
 

 
 

 
 

Hard Partitioning with Oracle VM Server for x86 
O R A C L E  W H I T E  P A P E R   |  J U L Y  2 0 1 6  

 



Hard Partitioning With Oracle VM Server for x86  

 

 1
 

Introduction 

This document describes hard partitioning with Oracle VM Server for x86, and how to use it to 
conform to the Oracle licensing policies for partitioned environments. 

CPU Cores and CPU Threads 

On an x86-based system, a CPU core (no hyperthreading enabled) or a CPU thread (hyperthreading 
enabled) within a core is presented as a physical CPU by the hypervisor or the bare metal operating 
system. vCPUs (virtual CPUs) are exposed to the guest virtual machine as CPUs: the guest schedules 
applications on these vCPUs, and the hypervisor schedules these vCPUs over the physical CPU cores 
or threads. All vCPUs from a guest are symmetrical. Oracle VM Server treats these equally, as long as 
scheduling parameters such as using CPU pinning have not changed. 

Oracle VM offers an advanced feature for hard partitioning, also known as CPU pinning. Hard 
partitioning means binding vCPUs to physical CPU threads or cores, and preventing these vCPUs 
from being scheduled on physical CPUs - threads or cores other than the ones specified.  

Oracle Hard Partition Licensing  

To conform to the Oracle hard partition licensing requirement, you must follow the instructions 
described in this white paper to bind vCPUs to physical CPU threads or cores.  

Live migration of CPU pinned virtual machines to another Oracle VM Server is not permitted under 
the terms of the hard partitioning license. Consequently, for Oracle VM Release 3, any servers running 
CPU pinned guests must not be included in DRS (Distributed Resource Scheduler) and DPM 
(Distributed Power Management) policies.  

When live migration is used in an Oracle VM server pool, hard partition licensing is not applicable. 
You must determine the number of virtual machines running the Oracle Software and then license the 
same number of physical servers (starting with the largest servers based on the CPU core count) up to 
the total number of the physical servers in the pool. For example, if a customer has a server pool with 
32 servers and 20 virtual machines running Oracle Software within the server pool, the customer must 
license the 20 largest physical servers in the pool. If the customer is running 50 virtual machines with 
Oracle Software in a pool of 32 physical servers, they need only to license the 32 physical servers in the 
pool.  

Live migration of other virtual machines with non-Oracle software within the server pool is not 
relevant to Oracle software hard partitioning or has no impact to how Oracle software license is 
calculated. 

“Trusted Partitions” allow subset licensing without limitation on live migration, but only available on 
the approved Oracle Engineered Systems listed on Oracle licensing policies for partitioned 
environments.

http://www.oracle.com/us/corporate/pricing/partitioning-070609.pdf
http://www.oracle.com/us/corporate/pricing/partitioning-070609.pdf
http://www.oracle.com/us/corporate/pricing/partitioning-070609.pdf


Hard Partitioning With Oracle VM Server for x86  

 

2 

Understanding CPU Topology in Oracle VM 

Get a Summary of the Server Hardware 

On an Oracle VM Server, you can run the xm info command to print out the basic CPU configuration 
of the server hardware. Look for the lines below in the output for detail on your system’s CPUs.  

# xm info 

... 

nr_cpus                : 8 

nr_nodes               : 1 

cores_per_socket       : 4 

threads_per_core       : 2 

cpu_mhz                : 3200 

... 

This server has a single socket with 4 cores and 2 threads per core. Total of 8 "CPUs". So CPU 0..7 is 
really thread 0..7.  

# xm info 

... 

nr_cpus                : 12 

nr_nodes               : 1 

cores_per_socket       : 6 

threads_per_core       : 2 

... 

This server has a single socket with 6 cores and 2 threads per core, thus there are total of 12 "CPUs".  

Get the CPU Topology  

The xenpm command prints out the thread/core/socket topology on a given server:  

# xenpm get-cpu-topology 

CPU     core    socket  node 

CPU0     0       0       0 

CPU1     0       0       0 

CPU2     1       0       0 

CPU3     1       0       0 

The above examples show a single socket machine with 2 cores and 2 threads per core. CPU 0 is 
thread 0 of core 0, CPU 1 is thread 1 of core 0, CPU 2 is thread 0 of core 1, and CPU 3 is thread 1 of 
core 1. cpus="0,1" in the virtual machine configuration file (vm.cfg), would be running the VM on 
core 0. cpus="0-3" in the vm.cfg, would actually run a virtual machine on both cores.  

# xenpm get-cpu-topology 

CPU     core    socket  node 

CPU0     0       0       0 

CPU1     0       0       0 

CPU2     1       0       0 

CPU3     1       0       0 

CPU4     2       0       0 

CPU5     2       0       0 

CPU6     3       0       0 

CPU7     3       0       0 

In the above example, you have a single socket server with 4 cores and 2 threads per core. CPU 0 maps 
to the thread 0 of core 0, CPU1 maps to the thread 1 of core 0, and so on. cpus="4-7" in the vm.cfg 
file would run the virtual machine on cores 2 and 3.  

