
Session 2:
OML4R 1.5.1
Transparency Layer
With Oracle Machine Learning

Mark Hornick, Senior Director

Oracle Machine Learning Product Management

November 2020

Safe harbor statement

The following is intended to outline our general product direction. It is intended for information
purposes only, and may not be incorporated into any contract. It is not a commitment to deliver any
material, code, or functionality, and should not be relied upon in making purchasing decisions. The
development, release, timing, and pricing of any features or functionality described for Oracle’s
products may change and remains at the sole discretion of Oracle Corporation.

Copyright © 2020 Oracle and/or its affiliates.

Agenda

1

2

3

4

5

6

7

8

9

Introduction

Transparency Layer examples

Options for connecting to Oracle Database

R object persistence in Oracle Database

Support for Time Series data preparation

Ordering Framework

Global options

In-database sampling and random partitioning

Data types

Copyright © 2020 Oracle and/or its affiliates.

What does “transparency” mean?

Copyright © 2020 Oracle and/or its affiliates.

Transparency

The Transparency Layer supports in-database data exploration, data
preparation, and data analysis en route to application of machine
learning algorithms, where we have a mix of in-database and open
source R techniques.

No need to learn a different programming paradigm or environment

Operate on database tables as though they were R objects using R syntax

Minimize change to base R scripts for database data

Implicitly translate R to SQL for in-database execution, performance,
and scalability

Copyright © 2020 Oracle and/or its affiliates.

Top Level Package for Oracle R Enterprise

OML4R Packages

OREbase Transparency
Layer

Description

Corresponds to R’s base package

Package

ORE

OREstats Corresponds to R’s stat package

OREgraphics Corresponds to R’s graphics package

OREcommon Common low-level functionality

OREdplyr …must explicitly load package

OREeda Exploratory data analysis package containing Base SAS PROC-
equivalent functionality

OREembed Embedded R Execution functionality

OREdm Exposes Oracle Data Mining algorithms

OREmodels ORE-provided advanced analytics algorithms

OREpredict Enables scoring data in Oracle DB using R models

OREserver Supports server-side functionality of OML4R

ORExml Supports XML translation between R and
Oracle Database

Copyright © 2020 Oracle and/or its affiliates.

Documentation and Demos

OREShowDoc()

demo(package = "ORE")

demo("aggregate", package = "ORE")

Copyright © 2020 Oracle and/or its affiliates.

Demos in package 'ORE'
aggregate Aggregation

analysis Basic analysis & data processing operations

basic Basic connectivity to database

binning Binning logic

columnfns Column functions

cor Correlation matrix

crosstab Frequency cross tabulations

datastore DataStore operations

datetime Date/Time operations

derived Handling of derived columns

distributions Distribution, density, and quantile functions

do_eval Embedded R processing

esm Exponential smoothing method

freqanalysis Frequency cross tabulations

glm Generalized Linear Models

graphics Demonstrates visual analysis

group_apply Embedded R processing by group

hypothesis Hyphothesis testing functions

matrix Matrix related operations

nulls Handling of NULL in SQL vs. NA in R

odm_ai Oracle Data Mining: attribute importance

odm_ar Oracle Data Mining: association rules

odm_dt

odm_glm

odm_kmeans

odm_nb

odm_nmf

odm_oc

odm_svm

ore_dplyr

pca

push_pull

randomForest

rank

reg

row_apply

sampling

script

sql_like

stepwise

summary

table_apply

Oracle Data Mining: decision trees

Oracle Data Mining: enhanced k-means clustering

Oracle Data Mining: generalized linear models

Oracle Data Mining: naive Bayes classification

Oracle Data Mining: non-negative matrix

factorization

Oracle Data Mining: o-cluster

Oracle Data Mining: support vector machines

Data manipulation similar to dplyr

Principal Component Analysis

RDBMS <-> R data transfer

Random Forest classification algortihm

Attributed-based ranking of observations

Ordinary least squares linear regression

Embedded R processing by row chunks

Random row sampling and partitioning

Mapping of R to SQL commands

Stepwise OLS linear regression

Summary functionality

Embedded R processing of entire table

Copyright © 2020 Oracle and/or its affiliates.

Proxy objects for Big Data

data.frame

Proxy
ore.frame

Inherits from

Copyright © 2020 Oracle and/or its affiliates.

Manipulating Data
Column selection
df <- ONTIME_S[,c("YEAR","DEST","ARRDELAY")]

class(df)

head(df)

head(ONTIME_S[,c(1,4,23)])

head(ONTIME_S[,-(1:22)])

Row selection
df1 <- df[df$DEST=="SFO",]

class(df1)

df2 <- df[df$DEST=="SFO",c(1,3)]

df3 <- df[df$DEST=="SFO" | df$DEST=="BOS",1:3]

head(df1)

head(df2)

head(df3)

Copyright © 2020 Oracle and/or its affiliates.

Manipulating Data – SQL equivalent
R

Column selection

df <- ONTIME_S[,c("YEAR","DEST","ARRDELAY")]

head(df)

head(ONTIME_S[,c(1,4,23)])

head(ONTIME_S[,-(1:22)])

Row selection

df1 <- df[df$DEST=="SFO",]

df2 <- df[df$DEST=="SFO",c(1,3)]

df3 <- df[df$DEST=="SFO" | df$DEST=="BOS",1:3]

SQL

Column selection

create view df as

select YEAR, DEST, ARRDELAY

from ONTIME_S;

-- cannot do column selection by number & exclusion in SQL

Row selection

create view df1 as

select * from df where DEST=‘SFO’;

create view df2 as

select YEAR, ARRDELAY from df where DEST=‘SFO’

Benefits of OML4R transparency:
In-database execution
Deferred execution
Leverage column indexes, partitioning,

query optimization, parallelism

create view df3 as

select YEAR, DEST, ARRDELAY from df

where DEST=‘SFO’ or DEST=‘BOS’

Copyright © 2020 Oracle and/or its affiliates.

merge

Joining two tables (data frames)

df1 <- data.frame(x1=1:5, y1=letters[1:5])

df2 <- data.frame(x2=5:1,

y2=letters[11:15])

merge (df1, df2, by.x="x1", by.y="x2")

ore.drop(table="TEST_DF1")

ore.drop(table="TEST_DF2")

ore.create(df1, table="TEST_DF1")

ore.create(df2, table="TEST_DF2")

merge (TEST_DF1, TEST_DF2,

by.x="x1", by.y="x2")

Copyright © 2020 Oracle and/or its affiliates.

