling discovery of arbitrarily shaped clusters. This feature is on by default and 
may result in fewer clusters than the maximum size. It is also important to distinguish between 
EM components and the concept of clusters which can include multiple components. 

Performs automatic feature selection by removing statistically independent columns, which 
effectively removes irrelevant noisy columns 

Nested columns (ODM SQL only) and text use random projections and are modeled in a lower 
dimensional space 
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ore.odmEM 
Expectation Maximization Clustering 

ore.odmEM(formula, 

data, 

num.centers = NULL, 

auto.data.prep = TRUE, 

na.action = na.pass, 

odm.setting = NULL) 

histogram(x, 

data=NULL, 

cluster.id="all",...) 

predict (object, 

newdata, 

supplemental.cols = NULL, 

type = c("class","raw"), 

na.action = na.pass,...) 
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Basic Argument Concepts 

num.centers – number of clusters to create, > 1, default NULL – system 
determined 

auto.data.prep – default TRUE 

odm.setting – A list to specify Oracle Data Mining parameter settings. This 
argument is applicable to building a model in Database 12.2 or later. Each list 
element's name and value refer to the parameter setting name and value, 
respectively. The setting values must be numeric or string. When parameter 
ODMS_PARTITION_COLUMNS is set to the name(s) of the partition column(s), a 
partition model with a sub-model in each partition is created from the input data. 
(See ODM documentation for specific settings options.) 

Copyright © 2020 Oracle and/or its affiliates. 



 

EM – model object 

ore.odmEM object 

• name name of model in database 

• settings data.frame with settings used to build model 

• attributes data.frame of variable/columns used to build model 

• clusters contain general per-cluster information 

• leaf.cluster.count data.frame of leaf clusters with support 

• taxonomy parent-child cluster relationship 

• centers per cluster-attribute center (centroid) information 

• centers2 simplified cluster centroids (means) 

• formula formula used to build the model 

• call specific invocation of the function with arguments 
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ore.odmEM 
Expectation Maximization Clustering 

x <- rbind(matrix(rnorm(100, sd = 0.3), ncol = 2), 

matrix(rnorm(100, mean = 1, sd = 0.3), ncol = 2)) 

colnames(x) <- c("x", "y") 

X <- ore.push(cbind(data.frame(x), 

part = as.integer(x[,2] * 100)\%\%2)) 

em.mod <- ore.odmEM(~. -part, X, num.centers = 3) 

em.mod 

summary(em.mod) 

rules(em.mod) 

clusterhists(em.mod) 

histogram(em.mod) 
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ore.odmEM 
Expectation Maximization Clustering 

em.res1 <- predict(em.mod,X,type="class", 

supplemental.cols=c("x","y")) 

head(em.res1,3) 

em.res1.local <- ore.pull(em.res1) 

plot(data.frame(x=em.res1.local$x, 

y=em.res1.local$y), 

col=em.res1.local$CLUSTER_ID) 

points(em.mod$centers2, col =rownames(em.mod$centers2), 

pch = 8, cex=2) 

head(predict(em.mod,X)) 

head(predict(em.mod,X,type=c("class","raw"), 

supplemental.cols=c("x","y")),3) 
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ore.odmEM 
Expectation Maximization Clustering with partitioned model 

em.pmod <- ore.odmEM(~. , X, num.centers = 3, 

odm.setting = list(odms_partition_columns = "part")) 

partitions(em.pmod) 

summary(em.pmod) 

rules(em.pmod) 

clusterhists(em.pmod) 

histogram(em.pmod, part = "DM$$_P1") 

head(predict(em.pmod,X)) 

head(predict(em.pmod,X,type=c("class","raw"), 

supplemental.cols=c("x","y")),3) 

head(predict(em.pmod,X,type="raw", 

supplemental.cols=c("x","y")),3) 
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Doc link 

Decision Tree 

Classification algorithm 

• Predicts a discrete value for each case: 0 or 1, Yes or No, Low Medium or High, with 
corresponding probability 

• Based on classification component of well-known C&RT algorithm 

• Enhancement of supplying Surrogate splitting attributes, if possible, at each node 

Uses include 

• Prediction 

• Segmentation 

• Understanding predictions 
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Decision Tree Example 

Customer Months 

Cell Phone Churners vs. Loyal Customers 

Segment #1  
IF CUST_MO > 14 AND INCOME 
< $90K, THEN Prediction = Cell 
Phone Churner 

Confidence = 100% 
Support = 8/39 

Segment #3  
IF CUST_MO > 7 AND INCOME < 
$175K, THEN 
Prediction = Cell Phone Churner, 

Confidence = 83% 
Support = 6/39 

Source:  Inspired from Data Mining Techniques: For Marketing, Sales, and Customer Relationship Management by Michael J. A. Berry, Gordon S. Linoff 
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ore.odmDT 
Decision Tree 

ore.odmDT( 

formula,  

data, 

auto.data.prep = TRUE,

cost.matrix = NULL,

impurity.metric = "gini", 

max.depth = 7, 

min.rec.split = 20,

min.pct.split = 0.1,  

min.rec.node = 10, 

min.pct.node = 0.05,  

na.action = na.pass,  

odm.setting = NULL)

) 

  # formula specifying attributes for model build 

  # ore.frame of the training dataset 

  # Setting to perform automatic data preparation 

  # numerical sq matrix for costs of incorrect prediction 

# gini or entropy 

  # maximum depth of tree from root to leaf inclusive [2..20] 

  # minimum number of cases required to split a node 

  # minimum percent of cases required to split a node 

  # minimum number of cases required in a child node 

  # minimum percent of cases required in child node 

  # Allows missing values (na.pass), or removes rows with 

#  missing values (na.omit) 

  # A list to specify Oracle Data Mining parameter settings 
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Basic Argument Concepts 
cost.matrix – default NULL 

impurity.metric 
• options: gini or entropy, default "gini“ 
• measure of node purity 

• tree algorithms seek the best test question for splitting data at each node. The best 
splitter and split value are those that result in the largest increase in target value 
homogeneity (purity) for the entities in the node 

max.depth 
• default 7 

• Criteria for splits: maximum tree depth (the maximum number of nodes between the 
root and any leaf node, including the leaf node) 

min.rec.split – default 20 

min.pct.split – default 0.1 

min.rec.node – default 10 

min.pct.node – default 0.05 
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> dt.mod <- ore.odmDT(gear ~ ., MTCARS) 

ore.odmDT 
Decision Tree Classification 

> summary(dt.mod) 

Call: 

ore.odmDT(formula = gear ~ ., data = MTCARS) 

n = 32 

Nodes: 

parent node.id row.count prediction 

1 NA 0 32 3 

2 0 1 16 

3 0 2 16 3 

split 

<NA> 

4 (disp <= 196.2999) 

(disp > 196.2999) 

m <- mtcars 

m$gear <- as.factor(m$gear) 

m$cyl <- as.factor(m$cyl) 

m$vs <- as.factor(m$vs) 

m$ID <- 1:nrow(m) 

MTCARS <- ore.push(m) 

row.names(MTCARS) <- MTCARS 

dt.mod  <- ore.odmDT(gear ~ ., MTCARS) 

summary(dt.mod) 

dt.res <- predict (dt.mod, MTCARS,"gear") 

# confusion matrix 

with(dt.res, table(gear,PREDICTION)) 

surrogate full.splits 

1 <NA> <NA> 

2 (cyl in ("4" "6" )) (disp <= 196.299999999999995) 

3 (cyl in ("8" )) (disp > 196.299999999999995) 

Settings: 

value 

prep.auto on 

impurity.metric impurity.gini 

term.max.depth 7 

term.minpct.node 0.05 

term.minpct.split 0.1 

term.minrec.node 10 

term.minrec.split 20 

> dt.res <- predict (dt.mod, MTCARS,"gear") 

> with(dt.res, table(gear,PREDICTION)) 

PREDICTION 

gear 3 4 

3 14 1 

4 0 12 

5 2 3 
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Decision Tree – model object 

ore.odmDT object 

• name … 

• settings … 

• attributes … 

• costs a data.frame containing the cost matrix supplied at model build 

• Distributions target class distributions at each tree node 

• nodes a data.frame with tree node details, including: parent node id, node id, 
number of rows assigned to that node, predicted value, split predicate, surrogate 
variables (if applicable), and full split predicates from current node to root node 

• formula … 

• call … 
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Generalized Linear Models 

Linear Models 

Assumes Y is normally distributed with constant 
variance 

Linear models fit 
μY = βo + Σp

j=1β j X j 

No assumptions about predictors X j distributions, 
e.g., need not be normally distributed 

Nonlinear functions on predictors allowed 

Advantages 

• Computational simplicity 

• Interpretable model form 

• ability to compute certain diagnostic 
information about the quality of the fit 

Generalized Linear Models 

Doc link 

Addresses  target variables that are 
non-normal 

• Assume Y follows distribution  from exponential 
family 

• Specify link function and probability distribution, 
or variance function 

GLM fits models of the form 
g(μY) = βo + Σp

j=1β j X j 

g(μY) is a function of the conditional mean, a.k.a. 
link function 

http://en.wikipedia.org/wiki/Exponential_family 
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ore.odmGLM 
Generalized Linear Model 

ore.odmGLM( 

formula,    # formula specifying attributes for model build 

data,   # ore.frame of the training dataset 

weights = NULL, 

type = c("normal", "logistic"), 

na.treatment = c("delete.row", "mean.or.mode"), 

reference = NULL, 

ridge = FALSE, 

ridge.value = NULL, 

ridge.vif = FALSE, 

auto.data.prep = TRUE,   # Setting to perform automatic data preparation 

odm.setting = NULL)   # A list to specify Oracle Data Mining parameter settings 

) 
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Basic Argument Concepts 

weights 
• An optional character string representing the column name in the data argument to use as 

analytical weights in the model fit, Default NULL 

type 
• the type of generalized linear model, default “normal” 

- "normal" (Gaussian) - identify link function and variance function = 1 
(constant over range of response values) 

- "logistic" (binomial) - logit link function and binomial variance function 

na.treatment 
• The missing value treatment; either "delete.row" (delete entire row) or "mean.or.mode" 

(replace missing values with the mean in numeric predictors and the mode in categorical 
predictors) , Default "delete.row" 

reference 
• An optional response variable category to use as the reference value (non-case/failure 

code) in a binary logistic regression model 

• By default, reference is taken to be the category with the highest prevalence, default NULL 
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Basic Argument Concepts 

ridge 
• Compensates for multicollinearity 

• TRUE to enable ridge estimation of the coefficients, FALSE otherwise, default FALSE 

• Applies both to regression and classification 

• When enabled, no prediction bounds can be produced 

ridge.value 
• The value for the ridge parameter used by the algorithm 

• Used when ridge regression explicitly enabled 

• If ridge regression is enabled internally by the algorithm, the ridge parameter is 
determined by the algorithm, default NULL 

ridge.vif 
• (Linear regression only) Optional logical indicator for whether to produce 

Variance Inflation Factor (VIF) statistics for the ridge estimates 

• VIFs can only be produced if enough Oracle database system resources are available 

• Default FALSE 
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ore.odmGLM 
Generalized Linear Model Regression 

# Linear regression using the longley data set 

LONGLEY <- ore.push(longley) 

longfit1 <- ore.odmGLM(Employed ~ ., data = LONGLEY) 

summary(longfit1) 

> longfit1 <- ore.odmGLM(Employed ~ ., data = LONGLEY) 

> summary(longfit1) 

Call: 

ore.odmGLM(formula = Employed ~ ., data = LONGLEY) 

Residuals: 

Min 1Q  Median 3Q Max 

-0.41011 -0.15767 -0.02816 0.10155 0.45539 

Coefficients: 

Estimate Std. Error t value Pr(>|t|) 

(Intercept) -3.482e+03  8.904e+02 -3.911 0.003560 ** 

GNP.deflator 1.506e-02  8.492e-02 0.177 0.863141 

GNP -3.582e-02  3.349e-02 -1.070 0.312681 

Unemployed -2.020e-02  4.884e-03 -4.136 0.002535 ** 

Armed.Forces -1.033e-02  2.143e-03 -4.822 0.000944 *** 

Population -5.110e-02  2.261e-01 -0.226 0.826212 

Year  1.829e+00  4.555e-01 4.016 0.003037 ** 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 0.3049 on 9 degrees of freedom 

Multiple R-squared: 0.9955,  Adjusted R-squared: 0.9925 

F-statistic: 330.3 on 6 and 9 DF, p-value: 4.984e-10 
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ore.odmGLM 
Generalized Linear Model Regression 

# Ridge regression using the longley data set 

longfit2 <- ore.odmGLM(Employed ~ ., data = LONGLEY, 

ridge = TRUE, 

ridge.vif = TRUE) 

summary(longfit2) 

> # Ridge regression using the longley data set 

> longfit2 <- ore.odmGLM(Employed ~ ., data = LONGLEY, 

+  ridge = TRUE, 

+  ridge.vif = TRUE) 