  



Hard Partitioning With Oracle VM Server for x86  

 

3 

# xenpm get-cpu-topology 

CPU     core    socket  node 

CPU0     0       0       0 

CPU1     0       0       0 

CPU2     1       0       0 

CPU3     1       0       0 

CPU4     2       0       0 

CPU5     2       0       0 

CPU6     8       0       0 

CPU7     8       0       0 

CPU8     9       0       0 

CPU9     9       0       0 

CPU10    10      0       0 

CPU11    10      0       0 

In the above example, you see a single socket server with 6 cores with hyperthreading enabled.  

Get the CPU Topology for vCPU Bindings to Physical CPUs 

The xm vcpu-list command shows a summary of which virtual CPUs are running on which physical 
CPUs.  

# xm vcpu-list 1 

Name                                ID  VCPU   CPU State   Time(s) CPU Affinity 

0004fb00000600007c351fa24276c63f     1     0     5   -b-    4673.6 5-6 

0004fb00000600007c351fa24276c63f     1     1     5   -b-    4534.0 5-6 

If you add the virtual machine or domain ID to the command xm vcpu-list 1, you get the information 
for just that guest. In the above example, you have a guest with 2 virtual CPUs both running, at this 
time, on physical CPU (thread in this case) 5. The column CPU Affinity shows 5-6, which means that 
both virtual CPUs could be running on either thread 5 or 6. This shows that the guest is pinned on 
those 2 threads. Combined with the information of xenpm get-cpu-topology you can then see that in 
this case, CPU 5 is thread 1 of core 2, and CPU 6 is thread 0 of core 8. So this 2 vCPU guest is pinned 
to 2 separate physical cores.  

# xm vcpu-list 

Name                                ID  VCPU   CPU State   Time(s) CPU Affinity 

0004fb00000600007c351fa24276c63f     1     0     5   -b-    4676.8 5-6 

0004fb00000600007c351fa24276c63f     1     1     5   -b-    4537.0 5-6 

Domain-0                             0     0     0   -b-     932.1 any cpu 

Domain-0                             0     1     6   -b-    1168.0 any cpu 

Domain-0                             0     2     7   -b-    1010.8 any cpu 

Domain-0                             0     3    11   -b-     903.0 any cpu 

Domain-0                             0     4     8   -b-     494.2 any cpu 

Domain-0                             0     5     9   r--     773.8 any cpu 

Domain-0                             0     6     1   -b-     522.7 any cpu 

Domain-0                             0     7     2   -b-     785.1 any cpu 

Domain-0                             0     8     4   -b-     473.8 any cpu 

Domain-0                             0     9     3   -b-     728.1 any cpu 

Domain-0                             0    10    10   -b-     490.8 any cpu 

Domain-0                             0    11     0   r--    1219.6 any cpu 

This is the same system, but xm vcpu-list without the argument. It also shows the dom0 guest. As you 
can see in this example, dom0 can run on any physical thread and the CPU Affinity is any cpu, which 
implies any virtual CPU can be scheduled on any physical thread, so there is no pinning or partitioning. 



Hard Partitioning With Oracle VM Server for x86  

 

4 

Oracle VM 3: Configuring Hard Partitioning 

While using Oracle VM 3, you can use the Oracle VM Utilities (ovm_vmcontrol) to set hard 
partitioning.  

Setting Hard Partitioning Using Oracle VM 3 Utilities 

You can use the Oracle VM 3 Utilities (ovm_vmcontrol) to set and get the CPU/vCPU bindings for a 
virtual machine through Oracle VM Manager 3.  

The Oracle VM 3 Utilities are a collection of command line scripts that allow you to perform a set of 
basic management tasks. The Oracle VM Utilities are available for download as a .zip file from My 
Oracle Support, search for patch ID 13602094. Please review the patch readme file as versions of 
Oracle VM utilities relate to versions of Oracle VM. Also read  Administrator’s Guide in the Oracle VM 
Documentation. 

# ./ovm_vmcontrol -u admin -p Manager1 -h oracle_vm_manager_hostname -v apitest -c 

getvcpu 

Oracle VM VM Control utility 2.1. 

Connecting to OVM Manager using Web Service. 

Connected. 

OVM Manager version: 3.4.1.1369 
Command : getvcpu 

Getting pinned CPU list... 
Current pinned CPU: 5,6 

In the above example, a virtual machine named apitest accepts the action getvcpu to show that virtual 
CPUs of this guest are bound to threads 5 and 6.  

Let's bind the vCPUs to core 0 by running the following command:  

# ./ovm_vmcontrol -u admin -p Manager1 -h oracle_vm_manager_hostname -v apitest -c 

setvcpu  -s 0 

Oracle VM VM Control utility 2.1. 