Formatting data – Base SAS “format” equivalent
diverted_fmt <- function (x) {

ifelse(x=='0', 'Not Diverted',
x <- ONTIME_S

ifelse(x=='1', 'Diverted',''))
attach(x)

}

cancellationCode_fmt <- function(x) {

ifelse(x=='A', 'A CODE',

ifelse(x=='B', 'B CODE',

ifelse(x=='C', 'C CODE',

ifelse(x=='D', 'D CODE','NOT CANCELLED'))))

}

delayCategory_fmt <- function(x) {

ifelse(x>200,'LARGE',

ifelse(x>=30,'MEDIUM','SMALL'))

}

zscore <- function(x) {

(x-mean(x,na.rm=TRUE))/sd(x,na.rm=TRUE)

}

Copyright © 2020 Oracle and/or its affiliates.

x$DIVERTED <- diverted_fmt(DIVERTED)

x$CANCELLATIONCODE <- cancellationCode_fmt(CANCELLATIONCODE)

x$ARRDELAY <- delayCategory_fmt(ARRDELAY)

x$DEPDELAY <- delayCategory_fmt(DEPDELAY)

x$DISTANCE_ZSCORE <- zscore(DISTANCE)

detach(x)

head(x)

Formatting data – Base SAS “format” equivalent
Using transform ()

ONTIME <- transform(ONTIME_S,

DIVERTED = ifelse(DIVERTED == 0, 'Not Diverted',

ifelse(DIVERTED == 1, 'Diverted', '')),

CANCELLATIONCODE =

ifelse(CANCELLATIONCODE == 'A', 'A CODE',

ifelse(CANCELLATIONCODE == 'B', 'B CODE',

ifelse(CANCELLATIONCODE == 'C', 'C CODE',

ifelse(CANCELLATIONCODE == 'D', 'D CODE', 'NOT CANCELLED')))),

ARRDELAY = ifelse(ARRDELAY > 200, 'LARGE',

ifelse(ARRDELAY >= 30, 'MEDIUM', 'SMALL')),

DEPDELAY = ifelse(DEPDELAY > 200, 'LARGE',

ifelse(DEPDELAY >= 30, 'MEDIUM', 'SMALL')),

DISTANCE_ZSCORE =(DISTANCE - mean(DISTANCE, na.rm=TRUE))/sd(DISTANCE, na.rm=TRUE))

head(ONTIME)

Copyright © 2020 Oracle and/or its affiliates.

Recoding data
Using ore.recode ()

d <- ore.recode(ONTIME_S$DIVERTED, old=c(0,1),

new=c('No','Yes'))

summary(as.ore.factor(d))

Copyright © 2020 Oracle and/or its affiliates.

Connecting to Oracle Database

Working with ore.frame proxy objects

Copyright © 2020 Oracle and/or its affiliates.

Establish a connection using ore.connect
if (!ore.is.connected())

ore.connect(user="rquser", sid="orcl",

host="localhost", password="rquser",

all=TRUE)

ore.ls()

ore.is.connected returns TRUE if you’re already connected to an Oracle
Database

ore.connect parameters
• Port defaults to 1521

• “all” set to TRUE loads all tables from the schema into OML4R metadata and makes them
available at the R command line as ore.frame objects

ore.ls lists all available tables by name
ore.connect does not support connecting to the database as sys

Copyright © 2020 Oracle and/or its affiliates.

ore.connect / ore.disconnect
if (!ore.is.connected())

Establish connection to ORE-enabled database
ore.connect("rquser", "orcl",

• Must precede all other calls to OML4R functionality "localhost", "rquser", all=TRUE)

ore.ls()
• Only one OML4R connection can be active at a time

ore.disconnect()

• Calling ore.connect during an active OML4R connection
results in disconnecting the current connection before
starting the new connection

An OML4R connection implicitly terminates when its R
session ends, but can disconnect explicitly

Argument all, if TRUE, call functions 'ore.sync' and
'ore.attach' using their default arguments

Argument type: either '"ORACLE"' (default) or '"HIVE"‘
for OML4Spark users. If '"HIVE"', all other connection
parameters ignored and obtained from the system
environment

ore.connect("rquser", host="localhost",

password="rquser", service_name="ORCL",

all=TRUE)

ore.connect(conn_string = "<wallet_connect_string>")

ore.connect(user="rquser",password="rquser",

conn_string = "sales-server:1521:sales")

ore.connect(user="rquser",password="rquser",

conn_string = "(DESCRIPTION=

(ADDRESS=(PROTOCOL=tcp)(HOST=sales-server)(PORT=1521))

(CONNECT_DATA= (SERVICE_NAME=sales.us.acme.com)))")

ore.connect(user="rquser",password="rquser",

conn_string = "") # connect to local DB

ore.disconnect()

Copyright © 2020 Oracle and/or its affiliates.

http:SERVICE_NAME=sales.us.acme.com

Dataset: “ONTIME” Airline Data
On-time arrival data for non-stop domestic flights by major air carriers

Provides departure and arrival delays, origin and destination airports, flight numbers,
scheduled and actual departure and arrival times, cancelled or diverted flights, taxi-out
and taxi-in times, air time, and non-stop distance

• Full Data

– 123M records

– 22 years

– 29 airlines

• Sample Data

– ~220K
records

– ~10K / year

– ONTIME_S

Copyright © 2020 Oracle and/or its affiliates.

ore.frame – Proxy object for database table
Examine the structure of the ore.frame object

• str(ONTIME_S)

Copyright © 2020 Oracle and/or its affiliates.

ore.frame – Proxy object for database table
Examine slot “dataQry” of the ore.frame object

• ONTIME_S@dataQry

Copyright © 2020 Oracle and/or its affiliates.

ore.frame – Proxy object for database table

Examine slot “desc” of the ore.frame object

• ONTIME_S@desc

Copyright © 2020 Oracle and/or its affiliates.

OML4R functions for interacting with database data

Store R object in database as temporary object,

returns handle to object. Data frame, matrix,

and vector to table, list/model/others to

serialized object

Synchronize OML4R proxy objects in R with

tables/views available in database, on a per

schema basis

Returns TRUE if named table or view exists in

schema

Create ore.frame object directly from query

without having to explicitly create a DB view

ore.sync()

ore.sync("RQUSER")

ore.sync(table=c("ONTIME_S", "NARROW"))

ore.sync("RQUSER", table=c("ONTIME_S", "NARROW"))

ore.sync(query = c("QUERY1" = "select 0 X, 1 Y from dual",

"QUERY2" = "select 1 X, 0 Y from dual"))

ore.ls()

v <- ore.push(c(1,2,3,4,5))

class(v)

df <- ore.push(data.frame(a=1:5, b=2:6))

class(df)

ore.exists("ONTIME_S", "RQUSER")

Caveat for ore.sync:
Data types long, long raw, UDTs, and reference types not supported
When encountered, warning issued and table not available, e.g., via
ore.ls()

Copyright © 2020 Oracle and/or its affiliates.

OML4R functions for interacting with database data

List the objects available in OML4R

environment mapped to database schema.

all.names=FALSE excludes names starting with

a ‘.’

Obtain object to named table/view in schema

Make database objects visible in R for named

schema. Can place corresponding environment

in specific position in env path

Remove schema’s environment from the object

search path

Remove table or view from schema’s R

environment

ore.attach("RQUSER")

ore.attach("RQUSER", pos=2)

search()

ore.ls()

ore.ls("RQUSER")

ore.ls("RQUSER",all.names=TRUE)

ore.ls("RQUSER",all.names=TRUE, pattern= "NAR")

t <- ore.get("ONTIME_S","RQUSER")

dim(t)

ore.detach("RQUSER")

ore.rm("ONTIME_S")

ore.exists("ONTIME_S", "RQUSER")

ore.sync()

ore.exists("ONTIME_S", "RQUSER")

ore.rm(c("ONTIME_S","NARROW"), "RQUSER")

ore.sync()

ore.attach()

Copyright © 2020 Oracle and/or its affiliates.