> summary(longfit2) 

Call: 

ore.odmGLM(formula = Employed ~ ., data = LONGLEY, 

ridge = TRUE, ridge.vif = TRUE) 

Residuals: 

Min 1Q Median  3Q  Max 

-0.4100 -0.1579 -0.0271  0.1017 0.4575 

Coefficients: 

Estimate VIF 

(Intercept) -3.466e+03 0.000 

GNP.deflator 1.479e-02 0.077 

GNP -3.535e-02 0.012 

Unemployed -2.013e-02 0.000 

Armed.Forces -1.031e-02 0.000 

Population -5.262e-02 0.548 

Year  1.821e+00 2.212 

Residual standard error: 0.3049 on 9 degrees of freedom 

Multiple R-squared: 0.9955,  Adjusted R-squared: 0.9925 

F-statistic: 330.2 on 6 and 9 DF, p-value: 4.986e-10 
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ore.odmGLM 
Generalized Linear Model Regression 

# Logistic regresion using the infert data set 

INFERT <- ore.push(infert) 

infit1 <- ore.odmGLM( 

case ~ age+parity+education+spontaneous+induced, 

data = INFERT, 

type = "logistic") 

infit1 

R> # Logistic regresion using the infert data set 

R> INFERT <- ore.push(infert) 

R> infit1 <- ore.odmGLM(case ~ age+parity+education+spontaneous+induced, 

+  data = INFERT, type = "logistic") 

R> infit1 

Response: 

case == "1" 

Call: ore.odmGLM(formula = case ~ age + parity + education + spontaneous + 

induced, data = INFERT, type = "logistic") 

Coefficients: 

(Intercept)  age parity education0-5yrs 

-2.19348  0.03958 -0.82828 1.04424 

education12+ yrs  spontaneous  induced 

-0.35896  2.04590  1.28876 

Degrees of Freedom: 247 Total (i.e. Null); 241 Residual 

Null Deviance:  316.2 

Residual Deviance: 257.8 AIC: 271.8 
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ore.odmGLM – other functions 
Generalized Linear Model 

residuals(object, 

type = c("deviance", "pearson", "response"), ...) 

fitted(object, ...) 

predict(object, newdata, supplemental.cols = NULL, 

confint = FALSE, level = 0.95, 

na.action = na.pass,...) 

confint(object, parm, level = 0.95, ...) 

deviance(object, ...) 

extractAIC(fit, scale = 0, k = 2, ...) 

logLik(object, ...) 

nobs(object, ...) 

confint: A logical indicator for whether to produce 
confidence intervals for the predicted values. 

level: A numeric value within [0, 1] to use for the 
confidence level. 

na.action: Function to use for missing value handling; 
either 'na.pass' (allow missing values) or 'na.omit' 
(remove rows with missing values). 

parm: An optional character vector that specifies which 
coefficients to include in the set of confidence 
intervals. 

scale: An optional numeric scale parameter. 

k: An optional numeric weight of the equivalent 
degrees of freedom. 
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ore.odmGLM 
Generalized Linear Model Prediction 

res <- predict(infit1, newdata = INFERT, confint=TRUE, level = 0.97) 

head(res) 

head(residuals(infit1)) 

extractAIC(infit1) 

logLik(infit1) 

nobs(infit1) 

R> res <- predict(infit1, newdata = INFERT, confint=TRUE, level = 0.97) 

R> head(res) 

PREDICTION LOWER.CONF UPPER.CONF 

1  0.5721917  0.1767983  0.8928118 

2  0.7258536  0.2887066  0.9452694 

3  0.1194461  0.5546963  0.9775927 

4  0.3684102  0.2546444  0.8958629 

5  0.5104286  0.3632442  0.6558268 

6  0.6322268  0.4007028  0.8154924 

R> 

R> head(residuals(infit1)) 

[1] 1.0566751 0.8005085 2.0614994 1.4131937 1.1597452 0.9576085 

R> extractAIC(infit1) 

[1] 7.0000 271.7977 

R> logLik(infit1) 

'log Lik.' -128.8988 (df=7) 

R> nobs(infit1) 

[1] 248 
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ore.odmGLM 
Generalized Linear Model Regression 

# Changing the reference value to 1 

infit2 <- ore.odmGLM( 

case ~ age+parity+education+spontaneous+induced, 

data = INFERT, 

type = "logistic", 

reference = 1) 

infit2 

R> # Changing the reference value to 1 

R> infit2 <- ore.odmGLM(case ~ age+parity+education+spontaneous+induced, 

+  data = INFERT, type = "logistic", reference = 1) 

R> infit2 

Response: 

case == "0" 

Call: ore.odmGLM(formula = case ~ age + parity + education + spontaneous + 

induced, data = INFERT, type = "logistic", reference = 1) 

Coefficients: 

(Intercept)  age parity education0-5yrs 

2.19348 -0.03958  0.82828 -1.04424 

education12+ yrs  spontaneous  induced 

0.35896 -2.04590 -1.28876 

Degrees of Freedom: 247 Total (i.e. Null); 241 Residual 

Null Deviance:  316.2 

Residual Deviance: 257.8 AIC: 271.8 
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Generalized Linear Model – model object 
ore.odmGLM object 

• name … 

• settings … 

• attributes … 

• coefficients a named vector of coefficients 

• residuals ore.frame containing 3 types of residuals: "deviance", "pearson", and 
"response” 

• fitted.values an ore.vector containing the fitted values 

• rank numeric rank of the fitted model 

• type type of model fit 

• deviance minus twice the maximized log-likelihood, up to a constant 

• aic same version of Akaike's An Information Criterion as used by glm 

• null.deviance deviance for the null (intercept only) model 

• prior.weights weights initially supplied or 1 if none were 

• df.residual residual degrees of freedom 
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Generalized Linear Model – model object  (2) 

ore.odmGLM object 
• df.null residual degrees of freedom for the null model 

• y ore.vector containing the response variable 

• converged indicator for whether the model converged 

• model ore.frame containing the model frame 

• na.treatment how missing values were treated 

• na.action number of rows with missing values that were removed 

• terms terms object used 

• data data argument 

• nonreference in logistic regression, the response values that represents success 

• ridge ridge argument 

• auto.data.prep whether or not auto data preparation should be used 

• fit.name internal name for the in-database model 

• fit.details model details 

• formula … 
• call … 
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To Ridge or not to Ridge 

If the data has a large number of attributes AND accuracy is more important than a compact 
model ridge is the preferred approach 

If having a compact model is important, then feature selection is the preferred approach 

If the problem is believed to be non-linear in nature or the user does not know, then it is also 
a good idea to create a model with feature generation on 

• Will generate compact polynomial (quadratic or cubic) models that may fit the data better 

User can also easily create these 3 types of models in a single model build node in Oracle 
Data Miner and then compare models to select best model 
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GLM Analysis of Variance tables (SQL) 

Stats from Analysis can be obtained from the global statistics: 

SELECT * 

FROM TABLE(dbms_data_mining.get_model_details_global('<model_name>')) 

order by global_detail_name; 

The stats from the parameter table can be obtained through attribute level details 

SELECT * 

FROM TABLE(dbms_data_mining.get_model_details_glm('<model_name>')); 
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Doc link 

Association Rules – Market Basket Analysis 

Apriori algorithm (Agrawal and Srikant 1994) 

Finds frequent itemsets and generates association models 

• Finds co-occurrence of items in large volumes of  data: both transactional and relational 

Produces rules 

• Set of items in a transactional record implies the existence of another set of items 

• Groups of items form rules if they pass a minimum threshold 

• Thresholds include: how frequently they occur (support) and how often the consequent 
follows the antecedent (confidence) 

Apriori algorithm is efficient, and scales well with respect to the number of 
transactions, number of items, and number of itemsets and rules produced 
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Association (Market Basket Analysis) 

Transactional Data and Rule Example 

Input Data: User ID Movies Viewed 

1 {Movie1, Movie2, Movie3} 

2 {Movie1, Movie4} 

3 {Movie1, Movie3} 

4 {Movie2, Movie5, Movie6} 

… … 
N {Movie3, Movie4, Movie6} 

Movie1 and Movie2  Movie3 
with support of .12 and confidence .78 
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Association Rules Support (A  B) 
= P(AB) 

Support and Confidence = count (A & B) / totalCount 

User ID Movies Viewed 
1 {1, 2, 3} 
2 {1, 4} 
3 {1, 3} 
4 {2, 5, 6} 

Confidence (A  B) 
= P(AB)/P(A) 
= count (A & B) / count (A) 

1  3 : 

Support = 2/4 = 50% 

Confidence = 2/3 = 66% 

3  1 : 

Support = 2/4 = 50% 

Confidence = 2/2 = 100% 
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ore.odmAssocRules 
Association Rules 

ore.odmAssocRules(formula, 

data, 

case.id.column, 

item.id.column = NULL, 

item.value.column = NULL, 

min.support = 0.05, 

min.confidence = 0.05, 

max.rule.length = 2, 

na.action = na.pass, 

odm.setting = NULL) 

## S3 method for class 'ore.odmAssocRules' 

rules(object, ...) 

## S3 method for class 'ore.odmAssocRules' 

itemsets(object, ...) 
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Basic Argument Concepts 

case.id.column 
• Column name in 'data' that contains unique case identifiers 

item.id.column 
• Column in 'data' that contains item IDs. If NULL (default), 'data' treated as single-record case 

relational table, where each row considered a transaction and column values of that row are 
converted to items for that transaction; if specified, treated as transactional or multi-record case 
table where each row corresponds to an item in transaction, and model ignores any columns in 
'data' other than item ID and item value. 

item.value.column 
• Column name in 'data' that contains the value of the item. (default: NULL) 

min.support 
• Numeric value that specifies the minimum support for rules in the model 

min.confidence 
• Numeric value that specifies the minimum confidence for rules in the model 

max.rule.length 
• Numeric value that specifies the maximum number of items in rule 
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Association Rules – model object 

ore.odmAssocRules object 

• name – name of in-database model 

• settings - data.frame of settings used to build model 

• attributes - named 'vector' of the types of input item values 

• inputType: The type of input data table. It is "trans","tranWithValue", or "relational" 
for a multi-record case table, a multi-record case table with the values specified, or a 
single-record case table, respectively 

• formula: A formula specified by users 
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Association Rules – model object 

ore.itemsets object - returned by itemsets() that describes the property of each itemset 

• ITEMSET_ID: numerical identifier associated with each itemset 

• NUMBER_OF_ITEMS: number of items in the itemset 

• ITEMS: names of items in the itemset 

• SUPPORT: number of transactions containing this itemset 

ore.rules object - returned by rules() that describes the property of each rule 

• RULE_ID 

• NUMBER_OF_ITEMS 

• LHS: left hand side of rule (antecedent) 

• RHS: right hand side of rule (consequent) 

• SUPPORT 

• CONFIDENCE 

• LIFT 
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ore.odmAssocRules 
Association Rules 

id <- c(1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3) 

item <- c("b", "d", "e", "a", "b", "c", "e", "b", "c", "d", "e") 

data.ore <- ore.push(data.frame(ID = id, ITEM = item)) 

ar.mod1 <- ore.odmAssocRules(~., data.ore, case.id.column = 
"ID",item.id.column = "ITEM", min.support = 0.6, min.confidence = 
0.6,max.rule.length = 3) 

# Generate itemsets and rules of the model 

itemsets <- itemsets(ar.mod1) 

rules <- rules(ar.mod1) 

# subsetting 

sub.itemsets <- subset(itemsets, min.support=0.7, items=list("b")) 

sub.rules <- subset(rules, min.confidence=0.7, 

lhs=list("b", "c")) 

library(arules) 

# Convert the rules to the rules object in arules package 

rules.arules <- ore.pull(rules) 

inspect(rules.arules) 

R>   inspect(rules.arules) 

lhs rhs support confidence lift 

1  {b} => {e} 1.0000000 1.0000000  1 

2 {e} => {b} 1.0000000 1.0000000 1 

3  {c} => {e} 0.6666667 1.0000000  1 

4  {d, 

e} => {b} 0.6666667 1.0000000  1 

5  {c, 

e} => {b} 0.6666667 1.0000000  1 

6  {b, 

d} => {e} 0.6666667 1.0000000  1 

7 {b, 

c} => {e} 0.6666667 1.0000000  1 

8  {d} => {b} 0.6666667 1.0000000  1 

9  {d} => {e} 0.6666667 1.0000000  1 

10 {c} => {b} 0.6666667 1.0000000  1 

11 {b} => {d} 0.6666667 0.6666667  1 

12 {b} => {c} 0.6666667 0.6666667  1 

13 {e} => {d} 0.6666667 0.6666667  1 

14 {e} => {c} 0.6666667 0.6666667 1 

15 {b, 

e} => {d} 0.6666667 0.6666667  1 

16 {b, 

e} => {c} 0.6666667 0.6666667  1 
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ore.odmAssocRules 
Association Rules 

