X Sun

microsystems

THE NETWORK IS THE COMPUTER™

UltraSPARC T2™ Supplement
to the UltraSPARC Architecture 2007

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A. 650-960-1300

Part No: 950-5556-02
Revision: Draft D1.4.3, 19 Sep 2007

Draft D1.4.3, 19 Sep 2007

Privilege Levels: ~ Hyperprivileged,
Privileged,
and Nonprivileged

Distribution: Public

2 UltraSPARC T2 Supplement « Draft D1.4.3, 19 Sep 2007

Copyright 2002-2006 Sun Microsystems, Inc., 4150 Network Circle ® Santa Clara, CA 950540 USA. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation.
No part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors,
if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX s a registered trademark in
the U.S. and other countries, exclusively licensed through X/Open Company, Ltd. For Netscape Communicator™, the following notice applies:
Copyright 1995 Netscape Communications Corporation. All rights reserved.

Sun, Sun Microsystems, the Sun logo, Solaris, and VIS are trademarks, registered trademarks, or service marks of Sun Microsystems, Inc. in the
U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International,
Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges
the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun
holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN
LOOK GUIs and otherwise comply with Sun’s written license agreements.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-14(g)(2)(6/87) and
FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-3(a).

DOCUMENTATION IS PROVIDED “ASIS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-
INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2002-2006 Sun Microsystems, Inc., 4150 Network Circle ® Santa Clara, CA 950540 Etats-Unis. Tous droits réservés.

Des parties de ce document est protégé par un copyright(] 1994 SPARC International, Inc.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent 1'utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut étre reproduite sous aucune forme, par quelque moyen que ce soit, sans
I'autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie
relative aux polices de caracteéres, est protégé par un copyright et licencié par des fournisseurs de Sun.

Sun, Sun Microsystems, le logo de Sun, Solaris, et VIS sont des marques de fabrique ou des marques déposées, ou marques de service, de Sun
Microsystems, Inc. aux Etats-Unis et dans d"autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique
ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques SPARC sont
basés sur une architecture développée par Sun Microsystems, Inc.

L'interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun
reconnait les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces dutilisation visuelle ou graphique
pour l'industrie de l'informatique. Sun détient une licence non exclusive de Xerox sur l'interface d"utilisation graphique Xerox, cette licence
couvrant également les licenciés de Sun qui mettent en place I'interface d'utilisation graphique OPEN LOOK et qui en outre se conforment aux
licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE "EN L'ETAT" ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N'EST ACCORDEE, Y COMPRIS
DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION
PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE
S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

Sun makes no representation that the UltraSPARC T2 design model or its implementation does not infringe any third party patents or
other intellectual property rights.

4 UltraSPARC T2 Supplement « Draft D1.4.3, 19 Sep 2007

Contents

UltraSPARC T2 BasicS. ¢ o oot et iitiit ittt it ittt intnencnnenneneensnns 1
1.1 Background............. ... 1
1.2 UltraSPARC T2 OVEIVIEW .« ¢ ettt ettt e e et e e e e e i e e 3
1.3 UltraSPARC T2 COMPONENtS vvviiiiiieiee e 5
1.3.1 SPARC Physical Coreo, 5
1.3.2 L2Cache . ..o 5
1.3.3 Memory Controller Unit MCU) 5
1.34 Noncacheable Unit (NCU)t 6
135 System Interface Unit (SIU), 6
1.3.6 Data Management Unit (DMU) 6
1.3.7 PCI-Express Unit (PEU), 7
1.3.8 Network Interface Unit (NIU), 7
1.39 SSIROM Interface (SSI) ov it 7
DataFormats. ..ot i i i i it it 9
Registers . ..ot i i i i it et et et e 11
3.1 Ancillary State Registers (ASRs)......... ... i 11
3.11 Tick Register (TICK) it 12
3.1.2 Program Counter (PC) 13
3.1.3 Floating-Point State Register (FSR) 13
3.1.4 General Status Register (GSR)............................. 13
3.1.5 Software Interrupt Register (SOFTINT) 14
3.1.6 Tick Compare Register (TICK_CMPR) 14
3.1.7 System Tick Register (STICK) 15
3.1.8 System Tick Compare Register (STICK_CMPR) 15
3.2 Privileged PR State Registers 16
3.21 Trap State Register (TSTATE)............... 16
3.2.2 Processor State Register (PSTATE) 17
3.2.3 Trap Level Register (TL)oo ... 18
3.24 Current Window Pointer (CWP) Register 19
3.2.5 Global Level Register (GL) 19
3.3 Hyperprivileged Registers 20

3.3.1 Hypervisor Processor State Register (HPSTATE) 20

332 Hypervisor Trap State Register (HTSTATE).................. 20

3.3.3 Hypervisor Interrupt Pending Register (HINTP). 21

3.3.4 Hypervisor Trap Base Address Register (HTBA).............. 21

3.3.5 Hyperprivileged Version Register (HVER)................... 21

3.3.6 Hyperprivileged System Tick Compare Register (HSTICK_CMPR).

21

3.3.7 Halt ... 21

4 InstructionFormat........ ... it i 25
5 Instruction Definitions i i i e 27
5.1 InstructionSet Summary........... i 27

5.2 UltraSPARC T2-Specific Instructions 33

5.3 Block Load and Store Instructions oL 33
531 Load Twin Extended Word. 38

L . | -1 P 39
6.1 TrapLevels 39

6.2 TrapBehavior 39

6.3 TrapMasking. 43

7 InterruptHandling i e 49
71 InterruptFlow. 50
7.1.1 Sources ... 50

7.1.2 Dispatching.o i i i 50

7.1.3 States 51

7.1.4 Prioritizing 52

7.1.5 Initialization........... 52

7.1.6 Servicing 52

72 NCUInterrupt Registers, 53
721 SSI/NIU Interrupt Management Registers. 54

7.2.2 Mondo Interrupt Vector Register........................... 54

7.2.3 MondoDataTables i, 55

724 Mondo Interrupt Busy Table 56

7.3 CPUInterrupt Registers., 57
7.3.1 Interrupt Queue Registers 57

7.3.2 Interrupt Receive Register 59

7.3.3 Interrupt Vector Dispatch Register 60

7.3.4 Incoming Vector Register 60

8 MemoryModels.....ooouniiiniiiiiiii i i i i i e e 63
8.1 Supported Memory Modelsl 64
8.1.1 TSO .o 64

8.1.2 RMO .o 65

9 AddressSpacesand ASIs........ ..ottt i e 67

2 UltraSPARC T2 Supplement « Draft D1.4.3, 19 Sep 2007

10

11

9.1 Physical AddressSpaces i 67

9.1.1 Access to Nonexistent Physical Memory Addresses........... 67
9.1.2 Access to Nonexistent I/O Addresses 67
9.1.3 Instruction Fetching fromI/O.............. 67
9.14 Supported vs. Unsupported Access SizestoI/O 68
9.1.5 48-bit Virtual and Real Address Spaces 68
9.1.6 I/O AddressSpaces. 70
9.2 Alternate Address Spacesoiiiiiiiiiiiii 71