Creating and dropping tables

Create a database table from a data.frame or

ore.frame. Create a view from an ore.frame

Drop table or view in database

Execute SQL or PL/SQL without return value

Create a data.frame and then create a database

table from it, then clean up

ore.exec("create table F2 as select * from ONTIME_S")

ore.create(ONTIME_S, table = "NEW_ONTIME_S")

ore.create(ONTIME_S, view = "NEW_ONTIME_S_VIEW")

ore.drop(table="F2")

ore.drop(table="NEW_ONTIME_S")

ore.drop(view="NEW_ONTIME_S_VIEW")

df <- data.frame(A=1:26, B=letters[1:26])

class(df)

ore.create(df,table="TEST_DF")

ore.ls(pattern="TEST_DF")

class(TEST_DF)

head(TEST_DF)

ore.drop(table="TEST_DF")

ontime <- ore.pull(ONTIME_S)

class(ONTIME_S)

class(ontime)

Load data (pull) from database

Copyright © 2020 Oracle and/or its affiliates.

OREbase package

as.ore*

ore.vector

ore.character

ore.factor

ore.frame

ore.matrix

Copyright © 2020 Oracle and/or its affiliates.

Convert R type to OML4R type

as.ore.character

as.ore.numeric

as.ore.vector

as.ore.matrix

as.ore.frame

as.ore

df <- data.frame(A=1:26, B=letters[1:26])

dim(df)

class(df)

ore.f <- as.ore(df)

class(ore.f)

dim(ore.f)

head(ore.f)

Copyright © 2020 Oracle and/or its affiliates.

ore.vector functions

Copyright © 2020 Oracle and/or its affiliates.

show %in%

length unique

c split

is.vector sort

as.vector rank

[order

head table

tail paste

I interaction

compare sapply
==, >, <, !=, <=, >= tapply
is.na by
cut

cut - binning

Divides the range of 'x'
into intervals

Codes the values in 'x'
according to which
interval they fall

Leftmost interval
corresponds to level one,
the next leftmost to level
two, etc.

Copyright © 2020 Oracle and/or its affiliates.

x <- ONTIME_S

x$ARRDELAY_BINNED = cut(x$ARRDELAY,

breaks=c(-1000,-100,-50,-10,0,10,50,100,1000))

class(x$ARRDELAY_BINNED) # [1] "ore.factor”

OR

x$ARRDELAY_BINNED = cut(x$ARRDELAY,

breaks=c(-1000,-100,-50,-10,0,10,50,100,1000),

labels=FALSE)

class(x$ARRDELAY_BINNED) # [1] "ore.integer”

EXPLICITLY convert this column to a factor if labels = FALSE

Include x$DISTANE_BINNED into an ore.glm, ore.lm,

or ore.neural formula, it’s treated as categorical

x$DISTANCE_BINNED = cut(x$DISTANCE,

breaks=c(-1000,-100,-50,-10,0,10,50,100,1000))

fit = ore.glm(data=x,

formula=CANCELLED ~ DISTANCE_BINNED,

family=binomial(), trace=2)

split, sapply

split() divides the data in the vector x into
the groups defined by the factor g

The result is a list with elements
corresponding to the partitioned data

n <- 10; nn <- 100

g <- factor(round(n * runif(n * nn)))

x <- rnorm(n * nn) + sqrt(as.numeric(g))

X <- as.ore(x)

G <- as.ore(g)

XG <- split(X, G)

boxplot(XG, col = "lavender", notch =

TRUE, varwidth = TRUE)

sapply(XG, length)

sapply(XG, mean)

Copyright © 2020 Oracle and/or its affiliates.

split, sapply

split() divides the data in the vector x into
the groups defined by the factor g

The result is a list with elements
corresponding to the partitioned data

sapply() invokes the function on the list and
returns a vector or matrix of the same length

sapply is a user-friendly version and wrapper
of lapply by default returning a vector or
matrix

dat <- ONTIME_S[ONTIME_S$ARRDELAY < 100 &

ONTIME_S$ARRDELAY > -100,]

ad <- with(dat,split(ARRDELAY, UNIQUECARRIER))

boxplot(ad, col = "blue", notch = TRUE, cex=0.5,

varwidth = TRUE)

sapply(ad, length)

sapply(ad, mean, na.rm=TRUE)

Copyright © 2020 Oracle and/or its affiliates.

split, sapply results

Copyright © 2020 Oracle and/or its affiliates.

table

table() uses the cross-classifying
factors to build a contingency table
of the counts at each combination
of factor levels

The result is an object of
type “table”

(t <- table(ONTIME_S$DAYOFWEEK))

class(t)

barplot(t)

table(ONTIME_S$DAYOFWEEK, ONTIME_S$CANCELLED)

with (ONTIME_S,

table(DAYOFWEEK,CANCELLED,DIVERTED))

Copyright © 2020 Oracle and/or its affiliates.

table results

Copyright © 2020 Oracle and/or its affiliates.

ore.character functions

nchar x <- as.ore.character("MiXeD cAsE 123")

tolower
chartr("iXs", "why", x)

toupper
chartr("a-cX", "D-Fw", x)

casefold

chartr

sub

gsub

substr

Copyright © 2020 Oracle and/or its affiliates.

ore.factor functions

levels

is.factor

as.factor

summary

levels(ONTIME_S$CANCELLATIONCODE)

[1] "A" "B" "C" "D"

summary(ONTIME_S$CANCELLATIONCODE)

A B C D NA's

421 378 172 2 218959

Copyright © 2020 Oracle and/or its affiliates.

ore.frame functions
•show

•attach

•[

•$

•[[

•head

•tail

•length

•nrow

•ncol

•dim

•names

•colnames

•dimnames

•merge

•as.list

•unlist

•summary

•rbind

•cbind

•data.frame

•as.data.frame

•as.env

• eval

• subset

• with

• within

• transform

• arith
Unary: +, -
Binary: +, -, *, ^, %%, %/%, /

• compare
==, >, <, !=, <=, >=

• !

• xor

Copyright © 2020 Oracle and/or its affiliates.

ore.frame functions

is.na

is.finite

is.nan

is.infinite

Math
abs, sign, sqrt, ceiling, floor, trunc,

cummax, cummin, cumprod, cumsum,
exp, expm1, log, log10, log2, log1p, cos,
cosh, sin, sinh, tan, tanh, acos, acosh,
asin, asinh, atan, atanh, gamma,
lgamma, digamma, trigamma

Summary
max, min, range, prod, sum, any, all

rowSums

colSums

rowMeans

colMeans

scale

Interaction

split

unique

by

princomp

Copyright © 2020 Oracle and/or its affiliates.

Return subsets of vectors, matrices or

subset()

data frames which meet conditions.
ad <- ONTIME_S$ARRDELAY

ad <- subset(ad,ad<200 & ad>-200)

hist(ad,breaks=100)

addd <- ONTIME_S[,c("ARRDELAY",

"DEPDELAY")]

addd <- subset(addd,ARRDELAY < 100 &

ARRDELAY > -100 &

DEPDELAY < 100)

boxplot(addd$ARRDELAY, addd$DEPDELAY)

Copyright © 2020 Oracle and/or its affiliates.

scale

centers and/or scales
the columns of a
numeric ore.frame

Also referred to as
“normalizing”

X <- ONTIME_S[,c("ARRDELAY", "DEPDELAY")]

centered.X <- scale(X, scale=FALSE)

head(centered.X)

scaled.X <- scale(X, scale=TRUE)

head(scaled.X)

Copyright © 2020 Oracle and/or its affiliates.

princomp

Performs a principal component
analysis on the given numeric
ore.frame and returns the results as an
object of class 'princomp'

USA <- ore.push (USArrests)

princomp(USA, cor = TRUE)

R> USA <- ore.push (USArrests)

R> princomp(USA, cor = TRUE)

Call:

princomp(USA, cor = TRUE)

Standard deviations:

Comp.1 Comp.2 Comp.3 Comp.4

1.5748783 0.9948694 0.5971291 0.4164494

4 variables and 50 observations.