# Convert itemsets to the itemsets object in arules package 

itemsets.arules <- ore.pull(itemsets) 

inspect(itemsets.arules) 

library(arulesViz) 

plot(rules.arules, method = "graph",interactive=TRUE) 

R>   inspect(itemsets.arules) 

items  support 

1  {b}   1.0000000 

2  {e}   1.0000000 

3  {b, 

e}   1.0000000 

4 {c} 0.6666667 

5  {d}   0.6666667 

6  {b, 

c}   0.6666667 

7  {b, 

d}   0.6666667 

8  {c, 

e}   0.6666667 

9 {d, 

e}   0.6666667 

10 {b, 

c, 

e}   0.6666667 

11 {b, 

d, 

e} 0.6666667 
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ore.odmAssocRules – multi-record case with value 
Association Rules 

id <- c(1, 1, 2, 2, 3, 3, 3, 4, 4, 5, 5, 6, 6, 7, 8, 8, 9, 9, 10, 11, 12, 12, 13, 14, 15, 16, 17) 

item <- c("a","b","a","b","a","c","d","c","d","c","d","c","d","d","d","a","d","e","a", 

"a","d","e","d","e","d","d","d") 

value <- c(1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 3, 2, 1, 2, 3, 1, 2, 2, 3, 2, 3, 2, 3, 3) 

data2.ore <- ore.push(data.frame("ID" = id, "ITEM" = item, "VALUE" = value)) 

ar.mod2 <- ore.odmAssocRules(~., data2.ore, case.id.column = "ID", 

item.id.column = "ITEM", item.value.column = "VALUE", max.rule.length = 3) 

rules <- rules(ar.mod2) 

itemsets <- itemsets(ar.mod2) 

itemsets.arules <- ore.pull(itemsets) 

inspect(itemsets.arules) 

rules.arules <- ore.pull(rules) 

plot(rules.arules, method = "graph",interactive=TRUE) 
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ore.odmAssocRules 
Association Rules 

# Relational data in a single-record case table. 

ar.mod3 <- ore.odmAssocRules(~., NARROW, 
case.id.column = "ID", 

min.support=0.25, min.confidence=0.15, 
max.rule.length = 2) 

rules = rules(ar.mod3) 

itemsets = itemsets(ar.mod3) 

itemsets.arules <- ore.pull(itemsets) 

inspect(itemsets.arules) 

rules.arules <- ore.pull(rules) 

plot(rules.arules, method = 
"graph",interactive=TRUE) 

R> inspect(itemsets.arules) 

items  support 

1  {COUNTRY=United States of America} 0.8960000 

2  {CLASS=0}  0.7466667 

3  {CLASS=0, 

COUNTRY=United States of America} 0.6646667 

4  {GENDER=M}  0.5866667 

5  {COUNTRY=United States of America, 

GENDER=M}  0.5273333 

6  {MARITAL_STATUS=Married}  0.4133333 

7  {CLASS=0, 

GENDER=M}  0.3986667 

8  {COUNTRY=United States of America, 

MARITAL_STATUS=Married}  0.3646667 

9  {GENDER=M, 

MARITAL_STATUS=Married}  0.3140000 

10 {GENDER=F}  0.2806667 

11 {EDUCATION=HS-grad}  0.2806667 

12 {MARITAL_STATUS=NeverM}  0.2793333 

13 {CLASS=0, 

MARITAL_STATUS=NeverM}  0.2633333 

14 {COUNTRY=United States of America, 

EDUCATION=HS-grad}  0.2586667 

15 {CLASS=1}  0.2533333 

16 {COUNTRY=United States of America, 

MARITAL_STATUS=NeverM}  0.2533333 

17 {CLASS=0, 

GENDER=F}  0.2520000 

18 {COUNTRY=United States of America, 

GENDER=F}  0.2520000 
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plot(rules.arules, method = "graph", 

interactive = TRUE) 
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Singular Value Decomposition 

Feature extraction algorithm 

Orthogonal linear transformations capture the underlying variance of data by 
decomposing a rectangular matrix into three matrixes: U, D and V 

Matrix D is a diagonal matrix and its singular values reflect the amount of data 
variance captured by the bases 
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Singular Value Decomposition 
ore.odmSVD 

Supports narrow data via Tall and Skinny solvers 

Supports wide data via stochastic solvers 

Provides eigensolvers for faster analysis with sparse data 

Provides traditional SVD for more stable results 

Doc link 
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ore.odmSVD 
Singular Value Decomposition 

ore.odmSVD(formula, 

data, 

auto.data.prep = TRUE, 

na.action = na.pass, 

odm.setting = NULL, 

ctx.setting = NULL) 

features(object,...) 

feature_compare(object, 

newdata, 

compare.cols = NULL, 

supplemental.cols = NULL) 
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predict(object, 

newdata, 

supplemental.cols = NULL, 

type = c("class","raw"), 

na.action = na.pass,...) 

u(object) 

v(object) 

d(object) 



 
 

 

   

Basic Argument Concepts 

num.centers – number of clusters to create, > 1, default NULL – system determined 

auto.data.prep – default TRUE 

odm.setting – A list to specify Oracle Data Mining parameter settings. This argument is 
applicable to building a model in Database 12.2 or later. Each list element's name and value 
refer to the parameter setting name and value, respectively. The setting values must be 
numeric or string. To perform text mining, parameter ODMS_TEXT_POLICY_NAME must be set 
to a text policy name. When parameter ODMS_PARTITION_COLUMNS is set to the name(s) of 
the partition column(s), a partition model with a sub-model in each partition is created 
from the input data 

ctx.setting – A list to specify Oracle Text attribute-specific settings. This argument is 
applicable to building model in Database 12.2 or later. The name of each list element refers 
to the text column while the list value specifies the text transformation. 

See ODM documentation for specific settings options. 

Copyright © 2020 Oracle and/or its affiliates. 



SVD – model object 

ore.odmSVD object 

• name name of model in database 

• settings data.frame with settings used to build model 

• attributes data.frame of variable/columns used to build model 

• formula formula used to build the model 

• call specific invocation of the function with arguments 
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ore.odmSVD 
Singular Value Decomposition 

IRIS <- ore.push(cbind(ID = seq_along(iris[[1L]]), iris)) 

svd.mod <- ore.odmSVD(~. -ID, IRIS) 

summary(svd.mod) 

d(svd.mod) 

v(svd.mod) 

head(predict(svd.mod, IRIS, supplemental.cols = "ID")) 

svd.pmod <- ore.odmSVD(~. -ID, IRIS, 

odm.setting = list(odms_partition_columns = "Species")) 

summary(svd.pmod) 

d(svd.pmod) 

v(svd.pmod) 

head(predict(svd.pmod, IRIS, supplemental.cols = "ID")) 
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Non-negative Matrix Factorization 

State-of-the-art algorithm for Feature Extraction 

Dimensionality reduction technique 

• Creates new features of existing attributes 

• Compare to AI which reduces attributes by taking a subset 

• NMF derives fewer new “features” taking into account interactions 
among original attributes 

Supports text mining, life sciences, marketing applications 
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NMF, intuitively… 

Useful where there are many attributes 

• Each has weak predictability, even ambiguous 

• But when taken in combination, produce meaningful patterns, topics, or 
themes 

Example: Text 

• Same word can predict different documents 
e.g., “hike” can be applied to the outdoors or interest rates 

• NMF introduces context which is essential for predictive power 
e.g., “hike” + “mountain” -> “outdoors sports” 

“hike” + “interest” -> “interest rates” 
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Conceptual view… 

Attributes values 

a 
b 
c 
d 
e 
f 
g 
h 

x 
y 
z 

… 

1 

2 

Target values 

a 
b 
c 
d 
e 
f 
g 
h 

x 
y 
z 

… 

1 

2 

Attributes values 

Target values f1 
f2 
f3 
f4 

Extracted 
features 
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original 

Feature Extraction 
Face representation with Vector Quantization 

VQ 

(0,0,0,…,1,…,0,0) 

=  
encoding reconstruction 
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Feature Extraction 
Face representation with Principal Component Analysis 

PCA 

(.9,.6,-.5,…,.9,-.3) 

=  
encoding reconstruction 

original 
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Feature Extraction 
Face representation with NMF 

NMF 

(0,.5,.3,0,1,…,.3,0) 

=  
encoding reconstruction 

original 
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ore.odmNMF 
Non-negative Matrix Factorization 

ore.odmNMF(formula, 

data, 

auto.data.prep = TRUE, 

num.features = NULL, 

conv.tolerance = NULL, 

num.iter = NULL, 

rand.seed = NULL, 

nonnegative.scoring = TRUE, 

na.action = na.pass, 

odm.setting = NULL, 

ctx.setting = NULL) 

predict(object, 

newdata, 

supplemental.cols = NULL, 

type = c("class","raw"), 

na.action = na.pass,...) 

Doc link 
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Basic Argument Concepts 

num.features – number of features to be extracted 

conv.tolerance – convergence tolerance 

num.iter – maximum number of iterations 

rand.seed – random seed 

nonnegative.scoring – non-negative values allowed in scoring 
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ore.odmNMF 
Non-negative Matrix Factorization 

training.set <- ore.push(npk[1:18, c("N","P","K")]) 

scoring.set <- ore.push(npk[19:24, c("N","P","K")]) 

nmf.mod <- ore.odmNMF(~., training.set, num.features = 3) 

features(nmf.mod) 

summary(nmf.mod) 

predict(nmf.mod, scoring.set)  

R> features(nmf.mod) 

FEATURE_ID ATTRIBUTE_NAME ATTRIBUTE_VALUE COEFFICIENT 

1  1  K 0 3.723468e-01 

2  1  K 1 1.761670e-01 

3  1  N 0 7.469067e-01 

4  1  N 1 1.085058e-02 

5  1  P 0 5.730082e-01 

6  1  P 1 2.797865e-02 

7  2  K 0 4.107375e-01 

8  2  K 1 2.193757e-01 

9  2  N 0 8.065393e-03 

10  2  N 1 8.569538e-01 

11  2  P 0 4.005661e-01 

12  2  P 1 4.124996e-02 

13  3  K 0 1.918852e-01 

14  3  K 1 3.311137e-01 

15  3  N 0 1.547561e-01 

16  3  N 1 1.283887e-01 

17  3  P 0 9.791965e-06 

18 3 P  1 9.113922e-01 
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ore.odmNMF 
Non-negative Matrix Factorization 

R> predict(nmf.mod, scoring.set) 

'1' '2' '3' FEATURE_ID 

19 0.1972489 1.2400782 0.03280919 2 

20 0.7298919 0.0000000 1.29438165 3 

21 0.1972489 1.2400782 0.03280919 2 

22 0.0000000 1.0231268 0.98567623 2 

23 0.7298919 0.0000000 1.29438165 3 

24 1.5703239 0.1523159 0.00000000 1 

R> summary(nmf.mod) 

Call: 

ore.odmNMF(formula = ~., data = training.set, num.features = 3) 

Settings: 

value 

feat.num.features 3 

nmfs.conv.tolerance .05 

nmfs.nonnegative.scoring nmfs.nonneg.scoring.enable 

nmfs.num.iterations 50 

nmfs.random.seed -1 

prep.auto on 

Features: 

FEATURE_ID ATTRIBUTE_NAME ATTRIBUTE_VALUE  COEFFICIENT 

1 1  K 0 3.723468e-01 

2 1  K 1 1.761670e-01 

3 1  N 0 7.469067e-01 

4 1  N 1 1.085058e-02 

5 1  P 0 5.730082e-01 

6 1  P 1 2.797865e-02 

7 2  K 0 4.107375e-01 

8 2  K 1 2.193757e-01 

9 2  N 0 8.065393e-03 

10 2  N 1 8.569538e-01 

11 2  P 0 4.005661e-01 

12 2  P 1 4.124996e-02 

13 3  K 0 1.918852e-01 

14 3  K 1 3.311137e-01 

15 3  N 0 1.547561e-01 

16 3  N 1 1.283887e-01 

17 3  P 0 9.791965e-06 

18 3  P 1 9.113922e-01 
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Explicit Semantic Analysis (ESA) 

Oracle Advanced Analytics 12.2+ 
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Explicit Semantic Analysis (ESA) 

In NLP and information retrieval, ESA is a vectorial representation of text (individual 
words or entire documents) that uses a document corpus as a knowledge base 
• A word is represented as a column vector in the TF-IDF matrix of the text corpus 

• A document (string of words) is represented as the centroid of the vectors representing its words 

Text corpus often is English Wikipedia, though other corpora can be used 

Designed to improve text categorization 
• Computes "semantic relatedness" using cosine similarity between aforementioned vectors, 

collectively interpreted as a space of "concepts explicitly defined and described by humans“ 

• Wikipedia articles are equated with concepts 

The name "explicit semantic analysis" contrasts with latent semantic analysis (LSA), 
because use of a knowledge base makes possible to assign human-readable labels to 
concepts comprising the vector space 
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Explicit Semantic Analysis (ESA) 

Data 
• Text documents 

• Data with mixed set of columns, i.e., text + categorical + numerical 

Examples 
• Calculate semantic similarity between text documents or between mixed data 

• Explicit topic modeling for text 
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Case 1: Calculate semantic similarity between 
text documents or between mixed data 

Requires Wikipedia or another encyclopedic source to create a model 

Model source data should cover all aspects of language usage 

• E.g., number of articles in the source data should be comparable to 
dictionary size 

• A dictionary of size 200K is often sufficient 

• Ideally source data is ~orthogonal, i.e. without overlapping articles 
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Case 1: Example 

The following two paragraphs score a high similarity at 0.695 according to a Wikipedia-based ESA model: 

• The Securities and Exchange Commission sued Tesla's CEO on Thursday for making 'false and misleading' statements to investors. It's asking a federal 
judge to prevent Musk from serving as an officer or a director of a public company, among other penalties. The complaint hinges on a tweet Musk sent 
on August 7 about taking Tesla private. 'Am considering taking Tesla private at $420,' Musk said. 'Funding secured.' The SEC said he had not actually 
secured the funding. 'In truth and in fact, Musk had not even discussed, much less confirmed, key deal terms, including price, with any potential 
funding source,' the SEC said in its complaint. That tweet, and subsequent tweets from Musk over the next three hours, caused 'significant confusion 
and disruption in the market for Tesla's stock,' as well as harm to investors, the SEC said. On the day of Musk's tweet, Tesla's stock shot up nearly 9%. It 
has declined substantially since then. 