9.2.1 ASl _REAL, AS| REAL_LI TTLE, ASI _REAL_I O and
ASI _REAL_1 O LI TTLES2

9.2.2 ASI _SCRATCHPAD. . . .o e e e 82
9.2.3 ASI _HYP_SCRATCHPAD.t 83
Performance Instrumentationcitiiiiiiniiiiineneeeennenennns 85
10.1 SPARC Performance Control Register.................. 85
10.2 SPARC Performance Instrumentation Counter 90
10.3 DRAM Performance COUNLETottt et e 91
10.4 PCI-EX Performance COUNterso.uuvtvrntntnin e, 92
10.5 Ethernet Performance Countersuuviiinininenenenenen... 92
Implementation Dependencies.............oooiiiiiiiiiiiiiiii i, 93
11.1 SPARC V9 General Informationttt .. 93
11.1.1 Level-2 Compliance (Impdep #1). 93
11.1.2 Unimplemented Opcodes, ASIs, and ILLTRAP............... 93
11.1.3 Trap Levels (Impdep #37, 38, 39,40, 114, 115) 93
11.1.4 Trap Handling (Impdep #16, 32, 33,35,36,44) 94
11.1.5 SIR Support (Impdep #116), 94
11.1.6 Secure SOftwarettt e 95
11.1.7 Operation in Nonprivileged Mode with TL>0............... 95
11.1.8 Address Masking (Impdep #125). 95
11.2 SPARC V9 Integer Operations 95
11.2.1 Integer Register File and Window Control Registers (Impdep #2) 95
11.2.2 Clean Window Handling (Impdep #102) 95
11.2.3 Integer Multiply and Divide 96
11.24 MULSCC. . vttt e e e e e e e 96
11.2.5 Version Register (Impdep #2,13,101,104) 96
11.3 SPARC V9 Floating-Point Operations 96
11.3.1 Subnormal Operands and Results; Nonstandard Operation. ... 96
11.3.2 Overflow, Underflow, and Inexact Traps (Impdep #3,55) 97
11.3.3 Quad-Precision Floating-Point Operations (Impdep #3) 97

11.3.4 Floating-Point Upper and Lower Dirty Bits in FPRS Register .. 98
11.3.5 Floating-Point Status Register (FSR) (Impdep #13, 19, 22, 23, 24) 98

11.4 SPARC V9 Memory-Related Operations 98
11.4.1 Load/Store Alternate Address Space (Impdep #5,29,30) 98
11.4.2 Read/Write ASR (Impdep #6,7,8,9,47,48) 99
11.4.3 MMU Implementation (Impdep #41) 99

11.4.4 FLUSH and Self-Modifying Code (Impdep #122) 99

11.4.5 PREFETCH{A} (Impdep #103, 117)t 99
11.4.6 LDD/STD Handling (Impdep #107,108) 100
11.4.7 FP mem_address_not_aligned (Impdep #109, 110, 111, 112) ... 100
11.4.8 Supported Memory Models (Impdep #113,121) 101
11.4.9 I/0 Operations (Impdep #118,123). 101
11.410 Implicit ASI When TL > 0 (Impdep #124)................... 101
11.5 Non-SPARC V9 EXtensionsc.ouuniniinnie i 101
11.5.1 Cache Subsystemo i i 101
11.5.2 Memory Management Unit 101
11.5.3 Error Handling................ 101
11.5.4 Block Memory Operations 102
11.5.5 Partial Stores.o 102
11.5.6 Short Floating-Point Loads and Stores 102
11.5.7 Load Twin Extended Word. 102
11.5.8 Interrupt Vector Handling 102
11.5.9 Power-Down Support........... ... oL 102
11.5.10 UltraSPARC T2 Instruction Set Extensions (Impdep #106) 102
11.5.11 Performance Instrumentation 103
11.5.12 Debug and Diagnostics Support 103
12 Memory Management Unit i 105
12.1 Translation Table Entry (TTE)......... i 105
12.2 Translation Storage Buffer (TSB).............. 107
12.3 Hardware Support for Hypervisor............. 109
12.3.1 Hardware Support for TSB Access 110
12.3.1.1 Hardware Tablewalk 110
12.3.1.2 Software TLBReload 114

12.3.2 Real-to-Physical Address Mapping and Speculative Instruction Fetch

115

12.4 MMU-Related Faultsand Traps 116
12.4.1 fast_instruction_access_MMU_miss Trap 117
12.4.2 instruction_access_MMU_miss Trap. 117
12.4.3 instruction_real_translation_miss Trap 118
1244 instruction_invalid_TSB_entry Trap. 118
12.4.5 IAE_privilege_violation Trap. 118
12.4.6 IAE_unauth_accessTrap ... 118
12.4.7 IAE_nfo_page Trapt 119
12.4.8 instruction_address_range Trap 119
12.4.9 instruction_real_range Trap, 119
12.410 fast_data_access MMU_miss Trap........................ 119
12.4.11 data_access_MMU_miss Trap......................ooun.. 119
12.4.12 data_invalid_TSB_entry Trap............................. 120
12.4.13 data_real_translation_miss Trap 120
12.4.14 DAE_privilege violationTrap, 120
12.4.15 DAE_side_effect_pageTrap.............................. 120

4 UltraSPARC T2 Supplement « Draft D1.4.3, 19 Sep 2007

12416 DAE_nc_ pageTrap............couuniiiniiiiiiaa... 120
12.417 DAE_invalid_asiTrapccooiiiiiiiiiin.. 121
12.418 DAE_nfo_pageTrapcoouiiiiiiiiiii., 121
12.419 mem_address_range Trap 121
12.420 mem_real_range Trap....... ..., 121
12.421 fast_data_access_protection Trap......................... 121
12.422 privileged_action Trap.............. ..o 122
12.4.23 instruction_VA_watchpoint Trap........................... 122
12.424 VA_watchpointTrap........... 122
12.425 PA_watchpointTrap........... ... i 122
12.426 *_mem_address_not_aligned Traps 122
12.4.27 Unsupported_page_size Trap 123

12.5 MMU Operation SUMmMaryoooiiiiiiiii .. 123
12.6 ASI Value, Context, and Endianness Selection for Translation............ 126
12.7 Translation. e 128
12.7.1 Instruction Translation 128
12.7.1.1 Instruction Prefetching.......................... 128

12.7.2 Data Translation. o i 129

12.8 MMU Behavior During Reset and Upon Entering RED state........... 134
12.9 Compliance With the SPARC V9 Annex F........ 135
12.10 MMU Internal Registers and ASI Operations.......................... 135
12.10.1 Accessing MMU Registers 135
12.10.2 ContextRegisters.................... 137
12.10.3 I-/D-TSB Tag Target Registers............................ 138
12.10.4 I-/D-MMU Synchronous Fault Address Registers (SFAR). 139
12.10.4.1 I-MMU Fault Address, 139

12.10.4.2 D-MMU Fault Addresst 139

12.10.5 I-/D-TLB Tag Access Registers 140
12.10.6 Partition Identifier........... i 142
12.10.7 Hardware Tablewalk Configuration Register 142
12.10.8 ITLBProbeo 142
12.10.9 MMU Real Range Registers 144
12.10.10 MMU Physical Offset Registers........................... 144
12.10.11 MMU TSB Config Registers 145
12.10.12 MMU I-/D-TSB Pointer Registers......................... 146
12.10.13 MMU Tablewalk Pending Control Register................. 146
12.10.14 MMU Tablewalk Pending Status Register 147
12.10.15 I-/D-TLB Data-In/Data-Access/Tag-Read Registers 147