Copyright © 2020 Oracle and/or its affiliates.

transform

Applies transformations to a
data.frame / ore.frame

X <- ONTIME_S[,c("ARRDELAY", "DEPDELAY")]

X <-

transform(X,scale.ARRDELAY=scale(ARRDELAY),

scale.DEPDELAY=scale(DEPDELAY))

head(X)

Copyright © 2020 Oracle and/or its affiliates.

ore.matrix functions

• show

• is.matrix

• as.matrix

• nrow

• ncol

• dim

• rownames

• colnames

• dimnames

• t

• tabulate

• Arith
Unary: +, -
Binary: +, -, *, ^, %%, %/%, /

• Math
abs, sign, sqrt, ceiling, floor, trunc,

cummax, cummin, cumprod,
cumsum, exp, expm1, log, log10,
log2, log1p, cos, cosh, sin, sinh, tan,
tanh, acos, acosh, asin, asinh, atan,
atanh, gamma, lgamma, digamma,
trigamma

• Summary
max, min, range, prod, sum, any, all

• mean

• Bessel

• %*%

bessel I, K, J, Y

• crossprod

• tcrossprod

• solve

• backsolve

• forwardsolve

Copyright © 2020 Oracle and/or its affiliates.

Matrix multiplication %*%

%*% - multiplies two matrices, if they are conformable

x <- 1:4

y <- diag(x)

z <- matrix(1:12, ncol = 3, nrow = 4)

X <- ore.push(x); Y <- ore.push(y); Z <-

ore.push(z)

X %*% Z

Y %*% X

X %*% Z

Y %*% Z

Copyright © 2020 Oracle and/or its affiliates.

solve

solves the equation a %*% x = b for x, where b
can be either a vector or a matrix

hilbert <- function(n) {

i <- 1:n

1 / outer(i - 1, i, "+")

}

h8 <- hilbert(8); h8

sh8 <- solve(h8)

round(sh8 %*% h8, 3)

H8 <- ore.push(h8)

SH8 <- solve(H8)

round(SH8 %*% H8, 3)

Same result...

Copyright © 2020 Oracle and/or its affiliates.

OREgraphics package functions

arrows

boxplot

boxplot.stats

cdplot

coplot

hist

identify

lines

matplot

pairs

plot

points

polygon

polypath

rug

segments

smoothScatter

sunflowerplot

symbols

text

xspline

xy.coords

Copyright © 2020 Oracle and/or its affiliates.

OREstat package function
IQR

aggregate

binom.test

chisq.test

cor

cov

fitdistr

ks.test

mad

median

model.frame

model.matrix

aa.omit

quantile

reorder

rnorm

sd

t.test

terms

var

var.test

wilcox.test

Copyright © 2020 Oracle and/or its affiliates.

Invoke in-database aggregation function

aggdata <- aggregate(ONTIME_S$DEST,

by = list(ONTIME_S$DEST),

FUN = length)

class(aggdata)

head(aggdata)

Client R Engine

OML4R

Oracle Database

User tables

Transparency Layer

Source data is an ore.frame ONTIME_S,

which resides in Oracle Database

Overloaded aggregate() function accepts
ORE frames

aggregate() transparently switches
between code that works with standard R
data.frame and ore.frame objects

Returns an ore.frame In-db
stats

select DEST, count(*)

from ONTIME_S

group by DEST

Copyright © 2020 Oracle and/or its affiliates.

ks.test – Kolmgorov-Smirnov test

Tests for the equality of continuous
(numeric) vector probability
distributions

Compares…
• a sample with a reference probability

distribution (one-sample KS test)

• Two samples (two-sample KS test)

x <- ore.push(rnorm(500))

y <- ore.push(runif(300))

Do x and y come from the same distribution?

ks.test(x, x)

ks.test(x, y)

x <- ONTIME_S$ARRDELAY

y <- ONTIME_S$DEPDELAY

Do x and y come from the same distribution?

ks.test(x, y)

Copyright © 2020 Oracle and/or its affiliates.

OREeda package functions
exploratory data analysis

ore.corr

ore.crosstab

ore.freq

ore.lm

ore.rank

ore.sort

ore.summary

ore.univariate

Copyright © 2020 Oracle and/or its affiliates.

Solve problems involving
ONTIME data set

Copyright © 2020 Oracle and/or its affiliates.

Investigation Questions on ONTIME_S

Are some airports more prone to delays than others?

Are some days of the week likely to see fewer delays than others?

• Are these differences significant?

How do arrival delay distributions differ for the best and worst 3 airlines compared to the
industry?

• Are there significant differences among airlines?

For American Airlines, how has the distribution of delays for departures and arrivals evolved
over time?

How do average annual arrival delays compare across select airlines?

• What is the underlying trend for each airline?

Copyright © 2020 Oracle and/or its affiliates.

Interpreting a Box Plot

Outliers

1.5 IQR

3rd Quartile

Median

1st Quartile

1.5 IQR

Facilitates comparison among multiple •
variables

• Limited number of quantities summarize
each distribution

• Interquartile range measures spread of
distribution (middle 50% of data)

• Median position indicates skew

• Notch gives roughly 95% confidence
interval for the median

Copyright © 2020 Oracle and/or its affiliates.

Worst

Of the 36 busiest airports,
which are the best/worst for Arrival Delay?

Best

Copyright © 2020 Oracle and/or its affiliates.

Of the 36 busiest airports,
which are the best/worst for Arrival Delay?
Run one line at a time and view the result

ontime <- ONTIME_S

aggdata <- aggregate(ontime$DEST, by = list(ontime$DEST), FUN = length)

minx <- min(head(sort(aggdata$x, decreasing = TRUE), 36))

busiest_airports <- aggdata$Group.1[aggdata$x >= minx, drop = TRUE]

delay <- ontime$ARRDELAY[ontime$DEST %in% busiest_airports & ontime$YEAR == 2007]

dest <- ontime$DEST[ontime$DEST %in% busiest_airports & ontime$YEAR == 2007, drop =

TRUE]

dest <- reorder(dest, delay, FUN = median, na.rm = TRUE)

bd <- split(delay, dest)

boxplot(bd, notch = TRUE, col = "gold", cex = 0.5,

outline = FALSE, horizontal = TRUE, yaxt = "n",

main = "2007 Flight Delays by Airport -- top 36 busiest",

ylab = "Delay (minutes)", xlab = "Airport")

labels <- levels(dest)

text(par("usr")[1] - 3, 1:length(labels), srt = 0, adj = 1,

labels = labels, xpd = TRUE, cex = 0.75)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Copyright © 2020 Oracle and/or its affiliates.

Which days were the worst to fly for delays
over the past 22 years?

Copyright © 2020 Oracle and/or its affiliates.

Which days were the worst to fly for delays
over the past 22 years?
Run one line at a time and view the result

ontime <- ONTIME_S

delay <- ontime$ARRDELAY

dayofweek <- ontime$DAYOFWEEK

bd <- split(delay, dayofweek)

boxplot(bd, notch = TRUE, col = "red", cex = 0.5,

outline = FALSE, axes = FALSE,

main = "Airline Flight Delay by Day of Week",

ylab = "Delay (minutes)", xlab = "Day of Week")

axis(1, at=1:7, labels=c("Monday", "Tuesday", "Wednesday", "Thursday",

"Friday", "Saturday", "Sunday"))

axis(2)

1

2

3

4

5

6

7

8

9

10

11

Copyright © 2020 Oracle and/or its affiliates.