• The Securities and Exchange Commission filed a lawsuit Thursday against Elon Musk, the chief executive of Tesla, accusing him of making false public 
statements with the potential to hurt investors. The lawsuit, filed in federal court in New York, seeks to bar Mr. Musk from serving as an executive or 
director of publicly traded companies. Tesla, the electric-car maker of which Mr. Musk was a co-founder, is publicly traded. The suit relates to an Aug. 7 
Twitter post by Mr. Musk, in which he said he had 'funding secured' to convert Tesla into a private company. The S.E.C. said Mr. Musk 'knew or was 
reckless in not knowing' that his statements were false or misleading. 'In truth and in fact, Musk had not even discussed, much less confirmed, key deal 
terms, including price, with any potential funding source,' the S.E.C. said in its lawsuit..‘ 

In contrast, similarity between the first paragraph and this paragraph is only 0.051: 

• If humans had lived 200 million years ago, they would have marveled at the largest dinosaur of its time. It's name means 'a giant thunderclap at dawn.' 
The recently discovered fossil of a new dinosaur species in South Africa revealed a relative of the brontosaurus that weighed 26,000 pounds, about 
double the size of a large African elephant. The researchers have named it Ledumahadi mafube, which is Sesotho for 'a giant thunderclap at dawn.' 
Sesotho is an official South African language indigenous to the part of the country where the dinosaur was found. 'The name reflects the great size of 
the animal as well as the fact that its lineage appeared at the origins of sauropod dinosaurs,' said Jonah Choiniere, study author and paleontology 
professor at the University of the Witwatersrand in Johannesburg,  South Africa. 'It honors both the recent and ancient heritage of southern Africa.' 
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Case 2: Explicit topic modeling for text 

Discover the most relevant topics for a given text document 
• Not really applicable to mixed data 

Using Wikipedia as the model source data is typical 

Explicit topic modeling benefits from domain-specific data 
• E.g., medicine, biology, physics and all other science branches 

Requires that data source is encyclopedic for the selected domain 
• If domain topic coverage is insufficient, results will be poor 
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Case 2: Example 

"The more things change... Yes, I'm inclined to agree, especially with regards to the historical relationship 
between stock prices and bond yields. The two have generally traded together, rising during periods of 
economic growth and falling during periods of contraction. Consider the period from 1998 through 2010, 
during which the U.S. economy experienced two expansions as well as two recessions: Then central banks 
came to the rescue. Fed Chairman Ben Bernanke led from Washington with the help of the bank's current 
$3.6T balance sheet. He's accompanied by Mario Draghi at the European Central Bank and an equally 
forthright Shinzo Abe in Japan. Their coordinated monetary expansion has provided all the sugar needed 
for an equities moonshot, while they vowed to hold global borrowing costs at record lows“ 

Top topics (concepts, people, organizations, events ) discovered by ESA using 
Wikipedia as model source data 
• Recession, Ben Bernanke , Lost Decade Japan, Mario Draghi, Quantitative easing, Long Depression, 

Great Recession, Federal Open Market Committee, Bank of Canada, Monetary policy, Japanese asset 
price bubble, Money supply, Great Depression, Central bank, Federal Reserve System 

If instead of using the entire Wikipedia, we limit ourselves to the source dataset 
comprised of concepts only, this result would translate to: 
• Recession, Quantitative easing, Monetary policy, Money supply, Central bank, Federal Reserve System 
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ESA vs. LDA (Latent Dirichlet Allocation) 
ESA is more interpretable than LDA 

Topics discovered by LDA are latent, meaning 
difficult to interpret 

• Topics are defined by their keywords, i.e., they have no 
names, no abstract descriptions 

• To give meaning to topics, keywords can be extracted by 
LDA 

• Definitions solely based on keywords are fuzzy, and 
keywords for different topics usually overlap 

• Extracted keywords can be just generic words 

• Set of automatically extracted keywords for a topic does not 
map to a convenient English topic name 

Biggest problem with LDA: set of topics is fluid 

• Topic set changes with any changes to the training data 

• Any modification of training data changes topic boundaries 

•  topics cannot be mapped to existing knowledge base or 
topics understood by humans if training data not static 

• Training data is almost never static 

ESA discovers topics from a given set of topics 
in a knowledge base 

• Topics are defined by humans  topics are well 
understood. 

• Topic set of interest can be selected and augmented if 
necessary  full control of the selection of topics 

• Set of topics can be geared toward a specific task, .e.g., 
knowledge base for topic modeling of online messages 
possibly related to terrorist activities, which is different 
than one for topic modeling of technical reports from 
academia 

• Can combine multiple knowledge bases, each with its 
own topic set, which may or may not overlap 

• Topic overlapping does not affect ESA's capability to 
detect relevant topics 
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ore.odmESA 
Explicit Semantic Analysis 

ore.odmESA(formula,  

data, 

auto.data.prep = TRUE, 

Doc link 

na.action = na.pass, 

odm.setting = NULL, 

ctx.setting = NULL) 

features(object,...) 

feature_compare(object, newdata, compare.cols = NULL, supplemental.cols = NULL) 

predict(object, 

newdata, 

supplemental.cols = NULL, 

type = c("class","raw"), 

na.action = na.pass,...) 

} 
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Basic Argument Concepts 

odm.setting – A list to specify Oracle Data Mining parameter settings. This argument is 
applicable to building a model in Database 12.2 or later. Each list element's name and value 
refer to the parameter setting name and value, respectively. The setting values must be 
numeric or string. Parameter CASE_ID_COLUMN_NAME must specify the name of the 
column containing unique identifier. Parameter ODMS_TEXT_POLICY_NAME specifies the 
name of a valid Oracle text policy used for text mining. When parameter 
ODMS_PARTITION_COLUMNS is set to the names of the partition columns, then a 
partition model with sub-model in each partition is created from the input data. 

ctx.setting – A list to specify Oracle Text attribute-specific settings. This argument is 
applicable to building model in Database 12.2 or later. The name of each list element refers 
to the text column while the list value specifies the text transformation. 

(See ODM documentation for specific settings options.) 
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ESA – model object 

ore.odmESA object 

• name name of model in database 

• settings data.frame with settings used to build model 

• attributes data.frame of variable/columns used to build model 

• formula formula used to build the model 

• call specific invocation of the function with arguments 
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ore.odmESA 
Explicit Semantic Analysis 

title <- c('Aids in Africa: Planning for a long war', 

'Mars rover maneuvers for rim shot', 

'Mars express confirms presence of water at Mars south pole', 

'NASA announces major Mars rover finding', 

'Drug access, Asia threat in focus at AIDS summit', 

'NASA Mars Odyssey THEMIS image: typical crater', 

'Road blocks for Aids') 

ESA_TEXT <- ore.push(data.frame(CUST_ID = seq(length(title)), 

TITLE = title)) 

# create text policy (CTXSYS.CTX_DDL privilege is required) 

ore.exec("begin ctx_ddl.create_policy('ESA_TXTPOL'); end;") 
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ore.odmESA 
Explicit Semantic Analysis 

esa.mod <- ore.odmESA(~., data = ESA_TEXT, 

odm.setting = list(case_id_column_name = "CUST_ID", 

ODMS_TEXT_POLICY_NAME = "ESA_TXTPOL", 

ESAS_MIN_ITEMS = 1), 

ctx.setting = list(TITLE = c("MIN_DOCUMENTS:1", "MAX_FEATURES:3"))) 

esa.mod 

class(esa.mod) 

summary(esa.mod) 

settings(esa.mod) 

predict(esa.mod, ESA_TEXT, type = "class", supplemental.cols = "CUST_ID") 

ore.exec("begin ctx_ddl.drop_policy('ESA_TXTPOL'); end;") 

Copyright © 2020 Oracle and/or its affiliates. 



OREmodels Package 

Copyright © 2020 Oracle and/or its affiliates. 



OREmodels Algorithms 

Algorithm Main R Function 

Linear Regression ore.lm 

Stepwise Linear Regression ore.stepwise 

Generalized Linear Models ore.glm 

Feedforward Neural Networks ore.neural 

Random Forest ore.randomForest 

Singular Value Decomposition svd overloaded 

Principal Component Analysis prcomp overloaded 

princomp 
overloaded 
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ore.lm and ore.stepwise 
Overview 

ore.lm performs least squares regression 

ore.stepwise performs stepwise least squares regression with 
marginal t-tests for variable selection – similar to SAS 

Uses database data represented by ore.frame objects 

In-database algorithm 

• Estimates model using block update QR decomposition with column pivoting 

• Once coefficients have been estimated, a second pass of the data estimates 
model-level statistics 

• If collinear terms in data, ore.lm and ore.stepwise will not estimate coefficient 
values for the collinear set of terms 

• For ore.stepwise, this collinear set of terms will be excluded throughout the 
procedure 
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lm 
For comparison with ore.lm 

# Fit full model 

fit1 <- lm(Employed ~ ., data = longley) 

summary(fit1) 

Coefficient Armed.Forces significant at  p < .001 
indicates for a 1 unit increase in Armed.Forces, Employed 
decreases by 0.01 units when all other predictors held constant 

Multiple R-squared of 0.9955 indicates the model accounts for 
99.55% of the variance in the target 

Adjusted R-squared takes into account the number of predictors 
to 
account for chance improvement of R-squared simply be 
increasing 
number of predictors 

Residual standard error  is the average error in predicting the 
target 

F-statistic indicates if predictors predict target beyond chance 
Copyright © 2020 Oracle and/or its affiliates. 



 

 

    

 

ore.lm 

# To limit overhead caused by parallelism 

options(ore.parallel=1) 

LONGLEY <- ore.push(longley) 

# Fit full model 

oreFit1 <- ore.lm(Employed ~ ., data = LONGLEY) 

summary(oreFit1) 

Since data is small, turn off parallelism by setting ore.parallel to 1 
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lm and ore.lm results side-by-side 
They’re identical 
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Other functions on ore.lm model 

summary(object, correlation = FALSE, symbolic.cor = FALSE, ...) 
• Return the call, residuals, coefficients, and various statistics 

predict(object, newdata, se.fit = FALSE, scale = NULL, df = Inf, 
interval = c("none", "confidence", "prediction"), level = 0.95, type = c("response", "terms"), 
terms = NULL, na.action = na.pass, pred.var = NULL, weights = NULL, ...) 

vcov(object, ...) 
• Returns the variance-covariance matrix of the main parameters of a fitted model object 

logLik(object, ...) 
• Returns object of class logLik – a number with at least one attribute, "df"(degrees of freedom), giving number of 

(estimated) parameters in model 

hatvalues(model, ...) 
• Returns measure of high leverage for observations. Observations with value > 2x or 3x average hat value should be  

examined for possible removal. Average hat value = p / n, where p is number of parameters (including intercept) and n is 
number of observations 

add1(object, scope, scale = 0, test = c("none", "Chisq", "F"), x = NULL, k = 2, ...) 

drop1(object, scope, scale = 0, all.cols = TRUE, test = c("none", "Chisq", "F"), k = 2, ...) 
• Compute all single terms in scope argument that can be added to / dropped from model, fit those models and compute 

table of changes in fit 
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Other functions on ore.lm model 

anova(object,…) 

coef(object, ...) & coefficients(object, ...) 