1211 I/D-MMUDEMAP ... oooti it 152
12111 I/D-MMUDemapoviiiiiiiiiii i 152
12112 I-/D-Demap Page (type =0)., 154
1211.3 I-/D-Demap Context (type =1) o, 154
12114 I-/D-Demap ALl (type =2)t 154
1211.5 I-/D-Demap All Pages (type =3)............. ..., 154

12,12 TEB Hardware. . . .« oo vttt e e e e e e e e e 155
12121 TLBOperations oo 155

13

14

12.12.2 TLB Replacement Policy 155

Clocks, Reset, RED state,and Initialization 157
13.1 Clock Unit .« .ottt e e 157
13.1.1 Other Clock Unit Registers. 161
13.2 Reset Unitt e e e e e 163
13.2.1 Reset Generation, 163
13.2.2 ResetSourceo 163
13.2.3 Reset Fatal Error Enable 164
13.2.4 Subsystem Reset. 165
13.2.5 ResetStatus....... ... 165
13.2.6 Lock Time . . oot e e 166
13.2.7 PropagationTime., 166
13.2.8 NIUTIME ..ottt e e e e e 167
13.3 ReSet OVeIVIEWottt et e e e e e 167
13.4 ChipwideResets......... ... i 168
13.4.1 Power-on Reset (POR).ot 168
13.4.2 Warm Reset (WMR).ot e 168
13.4.3 Debug Reset (DBR) i 169
13.5 Virtual Processor Resets.c.o i 169
13.5.1 Externally Initiated Reset (XIR) 169
13.5.2 Watchdog Reset (WDR) and error_state 170
13.5.3 Software-Initiated Reset (SIR) oo, 170
13,6 RED Stat eo e e e e e 170
13.7 RED stateTrap Vector............. i 170
13.8 Machine State After Resetand in RED State......................... 171
13.9 BootSequence........... 181
13.9.1 Assumed POR Software Initialization Sequence............. 182
13.9.2 Assumed Warm Reset Software Initialization Sequence 184
13.9.3 Reset Sequence for NIU 185
01 P 187
141 CMT Registers. o i 187
14.1.1 ASI _CORE_AVAI LABLE. i 187
14.1.2 ASI _CORE_ENABLE_STATUS 187
14.1.3 ASI _CORE_ENABLE i 188
14.14 ASI _XIR STEERING ot 189
14.1.5 ASI _CMI_TICK ENABLE. i 189
14.1.6 ASI _CMI_ERROR STEERING............coiiiiiiian. .. 190
14.1.7 ASI _CORE_RUNNING RW.o 190
14.1.8 ASI _CORE_RUNNING STATUS 191
14.19 ASI _CORE_RUNNING WIS. 192
14.1.10 ASI_CORE_RUNNING WAC.ttt 192
142 ASI _CMI_CORERegisters........... i 193
14.2.1 ASI _CMI_CORE_INTR_ID.o 193
14.2.2 ASI _CMI_STRAND ID ... ot 194

6 UltraSPARC T2 Supplement ¢ Draft D1.4.3, 19 Sep 2007

15

16

Noncacheable Unit (NCU) and Boot ROM Interfaces............covvvenn... 195

15.1 Noncacheable Unit (NCU). ..ottt e 195
15.2 NCU Management Registers. 196
15.2.1 Serial Number 196

15.2.2 eFuseStatus L 197

15.2.3 Strand Available......... 197

15.2.4 L2 Configuration Control and Status Registers.............. 197

15.3 NCU PCIE Address Mapping Registers 198
15.3.1 Physical Address Partitioning 198

15.3.2 Offset Base and Offset Mask Register Behavior.............. 199

15.3.3 PCI Express Configuration and I/O Subregion.............. 200
15.3.3.1 Accessing PCI Express Configuration Space. 201

15.3.3.2 Accessing PCI Express I/O Space 201

15.3.4 PCI Express 32-bit Addressing Memory Subregion 202

15.3.5 PCI Express 64-bit Addressing Memory Subregion 202

15.3.6 NCUPCIE Registers, 203

154 NCUASIRegisters.t 204
15.4.1 Strand Available Register (ASI 4114 VA 001¢).o ovvvvnn .. 205

15.4.2 Strand Enable Status Register (ASI 4114 VA 1016) 205

1543 Strand Enable Register (ASI 4114 VA 2014)cooooinnnn s 205

1544 XIR Steering Register (ASI 4114 VA 3014) ... oovvvevnn... 205

1545 CMP Tick Enable Register (ASI 4114 VA 3814) 206

15.4.6 Strand Running RW Register (ASI 4174 VA 5014). 206

15.4.7 Strand Running Status Register (ASI 4114 VA 58¢). 206

15.4.8 Strand Running W1S Register (ASI 4115 VA 601g) 206

15.4.9 Strand Running W1C Register (ASI 4115 VA 6814). 206
15.4.10 SOC Error Steering Register (90 0104 10004¢). 206
15.4.11 Warm Reset Vector Mask Register (ASI 454 VA 1814) 206
15.4.12 Interrupt Vector Dispatch Register (ASI 7314 VA O1¢) 207

15.5 Boot ROM Address Region........................ ... i 207
15.5.1 Boot ROM Interface Registers 207
15.5.1.1 SSIClock Select Register 207
ErrorHandling........oooiiiiiiiiiiiii i ittt 209
16.1 Error Classesttt 209
16.2 NotDataOverview i 210
16.3 CMP Error Overview 211
16.4 Error Trap Vectors......... 212
16.5 ErrorBarrier 213
16.6 Virtual Processor Error Handling Overview........................... 215
16.6.1 Error Status Registers 215

16.6.2 Error Summary 216

16.7 SPARC Error Descriptions. oo, 221
16.7.1 ITLBEITOrS. . oot 221
16.7.1.1 ITLB Tag Multiple Hit Error ITTM)............... 221