 Are select airlines getting better or worse?
Mean annual delay by Year

Copyright © 2020 Oracle and/or its affiliates.

Are select airlines getting better or worse?
Mean annual delay by Year

ontimeSubset <- subset(ONTIME_S, UNIQUECARRIER %in% c("AA", "AS", "CO", "DL","WN","NW"))

res22 <- with(ontimeSubset, tapply(ARRDELAY, list(UNIQUECARRIER, YEAR), mean, na.rm =

TRUE))

g_range <- range(0, res22, na.rm = TRUE)

rindex <- seq_len(nrow(res22))

cindex <- seq_len(ncol(res22))

par(mfrow = c(2,3))

for(i in rindex) {

temp <- data.frame(index = cindex, avg_delay = res22[i,])

plot(avg_delay ~ index, data = temp, col = "black",

axes = FALSE, ylim = g_range, xlab = "", ylab = "",

main = attr(res22, "dimnames")[[1]][i])

axis(1, at = cindex, labels = attr(res22, "dimnames")[[2]])

axis(2, at = 0:ceiling(g_range[2]))

abline(lm(avg_delay ~ index, data = temp), col = "green")

lines(lowess(temp$index, temp$avg_delay), col="red")

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

Copyright © 2020 Oracle and/or its affiliates.

R Object Persistence in Oracle Database

Copyright © 2020 Oracle and/or its affiliates.

load("myRObjects.RData")

R Object Persistence
What does R provide?

save()

load()

x1 <- lm(...)
Serialize and unserialize R objects to files x2 <- data.frame(...)

save(x1,x2,file="myRObjects.RData")

Standard R functions to persist R objects
do not interoperate with Oracle Database

Use cases include
• Persist models for subsequent data scoring

• Save entire R state to reload next R session

ls()
“x1” “x2”

Filesystem

“myRObjs.RData"

Copyright © 2020 Oracle and/or its affiliates.

R Object Persistence with OML4R

x1 <- ore.lm(...)
x2 <- ore.frame(...)
ore.save(x1,x2,name="ds1")

R Datastore

ore.load(name="ds1")
ls()
“x1” “x2”

ds1 {x1,x2}

ore.save()

ore.load()

Provide database storage to save/restore
R and OML4R objects across R sessions

Use cases include
• Enable passing of predictive model for

embedded R execution, instead of recreating
them inside the R functions

• Passing arguments to R functions with
embedded R execution

• Preserve OML4R objects across R sessions

Copyright © 2020 Oracle and/or its affiliates.

Datastore Details

Each schema has its own datastore table where R objects are saved as named
datastores

Maintain referential integrity of saved objects
• Account for objects auto-deleted at end of session

• Database objects, such as tables, ODM models, etc., not used by any
saved R object is deleted when R session ends

Functions
• ore.save, ore.load

• ore.datastore, ore.datastoreSummary

• ore.delete

• ore.grant, ore.revoke

Copyright © 2020 Oracle and/or its affiliates.

ore.save
DAT1 <- ore.push(ONTIME_S[,c("ARRDELAY", "DEPDELAY", "DISTANCE")])

ore.lm.mod <- ore.lm(ARRDELAY ~ DISTANCE + DEPDELAY, DAT1)

lm.mod <- lm(mpg ~ cyl + disp + hp + wt + gear, mtcars)

nb.mod <- ore.odmNB(YEAR ~ ARRDELAY + DEPDELAY + log(DISTANCE), ONTIME_S)

ore.save(ore.lm.mod, lm.mod, nb.mod, name = "myModels")

R objects and their referenced data tables are saved into the datastore of the connected schema

Saved R objects are identified with datastore name myModels

ore.save arguments
• ... — the R variables of the objects to be saved

• list — a character vector containing the names of objects to be saved

• name — datastore name to identify the set of saved R objects in current user's schema

• grantable — a logical value, if TRUE, read access to datastore can be granted to others

• envir — environment to search for objects to be saved

• overwrite — boolean indicating whether to overwrite the existing named datastore

• append — boolean indicating whether to append to the named datastore

• description — comments about the datastore

• envAsEmptyenv — a logical value indicating whether referenced environments in R objects to be saved should be
replaced with an empty environment during serialization

Copyright © 2020 Oracle and/or its affiliates.

ore.load

ore.load(name = "myModels")

Accesses the R objects stored in the connected schema with datastore
name "myModels"

These are restored to the R .GlobalEnv environment

Objects ore.lm.mod, lm.mod, nb.mod can now be referenced and used

Arguments
• name — datastore name under current user schema in the connected schema

• list — a character vector containing the names of objects to be loaded from the
datastore, default is all objects

• envir — the environment where R objects should be loaded in R

Copyright © 2020 Oracle and/or its affiliates.

ore.datastore

dsinfo <- ore.datastore(pattern = "my*")

List basic information about R datastore in connected schema
Result dsinfo is a data.frame
• Columns:

datastore.name, object.count (# objects in datastore), size (in bytes), creation.date,
description

• Rows: one per datastore object in schema

Arguments
• name — name of datastore under current user schema from which to return data
• pattern — optional regular expression. Only the datastores whose names match the pattern

are returned. By default, all the R datastores under the schema are returned
• type – An optional scalar character string specifying the type of datastore to list: 'user'

(default), 'private', 'all', 'grantable', 'grant', or 'granted'

Copyright © 2020 Oracle and/or its affiliates.

ore.datastore example

Copyright © 2020 Oracle and/or its affiliates.

ore.datastoreSummary

objinfo <- ore.datastoreSummary(name = "myModels")

List names of R objects that are saved within named datastore in connected
schema

Result objinfo is a data.frame
• Columns:

object.name, class, size (in bytes), length (if vector),
row.count (if data,frame), col.count (if data.frame)

• Rows: one per datastore object in schema

Argument
• name — name of datastore under current user schema from which to list object contents

• owner –optional character string specifying the owner of datastore to summarize

Copyright © 2020 Oracle and/or its affiliates.

ore.datastoreSummary example

Copyright © 2020 Oracle and/or its affiliates.

ore.delete

ore.delete(name = "myModels", list = character(0))

Deletes named datastore in connected schema and its corresponding objects

If objects saved in other datastores referenced the same objects, referenced objects are only
cleaned up when there are no more references

Argument

• name — name of datastore under current user schema from which to return data

• list – optional character vector containing names of objects to delete from datastore. If not
specified, entire datastore is deleted

Copyright © 2020 Oracle and/or its affiliates.

ore.grant and ore.revoke

ore.save(iris, name="ds_1", grantable=TRUE) # create grantable datastores

ore.save(mtcars, name="ds_2", grantable=TRUE)

ore.grant(name="ds_1", type="datastore", user=NULL) # grant read to all users

ore.datastore(type="all")[,-5] # show all datastores

ore.datastore(type="grantable")[, -4] # show grantable datastores

ore.datastore(type="grant") # show datastores where read granted

ore.revoke(name="ds_1", type="datastore", user=NULL) # revoke grant

ore.datastore(type="grant")

ore.delete(name="ds_1") # clean up

ore.delete(name="ds_2")

Copyright © 2020 Oracle and/or its affiliates.

ore.grant and ore.revoke

Arguments

• name – string name of R datastore

• type – string “datastore” or “rqscript”
namespace within which to
grant/revoke the read privilege

• user – optional string indicating user
being granted/revoked read privilege.
Default of NULL grants to all users,
i.e., PUBLIC

Copyright © 2020 Oracle and/or its affiliates.

