

An Oracle White Paper
October 2011

HP-UX to Oracle Solaris Porting Guide
Getting Started on the Move to Oracle Solaris

HP-UX to Oracle Solaris Porting Guide

Chapter 1 Introduction.. 1
Oracle Solaris ... 1
The Advantages of Porting to Oracle Solaris.................................. 2

Chapter 2 The Porting Process.. 4
Infrastructure and Application Porting Assessment 4
Build Environment Deployment... 5
Data Integration .. 5
Source Code Porting... 6
Application Verification.. 6
Commercial Applications and Third-Party Products 6

Chapter 3 Operating System Considerations................................... 7
Processor Endianness .. 7
Data Alignment ... 7
Read/Write Structures... 8
Storage Order and Alignment ... 8
64-Bit Data Models ... 8

Chapter 4 Runtime Environment.. 11
Environment Variables.. 11
Permissions .. 11
Process Resource and Runtime Limits... 12
Application Programming Interfaces ... 13
System Libraries ... 14
Shells and Utilities... 14
Scripts ... 15

Chapter 5 Devices.. 16
Device Naming Conventions... 16
Device Driver Interface/Driver Kernel Interface 17
Greater Storage Device Support... 18
Best Practices for Porting Device Drivers 18

HP-UX to Oracle Solaris Porting Guide

Chapter 6 Development Environment .. 21
Oracle Solaris Studio Components... 22
Java Programming Tools .. 25
Other Programming Tools... 26
Developing Applications.. 26
Building Applications... 34
Debugging Applications .. 40
Optimizing Applications... 41

Chapter 7 Threads and Multiprocessing .. 52
Threading Models ... 52

Chapter 8 Distributing Applications .. 55
Using the Image Packaging System in Oracle Solaris 11............. 55
Using System V Packages in Oracle Solaris 10 57

Chapter 9 Running Applications... 59
Oracle Solaris Service Management Facility 59
Continued Support for .rc Scripts.. 63

Chapter 10 File Systems and Data .. 64
File Systems ... 64
Data Transformation ... 69

Chapter 11 Virtualization.. 71
Server Virtualization.. 71
Network Virtualization ... 75
HP-UX and Oracle Solaris Virtualization Comparision Summary . 76

Chapter 12 Clustering .. 78
Oracle Real Applications Cluster .. 78
Oracle Solaris Cluster ... 78
Differences Between HP Serviceguard and
Oracle Solaris Cluster ... 82

HP-UX to Oracle Solaris Porting Guide

Chapter 13 Building Secure Applications....................................... 84
Security Interfaces for Developers.. 85

Chapter 14 Internationalization and Localization 91
Overview ... 91
Encoding Methods .. 92
Input Methods ... 94
Codeset Converters .. 96
Locales.. 97
Message Catalogs .. 97
X and Motif Applications ... 97

Appendix A C Library Mapping .. 98

Appendix B API Differences... 99

Appendix C Summary of Supported Locales 100

Appendix D Privileges Interfaces ... 106

Appendix E Cryptographic Functions... 107

Appendix F Command Comparison Summary 109

Appendix G Resources .. 113

Appendix H Glossary ... 115

HP-UX to Oracle Solaris Porting Guide

Chapter 1 Introduction

Today many IT organizations recognize the inability of legacy systems to respond to growing service and
application demands. For many, HP systems running the HP-UX 11i operating system — particularly
those based on Intel® Itanium® processors — are failing to keep pace. With the future of the platform
uncertain, independent software vendor (ISV) support for these systems is waning. As enterprises look for
alternatives, Oracle’s SPARC and x86 systems running the Oracle Solaris operating system emerge as an
obvious, and safe, choice for porting critical business applications. HP-UX and Oracle Solaris share a
common UNIX history—and are more alike than they are different—making application porting a
straightforward task.

Once applications are ported to Oracle Solaris, developers can focus on application enhancements rather
than worrying about adherence to operating system updates. A binary application guarantee ensures that
applications ported to the Oracle Solaris Application Binary Interface will run without modification on all
updates to Oracle Solaris as well as later releases of the operating system. In addition, source code
compatibility between platforms ensures applications ported to SPARC systems can be recompiled easily
on x86 systems and vice versa.

This guide serves as a porting roadmap, providing insight into the issues and best practices to consider
when porting applications from HP-UX 11i v3 to the Oracle Solaris operating system. Included is an
overview of the differences between the HP-UX 11i v3, Oracle Solaris 10, and Oracle Solaris 11
environments, development tools, virtualization and clustering technologies, and more. Additional sections
describe some of the advanced features of Oracle Solaris that are unique in the industry and may be
unfamiliar to developers new to the platform. References to more detailed information are provided
throughout the document and in Appendix G.

Oracle Solaris

For over two decades, Oracle Solaris has been the platform of choice for enterprise developers and ISVs.
Providing a rich environment for strategic applications, Oracle Solaris combines key computing
elements—operating system, networking, storage management, and user environment—into a stable, high-
quality foundation that developers can depend on for creating and deploying solutions. Many innovations,
including built-in virtualization technology, support for SPARC and x86 processor-based systems, massive
scalability, rich security capabilities, debugging and analysis tools and more, make Oracle Solaris the best
platform for developing and deploying enterprise applications.

Oracle Solaris 11 raises the bar on the innovation introduced in Oracle Solaris 10. A wide range of built-in
features and unbundled tools are designed to help developers create higher performing applications in less
time and with less risk. Providing the first fully virtualized operating system and including over 2,700
projects, 400 inventions, and support for over 11,000 applications, Oracle Solaris 11 provides the
foundation of Oracle’s complete applications-to-disk technology stack and a strategic platform for
application developers.

1

HP-UX to Oracle Solaris Porting Guide

The Advantages of Porting to Oracle Solaris

Oracle Solaris isn’t simply an operating system. It is the foundation for enterprise application development
and deployment. Integrated with this powerful operating system is Oracle’s software portfolio—
virtualization, clustering, and development technologies such as Oracle VM, Oracle Solaris Cluster, and
Oracle Solaris Studio development tools—which together form the core of a large developer ecosystem.
Porting applications to this rich environment delivers a host of advantages.

•	 Develop and deploy on a single platform. Technology advancements come together in Oracle Solaris
to create a single, integrated platform that developers can use to build and test applications, and model
production environments. Integrated testing across the hardware and software stack enables Oracle
Solaris to offer stability for the end-to-end process of enterprise application development and
deployment. In addition, a new software packaging model in Oracle Solaris 11 takes the guesswork out
of figuring out which operating system patches need to be bundled with applications, easing the move to
production environments and creating more reliable application stacks.

•	 Scale up and out without source code modification. Oracle Solaris runs on a broad range of SPARC
and x86 processor-based systems. Support for thousands of threads, terabytes of memory, and hundreds
of Gbps of network bandwidth is seamless through APIs that remain consistent from one version of the
operating system to the next. In addition, integrated server, storage, and network virtualization and
resource control mechanisms support the vertical and horizontal scalability and optimized utilization
needed for high-demand enterprise applications and growing data sets.

•	 Take advantage of industry-leading performance. Oracle Solaris continues to power Oracle’s x86
and SPARC servers to new world records for performance, scalability, and cost-effectiveness. An
optimized TCP/IP stack, Multiple Page Size Support (MPSS), Memory Placement Optimization (MPO),
multithreading advancements, and more help tune platforms and optimize systems.

•	 Run with confidence. Knowing applications can run in the face of disaster or unwelcome intrusions is
essential to success. The unparalleled security features in Oracle Solaris, combined with high availability
technology, deliver the reliability needed for application and service continuity. Providing a fully secure-
by-default environment, Oracle Solaris 11 advances data and system security with on-disk Oracle Solaris
ZFS encryption, delegated zone administration, and certification of the operating system at boot time.

•	 Trust in the future. In today’s challenging economy, many vendors are re-evaluating product portfolios
and discontinuing development. Oracle has increased investment in Oracle Solaris and plans to continue
to develop innovative technologies and enhance the operating system. In addition, Oracle’s unwavering
source code and binary compatibility guarantee ensures that applications ported to Oracle Solaris today
will run unmodified on future versions of Oracle Solaris as they emerge.

2

HP-UX to Oracle Solaris Porting Guide

Figure 1-1. Oracle Solaris delivers scalability, efficiency, availability, and security to enterprise applications.

3

HP-UX to Oracle Solaris Porting Guide

Chapter 2 The Porting Process

While most common off-the-shelf applications used in HP-UX 11i v3 environments are available for
Oracle Solaris, other applications may need to be ported when moving from HP servers based on Intel
Itanium processors to Oracle’s x86 or SPARC processor-based systems. Porting involves moving an
application, written in one or more programming languages, to another operating system. In its simplest
form, porting requires application recompilation and verification.

Most porting projects are not that simple. Differences in the development and runtime environments,
application programming interface (API) divergence, and even adherence to standards can impact the
porting process. In addition, reliance on specific hardware features can raise interoperability issues. In
some cases, entirely different technologies and mechanisms exist to accomplish tasks or deploy
applications, such as virtualization technologies, service management and clustering infrastructure, and
offer new opportunities for enhancing applications and services when moving to new platforms.

Figure 2-1 identifies the key steps associated with porting applications to Oracle Solaris.

Figure 2-1. Porting an application from HP-UX to Oracle Solaris involves several steps.

Infrastructure and Application Porting Assessment

Before starting a porting effort, it is important to conduct a detailed analysis of the application and current
build environment with portability in mind.

•	 Review all source code, build logs, shell scripts, and makefiles for the application. Creating a list of
suspected porting issues and migration assumptions can prove useful during the porting process.

•	 Evaluate the existing and target development environments. While some developers choose to migrate
open source compilers and third-party products to Oracle Solaris, most utilize platform-certified
development tools to code and build applications, such as Oracle Solaris Studio. Care must be taken to
understand the semantics of build options, ensuring Oracle Solaris Studio tools provide expected
functionality. For example, position-independent code, static linking, extended symbol information and
other techniques may require new and different options in Oracle tools.

•	 Understand code composition and the files used to build applications. For example, large legacy
applications comprised of millions of lines of code can consist of many file types in a complicated
source tree layout. Identifying and eliminating unused code in the source tree can save valuable porting
time.

4

HP-UX to Oracle Solaris Porting Guide

Build Environment Deployment

Replicating the build environment—tools, scripts, and utilities—as closely as possible can help minimize
configuration and other inadvertent errors that can affect the development process. Sometimes changes
must be made to account for differences between the HP-UX and Oracle Solaris environments.

•	 Understand the key files that affect the build system and port those files first. Creating a build log can
help identify the tools, scripts, and utilities used to create an application.

•	 Port build scripts and make files. Try to place build tools in similar locations to minimize changes to
source files, scripts, and make files.

•	 Modify source files to use the new tools, utilities, and libraries. Take care to ensure the options used
provide the intended functionality. If the original build environment is designed well, only a few key
makefile and setup scripts likely need modification.

•	 Perform a global search for hardcoded values in make files and change them so they benefit from the
new environment. Port any remaining disconnected hardcoded instances.

•	 Install middleware or other third-party software needed to build the application. For example, ensure a
Java™ Virtual Machine (JVM) is installed, if needed.

Data Integration

Many enterprise applications rely on information stored in databases to satisfy user requests. Because these
databases contain valuable business information, it is imperative that they be migrated to a new
environment with minimal disruption. Fortunately, the most popular databases, including Oracle Database
and the open source MySQL database, run on HP-UX and Oracle Solaris, ensuring the replacement
environment is a near one-to-one mapping of component technology.

As developers look to validate in-house enterprise applications, it may be necessary to test against
large-scale data sets that mimic production systems. When doing so, be sure to:

•	 Acquire and install appropriate products and licenses, including the database communication layer
(database client and server libraries), the embedded SQL precompiler, the C compiler and linker, and the
database engine.

•	 Modify application source code to reflect any API changes introduced in the database technology.

•	 Create the database objects to accept the data, if necessary.

•	 Extract data from the original system and load it into the new environment, performing any needed data
translation.

5

HP-UX to Oracle Solaris Porting Guide

Source Code Porting

During the porting phase, all necessary changes to source code are implemented to ensure the application
compiles and builds on Oracle Solaris. This process includes:

•	 Changes to source code and shell scripts

•	 A clean compile and build of the source code per the build environment, using the original build logs as
a reference

•	 Checks for embedded system commands in SQL code and any needed porting

•	 Checks for embedded system commands or other system dependencies in scripts from other languages,
such as Perl, and any needed porting

•	 A scan of application supporting files for system dependencies and porting

It is possible to encounter APIs in use by applications that are incompatible with Oracle Solaris. While in-
line source code changes can be made, Oracle recommends creating a compatibility library that
implements the changes needed to resolve any incompatibilities. Modifications to the source code can then
be limited to conditional compilation directives, ensuring backward compatibility.

Application Verification

The majority of problems encountered during functional testing are related to the configuration of the
runtime environment. Oracle recommends using a wide variety of techniques to ensure the widest
coverage, including unit, build process, non-regression, integration, stress, and performance testing.

Commercial Applications and Third-Party Products

All applications, whether running in the HP-UX or Oracle Solaris environment, depend on support from
the operating system and its associated utilities to perform work. However, some applications assume the
availability of third-party products that are integrated into the HP-UX environment. When migrating to
Oracle Solaris, this supporting software must be ported as well, as part of the application infrastructure. As
a result, care should be taken to ensure required third-party software, or similar products, are available for
Oracle Solaris. In the unlikely event that needed third-party applications are not available for Oracle
Solaris, organizations can choose to make changes to the system to enable products that provide similar
functionality to be used.

6

HP-UX to Oracle Solaris Porting Guide

Chapter 3 Operating System Considerations

Developers porting applications from HP-UX 11i v3 to Oracle Solaris can take comfort in the fact that the
two operating environments share a common heritage. Both are 64-bit versions of UNIX, with common
APIs, languages, protocols, and data models. Because HP-UX and Oracle Solaris have common underlying
architectural and design philosophies, programmers can leverage expertise across the porting process. Yet
the porting of applications is never a trivial issue, even between similar systems such as HP-UX and Oracle
Solaris. As a result, developers should consider how applications and development processes are affected
by potential differences in several areas.

Processor Endianness

Processors store multibyte data objects, such as an 8-byte integer, in one of two ways. Architectures that
store the most-significant byte of the data first are referred to as Big Endian (BE), while those that store
the least-significant byte first are called Little Endian (LE). HP-UX 11i uses the Big Endian convention.
Oracle Solaris supports both modes. For example, Oracle Solaris uses a Big Endian architecture on
SPARC processor-based systems and a Little Endian architecture on x86 platforms.

When standard UNIX APIs are used to access data, the endianness of the platform usually is not an issue
as data layout is abstracted by the APIs used to access it. Use of lower-level languages, legacy coding
techniques, or operators such as shifts, logical or arithmetic ands and ors, with assumptions about the layout
of a data element (and the consequential significance of the bits) can be an issue. The use of overlaid data
structures and casts may require an understanding of the logic of the application, and possible code
modification.

The endianness of the processor and operating system do not directly affect application performance or
scalability, and the migration from HP-UX to Oracle Solaris should not pose undue migration risk due to
operating system endianness. Lower level code, such as a device driver or other control software, may be
sensitive to endianness. When faced with such challenges, developers can draw on many resources, such as
sample device drivers, the Device Driver Interface and Driver Kernel Interface (DDI/DKI), derived
types, and the help of Oracle experts to assist in the porting effort.

Data Alignment

The processor that runs in a computing system has a natural, or preferred, primary memory alignment for
data objects. Oracle Solaris makes use of this fact when dealing with data alignment. For example, on
Oracle systems with 64-bit SPARC T4 processors, Oracle Solaris loads and stores a 64-bit (8-byte) pointer
on 8-byte primary memory boundaries in order to take advantage of the underlying hardware. With a
compound data type such as a C structure, which may contain a mix of differing data sizes, it is sometimes
necessary to insert bytes for extra padding between data elements to satisfy processor data alignment rules.
The use of padding can be specified with a compiler option, enabling padding to be permitted or
disallowed as needed for space or performance optimization.

7

HP-UX to Oracle Solaris Porting Guide

When porting an application from HP-UX 11i to Oracle Solaris, the differences in natural data alignment
of basic data types typically is not an issue as the compiler and APIs handle data type alignment correctly.
The use of overlaid data structures and casts (or equivalent) require an understanding of the logic of the
application, and possible code modification.

Read/Write Structures

Most applications read and write data to permanent storage media as a complete structure in binary form
using standard C or C++ routines. These routines need the data size that is being read or written. Due to
the different alignment and data type sizes on PA-RISC, Intel Itanium, SPARC, and x86 platforms,
structure sizes vary. To ensure portability, the sizeof() operator should be used to specify the number of
bytes to read or write in these routines.

Storage Order and Alignment

The order of data storage varies between platforms, and source code that expects a particular storage order
is not portable. To maximize portability, source code should compare the individual fields of structure
variables separately, rather than relying upon storage order.

Because data alignment and datatype sizes vary based on the platform, the alignment of structure field
members also differs across platforms. This results in variable padding requirements that cause structures
to change size. To maximize portability, the structure size should be accessed using the sizeof()
operator.

64-Bit Data Models

Organizations are reaping the performance advantages of keeping more application data in main memory.
Although few require an entire 64-bit address space, the impact of more than 32 bits of address space
benefits a wide variety of commercial and high-performance computing applications. For example,
databases, Web caches, simulation, and modeling software run more effectively in the much larger primary
address space of a 64-bit architecture. These benefits include:

• A greater proportion of a database can live in primary memory

• Larger CAD/CAE models and simulations can live in primary memory

• Larger scientific computing problems can fit in primary memory

• Web caches can hold more data in primary memory and reduce access latency

• The wider data paths of a 64-bit processor offer improved computational performance

HP-UX and Oracle Solaris support 64-bit computing using the LP64 data model, in which longs and
pointers are 64 bits in length. With the same 64-bit data model, application modifications are minimized
when migrating from HP-UX to Oracle Solaris. Both operating system kernels provide the larger data

8

HP-UX to Oracle Solaris Porting Guide

paths and primary address space that 64-bit applications demand. As a result, applications that rely on
these features are well positioned to take advantage of the scalability, manageability, and reliability
provided by Oracle systems.

Not all applications are well suited to a 64-bit model. If the application does not require a large primary
address space or wider data path, migrating the application to the 64-bit model may not be warranted. In
such situations, Oracle Solaris provides support for applications written using a 32-bit computing model,
enabling a smooth transition yet providing access to 64-bit computing and other features should the need
arise.

Best Practices for Converting C and C++ Applications to the LP64 Data Model

It is important to note that many size issues can be mitigated when migrating between data models by
using derived types, a mechanism for specifying the size of an attribute or its intended use. The use of
derived types — which are safe for both 32- and 64-bit environments — increases program clarity and
portability, helping to mitigate differences in the hardware environment. In addition, consider the
following best practices when porting 32-bit C applications to the LP64 data model.

•	 Integer and pointer size change. Some 32-bit code relies on integers and pointers being the same size.
Pointers are often cast to int or unsigned int for address arithmetic. Instead, cast pointers to long.
Long and pointers are the same size in the ILP32 and LP64 data models. Rather than explicitly using
unsigned long, use uintptr_t, as it expresses the intent more closely and makes code more portable,
insulating it against future changes.

•	 Integer and long size change. Because integers and longs are identical in a 32-bit model, developers
often use them interchangeably. When porting, ensure the use of integers and longs conforms to ILP32
and LP64 data model requirements. While an integer and a long are both 32-bits in the ILP32 model, a
long is 64 bits in the LP64 model.

•	 Arrays. Sometimes developers use large arrays of longs or unsigned longs rather than arrays of integers
or unsigned integers. Using these wider arrays can degrade performance in the LP64 model. If arrays of
integers work in well the application, use them instead of arrays of longs or arrays of pointers.

•	 Sign extension. Conversion to 64-bit compilation often causes sign extension due to rules governing
type conversion and promotion. Use explicit casting to prevent sign extension issues and achieve
intended results.

•	 Pointer arithmetic. In general, pointer arithmetic works better than integer arithmetic as it is
independent of the data model.

•	 Structures. Check the application’s internal data structures for holes. Insert padding between structure
fields to meet alignment requirements. Padding allocation occurs as long or pointer fields expand to 64
bits in the LP64 data model. In the 64-bit compilation environment on SPARC platforms, structures are
aligned to the size of their largest member. When repacking a structure, move long and pointer fields to
the beginning of the structure.

•	 Unions. Check unions, as their fields can change size between the 32-bit and 64-bit models.

9

HP-UX to Oracle Solaris Porting Guide

•	 Type constants. Data loss can occur in some constant expressions due to a lack of precision. Explicitly
specify the data types in a constant expression. Specify the constant type or use casts to specify the type
of a constant expression.

•	 sizeof() return value. In the LP64 data model, sizeof() has the effective type of an unsigned long.
Occasionally, sizeof() is passed to a function expecting an argument of type int or something
assigned or cast to an integer. This truncation can cause data loss.

•	 Format string conversion operation. Ensure the printf(3S), sprintf(3S), scanf(3S), and
sscanf(3S) format strings accommodate long or pointer arguments. For pointer arguments, specify %p
for the conversion operation in the format string to ensure the code works in 32-bit and 64-bit
compilation environments.

Additional information regarding migration from 32-bit to 64-bit environments can be found in
“Converting 32-bit Applications Into 64-bit Applications: Things to Consider” at
http://www.oracle.com/technetwork/server-storage/solaris/ilp32tolp64issues-137107.html.

10

http://www.oracle.com/technetwork/server-storage/solaris/ilp32tolp64issues-137107.html

HP-UX to Oracle Solaris Porting Guide

Chapter 4 Runtime Environment

Environment Variables

HP-UX 11i v3 and Oracle Solaris use environment variables to convey information to applications, such
paths to libraries. Table 4-1 lists the key environment variables of interest to application developers.

TABLE 4-1. KEY ENVIRONMENT VARIABLES

DESCRIPTION HP-UX 11i v3

ORACLE SOLARIS 10

AND

ORACLE SOLARIS 11

NOTES

Library path LD_LIBRARY_PATH LD_LIBRARY_PATH • Enables use of a different library without relinking application

• Checked by default in both operating systems

• Use not recommended for production code

Search path PATH PATH • Identifies the paths to search, in search order

• Lists /usr/gnu/bin before /usr/bin in the default path

 on Oracle Solaris 11, for a GNU-like environment by default

Compiler options CFLAGS CFLAGS • Lists compiler options to use

Compiler CC CC • Identifies the compiler to use

Linker options LDFLAGS LDFLAGS • Lists linker options to use

Home directory HOME HOME • Identifies the user’s home directory

Localization LANG LANG • Sets the locale

Man Path Path MANPATH MANPATH • Sets the hierarchies of man pages that are available

• No longer required on Oracle Solaris 11; the man(1)

 command determines the appropriate MANPATH based on

 the $PATH environment variable setting

Shell SHELL SHELL • Identifies the user’s preferred shell

Permissions

Most enterprise applications create files in the course of execution. Default directory permissions and file
mode creation mask (umask) settings can impact file creation. While HP-UX 11i v3 uses a default umask
setting of 000, Oracle Solaris 10 and Oracle Solaris 11 set a default umask of 022 in the /etc/profile
file. Be sure to check key application files, including configuration and logfiles, to ensure they have the
proper settings. When porting applications, use the umask() function to check and set the file mode
creation mask to desired values.

11

HP-UX to Oracle Solaris Porting Guide

Process Resource and Runtime Limits

HP-UX 11i and Oracle Solaris allow developers to place limits on the consumption of resources by
application processes. Each limit consists of two values: a soft (current) limit and a hard (maximum) limit.
Soft limits can be changed by a process, but must remain less than or equal to the hard limit. Hard limits
can be lowered to a value that is greater than or equal to the soft limit. However, only processes with
certain privileges can raise a hard limit. As a result, the lowering of a hard limit should be done with care.

While the process limit concepts are similar in the two environments, the implementations allow different
levels of control and specify different default values in some cases. For example, Oracle Solaris defines
variables for controlling the soft and hard limits for the stack segment size, while HP-UX 11i v3 only
defines variables for hard limits. Table 4-2 lists the key process limits and their default values that typically
are of concern to application developers. The sysdef(1M) and ulimit(1) commands can be used on
Oracle Solaris to obtain the current system definition and set or get limitations on the system resources
available to the current shell, respectively.

TABLE 4-2. KEY PROCESS LIMIT DEFAULT VALUES

HP-UX 11i v3
NAME ORACLE SOLARIS

32-BIT 64-BIT

coredumpsize Unlimited Unlimited Unlimited

cputime Unlimited Unlimited Unlimited

datasize 256 GB 1 MB Unlimited

descriptors 1024 1024 1024

memoryuse Unlimited Unlimited Unlimited

stacksize 8 MB 256 MB Unlimited

HP-UX 11i v3 and Oracle Solaris specify runtime limits for applications. These limits are set system wide
and not for a given process. Table 4-3 lists the key limits that can affect an application at runtime.

12

HP-UX to Oracle Solaris Porting Guide

TABLE 4-3. RUNTIME LIMIT DEFAULT VALUES

DESCRIPTION HP-UX 11I v3 ORACLE SOLARIS 10 ORACLE SOLARIS 11

Soft file limit per process maxfiles

Default: 60

Hard file limit per process maxfiles_lim

Default: 1024

Maximum number of

threads/process

max_thread_proc

Default: 256

Maximum number of user

processes

maxuprc

Default: 256

maxuprc

Default: max_nprocs –

reserved_procs

maxuprc

Default: max_nprocs –

reserved_procs

Maximum number of users Obsolete on HP-UX 11i

as of v2

Maxusers

Default: 2048 or the amount

of memory available, in MB

(whichever is less)

Maxusers

Default: 2048 or the amount

of memory available, in MB

(whichever is less)

Maxusers affects the value of other parameters, such as the

maximum number of processes available on the system.

Maximum open files on the system nfile

Default: 8192

nfile

Maximum file locks on the system nflocks

Default: 200

Maximum processes on the system max_nprocs Default: 10

+ (16 x maxusers)

max_nprocs Default: 10

+ (16 x maxusers)

System process slots to reserve in

the process table for root processes

reserved_procs

Default: 5

reserved_procs

Default: 5

Application Programming Interfaces

HP-UX 11i v3 and Oracle Solaris follow the POSIX standards and provide a well-defined system call
interface to access kernel facilities. While most of the calls are identical on these systems, there are some
differences. In some cases, functions with the same name take different parameters, or behave differently,
depending on the platform. Also, some calls are available only on HP-UX 11i v3, or only on Oracle
Solaris. Appendix B lists some of the key API differences between the platforms.

Most interface functions return -1 to indicate an error and set the global variable errno to provide a
complete description of the cause.

13

HP-UX to Oracle Solaris Porting Guide

System Libraries

HP-UX and Oracle Solaris provide a wide range of system libraries. While many of the libraries have the
same name and provide identical functionality, there are some differences. In some cases, the libraries
provide the same functionality but are named differently. If other cases, the functionality provided in a
library on one system spans multiple libraries on the other system. Appendix A provides a list of key
libraries and their equivalence on the HP-UX 11i v3 and Oracle Solaris platforms.

In Oracle Solaris 11, a number of new routines are included in the Oracle Solaris C library to improve
familiarity with Linux and BSD operating systems and help reduce the time and cost associated with
porting applications to Oracle Solaris 11. Examples of new routines include ascftime(3C),
cftime(3C), wcsftime(3C), fnmatch(3C), asprintf(), vsprintf(), getline(), strdupa() and
strndup(). In addition, a new libzonestat(3LIB) library gives application developers the ability to
obtain Oracle Solaris Zone resource utilization statistics, including system-wide and per-zone utilization of
physical memory, virtual memory, CPU resources, and networking bandwidth.

Many libraries that reside in /usr/sfw/lib in HP-UX and Oracle Solaris 10 are located in /usr/lib in
Oracle Solaris 11. Make files that look for libraries in /usr/sfw/lib may need to add /usr/lib to the
search path, or change hardcoded library paths.

Shells and Utilities

Oracle Solaris provides a number of shells and utilities for developers, including:

•	 Bourne shell. The Bourne shell (/usr/bin/sh) is the default shell in Oracle Solaris 10. The same path
is used on HP-UX 11i v3 to link to the POSIX shell, a superset of the Bourne shell. Several POSIX shell
options are not supported in the Bourne shell, and some commands behave differently. For example,
the Bourne shell does not support the –p option to the export command, and the output of the hash
command is different in the two shells. More information on the Bourne shell can be found in the
sh(1) man page.

•	 C shell. HP-UX 11i v3 and Oracle Solaris support the C shell (/usr/bin/csh). Most commands and
options are identical on the two platforms. More information on the C shell can be found in the csh(1)
man page. On Oracle Solaris, it is considered a best practice to avoid writing scripts in csh.

•	 Korn shell. HP-UX 11i v3 and Oracle Solaris 10 support the Korn shell (ksh88 located in
/usr/bin/ksh in Oracle Solaris 10, and /usr/sunos/bin/ksh in Oracle Solaris 11). While the
implementation is largely the same in both environments, there are a few differences. For example,
larger array subscripting is supported on Oracle Solaris, and some commands produce slightly different
output. In Oracle Solaris 11, ksh is superseded by ksh93, an updated and improved version of the
system shell. ksh93 is the default shell in Oracle Solaris 11, and is located in /usr/bin/ksh. More
information on the Korn shell can be found in the ksh(1) man page.

14

HP-UX to Oracle Solaris Porting Guide

•	 appcert utility. The appcert(1) utility helps identify potential binary compatibility issues when
porting applications to Oracle Solaris by examining an application's conformance to the Oracle Solaris
Application Binary Interface (ABI).