16.7.1.2 ITLB Tag Parity Error (ITTP) 222

16.7.1.3 ITLB Data Parity Error (ITDP).................... 223
16.7.1.4 ITLB MMU Register Array Uncorrectable Error (ITMU).
223
16.7.2 DTLBEITOrs .. oot 223
16.7.2.1 DTLB Tag Multiple Hit Error (DTTM) 224
16.7.2.2 DTLB Tag Parity Error (DTTP) 224
16.7.2.3 DTLB Data Parity Error (DIDP).................. 225
16.7.2.4 DTLB MMU Register Array Uncorrectable Error (DTMU)
226
16.7.3 Icache Errors............ .o i 226
16.7.3.1 Icache Valid Parity Error ICVP).................. 226
16.7.3.2 Icache Tag Parity Error (ICTP) 227
16.7.3.3 Icache Tag Multiple Hit Error (ICTM) 227
16.7.3.4 Icache Data Parity Error (ICDP) 228
16.7.4 Dcache Errors. 228
16.7.4.1 Dcache Valid Parity Error (DCVP) 228
16.7.4.2 Dcache Tag Parity Error (DCTP).................. 229
16.7.4.3 Dcache Tag Multiple Hit Error (DCTM)............ 229
16.7.4.4 Dcache Data Parity Error (DCDP) 230
16.7.5 IRF ECC Error IRFC and IRFU) 230
16.7.6 FRF ECC Error (FRECand FRFU) 231
16.7.7 StoreBuffer............ 233
16.7.7.1 Correctable Data ECC Error on a Load (SBDLC)233
16.7.7.2 Uncorrectable Data ECC Error on a Load (SBDLU) . .234
16.7.7.3 STB Address Parity Erroronaload 234
16.7.7.4 Correctable Data ECC Error on a PCX Read to Memory or
I/0 or Read for an ASI Ring Store (SBDPC)234
16.7.7.5 Uncorrectable Data ECC Error on a PCX Read to Memory
(SBDPU)235
16.7.7.6 Uncorrectable Data ECC Error on a PCX Read to I/O or
Read for an ASI Ring Store (SBDIOU)235
16.7.7.7 Address Bit Parity Error on a PCX read or Read for an ASI
Ring Store (SBAPP)235
16.7.8 Scratchpad Array (SCACand SCAU)...................... 236
16.7.9 Tick_compare (TCCP, TCUP, TCCD, TCUD) 236
16.7.10 Trap Stack Array (TSACand TSAU)....................... 238
16.7.11 MMU Register Array MRAU)............................ 239
16.8 SPARC Error Registers............ 239
16.8.1 ASI _CORE_ERROR_RECORDI NG_ENABLE_REG STER....... 240
16.82 ASI _STRAND ERROR_TRAP_ENABLE_REQ STER........... 242
16.8.3 IMMU Synchronous Fault Status Register 243
16.8.4 DMMU Synchronous Fault Status and Address Registers. 245
16.8.4.1 DMMU Synchronous Fault Status Register......... 247
16.8.4.2 DMMU Synchronous Fault Address Register. 247
16.8.5 Disrupting Error Status Register (DESR)................... 250

8 UltraSPARC T2 Supplement « Draft D1.4.3, 19 Sep 2007

16.8.6 Deferred Error Status Register (DFESR) 253
16.8.7 ASI _CLESR . .. 254
16.8.8 ASI _CLFESR 255
16.8.9 ASI _ERROR INJECT REG....... ..ottt 255
16.9 L2 Cache Error Descriptions, 256
16.9.1 L2 Cache Data Correctable ECC Error for Access (LDAC). 258
16.9.1.1 TTE Request for ITLB (ITL2C) 259

16.9.1.2 TTE Request for DTLB (DTL2C).................. 259

16.9.1.3 Instruction Fetch Hit (ICL2C) 260

169.14 Load Hit (DCL2C) ..ot 260

16.9.1.5 Prefetch Hit (L2C). ... 260

16.9.1.6 Partial Store Hit (L2C)t 261

16.9.1.7 Atomic Hit (DCL2C).t 261

16.9.2 L2 Cache Data Correctable ECC Error for Writeback (LDWC) . 262
16921 DMARead..........ciiniiiii i 262

16.9.22 DMA Write Partial 263

16.9.3 L2 Cache Data Correctable ECC Error for Scrub (LDSC) 263
16.9.4 L2 Cache Tag Correctable ECC Error (LTC)................. 264
16.9.5 L2 Cache VUAD Correctable ECC Error (LVC).............. 265
16.9.6 L2 Cache Data Uncorrectable ECC Error for Access (LDAU) .. 266
16.9.6.1 TTE Request for ITLB (ITL2U) 266

16.9.6.2 TTE Request for DTLB (DTL2U).................. 266

16.9.6.3 Instruction Fetch Hit (ICL2U).................... 267

16.9.64 Load Hit (DCL2U) ...t 267

16.9.6.5 Atomic Hit (DCL2U) ..., 267

16.9.6.6 Prefetch Hit (L2U).......... i a.. 268

16.9.6.7 Partial Store Hit (L2U), 268

16.9.7 L2 Cache Data Uncorrectable ECC Error for Writeback (LDWU) 269
16.9.8 L2 Cache Data Uncorrectable ECC Error for DMA (LDRU) ... 269
16981 DMARead.........cvvriiiiiiiiiiaenann. 269

16.9.82 DMA WritePartial 270

16.9.9 L2 Cache Data Uncorrectable ECC Error for Scrub (LDSU). ... 271
16.9.10 L2 Cache Tag Uncorrectable ECC Error 271
16.9.11 L2 Cache VUAD Uncorrectable ECC Error (LVF) 271
16.9.12 L2 Cache Directory Uncorrectable Parity Error (LRF) 272
16.9.13 L2 Cache Data NotData Error for Processor Access (NDSP) ... 272
16.9.13.1 TTE Request for ITLB ITL2ND).................. 273

16.9.13.2 TTE Request for DTLB (DTL2ND)................ 273

16.9.13.3 Instruction Fetch (ICL2ND)...................... 273

16.9.13.4 Load Hit (DCL2ND).t 274

16.9.13.5 Atomic Hit (DCL2ND).........ccoviiiinnnen... 274

16.9.13.6 Prefetch Hit (L2ND), 274

16.9.13.7 Partial Store Hit (L2ND) 275

16.9.14 L2 Cache Data NotData Error for DMA Access (NDDM) 275
16.9.14.1 DMA Read (L2ND). 275

16.9.14.2 DMA Write Partial (L2ND) 275

16.9.15 L2 Cache Data NotData Error for Writeback 276

16.9.16 L2 Software Error Scrubbing Support...................... 276
16.10 L2 Error Registers. 276
16.10.1 L2 Error Enable Register................................. 276
16.10.2 L2 Error Status Register 277
16.10.3 L2 Error Address Register 283
16.10.4 L2 NotData Error Register 285
16.10.5 L2 Error Injection Register 286
16.11 DRAM Error Descriptions. i 287
16.11.1 DRAM Correctable Error for Access (DAC)................. 290
16.11.1.1 Load Miss / Instruction Fetch Miss / Prefetch Miss .290
16.11.1.2 AtomicMiss / TTEMisscoiiiinean .. 291
16.11.1.3 Partial Store Miss 292
16.11.1.4 Store Miss. . ..o oo vt 292
16.11.1.5 DMA Read (DRC/DAC), 293
16.11.1.6 DMA Write Partial (DRC/DAC).................. 293
16.11.2 DRAM Correctable ECC Error for Scrub (DSC/FBR)......... 294
16.11.2.1 FBD Channel Recoverable Error (FBR)............ 295
16.11.3 DRAM Uncorrectable Error for Access (DAU/DBU/FBU) 295
16.11.3.1 Load Miss/Instruction Fetch Miss 295
16.11.3.2 Atomic Miss/TTEMiss 297
16.11.3.3 PrefetchMiss.........coviiiiiininiiiiie .. 297
16.11.3.4 Store MiSS. . .ot v it 298
16.11.3.5 DMA Read (DRU/DAU) 298
16.11.3.6 DMA Write Partial (DRU/DAU) 299
16.11.3.7 FBD Channel Unrecoverable CRC Error (FBU) 299
16.11.4 DRAM Uncorrectable ECC Error for Scrub (DSU/FBU) 300