• Return the coefficients for the model 

confint(object, parm, level = 0.95, ...) 

• Return the confidence interval of the coefficients 

deviance(object, ...) 

• Returns the deviance of the model 

extractAIC(fit, scale, k = 2, ...) 

• Returns the (generalized) Akaike Information Criterion for 
a fitted parametric model 

fitted(object, ...)  & fitted.values(object, ...) 

• Returns the predicted values on each of the training data 
observations/rows 

formula(x, ...) 
• Returns the formula used to specify the model 

model.frame(formula, ...) 
• Returns the training data used to build the model 

nobs(object, ...) 
• Returns the number of observations in the training  data 

resid(object, ...)  & residuals(object, ...) 
• Returns the residual values from the predictions 

(predicted – actual) for each observation 

plot(object,…) 
• Produces diagnostic plots to assess model fit 

• Plot of residuals against fitted values, a Scale-Location 
plot of sqrt(| residuals |) against fitted values, a Normal Q-
Q plot, a plot of Cook's distances versus row labels, a plot 
of residuals against leverages, and a plot of Cook's 
distances against leverage/(1-leverage) 
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Stepwise Regression: ore.stepwise 
Motivation 

Automatically selects predictive variables 

Produces models with fewer terms 

Enable handling data with complex patterns 
• Even for relatively small data sets (e.g., < 1M rows) R may not yield satisfactory 

results 

Increases performance 
• Side benefit of handling complex patterns is to dramatically boost performance 

• No need to pull data into memory from database 

• Leverage more powerful database machine 

Provide a stepwise regression that maps to SAS PROC REG 
• Uses marginal t-tests for variable selection as opposed to AIC, which  is used for R’s 

step() function. Note R’s step function can be used with ore.lm. 
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ore.stepwise – parameters 

ore.stepwise(formula, data, scope, 

direction = c("both", "backward", "forward", "alternate", "none"), 

add.p = 0.50, drop.p = 0.10, nbest = 1, steps = 1000, 

contrasts = NULL, xlev = NULL, ...) 

scope – range of models to examine, either single formula object, or list containing lower and upper 
formula object elements 

direction – The stepwise search mode; one of '"both"' (first try to add a term using the 'add.p' argument 
value and then try repeatedly to drop terms using the 'drop.p' argument value), '"backward"', '"forward"', 
'"alternate"' (similar to '"both"' but only one drop is attempted per add attempt) or '"none"' with a default 
of '"both"' 

add.p – F-test p-value threshold for adding term to model 

drop.p – F-test p-value threshold for dropping term from model 

nbest – number of best models to report at each step 

steps – maximum number of steps 

contrasts – named list to be supplied to the contrasts.arg argument of model.matrix 

xlev – a named list of character vectors specifying the levels for each ore.factor variable 
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ore.stepwise – example 

LONGLEY <- ore.push(longley) Build model with interaction terms 

# Using ore.stepwise 

oreStep1 <-

ore.stepwise(Employed ~ .^2, data = LONGLEY, 

add.p = 0.1, drop.p = 0.1) 

oreStep1 

# Using R step with ore.lm 

oreStep2 <-

step(ore.lm(Employed ~ 1, data = LONGLEY), 

scope = terms(Employed ~ .^2, data = LONGLEY)) 

oreStep2 
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ore.stepwise – results 
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step with ore.lm – results 

Akaike information criterion (AIC) 
• Measure of quality of a model 
• Used for model selection 
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How to use Akaike's Information Criterion (AIC) as a 
selection criterion for stepwise regression 
AIC cannot be used with ore.stepwise, since the ore.stepwise function uses marginal t-tests for variable selection 

ore.lm integrates with R's step function, which does use AIC 

It is not as fast as ore.stepwise, but will get the job done 

R> LONGLEY <- ore.push(longley) 

R> mod <- ore.lm(Employed ~ ., data = LONGLEY) 

R> step(mod) 

Start: AIC=-33.22 

Employed ~ GNP.deflator + GNP + Unemployed + Armed.Forces + 

Population + Year 

Df Sum of Sq RSS AIC 

- GNP.deflator 1 0.00292 0.83935 -35.163 

- Population 1 0.00475 0.84117 -35.129 

- GNP 1 0.10631 0.94273 -33.305 

<none> 0.83642 -33.219 

- Year 1 1.49881 2.33524 -18.792 

- Unemployed 1 1.59014 2.42656 -18.178 

- Armed.Forces 1 2.16091 2.99733 -14.798 

Step: AIC=-35.16 

Employed ~ GNP + Unemployed + Armed.Forces + Population + Year 

Df Sum of Sq RSS AIC 

- Population 1 0.01933 0.8587 -36.799 

<none> 0.8393 -35.163 

- GNP 1 0.14637 0.9857 -34.592 

- Year 1 1.52725 2.3666 -20.578 

- Unemployed 1 2.18989 3.0292 -16.628 

- Armed.Forces 1 2.39752 3.2369 -15.568 

Step: AIC=-36.8 

Employed ~ GNP + Unemployed + Armed.Forces + Year 

Df Sum of Sq RSS AIC 

<none> 0.8587 -36.799 

- GNP 1 0.4647 1.3234 -31.879 

- Year 1 1.8980 2.7567 -20.137 

- Armed.Forces 1 2.3806 3.2393 -17.556 

- Unemployed 1 4.0491 4.9077 -10.908 

Call: 

ore.lm(formula = Employed ~ GNP + Unemployed + Armed.Forces + 

Year, data = LONGLEY) 

Coefficients: 

(Intercept) GNP Unemployed Armed.Forces Year 

-3.599e+03 -4.019e-02 -2.088e-02 -1.015e-2 1.887e+00 
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Linear Model Example 
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An example using the R state.x77 data set 

library(car) 

?state.x77 

state.df <-

as.data.frame(state.x77) 

scatterplotMatrix(state.df) 

Scatterplot of pairs of variables (bivariate analysis) 
Fitted loess curve (red) 
Fitted linear model (green) 
Diagonals show density and run plot per variable 
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An example using the R state.x77 data set 
options(digits=3) 

cor(state.df) 

# also with in-database execution 

STATE <- ore.push(state.df) 

cor(STATE) 
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Interpreting correlation 

http://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient 
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An example using the R state.x77 data set 

fit <- lm(Murder ~ ., 

state.df) 

summary(fit) 

Life Exp is significant, but we would expect this 

Remove it from the model, then HS Grad and Income 
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An example using the R state.x77 data set 

# Rename vars to remove space 

names(state.df)[4] <- "LifeExp" 

names(state.df)[6] <- "HSGrad" 

fit <- lm(Murder ~ .-LifeExp, 

state.df) 

summary(fit) 

fit <- lm(Murder ~ .-LifeExp -

Income - HSGrad, state.df) 

summary(fit) 
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An example using the R state.x77 data set 

fit2 <- lm(Murder ~ .^2, 

state.df) 

summary(fit2) 
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An example using the R state.x77 data set 

STATE <- ore.push(state.df) 

fit3 <- ore.stepwise(Murder ~ 

.^2, STATE) 

summary(fit3) 
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Formula specification option 
Class formula accepts the following options 

Symbol Description Example 

separates response/target variables from explanatory/predictor ~ 
variables 

y ~ x 

y ~ a + b + c separates predictors + 

specify interaction terms between predictors y ~ a + c + a:c : 

Specify all possible interactions between specific predictors y ~ a * b * c * 

Specify interactions up to a specific degree y ~ (a + b + c)^2 ^ 
y ~ a + b + c + a:b + a:c + b:c 

Represents all other variables beside target variable y ~ . . 

Remove the specified  predictor(s) y ~ (a + b + c)^3 – a:b – b:c -
y ~ a + b + c + a:c + a:b:c 

Suppresses the intercept from the model, forcing the regression line y ~ a + b - 1 -1 
through the origin at a = 0 

Interpret contents arithmetically y ~ a + I(b-c)^3) I() 
y ~ a + v, where v = (b-c)^3 

function Mathematical function sqrt(y) ~ a + log(b) 
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Fitting Linear Models 
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Ordinary Least Squares Regression Assumptions 

Normality – 
for fixed values of predictor variables, target variable is normally distributed 

Independence – 
target values are independent of each other – one does not influence others 

Linearity – 
target is linearly related to the predictor variables 

Homoscedasticity – 
target variance doesn’t change with different ranges of predictor variables 

Violating assumptions may mean statistical significance tests and confidence 
intervals may be inaccurate 
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Assessing the quality of a linear model 

confint(fit) 

par(mfrow=c(2,2)) 

plot(fit) 

Interpreting results: 
The interval 2.26 to 5.47 is 95% likely 
to contain the true Murder rate change 
given a 1% change in illiteracy 
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Assessing Normality 

Normal Q-Q plot should be a 
straight line if the data meets 
the normality assumption 

Data do not fall on this line, so 
normality assumption violated 
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Assessing Linearity 

Residuals should be randomly 
distributed if target is linearly 
related to predictors 

Only “random noise” should 
remain 

There appears to be a curved 
relationship, indicating the 
need for quadratic terms 
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Assessing Homoscedasticity 

Sqrt of standardized residuals 
should be randomly 
distributed about a horizontal 
line 

There appears to be a curved 
relationship, indicating the 
need for quadratic terms 
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Should some data be removed from the data set? 

Outliers 

• Have large residual value 

• Model doesn’t predict well 

High Leverage Values 

• Predictor values are unusual 
relative to other observations 

Influential Observations 

• row has unusually high impact 
on model parameters 

• Indicated by Cook’s distance 
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Package car and qqPlot and outlierTest 
More accurate assessment of 
normality assumption 

95% confidence bound drawn 
around 45o line 

Outliers can be manually selected 

Iteratively remove outliers and 
reinvoke outlierTest 

library(car) 

qqPlot(fit, 

labels=row.names(state.df), 

id.method="identify", 

simulate=TRUE, 

main="state.df Q-Q Plot") 

outlierTest(fit) 

# Select points and hit ESC 
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Other options… 

See package gvlma and function gvlma for overall assessment of 
model assumptions 
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More on Multicollinearity 

One variable is closely correlated (or determined by) another 

• E.g., age & data of birth 
year & population 

Use variance inflation factor (VIF) 

• Use car package function vif 

• Use sqrt(vif) > 2, then there is a multicollinearity problem 

Problematic for interpreting individual predictor variables, but 
not for prediction 
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Package car and vif 

library(car) 

vif(fit) 

sqrt(vif(fit)) > 2 

fit2 <- lm(Murder~., state.df) 

vif(fit2) 

sqrt(vif(fit2)) > 2 
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Remedies for common problems 

Multicollinearity 
• Deleting one of the predictors  involved or where sqrt(vif) > 2 

• Use ridge regression 

Transform target and/or predictor variables 
• Yλ, where, for example, λ in {-2, -1, -0.5, 0==log, .5, none, 2} 

• log(Y) 

• Remember – a transformation should “make sense”  for interpretation of result 
Normality assumption 
• Use a non-parametric algorithm; Use GLM 

• In car package, use powerTransform on target to get estimate of power λ 
Linearity assumption 
• Use a non-linear regression algorithm 

• In car package, use boxTidwell on predictors to get estimate of power λ 
Homoscedasticity assumption – homogeneity of variance 
• In car package, use spreadLevelPlot on model to get estimate of power λ on for Yλ 
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Parametric vs. non-parametric algorithms 

Parametric Non-parametric 

Fixed family of functions Learned function based on observation data 

Fixed number of parameters that are E.g. KNN classifier, SVM 
independent of the number of observations 

E.g., linear regression 

http://www.iro.umontreal.ca/~lisa/twiki/bin/view.cgi/Public/NonParametric 
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Is one model better than another? 

anova(fit, fit2) 

AIC(fit, fit2) 

ANOVA requires nested models 
Look for significant p-value 

AIC does not require nested models 
Models with smaller AIC values are better 

http://en.wikipedia.org/wiki/Akaike_information_criterion 
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RandomForest 

Copyright © 2020 Oracle and/or its affiliates. 