•	 apptrace utility. The apptrace(1) utility can be used to dynamically check an application for
Application Binary Interface (ABI) compliance. It traces the function calls a program makes to the
Oracle Solaris shared libraries. For each function call that is traceable, the apptrace utility reports the
name of the library interface called, the values of the arguments passed, and the return value.

•	 Oracle Solaris 11 Pre-Flight Checker for Applications. It is possible for applications to use operating
system interfaces improperly, or use deprecated interfaces that could cause runtime issues in the future.
The Oracle Solaris 11 Pre-Flight Checker for Applications can help developers to quickly identify and
eliminate possible incompatibilities. The tool executes a combination of source code, static binary, and
runtime analysis modules that can be run on Oracle Solaris 10 to test applications. To download the
tool, visit https://www.samplecode.oracle.com/sf/projects/solaris_11_compatibility_tools/.

Scripts

The UNIX environment has a long history of multiple tools or utilities working together to accomplish a
larger task. Developers often use scripts to automate compilation, create application administration tools,
analyze or modify data, and provide functional support for an application. Note that scripts do not just do
the work themselves—they often leverage programs and utilities that exist elsewhere in the operating
environment to perform various administrative tasks. While there are great similarities between the
HP-UX and Oracle Solaris scripting environments, it is important to be aware of possible differences.
Some possible issues include:

•	 Command not available

•	 Command is in a different location

•	 Command uses an option, or flag, that does not exist in Oracle Solaris

•	 Command uses an option, or flag, that provides different functionality in Oracle Solaris

•	 Command output is different and/or redirected to a different location

For example, files located in the /usr/sfw directory in Oracle Solaris 10 are located in the /usr/bin
directory in Oracle Solaris 11. Links exist so that either path is valid, however developers can simplify path
settings to use the new location. Appendix F provides a summary of key command differences on HP-UX
11i v3 and Oracle Solaris.

15

https://www.samplecode.oracle.com/sf/projects/solaris_11_compatibility_tools

HP-UX to Oracle Solaris Porting Guide

Chapter 5 Devices

In the event an application makes use of devices that are not natively supported on by the operating
system, a device driver or software module likely needs to be ported. HP-UX and Oracle Solaris provide a
similar device driver model and architecture, easing porting issues when such specialized, custom software
is needed. In Oracle Solaris, device drivers are loadable modules that are dynamically loaded into memory
by the kernel when they are needed.

The kernel provides access to device drivers through the following features:

•	 Device-to-driver mapping. The kernel maintains the device tree. Each node in the tree represents a
virtual or a physical device. The kernel binds each node to a driver by matching the device node name
with the set of drivers installed in the system. The device is made accessible to applications only if a
driver binding exists.

•	 Device Driver Interface/Driver-Kernel Interface (DDI/DKI). The DDI/DKI interfaces
standardize interactions between a device driver and the kernel, the device hardware, and the boot and
configuration software. These interfaces keep the device driver independent from the kernel and
improve its portability across successive releases of the operating system on a particular machine.

•	 Layered Driver Interface (LDI). The LDI is an extension of the DDI/DKI that enables a kernel
module to access other devices in the system. The LDI also provides a mechanism for determining
which devices are in use by the kernel.

Device Naming Conventions

HP-UX 11i v3 and Oracle Solaris use device names as a means to give users and applications controlled
access to devices and critical system resources such as disk drives, network adaptors, memory and I/O
channels. Both operating systems place device resources into a highly secure file name hierarchy used for
files and directories, bringing the full power of the security system to device access and control. By treating
device access just like file access, existing, proven Oracle Solaris security models are automatically applied,
closing potentially devastating back-door security flaws that can render data vulnerable to unauthorized
users or applications.

While the actual directory placement and naming of devices varies when migrating from HP-UX 11i v3 to
Oracle Solaris, the device security and control semantics—involving operating system calls such as
open(), ioctl(), and close()—are the same. The result is that porting an application that interacts
with device control software, such a device driver, from HP-UX 11i to Oracle Solaris is straightforward.
Developers only need to change the file system hierarchy location and device name in the source code and
recompile on Oracle Solaris. Program control logic need not be modified.

16

HP-UX to Oracle Solaris Porting Guide

Device Paths

Table 5-1 lists the disk and tape device naming conventions for HP-UX 11i v3 and Oracle Solaris.

TABLE 5-1. DEVICE PATHS

DESCRIPTION HP-UX 11i v3 ORACLE SOLARIS 10

Disk (Block Access) /dev/disk/disk# /dev/dsk/c#t#d#p#

Disk (Raw Access) /dev/rdisk/disk# /dev/rdsk/c#t#d#p#

Disk Partition (Block Access) /dev/disk/disk#_p# /dev/dsk/c#t#d#p#

Disk Partition (Raw Access) /dev/rdisk/disk#_p# /dev/rdsk/c#t#d#p#

Tape (Raw Access) /dev/rtape/tape#options /dev/rmt/#

Device Driver Interface/Driver Kernel Interface

The Oracle Solaris DDI/DKI enables the development of device drivers that operate with full
source-level compatibility across multiple platforms and instruction sets architectures, including x86 and
SPARC. Host bus dependencies must be removed from the device driver in order to produce multiple
platform, multiple instruction set architecture portability.

The mature DDI/DKI provides operating system resources, configuration properties, device mapping,
and low-level I/O access to device drivers. Use of the DDI/DKI provides an abstraction layer, helping to
isolate the device driver from hardware, as well as offering portability, cleaner control logic, and a
consistent interface across similar devices. Device drivers maintain their portability by adhering to a
standard suite of interfaces rather than directly accessing the system resource or I/O devices, and the issue
of working with 32- and 64-bit data is greatly simplified.

Platform independence is accomplished by the design of the DDI/DKI in the following areas:

• Dynamic loading and unloading of modules

• Power management

• Interrupt handling

• Accessing the device space from the kernel or a user process (register and memory mapping)

• Accessing kernel or user process space from the device using DMA services

• Managing device properties

Oracle provides sample device drivers, documentation, installation instructions, operating instructions and
downloadable tools that support device driver development efforts for Oracle Solaris platforms. See
http://download.oracle.com/docs/cd/E19253-01/index.html for more information.

17

http://download.oracle.com/docs/cd/E19253-01/index.html

HP-UX to Oracle Solaris Porting Guide

Greater Storage Device Support

Developers can take advantage of the wide range of storage devices now available to meet capacity and
performance demands for development and deployment systems—from smaller, low-cost systems to high-
performance, high-capacity devices, and everything in between. Oracle Solaris supports a variety of
protocols and interface technologies and provides key host bus adapter drivers with the software
distribution.

•	 Internet SCSI (iSCSI) target support. Many storage deployments rely on the iSCSI protocol to move
data across intranets and manage devices remotely. With iSCSI target support, the operating system can
make SCSI storage devices available to clients over the network.

•	 Fibre Channel. Oracle Solaris includes a number of Fibre Channel packages, including libraries based
on the T11 FC-HBA specification, Emulex and QLogic device drivers, debugging aids, a FCIP IP/ARP
over Fibre Channel device driver, a Fibre Channel transport layer, and much more.

•	 Host bus adapter drivers. A wide range of drivers are included in the operating system, including the
Adaptec AdvanceRaid Controller SCSI HBA, Adaptec Ultra320, Advanced Host Controller Interface
SATA, LSI MegaRAID SCSI HBA, LSI Hardware RAID HBA, LSI MegaSAS RAID Controller HBA,
and Marvell 88SX SATA device drivers. Oracle Solaris 11 adds drivers for several 10 Gigabit Ethernet
adapters, including Neterios X3100, Chelsio, and Integrate QLogic P3+, as well as the Intel Storage
Controller Unit and Integrate LSI iMR HAB Driver for FALCON SAS2.0 Controllers.

Best Practices for Porting Device Drivers

The porting effort for device drivers requires extra care, as drivers interact directly with hardware and
operate without the protection of the operating system afforded to user processes. By building debugging
support into the device driver during the porting effort, developers can simplify porting, maintenance
work, and future development.

•	 Use a unique prefix to avoid kernel symbol collisions. Since each driver module is linked into the
kernel, symbol names for drivers must not collide with other kernel symbols. To avoid collisions, add a
driver-specific prefix, such as the name of the driver, to each function and data element.

•	 Use the cmm_err() function to log driver activity. Use this function to print messages to a system log
from the device driver to facilitate debugging. Messages are placed in the /var/adm/messages file.

•	 Use the ASSERT() macro to catch invalid assumptions. Assumptions are a valuable form of active
documentation. The ASSERT() macro halts kernel execution if a condition that is expected to be true is
false, providing a mechanism for validating assumption made in source code.

•	 Use mutex_owned() to validate and document locking requirements. A significant portion of
device driver development involves properly handling multiple threads. The mutex_owned() function
can be used to determine if a mutex is held by a thread. Note this function is valid only within
ASSERT() macros.

18

HP-UX to Oracle Solaris Porting Guide

•	 Use conditional compilation to toggle expensive debugging features. Debugging code can be
placed in a device driver by conditionally compiling code based on a preprocessor symbol, such as
DEBUG, or by using a global variable. Conditional compilation offers an advantage: unnecessary code can
be removed in the production driver. Using a global variable allows the amount of debugging output to
be chosen at runtime. This can be accomplished by setting a debugging level at runtime with an ioctl
or through a debugger. Typically these two methods are combined.

Use Defensive Programming

Several defensive programming techniques can be used to prevent device driver source code from causing
system panics or hangs, draining system resources, or allowing the spread of corrupt data. It is
recommended that Oracle Solaris device drivers adhere to the following coding practices.

•	 Control only one piece of hardware. Each piece of hardware should be controlled by a separate
instance of a device driver. While an instance has its own data space, it shares text and global data with
other instances. Drivers should use a separate instance for each piece of hardware unless the driver is
designed to handle failover internally.

•	 Take care with programmed I/O. Perform programmed I/O (PIO) through the device driver
interface (DDI) access functions, using the appropriate data access handle.

•	 Assume data received from a device could be corrupt. Device drivers should check the integrity of
data before using it. In particular, extreme care should be taken with pointers, memory offsets, or array
indexes read or calculated from data supplied by the device. Such values can cause a kernel panic if
dereferenced, and should be checked for range and alignment (if required) before use.

•	 Avoid releasing bad data to the rest of the system. Device errors can result in corrupt data being
placed in receive buffers. Such corruption is indistinguishable from corruption that occurs beyond the
domain of the device, for example within a network. Typically, existing software is in place to look for
corruption, such as integrity checks at the transport layer of a protocol stack or within the application
using the device. If data integrity checks are not going to be performed at a higher software layer, they
should be performed within the device driver using device-specific techniques, such as validating
checksums, cyclical redundancy checks (CRCs), and so on.

•	 Use only documented DDI functions and interfaces. Documented functions and interfaces provide
greater stability and ensure code portability.

•	 Keep memory pages clean. Ensure all writes by the device into DMA buffers are contained within
pages of memory controlled entirely by the driver. This prevents a DMA fault from corrupting an
arbitrary part of the system's main memory.

•	 Be respectful of system resources. The device driver must not be an unlimited drain on system
resources should the device hang. It should time out if a device claims to be continuously busy. The
driver should also detect a pathological (stuck) interrupt request and take appropriate action.

19

HP-UX to Oracle Solaris Porting Guide

•	 Support Oracle Solaris hot-plug capabilities. Support for hot-plugging is essential in enterprise
environments where components often are moved to affect better resource utilization or to replace a
failed component.

•	 Free resources after a fault. The operating system must be able to close all minor devices and detach
driver instances even after hardware fails.

More information can be found in the Writing Device Drivers manual in the Oracle Solaris documentation set
located at http://download.oracle.com/docs/cd/E19253-01/816-4854/index.html.

20

http://download.oracle.com/docs/cd/E19253-01/816-4854/index.html

HP-UX to Oracle Solaris Porting Guide

Chapter 6 Development Environment

Porting, verifying, and optimizing applications can be a time-consuming and complex process. While
individual point products can help with certain tasks, building applications with an integrated platform in
which all of the pieces work together streamlines workflow and results in more robust applications. Oracle
Solaris Studio 12.2 provides everything needed to create high quality, cross-platform desktop, enterprise,
and Web applications. An integrated development environment optimizes the application development
process, from creating and building C, C++, Java, or Fortran applications, to debugging problems and
tuning for optimal performance. By integrating all the steps programmers take—from GUI design and
code generation, to edit-compile-debug-tune cycles—the Oracle Solaris Studio integrated development
environment (IDE) makes it easy to rapidly port enterprise applications.

Oracle Solaris Studio is designed to:

•	 Maximize application performance with optimizing compilers

•	 Simplify multicore development with automatic parallelization features and advanced tools

•	 Improve productivity with a next-generation IDE and tools with rich graphical interfaces

•	 Simplify development across multiple architectures (SPARC and x86) and operating systems
(Oracle Solaris and Linux)

Figure 6-1. The next-generation Oracle Solaris Studio IDE integrates advanced tools for application development.

21

HP-UX to Oracle Solaris Porting Guide

Oracle Solaris Studio Components

Oracle Solaris Studio offers a comprehensive set of development tools.

•	 Optimizing C, C++, and Fortran compilers. The Oracle Solaris Studio compilers generate improved
application performance on Intel x86, AMD x86, UltraSPARC, and SPARC64 processor-based systems.
With a wealth of recent industry-based benchmarks, Oracle Solaris Studio compilers take full advantage
of the latest multicore architectures.

•	 Full OpenMP 3.0 compiler, debugger, and tools support. The OpenMP 3.0 specification contains
new features to ease multicore development, and takes a more general approach to multithreaded
programming by using tasks to support complex and dynamic control flows.

•	 Sun Memory Error Discovery Tool (Discover). Memory-related errors in programs can be the most
difficult for developers to debug and frequently are the cause of erratic program behavior. The Sun
Memory Error Discovery Tool is used to instrument a binary, enabling errors to be caught and reported
dynamically as the program executes.

•	 Code Coverage Tool (Uncover). Integrated into the Performance Analyzer, this is simple and easy-to-
use tool for measuring code coverage makes it possible to quickly find major functional areas within
binaries that are not being tested.

•	 DLight. System profiling tools allow developers to explore systems, understand how they work, and
identify performance problems across many software layers. DLight is a new tool that unifies application
profiling and system profiling using Oracle Solaris DTrace technology on Oracle Solaris platforms.

•	 dbxTool. The dbx debugger is fully integrated into the IDE and is available via the command line.
Oracle Solaris Studio 12.x features dbxtool, a stand-alone debugging solution with a user-friendly
interface. With dbxtool, developers can quickly and easily debug an executable or core file, or attach to a
running process.

•	 Thread Analyzer. The Thread Analyzer is a tool that helps identify common—yet notoriously difficult
to debug—issues in multithreaded code. It analyzes program execution across multiple threads and
detects data race and deadlock conditions.

•	 Performance Analyzer support for MPI applications. The Oracle Solaris Studio Performance
Analyzer includes an MPI Timeline and MPI charts, along with zooming and filtering capabilities.

•	 Updated Oracle Solaris Studio IDE. Oracle Solaris Studio features a next-generation IDE based on
NetBeans 6.5.1 software, specifically geared for C/C++ developers. New features include improved
code completion, error highlighting, semantic highlighting, call graph, memory window, packaging of
application as tar files, zip files, System V Release 4 (SVR4 packages), RPMs, or Debian packages, and
much more.

•	 Sun Performance Library. The Sun Performance Library is a set of optimized, high-speed
mathematical subroutines for solving linear algebra and other numerically-intensive problems.
Developers can use these routines for solving computational linear algebra, fast Fourier transforms
(FFTs), and other numerically intensive problems. Oracle Solaris Performance Library routines are

22

HP-UX to Oracle Solaris Porting Guide

callable from Fortran, C, and C++ programs, and contain Oracle’s enhanced implementations of the
routines in BLAS1, BLAS2, BLAS3, LAPACK, ScaLAPACK, PBLAS, BLACS, FFTPACK,
VFFTPACK, SPSOLVE, Sparse BLAS, and SuperLU.

Oracle Solaris Studio Workflow

Figure 6-2 illustrates a typical Oracle Solaris Studio IDE workflow versus a standalone tool process.

Figure 6-2. The Oracle Solaris Studio IDE workflow optimizes the development and tuning process.

Supported Platforms

Oracle Solaris Studio supports systems that use the SPARC and x86 families of processor architectures:
UltraSPARC, SPARC T-Series, SPARC64, AMD64, Intel® Pentium®, and Intel® 64. Note that Oracle
Solaris 11 does not support legacy sun4u processor architecture-based systems (systems based on
UltraSPARC II, IIe, III, IIIi, III+, IV and IV+ processors).

23

HP-UX to Oracle Solaris Porting Guide

Supported Standards

Changes to source code can be required as a result of the semantic and syntactic differences in how Oracle
and HP implement the C, C++ and Fortran languages.

•	 C compiler. The Oracle Solaris Studio C compiler conforms to the ISO/IEC 9899:1999 (Programming
Languages—C) and ISO/IEC 9899:1990 (Programming Languages—C) standards. The C compiler also
supports the latest OpenMP 3.0 shared-memory parallelism API.

•	 C++ compiler. The Oracle Solaris Studio C++ compiler (CC) supports the ISO International Standard
for C++, ISO IS 14882:2003, Programming Languages—C++.

•	 Fortran compiler. The Oracle Solaris Studio Fortran compiler is a Fortran 95 compiler that conforms
to published Fortran language standards, and provides many extended features, including multiprocessor
parallelization, sophisticated optimized code compilation, and mixed C/Fortran language support. While
some HP-UX enterprise applications were created using Fortran 95 semantics and compilers, many
legacy applications used FORTRAN 77. While Oracle’s Fortran 95 compiler accepts many FORTRAN
77 features directly, some may require compiling in FORTRAN 77 compatibility mode. To ensure
continued portability, applications using non-standard FORTRAN 77 features should be ported to
standards-conforming Fortran 95.

•	 Hardware optimization. On SPARC platforms, Oracle Solaris Studio compilers provide support for the
optimization-exploiting features of the SPARC V9 architecture, including the UltraSPARC implementation.
These features are defined in the SPARC Architecture Manuals, Version 8 (ISBN 0-13-825001-4), and
Version 9 (ISBN 0-13-099227-5), published by Prentice-Hall for SPARC International.

Header Files and System Libraries

The Oracle Solaris Studio C and C++ compilers search for include files in the current working directory,
any directories specified during compilation (–I option), and the /usr/include directory.

The Oracle Solaris 10 operating system installs several libraries in the /usr/lib directory. Most of these
libraries have a C interface. Of these, the libc and libm, libraries are linked to applications by default. In
addition, the C++ compiler includes several runtime support libraries. Some of these libraries are available
only in compatibility mode (-compat=4), some are available only in the standard mode
(-compat=5), and some are available in both modes (Table 6-1).

TABLE 6-1. ADDITIONAL C++ LIBRARIES.

LIBRARY DESCRIPTION COMPATIBILITY

libstlport STLport implemenation of the standard library -compat=5

libstlport_dbg STLport library for debug mode -compat=5

libCrun C++ runtime -compat=5

24

HP-UX to Oracle Solaris Porting Guide

libCstd C++ standard library -compat=5

libiostream Classic iostreams -compat=5

libC C++ runtime, classic iostreams -compat=4

libcsunimath Supports the –xia option -compat=5

libcomplex Complex number library -compat=4

librwtool Tools.h++ 7 -compat=4, -compat=5

librwtool_dbg Debug-enabled Tools.h++ 7 -compat=4, -compat=5

libgc Garbage collection C interface

libdemangle Demangling C interface

Java Programming Tools

Oracle provides a comprehensive set of tools for developers creating enterprise-class Java applications.

•	 Java Platform, Standard Edition (Java SE). Java SE is a toolkit for developing all Java applications
not intended for consumer devices. Java SE includes a compiler, runtime environment, and core API.

•	 Java Platform, Enterprise Edition (Java EE). Java EE builds on Java SE and adds an application
server, Web server, Java 2 Platform, Enterprise Edition API, support for Enterprise JavaBeans, Java
servlets API, and JavaServer Pages (JSP) technology.

•	 JavaFX. The JavaFX platform is the evolution of the Java client platform designed to enable application
developers to easily create and deploy rich Internet applications that behave consistently across multiple
platforms. Built on Java technology, the JavaFX platform provides a rich set of graphics and media APIs
with high-performance hardware-accelerated graphics and media engines that simplify development of
data-driven enterprise client applications. More information on the JavaFX platform can be found at
http://download.oracle.com/javafx/2.0/overview/jfxpub-overview.htm.

•	 NetBeans IDE. A free, open-source environment, the NetBeans IDE supports the creation of
enterprise, Web, desktop, and mobile Java applications. All IDE tools and features are fully integrated to
improve developer productivity.

•	 Oracle JDeveloper. Oracle JDeveloper is a free, integrated development environment that simplifies
the development of Java-based SOA applications and user interfaces with support for the full
development life cycle.

More information on Oracle’s extensive portfolio of Java technology offerings and tools can be found at
http://www.oracle.com/java.

25

http://www.oracle.com/java
http://download.oracle.com/javafx/2.0/overview/jfxpub-overview.htm

HP-UX to Oracle Solaris Porting Guide

Other Programming Tools

Oracle Solaris 11 includes open-source scripting languages and shells to facilitate application development.

•	 Python and Ruby. Oracle Solaris 11 includes Python and Ruby for high-level application development.
These tools are integrated with Oracle Solaris DTrace, Oracle Solaris analysis tools, and the Image
Packaging System to ease the debug process and simplify the task of finding the right versions of
software.

•	 Perl. Oracle Solaris 11 includes the Perl language, providing powerful scripting capabilities and text
processing facilities.

Developing Applications

HP and Oracle offer C and C++ compilers that offer similar functionality through slightly differing flags
and options. By default, Oracle Solaris Studio compilers are installed in the /opt/SUNWspro/bin directory,
while HP-UX compilers are installed in the /opt/aCC/bin directory. The csompilers can generate 32-bit or
64-bit ELF objects, and default to 32-bit ELF objects, on both platforms.

The sections that follow discuss the considerations for porting applications from HP-UX to Oracle Solaris
using the vendor-supplied C and C++ compilers. Note that the GNU compilers for C and C++ are
available for both platforms, and projects committed to the GNU compilers typically port easily. However,
performance-sensitive enterprise applications tend to benefit (on both platforms) from using vendor-
supplied compilers.

High-Level Option Usage Strategy

Several strategies can assist the porting of high-performance, enterprise applications to Oracle Solaris
Studio compilers.

•	 Use reporting options and tools. Using tools, such as lint, and taking advantage of the highest
reporting levels can help speed the identification code issues that need attention.

•	 Take advantage of precompiled header files. Available for Oracle Solaris Studio C and C++
compilers, pre-compiled headers can improve productivity and ease the adjustment to a new project
environment. (See the –xpch option for more information.)

•	 Use debugging options to full effect. Enabling the maximum debugging options and executing test
runs can shed light on errors.

•	 Optimize for performance and use an iterative process. Set the –fast and other appropriate
performance analysis data collection options, test, and iterate. For many enterprise applications, profile
feedback, inter-procedural analysis, and other advanced options could be worth pursuing.

26

HP-UX to Oracle Solaris Porting Guide

HP-UX and Oracle Solaris Studio C and C++ Compiler Options Comparison

In most cases, the HP-UX and Oracle Solaris Studio C and C++ compilers provide similar functionality.
Table 6-2 lists available HP-UX compiler options and their Oracle Solaris Studio counterparts. Options are
marked as “N/A” where the HP-UX compiler offers no equivalent functionality. Because the C and C++
compilers use many of the same options, Table 6-2 combines option information for both compilers.
Options specific to the C or C++ compilers are noted. Additional detail on x86 architecture-specific
options can be found in the C User’s Guide for Oracle Solaris Studio.

TABLE 6-2. C AND C++ COMPILER OPTION COMPARISON

HP-UX	 ORACLE SOLARIS STUDIO DESCRIPTION

CODE GENERATION

N/A -xmemalign=ab	 Controls memory alignment, a:1..8 byte alignment is possible.

Generally 8 is best for performance. b: i,s or f. The default for

current SPARC processors is 8i (SPARC only).

-fast -fast	 Selects a good combination of compilation options for speed.

Several Oracle Solaris Studio compiler options are set when using

the –fast option: -xtarget=native, -x05,

-xlibmil, -xlibmopt, -xmemalign=8s (SPARC),

-nofstore, -fsimple=2, -fns, -ftrap=%none, …

Note: On Oracle Solaris, -fast is a macro whose expansion varies from release to release, and platform to platform. A best practice is to

place –fast first on the compilation command line as the right-most instance of an option overrides any number of previous instances.

N/A	 -fma[={none|fused}] Enables fused multiply add for SPARC processors that support it.

+FPVZO	 -fnonstd Expands to -fns -trap=common.

N/A -fns Turns on SPARC nonstandard floating-point mode, allowing

underflow to zero rather than gradual underflow.

See fesetround(3M) -fround=r	 Sets the floating-point rounding mode.

N/A -fsimple[=n] Allows the optimizer to make simplifying assumptions concerning

floating-point arithmetic.

N/A -fstore Causes the compiler to convert the value of a floating-point

expression or function (x86 only).

+FPstring -ftrap=t Sets the IEEE 754 trapping mode.

+FPVZO -ftrap=common

-fns

+Z/+z	 -xcode=pic32/pic13 Produces position-independent code.

27

HP-UX to Oracle Solaris Porting Guide

+u1 -xmemalign=1i Specify the maximum assumed memory alignment and behavior of

misaligned data accesses. Assume at most 1 byte alignment.

+u2 -memalign=2i Specify the maximum assumed memory alignment and behavior of

misaligned data accesses. Assume at most 2 byte alignment.

+DD[32][64] -m[32][64] Specifies the memory model (32-bit or 64-bit) for the compiled

binary object. On Oracle Solaris 10 –m32 is the default.

+wsecurity -errsecurity=v Check code for security loopholes.

v={core|standard|extended|%none}

+DSnative -xtarget=native Generates code for native hardware.

N/A -nofstore Does not convert the value of a floating-point expression or function.

Allows values to be kept in registers longer. (x86 only)

-O -O Equivalent to –x02.

N/A -xarch=a Limits the set of instructions the compiler uses to those for a

particular processor architecture.

+Oautopar (+03 and above) -xautopar Automatically parallelizes for multiple processors.

N/A -xbuiltin

[={%all|%none}]

Improves the optimization of code that calls standard library

functions. Lets the compiler substitute intrinsic functions or inline

system functions where profitable for performance.

N/A -xcache=c Defines cache properties for the optimizer.

N/A -xchip=c Specifies the target processor for use by the optimizer.

N/A -xdepend Analyzes loops for inter-iteration data dependencies, and performs

loop restructuring, including loop interchange and fusion, and scalar

replacement.

+Oautopar

+Onoautopar (default)

-xexplicitpar

-xautopar

Turns on automatic parallelization for multiple processors.

+Oinline=[f1,…,fn] -xinline=[f1,…,fn] Inlines the listed functions.

+Onoinline -xinline= Does not inline functions.

-ipo -xipo

-xcrossfile

-xlinkopt

Enables interprocedural analysis.

Enables analysis and inlining across different source files. (This

option is more limited than -xipo, but highly effective when only

key parts of a large application need to be considered as a unit.)

Performs link time optimization.

28

HP-UX to Oracle Solaris Porting Guide

N/A -xlibmieee Forces IEEE 754-style return values.

+Olibcalls -xlibmil Inlines some library routines.

-N -xMerge Merges data segments into text segments.

N/A -xnolibmil Does not inline math library routines.

+O[0|1|2|3|4] -xO[1|2|3|4|5] Specifies the optimization level.

N/A -xparallel Parallelizes loops automatically and as specified in the code.

+O[no]dataprefetch -xprefetch=

[no%]auto,[no%]explicit

Controls generation of data prefetch instructions.

N/A -xreduction Turns on reduction recognition during automatic parallelization.

N/A -xregs=r Specifies the usage of registers for generated code.

N/A -xrestrict=f Treats pointer-valued function parameters as restricted pointers.

N/A -xsafe=mem Allows the compiler to assume no memory protection violations

occur.

+Osize -xspace Instructs the compiler not to perform optimizations or loop

parallelizations that increase code size.

N/A -xtarget=t Specifies the target system for instruction set and optimization.

+Oloop_unroll=n -xunroll=n Specifies the loop unrolling level.

N/A -xvector[={yes|no}] Enables the automatic generation of vector calls for intrinsics.

Requires -fround=nearest.

LINKING AND LIBRARY

-Wl

-a

-archive

-Bstatic Searches static libraries.

-Wl

-a

shared_archive

-Bdynamic Searches dynamic libraries.

-Wl, -dynamic -dy Specifies dynamic linking (default).

-Wl, -noshared -dn Specifies static linking.

-lname -lname Loads a library.

N/A -mc Removes duplicate strings from the .comment section.

29

HP-UX to Oracle Solaris Porting Guide

N/A -mr[,string] Removes all strings from the .comment section and inserts the

specified string.

-mt -mt Instructs the compiler to compile and link multithreaded code using

the Oracles Solaris threads or POSIX threads API.

-Wl, +b,dir[:dir] -Rdir[:dir] Specifies the runtime library search path.

N/A -xF Allows for optimal reordering of functions and variables by the linker.

Requires use of analyzer(1).

N/A -xlic_lib=1

-xlic_lib=sunperf

Links with a licensed Oracle library.

Links to the Sun Performance Library.

+Olit=[all|const] (default) -features=

conststrings

Inserts string literals into the text segment.

Use ld –b -G Creates a shared object.

Use ld +h name -h name Assigns a name to a shared dynamic library (supports different

names for libraries for versioning).

-Ldir -Ldir Adds a specified directory to the list of directories the link-editor

uses to search for libraries.