16.11.4.1 FBD Channel Unrecoverable Status Frame Parity and

Alert Frame Errors300

16.11.5 DRAM Software Error Scrubbing Support.................. 300
16.12 DRAM Error Registers. i i 301
16.12.1 DRAM Error Status Register 301
16.12.2 DRAM Error Address Register 303
16.12.3 DRAM Error Injection Register 303
16.12.4 DRAM Error Counter Register. 304
16.12.5 ~DRAM Error Location Register 305
16.12.6 DRAM Error Retry Register 305
16.12.7 DRAM FBD Error Syndrome Register. 306
16.12.8 DRAM FBD Injected Error Source Register 306
16.129 DRAMFBR CountRegister 307
16.13 Block Loads and Storesiiuiinie i 308
16.14 CMP Error SUMmMATryottt 310
16.15 Boot ROM Interface (SSI).ooii i 315
16.15.1 SSIParity Error............ i 315
16.15.2 SSITIMEOUL. . . oo ottt e e 316
16.15.3 SSI Error Registers................, 316

10 UltraSPARC T2 Supplement « Draft D1.4.3, 19 Sep 2007

16.16 Error Injection Summary i 317

16.17 SOC Error Descriptions i 317
16.18 PIO Load Errorso oottt e e e e e e e e e 318
16.18.1 Uncorrectable PIO Load Errors Recommended as Fatal 319
16.18.1.1 Uncorrectable NCU FIFO Errors (NcuPcxUE) 320
16.18.1.2 Uncorrectable SII Ctag/Command Parity Errors
(SiiDmuCtagUE)320
16.18.1.3 Uncorrectable NCU Ctag Error (NcuCtagUe). 320
16.18.1.4 NCU Data Parity Error (NcuDataParity)........... 320
16.18.1.5 NCU FIFO Output Error (NcuCpxUe)............. 320
16.18.1.6 NCU Parity Error from NCU DMU PIO Req FIFO
(NcuDmuUe)321
16.18.2 Uncorrectable PIO Load Errors 321
16.18.2.1 NCU Mondo Table Error (NcuMondoTable). 321
16.18.2.2 NCU PCX FIFO Data Parity Error (NcuPCXData) . . . 321
16.18.2.3 Other Uncorrectable NCU Errors................. 321
16.18.3 Correctable PIO Load Errors 322
16.18.3.1 Correctable SII Ctag Error (SiiDmuCtagCE)........ 322
16.18.3.2 Correctable NCU Etag Error..................... 322
16.19 PIO Store Errors o.ovun it e 322
16.19.1 Uncorrectable PIO Store Errors Recommended as Fatal 323
16.19.1.1 Uncorrectable NCU FIFO Errors (NcuPcxUE) 324
16.19.1.2 NCU FIFO Output Error (NcuCpxUe)............. 324
16.19.1.3 NCU Parity Error from NCU DMU PIO Req FIFO
(NcuDmuUe)324
16.19.2 Uncorrectable PIO Store Errors 324
16.19.2.1 NCU Store Data Parity Error (NcuPcxData) 324
16.19.2.2 NCU DMU Credit Parity (NcuDmuCredit). 325
16.20 Interrupt Errors. 325
16.20.1 Uncorrectable Interrupt Errors Recommended as Fatal 326
16.20.1.1 Uncorrectable SII Ctag/Command Parity Errors
(SiiDmuCtagUE)326
16.20.1.2 Uncorrectable NCU Ctag Error (NcuCtagUe). 327
16.20.1.3 DMU Mondo Ack Credit Parity(DmuNcuCredit) . . . 327
16.20.1.4 NCU Data Parity Error (NcuDataParity)........... 327
16.20.1.5 NCU FIFO Output Error (NcuCpxUe)............. 327

16.20.1.6 NCU Mondo FIFO Parity Error (NcuMondoFifo) . ..327
16.20.1.7 NCU Interrupt Table Parity Error (NculntTable)328

16.20.2 Uncorrectable Interrupt Errors 328
16.20.2.1 NCU Mondo Table Parity Error (NcuMondoTable) . . 328

16.20.3 Correctable Interrupt Errors., 328
16.20.3.1 Correctable SII Ctag Error (SiiDmuCtagCE)........ 328

16.20.3.2 Correctable NCU Ctag Error (NCUCtagCE)........ 329

16.21 DMA Readsand Writesottt 329
16.21.1 Uncorrectable DMA Errors Recommended as Fatal 331

16.21.1.1 Uncorrectable SII Ctag ECC Error or Command Parity
Error (SiiDmuCtagUe, SiiNiuCtagUe)331

16.21.1.2 Uncorrectable SIO Ctag ECC Error (SioCtagUe). 331

16.21.1.3 Uncorrectable DMU Ctag ECC Error (DmuCtagUe) .331

16.21.1.4 Uncorrectable NIU Ctag ECC Error (NiuCtagUe) .. .332

16.21.1.5 DMU Credit Parity error (DmuSiiCredit) 332
16.21.1.6 SII Address Parity Error (SiiDmuAParity, SiiNiuAParity)
332
16.21.2 Uncorrectable DMA Errors. 332
16.21.2.1 SII Data Parity Error (SiiDmuDParity, SiiNiuDParity)332
16.21.2.2 DMU Data Parity Error (DmuDataParity).......... 333
16.21.2.3 NIU Data Parity Error (NiuDataParity)............ 333
16.21.3 Correctable DMA Errors. 333
16.21.3.1 Correctable SII Ctag ECC Error (SiiDmuCtagCe,
SiiNiuCtagCe)333

16.21.3.2 Correctable SIO Ctag ECC Error (SioCtagCe). 334
16.21.3.3 Correctable DMU Ctag ECC Error (DmuCtagCe) ...334
16.21.3.4 Correctable NIU Ctag ECC Error (NiuCtagCe). 334
16.22 MCU Correctable/Recoverable Count Errors. 334

16.22.1 MCU ECC Correctable Errors (McuOECC, MculECC, Mcu2ECC,

Mcu3ECC) 335
16.22.2 MCU Recoverable Errors (McuOFbr, MculFbr, Mcu2Fbr, Mcu3Fbr).
336

16.23 SOC Error Registers 336
16.23.1 SOC Error Status Register. 336
16.23.2 SOC Error Log Enable Register 341
16.23.3 SOC Error Interrupt Enable Register. 343
16.23.4 SOC Error Steering Register.............................. 345
16.23.5 SOC Fatal Error Enable Register 346
16.23.6 SOC Pending Error Status Register........................ 348
16.23.7 SOC Error Injection Register 350
16.23.8 SOC SII Error Syndrome Register 353
16.23.9 SOC NCU Error Syndrome Register 353
17 Memory Controllerottt i it i i 355
171 OVeIVIEW . ..o 355
17.2 Memory Terminology. 356
17.3 Fully Buffered DIMM (FBD) Terminology. 356
17.4 DRAM Branch Configuration............ 358
17.5 FBD Channel Configuration, 360
17.5.1 FBD Channel Initialization 360
17.5.2 Interconnect BIST (IBIST)t 362
17.6 AMB Initialization o 362
17.7 Memory Initialization 365
17.7.1 PowerOno i 365
17.7.2 Clocks Stable i 365