Corresponding SQL API

List available datastores

select * from rquser_DataStoreList

View contents of a given datastore

select * from rquser_DataStoreContents

where dsname = 'ds_name';

Delete a datastore

rqDropDataStore('<ds_name>')

Copyright © 2020 Oracle and/or its affiliates.

Using datastore objects in embedded R SQL API

begin

-- sys.rqScriptDrop('buildmodel_1');

sys.rqScriptCreate('buildmodel_1',

'function(dat, out.dsname, out.objname) {

assign(out.objname, lm(ARRDELAY ~ DISTANCE + DEPDELAY, dat, model = FALSE))

ore.save(list=out.objname, name = out.dsname, overwrite=TRUE)

cbind(dsname=out.dsname, ore.datastoreSummary(name= out.dsname))

}');

end;

/

-- build model

select * from table(rqTableEval(

cursor(select ARRDELAY, DISTANCE, DEPDELAY from ONTIME_S),

cursor(select 'ontime_model' as "out.dsname",'lm.mod' as "out.objname",

1 as "ore.connect" from dual),

'select * from rquser_datastoreContents',

'buildmodel_1'));

Copyright © 2020 Oracle and/or its affiliates.

Data Preparation support for
Time Series Analytics

Copyright © 2020 Oracle and/or its affiliates.

Time Series Analysis
Motivation

Time series data is widely prevalent

• Stock / trading data

• Sales data

• Employment data

Need to understand trends,
seasonable effects, residuals

Copyright © 2020 Oracle and/or its affiliates.

…

Time Series Analysis

Aggregation and moving
window analysis of large
time series data

Equivalent functionality
from popular R packages
for data preparation
available in-database

https://cran.r-project.org/web/views/TimeSeries.html

Copyright © 2020 Oracle and/or its affiliates.

https://cran.r-project.org/web/views/TimeSeries.html

Support for Time Series Data

Oracle data types

• DATE, TIMESTAMP

• TIMESTAMP WITH TIME ZONE

• TIMESTAMP WITH LOCAL TIME ZONE

Analytic capabilities

• Date arithmetic, Aggregations & Percentiles

• Moving window calculations:
ore.rollmax ore.rollmean ore.rollmin ore.rollsd
ore.rollsum ore.rollvar

Copyright © 2020 Oracle and/or its affiliates.

Date and Time
Motivation

Support for key data types in Oracle Database and R

Date and time handling essential for time series data

Date and time representation unified in Oracle Database, but R lacks a
standard structure and functions

• E.g., Date, POSIXct, POSIXlt, difftime in R base package

• Mapping data types important for transparent database access

Copyright © 2020 Oracle and/or its affiliates.

Mapping Oracle Date and Time Data Types to R

Oracle SQL Data Type OML4R Data Type

DATE ore.datetime

TIMESTAMP ore.datetime

TIMESTAMP WITH TIME ZONE ore.datetime

TIMESTAMP WITH LOCAL TIME ZONE ore.datetime

INTERVAL YEAR TO MONTH ore.character

INTERVAL DAY TO SECOND ore.difftime

Copyright © 2020 Oracle and/or its affiliates.

Date and Time Transparency Layer functions

Binary operations

• Arithmetic (+, -, *, /)

• Comparison (==. <, >, !, <=, >=)

Row functions

• Component extraction (year, month, day, etc.)

• General operations (is.na, %in%, etc.)

• Number-like operations (round, trunc, etc.)

Vector operations

• Subsetting (“[“, head, tail)

• Distinct values (unique)

Aggregates

• Date-time quantiles (min, max, median, quantile)

• Tabulations (table)

Set operations

• Row filtering by date-time comparisons)

• Row splitting/grouping by date-time (split)

• Joining by date-time (merge)

Group by analysis

• Univariate fixed group aggregations by date-time
characteristics (aggregate, tapply, by, etc.)

Moving window aggregation

• Univariate moving window aggregations of ordered
data (ordering may or may not be date-time related)

Copyright © 2020 Oracle and/or its affiliates.

Date and Time aggregates

N <- 500

mydata <- data.frame(datetime =

seq(as.POSIXct("2001/01/01"),

as.POSIXct("2001/12/31"),

length.out = N),

difftime = as.difftime(runif(N),

units = "mins"),

x = rnorm(N))

MYDATA <- ore.push(mydata)

class(MYDATA)

class(MYDATA$datetime)

head(MYDATA,3)

Copyright © 2020 Oracle and/or its affiliates.

Date and Time aggregates
statistic aggregates

min(MYDATA$datetime)

max(MYDATA$datetime)

range(MYDATA$datetime)

median(MYDATA$datetime)

quantile(MYDATA$datetime, probs = c(0, 0.05, 0.10))

Copyright © 2020 Oracle and/or its affiliates.

Date and Time arithmetic

Arithmetic

day1Shift <- MYDATA$datetime +

as.difftime(1, units = "days")

class(day1Shift)

head(MYDATA$datetime,3)

head(day1Shift,3)

lag1Diff <- diff(MYDATA$datetime)

class(lag1Diff)

head(lag1Diff,3)

Copyright © 2020 Oracle and/or its affiliates.

Date and Time comparisons
isQ1 <- MYDATA$datetime < as.Date("2001/04/01")

class(isQ1)

head(isQ1,3)

isMarch <- isQ1 & MYDATA$datetime >

as.Date("2001/03/01")

class(isMarch)

head(isMarch,3)

sum(isMarch)

eoySubset <- MYDATA[MYDATA$datetime >

as.Date("2001/12/27"),]

class(eoySubset)

head(eoySubset,3)

Copyright © 2020 Oracle and/or its affiliates.

Date and Time accessors
Date/time accessors

year <- ore.year(MYDATA$datetime)

unique(year)

month <- ore.month(MYDATA$datetime)

range(month)

dayOfMonth <- ore.mday(MYDATA$datetime)

range(dayOfMonth)

hour <- ore.hour(MYDATA$datetime)

range(hour)

minute <- ore.minute(MYDATA$datetime)

range(minute)

second <- ore.second(MYDATA$datetime)

range(second)

Copyright © 2020 Oracle and/or its affiliates.

 Date and Time coercion
dateOnly <- as.ore.date(MYDATA$datetime)

class(dateOnly)

head(sort(unique(dateOnly)),3)

nameOfDay <- as.ore.character(MYDATA$datetime,
format = "DAY")

class(nameOfDay)

sort(unique(nameOfDay))

dayOfYear <-
as.integer(as.character(MYDATA$datetime,
format = "DDD"))

class(dayOfYear)

range(dayOfYear)

quarter <-
as.integer(as.character(MYDATA$datetime,
format = "Q"))

class(quarter)

sort(unique(quarter))

Copyright © 2020 Oracle and/or its affiliates.

Arima example with rolling mean window function

row.names(MYDATA) <- MYDATA$datetime

MYDATA$rollmean5 <- ore.rollmean(MYDATA$x,

k = 5)

MYDATA$rollsd5 <- ore.rollsd (MYDATA$x,

k = 5)

head(MYDATA)

marchData <- ore.pull(MYDATA[isMarch,])

tseries.x <- ts(marchData$x)

arima110.x <- arima(tseries.x, c(1,1,0))

predict(arima110.x, 3)

tseries.rm5 <- ts(marchData$rollmean5)

arima110.rm5 <- arima(tseries.rm5, c(1,1,0))

predict(arima110.rm5, 3)

Copyright © 2020 Oracle and/or its affiliates.