N/A -xnolib Does not link any libraries by default (no –l options are passed to

the link-editor, ld).

META OPTIONS

None -### Shows each component as it would be invoked, but does execute it.

-C -C Prevents the preprocessor from removing comments.

Dname [=tokens] Dname [=tokens] Defines a symbol.

-E -E Runs the source file through the preprocessor.

-wn -erroff=t Suppresses compiler warnings.

N/A -errtags=[yes|no] Shows message tags.

-Wp, -h -H Prints header files.

-Wl +s (default) -i Passes an option to the linker instructing it to ignore the

LD_LIBRARY_PATH and LD_LIBRARY_PATH_64 environment

variable settings.

N/A -keeptmp Retains temporary files created during compilation instead of

deleting them automatically.

30

HP-UX to Oracle Solaris Porting Guide

-MO -fd Reports K&R-style function definitions and declarations.

+help -flags Prints a summary of each compiler option.

N/A -noqueue Does not queue if a license is not available.

-P -P Runs the source file through the C preprocessor only.

N/A -Q[y][n] Emits or does not emit identification information to the output file.

The default is y.

-S -S Directs the compiler to produce an assembly source file, but not

assemble the program.

-s -s Removes symbolic debugging information.

-Uname -Uname Undefines a specified preprocessor symbol.

-V -V Directs the compiler to print the name and version ID of each

component as the compiler executes.

N/A -v Directs the compiler to perform stricter semantic checks and to

enable other lint-like checks.

-Wc,arg -Wc,arg Passes an argument to a specified component.

-w -w Suppresses compiler warning messages.

N/A -xCC Instructs the compiler to accept C++ style comments.

Default Default Specifies that unqualified chars are signed.

-xchar=[signed|s]

+uc -xchar=[unsigned|u] Specifies that unqualified chars are unsigned.

+help -xhelp=f Displays online help information.

+Oreport=loop -xloopinfo Shows which loops are parallelized and which are not parallelized.

Use makedepend(1) -xM[1] Runs only the preprocessor and generates makefile dependencies.

N/A -maxopt=n Limits the level of #pragma opt.

+time -xtime Reports the time and resources used by each compilation

component.

N/A -Yc, dir Specifies a new directory dir for the location of component c.

N/A -YA, dir Specifies a directory in which to search for compiler components.

N/A -xvpara Warns about loops that contain #pragma MP directives.

31

HP-UX to Oracle Solaris Porting Guide

FILE HANDLING

-c -c Produces a .o file only.

-Idir -Idir Specifies an include file.

-o file -o file Sets the output filename.

-Idir -YI, dir Changes the default directory searched for include files.

-Ldir -YP, dir Changes the default directory for finding library files.

-Ldir -YS, dir Changes the default directory for startup object files.

PERFORMANCE ANALYSIS AND DEBUG

N/A -xinstrument=datarace Instruments code for data race conditions (Thread Analyzer).

-g -g Generates debug information.

-p -p, -qp Produces additional symbol table information for debugging.

N/A -xa Instruments code for test coverage with tcov(1).

-G -xpg Prepares the object code to collect data for profiling with gprof(1).

+Oprofile=collect -xprofile=collect Collects data for a profile or uses a profile to optimize.

+Oprofile=usefilename -xprofile=use[:name] Uses execution frequency data collected from code compiled with

-xprofile=collect to optimize for the work performed when the

profiled code was executed.

N/A -xprofile=tcov Instruments object files for basic block coverage analysis using

tcov(1).

N/A -xs Allows debugging by dbx without object files.

N/A -xhwcprof Enables compiler support for hardware counter-based profiling.

C COMPILER-SPECIFIC OPTIONS

N/A -xsfpconst Represents unsuffixed floating-point constants as single precision.

N/A -Aname [(tokens)} Associates a name with tokens.

-A[a|e]

-Aa

-X[a|c|s|t]

-Xc (strictest ANSI)

Specifies the language dialect (K&R through strict ANSI).

N/A -xP Prints prototypes for all K&R C functions.

32

HP-UX to Oracle Solaris Porting Guide

N/A -xtransition Issues warnings for K&R C and Oracle Solaris ANSI C differences.

Use $TMPDIR -xtemp=dir

export TMPDIR

Sets the directory for temporary files used by the compiler

(overrides TMPDIR).

N/A -Zll Creates the program database for lock_lint, providing static

analysis of parallelization coding errors.

C++ COMPILER-SPECIFIC OPTIONS

Use $TMPDIR -temp=dir

export TMPDIR

Sets the temporary directory (overrides the TMPDIR environment

variable).

+d +d Prevents the compiler from expanding inline functions.

N/A -features Enables/disables various C++ language features.

N/A -inline=rlst Instructs the compiler to inline specified functions.

N/A -instance=a Controls template instances.

Use -ll -library=l[,…l] Loads CC libraries.

-D_POSIX_C_SOURCE_199506L

-D_REENTRANT

-lpthread

-mt Instructs the compiler to compile and link multithreaded code using

the Oracles Solaris threads or POSIX threads API.

-noeh -features=no%except Does not generate code that supports C++ exceptions.

-DNDEBUG +p Disables assert statements.

N/A -template=wholeclass Instantiates whole template classes.

-Ipath -Ipath Specifies the search directory for template source, -ptipath can

be used, but complicates search rules and is not recommended.

+inst_v -verbose=template Controls template verbosity.

+We nnn[,nnn] -xwe Converts all warnings to errors.

33

HP-UX to Oracle Solaris Porting Guide

Building Applications

The tools for building applications—link-editors (linkers), run-time link editing tools, shared libraries, and
make tools—are significantly different on HP-UX and Oracle Solaris. This section provides an overview
of the facilities on Oracle Solaris, and highlights the differences between the platforms.

Overview of Linking Concepts in Oracle Solaris

In Oracle Solaris, developers create applications and libraries using the link-editor, ld(1), and execute
these objects with the aid of the runtime linker ld.so.1(1). The link-editor concatenates and interprets
data from one or more input files. These files can be relocatable objects, shared objects, or archive
libraries. From these input files, one output file is created. This file is a relocatable object, an executable
application, or a shared object. The link-editor is most commonly invoked as part of the compilation
environment, and works with files that conform to the executable and linking format (ELF).

On HP-UX and Oracle Solaris, the runtime linker, ld.so.1(1), processes dynamic executables and
shared objects at runtime, binding the executable and shared objects together to create a runnable process.
During the generation of these objects by the link-editor, appropriate bookkeeping information is
produced to represent the verified binding requirements. This information enables the runtime linker to
load, relocate, and complete the binding process.

During process execution, the facilities of the runtime linker are made available. These facilities can be
used to extend process address space by adding additional shared objects on demand. The two most
common components involved in runtime linking are dynamic executables and shared objects. Dynamic
executables are applications that are executed under the control of a runtime linker. These applications
usually have dependencies in the form of shared objects that are located and bound by the runtime linker
to create a runnable process. Shared objects, often referred to as shared libraries, provide the key
building-block to a dynamically linked system. Similar to the HP-UX environment, shared objects are not
lazy loaded in Oracle Solaris unless otherwise specified.

Lazy Loading of Dynamic Dependencies

Every dynamic object is examined for dependencies when loaded into memory. Identified dependencies
are loaded immediately by default. After the entire dependency tree is analyzed, inter-object data references
that are specified by relocations are resolved. These operations are performed whether or not the code in
these dependencies is referenced by the application during its execution.

Lazy loading enables the loading of a dependency to be delayed until the function is first referenced. In such
a scheme, unreferenced objects are never loaded. The HP-UX and Oracle Solaris linkers both provide an
option to enable lazy loading. Alternatively the dlopen() and dlsym() functions can be used to load and
bind to a dependency when needed. This model is ideal if the number of references is small, and works
well if the dependency name or location is not known at link-edit time. For more complex interactions
with known dependencies, coding to normal symbol references and designating the dependency to be
lazily loaded is simpler.

34

HP-UX to Oracle Solaris Porting Guide

On Oracle Solaris, an object is designated as lazily or normally loaded through the link-editor options -z
lazyload and -z nolazyload respectfully. These options are position-dependent on the link-edit
command line. Any dependency that follows the option takes on the loading attribute specified by the
option. By default, the -z nolazyload option is in effect.

Direct Binding

Objects that use direct binding maintain the relationship between a symbol reference and the dependency
that provided the definition. The runtime linker uses this information to search directly for the symbol in
the associated object, rather than carry out the default symbol search model. Direct binding information
for a dynamic object is recorded at link-edit time. This information can be established only for the
dependencies that are specified with the link-edit of that object. Use the
–z defs option to ensure all necessary dependencies are provided as part of the link-edit process.

The direct binding of a symbol reference to a symbol definition can be established with the –B direct
option. This option establishes direct bindings between the object being built and all of the object’s
dependencies, as well as between any symbol reference and symbol definition within the object being built.
Note that the -B direct option also enables lazy loading (equivalent to adding –z lazyload to the front
of the link-edit command line).

Runtime Linking Functions

The runtime linker on HP_UX and Oracle Solaris, ld.so.1, provides several library calls that can be used
to locate and bind applications to shared libraries during execution.

TABLE 6-3. SUPPORTED CALLS FOR DYNAMIC RUNTIME LINKING

DESCRIPTION FUNCTION

Translates an address to symbolic information. dladdr

Closes a shared object and unloads it. dlclose

Returns the last error that occurred during the dynamic linking process. dlerror (dlerrno on HP-UX)

Makes an executable object file available to a running process. dlopen

Gets the address of a symbol in a shared object or executable. dlsym

35

HP-UX to Oracle Solaris Porting Guide

Mapfiles

The HP-UX and Oracle Solaris link-editor automatically and intelligently map input sections from
relocatable objects to segments in the output file. On Oracle Solaris, developers can change the default
mapping through the use of the –m option and a mapfile. The mapfile enables new segments to be created,
attributes to be modified, and symbol versioning information to be supplied. Mapfiles consist of a series of
directives, including:

•	 Segment declarations create a new segment in the output file, or change the attribute values of an existing
segment

•	 Mapping directives instruct the link-editor on how to map input sections to output segments

•	 Section-to-segment ordering specifies the order in which sections are placed within a segment

•	 Size-symbol declarations enable developers to define a new global-absolute symbol that represents the size,
in bytes, of the specified segment

•	 File control directives specify which version definitions within shared objects are to be made available
during a link-edit

More information on mapfiles can be found in the Linker and Libraries Guide. Sample mapfiles can be
found in the /usr/lib/ld directory.

Support Tools

Oracle Solaris provides similar support tools to HP-UX for the analysis and inspection of objects and
linking processes. Table 6-4 lists the key support tools on each platform.

TABLE 6-4. COMPARISON OF SUPPORT TOOLS AND LIBRARIES

DESCRIPTION HP-UX ORACLE SOLARIS 10 ORACLE SOLARIS 11

Displays or modifies internal object file attributes. chatr(1) — —

Dumps select portions of an object file. — dump(1) dump(1)

Contains the object file access library. elf(3E) elf(3ELF) elf(3ELF)

Displays the contents of an ELF file. elfdump(1) elfdump(1) elfdump(1)

Writes binding information into an executable. fastbind(1) — —

Analyzes the interface requirements of dynamic ELF objects. — lari(1) lari(1)

Lists dynamic dependencies specified at runtime. ldd(1) ldd(1) ldd(1)

Finds ordering relation for an object or library archive. lorder(1) lorder(1) lorder(1)

Displays the symbol table for an ELF object file. nm(1) nm(1) nm(1)

36

HP-UX to Oracle Solaris Porting Guide

Lists the dynamic libraries linked into each process, including

shared objects explicitly attached using dlopen(3C).

pldd(1) pldd(1) pldd(1)

Prints a hex+symbolic stack trace for each process or

specified lightweight processes in each process.

pstack(1) pstack(1) pstack(1)

Displays internal version information contained in an ELF file. — pvs(1) pvs(1)

Produces segment or section size information in bytes for

each loaded section in ELF object files.

size(1) size(1) size(1)

Strips symbol table, debugging, and line number information

from an object file.

strip(1) strip(1) strip(1)

Environment Variables

The HP-UX and Oracle Solaris link-editors support a number of environment variables that begin with the
characters LD_, such as LD_LIBRARY_PATH. On Oracle Solaris, each environment variable can exist in its
generic form, or can be specified with a _32 or _64 suffix to make it specific to a 32-bit or 64-bit process.
This suffix also overrides any generic, non-suffixed, version of the environment variable that might be in
effect. Table 6-5 lists the key linker environment variables.

TABLE 6-5. KEY LINKER ENVIRONMENT VARIABLES

DESCRIPTION ORACLE SOLARIS ENVIRONMENT VARIABLE

Causes the runtime linker to perform immediate reference and lazy LD_BIND_NOW

reference relocations when an object is loaded.

Specifies an alternative configuration file. LD_CONFIG

Enables debugging. LD_DEBUG

Specifies an output file for use instead of the standard error. LD_DEBUG_OUTPUT

Specifies the library search path. LD_LIBRARY_PATH

Disables direct bindings. LD_NODIRECT

Disables lazy loading. LD_NO_LAZYLOAD

Defines options to be used by the linker. LD_OPTIONS

37

HP-UX to Oracle Solaris Porting Guide

Specifying Link Editor Options

Most options to the link-editor can be passed through the compiler driver command line or Oracle Solaris
Studio. For the most part, the compiler and the link-editor options do not conflict. Where a conflict arises,
use a command line option to pass specific options to the link-editor, or set the LD_OPTIONS environment
variable.

When porting applications from HP-UX to Oracle Solaris, closely examine the link options specified in
existing makefiles and compare them to the options provided by the linker on Oracle Solaris. While several
options are identical in the two environments, most options are named or behave differently on the two
platforms. Take care to translate linker options correctly. Table 6-6 identifies a few linker options and
summarizes their behavior on HP-UX and Oracle Solaris. See the Linker and Libraries Guide for detailed
information on all available linker options.

Applications that require numerous linking options can create long and complicated command lines. In the
HP-UX and Oracle Solaris environments, options can be directed to the linker from a file. Annotations
can be made in the options file through the use of comments, lines that begin with the # character.

TABLE 6-6. HP-UX AND ORACLE SOLARIS KEY LINKER OPTION COMPARISON

OPTION ORACLE SOLARIS DESCRIPTION NOTES ON BEHAVIORAL DIFFERENCES ON HP-UX

-64 Creates a 64-bit object.

-B direct|nodirect Controls binding behavior. HP arguments differ:

dynamic|static deferred, immediate, nodelete,

eliminate nonfatal, restricted, symbolic, verbose

group

 local

 reduce

 symbolic

-D tokens Prints debugging information.

-F filename Identifies filename as a filter for the shared object. HP option is named +filter

-G Produces a shared library. HP option strips debug information

-Ldirectory Adds directory to the library search path.

-M mapfile Specifies a mapfile to use to alter default mapping. HP option is named -k

-R arg Specifies a list of library directories for the runtime HP option performs a different function. It defines the

linker. origin of a text segment.

38

-c

HP-UX to Oracle Solaris Porting Guide

Makefiles

Oracle Solaris provides the standard make(1) command that is also available on HP-UX, as well as the
Distributed Make utility, dmake(1), a superset of make(1). Integrated into the Oracle Solaris Studio IDE,
dmake parses makefiles and determines which targets can be built concurrently, and distributes the build
of those targets over a number of hosts set by the developer. Makefiles that use the standard make utility
on HP-UX require little alteration when moved to make or dmake on Oracle Solaris. With nested makes, if
a top-level makefile calls make, use $(MAKE).

The dmake command is executed on a dmake host and jobs are distributed to build servers. Jobs are distributed
based on the makefile targets that dmake determines (based on makefiles) can be built concurrently. Any
system can be a build server as long as the rsh command can be executed without requiring a password,
and the system can access the bin directory in which the dmake software is installed. From the dmake host
developers can control which build servers are used and how many jobs are allotted to each build server.

Comparison of Makefile Attributes

The standard make utility provided on HP-UX and Oracle Solaris, and the dmake utility, support most of
the same suffixes, macros, and options (Table 6-7).

TABLE 6-7. MAKEFILE SUMMARY

ITEMS THAT ARE THE SAME FOR MAKE (HP-UX AND ORACLE SOLARIS) AND DMAKE

BUILT-IN TARGETS OPTIONS	 VARIABLES DYNAMIC MACROS

.DEFAULT -d -p CC LD $@

.IGNORE -e -q CFLAGS LDLAGS $%

.PRECIOUS -f makefile -r CPPFLAGS LEX $*

.SILENT -i -s FC LFLAGS $<

.SUFFIXES -k -S FFLAGS YACC $?

-n -t	 YFLAGS

ADDITIONAL OPTIONS FOR DMAKE

OPTION ARGUMENTS	 DESCRIPTION

dmake_rcfile	 Specifies an alternate runtime configuration file.

-g dmake_group	 Specifies the name of the build server group for jobs distribution.

-j dmake_max_jobs Specifies the maximum number of jobs that are distributed to the

group of build servers in the runtime configuration file.

-m serial|parallel|distributed	 serial: dmake behaves like standard serial make.

parallel: dmake distribute jobs only to the dmake host.

distributed: dmake behaves in fully distributed mode (default).

-o dmake_odir	 Specifies a physical directory for temporary files.

39

HP-UX to Oracle Solaris Porting Guide

Debugging Applications

Oracle Solaris Studio provides a rich set of integrated debugging tools that can help developers understand
how applications are behaving, and why, and shorten the development/testing cycle.

Discover

The Sun Memory Error Discovery Tool software detects memory access errors. The tool works with any
binary—even a fully optimized binary—that has been prepared by the compiler. The binary is
instrumented with a single command and run in the normal way. Memory access errors are caught and
reported dynamically as the program executes. The Sun Memory Error Discovery Tool reports the
memory anomalies found during the run in a text or HTML file. Note that the tool operates on executed
code. If a portion of user code is not executed at run time, errors in that portion are not reported.

Uncover

The Oracle Solaris Studio Code Coverage Tool measures code coverage of applications. An uncoverage
feature makes it possible to quickly find major functional areas within binaries that are not being tested.
The coverage information reported can be at a function, statement, basic block, or instruction level.

The Code Coverage Tool is multithread and multiprocess safe, and uses a simple procedure for
instrumenting binaries, running tests, and displaying results. Special builds are not required, making it easy
for developers to use the tool with regular or optimized binaries that are ready for production. Overhead is
slight, and the performance impact of the tool relative to uninstrumented code is fairly small.

The dbx Debugger and the GUI-Based dbxtool

The scriptable dbx debugger is multithread-aware and can debug multithreaded applications that use either
Oracle Solaris or POSIX threads. Developers can examine stack traces of each thread, resume all threads,
step through or over a specific thread, and navigate between threads. The debugger also supports fixing
and continuing, the process of relinking source files after making changes without having to recompile the
entire program or restart the debugging session. By eliminating the time consuming steps of rebuilding the
program and starting the debugger again from the beginning, developers can get programs working more
rapidly. In addition, dbx can help track down difficult bugs by providing developers with valuable memory
information including usage, leaks, and what is being accessed.

Runtime Checking

Runtime checking is an integral debugging feature of Oracle Solaris Studio that automatically detects
runtime errors such as memory access and memory leaks in an application during the development phase.
As errors are detected, the debugger interrupts program execution and displays the relevant source code,
enabling bugs to be fixed as they are found.

40

HP-UX to Oracle Solaris Porting Guide

With support for multithreaded code, runtime checking provides a valuable means of debugging more
complex multithreaded applications. Oracle Solaris Studio runtime checking works with all languages and
requires no recompiling, relinking, or makefile changes. All debugging operations can be performed while
using runtime checking except collecting performance data.

Oracle Solaris DTrace Facility and DLight

DTrace is a comprehensive dynamic tracing facility built into Oracle Solaris that gives users,
administrators, and developers a new and unique level of observability into the behavior of user programs
and the operating system. Hundreds of thousands of tracing points, or probes, are embedded in the Oracle
Solaris kernel, utilities, and other software components to enable dynamic instrumentation of user-
specified probes for recording data and examining the system in-depth. Trace points are completely
passive until enabled for data collection, and can be disabled when observation no longer is required.
Observed information can help developers to rapidly identify performance bottlenecks, optimize resource
utilization and performance, and quantify application resource requirements. In Oracle Solaris 11, DTrace
adds a new provider, smb, that lets developers observe a wide range of Samba (SMB) server operations.
Developers can use built-in probes to write DTrace scripts for the SMB server and watch activity from PC
clients.

DLight is a new GUI tool with a simple drag-and-drop interface that utilizes and visualizes the power of
DTrace debugging and performance analysis functionality. Developers can select the target application,
choose the DLight instrumentation to be monitored while the target application is running, and analyze
the data returned by the tool. The data returned can be used to refine the experiment recursively until the
behavior of the application under analysis is clear. The DLight tool can be applied to an attached process
or an executable.

Optimizing Applications

Maximizing application performance is a key goal for any optimizing compiler technology. However,
modern application performance must be seen in the context of a diverse and complex mixture of
heterogenous hardware and operating systems, as well as and both serial and parallel environments. For
example, the latest x86 processors from both Intel® and AMD™ now implement Streaming SIMD
Extensions 2 (SSE2) supplemental instructions while some SPARC processors support special instructions
that can dramatically increase performance for certain kinds of operations. In addition, all major chip
vendors are now producing multicore CPUs, including Intel® Xeon®, AMD Opteron, and Oracle SPARC
processors.

Optimizing for Serial Performance

Getting the best performance for SPARC or x86 applications involves using the latest compilers and
selecting the best and most appropriate set of compiler options. The sections that follow detail a number
of recommended options for optimizing applications for serial performance. Optimizing multithreaded or
parallel applications is covered later in this document.

41

HP-UX to Oracle Solaris Porting Guide

Oracle Solaris Studio compilers strive to provide the best out-of-the-box performance for any applications
built using them. However, it is often the case that some minor refinements to the selection of compiler
options can yield further gains in performance. As a result, it is key that optimization and tuning be
approached on an experimental basis before the final version of the program is released. As a part of this
process, it is key to understand exactly what is expected of the compiler in concert with the assumptions
made in the application. In particular, two key questions must be asked when selecting appropriate
compiler options:

• What is known about the platforms where the compiled application will eventually run?

• What is known about the assumptions that are made in the code?

In addition, it is helpful to consider the purpose of a particular compilation. Compiler options can present
various trade-offs depending on whether a given compilation is meant to assist with debugging, testing,
tuning, or final performance optimization.

Identifying the Target Platform

Knowing where the code will eventually run is essential in order to understand what optimization options
make sense. The choice of platform determines:

• A 32-bit or 64-bit instruction set

• Instruction set extensions the compiler can use to accelerate performance

• Instruction scheduling depending on instruction execution times

• Cache configuration

Generating 32-bit or 64-bit Code

The UltraSPARC and x86 processor families can run both 32-bit and 64-bit code. The principal advantage
of 64-bit code is that the application can handle a larger data set than 32-bit code. However, the cost of
this larger address space is a larger memory footprint for the application, since long variable types and
pointers increase in size from 4 bytes to 8 bytes. The increase in memory footprint might cause a 64-bit
version of an application to run more slowly than the 32-bit version.

At the same time, the x86 platform presents some architectural advantages when running 64-bit code as
compared to running 32-bit code. In particular, the application can use more registers, and can use a better
calling convention. On the x86 platform, these advantages will typically allow a 64-bit version of an
application to run faster than a 32-bit version of the same code, unless the memory footprint of the
application has significantly increased.

The UltraSPARC line of processors took a different approach, as it was architected to enable a 32-bit
version of an application to use the architectural features of the 64-bit instruction set. As a result, there is
no architectural performance gain going from 32-bit to 64-bit code. Consequently, 64-bit applications
compiled for UltraSPARC processors only see the additional cost of the increase in memory footprint.

Compiler flags determine whether a 32-bit or 64-bit binary is generated.

42

HP-UX to Oracle Solaris Porting Guide

•	 The -m32 flag generates a 32-bit binary

•	 The -m64 flag generates a 64-bit binary

For additional details about migrating from 32-bit to 64-bit code, refer to “Converting 32-bit Applications
Into 64-bit Applications: Things to Consider” at http://www.oracle.com/technetwork/server-
storage/solaris/ilp32tolp64issues-137107.html and “64-bit x86 Migration, Debugging, and Tuning with the
Sun Studio 10 Toolset” at http://www.oracle.com/technetwork/server-storage/solaris/amd64-migration-
137808.html.

Specifying an Appropriate Target Processor

Oracle Solaris Studio compilers allow considerable flexibility in selecting a target processor through setting
the -xtarget compiler flag. The default for the compiler is to produce a “generic” binary – namely a
binary that will work well on all platforms (-xtarget=generic). In many situations, a generic binary will
be the best choice. However, there are some situations where it is appropriate to select a different target,
including:

•	 To override a previous target setting. The compiler evaluates options from left to right, and if the flag
-fast has been specified on the compile line, then it may be appropriate to override the implicit setting
of -xtarget=native with a different choice.

•	 To exploit the features of a particular processor. For example, newer processors tend to have more
features that can be exploited for performance gains. The compiler can use these features at the expense
of producing a binary that does not run on older processors that do not have these features.

The -xtarget flag actually sets three flags:

•	 The -xarch flag specifies the architecture of the target machine. This architecture is basically the
instruction set that the compiler can use. If the processor that runs the application does not support the
appropriate architecture then the application may not run.

•	 The -xchip flag tells the compiler which processor to assume is running the code. This flag tells the
compiler which patterns of instructions to favor when it has a choice between multiple ways of coding
the same operation. It also tells the compiler the instruction latency to use in order that the instructions
are scheduled to minimize stalls.

•	 The -xcache flag tells the compiler the cache hierarchy to assume. This selection can have a significant
impact on floating point codes where the compiler is able to make a choice about how to arrange loops
so that the data being manipulated fits into the caches.

Target Architectures for the SPARC® Processor Family

For the SPARC processor family, the default setting -xtarget=generic should be appropriate for most
situations. This setting will generate a 32-bit binary that uses the SPARC V8 instruction set, or a 64-bit
binary that uses the SPARC V9 instruction set. The most common situation where the target architecture
needs to be taken into account and a different setting may be required is compiling code that contains
significant floating point computations.

43

http://www.oracle.com/technetwork/server-storage/solaris/amd64-migration
http://www.oracle.com/technetwork/server

HP-UX to Oracle Solaris Porting Guide

Target Architectures for the x86 Processor Family

By default, the Oracle Solaris Studio compiler targets a 32-bit generic x86 based processor, so that
generated code will run on any x86 processor from a Pentium Pro to the latest Intel or AMD Opteron
processor. While -xtarget=generic produces code that can run over the widest range of processors,
this code will not take advantage of the SSE2 extensions offered by the latest processors. To exploit these
instructions, the flag -xarch=sse2 can be used. However, the compiler may not recognize all
opportunities to use these instructions unless the vectorization flag -xvector=simd is also used.

Table 6-8 provides a summary of Oracle Solaris Studio compiler flags recommended for compilation for
various SPARC and x86 target architectures.

TABLE 6-8. ORACLE SOLARIS STUDIO FLAGS FOR SPECIFYING ARCHITECTURE AND ADDRESS SPACE

ARCHITECTURE 32-BIT ADDRESS SPACE 64-BIT ADDRESS SPACE

SPARC -xtarget=generic -m32 -xtarget=generic -m64

SPARC64 -xtarget=sparc64vi -m32 -xtarget=sparc64vi -m64

x86 -xtarget=generic -m32 -xtarget=generic -m64

X86/SSE2 -xtarget=generic -xarch=sse2
-m32–xvector=simd

-xtarget=generic -xarchsse2 -m64
-xvector=simd

Choosing Compiler Optimization Options

Choosing compiler options resents a trade-off between compilation time, run-time, and (possibly)
application behavior. The optimization flags chosen alter three important characteristics, including:

• The runtime of the compiled application

• The length of time that the compilation takes

• The amount of debug activity that is possible with the final binary.

In general, the higher the level of optimization, the faster the application runs (and the longer it takes to
compile), but the less debug information that is available. Ultimately, the particular impact of optimization
levels will vary from application to application. The easiest way of thinking about these tradeoffs is to
consider three degrees of optimization, as outlined in Table 6-9.

44

HP-UX to Oracle Solaris Porting Guide

TABLE 6-9. THREE DEGREES OF OPTIMIZATION GENERATE DIFFERENT IMPLICATIONS FOR RESULTING CODE.

PURPOSE FLAGS COMMENTS

Full debug -g [no optimization flags] The application will have full debug capabilities, but no optimization

will be performed on the application, leading to lower performance.

Optimized -g -O [-g0 for C++] The application will have good debug capabilities, and a reasonable

set of optimizations will be performed on the application, typically

leading to significantly better performance.

High Optimization -fast [-g0 for C++] -g The application will have good debug capabilities, and a large set of

optimizations will be performed on the application, typically leading

to higher performance.

Compiling for Debugging (-g)

The -g option is a high-fidelity debug option that lets the developer check for algorithmic error. With the
flag set, code performs exactly as written and the developer can inspect variables under the debugger. For
lower levels of optimization, the -g flag disables some minor optimizations (to make the generated code
easier to debug). At higher levels of optimization, the presence of the flag does not alter the code
generated (or its performance). However, it is important to be aware that at high levels of optimization, it
is not always possible for the debugger to relate the disassembled code to the exact line of source, or for it
to determine the value of local variables held in registers rather than stored to memory.

The C++ compiler will disable some of the inlining performed by the compiler when the -g compiler flag
is used. For C++, the -g0 flag will tell the compiler to do all the inlining that it would normally perform,
as well generating the debug information.

A very strong reason for compiling with the -g flag is that the Oracle Solaris Studio Performance Analyzer
can then attribute time spent in the code directly to lines of source code – making the process of finding
performance bottlenecks considerably easier.