12 UltraSPARC T2 Supplement « Draft D1.4.3, 19 Sep 2007

17.7.3 Assert CKE 365

17.7.4 Software Configuration. 365
17.7.5 Pause for200msottt 365
1776 Pause400MNS........ ... 365
17.7.7 precharge_all Command 366
17.7.8 Issue EMRS(2) Write Command 366
17.7.9 Issue EMRS(3) Write Command 366
17.7.10 Issue EMRS(1) write command to enable DLL 366
17711 Reset DLL....... 366
17.712 precharge_all command.............................. 366
17.7.13 Two Auto RefreshCycles, 366
17.7.14 Set Mode Register to Configure the Device 366
17.7.15 200 Cycles After DLL Reset, Set OCD Default Command 367
17.7.16 ~ Perform OCD Calibration. 367
17717 Set OCD ExitCommand...........o, 367
17.7.18 Initialization Complete......... 367
17.8 RAS Feature Overview it 368
17.8.1 ECCand Extended ECC.......... 368
17.8.2 Memory Scrubbing o oo 368
17.8.3 ECCErrorHandling oL, 369
17.8.4 DataPoisoning.............. i 369
17.9 Access to Nonexistent Memory 369
17.10 Power Management i 371
17.11 DRAM Control and Status Registers 371
17.11.1 DRAM CAS Address Width Register 371
17.11.2 DRAM RAS Address Width Register 372
17.11.3 DRAM CAS Latency Register 372
17.11.4 DRAM Scrub Frequency Register 372
17.11.5 DRAM Refresh Frequency Register........................ 373
17.11.6 DRAM Refresh Counter Register. 373
17.11.7 DRAM Scrub Enable Register 374
17.11.8 DRAM RAS to RAS Different Bank Delay Register........... 374
17.11.9 DRAM RAS to RAS Same Bank Delay Register.............. 374
17.11.10 DRAM RAS to CAS Delay Register. 374
17.11.11 DRAM Write to Read CAS Delay Register.................. 375
17.11.12 DRAM Read to Write CAS Delay Register.................. 375
17.11.13 DRAM Internal Read to Precharge Delay Register 375
17.11.14 DRAM Active to Precharge Delay Register 376
17.11.15 DRAM Precharge Command Period Register 376
17.11.16 DRAM Write Recovery Period Register 376
17.11.17 DRAM Autorefresh to Active Period Register............... 377
17.11.18 DRAM Mode Register Set Command Period Register 377
17.11.19 DRAM Four-Activate Window Register.................... 377
17.11.20 DRAM Internal Write to Read Command Delay Register 378
17.11.21 DRAM Precharge Wait Register During Power Up........... 378
17.11.22 DRAM DIMM Stacked Register. 379

17.11.23 DRAM Extended Mode (2) Register 379

17.11.24 DRAM Extended Mode (1) Register 379
17.11.25 DRAM Extended Mode (3) Register 379
17.11.26 DRAM 8 Bank Mode Register 380
17.11.27 DRAM Branch Disabled Register 380
17.11.28 DRAM Select Low Order Address Bits Register 380
17.11.29 DRAM Single Channel Mode Register 381
17.11.30 DRAM DIMM Initialization Register 381
17.11.31 DRAM Mode Reg Write Status Register.................... 381
17.11.32 DRAM Initialization Status Register....................... 382
17.11.33 DRAM DIMMSs Present Register 382
17.11.34 DRAM Failover Status Register........................... 382
17.11.35 DRAM Failover Mask Register 383
17.11.36 Power Down Mode Register 383
17.11.37 FBD Channel State Register 383
17.11.38 FBD Fast Reset Flag Register 384
17.11.39 FBD Channel Reset Register.............................. 384
17.11.40 TS1 Southbound to Northbound Mapping Register.......... 385
17.11.41 TS1 Test Parameter Register.............................. 385
17.11.42 TS3 Failover Configuration Register....................... 385
17.11.43 Electrical Idle Detected Register 386
17.11.44 Disable State Period Register 386
17.11.45 Disable State Period Done Register........................ 386
17.11.46 Calibrate State Period Register............................ 387
17.11.47 Calibrate State Period Done Register 387
17.11.48 Training State Minimum Time Register 387
17.11.49 Training State Done Register 388
17.11.50 Training State Timeout Register. 388
17.11.51 Testing State Done Register 388
17.11.52 Testing State Timeout Register............................ 389
17.11.53 Polling State Done Register 389
17.11.54 Polling State Timeout Register............................ 389
17.11.55 Config State Done Register. 390
17.11.56 Config State Timeout Register 390
17.11.57 DRAM Per-Rank CKE Register 390
17.11.58 LOs Duration Register 391
17.11.59 Channel Sync Frame Frequency Register................... 392
17.11.60 Channel Read Latency Register........................... 392
17.11.61 Channel Capability Register. 392
17.11.62 Loopback Mode Control Register 392
17.11.63 SerDes Configuration Bus Register 393
17.11.64 SerDes Transmitter and Receiver Differential Pair Inversion Register
393
17.11.65 SerDes Test Configuration Bus Register 394
17.11.66 SerDes PLL Status Register............................... 395
17.11.67 SerDes Test Status Register. 395
17.11.68 Configuration Register Access Address Register 395

14 UltraSPARC T2 Supplement « Draft D1.4.3, 19 Sep 2007

18

19

17.11.69 Configuration Register Access Data Register................ 396

17.11.70 AMB IBIST SBFIBPORTCTL and SBFIBPGCTL Register 396
17.11.71 AMB IBIST SBFIBPATTBUF1 and SBFIBTXMSK Register 397
17.11.72 AMB IBIST SBFIBTXSHFT Register 398
17.11.73 AMB IBIST SBFIBPATTBUF2 and SBFIBPATT2EN Register ... 398
17.11.74 AMB IBIST SBFIBINIT and SBIBISTMISC Register. 399
17.11.75 AMB IBIST NBFIBPORTCTL and NBFIBPGCTL Register. 399
17.11.76 AMB IBIST NBFIBPATTBUF1 Register..................... 400
17.11.77 AMB IBIST NBFIBRXMSK Register 401

17.11.78 AMB IBIST NBFIBRXSHFT and NBFIBRXLNERR Register ... 401
17.11.79 AMB IBIST NBFIBPATTBUF2 and NBFIBPATT2EN Register .. 402

17.11.80 Other DRAM Registers.............. 402
Power Management. i ittt it it 403
18.1 SPARC Power Management i, 403
18.2 CPU Throttle Control. oo 404
18.3 Memory Access Throttle Control 405

18.3.1 DRAM Open Bank Max Register. 405

18.3.2 DRAM Programmable Time Counter Register 405
18.4 DRAM Refresh Asynchronicity, 406
Configuration and Diagnostics Supportl 407
19.1 ASI_LSU CONTROL_REGo 407
19.2 Watchpoint Support...... 409