Connecting to OVM Manager using Web Service. 

Connected. 

OVM Manager version: 3.4.1.1369 

Command : setvcpu 

Pinning vCPU ‘0’ to VM ‘apitest’ 

Pinning vCPU succeed. 

Once you have configured a virtual machine for CPU pinning, you may need to stop the virtual 
machine and then start it again before the CPU pinning can take effect. Now, running the xm vcpu-
list command to find out the CPU pinning status:  

# xm vcpu-list 1 

Name                                ID  VCPU   CPU State   Time(s) CPU Affinity 

0004fb00000600007c351fa24276c63f     1     0     0   -b-    4687.6 0 

0004fb00000600007c351fa24276c63f     1     1     0   -b-    4547.2 0 

The VM now has CPU Affinity 0 for both virtual CPUs. 

In the above example we were running the 2.1ovm-utilities from an Oracle Linux host external to the 
Oracle VM Manager which is possible with Oracle VM 3.4 as it is fully web services based. 

In the next section, we’ll show how to set hard partitioning by modifying the virtual machine 
configuration file (vm.cfg) for Oracle VM 2.  

 

http://support.oracle.com/
http://support.oracle.com/
https://updates.oracle.com/Orion/PatchDetails/process_form?patch_num=13602094
http://www.oracle.com/technetwork/documentation/vm-096300.html
http://www.oracle.com/technetwork/documentation/vm-096300.html


Hard Partitioning With Oracle VM Server for x86  

 

5 

Oracle VM 2: Configuring Hard Partitioning 

Locate the virtual machine in the storage repository. For example, the virtual machine is stored in 
/OVS/running_pool/directory-to-virtual-machine. Next, modify the vm.cfg file for the corresponding 
guest or virtual machine: 

cpus = '0-3'  

or  

cpus = '0,1'  

In the first example, only CPUs 0, 1, 2, and 3 can be used for the guest. In the second example, CPUs 
0 and 1 are used.  

If you have a guest that has 4 vCPUs with cpus = '0' in the vm.cfg file, all 4 vCPUs will be scheduled 
on the same physical CPU. If you have a guest that has 4 vCPUs and you want to use 2 CPUs, then 
add cpus = '0,1' in this configuration on an 8-CPU system :  

# xm vcpu-list guest1 

Name   ID VCPU CPU State Time(s) CPU Affinity  

guest1 4  0    4   -b-   8645.7  any cpu  

guest1 4  1    4   -b-   9843.6  any cpu  

The virtual machine guest1 has 2 vCPUs and they can run on any of the 8 CPUs.  

# xm vcpu-list guest1  

Name   ID VCPU CPU State Time(s) CPU Affinity  

guest1 26 0    0   -b-   8646.6  0  

guest1 26 1    0   -b-   9844.3  0  

The virtual machine guest1 has 2 vCPUs and they can only run on physical CPU 0.  

# xm vcpu-list guest1  

Name   ID VCPU CPU State Time(s) CPU Affinity  

guest1 26 0    0   -b-   8647.8  0  

guest1 26 1    1   -b-   9845.0  1  

The virtual machine guest 1 has 2 vCPUs and they can only run on physical CPU 0, 1.  

Conclusion 

With Oracle VM Server for x86, to conform to the Oracle hard partition licensing requirement, you 
must bind a virtual machine to physical CPUs or cores. This prevents the software from running on 
physical cores other than the ones specified. In such a case, virtual machines are configured with 
dedicated CPU resources instead of the default of resource scheduling, which is to use all available 
CPUs of the server. Using hard partitioning to limit Oracle product software licensing also adds some 
restrictions such as live migration, DRS and DPM.  

For more information about Oracle's virtualization solutions, visit oracle.com/virtualization.

http://www.oracle.com/us/technologies/virtualization/overview/index.html


 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Oracle Corporation, World Headquarters  Worldwide Inquiries 

500 Oracle Parkway Phone: +1.650.506.7000 

Redwood Shores, CA 94065, USA Fax: +1.650.506.7200 

 

 

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. This document is provided for information purposes only, and the 

contents hereof are subject to change without notice. This document is not warranted to be error-free, nor subject to any other 
warranties or conditions, whether expressed orally or implied in law, including implied warranties and conditions of merchantability or 
fitness for a particular purpose. We specifically disclaim any liability with respect to this document, and no contractual obligations are 
formed either directly or indirectly by this document. This document may not be reproduced or transmitted in any form or by any 
means, electronic or mechanical, for any purpose, without our prior written permission.  
 
Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. 
 
Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and 
are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are 
trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group. 0116 
 
Hard Partitioning with Oracle VM Server for x86 
July 2016 
 

 

  

 

 

C O N N E C T  W I T H  U S  

 
blogs.oracle.com/virtualization 

 
facebook.com/oracleVirtualization 

 
twitter.com/ORCL_Virtualize 

 
oracle.com/virtualization 

 