Basic Optimization (-O)

Basic optimization can be achieved by using the -O compiler flag. The -O flag offers decent runtime
performance, without taking excessively long to compile the application. The -g flag can be added to the -
O flag to get optimization with debugging information built in. Multiple possible levels of optimization are
offered with Oracle Solaris Studio compilers, including -O3, -O4, and -O5. Please see the Oracle Solaris
Studio documentation for a full description of these options.

Aggressive Optimization (-fast)

The -fast option is a good starting point when optimizing code, but it may not necessarily represent the
desired optimizations for the finished program. Developers should note that because the -fast option is

45

HP-UX to Oracle Solaris Porting Guide

defined as a particular selection of compiler options, it is subject to change from one release to another, as
well as between compilers. In addition, some of the component options selected by -fast may not be
available on some platforms. Care must also be taken if application compilation and linking are performed
separately. Developers should make sure that applications are both compiled and linked with
-fast to ensure proper behavior.

The -fast option implies many individual compilation optimizations. These individual options can be
turned off or on at will. Ideally the -fast option should be applied objectively. For instance, if compiling
with -fast yields a five-fold performance gain, it is definitely worth exploring which of the specific
options included in -fast are providing the performance advantages. Those options might then be used
individually in subsequent builds for a more deterministic and focused optimization.

Note: The –fast compilation flag can have implications for target architecture, floating-point arithmetic,
and pointer aliasing. Please see the white paper “Optimizing Applications with Oracle Solaris Studio
Compilers and Tools” located at http://www.oracle.com/technetwork/systems/optimizing-apps-oracle-
solaris-stud-150254.pdf for more information.

Performance Analyzer

As computer systems continue to become more powerful, application performance is emerging as a critical
factor, with bad performance increasingly considered a program failure. Developers are now keenly aware
that they must streamline critical sections of source code as well as locate programmatic errors and coding
deficiencies without impacting application accuracy. Oracle Solaris Studio includes a Performance Analyzer
that can help aid developers with these tasks.

To use the Performance Analyzer, applications can be compiled with any level of parallelization and
optimization. To see source code, and to attribute time to lines of source code, the -g option must also be
specified. Applications are then run using the collect command. The command can specify a PID,

% collect –P <pid>

or the collect command can be used to launch the application and its parameters.

% collect <application> <parameters>

The collect command gathers performance data during application execution, saving it to an experiment
file to be used later during the analysis process. The collect command enables developers to obtain
information on:

• Clock-based profiles

• Thread-synchronization delay events and wait time

• Operating system summary information

• Hardware-counter overflow profiles on systems where the hardware supports it

• Global information, including execution statistics and address-space data

46

http://www.oracle.com/technetwork/systems/optimizing-apps-oracle

HP-UX to Oracle Solaris Porting Guide

Once the experiment is complete, the Performance Analyzer loads the experiment data from a file titled
test.1.er. Experiments can be either loaded into the analyzer from the command line, or by using the
<File> menu from the running analyzer application. To start the analyzer, the following is typed on the
command line.

% analyzer <control-options> <experiment-list>

To aid application analysis, the Performance Analyzer then provides several ways for developers to view
collected performance data, including data display at the function or load object level. Developers can
control which metrics are shown, as well as the order in which they appear. The Performance Analyzer
features multiple tabs which provide different perspectives into the runtime environment, including:

• The Functions tab

• The Callers-Callees tab

• The Disassembly tab

• The Source tab

• The Timeline tab

The Functions Tab (Figure 6-3) shows a list of functions and their metrics. The metrics are derived from
the data collected in the experiment. Metrics can be either exclusive or inclusive. Exclusive metrics
represent usage within the function itself while inclusive metrics represent usage within the function, and
all of the functions it called.

Figure 6-3. The Performance Analyzer Function Tab lets developers understand where time is being spent.

47

http:test.1.er

HP-UX to Oracle Solaris Porting Guide

Optimizing Parallel Applications

Most processors today—SPARC and x86 alike—are equipped with multiple cores and are capable of
supporting multiple simultaneous execution threads. Many systems also employ multiple multicore
processors. Taking advantage of these multiple cores and exploiting multiple threads of execution has
become important as organizations seek to derive as much value and performance as possible from their
selected platforms.

Oracle Solaris provides an efficient and scalable threading model as well as a smart scheduler to deliver
these considerable resources to applications through a variety of development and deployment tools.

•	 Virtualization systems such as Oracle VM Server for x86 and Oracle VM Server for SPARC let multiple
operating system instances share a single physical system.

•	 Oracle Solaris Containers allow multiple execution environments within a single operating system
instance.

•	 Threaded applications can take advantage of multiple cores on multicore processors and multisocket
systems.

Independent of the execution environment, as developers seek to exploit parallelism, they must ensure that
their code is correct and provides predictable results. Oracle Solaris Studio compilers support techniques
for generating parallel applications, including automatic parallelization, support for OpenMP directives,
and support for the POSIX threads API. The Oracle Solaris Studio Thread Analyzer is also provided to
help analyze parallel code for correctness.

Automatic Parallelization

Many existing codes were written without the assumption of parallel threads of execution. Oracle Solaris
Studio compilers provide mechanisms to let the application run multiple threads without requiring the
developer to specific how. Loops in particular often represent opportunities where a previously repetitive
serial operation can be divided into multiple independent execution threads. Several compiler flags are
used with Oracle Solaris Studio compilers to govern automatic parallelization behavior.

•	 The -xautopar compiler flag tells the compiler to look for loops that can be safely parallelized in the
code.

•	 The -xreduction compiler flag can be used to recognize and parallelize reduction operations that take
a range of values and output a single value – such as summing all the values in an array.

•	 The -xloopinfo compiler flag can be specified to generate information for the developer about the
loops that the compiler has parallelized.

OpenMP

Support for OpenMP in Oracle Solaris Studio means that the compilers can look for directives (pragma) in
the source code in order to build a parallel version of the application. Similar to automatic parallelization,
the compiler does the work so that developers do not have to manage their own threads. OpenMP
represents an incremental approach to parallelization with potentially fine granularity. OpenMP allows
developers to set directives around specific loops to be optimized through threading while leaving other

48

HP-UX to Oracle Solaris Porting Guide

loops untouched. The other distinct advantage of this approach is that developers can derive a serial and a
parallel version of the application from the exact same code base, which can be helpful for debugging.
Several compiler flags are used with Oracle Solaris Studio related to OpenMP.

•	 Enable OpenMP with the -xopenmp compiler flag. Directives are recognized only when the flag is used.

•	 Set the -xvpara compiler flag to report potential parallelization issues.

•	 Set the -loopinfo compiler flag to instruct the compiler to provide details on which loops were
parallelized.

•	 Set the OMP_NUM_THREADS or PARALLEL environment variable at runtime to take advantage of
multiprocessor execution. These environment variables specify the number of processors available to
the program. The variables are equivalent, and only one needs to be set.

POSIX Pthreads

By programming to the POSIX threads API, developers can have complete control over thread usage in
their applications. POSIX Threads (pthreads) represents a POSIX standard for a thread API, defining a
set of C programming language types, functions, and constants. Oracle Solaris Studio compilers support
the POSIX threads programming model.

Thread Analyzer

While the Performance Analyzer provides an advanced tool for application optimization, the Thread
Analyzer is designed to help ensure multithreaded application correctness. Specifically, the Thread
Analyzer can help detect, analyze, and debug the special situations that can arise in multithreaded
applications.

•	 Data races can cause incorrect or unpredictable results, and can occur arbitrarily far way from where a
problem seems to occur. Data races occur under the following conditions:

•	 Two or more threads in a single process concurrently access the same memory location

•	 At least one of the threads is accessing the memory location for writing

•	 The threads are not using any exclusive locks to control their accesses to that memory

•	 Deadlock conditions occur when one thread is blocked waiting on a resource held by a second thread,
while the second thread is blocked waiting on a resource held by the first (or an equivalent situation with
more threads involved).

To instrument the source code for data race and deadlock detection the code is compiled with a special
flag, executed under control of the collect -r command, and then loaded into the Thread Analyzer.

•	 Applications are first compiled with the -xinstrument=datarace compiler flag. It is recommended
that the -g flag also be set, and that no optimization level be used to help ensure that the line numbers
and call-stacks information is returned correctly.

49

HP-UX to Oracle Solaris Porting Guide

•	 Resulting application code is then executed within the collect -r command allowing for the
collection of key runtime information. Use the collect -r all option to run the program and create
a data race detection and deadlock detection experiment during the execution of the process.
Alternately, either data races or dead lock conditions for the experiment.

% collect -r race <app> <params>

• Finally, the results of the experiment are loaded into the Thread Analyzer to identify data race and
deadlock conditions (Figure 6-4).

Figure 6-4. Data race conditions can be identified through use of the Thread Analyzer.

The Thread Analyzer can also help identify individual lines of source code that are associated with race
conditions (Figure 6-5).

50

HP-UX to Oracle Solaris Porting Guide

Figure 6-5. Individual lines of source code associated with data race conditions can be identified using the Thread Analyzer.

See “Optimizing Applications with Oracle Solaris Studio Compilers and Tools” for more information.

51

HP-UX to Oracle Solaris Porting Guide

Chapter 7 Threads and Multiprocessing

Threading Models

To maximize performance, applications can be architected to execute many tasks simultaneously. To make
this possible, the operating system provides support for concurrent processing, such as multiple threads,
shared memory, and asynchronous I/O. Multithreaded application programs aim to improve parallelism,
and can be written without regard to the number of CPUs configured on the target machine.

Oracle Solaris uses a highly tuned and tested 1:1 thread model in preference to the historic MxN
implementation. By simplifying the underlying thread implementation, existing applications can see
dramatic performance and stability improvements without requiring recompilation.

While Oracle Solaris supports POSIX and Oracle Solaris threads, the POSIX (pthread) model is
recommended for new application development and porting efforts. In the POSIX model:

•	 The kernel uses one thread to handle each system call and interrupt, allowing multiple CPUs to
accelerate kernel tasks. Kernel threads are also known as lightweight processes (LWPs).

•	 Every user level thread has a dedicated kernel thread or LWP (1:1 model). Previous generations of the
operating system employed an MxN model. Starting with Oracle Solaris 9, the MxN model was replaced
with a 1:1 model based on performance studies and extensive workload analyses of large enterprise
customer workloads with very large numbers of processors.

In Oracle Solaris, the original libthread (Oracle Solaris Threads) and libpthread (POSIX thread)
libraries were merged into the standard libc library. While it is possible, mixing the threading models
creates undue complexity and should be avoided.

Over 100 standard POSIX functions are available through the pthreads API. See the pthreads(5) man
page for detailed information, including a comparison to the Oracle Solaris threading APIs.

Differences Between Oracle Solaris and HP-UX Threading Models

Since HP-UX 11i v3 and Oracle Solaris implement the same POSIX 1003.1c standard, any differences in
the interface are largely due to edge cases left unspecified by the standard, or by permitted implementation
dependences.

Oracle Solaris has a rich range of process scheduling features, and some of this is reflected in the threading
model. (For example, Oracle Solaris pthreads have a priority attribute that HP-UX v11.3 pthreads
lack.) While most applications can do very well with the default scheduling, large ensembles of threads and
mission-critical enterprise class multiprocess applications can benefit from careful use of the various
process scheduler features. See http://download.oracle.com/docs/cd/E19963-01/html/821-1460/rmfss-
2.html for an introduction to the scheduler.

Table 7-1 summarizes the differences in threading attributes, interface differences, and unique extensions
available in Oracle Solaris.

52

http://download.oracle.com/docs/cd/E19963-01/html/821-1460/rmfss

HP-UX to Oracle Solaris Porting Guide

TABLE 7-1. THREADING SUMMARY

PTHREAD DEFAULT ATTRIBUTES

ATTRIBUTE HP-UX 11I v3 ORACLE SOLARIS 10 COMMENT

stacksize 256 KB Depends on system tunable

default_stksize

Default is 3xPAGESIZE for SPARC; 2x

PAGESIZE for x86 and 5x PAGESIZE for

AMD64 systems. Max can be 32x the

default value.

Priority NA 0

Inheritsched PTHREAD_INHERIT_SCHED PTHREAD_EXPLICIT_SCHED A default change to INHERIT_SCHED is

possible. Use the following rather than

accepting the default:

pthread_attr_setinheritsched()

Schedpolicy SCHED_TIMESHARE SCHED_OTHER SCHED_OTHER is the traditional Oracle

Solaris time-sharing (TS) scheduling class.

Guardsize PAGESIZE PAGESIZE Pages are 4KB for HP-UX and typically 8

KB for Oracle Solaris, depending on the

hardware platform.

NOTABLE PTHREAD INTERFACE DIFFERENCES

API HP-UX 11I v3 ORACLE SOLARIS 10 COMMENT

pthread_create EAGAIN for errors Errors reported through

errno.

Typical failure

is due to

ENOMEM.

pthread_join When called by more than 1 thread one returns, and

the others are undefined.

When called by more

than 1 thread, one

returns normally and the

others return ESRSH.

pthread_key_create _SC_THREAD_KEYS_MAX=431

_SC_THREAD_DESTRUCTOR_ITERATIONS=430

pthread_key_create

pthread_getschedparam

pthread_setschedparam

Priority values represent actual scheduling values

without reflecting temporary adjustments

sched_yield On failure, returns -1 and errono=ENOSYS On failure, returns -1,

sets error based on the

specific failure.

53

HP-UX to Oracle Solaris Porting Guide

HP PTHREAD EXTENSIONS WITH NO ORACLE SOLARIS EQUIVALENTS

pthread_suspend pthread_processor_id_np pthread_mutexattr_getyieldfreq_np

pthread_continue pthread_mutexattr_getspin_np pthread_mutexattr_setyieldfreq_np

pthread_resume_np pthread_mutexattr_setspin_np pthread_default_stacksize_np

pthread_num_processor_np

Support for Chip-Multithreading Technology

Unlike traditional single-threaded processors and even most current multicore processors, hardware
multithreaded processors, such as Oracle’s SPARC T3 and SPARC T4 processors, allow rapid switching
between active threads as other threads stall for memory. The key to this approach—each core is designed
to switch between multiple threads on each clock cycle. As a result, the processor’s execution pipeline
remains active doing useful work, even as memory operations for stalled threads continue in parallel.

Thread-rich applications common in commercial workloads benefit greatly from this model, whether
comprised of larger multithreaded applications, or large numbers of smaller single-threaded applications.
The number of simultaneous threads that can be accommodated is quite large. Oracle Solaris provides
specific features that take advantage of chip multithreading technology. Systems based on Oracle’s CMT
processors appear as a familiar SMP system to the operating system and the applications it supports.

•	 CMT awareness. Oracle Solaris is aware of the CMT processor hierarchy, enabling the scheduler to
effectively balance the load across available pipelines. Even though it exposes the processor as multiple
logical processors, the operating system understands the correlation between cores and the threads they
support.

•	 Fine granularity. Oracle Solaris can enable or disable individual processors. In the case of CMT
processors, this ability extends to enabling or disabling individual cores and logical processors. In
addition, standard operating system features, such as processor sets, provide the ability to define a group
of logical processors and schedule processes or threads on them.

•	 Binding interfaces. Oracle Solaris allows considerable flexibility. Processes and individual threads can
be bound to either a processor or a processor set, if required or desired.

•	 Critical threads. Oracle Solaris provides mechanisms, such as processor sets, that allow developers to
provision specific threads with the amount of resources required for optimal performance. However,
these existing mechanisms require a considerable amount of time to administer and tune. Oracle’s
SPARC T4 processors support the dynamic allocation of hardware resources to improve performance.
New in Oracle Solaris 11, the critical thread API enables developers to give all of a processor core’s
resources to a single thread to maximize that thread’s performance.

54

HP-UX to Oracle Solaris Porting Guide

Chapter 8 Distributing Applications

In HP-UX 11i v3 and Oracle Solaris, software is delivered in units called packages, collections of files and
directories that are required for a software product. Depending on the size of the application, one or more
packages may be needed for distribution. Packages contain package objects, that are the application files to be
installed, and control files that control how, where, and if the package is installed.

HP-UX provides tools for packaging applications in the HP-UX Software Distributor format. On Oracle
Solaris 10, developers gather the package objects (application files and directories), required information
files (pkginfo and prototype files), and optional information files and installation scripts, and build the
package using the pkgmk command. Oracle Solaris 11 adds an Image Packaging System that handles
complete software lifecycle management.

Using the Image Packaging System in Oracle Solaris 11

Oracle Solaris 11 modernizes software packaging with a network-based package management system. The
Image Packaging System (IPS) provides a framework for complete software lifecycle management,
including the installation, upgrade, and removal of software packages. It is designed to take the guesswork
out of configuring systems. Enterprise developers can easily determine what software is installed, learn
whether needed patches are installed, and rest assured that dependent patches are identified and installed
automatically. In addition, developers can use IPS to get enterprise applications ready for distribution.

An IPS package is a collection of directories, files, links, drivers, dependencies, groups, users, and license
information in a defined format. This collection represents the installable objects of a package. Packages
have attributes such as package name and description. For more information about IPS, see the pkg(5)
man page.

Important Note: While Oracle Solaris 11 supports the packaging methodology used in Oracle Solaris 10,
the Image Packaging System is the preferred model for packaging applications in Oracle Solaris 11.

•	 Software publishing model. IPS simplifies the publishing of software packages. Package content,
metadata, and dependent system services are added to a repository upon installation. Software
repositories can be created and managed for local software delivery, and multi-repository support lets
developers pull software and fixes from different sources. While IPS packaging is the default for Oracle
Solaris 11, compatibility with previous System V software packages is preserved with continued access
to pkgadd and related commands.

•	 Network-based software repository. Oracle Solaris 11 provides release updates through a network-
based repository located at http://pkg.oracle.com/solaris/release. This repository includes release
software, as well as significant bug fixes and security updates.

55

http://pkg.oracle.com/solaris/release

HP-UX to Oracle Solaris Porting Guide

•	 Local repositories. The Image Packaging System supports the creation of DVD, CD, and file-based
local repositories.

•	 More reliable application install, version control and locking, and minimization. Package
refactoring simplifies minimization efforts and supports version control measures. In addition,
developers can use IPS to validate installed packages and make any needed changes.

•	 Simplified patching. IPS eliminates lengthy and complicated patching procedures. Preflight checking
and automated downloads ensure only the differences needed are obtained and installed.

•	 Safer system upgrades. IPS and Oracle Solaris ZFS work together to deliver safe system upgrades.
Developers can install software from a series of network-based package repositories with full automatic
dependency checking for libraries that might be required during software package installation.

•	 A choice of interfaces. IPS provides two interfaces for interacting with the packaging system. A
command-line interface, and graphical Package Manager and Update Manager give developers flexibility.
The Package Manager can be used to search, install, and remove packages, as well as add, remove, and
modify publishers, and create, remove, and manage boot environments. In addition, MIME associations
allow for single click package installs while browsing the Web and on-disk archive formats.

Building a Package

At a high-level, creating an application package for deployment using IPS requires the following steps.

•	 Create a manifest. Create a manifest file, a file containing specifications for the contents and parameters,
that can be used by the distribution constructor to create an ISO image file. Default manifest files are
provided, and can serve as a starting point. Specify a name for the image to be built, along with the
dataset on which the image is to be created. In addition, identify the publisher where the distribution
constructor can get packages to download and use to build the image, and list the packages to install.

•	 Build the image. Run the distro_const utility to create the image. Assume the root role and run
the basic distro_const command to create an image in one step. The distribution constructor finds all
needed packages and builds the image according to the specifications outline in the manifest file.

distro_const build manifest

More information on creating manifests and packaging and deploying applications with IPS can be found
in Creating a Custom Oracle Solaris Installation Image.

Converting System V Packages to the Image Packaging System

Developers with existing System V style packages can convert them for use by the Image Packaging
System. The pkgsend command can be used to generate a manifest for an existing SVR4 package and
publish the manifest and its required files to an IPS repository. The following command generates a
manifest named Mypkg.mfst from the directory Mypkg representing the SVR4 package to publish.

pkgsend generate Mypkg > Mypkg.mfst

56

HP-UX to Oracle Solaris Porting Guide

Using System V Packages in Oracle Solaris 10

In Oracle Solaris 10, applications are distributed in one or more packages using the System V packaging
methodology. While many small packages lengthen installation time, distributing an application as a single,
large package is not always possible. If multiple packages are desired or required, care must be taken in
how the application code is segmented. Consider the following guidelines (presented in order of
importance) when planning and building packages for distribution.

•	 Make packages remotely installable. Doing so enables administrators to install the application on
remote desktops and servers.

•	 Optimize for client-server configurations. Be sure to consider the software configuration when
designing packages. Good packaging design divides the affected files to optimize installation. For
example, the contents of the root (/) and /usr file systems should be segmented so that server
configurations can be easily supported.

•	 Package on functional boundaries. Packages should be self-contained and distinctly identified with a
set of functionality. For example, a package that contains UFS should contain all UFS utilities and be
limited to only UFS binaries.

•	 Package on royalty boundaries. Put code that requires royalty payments in a dedicated package or
group of packages. Do not disperse the code into more packages than necessary.

•	 Package by system dependencies. Keep system-dependent binaries and architecture-dependent
binaries in dedicated packages. For example, do not mix binaries for SPARC platforms with binaries for
x86 systems.

•	 Eliminate package overlap. Eliminate duplicate files whenever possible to minimize support and
versioning issues.

•	 Package on localization boundaries. Localization-specific items should be in their own package. An
ideal packaging model would have a product's localizations delivered as one package per locale.
International defaults can be delivered in a package. This design isolates the files that are necessary for
localization changes and standardizes the delivery format of localization packages.

Building a Package Manually

The following steps outline the process for building a package.

•	 Create a pkginfo file that describes the characteristics of the package using a text editor. Define the
package name, description, platform architecture it runs on, version number, software category, and base
directory for installation. The following example shows the contents of a sample pkginfo file.

57

HP-UX to Oracle Solaris Porting Guide

PKG=SUNWcadapp
NAME=CAD application for designing chips. Runs on SPARC hardware and is installed
in the usr partition.
ARCH=sparc
VERSION=release 1.0
CATEGORY=system
BASEDIR=/opt

•	 Organize the package contents into a hierarchical directory structure.

•	 Create information files that define package dependencies, include a copyright, and reserve space on the
target system. (This step is optional.)

•	 Create installation scripts that customize package installation and removal. (This step is optional.)

•	 Create a prototype file that describes the object in the package. For detailed information see
http://download.oracle.com/docs/cd/E19082-01/817-0406/ch2buildpkg-16803/index.html.

•	 Build the package using the pkgmk command.

•	 Verify and transfer the package to a distribution medium.

More information on designing and building packages can be found in the Application Packaging Developer’s
Guide, located at http://download.oracle.com/docs/cd/E19082-01/817-0406/index.html.

Building a Package Using Oracle Solaris Studio

Developers can package a completed application as a tar file, zip file, or Oracle Solaris SVR4 package using
the tools built into Oracle Solaris Studio. To package a project:

•	 Right-click the project in the Projects window and choose Properties.

•	 Select the Packaging node in the Project Properties dialog box.

•	 Select the package type from the drop-down list. The tool listed in the dialog box is updated to match
the package type.

•	 Change the output path if different destination directory or filename for the package is desired. By
default, the output path is in a dist subdirectory of the project.

•	 Click the Packaging Files browse button to specify the files to include in the package.

•	 Change the tool to use a different command to produce the selected package type, if desired.

•	 Type any additional options to use on the command line making the packages.

•	 Turn off verbose package build information by deselecting the checkbox, if desired.

•	 Click OK.

•	 Right-click the project in the Projects window and choose Build Package.

58

http://download.oracle.com/docs/cd/E19082-01/817-0406/index.html
http://download.oracle.com/docs/cd/E19082-01/817-0406/ch2buildpkg-16803/index.html

HP-UX to Oracle Solaris Porting Guide

Chapter 9 Running Applications

Oracle Solaris Service Management Facility

Operating environments provide, and consist of, many services—including infrastructure services such as
file systems, network stacks, logging and security, and application services such as Web servers and
databases. Services almost never stand alone. They rely on other services to perform tasks. For example, a
Web application service might depend on network and local file system services. Keeping track of these
relationships, ensuring that all processes comprising a service are operating, and automating error recovery
in the event a service fails can be complex and error prone.

The traditional startup script methods used in HP-UX 11i v3, older Oracle Solaris releases, and other
UNIX and similar environments complicate service administration. Oracle Solaris 10 introduced a
substantively different facility—the Oracle Solaris Service Management Facility (SMF)—that simplifies
management and delivers improved ways to control and manage services. Relationships can be defined
between services, and services can be dependent on one another in order to run. With a new set of
administrative interfaces, SMF allows services to be easily and consistently configured, enabled, and
controlled—all while providing better visibility into errors, automated recovery from failures, and
improved debugging capabilities to help resolve service-related problems quickly.

Service Components

SMF services are comprised of one or more components that are utilized based on the service
functionality and categorization (Figure 9-1). SMF service manifests are the delivery mechanism for services.
Created as XML files that are imported into the SMF repository, SMF manifests contain a complete set of
properties that are associated with a service or a service instance, including the relationship and
dependency information between software services. It also describes the conditions under which failed
services can be automatically restarted. SMF uses this information for service management and failure root
cause determination. A separate service manifest is required for each service or application.

The service restarter invokes service methods to move a service from one state to another whenever an
administrative action is performed. These methods are defined in the SMF configuration repository and
can be executables, shell scripts, or keywords. In some cases, a start method invokes a service executable that
provides service capabilities. In addition, SMF managed services use Fault Management Resource Identifiers
(FMRI) to identify system objects for which advanced fault and resource management capabilities are
provided. Log files can be used to capture information about the service as it executes.

Detailed information on SMF, including descriptions of the framework and components, and discussions
for using and administering SMF, monitoring services, viewing dependencies, and diagnosing service issues
can be found in the “Management of Systems and Services Made Simple with the Oracle Solaris Service
Management Facility” white paper located at http://www.oracle.com/technetwork/server-
storage/solaris/solaris-smf-wp-167901.pdf.

59

http://www.oracle.com/technetwork/server

HP-UX to Oracle Solaris Porting Guide

Figure 9-1. SMF consists of several service components.

Creating a Service for an Application

The steps below provide an overview of the process for creating an SMF service for an application.

1. Create a method shell script for the service. The example below uses the service name foo.

#!/sbin/sh
. /lib/svc/share/smf_include.sh
 if [-x /opt/SUNWsmftest/bin/foo]; then

 /opt/SUNWsmftest/bin/foo
 else

 echo “/opt/SUNWsmftest/bin/foo is missing or not executable.”
 exit $SMF_EXIT_ERR_CONFIG

 fi

 exit $SMF_EXIT_OK

2.	 Create the XML manifest file. See the “How to Create an Oracle Solaris Service Management Facility
Manifest” white paper located at http://www.oracle.com/technetwork/server-storage/solaris/solaris-
smf-manifest-wp-167902.pdf for details. The example below shows a sample manifest file for the foo
service.

60

http://www.oracle.com/technetwork/server-storage/solaris/solaris
http:lib/svc/share/smf_include.sh

HP-UX to Oracle Solaris Porting Guide

<?xml version=”1.0”?>
<!DOCTYPE service_bundle SYSTEM
“/usr/share/lib/xml/dtd/service_bundle.dtd.1”>
<service_bundle type=’manifest’ name=’SUNWcsu:foo’>

<service
 name=’system/foo’
 type=’service’
 version=’1’>

 <single_instance />

 <!-- foo_opt says that foo depends on local filesystem /opt -->
 <dependency

 name=’foo_opt’
 type=’service’
 grouping=’require_all’
 restart_on=’none’>
 <service_fmri value=’svc:/system/filesystem/local’ />

</dependency>

<!-- foo_cron says that foo depends on svc:/system/cron -->
 <dependency

 name=’foo_cron’

 type=’service’

 grouping=’require_all’

 restart_on=’refresh’>

 <service_fmri value=’svc:/system/cron’ />

 </dependency>

 <exec_method

 type=’method’

 name=’start’

 exec=’/opt/SUNWsmftest/lib/svc-foo.sh’

 timeout_seconds=’60’>

 <method_context>

 <method_credential user=’root’ group=’root’ />

</method_context>

 </exec_method>

 <exec_method

 type=’method’

 name=’stop’

 exec=’:kill’

3. Use the svccfg command to read in the XML manifest and add the foo service to the SMF
repository.

svccfg import /var/svc/manifest/system/foo.xml

61

http:exec=�/opt/SUNWsmftest/lib/svc-foo.sh

HP-UX to Oracle Solaris Porting Guide

4. Verify that the foo service has been created and defined within SMF.

svcs foo
STATE STIME FMRI
disabled 10:56:21 svc:/system/foo:default_foo

5. Enable the service.

6. Verify the service is online.

7. Verify the daemon is running. The service now is available to handle service requests.

svcadm enable foo

svcs foo

ps -ef | grep foo

root 753 1 89 10:57:11 ? 0:48 /opt/SUNWsmftest/bin/foo

Finding and Fixing Issues with Services

Complex applications can require detailed analysis if an error occurs. Identifying and resolving faults
quickly can lessen side effects that result. SMF works with the Fault Management Architecture (FMA) to
make it easier to analyze, report, and work around faults. SMF gives developers insight into service status,
and provides mechanisms for managing service dependencies and automatically restoring services in the
event of a failure. FMA enables systems to monitor, report, and automatically recover from hardware
errors to maintain data integrity and keep mission-critical services available.

These capabilities are enhanced in Oracle Solaris 11 to help developers resolve faults. For example,
developers can receive notice of service state transitions and fault management events via Simple Network
Management Protocol (SNMP) traps or email messages. Because errors are reported in a standard format,
they can be analyzed more readily, with root cause reported in readable and actionable formats.