19.2.1 ASI _DMMU WATCHPOI NT. ..., 409

19.22 ASI _IMMJ_VA WATCHPOI NTo 410
19.3 Breakpoint Support 411

1931 ASI _INST_MASK REG.......o 411

19.3.2 Trap on Control Transfer. 412
19.4 Instruction and Data Cache Control.................................. 412

1941 ASI _LSUDIAGREG.........iiiiiiiiii 412
19.5 L1I-Cache Diagnostic ACCeSS 413

1951 ASI _ICACHE INSTR ... 413

1952 ASI_ICACHE TAG.o 415
19.6 L1 D-Cache Diagnostic Accessoouiiiii i, 416

19.6.1 ASI _DCACHE DATA i 416

19.6.2 ASI _DCACHE TAG. 417
19.7 Integer Register File......... 419

1971 ASI_IRF_ECCREG......... i 419
19.8 Floating-Point Register File......... 420

1981 ASI_FRF_ECC REG.......... i, 420
19.9 Store Buffer —ASI _STB_ACCESS.coiiiiiiiiiii .. 421
19.10 Scratchpad Registers i 423
19.11 Tick Comparettt 423
19.12 Trap Stack Array (TSA) 424

19.13 MMU Register Array (MRA). i 428

19.14 L2 Cache Registers i 432
19.141 L2 ControlRegister L 432
19.142 L2Bank Available i 433
19.143 L2BankEnable....................... ... i 433
19.14.4 L2 Bank EnableStatus............... 435
19.145 L2IndexHashEnable............... 436
19.14.6 L2 Index Hash Enable Status 437
19.14.7 Other L2 Registers...................o i i, 437

1915 L2 Cache Flushing 437

19.16 L2 Cache Diagnostic ACCESSttt 439
19.16.1 L2 Data Diagnostic Access 439
19.16.2 L2 Tag Diagnostic Accessoouiiuiiinininn.. 441
19.16.3 L2 VUAD Diagnostic Accessooiiiiiino.. 442

19.17 Built-In Self-Test (BIST)t 444
19.171 L2BISTControl ... 444

20 Hardware Debug Supportottt i i 445

20.1 SPARC Core Debug Features., 445
20.1.1 Shadow Scan. 445
20.1.2 SPARC Debug Event Control Register 447
20.1.3 Disable Overlap and Single-Stepping Modes 448
2014 ASI _RST_VEC MASK, 448

20.2 SOC Debug Features i 449
20.2.1 SOC Debug Event Control Register. 449
20.2.2 L2 Cache Debug Features................................ 451

20.2.2.1 L2 Address Mask and Compare Registers.......... 451
20222 L2Shadow ScanooooiLL. 452
20.2.3 Debug Event Trigger Enables. 452
20.2.3.1 PCI-Express Debug Event Trigger Enable Register . .452
20.2.3.2 DRAM Debug Event Trigger Enable Register. 452
20.2.3.3 NCU Debug Event Trigger Enable Register 453
20.2.3.4 L2 Debug Event Trigger Enable Register........... 453

20.3 TCU Debug SUppOrt.oovit i 454
20.3.1 Action in Response to a Soft-Stop Event.................... 454
20.3.2 Action in Response to a Hard-Stop Event 455
20.3.3 Action in Response to an External Hard Stop 455
20.3.4 TCU Debug Event Counter Register....................... 455
20.3.5 TCU Cycle Counter Register 456
20.3.6 TCU Debug Control Register............................. 456
20.3.7 SW/JTAG Trigger Output Register 458

20.4 Debug PortSupport............... . 458
20.4.1 SOC Observability Mode., 459
20.4.2 Tester Characterization / SPC Debug Mode 460
20.4.3 Repeatability Mode oo il 461
20.4.4 Core and SOC Debugmode. 461

16 UltraSPARC T2 Supplement « Draft D1.4.3, 19 Sep 2007

21

20.4.5 NIU DebugMode i 462

2046 PCILLEXDebugModeooooiiiiiiiiiiiiiiin, 463
204.61 DebugBusA......... il 464

204.62 DebugBusB L 464

20.4.7 Debug Port Configuration Register........................ 464

20.4.8 Debug Port Training Sequence. 465

20.4.9 IO Quiesce Control Register. 465

20.5 Repeatability Support 466
20.5.1 Debug Reset........ i 467

20.5.2 Keeping FBDIMM Links Up During Debug Reset 468

20.5.3 I/0 Quiescing in UltraSPARC T2 During Checkpoint........ 470

20.6 Clock/PLL Observability 471
PCI Express Interface Unit (PIU). ...ttt 473
211 OVEIVIEW . oottt 473
21.1.1 Supported Features..................... 473

21.1.2 Features Not Supported 474

21.1.3 PIU Specification Relative to Fire ASIC 475

2114 AddressMap 476

21.1.5 PIUCSRSUMMATIY .. .vttiiiiiieie e 477

21.1.6 References.......... i 483

21.2 PIU Programmer’s Reference iiiiiiii.... 484
21.2.1 Organization. Lo 484

2122 PIUOVeIVIEW.ot 484

21.3 Operational OVerviewcooiiiiiiiiiiiiiiiiiiiiiiaan., 485
21.3.1 PIUOVervVIiew.t i 485

21.3.2 NCU to PIU (Downbound) Transactions 485
21.3.2.1 UltraSPARC T2 Physical Address Partitioning. 485

21.3.2.2 8-Mbyte Noncacheable Configuration Region 488

21.3.2.3 PCI Express Configuration and I/O Subregion 488

21.3.2.4 PCI Express 32-bit Addressing Memory Subregion. . 490
21.3.2.5 PCI Express 64-bit Addressing Memory Subregion. . 490

21.3.3 PIU to Memory (Upbound) Transactions................... 491
21.3.3.1 PCIExpress - PIU.................. 491
21.3.4 UltraSPARC T2 IOMMU (sun4u vs. sun4v) 493
21.3.5 sun4u Mode IOMMU and Bypass Operation 493
21.3.5.1 Translation..............c. i, 494
21.3.5.2 Translation Storage Buffer Overview.............. 495
21.3.5.3 Translation Table Entry (TTE).................... 497
21.3.54 Bypass and MMU Initialization 498
21.3.5.5 IOMMU Translation Flow 500
21.3.6 sundv Mode IOMMU i 501
21.3.6.1 1OTSB Descriptor Table 502
21.3.6.2 DEV2IOTSBTable......... ..., 507
21.3.6.3 IOMMU Translation Lookup Flow................ 507