 

 

 

 
 

Random Forest Algorithm 

Ensemble learning technique for classification and regression 

Known for high accuracy models 

Constructs many “small” decision trees 

For classification, predicts mode of classes predicted by individual trees 

For regression, predicts mean prediction of individual trees 

Avoids overfitting, which is common for decision trees 

Developed by Leo Breiman and Adele Cutler combining the ideas of “bagging” and 
random selection of variables resulting in a collection of decision trees with controlled 
variance 
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ore.randomForest supports classification 

Enables performance and scalability for larger data sets 

Executes in parallel for model building and scoring 

• ore.parallel global option used for preferred DOP 

Oracle R Distribution new randomForest function 

• Reduces memory requirements over standard R (~7X) 

• As a result, reduces memory requirements for ore.randomForest 

• ORD randomForest supports classification only 

Can use Oracle R Distribution’s or R’s randomForest package 
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Random Forest 

ore.randomForest(formula, data, ntree=500, mtry = NULL, 

replace = TRUE, classwt = NULL, cutoff = NULL, 

sampsize = if(replace) nrow(data) else ceiling(0.632*nrow(data)), 

nodesize = 1L, maxnodes = NULL, confusion.matrix = FALSE, 

na.action = na.fail, ...) 

grabTree(object, k = 1L, labelVar = FALSE, ...) 

predict(object, newdata, 

type = c("response", "prob", "vote", "all"), 

norm.votes = TRUE, 

supplemental.cols = NULL, 

cache.model = TRUE, ...) 
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Random Forest 

ntree – total number of trees to grow 

mtry – number of variables randomly sampled as candidates at each tree node split 

replace – a logical value indicating whether to execute sampling with replacement 

classwt – a vector of priors of the classes. If specified, the length of the vector should be equal to the number of 
classes in the target column. The vector does not need to add up to 1. 

cutoff – a vector of cutoff values. If specified, the length of the vector should be equal to the number of classes in the 
target column. When determining the prediction class for an observation, the one with the maximum ratio of proportion 
of votes to cutoff is selected. If not specified, the default is '1/k' where 'k' is the number of classes. 

sampsize – size of the sample to draw for growing trees 

nodesize – minimum size of terminal nodes 

maxnodes – maximum number of terminal nodes of each tree to be grown. If not specified, trees can be grown to the 
maximum size subject to the limits of 'nodesize'. 

confusion.matrix – a logical value indicating whether to calculate the confusion matrix. Note that this confusion matrix is 
not based on OOB (out-of-bag), it is the result of applying the built random forest model to the entire training data. 
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Random Forest 

na.action – the manner in which 'NA' values are handled. With the default 'na.fail', it fails if the training data contains 
'NA'. 

k – an integer indicating which tree's information to extract 

labelVar – a logical value indicating whether the 'split var' and 'prediction' columns in the returned frame use meaningful 
labels. 

newdata – an 'ore.frame' object, the test data 

type – specifies the type of the output: 'response', 'prob', 'votes', or 'all' returning predicted values, matrix of class 
probabilities, matrix of vote counts, or both the vote matrix and predicted values, respectively. 

norm.votes – a logical value indicating whether the vote counts in the output vote matrix should be normalized. The 
argument is ignored if 'type' is 'response' or 'prob'. 

supplemental.cols – additional columns to include in the prediction result from the 'newdata' data set 

cache.model – a logical value indicating whether the entire random forest model is cached in memory during prediction 
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ore.randomForest 

ore.randomForest() builds a random forest model by growing trees in parallel 

Scoring method 'predict' runs in parallel 

options(ore.parallel=4) 

IRIS <- ore.push(iris) 

mod <- ore.randomForest(Species~., IRIS) 

tree10 <- grabTree(mod, k = 10, labelVar = TRUE) 

ans <- predict(mod,IRIS,type="all",supplemental.cols="Species", cache.model=FALSE) 

table(ans$Species, ans$prediction) 
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ore.randomForest Results 
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Memory vs. Speed 

ore.randomForest for 1.5 is architected for speed 

• Relying on OML4R embedded R, parallelism of ore.randomForest achieves many times speedup, but at the cost of memory 

• ore.randomForest loads a copy of the training data for each extproc 

For example, building 100M rows with DOP=72 

• Needs at least 72 x C x datasetSize, where C is a small constant (3-5) required by the algorithm 

• Hitting memory limitations with a 10M or 100M dataset with DOP=72 is expected for most machines 

ORD’s randomForest improves memory usage over R's randomForest (~7X less) 

Recommendations 

• Reduce ore.parallel for large datasets to complete 

• Set memory limit to prevent system memory overrun 

• Recommendation for all embedded R-based OML4R algorithms, though particularly critical for current 

version of ore.randomForest 
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ore.randomForest – how it works 

ore.randomForest() builds a random forest model by growing trees in parallel 

Returns an 'ore.randomForest' object 

Requires Oracle R Distribution (ORD) or 'randomForest' package be installed 
• Oracle R Distribution is preferred to the package 'randomForest’ for better performance and 

compatibility. 

• A warning is issued if the package 'randomForest' is used 

Scoring method 'predict' runs in parallel 
• The default value of cache.model 'TRUE' is recommended when sufficient memory is available 

• Otherwise, 'cache.model' should be set to 'FALSE' to prevent memory overuse 

ore.parallel global option is used by 'ore.randomForest’ to determine preferred 
DOP 
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Neural Network 
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Artificial Neural Networks 

Neural network (NN) is a mathematical model inspired by biological neural networks 
and in some sense mimics the functioning of a brain 

• Consists of an interconnected group of artificial neurons (nodes) 

• Non-linear statistical data modeling tools 

• Model complex nonlinear relationships between input and output variables 

Find patterns in data: 

• Function approximation: regression analysis, including time series prediction, fitness 
approximation, and modeling 

• Classification: including pattern and sequence recognition, novelty detection and sequential 
decision making 

• Data processing: including filtering, clustering, blind source separation and compression 

• Robotics: including directing manipulators, computer numerical control 
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Artificial Neural Networks 

Well-suited to data with noisy and complex sensor data 

Problem characteristics 

• Potentially many (numeric) predictors, e.g., pixel values 

• Target may be discrete-valued, real-valued, or a vector of such 

• Training data may contain errors – robust to noise 

• Fast scoring 

• Model transparency not required – models difficult to interpret 

Universal approximator 

• Adding more neurons can lower error to be as small as desired 

• Not always the desired behavior 
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Steps to Neural Network modeling 

Architecture specification 

Data preparation 

Building the model 

• Stopping criteria: iterations, error on validation set 
within tolerance 

Viewing statistical results from model 

Improving the model 
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Architecture Specification 
Input Layer 

• Numerical or categorical 

• No automatic normalization of data 

• Supports up to 1000 actual columns (due to database table limit) 

• No fixed limit on interactions 

• No fixed limit on cardinality of categorical variables 

Hidden Layers 

• Any number of hidden layers - k 

• All nodes from previous layer are connected to nodes of next 

• Activation function applies to one layer 

- Bipolar Sigmoid default for hidden layers 

Output Layer 

• Currently single numeric target or binary categorical 

• Linear activation function default, all others also supported 

Calculate number of weights 

• (# input units) x (# L1 nodes) + (# L1 nodes bias) + 
(# L1 nodes) x (# L2 nodes) + (# L2 nodes bias) + 
… 
(# Lk nodes) x (# output nodes) 

Initialize weights 

• Change initialization with random seed 

• Set lower and upper bound, typically -0.25, 0.25 

Input Layer 

bL1,1 

Layer 1 

… 

Layer k 

X1 X2 Xi Xn 
… … 

L-11 L-1i L-1m 

L-k1 L-ki L-kp 

… 

… … 

… 

WL1,k1 WLm,kp 

bL1,i 

bL1m,m 

bLk,1 bLk,i bLk,p 

W

Y1 

k1,Y1 Wkp,Y1 

Output 
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Unique aspects of ore.neural 

Hidden layer structure complexity 

Wide range of activation functions - 15 

Support for categorical variables and transformations of all variables – predictors and targets 

Support for logistic regression through entropy activation function 

No competitive CRAN package available for neural networks 

Extraordinary scalability on several dimensions including HYPER SPARSE data sets 

• Scale-up and Scale-out 

Compared to SAS’s HPNeural, ore.neural can work with data sets that do not fit in memory 

• SAS requires complete data set to fit into distributed memory before it can solve any HP* models 
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Architecture Guidelines 

Start 

• one hidden layer with one neuron/node 

• number of nodes less than sqrt(#observations x #variables) 

Test different number of hidden nodes and number of layers 

Test different activation functions 

Restart (rebuild) model multiple times with different weight initializations 
to escape local minima, keep model with lowest objective function value, 
e.g., fit$objValue 

Perfecting neural networks is an art 
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Data Preparation 
Data preparation may be unnecessary if appropriate activation functions are used -
especially for targets (outputs) 

• Bipolar sigmoid can model values from -1 ... 1 range 

• Hyperbolic tangent can model values from -1 ... 1 range 

• Logistic sigmoid can model values from 0 ... 1 range 

Output preparation 

• If target (output) is not scaled (normalized) into ranges above, then linear activation function is 
appropriate 

• If output activation function is non-linear, targets must be scaled 

Scaling is recommended for faster convergence, however experimentation is key 

For predictors (input data), choose standard R facilities, for instance 

• data <- iris 
data$Petal.Length <- scale(data$Petal.Length) 

• To normalize Petal.Length around 0 
> sd(data$Petal.Length) 

[1] 1 

> mean(data$Petal.Length) 

[1] -2.895326e-17 
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Activation Functions
If specified, must include one for each hidden layer and output layer 

Activation Function Activation 
Setting 

Definition Notes 

Arctangent atan f(x) = arctan x 

Bipolar Sigmoid bSigmoid f(x) = (1 - e^{-x})/(1 + e^{-x}}) Use in input data with different signs or unscaled 
Use on output layer when values [-1, 1] 

Cosine cos f(x) = cos x 

Gaussian gaussian f(x) = e^{-x^2} 

Gauss error gaussError f(x) = 2/sqrt(pi) integral e^{-t2}dt 

Gompertz gompertz f(x) = e^{-e^{-x}} 

Linear linear f(x) = x Applicable across all data ranges 

Logistic Sigmoid sigmoid f(x) = 1 / (1 + e^{-x}) Use on output layer  when values [0..1] 

Reciprocal reciprocal f(x) = 1 / x Value should not include 0 value 

Sigmoid Modulus sigmoidModulus f(x) = x / (1 + |x|) 

Sigmoid Square Root sigmoidSqrt f(x) = x / (1 + sqrt{1+x^2) 

Sine sin f(x) = sin x 

Square square f(x) = x^2 

Hyperbolic Tangent tanh f(x) = tanh x 

Wave wave f(x) = x / (1 + x2) 

Entropy (output only) entropy f(x) = log(1 + exp(x)) – yx Use with logistic regression 
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ore.neural 
Artificial Neural Network 

ore.neural( 

formula, 

data, 

weight 

xlev 

hiddenSizes 

activations 

gradTolerance 

maxIterations 

objMinProgress 

lowerBound 

upperBound 

nUpdates 

scaleHessian 

trace  

= NULL, 

= NULL, 

= NULL, 

= NULL, 

= 1E-1, 

= 200L, 

= 1E-6, 

= -0.7, 

= 0.7, 

= 20L, 

= TRUE, 

= FALSE)  

# initial vector of weights 

# named list of character vectors specifying levels for each ore.factor var 

# vector of nodes per layer, or none, e.g., 2 layers c(20,5) 

# vector activation functions, including one for output 

# numerical optimization stopping crit. 

# select value >= 5 

# Stopping criterion: | f_current - f_previous | / ( 1 + |f| ) 

# weight initialization range 

# weight initialization range 

# number of L-BFGS update pairs 

# logical whether to scale inverse of Hessian matrix in L-BFGS updates 

# repot iteration log for big data solver 
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Stopping Criteria 

gradTolerance 
• Affects how quickly model can converge 

• Valid values: > 10-9 

• If > 1M observations, set to 1 

• If # observations < 1000, set to between .01 and .001 

objMinProgress 
• Valid values [10-1, 10-6] 

• Indicates required change from one iteration to next 

• Computed as 
| f_current - f_previous | / ( 1 + |f| ) 

maxIterations 
• Valid values >= 5 

• Upper limit on the number of iterations 
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Local Minima 

Local Minima are non-optimal states that can improve no further with current settings and weights 

To determine if a neural network is possibly in a local minima, rebuild model with different weights 

• Change random seen to different value 

• Change upper/lower bound of weight initialization values 

• Select model with best objective function value, e.g, fit$objValue 
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Local Minima 

d <- data.frame(A=c(0,1,0,1), 

B=c(1,0,0,1), 

T=c(1,1,0,0)) 

# Run the model below 5 ~ 10 times and observe the resulting objective 

# function value - the smaller, the better 

library(nnet) 

fit.nn <- nnet(formula = T ~ A + B, data = d, size=2) 

predict(fit.nn,d) 

fit.ore <- ore.neural(formula = T ~ A + B, data = ore.push(d), 

hiddenSizes = c(5000, 10, 10), 

lowerBound=-1, upperBound=1) 

predict(fit.ore,ore.push(d)) 
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Local Minima - results 
R> fit.nn <- nnet(formula = T ~ A + B, data = d, 
size=2) 

# weights:  9 

initial  value 1.046487 

iter 10 value 0.997966 

iter 20 value 0.569304 

iter 30 value 0.502784 

iter 40 value 0.500426 

iter 50 value 0.500050 

final  value 0.500041 

converged 

R> 

R> predict(fit.nn,d) 

[,1] 