Best Practices for Moving Applications to SMF and FMA

The following best practices can facilitate the migration of applications to the SMF and FMA framework.

•	 Eliminate custom scripts that analyze application health and restart applications. SMF provides a simple
way to encapsulate and standardize the methods used to start, stop, and restart applications.

•	 Make applications SMF aware early in the porting and testing process. Identify fault states and create a
fault tree. Review error messages that are encountered and determine if they can become FMA events.

•	 Convert .rc and custom scripts to SMF profiles. Look for instances of start, stop, and check status
methods. Once these areas are converted, migrating the remainder of a script tends to be a
straightforward task.

62

HP-UX to Oracle Solaris Porting Guide

Comparison of Administration Commands

Table 9-1 lists the commands used to administer services in other UNIX environments, such as
HP-UX and previous Oracle Solaris releases, with the comparable SMF commands.

TABLE 9-1. FREQUENTLY USED COMMANDS FOR ADMINISTERING SMF SERVICES

TASK OTHER UNIX PROCEDURE SMF PROCEDURE

Disable a system rm /etc/rc2.d/S75cron svcadm disable cron

service (Ex: cron) (Repeat after every cron patch application and system upgrade.)

Re-enable a service Reinstall /etc/rc2.d/S75cron. svcadm enable cron

Enable inetd services Edit the /etc/inet/inetd.conf file. svcadm enable finger

(Ex: finger) Uncomment the service to be enabled and save.

Issue this command: pkill -HUP inetd

Stop services /etc/init.d/sshd stop svcadm disable –t ssh

Disable lasts until reboot.

Start services /etc/init.d/sshd start svcadm enable -t ssh

Restart services /etc/init.d/sshd stop svcadm restart ssh

/etc/init.d/sshd start

Refresh configuration kill -HUP `cat /var/run/sshd.pid` svcadm restart ssh

Continued Support for .rc Scripts

While many standard Oracle Solaris services are now managed by the Oracle Solaris Service Management
Facility, scripts placed in /etc/rc*.d continue to execute on run-level transitions. Most of the
/etc/rc*.d scripts included in previous Oracle Solaris releases have been removed as part of the
transition to SMF. Because Oracle Solaris retains the ability to run the remaining scripts, third-party
applications can be deployed without the need for conversion to SMF.

The /etc/inittab and /etc/inetd.conf files remain available for packages to amend with post-install
scripts. These legacy-run services can be added to the service configuration repository via the inetconv
command. While service status can be viewed through SMF, other changes are not supported.
Applications that use this feature do not benefit from the precise fault containment provided by SMF.

Applications that convert to using SMF should not modify the /etc/inittab and /etc/inetd.conf
files. Converted applications do not use /etc/rc*.d scripts, and the new version of the inetd daemon
does not look for entries in the /etc/inetd.conf file.

63

HP-UX to Oracle Solaris Porting Guide

Chapter 10 File Systems and Data

When porting applications from HP-UX 11i v3 to Oracle Solaris, it is important to understand whether
and how file systems and data are potentially affected, how best to move data from one platform to
another, and which file systems offer new capabilities.

File Systems

The HP-UX 11i offers a rich suite of file systems. Oracle Solaris supports many of these, enabling users to
simply mount existing file systems rather than migrate them. Table 10-1 lists common file systems and
details their availability on HP-UX 11i and Oracle Solaris.

TABLE 10-1. SUPPORTED FILE SYSTEMS

FILE SYSTEM DESCRIPTION HP-UX 11i v3 ORACLE

SOLARIS 10

ORACLE

SOLARIS 11

CacheFS Used to improve the performance of remote file systems

or slow devices
√ √ —

CDFS CD-ROM file system √ — —

CTFS Contract file system, used to create, control, and observe

contracts (primarily used by SMF)
— √ √

FDFS File Descriptor File Systems, provides explicit names for

opening files using file descriptors
√ √ √

FIFOFS First-in, first out file system, provides named pipe files

that give processes common access to data
√ √ √

HSFS High Sierra File System, ISO 9660, the first CD-ROM file

system
√ √ √

LOFS Loopback file system, allows the creation of a virtual file

system so that files can be accessed using an alternative

path name

√ √ √

MemFS Memory File System √ — —

MNTFS Provides read-only access to the table of mounted file

systems for the local system
√ √ √

NAMEFS Used mostly by STREAMS for dynamic mounts of file

descriptors on top of files
√ √ √

NFS Network File System √ √ √

64

HP-UX to Oracle Solaris Porting Guide

TABLE 10-1. SUPPORTED FILE SYSTEMS

FILE SYSTEM DESCRIPTION HP-UX 11i v3 ORACLE

SOLARIS 10

ORACLE

SOLARIS 11

OBJFS Object file system, describes the state of modules

currently loaded by the kernel (used by debuggers to

access information about kernel symbols without having

to access the kernel directly)

— √ √

PCFS Supports read and write access to data and programs on

DOS-formatted disks
√ √ √

Oracle Solaris

ZFS

A general-purpose, enterprise-class file system that

integrates traditional file system functionality with built-in

volume management techniques and data services

— √
√

(Default)

Oracle’s

Sun QFS

Provides nearly raw device access to information and

data consolidation for read/write file sharing
— √ √

Oracle’s

Sun SAM-FS

Provides data classification, centralized metadata

management, policy-based data placement, and

migration

— √ √

SHAREFS Provides read-only access to the table of shared file

systems for the local system
— √ √

SPECFS Special file system, provides access to character special

devices and block devices
√ √ √

SWAPFS Used by the kernel for swapping √ √ √

TMPFS Uses local memory for file system reads and writes,

which is typically faster than a UFS file system
√ √ √

UDFS Universal Disk Format file system, the industry-standard

format for storing information on optical media such as

DVDs

√ √ √

UFS UNIX file system
√

√

(Default)
√

UFS

The UNIX file system (UFS) is the default file system in Oracle Solaris 10. While 32-bit and 64-bit HP-UX
environments running UFS are limited to 1 TB file systems, Oracle Solaris 10 provides support for multi-
terabyte UFS file systems when running a 64-bit Oracle Solaris 10 kernel. All UFS file systems and utilities
are updated to support multi-terabyte UFS file systems.

65

HP-UX to Oracle Solaris Porting Guide

Oracle Solaris ZFS

Developers often are forced to divide large datasets into segments that fit within file system size limits, a
process that can be difficult and error prone. Oracle Solaris ZFS provides virtually unlimited file system
scalability to large-scale applications. File systems can grow to 21 billion Yottabytes, enabling developers to
place extremely large datasets in a single file system on a pool of storage and optimize it for performance.
In addition, Oracle Solaris ZFS frees developers from worrying about, and coding for, some classes of data
integrity errors. On-disk data is kept self-consistent and silent data corruption is eliminated. Oracle Solaris
ZFS is the default file system, and mandatory root file system, in Oracle Solaris 11. The move to Oracle
Solaris ZFS as the root file system enables fast root file system snapshots, easy roll back to previous states,
the ability to create a read-only root file system, and more.

Integrated Volume Management and Storage Pools

Unlike traditional file systems that require a separate volume manager, Oracle Solaris ZFS integrates
volume management functions. Breaking free of the typical one-to-one mapping between the file system
and its associated volumes, Oracle Solaris ZFS introduces the storage pool model (Figure 10-1). It
decouples the file system from physical storage in the same way that virtual memory abstracts the address
space from physical memory, allowing for more efficient use of storage devices. Space is shared
dynamically between multiple file systems from a single storage pool, and is parceled out of the pool as file
systems request it. Physical storage can be added to storage pools dynamically, without interrupting
services, providing new levels of flexibility, availability, scalability, and performance. When capacity no
longer is required by a file system in the pool, it is made available to other file systems.

Figure 10-1. Virtual storage pools let multiple file systems share storage space.

66

HP-UX to Oracle Solaris Porting Guide

New Features in Oracle Solaris 11

Oracle Solaris 11 includes several enhancements to the Oracle Solaris ZFS file system.

•	 Read-only root file system. Oracle Solaris ZFS supports the creation of a read-only copy of a file
system, including the root file system. Developers can use this functionality to deploy a read-only file
system in an Oracle Solaris Zone to lock down the environment for added security.

•	 Support for encryption. Oracle Solaris ZFS uses the cryptographic framework built into the operating
system to enable cryptographic protection of data on a per-dataset basis.

•	 Shadow migration. Shadow migration enables the migration of data from an existing locale or remote
Oracle Solaris ZFS or UFS file system to a new Oracle Solaris ZFS file system. A shadow file system is
created that pulls data from the source and uses the native file system once a file is migrated.

Hybrid Storage Pools

Oracle Solaris ZFS gives developers the ability to optimize data placement for fast access. Rather than
augmenting the storage infrastructure with expensive disks, Flash technology can be placed in a new
storage tier to assist hard disk drives by holding frequently accessed data to minimize the impact of disk
latencies and improve application performance. By using Flash devices to handle certain types of I/O, and
hard disk drives to store massive data sets, a Hybrid Storage Pool delivers significant application
performance gains without sacrificing capacity (Figure 10-2).

Hybrid Storage Pool technology is designed to exceed the performance of Fibre Channel technologies
without the additional management complexity of a SAN. Several Oracle Solaris ZFS components are key
to Hybrid Storage Pool operation and help accelerate application performance.

•	 The Oracle Solaris ZFS Adaptive Replacement Cache (ARC) is the main file system memory cache and
is stored in DRAM.

•	 The Level Two Adaptive Replacement Cache (L2ARC) extends the ARC into read-optimized Flash
devices to provide a large read cache to accelerate reads. The Oracle Solaris ZFS Intent Log (ZIL) is
transactional and uses write-based Flash devices to provide a large cache to accelerate writes.

•	 The disk storage pool consists of conventional disk drives. Note that high-performance, expensive disk
drives are no longer strictly required to achieve high performance levels given the interposition of Flash
devices in a Hybrid Storage Pool.

Sophisticated file system algorithms in Oracle Solaris ZFS use the ARC in memory and the L2ARC on
Flash devices to determine pre-fetch or data placement during sustained read operations. Flash devices
accelerate write throughput for Oracle Solaris ZFS synchronous write I/O operations, helping to boost
write performance.

67

HP-UX to Oracle Solaris Porting Guide

Figure 10-2. Hybrid Storage Pools optimize data placement to improve I/O performance.

Data Integrity

Rather than build complex data integrity checks into applications, developers can depend techniques such
as copy-on-write and end-to-end checksumming built into Oracle Solaris ZFS to keep on-disk data
self-consistent and eliminate silent data corruption. Data is written to a new block on the media before
changing the pointers to the data and committing the write. Because the file system is always consistent,
time-consuming recovery procedures like fsck are not required if the system is shut down in an unclean
manner. In addition, data is read and checked constantly to help ensure correctness, and any errors
detected in a mirrored pool are automatically repaired to protect against costly and time-consuming data
loss and (previously undetectable) silent data corruption. Corrections are made possible by a RAID-Z
implementation that uses parity, striping, and atomic operations to help reconstruct corrupted data.

Snapshots and Cloning

Oracle Solaris ZFS includes snapshot capabilities—the ability to create a read-only copy of an Oracle
Solaris ZFS file system or volume and restore it at a later time, if needed. Snapshots can be created almost
instantly, and initially consume no additional disk space within the storage pool. Replicated streams of
descendant file systems can be sent to named snapshots, preserving properties, snapshots, file systems, and
clones. With snapshots, developers can save the state of a file system at a particular point in time, and
recreate it on another machine to simplify data migration.

File System Size

The maximum file size supported by a file system can limit applications. When the maximum file system
size is reached, workarounds often are required, such as splitting a file or database into multiple parts or
distributing it across multiple machines. The standard HP-UX file system scales to 1 TB. On Oracle

68

HP-UX to Oracle Solaris Porting Guide

Solaris, UFS scales to 16 TB, and combined with the Sun SAM-FS file system and Sun QFS software,
scales to 252 TB. The 128-bit Oracle Solaris ZFS scales to 16 exabytes (EB). As a result, programmers
migrating data from HP-UX to Oracle Solaris should not experience file system limitations that hamper
application development or testing efforts.

Data Transformation

Data transformation is the process of converting data from one format to another, and is an important
component of any porting effort if data is to be readable on the target system. Data transformation can
involve file systems, file content, applications, and database content.

Encoded Data Transformations

Encoded data transformations are necessary when data is stored in a different or incompatible file format
than the receiving system anticipates. Fortunately, HP-UX and Oracle Solaris both use ASCII to store
textual data, as well as a standard text file format. As a result, issues stemming from the use of other
character sets, such as EBCDIC, and differences in text file formatting, such as the use of control-linefeed
(CR/LF) versus carriage return (CR) characters to delimit lines in a file, are avoided.

Application Data Transformation

HP-UX and Oracle Solaris provide many common applications and utilities for managing data. For
example, the tape archive utility (tar) uses a similar data format and provides many common options in
both environments. As a result, developers already familiar with the tar utility in the HP-UX environment
are able to be immediately productive on Oracle Solaris. This commonality is true for many other
applications and utilities, and can yield significant benefits both during and after the data migration. For
those applications that differ between HP-UX, and Oracle Solaris, most provide a utility to convert
standard data interchange formats, such as comma-separated values or tab delimited files, into their
format.

Database Transformation

Many enterprise applications depend on large databases. If an older version of a database is in use in the
HP-UX environment, licenses may or may not be available for those versions on Oracle Solaris.
Developers should be prepared to acquire a current version of the database software. It is important to
note that changes to the infrastructure may be needed to support the new database and its configuration,
however existing data should be immediately accessible. Table 10-2 lists the popular databases supported
on HP-UX 11i v3 and Oracle Solaris.

69

HP-UX to Oracle Solaris Porting Guide

TABLE 10-2. SUPPORTED DATABASES

HP-UX 11I v3 ORACLE SOLARIS
DATABASE

PA-RISC ITANIUM SPARC X86

Oracle Database 11g Release 2 √ √ √ √

Oracle Database 11g Release 1 √ √ √ √

Oracle Database 10g Release 2 √ √ √ √

MySQL Database 5.6 √ √ √ √

MySQL Database 5.5 √ √ √ √

MySQL Database 5.1 √ √ √ √

MySQL Database 5.0 √ √ √ √

Sybase IQ Enterprise Edition 15.3 √ √ √ √

Sybase IQ Enterprise Edition 15.2 √ √ √ √

Sybase IQ Enterprise Edition 15.1 √ √ √ √

PostgreSQL Database √ √ √ √

While there are many similarities between a database running on HP-UX and one running on Oracle
Solaris, simply moving a database from one to the other likely requires some data transformation. In the
case of the same database vendor in both environments, this may be as simple as exporting the database
running on HP-UX to a standardized file format, followed by an import into a new database on Oracle
Solaris. When the port also involves a change in database vendors, more extensive data transformations
may be required.

Because database transformations are usually such a large part of the overall porting effort, many
specialized utilities have been created to address them. These programs, called Extract, Transform, and
Load (ETL) utilities, take a wide array of formats and convert them into Structured Query Language (SQL)
for relational database management systems (RDBMS). Most RDBMSs provide a basic set of utilities to
convert SQL or standard interchange formats into their data storage format.

70

HP-UX to Oracle Solaris Porting Guide

Chapter 11 Virtualization

Oracle Solaris includes built-in server and network virtualization technologies that can be used by
developers to simplify development, testing, and deployment environments.

Server Virtualization

Server virtualization technologies facilitate the creation of administrative and resource boundaries between
applications. This approach provides improved application performance and security and can be a vehicle
for rapid application provisioning by delivering pre-installed, pre-configured virtual machine images of
enterprise software. Because no two environments have exactly the same needs, Oracle’s full range of
server virtualization technologies provide varying degrees of isolation, resource granularity, and flexibility,
and can be used separately or together to tackle specific development and deployment environment
challenges.

Dynamic Domains

Developers that use HP nPars to maximize isolation can use the hard partitioning capabilities provided by
Dynamic Domains. Available on Oracle’s SPARC Enterprise M-Series servers, Dynamic Domains
technology enables a single system to be divided into multiple electrically isolated partitions for maximum
workload isolation. Each domain runs its own instance of Oracle Solaris—even different versions of the
operating system—on dedicated hardware. A high-performance system, network, and I/O architecture
eliminates overhead and delivers bare-metal performance to applications. Hardware and software failures
are contained within a domain, increasing availability and providing a reliable, secure platform for running
multiple applications simultaneously. These hard partitions also support the physical insertion or removal
of system boards from a running domain without stopping the server or operating system.

Oracle VM Server for SPARC

Enterprise developers that are used to deploying development, testing, or production environments on
HP-UX using HP vPars can achieve similar partitioning and isolation using Oracle VM Server for SPARC
(previously called Sun Logical Domains). Purpose-built for Oracle servers with chip multithreading
technology, Oracle VM Server for SPARC provides a full virtual machine that runs an independent
operating system instance and contains a wide range of virtualized devices. A hypervisor that largely resides
in a chip on the server is tightly integrated with the hardware, enabling virtual machines to take advantage
of underlying system advancements and reduce the overhead typically associated with software-based
solutions.

71

HP-UX to Oracle Solaris Porting Guide

Oracle VM Server for SPARC offers greater functionality and scalability to developers:

•	 HP vPars are limited to eight partitions per system. Oracle VM Server for SPARC supports up to 128
domains on a single server.

•	 HP vPars do not permit add-on networking or cryptographic devices to be partitioned, shared, or
abstracted. Oracle VM Server for SPARC supports virtualized CPU, memory, storage, I/O, console, and
cryptographic devices, and redundant I/O paths, to make maximum use of platform resources.

Oracle Solaris Zones

Developers familiar with HP-UX Containers (formerly HP-UX Secure Resource Partitions) can gain
similar server virtualization capabilities with Oracle Solaris Zones. Built into the operating system, Oracle
Solaris Zones provision many secure, isolated runtime environments for individual applications using
flexible, software-defined boundaries. All zones run under a single operating system kernel, enabling fine-
grained control over rights and resources within a consolidated server without increasing the number of
operating system instances to manage. Computing resources—CPUs, physical memory, network
bandwidth, and more—can be dedicated to a single application one moment and shared with others in an
instant, without moving applications or rebooting the system, dynamic domain, or logical domain where
the Oracle Solaris Zone resides.

Oracle Solaris 11 adds new capabilities to Oracle Solaris Zones, including:

•	 Simplified consolidation. A pre-flight checker in Oracle Solaris 11, zonep2vchk(1M), can help
developers identify identifies issues that could affect the migration from physical to virtual servers, and
creates zone configuration output for the target zone.

•	 Oracle Solaris 10 branded zones. Oracle Solaris 10 Zones provide an Oracle Solaris 10 environment
on Oracle Solaris 11. Developers can use this feature to run legacy Oracle Solaris 10 applications, or test
them on Oracle Solaris 11 platforms.

•	 Read-only root. An Oracle Solaris Zone can be configured with a read-only root, or immutable zone,
to make it difficult to modify the environment and applications. In a read-only zone, the configuration is
preserved by implementing read-only root file systems for non-global zones. This zone extends the
zone’s secure runtime boundary by adding additional restrictions to the runtime environment. Unless
performed as specific maintenance operations, modifications to system binaries or system configurations
are blocked.

Important Note: Oracle Solaris Zones are called Oracle Solaris Containers in Oracle Solaris 10 and earlier
versions of the operating system. This document uses the Oracle Solaris 11 naming convention.

72

HP-UX to Oracle Solaris Porting Guide

Using Oracle Solaris Zones in the Development Environment

Developers can use Oracle Solaris Zones to migrate virtual environments from one machine to another.
Consider an R&D organization with development, test, and production systems. Applications need to be
able to move throughout the build, test, and deploy chain in a timely manner. With Oracle Solaris Zones,
applications can be developed in an isolated environment and packaged for movement to the testing
systems. Shared storage makes it possible for the transition to happen quickly, and applications do not
need to be duplicated. Once tested, applications can be moved quickly to production systems (Figure 3).
With these capabilities, organizations can experience rapid roll out of applications, little downtime, and
automatic roll back to development and testing systems when needed.

Oracle Solaris includes several tools to assist the migration process.

•	 zonep2vcheck. A tool that identifies issues that could affect the migration, and creates zone
configuration output for the target zone.

•	 Tools for physical to virtual (P2V) and virtual to virtual (V2V) migration. Oracle Solaris includes
tools that archive an existing physical or virtual system and move the contents to a zone on a target
system.

Figure 11-1. Oracle Solaris Zones can be moved between systems.

73

HP-UX to Oracle Solaris Porting Guide

Developers and quality assurance teams can use Oracle Solaris Zones to test applications against different
operating system or patch levels. Using Oracle Solaris Zones, developers can run multiple environments
on a single server running Oracle Solaris 11. In this scenario, the server is divided into distinct areas that
represent a version of the operating system in an isolated application execution environment at the same
time on the same system (Figure 11-2). Each zone provides the functionality of the specified operating
system level, as well as any application software. Different versions or patch levels of an operating system
can be hosted on the system, enabling developers to test applications in multiple environments without
having to configure a physical server for each test case.

Figure 11-2. Oracle Solaris Zones can support different operating systems and patch levels to facilitate application testing.

Important Note: While Oracle Solaris 10 supports Oracle Solaris 8 and 9 and Linux branded zones, these
operating environments are not supported in Oracle Solaris Zones in Oracle Solaris 11.

Best Practices for Working with Oracle Solaris Zones

Many Oracle Solaris system deployment utilize Oracle Solaris Zones. Following a few simple rules can
help prevent runtime issues.

•	 Avoid running programs as the root user. Root access grants unnecessary privileges to applications
and can offer an opening to malicious behavior. In addition, keep in mind that Oracle Solaris 11
eliminates the root user, and transitions to a root role that can be given specified and limited privileges.

•	 Identify the privileges applications need. If a software feature traditionally requires root access,
identify the Oracle Solaris privileges that are needed. Usually these privileges can be granted to a non-
root user, or designated for a zone.

74

HP-UX to Oracle Solaris Porting Guide

•	 Install device drivers and kernel modules at boot time. Device drivers and kernel modules cannot
be installed from within a zone. Instead, a software component should perform the device driver or
kernel module installation when the system boots, and before any zones are booted.

•	 Use library calls to read kernel memory. Processes running in zones cannot read the operating
system kernel memory directly. A comprehensive set of library and system calls are available to
interrogate the kernel safely.

•	 Be careful with direct device access. Oracle Solaris Zones typically do not have direct access to
devices, however such access can be assigned. If an application requires direct device access, be sure to
mention it in the product documentation so that users or administrators can grant the appropriate access.

Network Virtualization

Oracle Solaris 11 includes the most comprehensive set of network virtualization tools available in a
general-purpose operating system. With this functionality, developers can re-deploy an existing routed
network within one Oracle Solaris 11 instance, significantly improving bandwidth and latency while
retaining the sense of isolation available in separate computers. Software packages that include
components normally installed on separate systems can instead be deployed on one system in separate
zones, improving overall performance.

Network virtualization is one of the fundamental new features in Oracle Solaris 11. It completes the
virtualization strategy begun with Oracle Solaris Zones by adding built-in, zero latency virtualization of
networks.

•	 Automatic VNIC creation for Oracle Solaris Zones. Developers typically have simple networking
configuration requirements. Automatic VNIC creation automatically creates a temporary virtual network
interface controller (VNIC) for exclusive-IP non-global zones. The VNIC is created when the zone
boots, and is deleted when the zone halts. As a result, developers do not need to learn the details of
network configuration and topology.

•	 Network bandwidth optimization. Multiple VNICs can be created on a physical NIC to maximize
bandwidth utilization. Using the basic building blocks of VNICs, virtual switches, virtual interconnects,
Virtual LANs, virtual routing and virtual firewalls, high-bandwidth physical network connections can be
carved up to enhance network utilization or aggregated as needed to meet peak demands.

•	 Single-root I/O virtualization. As companies push for higher consolidation ratios and the
virtualization of enterprise applications, software emulated I/O is rapidly becoming a limiting factor.
The demand to virtualize I/O intensive applications, such as database, technical, and compute-intensive
applications, and move to a fully virtualized data center requires an I/O architecture that can deliver
near-native performance, increased throughput, and flexibility. Oracle Solaris 11 supports the single-root
I/O virtualization (SR-IOV) framework, defining extensions to the PCI Express (PCIe) specification to
allow efficient sharing of PCIe devices among virtual machines in hardware and software.

75

HP-UX to Oracle Solaris Porting Guide

HP-UX and Oracle Solaris Virtualization Comparision Summary

Table 11-1 summarizes the key differences between HP-UX and Oracle Solaris virtualization technologies.

TABLE 11-1. COMPARISON SUMMARY OF HP-UX AND ORACLE SOLARIS VIRTUALIZATION TECHNLOGIES

VIRTUALIZATION TECHNOLOGIES

TYPE HP-UX ORACLE SOLARIS

Hard Partitions • HP nPars • Dynamic Domains

 (Available on Oracle’s SPARC Enterprise M-Series systems)

• Up to 24 domains per system

Virtual Machines • HP vPars • Oracle VM Server for x86

• Oracle VM VirtualBox

• Oracle VM Server for SPARC

 (Available on Oracle servers with SPARC T-Series processors)

Operating System Virtualization • HP-UX Containers • Oracle Solaris Zones

HOST OPERATING SYSTEMS

HP-UX ORACLE SOLARIS

OS NPARS VPARS HP-UX DYNAMIC ORACLE ORACLE ORACLE ORACLE

CONTAINERS DOMAINS VM VM VM SOLARIS

SERVER SERVER VIRTUAL ZONES

FOR X86 FOR BOX

SPARC

Oracle Solaris 11 — √ √ √ √ √

Oracle Solaris 10 — √ √ √ √ √

Oracle Enterprise — √ √

Linux

Linux — √ √

Mac OS X — √

Windows — √

GUEST OPERATING SYSTEMS

Oracle Solaris 11 — √ √ √ √ √

Oracle Solaris 10 — √ √ √ √ √

76

HP-UX to Oracle Solaris Porting Guide

TABLE 11-1. COMPARISON SUMMARY OF HP-UX AND ORACLE SOLARIS VIRTUALIZATION TECHNLOGIES

Windows √ √ √

Linux √ √ √

Mac OS x — — — —å √ —

OTHER FEATURES

Electrical Isolation √ — — √ — — — —

Resource

Management

√ √ √ √ √ √ √ √

Dynamic

Reconfiguration

√ — — √ — √ — —

High Availability HP

Serviceguard

HP

Serviceguard

HP

Serviceguard

Oracle

Solaris

Cluster

Oracle VM

Manager

HA

Oracle

Solaris

Cluster

Oracle

Solaris

Cluster

Shared SAN,

iSCSI, NAS

Storage

√ √ √ √

Templates for

Rapid Deployment

— — — — √ √ √ √

P2V Migration — — √ √ — √

V2V Migration — √ — √ √ — √

77

HP-UX to Oracle Solaris Porting Guide

Chapter 12 Clustering

As datacenters transition from HP-UX 11i v3 running on HP servers to Oracle Solaris running on Oracle
servers, developers working on highly available applications and services need to replace HP Serviceguard
with a different clustering technology. Oracle offers Oracle Real Application Clusters and Oracle Solaris
Cluster software.

Oracle Real Applications Cluster
Database environments can take advantage of Oracle Real Application Clusters (RAC), a cluster database
with a shared cache architecture that overcomes the limitations of traditional shared-nothing and
shared-disk approaches. By supporting the transparent deployment of a single database across a server
pool, Oracle RAC provides fault tolerance from hardware failures or planned outages. Server pools can be
scaled as needed, with up to 100 servers supported in a pool when combined with Oracle Clusterware.
Using a High Availability API, developers can integrate applications into a platform that can monitor,
relocate, and restart database applications when needed.

Oracle Solaris Cluster
Integrated with Oracle Solaris, Oracle Solaris Cluster provides load balancing, automatic fault detection,
and failover to keep mission-critical applications and services in traditional or virtualized environments
highly available. Migrating an application from the HP Serviceguard environment to the Oracle Solaris
Cluster environment involves creating an agent that specifies the actions to be taken should the application
fail. Application source code does not need to be modified. By migrating from HP Serviceguard to Oracle
Solaris Cluster, businesses continue to have a scalable and flexible solution that is suited equally to a small
local cluster or larger extended clusters that can be a part of the enterprise disaster recovery strategy.

Overview

At its simplest, Oracle Solaris Cluster monitors the health of cluster components, including the stack of
applications, middleware, operating system, servers, storage, and network interconnects. Any failure
executes a policy-based, application-specific recovery action. Recovery is enabled through redundant
infrastructure and intelligent software algorithms.

From a physical perspective, an Oracle Solaris Cluster system consists of two or more servers that work
together as a single entity to cooperatively provide applications, system resources, and data to users (Figure
12-1). Each server provides some level of redundancy. Data is stored on highly available redundant disk
systems, which may be mirrored, supporting data access in the event of a service interruption on a single
disk or storage subsystem. Redundant connections are provided to the disk systems so that data is not
isolated in the event of a server, controller, or cable failure. A high-speed, redundant, private interconnect
provides access to resources across the server set. Redundant connections to the public network also
provide each node with multiple paths for access to outside systems, helping ensure continued access in
the event of a network connection or node failure.

78

HP-UX to Oracle Solaris Porting Guide

Figure 12-1. Oracle Solaris Cluster enables multiple servers and storage systems to act as a single system.

No single hardware, software, storage, or network failure can cause the cluster to fail. Loss of service is
prevented through hardware redundancy, hardware and software failure detection, automatic recovery of
services, and application failover. In addition, a single management view enables the entire cluster to be
managed as a single entity, reducing the risk of errors.