Ordering Framework

Copyright © 2020 Oracle and/or its affiliates.

Data Ordering
Contrasting R and Database behavior

R

DB

R’s in-memory nature has a well-defined, implicit ordering of elements in
vectors or objects based on vectors, e.g., data frames

R supports integer indexing by default, e.g., df[1:4,]

Notion of “unordered” data doesn’t really exist in R

RDBMS data, e.g., tables and views, do not define an implicit ordering

Enabling ordering involves having a primary key for tables and views

Explicit ordering of data possible via ORDER BY clause, provided a unique
ordering is possible, e.g., via single or multi-column key, but can impose a
performance penalty

Copyright © 2020 Oracle and/or its affiliates.

Features of Ordering Framework

Ordering enables integer and character indexing on ore.frames

Distinguish between functions that require ordering and those that do not

• Throw error if unordered data types provided to functions requiring ordering

• Provide alternative semantics where possible if functions would normally require
ordering and generate a warning only

- e.g., head() and tail() can return sample of n rows instead of the top or bottom rows

• Ability to turn off ordering warnings

Use row.names and row.names<- functions for ordered frames

• Enables specifying unique identifier on an unordered ore.frame to make it ordered

• Convert between ordered and unordered types by setting/clearing row.names

• Can be comprised of multiple values, supporting multi-column keys

For tables with unique constraints, option to create ordered frames during ore.sync()

Copyright © 2020 Oracle and/or its affiliates.

Ordered and unordered ore.frame objects

An ore.frame is ordered if…
• A primary key is defined on the underlying table

• It is produced by certain functions, e.g., “aggregate” and “cbind”

• The row names of the ore.frame are set to unique values

• All input ore.frames to relevant OML4R functions are ordered

An ore.frame is unordered if…
• No primary key is defined on the underlying table

• Even with a primary key is specified, ore.sync parameter use.keys is set to FALSE

• No row names are specified for the ore.frame

• Row names have been set to NULL

• One or more input ore.frames to relevant OML4R functions are unordered

Copyright © 2020 Oracle and/or its affiliates.

Ordering Framework: Prepare and view the data
R

library(kernlab)

data(spam)

s <- spam

s$TS <-as.integer(1:nrow(s)+1000)

s$USERID <- rep(1:50+350, each=2, len=nrow(s))

ore.drop(table='SPAM_PK')

ore.drop(table='SPAM_NOPK')

ore.create(s[,c(59:60,1:28)], table='SPAM_PK')

ore.create(s[,c(59:60,1:28)], table='SPAM_NOPK')

ore.exec('alter table SPAM_PK

add constraint SPAM_PK primary key ("USERID","TS")')

R

head(SPAM_PK[,1:8])

head(SPAM_NOPK[,1:8])

Copyright © 2020 Oracle and/or its affiliates.

Using Keys

ore.sync(use.keys = FALSE)

head(SPAM_PK[,1:4],3)

head(SPAM_NOPK[,1:4],3)

ore.sync() # use.keys TRUE default

head(SPAM_PK[,1:4],3)

head(SPAM_NOPK[,1:4],3)

is.null(row.names(SPAM_PK))

Load proxy objects as

unordered ore.frames

Notice that row names are

sequential numbers by default

Warning issued

Same for SPAM_NOPK table

Load proxy objects as ordered

ore.frames if primary key specified

for table

Notice that row names consist of TS and

USERID values separated by ‘|’
character forming the row name

Notice also that since SPAM_NOPK

does not have a primary key

specified, it is still an unordered

frame

Copyright © 2020 Oracle and/or its affiliates.

Using row.names
a <-

ore.push(data.frame(a=c(1:10,

10:1), b=letters[c(1:10,

10:1)]))

a$b

row.names(head(a))

row.names(head(SPAM_NOPK))

row.names(head(SPAM_PK))

row.names(SPAM_PK) <-

SPAM_PK$TS

row.names(head(SPAM_PK[,1:4]))

ore.frame created as

ordered by default

note: no warnings

Default row names

SPAM_NOPK has no unique key,

so row.names raises error

Row names consist of TS ‘|’
USERID

Reassign row names with TS only

Row names now

correspond to TS value

only

head(SPAM_PK[,1:4])

Copyright © 2020 Oracle and/or its affiliates.

Indexing ore.frames

SPAM_PK["2060", 1:4]

SPAM_PK[as.character(2060:2064), 1:4]

SPAM_PK[2060:2062, 1:4]

Index to a range of rows by

integer index

Index to a range of rows by

row names

Index to a specifically named row

Copyright © 2020 Oracle and/or its affiliates.

Merge Example

x <- SPAM_NOPK[,1:4]

y <- SPAM_NOPK[,c(1,2,4,5)]

m1 <- merge(x, y, by="USERID")

head(m1,3)

x <- SPAM_PK[,1:4]

y <- SPAM_PK[,c(1,2,4,5)]

m1 <- merge(x, y, by="USERID")

head(m1,3)

Set up data for illustrating merge

Merged result with no warning since

ordered frame

Set up data for illustrating merge

Merged result completes with warning

since not an ordered frame

Notice that row names are

concatenation of row names

from x and y

Copyright © 2020 Oracle and/or its affiliates.

Ordering Framework Options
options("ore.warn.order")

options("ore.warn.order" = TRUE)

options("ore.warn.order" = FALSE)

options("ore.sep")

options("ore.sep" = "/")

options("ore.sep" = "|")

row.names(NARROW) <- NARROW[,c("ID", "AGE")]

ore.pull(head(NARROW), sep = '+')

Copyright © 2020 Oracle and/or its affiliates.

Ordering Recommended Practice

Ordering is expensive in the database

Most operations in R do not need ordering

In ore.sync(), set use.keys = FALSE almost always UNLESS you know that you need more

If you are sampling data or you need integer indexing for any other purpose, then set
use.keys = TRUE as you need ordered ore frames

Copyright © 2020 Oracle and/or its affiliates.

Global Options in OML4R

Copyright © 2020 Oracle and/or its affiliates.

Global Options in OML4R
help(ore.options)

Options for Reporting
• ore.trace: A logical value indicating whether iterative OML4R functions should print output

at each iteration. Default: FALSE

Options for Row Ordering
• ore.sep: A character string specifying the separator to use between multiple column row

names of an 'ore.frame'. Default: "|”

• ore.warn.order: A logical value indicating whether a warning should be issued when pulling
an 'ore.frame' that lacks row names or an 'ore.vector' that lacks element names into
memory. Default: 'TRUE'

Copyright © 2020 Oracle and/or its affiliates.

Global Options in OML4R

Options for Server Execution:
• ore.parallel: A preferred degree of parallelism to use in the embedded R job; either a

positive integer greater than or equal to '2' for a specific degree of parallelism, a value of
'FALSE' or '1' for no parallelism, a value of 'TRUE' for the database's default for
parallelism, or 'NULL' for the database default for the operation. OML4R will use the
same DOP for all operations based on the ore.parallel setting. Default: NULL

Options for Subsetting
• ore.na.extract: A logical value used during logical subscripting of an ore.frame or

ore.vector object. When TRUE, rows or elements with an NA logical subscript produces
rows or elements with NA values. When FALSE an NA logical subscript is interpreted as a
FALSE value, resulting in the removal of the corresponding row or element. Default is
FALSE, whereas TRUE would mimic how R treats missing value logical subscripting of
data.frame and vector objects.