1 0.499970251 

2 0.999986345 

3 0.002586049 

4 0.500004855 
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R> fit.ore <- ore.neural(formula = T ~ A + B, data = 

ore.push(d), 

+ hiddenSizes = c(5000, 10, 10), 

+ lowerBound=-1, upperBound=1) 

R> predict(fit.ore,ore.push(d)) 

pred_T 

1  0.913355525 

2  1.035549253 

3 -0.020444140 

4 -0.001179834 



 

Optimization argument: nUpdates 

Optimization parameter for L-BFGS solver 

Indicates number of matrix adjustments to occur before updating 
Hessian matrix 

Recommended ranges 

• Usual models: 7..25 

• If # weights > 1M: 3..25 

• If highly non-linear behavior, use > 10 

If you’re unfamiliar with underlying techniques, don’t touch 
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Example 
ans <- predict(fit, newdata = IRIS, 

supplemental.cols = 'Petal.Length') 

localPredictions <- ore.pull(ans) 

# Inspect some predictions 

head(localPredictions) 

# Compute RMSE 

ore.rmse <- function (pred, obs) { 

sqrt(mean((pred-obs)^2,na.rm=TRUE)) 

} 

IRIS <- ore.push(iris) 

fit <- ore.neural(Petal.Length ~ Petal.Width + Sepal.Length, 

data = IRIS, hiddenSizes = c(20, 5), 

activations = c('bSigmoid', 'tanh', 'linear')) 

print(fit) 

R> print(fit) 

Number of input units  2 

Number of output units  1 

Number of hidden layers  2 

Objective value  6.431877E+00 

Solution status  Optimal 

Hidden layer [1]  number of neurons 20, activation 

'bSigmoid' 

Hidden layer [2]  number of neurons 5, activation 'tanh' 

Output layer  number of neurons 1, activation 'linear' 

Optimization solver  L-BFGS 

Scale Hessian inverse  1 

Number of L-BFGS updates  20 

R> ore.rmse(localPredictions$pred_Petal.Length, 

localPredictions$Petal.Length) 

[1] 0.00148768 

Copyright © 2020 Oracle and/or its affiliates. 



  

         

         

         

   

Example – linear regression 
No hidden structure in network 

fit <- ore.neural(Petal.Length ~ Petal.Width + Sepal.Length, data = IRIS) 

print(fit) 

# Print fit object 

R> print(fit) 

Number of input units      2 

Number of output units     1 

Number of hidden layers    0 

Objective value   1.311757E+01 

Solution status   Optimal 

Output layer      number of neurons 1, activation 'linear' 

Optimization solver        L-BFGS 

Scale Hessian inverse      1 

Number of L-BFGS updates 20 

Copyright © 2020 Oracle and/or its affiliates. 



 

 

  

  

Model Details: Solution Status 

optimal 
• meets all stopping criteria 

numerical difficulties encountered 
• TBD 

maximum iterations reached 
• more iterations may be needed to improve model 

insufficient memory 

• could not build model with current settings due to memory 

no progress 
• change in objective function insufficient to make process 

unbounded 
• one of model parameters (weights) is greater than 1E+24 

(check input data, unlikely to happen) 
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Model Details: Objective Value 

Error statistic on the model 

ore.neural tries to minimize this value 

Calculated as sum((predicted – actual)^2) 
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ore.neural vs. nnet 

OML4R… 

• Is scalable 

• Allows choosing wide range of activation functions 

• Provides generic topology 
- unrestricted number of hidden layers, including none 

• Has a parallel implementation 
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Generalized Linear Models 
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Generalized Linear Models 

Fits generalized linear models using a Fisher scoring iteratively re-weighted least squares (IRLS) algorithm for 
logistic regression, probit regression, and poisson regression 

Instead of the traditional step halving to prevent the selection of less optimal coefficient estimates, a line search 
is used to select new coefficient estimates at each iteration starting from the current coefficient estimates and 
moving through the Fisher scoring suggested estimates using the formula (1 - alpha) * old + alpha * suggested 
where alpha in [0, 2] 

When the 'interp' control argument is 'TRUE', the deviance is approximated by a cubic spline interpolation; and 
when 'FALSE', the deviance is calculated using a follow-up data scan 

Each iteration consists of two or three embedded R map/reduce operations: an IRLS operation, an initial line 
search operation, and an optional follow-up line search operation if 'interp = FALSE' 

The IRLS map/reduce operations are on the matrix cross-products based off of 'model.matrix' or 
'sparse.model.matrix' function calls depending on the underlying scarcity of the model matrix. 

After the algorithm has either converged or reached the maximum number of iterations, a final embedded R 
map/reduce operation is used to generate the complete set of model-level statistics. 
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ore.glm 
Generalized Linear Model 

ore.glm(formula, 

data, 

weights, 

family = gaussian(),  

start = NULL, 

control = list(...),  

contrasts = NULL, 

xlev = NULL, 

ylev = NULL, 

yprob = NULL, 

...) 

# 'formula' object representing the model to be fit 

# 'ore.frame' object specifying the data for the model 

# optional 'ore.number' object specifying the model’s analytic weights 

# 'family' object specifying the generalized linear model family details. 

# Same type of object used for 'glm' function in the 'stats' package 

# optional 'numeric' vector specifying initial coefficient estimates in 

# the linear predictor 

# optional 'list' object containing a list of fit control parameters to 

# be interpreted by the 'ore.glm.control' function 

# optional named 'list' to be supplied to 'contrasts.arg' argument of 'model.matrix‘ 

# optional named 'list' of 'character' vectors specifying the 'levels' 

# for each 'ore.factor' variable 

# optional 'character' vector to specify the response variable levels 

# in 'binomial' generalized linear models 

# optional numeric value between 0 and 1 specifying overall probability 

# of 'y != ylev[1]' in 'binomial' linear models 
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ore.glm examples 
Generalized Linear Model 

library(rpart) 

# Logistic regression 

KYPHOSIS <- ore.push(kyphosis) 

kyphFit1 <- ore.glm(Kyphosis ~ ., data = KYPHOSIS, family = binomial()) 

kyphFit2 <- glm(Kyphosis ~ ., data = kyphosis, family = binomial()) 

summary(kyphFit1) 

summary(kyphFit2) 

# Poisson regression 

SOLDER <- ore.push(solder) 

solFit1 <- ore.glm(skips ~ ., data = SOLDER, family = poisson()) 

solFit2 <- glm(skips ~ ., data = solder, family = poisson()) 

summary(solFit1) 

summary(solFit2) 
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ore.glm results 
Generalized Linear Model 

R> summary(kyphFit1) 

Call: 

ore.glm(formula = Kyphosis ~ ., data = KYPHOSIS, family = binomial()) 

Deviance Residuals: 

Min 1Q Median  3Q Max 

-2.3124  -0.5484 -0.3632 -0.1659  2.1613 

Coefficients: 

Estimate Std. Error z value Pr(>|z|) 

(Intercept) -2.036934 1.449622 -1.405 0.15998 

Age  0.010930 0.006447 1.696 0.08997 . 

Number  0.410601 0.224870 1.826 0.06786 . 

Start -0.206510 0.067700 -3.050 0.00229 ** 

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

(Dispersion parameter for binomial family taken to be 1) 

Null deviance: 83.234  on 80  degrees of freedom 

Residual deviance: 61.380  on 77  degrees of freedom 

AIC: 69.38 

Number of Fisher Scoring iterations: 4 

R> summary(kyphFit2) 

Call: 

glm(formula = Kyphosis ~ ., family = binomial(), data = 
kyphosis) 

Deviance Residuals: 

Min 1Q Median  3Q Max 

-2.3124  -0.5484 -0.3632 -0.1659  2.1613 

Coefficients: 

Estimate Std. Error z value Pr(>|z|) 

(Intercept) -2.036934 1.449575 -1.405  0.15996  

Age 0.010930 0.006446 1.696 0.08996 . 

Number  0.410601 0.224861 1.826 0.06785 . 

Start -0.206510 0.067699 -3.050  0.00229 ** 

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

(Dispersion parameter for binomial family taken to be 1) 

Null deviance: 83.234  on 80  degrees of freedom 

Residual deviance: 61.380  on 77  degrees of freedom 

AIC: 69.38 

Number of Fisher Scoring iterations: 5 
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Compare 
ore.glm 
results 

R> summary(solFit1) 

Call: 

ore.glm(formula = skips ~ ., data = SOLDER, family = poisson()) 

Deviance Residuals: 

Min       1Q  Median       3Q  Max  

-3.4105  -1.0897 -0.4408   0.6406  3.7927  

Coefficients: 

Estimate Std. Error z value Pr(>|z|) 

(Intercept) -1.25506 0.10069 -12.465  < 2e-16 *** 

OpeningM 0.25851 0.06656 3.884 0.000103 *** 

OpeningS 1.89349 0.05363  35.305  < 2e-16 *** 

SolderThin 1.09973 0.03864  28.465  < 2e-16 *** 

MaskA3  0.42819  0.07547  5.674 1.40e-08 *** 

MaskB3  1.20225  0.06697  17.953  < 2e-16 *** 

MaskB6  1.86648  0.06310  29.580  < 2e-16 *** 

PadTypeD6   -0.36865 0.07138 -5.164 2.41e-07 *** 

PadTypeD7   -0.09844 0.06620 -1.487 0.137001    

PadTypeL4  0.26236  0.06071  4.321 1.55e-05 *** 

PadTypeL6   -0.66845 0.07841 -8.525  < 2e-16 *** 

PadTypeL7   -0.49021 0.07406 -6.619 3.61e-11 *** 

PadTypeL8   -0.27115 0.06939 -3.907 9.33e-05 *** 

PadTypeL9   -0.63645 0.07759 -8.203 2.35e-16 *** 

PadTypeW4   -0.11000 0.06640 -1.657 0.097591 .  

PadTypeW9   -1.43759 0.10419 -13.798  < 2e-16 *** 

Panel  0.11818  0.02056  5.749 8.97e-09 *** 

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

(Dispersion parameter for poisson family taken to be 1) 

Null deviance: 6855.7  on 719  degrees of freedom 

Residual deviance: 1165.4  on 703  degrees of freedom 

AIC: 2781.6 

Number of Fisher Scoring iterations: 4 

R> summary(solFit2) 

Call: 

glm(formula = skips ~ ., family = poisson(), data = solder) 

Deviance Residuals: 

Min       1Q  Median       3Q  Max  

-3.4105  -1.0897 -0.4408   0.6406  3.7927  

Coefficients: 

Estimate Std. Error z value Pr(>|z|) 

(Intercept) -1.25506 0.10069 -12.465  < 2e-16 *** 

OpeningM 0.25851 0.06656 3.884 0.000103 *** 

OpeningS 1.89349 0.05363  35.305  < 2e-16 *** 

SolderThin 1.09973 0.03864  28.465  < 2e-16 *** 

MaskA3  0.42819  0.07547  5.674 1.40e-08 *** 

MaskB3  1.20225  0.06697  17.953  < 2e-16 *** 

MaskB6  1.86648  0.06310  29.580  < 2e-16 *** 

PadTypeD6   -0.36865 0.07138 -5.164 2.41e-07 *** 

PadTypeD7   -0.09844 0.06620 -1.487 0.137001    

PadTypeL4  0.26236  0.06071  4.321 1.55e-05 *** 

PadTypeL6   -0.66845 0.07841 -8.525  < 2e-16 *** 

PadTypeL7   -0.49021 0.07406 -6.619 3.61e-11 *** 

PadTypeL8   -0.27115 0.06939 -3.907 9.33e-05 *** 

PadTypeL9   -0.63645 0.07759 -8.203 2.35e-16 *** 

PadTypeW4   -0.11000 0.06640 -1.657 0.097590 .  