Oracle Solaris Cluster includes capabilities to detect, isolate, and contain failing cluster nodes. It
accomplishes this using a robust, kernel-based membership monitor. Each node in the cluster sends out
low-level data link provider interface (DLPI) packets once per second (a heartbeat) to each of its peers on
each of the private networks. These packets are sent in the kernel interrupt context, making them very
resilient to peaks in system load. A network, or path, between two nodes is declared down only if a
heartbeat message does not complete the round trip between nodes, over that specific path, within the
timeout period.

Network Availability

Oracle Solaris Cluster leverages Oracle Solaris IP network multipathing (IPMP) as public network
interfaces for monitoring local failures, and for performing automatic failover from one failed network
adaptor to another. IP network multipathing enables a server to have multiple network ports connected to
the same subnet. First, IP network multipathing software provides resilience from network adapter failure
by detecting the failure or repair of a network adapter. The software simultaneously switches the network
address to and from the alternate adapter. When more than one network adapter is functional, IP network
multipathing increases data throughput by spreading outbound packets across multiple adapters.

For scalable data services, requests go through a round-robin load-balancing scheme for a balanced load
distribution to the various instances of the distributed application running within the cluster. Scalable data
services can be made more secure through the use of IPsec services in combination with Oracle Solaris
Cluster load balancing services.

79

HP-UX to Oracle Solaris Porting Guide

Data Integrity

Because cluster nodes share data and resources, Oracle Solaris Cluster works to ensure a cluster never
splits into separate, active partitions that continue to access and modify data. Similar to HP Serviceguard,
Oracle Solaris Cluster applies fencing techniques and a quorum to protect data integrity. Failing nodes are
isolated from the cluster and prevented from accessing clustered data. The fencing protocol can be chosen
per storage device.

In a more complex situation where all paths across the private interconnect fail and the cluster breaks into
multiple partitions, Oracle Solaris Cluster uses a quorum mechanism to recreate the cluster and resolve
partitions or split brain syndrome, and to protect data integrity. The quorum also prevents amnesia by
detecting and rejecting the use of outdated configuration information that could lead to data corruption.
The quorum can be tailored to the storage and system topology, enabling disk-based and software quorum
solutions. A quorum device protocol permits the use of different types of disks, such as high-capacity 2 TB
disk drives, SATA, and Flash as quorum devices. All quorum devices are continuously monitored to
enhance availability.

Key Components

Key components of Oracle Solaris Cluster include:

•	 High availability framework. The framework detects node failures quickly and activates resources on
another node in the cluster. It includes a Cluster Membership Monitor, a distributed set of algorithms
and agents that exchange messages over the cluster interconnect to enforce a consistent membership
view, synchronize reconfiguration, handle cluster partitioning, and help maintain full connectivity among
all cluster members. Inter-node message delivery and responses are handled in an atomic manner that
accounts for delivery failures, node membership, and software revision level (to provide for rolling
upgrades).

•	 Failover, scalable, and cluster-aware agents. Failover and scalable agents are software programs that
support Oracle or third-party applications to take full advantage of Oracle Solaris Cluster features.
Cluster-aware applications have direct knowledge of Oracle Solaris Cluster systems, such as Oracle Real
Application Clusters (RAC) software.

•	 Highly available private interconnect. Multiple types of interconnect technologies are supported by
Oracle Solaris Cluster to establish a private communication channel between cluster nodes. Support for
multiple interconnects helps ensure high availability and improve performance of private inter-node
communication. Heartbeats monitor cluster nodes over the private interconnect. If a server goes offline
and ceases its heartbeat, it is isolated. Applications and data are failed over to another server quickly and
transparently to users.

80

HP-UX to Oracle Solaris Porting Guide

Key Features

Oracle Solaris Cluster extends Oracle Solaris to provide enhanced availability of hosted applications. Using
the advanced capabilities in Oracle Solaris, Oracle Solaris Cluster offers:

•	 Flexible configurations. While HP Serviceguard supports N+1 clusters, Oracle Solaris Cluster
supports pair, pair+N, N*1, N*N for flexible topologies.

•	 Global devices, files, and networking. All global devices, files, and network interfaces can be seen as
local resources. Cluster nodes can access and utilize devices that are attached to another node within the
cluster. These facilities create improved resource availability and simplified administration.

•	 Virtualization support. Oracle Solaris Cluster supports Oracle’s virtualization portfolio—Oracle
Solaris Containers, Oracle VM Server for SPARC, and Dynamic Domains (available on Oracle’s SPARC
Enterprise M-Series servers)— for flexible configurations that support consolidation efforts.
Applications can run unmodified in a virtualized environment.

•	 Flexible storage support. Oracle Solaris Cluster deployments can take advantage of a wide range of
storage technologies, such as Fibre Channel, SCSI, iSCSI, and NAS storage solutions from Oracle and
other vendors. Support for a broad range of file systems, including Oracle Solaris ZFS, and volume
managers eases the data migration process.

•	 Oracle RAC 10g and 11g integration and administration. Automated installation and wizard-led
configuration enable faster setup of Oracle RAC with Oracle Solaris Cluster. Specific Oracle RAC
integration points enable improved coordination and simplified administration.

•	 Campus and geographic clusters. Oracle Solaris Cluster supports the creation of clusters across a
campus or metropolitan area (campus cluster) or over large distances (geographic cluster) to support
multi-site disaster recovery.

Writing an Agent for Oracle Solaris Cluster

While HP Serviceguard requires developers to write scripts for applications, Oracle Solaris Cluster includes
an Agent Builder tool that automates the creation of a data service. Developers supply Agent Builder with
information about the application and data service to be created, such as whether a scalable or failover
agent is desired, whether the service is network-aware, the commands to use to start and stop the
application, etc. Agent Builder generates the data service, including source and executable code (C or Korn
shell), a customized Resource Type Registration (RTR) file, and an Oracle Solaris package for distribution.

Agent Builder can be used to generate a complete data service for most enterprise applications, with only
minor changes on the part of the developer. Developers creating applications with more sophisticated
requirements, such those needing validation checks for additional properties, can use Agent Builder to
generate most of the code and manually make additions. At a minimum, Agent Builder can be used to
generate the final Oracle Solaris installation package. More information on using Agent Builder can be
found in the Oracle Solaris Cluster Data Services Developer’s Guide.

81

HP-UX to Oracle Solaris Porting Guide

Differences Between HP Serviceguard and Oracle Solaris Cluster

Table 12-1 summarizes the key differences between HP Serviceguard and Oracle Solaris Cluster.

TABLE 12-1. COMPARISON SUMMARY OF HP SERVICEGUARD AND ORACLE SOLARIS CLUSTER

ITEM HP SERVICEGUARD ORACLE SOLARIS CLUSTER

Configuration • 2 to 16 nodes • 2 to 16 nodes (SPARC), 2 to 8 (x86)

• Active/active, active/standby, rolling standby • Active/active, active/standby, rolling standby

• N+1 • Pair, pair+N, N*1, N*N

Interconnects • Ethernet, Fast Ethernet, Gigabit Ethernet • Ethernet, Fast Ethernet, Gigabit Ethernet

• FDDI, Token Ring, HyperFabric2, Serial • 10 Gigabit Ethernet, InfiniBand

Networking Protocols • IPv4, IPv6, RDS • IPMP, Trunking, Jumbo Frames, VLAN

• IPv4, IPv6, SCTP, RDS

Disk Fencing • Only when using VxFS • Yes

File Systems • Veritas VxFS • Root: UFS, ZFS, Veritas VxFS

• Failover: UFS, ZFS, QFS, NFS, VxFS

• Cluster: PxFS, Oracle Automatic Storage Management

 Cluster FIle System (ACFS), QFS

Volume Management • Veritas Volume Manager • Oracle Solaris Volume Manager

• HP-UX Logical Volume Manager • Veritas Volume Manager

• Oracle Automatic Storage Management

• Oracle Solaris ZFS

Virtualization Support • vPars • Oracle Solaris Containers

• Oracle VM Server

• Dynamic Domains (on supported systems)

Monitoring • System (heartbeat) • System (heartbeat)

• Network • Network

• Application • Application

• Quorum

• Disk path

• Storage resources

Workload Management • Yes • Yes

Cluster Management • HP Event Monitoring Service • Web-based GUI

• HP Serviceguard Manager • Configuration Wizards

• Object-oriented command line interface

• Integrated with Oracle Enterprise Manager Ops Center

• Integrated with SMF

82

HP-UX to Oracle Solaris Porting Guide

Agents • HP Serviceguard Extension for RAC

• HP Serviceguard Extension for SAP R/3

• IBM DB2

• Informix

• NFS

• Oracle Database

• Oracle RAC

• Sybase

• Oracle Application Server

• Oracle Business Intelligence Enterprise Edition

• Oracle Communications Calendar Server

• Oracle Communications Instant Messaging Server

• Oracle Communications Messaging Exchange Server

• Oracle E-Business Suite

• Oracle Grid Engine Sun Service Provisioning System

• Oracle iPlanet Web Server

• Oracle iPlanet Web Proxy Server

• Oracle Solaris Containers (HA Agent)

• Oracle VM Server for SPARC (HA Agent)

• Oracle Database

• Oracle Grid Engine

• Oracle RAC 10g and 11g

• Oracle WebLogic Server

• Oracle Business Intelligence Enterprise Edition

• Oracle TimesTen

• Oracle’s PeopleSoft Enterprise

• Oracle’s Siebel CRM

• Agfa IMPAX

• Apache Proxy Server (HA and scalable)

• Apache Web Server (HA and scalable)

• Apache Tomcat

• DNS

• DHCP

• IBM WebSphere MQ

• IBM WebSphere Message Broker

• Informix Dynamic Server

• Kerberos

• MySQL, MySQL Cluster

• NFS

• PostgreSQL

• Samba

• SAP, SAP liveCache, SAP Enqueue Server

• SAP SAPDB/Max DB

• SWIFT Alliance Access, SWIFT Alliance Gateway

• Sybase ASE

• IBM DB2 (available from third-party)

• Symantec Netbackup (available from third-party)

83

HP-UX to Oracle Solaris Porting Guide

Chapter 13 Building Secure Applications

Oracle Solaris provides a sophisticated network-wide security system that controls the way users access
files, protect system databases, and use system resources. From integrated security services and
applications, to enhanced encryption algorithms, to an enterprise firewall for network protection, Oracle
Solaris sets a high standard for operating system security by addressing security needs at every layer.
Extended security features are also available, including authentication, data integrity, data privacy, and
single sign-on capabilities so that tampering, snooping, and eavesdropping do not compromise data or
associated transactions.

•	 Harden the system. Oracle Solaris provides security features previously only found in Oracle’s Trusted
Solaris OS, delivering a secure environment right out of the box. The system can be further hardened
and minimized, helping to reduce the risk that a system or application can be compromised. Reduced
configurations can be installed—with fewer software packages, no active networking, a minimum
number of running services, and enhanced security. Such configurations reduce install time and provide
a secured building block for customized deployments. In Oracle Solaris 11, new secure by default
environments can be created. In these environments, network services are disabled by default, or set to
listen only for local system communications, to limit opportunities for unauthorized access.

•	 Reduce security risks. Oracle Solaris offers Role-Based Access Control and Process Rights
Management. These technologies reduce security risk by granting users and applications only the
minimum capabilities needed to perform tasks. Discrete privileges can be granted—or denied—to any
process on the system to create effective security policies, minimize the likelihood of hostile actions,
control access to data, and ensure compliance with regulatory requirements.

•	 Improve data security policies. An optional layer of secure label technology in Oracle Solaris, Oracle
Solaris Trusted Extensions, allows data security policies to be separated from data ownership. With the
ability to support multilevel data access policies, the operating system can help companies meet strict
government regulatory compliance goals without modifying existing applications for underlying
hardware platforms. It provides a platform for deploying high security desktops, database servers,
firewalls, and communication gateways, as well as any enterprise application where access to sensitive
information or networks must be strictly controlled.

Oracle Solaris 11 includes two significant enhancements to Trusted Extensions. Security labels now can
be created on Oracle Solaris ZFS datasets for explicit mandatory access control (MAC) policies. In
addition, the existing trusted networking protocol assumes the underlying network is secure and that
packet headers cannot be manipulated or observed in transit. Oracle Solaris 11 introduces labeled IPsec,
enabling sensitivity labels to be associated with network traffic. Traffic with different sensitivity levels
can be isolated and contained, and labeled networking can take place over untrusted networks.

•	 Take advantage of on-board cryptography. Provided in Oracle servers with UltraSPARC T1, T2,
T2+ or SPARC T3 or T4 processors, on-chip cryptographic acceleration eliminates the need for additional
coprocessor cards, special licensing, network appliances, or power hungry add-on components. The
cryptographic capabilities of these processors can be accessed via a built-in Oracle Solaris Cryptographic

84

HP-UX to Oracle Solaris Porting Guide

Framework that provides kernel-level and user-level consumers access to software-based or hardware-based
cryptographic capabilities.

Security Interfaces for Developers
Oracle Solaris provides standardized protocols and interfaces that enable enterprise developers to write
applications, libraries, and kernel modules that can take advantage of security technologies. In this model,
an application, library, or kernel module that uses security services is called a consumer. An application that
provides security services to consumers is a provider and a plug-in. Oracle Solaris provides several public
security interfaces.

Privileges and Authentication

Privileged applications can override system controls and check for specific user IDs, group IDs,
authorizations, or privileges. Two elements enable fine-grained delegation. A privilege is a discrete right that
can be granted to an application. With the right privilege, applications can perform operations that would
otherwise be prohibited by the operating system. Privileges are enforced at the kernel level. An authorization
grants permission for performing a class of actions that are otherwise prohibited by a security policy.
Authorizations are enforced at the user level.

To use the privilege programming interfaces, include the priv.h header file. Appendix D lists the
interfaces available for using privileges.

Best Practices for Developing Privileged Applications

The following suggestions can aid the development of privileged enterprise applications.

•	 Use an isolated system. Debugging privileged applications on a production system can compromise
security if the application is incomplete.

•	 Set IDs properly. Calling processes must have the proc_setid privilege in its effective set to change its
user ID, group ID, or supplemental group ID.

•	 Use privilege bracketing. When an application uses privileges, system security policy is overridden.
Privileged tasks should be bracketed and carefully controlled to ensure sensitive information is not
compromised.

•	 Start with basic privileges. Privileged applications should start with the basic set of privileges needed
for minimal operation and add and subtract privileges as needed.

•	 Avoid shell escapes. The new process in a shell escape can use any of the privileges in the parent
process's inheritable set. As a result, an end user can potentially violate trust through a shell escape.

85

HP-UX to Oracle Solaris Porting Guide

Steps for Developing Applications with Authorizations

Authorizations are stored in the /etc/security/auth_attr file. To create an application that uses
authorizations, take the following steps:

•	 Scan the /etc/security/auth_attr file for one or more appropriate authorizations.

•	 Check for the required authorization at the beginning of the program using the chkauthattr(3SECDB)
function.

•	 Let the administrator know which authorizations are required for this application, if access is denied in
the previous step.

Pluggable Authentication Modules

Pluggable authentication modules (PAM) provide system entry applications with authentication and related
security services for managing accounts, sessions, and passwords. Applications such as login, rlogin,
and telnet are typical consumers of PAM services. The framework provides a uniform way for
authentication-related activities to take place. This approach enables application developers to use PAM
services without having to know the semantics of the policy. Algorithms are centrally supplied, and can be
modified independently of individual applications.

The PAM library, libpam(3LIB), is the central element in the PAM architecture. It exports an API,
pam(3PAM), that applications can call for authentication, account management, credential establishment,
session management, and password changes. The libpam library imports a master configuration file,
pam.conf(4), that specifies the PAM module requirements for each available service. It also imports a
Service Provider Interface (SPI), pam_sm(3PAM), which is exported by the service modules.

Generic Security Service Application Programming Interface

The Generic Security Service Application Programming Interface (GSS-API) enables applications to
protect data to be sent to peer applications. It provides secure communications between peer applications,
as well as authentication, integrity, and confidentiality protection services, and typically is used in the
development of secure application protocols. With GSS-API, developers can write applications generically
with respect to security. Security implementations do not have to be tailored to a particular platform,
security mechanism, type of protection, or transport protocol, and the details of protecting network data
are avoided.

The GSS-API creates a security context in which data can be passed between applications—a state of trust
between two applications. Applications that share a context recognize each other and can permit data
transfers while the context lasts. One or more types of protection, known as security services, are applied to
the data to be transmitted. Addition GSS-API tasks include data conversion, error checking, delegation of
user privileges, information display, and identity comparison.

86

HP-UX to Oracle Solaris Porting Guide

Simple Authentication and Security Layer

Designed for high-level, network-based applications that use dynamic negotiation of security mechanisms
to protect sessions, the Simple Authentication and Security Layer (SASL) framework provides
authentication services and optional integrity and confidentiality services to connection-based protocols.
Developers of enterprise applications and shared libraries can take advantage of SASL mechanisms for
authentication, data integrity checking, and encryption through a generic API.

SASL is particularly appropriate for applications that use the Internet Access Message Protocol (IMAP),
Simple Mail Transport Protocol (SMTP), Application Configuration Access Protocol (ACAP), and
Lightweight Directory Access Protocol (LDAP), as these all support SASL.

The SASL library, libsasl, is a framework that allows properly written SASL consumer applications to
use SASL plug-ins that are available on the system. A service provider interface (SPI) is provided for plug-
ins to supply services to the libsasl library. Applications communicate with libsasl through an API.
The library can request additional information through callbacks registered by the application. For
example, the libsasl library can use callbacks to get information from the application to complete
authentication. Consumer applications can use callbacks to change search paths for configuration data,
verify data, and change default behaviors. In addition, servers can use callbacks to change authorization
policies, supply different password verification methods, and obtain changed password information. Table
13-1 lists the callbacks available to client and server applications.

TABLE 13-1. SASL CALLBACKS

CALLBACK DESCRIPTION

CALLBACKS AVAILABLE TO CLIENT AND SERVER APPLICATIONS

SASL_CB_GETOPT Get a SASAL option.

SASL_CB_LOG Set the logging function for the libsasl library and its plug-ins. The default behavior is to

use syslog.

SASL_CB_GETPATH Get a colon-separated list of SASL plug-in search paths.

SASL_CB_GETCONF Get the path to the SASL server’s configuration directory. The default path is /etc/sasl.

SASL_CB_LANGUAGE Specifies a comma-separated list of RFC 1766 language codes, in order of preference, for

client and server error messages and client prompts. The default is i-default.

SASL_CB_VERIFYFILE Verifies the configuration file and plug-in files.

CALLBACKS AVAILABLE ONLY TO CLIENT APPLICATIONS

SASL_CB_USER Get the client user name (authorization ID). The default is the LOGNAME environment

variable.

SASL_CB_AUTHNAME Get the client authentication name.

87

HP-UX to Oracle Solaris Porting Guide

TABLE 13-1. SASL CALLBACKS

CALLBACK	 DESCRIPTION

SASL_CB_PASS	 Get a client passphrase-based secret.

SASL_CB_ECHOPROMPT Get the result for a given challenge prompt. Input from the client can be echoed.

SASL_CB_NOECHOPROMPT Get the result for a given challenge prompt. Input from the client should not be echoed.

SASL_CB_GETREALM	 Set the realm to be used for authentication.

CALLBACKS AVAILABLE ONLY TO SERVER APPLICATIONS

SASL_CB_PROXY_POLICY Check that an authenticated user is authorized to act on behalf of a specified user.

SASL_CB_SERVER_USERDB_CHECKPASS Verifies a plain text password against the caller-supplied user database.

SASL_CB_SERVER_USERDB_SETPASS Stores a plain text password in the user database.

SASL_CB_CANON_USER Call an application-supplied user canonicalization function.

Oracle Solaris Cryptographic Framework

The Oracle Solaris Cryptographic Framework provides a set of cryptographic services for kernel-level and
user-level consumers. Based on the PKCS#11 public key cryptography standard created by RSA Security,
Inc., the framework provides a mechanism and API whereby both kernel- and user-based cryptographic
functions can transparently use software encryption modules and hardware accelerators configured on the
system. The framework provides various services, including message encryption and message digest,
message authentication, and digital signing. It also includes APIs for accessing cryptographic services, and
SPIs for providing cryptographic services. New cryptographic enhancements in Oracle Solaris 11 include
support for FIPS 140-2 of the Federal Information Processing Standard, and the implementation of ECC
and other NSA Suite B protocols to meet stringent government standards.

•	 ibpkcs11.so library. The framework provides access through the RSA Security Inc. PKCS#11
Cryptographic Token Interface (Cryptoki). Applications must link to the libpkcs11.so library.

•	 pkcs11_softtoken.so shared object. This private shared object contains user-level cryptographic
mechanisms provided by Oracle.

•	 pkcs11_kernel.so shared object. This private shared object is used to access kernel-level cryptographic
mechanisms. It offers a PKCS#11 user interface for cryptographic services that are plugged into the
kernel's service provider interface.

•	 Pluggable interface. The pluggable interface is the service provider interface (SPI) for PKCS #11
cryptographic services that are provided Oracle and third-party developers. Providers are user-level
libraries that are implemented through encryption services available from hardware or software.

88

http:pkcs11_kernel.so
http:pkcs11_softtoken.so
http:libpkcs11.so
http:ibpkcs11.so

HP-UX to Oracle Solaris Porting Guide

•	 Scheduler and load balancer. The operating system kernel includes software that is responsible for
coordinating use, load balancing, and dispatching of cryptographic service requests.

•	 Kernel programmer interface. This interface provides kernel-level consumers with access to
cryptographic services.

•	 Service provider interface. The interface to be used by providers of kernel-level cryptographic services
that are implemented in hardware or software.

•	 Hardware and software cryptographic providers. Kernel-level cryptographic services that utilize
software algorithms, hardware accelerator boards, or on-chip cryptographic capabilities (Oracle servers
with SPARC T3 processors only).

•	 Kernel cryptographic framework daemon. The private daemon responsible for managing system
resources for cryptographic operations. The daemon also verifies cryptographic providers.

•	 Module verification library. A private library used to verify the integrity and authenticity of all binaries
that the cryptographic framework imports.

•	 elfsign. A utility offered to third-party providers of cryptographic services. The elfsign utility is
used to request certificates from Sun. It also enables providers to actually sign the binaries, that is, elf
objects that plug into the Oracle Solaris Cryptographic Framework.

•	 cryptoadm. A user-level command for managing cryptographic services, such as disabling and enabling
cryptographic mechanisms according to security policy.

Keys to Working with the Oracle Solaris Cryptographic Framework

In general, four types of applications can plug into the Oracle Solaris Cryptographic Framework:
user-level consumers, user-level providers, kernel-level consumers, and kernel-level providers. Developers
creating applications should keep the following in mind.

•	 User-level consumers. When developing a user-level consumer, be sure to include the
security/cryptoki.h file and link with the libpkcs11.so shared object. All calls should be made
through PKCS#11 interfaces, and libraries should not call the C_Finalize() function.

•	 User-level providers. Design the provider to stand alone and create a PKCS#11 Cryptoki
implementation in a shared object that includes all necessary symbols. Ideally, provide an a_fini()
routine for data cleanup. Once complete, obtain a certificate and use it to elfsign the binary, and
package the shared object for distribution.

•	 Kernel-level consumers. When developing a kernel-level consumer, include the
sys/crypto/common.h and sys.crypto/api.h files. All calls should be made through the kernel
programming interface.

•	 Kernel-level providers. When developing a kernel-level consumer, include the
sys/crypto/common.h and sys.crypto/api.h files. Be sure to import required routines for
registering, unregistering, and providing status, and export routines that provide entry points for the
kernel cryptographic framework, as well as data structures with descriptions of supported algorithms.

89

http:libpkcs11.so

HP-UX to Oracle Solaris Porting Guide

Once the loadable kernel module is created, obtain a certificate and use it to elfsign the binary, and
package the kernel module for distribution.

Appendix E provides a list of PKCS#11 functions supported by the cryptographic framework.

Java APIs
Java security technology includes a large set of APIs, tools, and implementations of commonly used
security algorithms, mechanisms, and protocols. Providing a comprehensive security framework for
writing applications, Java APIs are available for cryptography, public key infrastructure, secure
communication, authentication, and access control. Table 13-2 lists the key Java security APIs.

TABLE 13-2. KEY JAVA SECURITY APIs

NAME DESCRIPTION

Java Cryptography Architecture (JCA) A framework for accessing cryptographic functions in Java

Java Generic Security Services (Java GSS-API) A Java version of the GSS-API interface

Java Secure Socket Extension (JSSE) A Java version of the SSL and TSL protocols for secure Internet communication

Java Public Key Infrastructure (Java PKI) A Java version of the PKI interface

Java Simple Authentication and Security Layer (Java SASL) Classes and interfaces for applications that use SASL mechanisms

Java GSS-API A Java implementation of the GSS-API interface

See http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136007.html for more information
on Java APIs for security.

Oracle Solaris Key Management Framework

Developers designing solutions that employ PKI technologies can utilize several keystore systems to store
PKI objects, such as OpenSSL, PKCS#11, and NSS. Each keystore presents a different programming
interface, and does not provide PKI policy enforcement. The Oracle Solaris Key Management Framework
provides tools and programming interfaces for managing public key infrastructure (PKI) objects.

An API layer enables developers to specify the type of keystore to use, and provides plug-in modules.
Applications written to the Oracle Solaris Key Management Framework are not bound to a keystore
system. A system-wide policy database is available to applications, enabling applications to assert a policy
and ensure subsequent operations behave according to policy limitations. Policy definitions include rules
for performing validations, requirements for key and extended key usage, trust anchor definitions, Online
Certificate Status Protocol (OCSP) parameters, and Certificate Revocation List (CRL) DB parameters,
such as location.

More information on the Oracle Solaris Key Management Framework can be found at
http://download.oracle.com/docs/cd/E19253-01/817-0547/getjm/index.html.

90

http://download.oracle.com/docs/cd/E19253-01/817-0547/getjm/index.html
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136007.html

HP-UX to Oracle Solaris Porting Guide

Chapter 14 Internationalization and Localization

Internationalization makes software portable between languages or regions, so that it does not have to be
rewritten to be used elsewhere. This is accomplished through the use of interfaces that modify program
behavior at runtime. Localization adapts software for specific languages or regions by utilizing online
information to support a language or region, known as a locale. Internationalized software can be ported
from one locale to another without change. Like HP-UX 11i v3, Oracle Solaris contains extensive
internationalization and localization support and provides the infrastructure and interfaces needed to
create internationalized software.

Overview

The Oracle Solaris internationalization architecture provides a flexible, pluggable method of handling input
methods, character set encodings, codeset conversion, and other basic aspects of language services.
Applications can be deployed in multiple language environments without knowing how input methods
work or which codeset converter needs to be enabled, simply by following standard APIs. The codeset
independent approach to globalization enables operation in both native language and Unicode locales.
Language attributes can be customized, and converter tables can be changed as needed. A rich set of data
converters ensures interoperability between various encodings and different third-party platforms.

•	 Localization functions and environment variables. HP-UX and Oracle Solaris include the concept
of locales, explicit models and definitions of native language environments. The notion of a locale is
explicitly defined and included in the library definitions of the ANSI C language standard. Because the
HP and Oracle compilers support this standard, and provide a consistent set of localization functions
and environment variables, migrating applications from HP-UX to Oracle Solaris should be
straightforward.

•	 Full Unicode 4.0 support. Oracle Solaris includes Unicode 4.0 support. Extensive support for
languages and locales is provided, including complex text layout environments needed to support Thai
and Hindi, and bidirectional layout environments for languages such as Arabic and Hebrew. HP-UX 11i
v3 provides support for approximately 35 languages and 183 locales, while Oracle Solaris supports 55
languages and 345 locales.

•	 Codeset independence. Many areas around the globe, such as those utilizing PC-Kanji in Japan, Big5
in Taiwan, and GBK in the People’s Republic of China, rely on non-Extended UNIX Code (non-EUC)
codeset support. To address these concerns, yet maintain maximum application portability, Oracle
Solaris OS provides a Codeset Independence (CSI) framework that enables both EUC and non-EUC
codeset support. The CSI framework aims to remove dependencies on specific codesets or encoding
methods from Oracle Solaris libraries and commands. Codeset independence enables application and
platform software developers to keep source code independent of encoding such as UTF-8, and also
provides the ability to adopt new encoding without having to modify the source code. While HP-UX
and Oracle Solaris support EUC and non-EUC codesets, implementations may differ, and applications

91

HP-UX to Oracle Solaris Porting Guide

may or may not need porting to the Oracle Solaris CSI framework to support internationalization
efforts. Table 14-1 lists the CSI-enabled libraries in Oracle Solaris.

TABLE 14-1. CSI-ENABLED LIBRARIES IN ORACLE SOLARIS

csetcol() csetno() euclen() getwidth()

csetlen() euccol() eucscol() wcsetno()

•	 Internationalization APIs. Oracle Solaris provides APIs for multibyte (file code) and wide character
(process code) that can help keep track of maintaining proper character boundaries when using
multibyte characters. These APIs include messaging functions, code conversion, regular expressions, the
wide character class, locale queries, character classification and transliteration, character collation,
monetary and date and time formatting, and more.

•	 Service based approach. Unlike other UNIX platforms, Oracle Solaris 10 uses a service-based
approach to administer language services remotely across a global network, regardless of the client
system. This client-independent approach enables system upgrades without changing client applications.

Encoding Methods

HP-UX 11i v3 supports Unicode 5.0 for applications running on 32- and 64-bit Intel® Itanium® processor-
based platforms, as well as applications compiled in shared mode on 32- and 64-bit PA-RISC platforms.
All other applications compiled in archived mode on previous HP-UX releases use Unicode 3.0.