Copyright © 2020 Oracle and/or its affiliates.

In-database Sampling and
Random Partitioning

Copyright © 2020 Oracle and/or its affiliates.

Simple random sampling

Split data sampling

Systematic sampling

Stratified sampling

Cluster sampling

Quota sampling

Accidental / Convenience sampling

• via row order access

• via hashing

High performance in-database sampling techniques

Data

Oracle Database

dat <- ore.pull(…)
samp <- dat[sample(nrow(x),size,]

Data

Oracle Database

samp <- x[sample(nrow(x), size),,]
samp <- ore.pull(…)

Copyright © 2020 Oracle and/or its affiliates.

In-database Sampling
Motivation

R provides basic sampling capabilities, but requires data to be pre-loaded into
memory

Catch 22

• Data too large to fit in memory, so need to sample

• Can’t sample because data won’t fit in memory

Minimize data movement by sampling in Oracle Database with OML4R
ordering framework’s integer row indexing

Copyright © 2020 Oracle and/or its affiliates.

Simple random sampling
Select rows at random

set.seed(1)

N <- 20

myData <- data.frame(a=1:N,b=letters[1:N])

MYDATA <- ore.push(myData)

head(MYDATA)

sampleSize <- 5

simpleRandomSample <- MYDATA[sample(nrow(MYDATA),

sampleSize), ,

drop=FALSE]

class(simpleRandomSample)

simpleRandomSample

Copyright © 2020 Oracle and/or its affiliates.

Split data sampling
Randomly partition data in train and test sets

set.seed(1)

sampleSize <- 5

ind <- sample(1:nrow(MYDATA),sampleSize)

group <- as.integer(1:nrow(MYDATA) %in% ind)

MYDATA.train <- MYDATA[group==FALSE,]

dim(MYDATA.train)

class(MYDATA.train)

MYDATA.test <- MYDATA[group==TRUE,]

dim(MYDATA.test)

Copyright © 2020 Oracle and/or its affiliates.

Systematic sampling
Select rows at regular intervals

set.seed(1)

N <- 20

myData <- data.frame(a=1:20,b=letters[1:N])

MYDATA <- ore.push(myData)

head(MYDATA)

start <- 2

by <- 3

systematicSample <- MYDATA[seq(start, nrow(MYDATA),

by = by),

, drop=FALSE]

class(systematicSample)

systematicSample

Copyright © 2020 Oracle and/or its affiliates.

Stratified sampling
Select rows within each group

set.seed(1)

N <- 200

myData <- data.frame(a=1:N,b=round(rnorm(N),2),

group=round(rnorm(N,4),0))

MYDATA <- ore.push(myData)

head(MYDATA)

sampleSize <- 10

stratifiedSample <-

do.call(rbind,

lapply(split(MYDATA, MYDATA$group),

function(y) {

ny <- nrow(y)

y[sample(ny, sampleSize*ny/N),,

drop = FALSE]

}))

class(stratifiedSample)

stratifiedSample

Copyright © 2020 Oracle and/or its affiliates.

Stratified sampling
ore.stratified.sample

ore.drop("NARROW_SAMPLE_G")

ss <- ore.stratified.sample(x=NARROW, by="GENDER",

pct=0.1,

res.nm="NARROW_SAMPLE_G")

dim(NARROW_SAMPLE_G)

summary(NARROW_SAMPLE_G$GENDER)

ore.drop("R1_SAMPLE_G_MS")

res <- ore.stratified.sample(x=NARROW,

by=c("GENDER","MARITAL_STATUS"),

pct=0.1,

res.nm="R1_SAMPLE_G_MS")

dim(R1_SAMPLE_G_MS)

summary(R1_SAMPLE_G_MS$GENDER)

summary(R1_SAMPLE_G_MS$MARITAL_STATUS)

with(R1_SAMPLE_G_MS, table(GENDER,MARITAL_STATUS))

Copyright © 2020 Oracle and/or its affiliates.

Cluster sampling
Select whole groups at random

set.seed(1)

N <- 200

myData <- data.frame(a=1:N,b=round(runif(N),2),

group=round(rnorm(N,4),0))

MYDATA <- ore.push(myData)

head(MYDATA)

sampleSize <- 5

clusterSample <- do.call(rbind,

sample(split(MYDATA,

MYDATA$group),2))

class(clusterSample)

unique(clusterSample$group)

Copyright © 2020 Oracle and/or its affiliates.

Quota sampling
Select first N rows

set.seed(1)

N <- 200

myData <- data.frame(a=1:N,b=round(runif(N),2))

MYDATA <- ore.push(myData)

sampleSize <- 10

quotaSample1 <- head(MYDATA, sampleSize)

quotaSample1

Copyright © 2020 Oracle and/or its affiliates.

Data Types

Copyright © 2020 Oracle and/or its affiliates.

Data Types
Mapping between R and Oracle Database

SQL – ROracle Read R SQL – ROracle Write

varchar2, char, clob, rowid character varchar2(4000)

number, float, binary_float,
binary_double

numeric if(ora.number==T) number
else binary_double

integer integer integer

logical integer

date, timestamp POSIXct timestamp

Date timestamp

interval day to second difftime interval day to second

raw, blob, bfile ‘list’ of ‘raw’ vectors raw(2000)

factor (and other
types)

character

Copyright © 2020 Oracle and/or its affiliates.

Create a data.frame with various types,
then ore.frame

df <- data.frame(a="abc",

b=1.456,

c=TRUE,

d=as.integer(1),

e=Sys.Date(),

f=as.difftime(c("0:3:20", "11:23:15")))

str(df)

DF <- ore.push(df)

str(DF)

DF@desc$Sclass

DF$a <- as.ore.character(DF$a)

Copyright © 2020 Oracle and/or its affiliates.

Copyright © 2020 Oracle and/or its affiliates.

--------------- -------- -----------

CLOB and BLOB support in ore.push and ore.pull

Type

R> vbraw <- raw(3000L)

R> attr(vbraw, "ora.type") <- "blob"

R> oreBRaw <- ore.push(vbraw)

R> class(oreBRaw)

[1] "ore.raw"

attr(,"package")

[1] "OREbase"

R> new.vbraw <- ore.pull(oreBRaw)

R> class(new.vbraw)

[1] "raw"

R> length(new.vbraw)

[1] 3000

R> oreBRaw@sqlTable

[1] "\"RQUSER\".\"ORE$3_18\""

SQL> desc ORE$3_18

Name Null?

VAL001 BLOB

VAL002 NUMBER(38)

VAL003 NUMBER(38)

Copyright © 2020 Oracle and/or its affiliates.

Summary

The purpose of the Transparency Layer is to support in-database data
exploration, data preparation, and data analysis en route to
application of machine learning algorithms, where we have a mix of
in-database and CRAN techniques.

OML4R provides transparency for in-database execution from R

It’s transparent…
• R users need use only R syntax

• No need to learn a different programming paradigm or environment

• Users see database objects as proxy R objects to simplify interaction and
manipulation

Copyright © 2020 Oracle and/or its affiliates.

For more information…

oracle.com/machine-learning

See also AskTOM OML Office Hours

Copyright © 2020 Oracle and/or its affiliates.

https://asktom.oracle.com/pls/apex/asktom.search?office=6801#sessions

Thank You

Mark Hornick
Oracle Machine Learning Product Management