PadTypeW9   -1.43759 0.10419 -13.798  < 2e-16 *** 

Panel  0.11818  0.02056  5.749 8.97e-09 *** 

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

(Dispersion parameter for poisson family taken to be 1) 

Null deviance: 6855.7  on 719  degrees of freedom 

Residual deviance: 1165.4  on 703  degrees of freedom 

AIC: 2781.6 

Number of Fisher Scoring iterations: 5 
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Singular Value Decomposition (SVD) 
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Singular Value Decomposition 

svd overloaded 

• Execute in parallel 

• Accept ore.frame objects 

In-database execution to improve scalability and performance 

No data movement 
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SVD 

See ?svd 

• svd(x, 
nu = min(n, p), 
nv = min(n, p)) 

• x: a numeric ore.frame 

• nu: number of left singular 
vectors to be computed 
0 < nu < n=nrow(x) 

• nv: number of right singular 
vectors to be computed 
0 < nv < p=ncol(x) 
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hilbert <- function(n) { 

i <- 1:n 

1 / outer(i - 1, i, "+") 

} 

X <- ore.push(as.data.frame(hilbert(9)[, 1:6])) 

(s <- svd(X)) 



 

SVD example using ore.frame 
# Set up the data 

dat <- iris[,-5]; mat <- as.matrix(dat); dat$IDX <- seq_len(nrow(dat)) 

ore.create(dat,table="DAT") 

ore.exec("alter table DAT add constraint DAT primary key (\"IDX\")") 

ore.sync(table = "DAT", use.keys = TRUE) 

# Compute svd on ore.frame 

sol <- svd(DAT[,-5]) 

plot(cumsum(sol$d^2/sum(sol$d^2)),col="red") # % explained variance 

# Derive the U matrix since not provided with model 

sol.U <- as.matrix(DAT[,-5]) %*% (sol$v) %*% diag(1./sol$d) 

class(sol.U)  # ore.tblmatrix 

k<-1  # use one singular vector 

recon1 <- (sol.U)[,1:k,drop=FALSE] %*% 

diag((sol$d)[1:k,drop=FALSE],nrow=k,ncol=k) %*% 

t((sol$v)[,1:k,drop=FALSE]) 

class(recon1) # ore.tblmatrix 

myviz(mat,ore.pull(recon1),lab1="Iris data", lab2="Recon 1") 
Example inspiration: StackExchange Cross Validated 
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Visualization function 

myviz <- function(m1,m2,lab1, lab2) { 

x11(6,6) 

par(mfcol=c(1,2), mar=c(1,1,1,1), oma=c(0,3,1,0)) 

zlim=range(m1, m2) 

image(m1, zlim=zlim, yaxt="n", xaxt="n", ylab="", 

xlab="", main=lab1) 

axis(2, at=seq(0,1,,ncol(m1)), labels=colnames(m1)) 

image(m2, zlim=zlim, yaxt="n", xaxt="n", ylab="", 

xlab="", main=lab2) 

} 

Example inspiration: StackExchange Cross Validated 
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Principal Component Analysis 

See ?prcomp and ?princomp 

Overloaded prcomp uses ORE’s parallel SVD 

Overloaded princomp uses Eigen decomposition of the correlation matrix, and 
an ORE-specific scheme to calculate a small correlation matrix, and call R's Eigen 
decomposition 
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Exadata storage tier scoring for R models 

R-generated 
Predictive Model 

ore.predict()  SQL 

Data 

Oracle Database 

R Object 
Datastore 

Fastest way to operationalize R-based models for 
scoring in Oracle Database 

Go from model to SQL scoring in one step 

• No dependencies on PMML or any other plugins 

R models supported out-of-the-box include 

• glm, glm.nb, hclust, kmeans, 
lm, multinom, nnet, rpart 

Models can be managed in-database using 
OML4R datastore 
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OREpredict Package 

Provide a commercial grade scoring engine 

• High performance 

• Scalable 

• Simplify application workflow 

Use R-generated models to score in-database on ore.frame 

Maximizes use of Oracle Database as compute engine 

Function ore.predict 

• S4 generic function 

• A specific method for each model OML4R supports 
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ore.predict supported algorithms 

Class Package Description 

glm stats Generalized Linear Model 

negbin 

hclust 

kmeans 

lm 

MASS 

stats 

stats 

stats 

Negative binomial Generalized Linear Model 

Hierarchical Clustering 

K-Means Clustering 

Linear Model 

multinom 

nnet 

nnet 

nnet 

Multinomial Log-Linear Model 

Neural Network 

rpart rpart Recursive Partitioning and Regression Tree 
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Interface function signatures 

# lm, based on stats:::predict.lm 

ore.predict(object, newdata, se.fit = FALSE, scale = NULL, 

df = Inf, interval = c("none","confidence","prediction"), 

level = 0.95, na.action = na.pass, pred.var = NULL, 

weights = NULL, ...) 

# glm, based on stats:::predict.glm 

ore.predict(object, newdata, type = c("link", "response"), 

se.fit = FALSE, dispersion = NULL, na.action = na.pass, 

...) 

# rpart, based on rpart:::predict.rpart 

ore.predict(object, newdata, type = c("vector", "prob", 

"class", "matrix"),na.action = na.pass, ...) 

# matrix (for use in hclust problems) 

ore.predict(object, newdata, type = c("classes", 

"distances"), method = "euclidean", p = 2, 

na.action = na.pass, ...) 

# kmeans 

ore.predict(object, newdata, type = c("classes", 

"distances"), na.action = na.pass, ...) 

# nnet, based on nnet:::predict.nnet 

ore.predict(object, newdata, type = c("raw", "class"), 

na.action = na.pass, ...) 

# multinom, based on nnet:::predict.multinom 

ore.predict(object, newdata, type = c("class", "probs"), 

na.action = na.pass, ...) 
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Example using lm 

irisModel <- lm(Sepal.Length ~ ., data = iris) 

IRIS   <- ore.push(iris) 

IRISpred <- ore.predict(irisModel, IRIS, se.fit = TRUE, 

interval = "prediction") 

IRIS <- cbind(IRIS, IRISpred) 

head(IRIS) 

Build a typical R lm model 

Use ore.predict to score data in 
Oracle Database using 
ore.frame, e.g., IRIS 
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Build an R glm model 
Example using glm Use ore.predict to score data in Oracle 

Database using ore.frame, e.g., INFERT 

infertModel <- glm(case ~ age + parity + education + spontaneous + induced, 

data = infert, family = binomial()) 

INFERT <- ore.push(infert) 

INFERTpred <- ore.predict(infertModel, INFERT, type = "response", se.fit = TRUE) 

INFERT <- cbind(INFERT, INFERTpred) 

head(INFERT) 

R> head(INFERT) 

education age parity induced case spontaneous stratum pooled.stratum PRED SE.PRED 

1    0-5yrs  26 6    1  1  2 1  3 0.5721916 0.20630954 

2    0-5yrs  42 1    1  1  0 2  1 0.7258539 0.17196245 

3    0-5yrs  39 6    2  1  0 3  4 0.1194459 0.08617462 

4    0-5yrs  34 4    2  1  0 4  2 0.3684102 0.17295285 

5   6-11yrs  35 3    1  1  1 5    32 0.5104285 0.06944005 

6   6-11yrs  36 4    2  1  1 6    36 0.6322269 0.10117919 
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Time Series Exponential Smoothing 

Used to produce smoothed data for presentation or for forecasting, i.e., 
making predictions 

Assigns exponentially decreasing weights over time 

Commonly applied to financial market and economic data 

Simplest form 

http://en.wikipedia.org/wiki/Exponential_smoothing 
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Time Series Exponential Smoothing 

Used to produce smoothed data for presentation or for forecasting, i.e., making 
predictions 

Assigns exponentially decreasing weights over time 

Commonly applied to financial market and economic data 

Simplest form 

http://en.wikipedia.org/wiki/Exponential_smoothing 
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ore.esm function signature 

ore.esm(x, 
interval = NULL, 
model = "simple", 
accumulate = "NONE", 
setmissing = "PREV", 
optim.start = c(alpha=0.3, beta=0.1), 
optim.control = list()) 

fitted(object, start = NULL, end = NULL, ...) 

predict(object, n.ahead = 12L,  ...) 

forecast.ore.esm(object, h = 12L, ...) 
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ore.esm arguments 
x – An ordered 'ore.vector' of time series data or transactional data. The ordering column could be 
either integers from 1 to the length of the time series or of type 'ore.datetime'. 

interval – The interval of the time series, or the time interval by which the transactional data is to 
be accumulated. If the ordering column of the argument 'x' is of type 'ore.datetime', 'interval' 
must be specified. 
• Possible values: '"YEAR"', '"QTR"', '"MONTH"', '"WEEK"', '"DAY"', '"HOUR"', '"MINUTE"', '"SECOND"‘ 

model – The exponential smoothing model name. Possible values: '"simple"', '"double"‘ 
accumulate – The method of accumulation. Possible values: 
• NONE No accumulation occurs. Argument 'x' is required to be equally spaced time series observations. 

• TOTAL Accumulation based on the sum of the observed values 

• AVERAGE Accumulation based on the average of the observed values. The value could be abbreviated to 
'"AVG"'. 

• MINIMUM Accumulation based on the minimum of the observed values. The value could be abbreviated to 
'"MIN"'. 

• MAXIMUM Accumulation based on the maximum of the observed values. The value could be abbreviated to 
'"MAX"‘ 

• NOBSAccumulation based on the number of observations 

• NMISS Accumulation based on the number of missing observations 
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ore.esm arguments 

setmissing: The method of treating missing values. Possible values: 

• AVERAGE Missing values are set to average of the accumulated values. The value could be abbreviated to '"AVG"' 

• MINIMUM Missing values are set to minimum of the accumulated values. The value could be abbreviated to 
'"MIN“’ 

• MAXIMUM Missing values are set to maximum of the accumulated values. The value could be abbreviated to 
'"MAX“’ 

• MEDIAN Missing values are set to median of the accumulated values. The value could be abbreviated to 
'"MED"'. 

• FIRSTMissing values are set to first accumulated non-missing value 

• LAST Missing values are set to last accumulated non-missing value  

• PREVIOUS Missing values are set to previous accumulated non-missing value. The value could be abbreviated to 
'"PREV"' 

• NEXT Missing values are set to the next accumulated non-missing value. 

optim.start: A vector with named components 'alpha' and 'beta’ containing the starting values for the 
optimizer. Ignored in the 'simple' model case. 

optim.control: Optional list with additional control parameters passed to 'optim' in the 'double' model case. 
Ignored in the 'simple' model case. 
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predict and forecast arguments for ore.esm 

predict(object, n.ahead = 12L,  ...) 

forecast.ore.esm(object, h = 12L, ...) 

object: object of type 'ore.esm‘ 

n.ahead: number of time periods to forecast 

h: number of time periods to forecast 
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Stock Data with ore.esm 

library(TTR) 

library(zoo) 

# Get data for selected stocks in XTS format 

stocks <- c("orcl","ibm","sap","msft") 

list.data <- vector("list",length(stocks)) 

for(s in stocks) { 

xts.data <- getYahooData(s, 20050101, 20180206) 

df.data <- data.frame(xts.data) 

df.data$date <- index(xts.data) 

df.data$symbol <- s 

df.data$Split <- NULL 

list.data[[s]] <- df.data 

} 

stock.data <- data.frame(do.call("rbind",list.data)) 

ore.drop("STOCKS") 

ore.create(stock.data,table="STOCKS") 

rownames(STOCKS) <- STOCKS$date 

head(STOCKS) 
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Stock Data with ore.esm 
orcl.stock <- ore.pull(STOCKS[STOCKS$symbol=='orcl',c("date","Close","symbol")]) 

ts.orcl.stock <- ts(orcl.stock$Close) 

ts.sm.orcl <-ts(SMA(ts.orcl.stock,n=30),frequency=365, start=c(2008,1) ) 

plot(orcl.stock$date,orcl.stock$Close,type="l",col="red",xlab="Date",ylab="US$", 

main="ORCL Stock Close CLIENT-side Smoothed Series n=30 days") 

lines(orcl.stock$date,ts.sm.orcl,col="blue") 

legend("topleft", c("Closing","MA(30) of Closing"), 

col=c("red","blue"),lwd=2,title = "Series",bty="n") 

orcl.stock <- STOCKS[STOCKS$symbol=='orcl',c("date","Close")] 

dESM.mod <- ore.esm(orcl.stock$Close, "DAY", model = "double") 

dESM.predict <- predict(dESM.mod, 30) 

plot(orcl.stock,type="l") 

lines(dESM.predict,col="red",lwd=4) 
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Using supplemental functions 

dESM.mod <- ore.esm(orcl.stock$Close, "DAY", 

model = "double", 

optim.start=c(alpha=0.5,beta=0.5)) 

dESM.predict <- predict(dESM.mod, 30) 

dESM.fitted <- fitted(dESM.mod) 

plot(orcl.stock,type="l",lwd=2) 

lines(dESM.predict,col="red",lwd=2) 

lines(orcl.stock[,1], dESM.fitted, col='red',lwd=1) 

row.idx = 1500:2722 

plot(orcl.stock[row.idx,], type="l",lwd=3) 

lines(orcl.stock[row.idx,1], dESM.fitted[row.idx], col='red') 

lines(dESM.predict,col="red",lwd=2) 
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Summary 

OREdm 
• Oracle Data Mining algorithms exposed through R interface 

• Attribute Importance, Decision Trees, GLM, KMeans, O-Cluster, 
Naïve Bayes, SVD, SVM, NMF, Association Rules, Explicit Semantic Analysis 

OREeda 
• Functions for exploratory data analysis for Base SAS equivalents 

OREmodels 
• ore.lm, ore.stepwise, ore.neural, ore.glm, ore.randomForest 

OREpredict 
• Score R models in the database 

OREstats 
• In-database statistical computations exposed through R interface 
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For more information… 

oracle.com/machine-learning 

See also AskTOM OML Office Hours 
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https://asktom.oracle.com/pls/apex/asktom.search?office=6801#sessions


Thank You 

Mark Hornick 
Oracle Machine Learning Product Management 