Oracle Solaris supports Unicode 4.0. Unicode is fully compatible with the international standards
ISO/IEC 10646-1:2000 and ISO/IEC 10646–2:2001, and contains all the same characters and encoding
points as ISO/IEC 10646. Any implementation that conforms to Unicode also conforms to ISO/IEC
10646. The Unicode Standard provides additional information about the characters and their use and can
be referenced online at: http://www.unicode.org/standard/standard.html.

Unicode provides a consistent way of encoding multilingual plain text. Applications that support Unicode
often are capable of displaying multiple languages and scripts within the same document. Any of the
following character encoding schemes can be used for Unicode encoding:

•	 UTF-8. A variable-length encoding form of Unicode that preserves ASCII character code values
transparently. This form is used for file codes in Oracle Solaris Unicode locales.

•	 UTF-16. A 16-bit encoding form of Unicode.

•	 UTF-32. A fixed-length, 21-bit encoding form of Unicode usually represented in a 32-bit container or
data type. This form is used for process codes (wide-character codes) in Oracle Solaris Unicode locales.

These three encoding schemes are used for internal data processing in Oracle Solaris. When data is stored
to disk, it is stored only in UTF-8 format. HP-UX also stores file data in UTF-8. As a result, data encoded
in UTF-8 format can be exchanged between the two platforms without endian problems.

92

http://www.unicode.org/standard/standard.html

HP-UX to Oracle Solaris Porting Guide

While there are no mandated codesets within the X/Open UNIX standard other than ASCII, the standard
requires platforms to meet certain specifications for character manipulation. Adhering to this provision
ensures that programs are capable of handling the characters encountered within non-ASCII codesets on a
system.

Table 14-2 lists the supported codesets and encoding methods in HP-UX 11i v3 and their counterparts in
Oracle Solaris. Codeset conversion utilities provide alternatives should a specific encoding be unavailable.
Note that Oracle Solaris supports UTF-8 codesets for Asian languages with Unicode 3.2. Appendix B
contains a list of supported locales and codesets for HP-UX and Oracle Solaris.

TABLE 14-2. ENCODING METHODS

HP-UX ORACLE SOLARIS

ISO8859-1 (Latin-1) ISO8859-1 (Latin-1)

ISO8859-2 (Latin-2) ISO8859-2 (Latin-2)

ISO8859-5 (Latin-Cyrillic) ISO8859-5 (Latin-Cyrillic)

ISO8859-7 (Latin-Greek) ISO8859-7 (Latin-Greek)

ISO8859-8 (Latin-Hebrew) Not used, Solaris uses a different approach for the Hebrew
language that employs bi-directional text capabilities

ISO8859-9 (Latin-Turkish) (Latin-5) ISO8859-9 (Latin-Turkish) (Latin-5)

ISO8859-13 (Latin-5) (Baltic Rim) ISO8859-13 (Latin-5) (Baltic Rim)

ISO8859-15 (Latin-9) ISO8859-15 (Latin-9)

Simplified Chinese Extended UNIX Code (EUC) Simplified Chinese Extended UNIX Code (GB2312)

GBK Simplified Chinese GBK

GB18030-2000 Simplified Chinese GB18030-2000

Not available Simplified Chinese UTF-8 (Unicode 3.2)

Traditional Chinese EUC Traditional Chinese EUC locale (CNS11643-1992)

BIG5 Traditional Chinese BIG5

Not available Traditional Chinese UTF-8 (Unicode 3.2)

Not available Traditional Chinese (Hong Kong) BIG5-HKSCS

Not available Traditional Chinese (Hong Kong) UTF-8 (Unicode 3.2)

Not available Korean EUC (KS X)

93

HP-UX to Oracle Solaris Porting Guide

TABLE 14-2. ENCODING METHODS

HP-UX ORACLE SOLARIS

Not available Korean UTF-8 (Unicode 3.2)

Shift JIS Shift JIS

Not available PC Kanji

Thai API Consortium/Thai Industrial Standard (TIS620) Thai API Consortium/Thai Industrial Standard (TIS620)

Not available KOI8-R

Input Methods

Oracle Solaris utilizes the Internet Intranet Input Method Framework (IIIMF) to support multiple
language inputs and scripts. The IIIM server serves both IIIM and XIM (X input method) clients and is
started by each individual user in all UTF-8 and Asian locales. In addition, users of European UTF-8
locales can input data using the Compose or dead keys. IIIMF supports various EMEA keyboard layout
emulations such as French, Russian or Arabic.

A variety of Input Method Engines (IMEs) such as Chinese, Japanese, Korean, Thai, Indic, and Unicode
(HEX/OCTAL) are available when the corresponding locale support is installed. The Input Method
Preference Editor (iiim-properties) can be used to find existing IMEs.

HP-UX does not support IIIM, but does support existing input methods for locales utilizing UTF-8
encoding. For Asian languages, HP-UX utilizes the xjim (Japanese), xsim (simplified Chinese), xtim
(traditional Chinese), and xkim (Korean) input servers. Developers can also find third-party products that
support other input methods for both HP-UX and Oracle Solaris. Oracle Solaris also supports optional
code table input methods. Table 14-3 lists available input methods for Asian languages on HP-UX and
Oracle Solaris.

94

HP-UX to Oracle Solaris Porting Guide

TABLE 14-3. ASIAN LANGUAGE INPUT METHODS

HP-UX 11I v3 ORACLE SOLARIS

JAPANESE INPUT METHODS

ATOK X ATOK for Solaris (ATOK17)

Not Supported Wnn6

SIMPLIFIED CHINESE INPUT METHODS

(USED FOR ZH, ZH_CN, ZH_CN.EUC, ZH.GBK, ZH_CN.GBK, ZH_CN.GB818030, ZH.UTF-8, AND ZH_CN.UTF-8 LOCALES.

 NOTE THAT THE ZH, ZH.GBK, AND ZH.UTF-8 LOCALES ARE NOT SUPPORTED IN ORACLE SOLARIS 11.)

ABC IM Supports NewQuanPin

ABC IM Supports NewShuangPin

ShuangPin ShuangPin

QuanPin QuanPin

Not Supported English_Chinese

WangMa Wubi WangMa Wubi

SIMPLIFIED CHINESE INPUT METHODS (USED FOR ZH, ZH_CN, ZH_CN.EUC LOCALES ONLY.

NOTE THAT THE ZH LOCALE IS NOT SUPPORTED IN ORACLE SOLARIS 11.)

GB2312 NeiMa GB2312

SIMPLIFIED CHINESE INPUT METHODS (USED FOR ZH.GBK AND ZH_CN.GBK LOCALES ONLY.

NOTE THAT THE ZH.GBK LOCALE IS NOT SUPPORTED IN ORACLE SOLARIS 11.)

Not Supported GBK NeiMa

SIMPLIFIED CHINESE INPUT METHODS (USED FOR ZH_CN.GB818030, ZH.UTF-8, AND ZH-CN.UTF-8 LOCALES ONLY.

NOTE THAT THE ZH.UTF-8 LOCALE IS NOT SUPPORTED IN ORACLE SOLARIS 11.)

GB18030 NeiMa GB18030 NeiMa

TRADITIONAL CHINESE INPUT METHODS

Not Supported New ChuYin

ChuYin ChuYin

Rapid TsangChieh -

Not Supported Array

Not Supported Boshiamy

95

HP-UX to Oracle Solaris Porting Guide

TABLE 14-3. ASIAN LANGUAGE INPUT METHODS

HP-UX 11I v3 ORACLE SOLARIS

Not Supported DaYi

Not Supported JianYi

Not Supported Cantonese

NeiMa (EUC, BIG5, BIG5-HKSCS) NeiMa (EUC, BIG5, BIG5-HKSCS)

Not Supported English-Chinese

Not Supported Optional codetable input methods,

such as PinYin

KOREAN INPUT METHODS

Hangul

HanJa

Hangul

HanJa

ASCII ASCII

HEX Code Special Symbols

Codeset Converters

Both the HP-UX and Oracle Solaris platforms support a broad range of codeset converters. The iconv
and sdtconvtool utilities in Oracle Solaris can be used for code conversions among the major codesets
of many countries. These utilities are included in Oracle Solaris as part of Unicode locale support. In
addition, the geniconvtbl utility enables user-defined code conversions, but there is no similar utility on
HP-UX.

The geniconvtbl utility enhances the ability of an application to deal with incompatible data types,
particularly data generated from proprietary or legacy applications. Modifications to or customizations of
existing Oracle Solaris codeset conversions are also supported. In Oracle Solaris, user-defined code
conversions can be used with both iconv(1) and iconv(3). Once the user-defined code conversions are
prepared and placed properly, users can use the code conversions from the iconv(1) utility and the
iconv(3C) functions of both 32-bit and 64-bit Oracle Solaris operating system. See the iconv man pages
for more information about codeset converters on both HP-UX and Oracle Solaris.

Oracle Solaris also offers an Auto Encoding Finder, auto_ef, which is a useful utility for global character
handling. This utility provides an easy way to detect the encoding of a particular file or string, and helps
users to determine various language character encodings. The auto_ef utility is also useful for simplifying
the display of web pages that do not specify encoding information. Other uses for the utility include
detecting encoding in search engines, knowledge databases, and machine translation tools.

96

HP-UX to Oracle Solaris Porting Guide

Locales

Locales contain explicit models and definitions of native-language environments and are included in the
library definitions of the ANSI C language standard. HP and Sun compilers support this standard and
provide a consistent set of localization functions and environment variables, so migrating applications
form HP-UX to Oracle Solaris should be straightforward. The C, or POSIX, locale is the system default
locale for all POSIX-compliant systems. Both HP-UX and Oracle Solaris utilize the C locale as the system
default.

Appendix C lists supported locales for Oracle Solaris and their corresponding names on HP-UX 11i. Note
that many languages have multiple locales, depending on language, region, and codeset. Users should select
the locale that contains the date and time formats, currency, and more, that correspond to the correct
locale parameters.

While non-ISO compliant short form locales, such as de and ja, are supported in Oracle Solaris 10, they are
not supported in Oracle Solaris 11.

Message Catalogs

A key step in internationalization is to divide software into executable code and all the messages seen by
users. The message strings are kept in a separate message catalog and then translated for use in a language or
region. Users specify the locale to use at login and the software then displays the translated messages.
Locale-specific conventions are followed for formatting and displaying date, time, currency, and other
information.

HP-UX and Oracle Solaris both support the creation and access of message catalogs through common,
standard interfaces and commands based on specifications from The Open Group (XG4). Both maintain
executable code and text messages separately, although Oracle Solaris makes more extensive use of a
message catalog system known as gettext.

X and Motif Applications

Languages such as Arabic, Hebrew, and Thai require Complex Text Layout (CTL) capabilities in
supporting platforms. Oracle Solaris contains CTL extensions that enable the Motif APIs to support
languages that require complex transformations between logical and physical text representations. CTL
Motif provides character shaping, such as ligatures, diacritics, and segment ordering. Support for the
transformations of static and dynamic text widgets is also provided, along with bidirectional text capability
and tabbing for dynamic text widgets. The CTL support in Oracle Solaris means that developing
applications for languages such as Arabic, Hebrew, or Thai requires few changes.

97

HP-UX to Oracle Solaris Porting Guide

Appendix A C Library Mapping

TABLE A-1. C LIBRARY EQUIVALENCE FOR HP-UX 11I AND ORACLE SOLARIS

HP-UX 11i v3 ORACLE SOLARIS 10 ORACLE SOLARIS 11

libc.so libc.so libc.so

libcurses.so libcurses.so libcurses.so

libCsup.so libc.so libc.so

libI077.a libc.so libc.so

libm.so libm.so libm.so

libdcekt.so libgss.so libgss.so

libgss.so libgss.so libgss.so

libgssapi_krb5.so libgss.so libgss.so

libipv6.so libsocket.so libsocket.so

libnsl.so libmd5.so libmd5.so
librac.so librac.so
libnsl.so libnsl.so

librpcsvc.so libnsl.so libnsl.so

librt.so librt.so librt.so

libxnet.so libnext.so libnext.so

libxti.so libxti.so libxti.so

libsip

libinetcfg libipadm

libmle —

98

HP-UX to Oracle Solaris Porting Guide

Appendix B API Differences

TABLE B-1. KEY API DIFFERENCES

DESCRIPTION HP-UX 11i v3 ORACLE SOLARIS 10 ORACLE SOLARIS 11

FUNCTIONS THAT ARE DIFFERENT IN NAME, OR ARE ONLY AVAILABLE ON ONE PLATFORM

Obtain information about a mounted file system statfs()
fstatfs()

statvfs()
fstatvfs()

statvfs()
fstatvfs()

Read directory entries getdirentries() getdents() getdents()

Set user ID setuid() setuid()
seteuid()

setuid()
seteuid()

Set group ID setgid() setgid()
setegid()

setgid()
setegid()

FUNCTIONS THAT ARE DIFFERENT IN NAME AND HAVE DIFFERENT ARGUMENTS

Get or set a file’s Access Control List (ACL) getacl()
fgetacl()

acl()
facl()

acl()
facl()

Get audit information for a process getaudid() getauid() getauid()

Set audit information for a process setaudid() setauid() setauid()

Manipulate auditing settings getaudproc()
setaudproc()

auditon() auditon()

FUNCTIONS WITH DIFFERENT ARGUMENTS

Get and set process limits ulimit() ulimit() ulimit()

Shared memory operations shmdt() shmdt() shmdt()

99

TABLE C-1. SUPPORTED LOCALES LISTED BY COUNTRY

COUNTRY HP-UX 11i v3 ORACLE SOLARIS 10 ORACLE SOLARIS 11

Albania
— sq_AL.ISO8859-2 sq_AL.ISO8859-2

— sq_AL.UTF-8 sq_AL.UTF-8

ar_DZ.arabic8 — —
Algeria

ar_DZ.utf8 — —

es_AR.iso88591 es_AR.ISO8859-1 es_AR.ISO8859-1

Argentina es_AR.iso885915 — —

es_AR.utf8 es_AR.UTF-8 es_AR.UTF-8

— en_AU.ISO8859-1 en_AU.ISO8859-1
Australia

— en_AU.UTF-8 en_AU.UTF-8

— de_AT.ISO8859-1 de_AT.ISO8859-1

Austria — de_AT.ISO8859-15 de_AT.ISO8859-15

— de_AT.UTF-8 de_AT.UTF-8

— nl_BE.ISO8859-1 nl_BE.ISO8859-1

— nl_BE.ISO8859-15 nl_BE.ISO8859-15Belgium-Flemish

— nl_BE.UTF-8 nl_BE.UTF-8

— fr_BE.ISO8859-1 fr_BE.ISO8859-1

Belgium-Walloon — fr_BE.ISO8859-15 fr_BE.ISO8859-15

— fr_BE.UTF-8 fr_BE.UTF-8

es_BO.iso88591 es_AR.ISO8859-1 es_AR.ISO8859-1

es_BO.iso885915 — —Bolivia

es_BO.utf8 es_AR.UTF-8 es_AR.UTF-8

— sh_BA.ISO8859-2@bosnia bs_BA.ISO8859-2
Bosnia

— sh_BA.UTF-8 bs_BA.UTF-8

pt_BR.iso88591 pt_BR.ISO8859-1 pt_BR.ISO8859-1Brazil

pt_BR.iso885915 — —

HP-UX to Oracle Solaris Porting Guide

Appendix C Summary of Supported Locales

The following table details the countries and locales supported by HP-UX 11i v3 and Oracle Solaris. Note
that for the HP-UX versions, the locale binaries provided are version 3 and only applications running on
Intel Itanium processor-based platforms or running in shared mode on PA-RISC are supported.

Important Note: Oracle Solaris 11 removes support for short form locales, such as de and ja, as well as
@euro locales for the following country codes: AT, DK, DE, ES, FI, FR, GR, IE, IT, NL, and PT.

100

mailto:sh_BA.ISO8859-2@bosnia

 COUNTRY HP-UX 11i v3 ORACLE SOLARIS 10 ORACLE SOLARIS 11

 pt_BR.utf8 pt_BR.UTF-8 pt_BR.UTF-8

 Bulgaria
 bg_BG.iso88595 bg_BG.ISO8859-5 bg_BG.ISO8859-5

 bg_BG.utf8 bg_BG.UTF-8 bg_BG.UTF-8

 C (Default for UNIX
 systems, same as

 POSIX)

 C C C

 Canada

 — en_CA.ISO8859-1 (English) en_CA.ISO8859-1 (English)

 — en_CA.UTF-8 (English) en_CA.UTF-8 (English)

 — fr_CA.ISO8859-1 (French) fr_CA.ISO8859-1 (French)

 — fr_CA.UTF-8 (French) fr_CA.UTF-8 (French)

 Chile
 — es_CL.ISO8859-1 es_CL.ISO8859-1

 — es_CL.UTF-8 es_CL.UTF-8

 China

 zh_CN.gb18030 zh_CN.GB18030 zh_CN.GB18030

 zh_CN.hp15CN — —

 zh_CN.utf8 zh_CN.UTF-8 zh_CN.UTF-8

 zh_CN.EUC — —

 zh_CN.GBK — —

 Colombia
 — es_CO.ISO8859-1 es_CO.ISO8859-1

 — es_CO.UTF-8 es_CO.UTF-8

 Costa Rica
 — es_CR.ISO8859-1 es_CR.ISO8859-1

 — es_CR.UTF-8 es_CR.UTF-8

 Croatia
 — hr_HR.ISO8859-2 hr_HR.ISO8859-2

 — hr_HR.UTF-8 hr_HR.UTF-8

 Cypress — el_CY.UTF-8 el_CY.UTF-8

 Czech Republic
 cs_CZ.iso88592 cs_CZ.ISO8859-2 cs_CZ.ISO8859-2

 cs_CZ.utf8 cs_CZ.UTF-8@euro -

 Denmark

 da_DK.iso88591 da_DK.ISO8859–1 da_DK.ISO8859–1

 da_DK.iso885915@euro da_DK.ISO8859–15 da_DK.ISO8859–15

 da_DK.roman8 — —

 da_DK.utf8 da_DK.UTF–8 da_DK.UTF–8

 Dominican Republic

 es_DO.iso88591 — —

 es_DO.iso885915 — —

 es_DO.utf8 — —

 Ecuador
 — es_EC.ISO8859-1 es_EC.ISO8859-1

 — es_EC.UTF-8 es_EC.UTF-8

 Egypt
 — ar_EG.UTF-8 ar_EG.UTF-8

 — ar ar

HP-UX to Oracle Solaris Porting Guide

TABLE C-1. SUPPORTED LOCALES LISTED BY COUNTRY

101

 TABLE C-1. SUPPORTED LOCALES LISTED BY COUNTRY

 COUNTRY HP-UX 11i v3 ORACLE SOLARIS 10 ORACLE SOLARIS 11

 El Salvador
 — es_SV.ISO8859-1 es_SV.ISO8859-1

 — es_SV.UTF-8 es_SV.UTF-8

 Estonia

 et_EE.iso885915 et_EE.ISO8859-15 et_EE.ISO8859-15

 et_EE.iso88594 — —

 et_EE.utf8 et_EE.UTF-8 et_EE.UTF-8

 Finland

 — fi_FI.ISO8859–1 fi_FI.ISO8859–1

 — fi_FI.ISO8859–15 fi_FI.ISO8859–15

 — fi_FI.UTF-8 fi_FI.UTF-8

 France

 — fr_FR.ISO8859-1 fr_FR.ISO8859-1

 — fr_FR.ISO8859-15 fr_FR.ISO8859-15

 — fr_FR.UTF-8 fr_FR.UTF-8

 Germany

 de_DE.iso88591 de_DE.ISO8859-1 de_DE.ISO8859-1

 de_DE.iso885915@euro de_DE.ISO8859-15 de_DE.ISO8859-15

 de_DE.iso88594 — —

 de_DE.roman8 — —

 de_DE.utf8 de_DE.UTF-8 (Unicode 4) de_DE.UTF-8 (Unicode 4)

 Great Britain

 — en_GB.ISO8859-1 en_GB.ISO8859-1

 — en_GB.ISO8859-15 en_GB.ISO8859-15

 — en_GB.UTF-8 en_GB.UTF-8

 Greece

 el_GR.greek8 — —

 el_GR.iso88597 el_GR.ISO8859-7 el_GR.ISO8859-7

 el_GR.utf8 el_GR.UTF-8 el_GR.UTF-8

 Guatemala
 — es_GT.ISO8859-1 es_GT.ISO8859-1

 — es_GT.UTF-8 es_GT.UTF-8

 Honduras

 es_HN.iso88591 — —

 es_HN.iso885915 — —

 es_HN.utf8 — —

 Hong Kong
 zh_HK.hkbig5 zh_HK.BIG5HK zh_HK.BIG5HK

 zh_HK.utf8 zh_HK.UTF-8 zh_HK.UTF-8

 Hungary
 — hu_HU.ISO8859-2 hu_HU.ISO8859-2

 — hu_HU.UTF-8 hu_HU.UTF-8

 Iceland
 — is_IS.ISO8859–1 is_IS.ISO8859–1

 — is_IS.UTF-8 is_IS.UTF-8

 India — hi_IN.UTF-8 hi_IN.UTF-8

 Ireland — en_IE.ISO8859-1 en_IE.ISO8859-1

 — en_IE.ISO8859-15 en_IE.ISO8859-15

HP-UX to Oracle Solaris Porting Guide

102

 TABLE C-1. SUPPORTED LOCALES LISTED BY COUNTRY

 COUNTRY HP-UX 11i v3 ORACLE SOLARIS 10 ORACLE SOLARIS 11

 — en_IE.UTF-8 en_IE.UTF-8

 Israel
 — he he_IL.ISO8859-8

 — he_IL.UTF-8 he_IL.UTF-8

 Italy

 — it_IT.ISO8859-1 it_IT.ISO8859-1

 — it_IT.ISO8859-15 it_IT.ISO8859-15

 — it_IT.UTF-8 it_IT.UTF-8

 Japan

 — ja ja_JP.eucJP

 — ja_JP.eucJP ja_JP.eucJP

 — ja_JP.PCK ja_JP.PCK

 — ja_JP.UTF-8 ja_JP.UTF-8

 Korea
 — ko_KR.EUC ko_KR.EUC

 — ko_KR.UTF-8 ko_KR.UTF-8

 Latvia

 lv_LV.iso885913 lv_LV.ISO8859-13 lv_LV.ISO8859-13

 lv_LV.iso88594 — —

 lv_LV.utf8 lv_LV.UTF-8 lv_LV.UTF-8

 Lithuania

 lt_LT.iso885913 lt_LT.ISO8859-13 lt_LT.ISO8859-13

 lt_LT.iso88594 — —

 lt_LT.utf8 lt_LT.UTF-8 lt_LT.UTF-8

 Luxembourg — de_LU.UTF-8 de_LU.UTF-8

 Macedonia
 — mk_MK.ISO8859-5 mk_MK.ISO8859-5

 — mk_MK.UTF-8 mk_MK.UTF-8

 Malta
 — mt_MT.UTF-8 (Maltese) mt_MT.UTF-8 (Maltese)

 — en_MT.UTF-8 (English) en_MT.UTF-8 (English)

 Mexico
 — es_MX.ISO8859–1 es_MX.ISO8859–1

 — es_MX.UTF-8 es_MX.UTF-8

 Netherlands

 — nl_NL.ISO8859-1 nl_NL.ISO8859-1

 — nl_NL.ISO8859-15 nl_NL.ISO8859-15

 — nl_NL.UTF-8 nl_NL.UTF-8

 New Zealand
 — en_NZ.ISO8859-1 en_NZ.ISO8859-1

 — en_NZ.UTF-8 en_NZ.UTF-8

 Nicaragua
 — es_NI.ISO8859-1 es_NI.ISO8859-1

 — es_NI.UTF-8 es_NI.UTF-8

 Norway — nn_NO.UTF-8 nn_NO.UTF-8

 — no_NO.ISO8859–1@bokmal nb_NO.ISO8859-1

 — no_NO.ISO8859–1@nyorsk nn_NO.ISO8859-1

 no_NO.utf8 no_NO.UTF-8 no_NO.UTF-8

HP-UX to Oracle Solaris Porting Guide

103

 TABLE C-1. SUPPORTED LOCALES LISTED BY COUNTRY

 COUNTRY HP-UX 11i v3 ORACLE SOLARIS 10 ORACLE SOLARIS 11

 no_NO.iso88591 — —

 no_NO.iso885915@euro — —

 Panama
 — es_PA.ISO8859-1 es_PA.ISO8859-1

 — es_PA.UTF-8 es_PA.UTF-8

 Paraguay
 — es_PY.ISO8859-1 es_PY.ISO8859-1

 — es_PY.UTF-8 es_PY.UTF-8

 Peru
 — es_PE.ISO8859-1 es_PE.ISO8859-1

 — es_PE.UTF-8 es_PE.UTF-8

 Poland
 pl_PL.iso88592 pl_PL.ISO8859-2 pl_PL.ISO8859-2

 pl_PL.utf8 pl_PL.UTF-8 pl_PL.UTF-8

 Portugal

 pt_PT.iso88591 pt_PT.ISO8859-1 pt_PT.ISO8859-1

 pt_PT.iso885915@euro pt_PT.ISO8859-15 pt_PT.ISO8859-15

 pt_PT.roman8 — —

 pt_PT.utf8 pt_PT.UTF-8 pt_PT.UTF-8

 POSIX POSIX POSIX POSIX

 Romania
 ro_RO.iso88592 ro_RO.ISO8859-2 ro_RO.ISO8859-2

 ro_RO.utf8 ro_RO.UTF-8 ro_RO.UTF-8

 Russian Federation

 ru_RU.cp1251 — —

 ru_RU.iso88595 ru_RU.ISO8859-5 ru_RU.ISO8859-5

 ru_RU.koi8r ru_RU.KOI8-R ru_RU.KOI8-R

 ru_RU.utf8 ru_RU.UTF-8 ru_RU.UTF-8

 Saudi Arabia

 ar_SA.arabic8 — —

 ar_SA.iso88596 — —

 ar_SA.utf8 Ar_SA.UTF-8 Ar_SA.UTF-8

 Serbia — sr_YU.ISO8859-5 sr_ME.ISO8859-5 or
 sr_RS.ISO8859-5

 Serbia and Montenegro — sr_CS.UTF-8 sr_ME.UTF-8 or
 sr_RS.UTF-8

 Slovakia
 sk_SK.iso88592 sk_SK.ISO8859-2 sk_SK.ISO8859-2

 sk_SK.utf8 sk_SK.UTF-8 sk_SK.UTF-8

 Slovenia
 sl_SI.iso88592 sl_SI.ISO8859-2 sl_SI.ISO8859-2

 sl_SI.utf8 sl_SI.UTF-8 sl_SI.UTF-8

 Spain — ca_ES.ISO8859-1 (Catalan) ca_ES.ISO8859-1 (Catalan)

 — ca_ES.UTF-8 (Catalan) ca_ES.UTF-8 (Catalan)

 — ca_ES.ISO8859-15 (Catalan) ca_ES.ISO8859-15 (Catalan)

 — es_ES.ISO8859-1 (Spanish) es_ES.ISO8859-1 (Spanish)

 — es_ES.ISO8859-15 (Spanish) es_ES.ISO8859-15 (Spanish)

HP-UX to Oracle Solaris Porting Guide

104

TABLE C-1. SUPPORTED LOCALES LISTED BY COUNTRY

COUNTRY HP-UX 11i v3 ORACLE SOLARIS 10 ORACLE SOLARIS 11

— es_ES.UTF-8 (Spanish) es_ES.UTF-8 (Spanish)

sv_SE.iso88591 sv_SE.ISO8859–1 sv_SE.ISO8859–1

Sweden
sv_SE.iso885915@euro

sv_SE.roman8

sv_SE.ISO8859–15

—

sv_SE.ISO8859–15

—

sv_SE.utf8 sv_SE.UTF-8 sv_SE.UTF-8

— de_CH.ISO8859-1 (German) de_CH.ISO8859-1 (German)

— de_CH.UTF-8 (German) de_CH.UTF-8 (German)

— fr_CH.ISO8859-1 (French) fr_CH.ISO8859-1 (French)
Switzerland

— fr_CH.UTF-8 (French) fr_CH.UTF-8 (French)

zh_TW.eucTW zh_TW.EUC zh_TW.EUC

Taiwan
zh_TW.big5

zh_TW.utf8

zh_TW.BIG5

zh_TW.UTF-8

zh_TW.BIG5

zh_TW.UTF-8

zh_TW.ccdc — —

th_TH.tis620 th_TH.TIS620 th_TH.TIS620
Thailand

— th_TH.UTF-8 th_TH.UTF-8

tr_TR.iso88599 tr_TR.ISO8859-9 tr_TR.ISO8859-9

Turkey tr_TR.turkish8 — —

tr_TR.utf8 tr_TR.UTF-8 tr_TR.UTF-8

uk_UA.cp1251 — —
Ukraine

uk_UA.utf8 — —

en_GB.iso88591 — —

en_GB.iso885915@euro — —
United Kingdom

en_GB.roman8 — —

en_GB.utf8 — —

en_US.iso88591 en_US.ISO8859-1 en_US.ISO8859-1

en_US.roman8 — —

en_US.utf8 en_US.UTF-8 en_US.UTF-8

— en_US.ISO8859-15 en_US.ISO8859-15

es_US.iso88591 (Spanish) — —

es_US.iso885915 (Spanish) — —

United States

es_US.utf8 (Spanish) — —

— es_UY.ISO8859-1 es_UY.ISO8859-1
Uruguay

— es_UY.UTF-8 es_UY.UTF-8

— es_VE.ISO8859-1 es_VE.ISO8859-1
Venezuela

— es_VE.UTF-8 es_VE.UTF-8

HP-UX to Oracle Solaris Porting Guide

105

mailto:en_GB.iso885915@euro

 TABLE D-1. PRIVILEGES INTERFACES

PURPOSE FUNCTIONS DESCRIPTION

 Get and set privilege sets getppriv(2)

 setppriv(2)

 priv_set(3C)

 priv_ineffect(3)

 Get a privilege set.

 Set a privilege set.

 A wrapper for the setppriv(2) function.

 A wrapper for the getppriv(2) function.

 Identify and translate privileges priv_str_to_set(3C)

 priv_set_to_str(3C)

 priv_getbyname(3C)

 priv_getbynum(3C)

 priv_getsetbyname(3C)

 priv_getsetbynum(3C)

 Maps a privilege specification to a privilege set.

 Converts the privilege set to a sequence of privileges.

 Map a privilege name to a number.

 Map privilege numbers to names.

 Map privilege set names to a number.

 Map privilege numbers to names.

 Manipulate privilege sets priv_allocset(3C)

 priv_freeset(3C)

 priv_emptyset(3C)

 priv_fillset(3C)

 priv_isemptyset(3C)

 priv_isfullset(3C)

 priv_isequalset(3C)

 priv_issubset(3C)

 priv_intersect(3C)

 priv_union(3C)

 priv_inverse(3C)

priv_addset(3C)

priv_copyset(3C)

priv_delset(3C)

 priv_ismember(3C)

 Allocates memory for a privilege set.

 Free the storage allocated by the priv_allocset() function.

 Clears all privileges.

 Asserts all privileges.

 Checks whether an argument is an empty set.

 Checks whether the argument is a full set (all bits set).

 Checks whether two privilege sets are equal.

 Checks whether a privilege set is a subset of another set.

 Intersects two sets and returns the result.

 Takes the union of two sets and returns the results.

 Inverts a privilege set.

 Adds the named privilege to a specified set.

 Copies a privilege set.

 Removes the named privilege from a specified set.

 Checks whether the names privilege is a member of a set.

HP-UX to Oracle Solaris Porting Guide

Appendix D Privileges Interfaces

Get and set process flags getpflags(2) Get process flags.

setpflags(2) Set process flags.

106

HP-UX to Oracle Solaris Porting Guide

Appendix E Cryptographic Functions

TABLE E-1. ORACLE SOLARIS CRYPTOGRAPHIC FRAMEWORK FUNCTIONS

CATEGORY FUNCTIONS

General Purpose C_Initialize()

C_Finalize()

C_GetInfo()

C_GetFunctionList()

Session Management C_GetSlotList()

C_GetSlotInfo()

C_GetMechanismList()

C_GetMechanismInfo()

C_SetPIN()

Encryption and Decryption C_EncryptInit()

C_Encrypt()

C_EncryptUpdate()

C_EncryptFinal()

C_DecryptInit()

C_Decrypt()

C_DecryptUpdate()

C_DecryptFinal()

Message Digesting C_DigestInit()

C_Digest()

C_DigestKey()

C_DigestUpdate()

C_DigestFinal()

Signing and Applying MAC C_Sign()

C_SignInit()

C_SignUpdate()

C_SignFinal()

C_SignRecoverInit()

C_SignRecover()

107

HP-UX to Oracle Solaris Porting Guide

Signature Verification C_Verify()

C_VerifyInit()

C_VerifyUpdate()

C_VerifyFinal()

C_VerifyRecoverInit()

C_VerifyRecover()

Dual-Purpose Cryptographic Functions C_DigestEncryptUpdate()

C_DecryptDigestUpdate()

C_SignEncryptUpdate()

C_DecryptVerifyUpdate()

Random Number Generation C_SeedRandom()

C_GenerateRandom()

Object Management C_CreateOject()

C_DestroyObject()

C_CopyObject()

C_FindObjects()

C_FindObjectsInit()

C_FindObjectsFinal()

C_GetAttributeValue()

C_SetAttributeValue()

Key Management C_GenerateKey()

C_GenerateKeyPair()

C_DeriveKey()

108

HP-UX to Oracle Solaris Porting Guide

Appendix F Command Comparison Summary

Table F-1 provides a summary of key command differences between HP-UX 11i v3 and Oracle Solaris
that are of concern to developers. Detailed information on these and other commands can be found in the
Oracle Solaris man pages.

TABLE F-1. KEY COMMAND DIFFERENCES

COMMAND PURPOSE

OPTIONS NOT

SUPPORTED

ON ORACLE

SOLARIS

ORACLE

SOLARIS

ADDITIONS

NOTES ON KEY DIFFERENCES

asa Convert FORTRAN carriage-

control output to printable

form

-f –f indicates each file should start on a new page.

at Execute commands at a later

time

-d -c, -k,

-s

Additional options specify the shell used to execute

the job.

awk Pattern scanning and

processing

-v Oracle Solaris supports one file with the –f option

(HP-UX supports up to 100 files).

batch Execute commands at a later

time

-p –p specifies the project for the run.

bc Arbitrary precision arithmetic

language

cat Concatenate and display files -r

chgrp Change file group ownership -f –f suppresses error reporting.

chown Change file ownership -f –f suppresses error reporting.

cksum Write file checksums and

sizes

compress Compress and uncompress

files

-d, -z On Oracle Solaris uncompress is equivalent to

compress –d.

crypt Encrypt and decrypt files Use crypt or encrypt on Oracles Solaris 10, and

encrypt on Oracle Solaris 11.

csplit Split files based on context

delta Make a change to SCCS file -d –d uses diff(1) not bdiff(1) for comparisons.

env Set the environment for

command execution

109

HP-UX to Oracle Solaris Porting Guide

TABLE F-1. KEY COMMAND DIFFERENCES

COMMAND PURPOSE

OPTIONS NOT

SUPPORTED

ON ORACLE

SOLARIS

ORACLE

SOLARIS

ADDITIONS

NOTES ON KEY DIFFERENCES

expr Evaluate arguments as an

expression

Oracles Solaris supports the length, match, and

substr operators only on x86 platforms, and does

not support the match operator on SPARC or x86

platforms.

false Provide truth values

gencat Generate a formatted

message catalog

-l

get Retrieve a version of an

SCCS file

-w -G –G specifies a new name for the retrieved file.

getconf Get configuration values -a –a writes the names of the current system

configuration variables to standard output.

grep Search a file for a pattern

conv Code set conversion utility

ipcrm Remove a message queue,

semaphore set, or shared

memory ID

-z –z specifies a zone.

ipcs Report inter-process

communication facilities

status

-C, -N -A, -D,

-i, -j,

-z, -Z

–A uses all print options

 (equivalent to -b, -c, -i, -J, -o, -p, and –t).

-D displays contents of messages of a given type.

join Form a join of the two

relations

kill Terminate or signal a process Oracle Solaris supports an optional exit status for

the –l option.

locale Get locale-specific

information

-A, -pa32,

-pa64

Oracle Solaris does not support the –A, -pa32, and

–pa64 options used on HP-UX for Itanium and PA-

-i	 prints the number of ISM attaches to shared

memory segments.

-j prints the creator’s project.

-z prints information about facilities associated

with the specified zone.

–Z prints information about all zones (when running

 in the global zone).

110

HP-UX to Oracle Solaris Porting Guide

TABLE F-1. KEY COMMAND DIFFERENCES

COMMAND PURPOSE

OPTIONS NOT

SUPPORTED

ON ORACLE

SOLARIS

ORACLE

SOLARIS

ADDITIONS

NOTES ON KEY DIFFERENCES

RISC systems.

m4 Macro processor On Oracle Solaris, the –B, -H, -S, and -T options

require a space between the option and its specified

value.

mixerctl Control audio mixer mode Replaced with the audioctl command in

Oracle Solaris 11

mkdir Make directories

mv Move files -e

nice Invoke a command with an

altered scheduling priority

nm Print the name list of an

object file

-d, -N, -q -D, -R –D displays the symbol table used by the link-editor

ld.so.1

–R prints the archive name followed by the object file

and symbol name.

patch Apply changes to files -u –u interprets the patch file as a unified context

difference.

rdist Remote file distribution Removed in Oracle Solaris 11. Use the rsync(1)

or scp(1) command for remote file transfers.

read Read a line from standard

input

sed Stream editor

sort -y, -z The –y and –z options are removed from the

/usr/bin/sort command as of Oracle Solaris 11.

sleep Suspend execution for an

interval

strip Strip symbol table,

debugging, and line number

information from an object file

-r, -U

test Evaluate conditions Oracle Solaris supports the primary operators found

in the HP-UX version of the command, adds a few

111

HP-UX to Oracle Solaris Porting Guide

TABLE F-1. KEY COMMAND DIFFERENCES

COMMAND PURPOSE

OPTIONS NOT

SUPPORTED

ON ORACLE

SOLARIS

ORACLE

SOLARIS

ADDITIONS

NOTES ON KEY DIFFERENCES

options, and supports a richer set of conditions.

true Provide truth values

ulimit Set or get limitations on the

system resources available to

the current shell and its

descendents

HP-UX only provides a ulimit(2) C interface.

Oracle Solaris also provides a user level command

ulimit(1).

wait Await process completion jobid HP-UX and Oracle Solaris support the specification

of a process ID for which the utility is to wait for

termination. Oracle Solaris also supports the

specification of a job control ID that identifies a

background process group for which to wait.

xargs Construct and argument list

and invoke a command

xorgcfg Generate xorg.conf file Removed in Oracle Solaris 11

yacc Yet another compiler-

compiler

yacc is not supported on HP-UX.

112

HP-UX to Oracle Solaris Porting Guide

Appendix G Resources

Additional information and developer resources can be found in the references listed in Table G-1.

TABLE G-1. ADDITIONAL READING

ORACLE SOLARIS

Oracle Solaris http://www.oracle.com/solaris

Oracle Solaris 10 Documentation http://download.oracle.com/docs/cd/E19253-01/index.html

Oracle Solaris Tunable Parameters

Reference Manual

http://download.oracle.com/docs/cd/E19253-01/817-0404/817-0404.pdf

Oracle Solaris 10 What’s New http://download.oracle.com/docs/cd/E19253-01/817-0547/index.html

Oracle Solaris Cluster http://www.oracle.com/technetwork/server-storage/solaris-cluster/index.html

Oracle Solaris 10 System Virtualization

Essentials

ISBN-13: 978-0-13-708188-2

ISBN-10: 0-13-708188-X

PROGRAMMING REFERENCES

Oracle Solaris 10 Documentation Set http://www.oracle.com/technetwork/documentation/solaris-10-192992.html

Oracle Solaris 11 Pre-Flight Checker for

Applications

https://www.samplecode.oracle.com/sf/projects/solaris_11_compatibility_tools/

 Oracle Solaris Studio Portal http://www.oracle.com/technetwork/server-storage/solarisstudio/overview/index.html

Oracle Solaris Studio Documentation http://www.oracle.com/technetwork/server-storage/solarisstudio/documentation/oss-

122-docs-169726.html

Linker and Libraries Guide http://download.oracle.com/docs/cd/E19082-01/819-0690/book-info/index.html

Oracle Solaris Security for Developers Guide http://download.oracle.com/docs/cd/E19253-01/816-4863/816-4863.pdf

Programming Interfaces Guide http://download.oracle.com/docs/cd/E19253-01/817-4415/817-4415.pdf

Writing Device Drivers http://download.oracle.com/docs/cd/E19963-01/html/819-3196/ddidkisvc-29227.html

“Developing Enterprise Applications with

Oracle Solaris Studio” white paper

http://www.oracle.com/technetwork/server-storage/solarisstudio/documentation/oss-

enterprise-apps-170707.pdf

“Examine MPI Applications with the Oracle

Solaris Studio Performance Analyzer”, white

paper

http://www.oracle.com/technetwork/server-storage/solarisstudio/documentation/oss-

performance-analyzer-177582.pdf

“Parallel Programming with Oracle http://www.oracle.com/technetwork/systems/parallel-programming-oracle-develop-

113

HP-UX to Oracle Solaris Porting Guide

Developer Tools” white paper 149971.pdf

“Taking Advantage of OpenMP 3.0 Tasking http://www.oracle.com/technetwork/server-storage/solarisstudio/documentation/oss-

with Oracle Solaris Studio” white paper openmp-30-wp-183987.pdf

JAVA

Java Technology http://www.oracle.com/java

JavaFX Platform http://download.oracle.com/javafx/2.0/overview/jfxpub-overview.htm

Java Security http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136007.html

Java SE Security Documentation http://download.oracle.com/javase/6/docs/technotes/guides/security/index.html

ORACLE SOLARIS SERVICE MANAGEMENT FACILITY

“How to Create an Oracle Solaris Service http://www.oracle.com/technetwork/server-storage/solaris/solaris-smf-manifest-wp-

Management Facility Manifest” white paper 167902.pdf

“Management of Systems and Services http://www.oracle.com/technetwork/server-storage/solaris/solaris-smf-wp-167901.pdf

Made Simple with the Oracle Solaris Service

Management Facility” white paper

INTERNATIONALIZATION

Oracle Solaris 10 Supported Locales http://www.oracle.com/technetwork/systems/articles/solaris-10-ur2-locales-

142856.html - north-americas

International Language Environments Guide http://download.oracle.com/docs/cd/E19253-01/817-2521/index.html

Korean Solaris User's Guide http://download.oracle.com/docs/cd/E19253-01/817-2522/index.html

Simplified Chinese Solaris User's Guide http://download.oracle.com/docs/cd/E19253-01/817-2523/index.html

Traditional Chinese Solaris User's Guide http://download.oracle.com/docs/cd/E19253-01/817-2524/index.html

114

http://www.oracle.com/technetwork/server-storage/solaris/solaris-smf-wp-167901.pdf
http://www.oracle.com/technetwork/server-storage/solaris/solaris-smf-manifest-wp

HP-UX to Oracle Solaris Porting Guide

Appendix H Glossary
ACAP
Application Configuration Access Protocol.

Access Control List (ACL)
A file containing a list of principals with certain access permissions. Typically, a server consults an access
control list to verify that a client has permission to use its services.

Agent Builder
A component of Oracle Solaris Cluster that automates the creation of a data service.

API
Application programming interface.

appcert
A utility that examines an application’s conformance to the Oracle Solaris Application Binary Interface.
Use of the appcert utility can help identify potential binary compatibility issues when porting applications
to Oracle Solaris.

Authentication
A security service that verifies a claimed identity.

Authorization
The process of determining whether a user can use service, which objects the user can access, and the type
of access allowed.

Big Endian
An architecture that stores the most-significant byte of data first. Oracle Solaris uses a Big Endian
architecture on SPARC processor-based systems and a Little Endian architecture on x86 platforms.

Bourne shell
The default shell in Oracle Solaris 10. The shell is found in /usr/bin/sh.

Chip-Multithreading Technology
Multithreaded processor technology that enables each processor core to switch between multiple threads
on each clock cycle.

CMT
Chip-Multithreading Technology.

Consumer
An application, library, or kernel module that uses system resources.

Context
A state of trust between two applications.

Data transformation
The process of converting data from one format to another.

dbx, dbxtool
A scriptable, multithread-aware debugger for applications using Oracle Solaris or POSIX threads. The
graphical version is dbxtool.

115

HP-UX to Oracle Solaris Porting Guide

DDI/DKI
Device Driver Interface/Driver-Kernel Interface. Interfaces that standardize interactions between device
drivers and the operating system kernel, device hardware, and boot and configuration software.

Discover
A tool that detects and reports memory access errors in a running application.

DLight
A tool that unifies application and system profiling using Oracle Solaris DTrace technology.

dmake
Distributed Make utility that parses makefiles and determines which targets can be built concurrently. The
build of those targets is distributed over a number of hosts.

DTrace
See Oracle Solaris DTrace.

ETL utilities
Extract, Transform, and Load utilities, tools that take a wide array of formats and convert them into
Structured Query Language (SQL) for relational database management systems.

GSS-API
The Generic Security Service Application Programming Interface. A network layer providing support for
various modular security services. GSS-API provides security authentication, integrity, and confidentiality
services, and allows maximum application portability with regard to security.

Hard limit
A resource consumption limit set by the operating system or processes with special privileges.

Hybrid Storage Pool
A combination of disk drives and Flash devices that work together to minimize the impact of disk
latencies and improve application performance. Flash devices handle certain types of I/O while hard disk
drives store massive data sets. Hybrid Storage Pools are enabled by Oracle Solaris ZFS.

IIIMF
Internet Intranet Input Method Framework.

IMAP
Internet Access Message Protocol.

Internationalization
Technology that makes software portable across languages and regions.

Java Platform, Enterprise Edition (Java EE)
A toolkit that builds on Java SE and adds an application server, Web server, Java 2 Platform, Enterprise
Edition API, support for JavaBeans, Java servlets API, and JavaServer Pages (JSP) technology.

Java Platform, Standard Edition (Java SE)
A toolkit for developing Java applications. The toolkit includes a compiler, runtime environment, and core
API.

JavaFX
A platform that provides a rich set of graphics and media APIs with high-performance
hardware-accelerated graphics and media engines that simplify the development of data-driven enterprise
client applications.

116

HP-UX to Oracle Solaris Porting Guide

Korn shell
Oracle Solaris 10 supports ksh88 (located in /usr/bin/ksh). Oracle Solaris 11 provides ksh93 as the
default shell (located in /usr/bin/ksh), as well as ksh88 (located in /usr/sunos/bin/ksh) for
compatibility.

Lazy loading
Enables the loading of a dependency to be delayed until the function is first referenced.

LDAP
Lightweight Directory Access Protocol.

LDI
Layered Driver Interface. An extension of the DDI/DKI that enables a kernel module to access other
devices in the system.

Little Endian
An architecture that stores the least-significant byte of data first. Oracle Solaris uses a Little Endian
architecture on x86 systems and a Big Endian architecture on SPARC processor-based platforms.

Locale
A language or region.

Localization
Technology that adapts software for specific languages or regions by utilizing online information to
support a language or region, know as a locale.

maxfiles
A soft limit that specifies the file limit per process.

maxfiles_lim
A hard limit that specifies the file limit per process.

maxuprc
The maximum number of user processes allowed.

MPO
Memory Placement Optimization.

NetBeans IDE
A free and open source software development tool for creating Web, desktop, and mobile applications.

Oracle JDeveloper
A free, integrated development environment that simplifies the creation of Java-based SOA applications
and user interfaces.

Oracle Solaris Cluster
A high availability solution for Oracle Solaris that is integrated at the kernel level. It monitors servers,
storage, network components, operating system, virtual machines, and applications. Recovery actions are
based on policies and application specifications.

Oracle Solaris Cryptographic Framework
A framework built into Oracle Solaris that provides kernel-level and user-level consumers with access to
software-based or hardware-based cryptographic capabilities.

117

HP-UX to Oracle Solaris Porting Guide

Oracle Solaris DTrace
A dynamic tracing facility built into Oracle Solaris that lets developers observe operating system and
application behavior in real time.

Oracle Solaris Key Management Framework
A framework that provides tools and programming interfaces for managing PKI objects.

Oracle Solaris Service Management Facility
A facility introduced in Oracle Solaris 10 that simplifies service management and control.

Oracle Solaris Studio
A free, comprehensive C, C++, and Fortran tool suite for Oracle Solaris and Linux operating systems that
accelerates the development of scalable, secure, and reliable enterprise applications.

Oracle Solaris ZFS
A 128-bit file system that integrates volume management and provides virtually unlimited file system
scalability.

Oracle VM
Scalable server virtualization software that supports Oracle and non-Oracle applications.

Package
A collection of files and directories that are required for a software product. On Oracle Solaris,
applications are distributed for deployment in packages.

PAM.
See Pluggable authentication modules.

PKI
Public Key Infrastructure.

Pluggable authentication modules
A framework that provides authentication and related security services for managing accounts, sessions,
and passwords.

POSIX
Portable Operating System Interface for UNIX. A set of standards that provide a well-defined system call
interface for kernel facilities, as well as shell and utilities interfaces.

POSIX Threads
A standard API that defines a set of C programming language types, functions, and constants related to
multithreaded programming.

Privilege
A discrete right that can be granted to an application.

pthreads
See POSIX Threads.

Runtime checking
A debugging feature integrated into Oracle Solaris Studio that automatically detects runtime errors, such as
memory access and memory leaks. The debugger interrupts program execution and displays the relevant
source code upon error detection.

118

HP-UX to Oracle Solaris Porting Guide

Runtime linker
Software that provides library calls that can be used to locate and bind applications to shared libraries
during execution.

SASL
The Simple Authentication and Security Layer, a framework that provides authentication services and
optional integrity and confidentiality services to connection-based protocols. SALS is appropriate for
applications that use IMAP, SMTP, ACAP, and LDAP protocols, as these all support SASL.

SMF
See Oracle Solaris Service Management Facility.

SMTP
Simple Mail Transport Protocol.

SOA
Service-oriented architecture.

Soft limit
A resource consumption limit that can be changed by a process. A soft limit must remain less than or
equal to the hard limit in Oracle Solaris.

Sun Performance Library
A set of optimized, high-speed mathematical subroutines for solving linear algebra and other
numerically-intensive problems.

sysdef
A command that outputs the current system definition in tabular form.

Thread Analyzer
A tool that helps identify common issues in multithreaded code by analyzing program execution across
multiple threads. Thread Analyzer is particularly helpful in detecting data race and deadlock conditions.

Trusted Extensions
An optional layer of secure label technology in Oracle Solaris that allows data security policies to be
separated from data ownership. Multilevel data access policies support compliance goals.

UFS
UNIX File System, the default file system in Oracle Solaris 10.

ulimit
A command to set or get limitations on the system resources available to the current shell and its
descendents.

umask
The file mode creation mask. Oracle Solaris sets a default umask of 022 in the /etc/profile file.

Uncover
A code coverage tool that facilitates the identification of major functional areas within binaries that are not
being tested.

Unicode
An industry standard that specifies a consistent way of encoding multilingual plain text.

119

HP-UX to Oracle Solaris Porting Guide

UTF-8
A variable-length encoding form of Unicode that preserves ASCII character code values transparently. It is
used for file codes in Oracle Solaris Unicode locales.

UTF-16
A 16-bit encoding form of Unicode.

UTF-32
A fixed-length, 21-bit encoding form of Unicode usually represented in a 32-bit container or data type. It is
used for process codes (wide-character code) in Oracle Solaris Unicode locales.

ZFS
See Oracle Solaris ZFS.

120

HP-UX to Oracle Solaris Porting Guide
October 2011, Version 2.0

Oracle Corporation
World Headquarters
500 Oracle Parkway
Redwood Shores, CA 94065
U.S.A.

Worldwide Inquiries:
Phone: +1.650.506.7000
Fax: +1.650.506.7200

oracle.com

Copyright © 2011, Oracle and/or its affiliates. All rights reserved. This document is provided for information purposes only and the
contents hereof are subject to change without notice. This document is not warranted to be error-free, nor subject to any other
warranties or conditions, whether expressed orally or implied in law, including implied warranties and conditions of merchantability or
fitness for a particular purpose. We specifically disclaim any liability with respect to this document and no contractual obligations are
formed either directly or indirectly by this document. This document may not be reproduced or transmitted in any form or by any
means, electronic or mechanical, for any purpose, without our prior written permission.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices.
Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license
and are trademarks or registered trademarks of SPARC International, Inc. UNIX is a registered trademark licensed through X/Open
Company, Ltd. 1010

http:oracle.com

	Structure Bookmarks
	Chapter 1 Introduction
	Oracle Solaris
	The Advantages of Porting to Oracle Solaris
	Infrastructure and Application Porting Assessment
	Build Environment Deployment
	Data Integration
	Source Code Porting
	Application Verification
	Commercial Applications and Third-Party Products
	Processor Endianness
	Data Alignment
	Read/Write Structures
	Storage Order and Alignment
	64-Bit Data Models
	Best Practices for Converting C and C++ Applications to the LP64 Data Model
	Environment Variables
	Permissions
	Process Resource and Runtime Limits
	Application Programming Interfaces
	System Libraries
	Shells and Utilities
	Scripts
	Device Naming Conventions
	Device Paths
	Device Driver Interface/Driver Kernel Interface
	Greater Storage Device Support
	Best Practices for Porting Device Drivers
	Use Defensive Programming
	Oracle Solaris Studio Components
	Java Programming Tools
	Other Programming Tools
	Developing Applications
	Building Applications
	Lazy Loading of Dynamic Dependencies
	Direct Binding
	Runtime Linking Functions
	Mapfiles
	Comparison of Makefile Attributes
	OPTION ARGUMENTS. DESCRIPTION
	Debugging Applications
	Optimizing Applications
	Identifying the Target Platform
	Generating 32-bit or 64-bit Code
	Specifying an Appropriate Target Processor
	Target Architectures for the SPARC Processor Family
	Target Architectures for the x86 Processor Family
	Choosing Compiler Optimization Options
	Compiling for Debugging (-g)
	Basic Optimization (-O)
	Aggressive Optimization (-fast)
	Performance Analyzer
	Automatic Parallelization
	OpenMP
	POSIX Pthreads
	Thread Analyzer
	Threading Models
	Differences Between Oracle Solaris and HP-UX Threading Models
	Support for Chip-Multithreading Technology
	Using the Image Packaging System in Oracle Solaris 11
	Building a Package
	Converting System V Packages to the Image Packaging System
	Using System V Packages in Oracle Solaris 10
	Building a Package Manually
	Building a Package Using Oracle Solaris Studio
	Oracle Solaris Service Management Facility
	Continued Support for .rc Scripts
	File Systems
	Integrated Volume Management and Storage Pools
	New Features in Oracle Solaris 11
	Hybrid Storage Pools
	Data Integrity
	Snapshots and Cloning
	Data Transformation
	Server Virtualization
	Using Oracle Solaris Zones in the Development Environment
	Best Practices for Working with Oracle Solaris Zones
	Network Virtualization
	HP-UX and Oracle Solaris Virtualization Comparision Summary
	HOST OPERATING SYSTEMS
	GUEST OPERATING SYSTEMS
	Oracle Real Applications Cluster
	Oracle Solaris Cluster
	Network Availability
	Data Integrity
	Differences Between HP Serviceguard and Oracle Solaris Cluster
	Security Interfaces for Developers
	Best Practices for Developing Privileged Applications
	Steps for Developing Applications with Authorizations
	CALLBACKS AVAILABLE ONLY TO CLIENT APPLICATIONS
	CALLBACKS AVAILABLE ONLY TO SERVER APPLICATIONS
	Keys to Working with the Oracle Solaris Cryptographic Framework
	Overview
	Encoding Methods
	Input Methods
	(USED FOR ZH, ZH_CN, ZH_CN.EUC, ZH.GBK, ZH_CN.GBK, ZH_CN.GB818030, ZH.UTF-8, AND ZH_CN.UTF-8 LOCALES. NOTE THAT THE ZH, ZH.GBK, AND ZH.UTF-8 LOCALES ARE NOT SUPPORTED IN ORACLE SOLARIS 11.)
	SIMPLIFIED CHINESE INPUT METHODS (USED FOR ZH, ZH_CN, ZH_CN.EUC LOCALES ONLY. NOTE THAT THE ZH LOCALE IS NOT SUPPORTED IN ORACLE SOLARIS 11.)
	SIMPLIFIED CHINESE INPUT METHODS (USED FOR ZH.GBK AND ZH_CN.GBK LOCALES ONLY. NOTE THAT THE ZH.GBK LOCALE IS NOT SUPPORTED IN ORACLE SOLARIS 11.)
	SIMPLIFIED CHINESE INPUT METHODS (USED FOR ZH_CN.GB818030, ZH.UTF-8, AND ZH-CN.UTF-8 LOCALES ONLY. NOTE THAT THE ZH.UTF-8 LOCALE IS NOT SUPPORTED IN ORACLE SOLARIS 11.)
	TRADITIONAL CHINESE INPUT METHODS
	Codeset Converters
	Locales
	Message Catalogs
	X and Motif Applications
	Appendix A C Library Mapping
	Appendix B API Differences
	Appendix C Summary of Supported Locales
	COUNTRY HP-UX 11i v3 ORACLE SOLARIS 10 ORACLE SOLARIS 11
	COUNTRY HP-UX 11i v3 ORACLE SOLARIS 10 ORACLE SOLARIS 11
	COUNTRY HP-UX 11i v3 ORACLE SOLARIS 10 ORACLE SOLARIS 11
	TABLE C-1. SUPPORTED LOCALES LISTED BY COUNTRY
	Appendix D Privileges Interfaces
	Appendix E Cryptographic Functions
	Appendix F Command Comparison Summary
	Appendix G Resources
	ORACLE SOLARIS SERVICE MANAGEMENT FACILITY
	Appendix H Glossary
	ACAP
	Access Control List (ACL)
	Agent Builder
	appcert
	Authentication
	Authorization
	Big Endian
	Bourne shell
	Chip-Multithreading Technology
	dbx, dbxtool
	DDI/DKI
	Discover
	DLight
	dmake
	DTrace
	ETL utilities
	GSS-API
	Hard limit
	Hybrid Storage Pool
	IIIMF
	Java Platform, Enterprise Edition (Java EE)
	Java Platform, Standard Edition (Java SE)
	JavaFX
	Korn shell
	Lazy loading
	LDAP
	Little Endian
	Locale
	Localization
	maxfiles
	maxfiles_lim
	maxuprc
	Oracle JDeveloper
	Oracle Solaris Cluster
	Oracle Solaris Cryptographic Framework
	Oracle Solaris DTrace
	Oracle Solaris Key Management Framework
	Oracle Solaris Service Management Facility
	Oracle Solaris Studio
	Oracle Solaris ZFS
	Oracle VM
	Package
	PAM.
	Pluggable authentication modules
	POSIX
	POSIX Threads
	Runtime checking
	Runtime linker
	SASL
	SMTP
	Soft limit
	Sun Performance Library
	sysdef
	Thread Analyzer
	Trusted Extensions
	ulimit
	Uncover
	UTF-8
	UTF-16
	UTF-32