21.3.7 TTE Cache Invalidation Flow (for Both sun4u and sun4v) 509

21.3.8 IOMMU Function Description............................ 510

21381 IOTTEFormat..............ccooiiiiiiii... 510
21.3.8.2 New Fields Introduced by UltraSPARC T2 PIU 510
21.3.9 InterruptModel 512
21.39.1 Internal Interrupts 513
21.3.9.2 PCI Express INTx Emulation. 513
21.3.9.3 EventQueuelInterrupts......................... 514
21.394 InterruptMondos........................, 516
21.3.9.5 Interrupt Mondo INO Mapping Table............. 517
21.3.9.6 Interrupt Relocation............................ 518
21.39.7 DataFlushing 518
21.39.8 EventQueueRecords........................... 519
21.3.10 EQAddressTranslation it iiriiinenn... 522
21.3.10.1 SUN4U mode EQ address translation:............. 522
21.3.10.2 SUN4V mode MSI/MSI-X EQ address translation: . . 522
21.3.11 Power Management................. 523
21.3.12 Endiannessiiiiiiii 524
21.3.13 Error Register Overview................................. 524
21.3.14 Performance Register Overview 526
21.3.15 Link Layer Thresholds 526
21.3.15.1 Ack/Nak Latency Timer Threshold 527
21.3.15.2 Replay Timer Threshold......................... 527
21.3.16 Register Reset Behavior and Software Accessto PIU 528
214 CSRFieldsand Bits.......... i 528
21.4.1 General Information o oL 528
21411 AccessSize........... ..ot 529
21412 Unimplemented Addresses...................... 529
21.41.3 Physical Addresses................. 529
21.4.2 RegisterMap 529
21.4.3 PCI-ERegisters. i 535
21.4.3.1 Interrupt Mapping Registers (006010A014-006011D8;4,
006011F04¢, 006011F84 / 014)535
21.4.3.2 Interrupt Clear Registers (006014A015-06015D84,
006015F044, 006015F81¢ / 014)536
21.4.3.3 Interrupt Retry Timer Register (00601A001¢ / 01¢). . . 536
21.4.34 Interrupt State Status Register 1 (00601A1014 / 07¢) .537
21.4.3.5 Interrupt State Status Register 2 (00601A184 / 01¢) .537
21.4.3.6 INTX Status Register (0060B00014 / O1g) 537
21.4.3.7 INT A Clear Register (0060B0081¢ / O1¢) 538
21.4.3.8 INT B Clear Register (0060B01014 / O1¢) 538
21.4.3.9 INT C Clear Register (0060B01814 / 01¢) 539
21.4.3.10 INT D Clear Register (0060B020¢ / O1¢) 539
21.4.3.11 Event Queue Base Address Register (0061000074 / 014)540
21.4.3.12 Event Queue Control Set Register (00611000,,—-00611118¢

/ 014)540

18 UltraSPARC T2 Supplement « Draft D1.4.3, 19 Sep 2007

21.4.3.13

21.4.3.14

21.4.3.15

21.4.3.16

21.4.3.17
21.4.3.18
21.4.3.19
21.4.3.20
21.4.3.21
21.4.3.22

21.4.3.23
21.4.3.24
21.4.3.25
21.4.3.26
21.4.3.27
21.4.3.28
21.4.3.29
21.4.3.30
21.4.3.31
21.4.3.32
21.4.3.33
21.4.3.34

21.4.3.35
21.4.3.36
21.4.3.37
21.4.3.38
21.4.3.39
21.4.3.40
21.4.3.41
21.4.3.42
21.4.3.43
21.4.3.44
21.4.3.45

21.4.3.46

Event Queue Control Clear Register (006112001 4—
006113184 / 014)541

Event Queue State Register (00611400,,—006115181¢ / 11¢)
542

Event Queue Tail Register (0061160015-0061171814 / 015)
542

Event Queue Head Register (00611800,4-006119181¢ / 01¢)
542

MSI Mapping Register (006200001—006207E81¢ / 014)543

MSI Clear Registers (0062800014-006287F84 / 01¢) . . 543

Interrupt Mondo Data 0 Register (0062C0004¢4 / 01¢). 544

Interrupt Mondo Data 1 Register (0062C0081¢4 / 01). 544

ERR COR Mapping Register (0063000014 / O1¢) - 544

ERR NONFATAL Mapping Register (0063000814 / 01¢) -
545

ERR FATAL Mapping Register (0063001044 / 01¢) - - - 545

PM PME Mapping Register (0063001814 / 014). - - - . . 545

PME To ACK Mapping Register (0063002014 / 01¢) . . 546

IMU Error Log Enable Register (0063100014 / 7FFF;¢)546

IMU Interrupt Enable Register (0063100814 / O1¢) . . . 547

IMU Interrupt Status Register (0063101014 / 01¢). . . . 548

IMU Error Status Clear Register (006310184 / 01¢) . . 550

IMU Error Status Set Register (0063102014 / 04¢) 551

IMU RDS Error Log Register (006310281¢ / O1¢). 552

IMU SCS Error Log Register (006310301¢ / O1¢) - . . - - 553

IMU EQS Error Log Register (0063103814 / 01¢). - - - . 554

DMU Core and Block Interrupt Enable Register
(006318001¢ / 014)554

DMU Core and Block Error Status Register (006318084 /
014)555

IMU Performance Counter Select Register (0063200014 /
014)555

IMU Performance Counter Zero Register (006320081¢ /
014)556

IMU Performance Counter One Register (006320104 / 01¢)
556

MSI/MSI-X 32-bit Address Register (0063400044 / 01¢)556

MSI/MSI-X 64-bit Address Register (006340081 / 01¢)557

Mem 64 PCIE Offset Register (0063401814 / 01¢)557

MMU Control and Status Register (0064000014 / 014) 558

MMU TSB Control Register (0064000814 / 01¢)- - - . . - 559

MMU TTE Cache Flush Address Register (800000203044 /
014)560

MMU TTE Cache Invalidate Register (0064010814 / 01¢).
560

MMU Error Log Enable Register (0064100014 / 1FFFFF;¢)
560

21.4.3.47
21.4.3.48
21.4.3.49
21.4.3.50
21.4.3.51
21.4.3.52
21.4.3.53
21.4.3.54
21.4.3.55
21.4.3.56
21.4.3.57
21.4.3.58
21.4.3.59
21.4.3.60
21.4.3.61
21.4.3.62
21.4.3.63
21.4.3.64
21.4.3.65
21.4.3.66
21.4.3.67

21.4.3.68
21.4.3.69

21.4.3.70

21.4.3.71

21.4.3.72

21.4.3.73

21.4.3.74

MMU Interrupt Enable Register (0064100814 / 01¢) . . 560

MMU Interrupt Status Register (0064101014 / 04¢). . . 561

MMU Error Status Clear Register (006410184 / 014) . 561

MMU Error Status Set Register (006410201¢/ 01¢) - - . 563

MMU Translation Fault Address Register (006410284 /
014)564

MMU Translation Fault Status Register (0064103014 / 01¢)
565

MMU Performance Counter Select Register (0064200044 /
014)565

MMU Performance Counter Zero Register (00642008+¢ /
014)566

MMU Performance Counter One Register (006420104 /
014)566

MMU TTE Cache Virtual Tag Registers (00646000-
006461F84 / 014)566

MMU TTE Cache Physical Tag Registers (0064700044~
006471F84 / 014)567

MMU TTE Cache Data Registers (00648000,4-00648FF8;¢
/ 0)16567

MMU DEV2IOTSB Registers (006490001,—00649078 /
014)568

MMU IOTSBDESC Registers (006491004,—006491F8;¢ /
014)568

ILU Error Log Enable Register (00651000 / FOy4) . . 569

ILU Interrupt Enable Register (006510081¢ / 01¢) 569

ILU Interrupt Status Register (0065101014 / O4¢) - .. .570

ILU Error Status Clear Register (0065101814 / 01¢). . . 570

ILU Error Status Set Register (0065102014 / O1¢)- - . - . 571

PEU Core and Block Interrupt Enable Register (0065180074
/ 016)571

PEU Core and Block Interrupt Status Register (0065180814
/ 016)572

DMU ILU Diagnostic Register (0065200014 / 01¢) .. .572
.... DMU Debug Select Register for DMU Debug Bus A
(006530004¢ / 014)573

.... DMU Debug Select Register for DMU Debug Bus B
(006530081¢ / 014)574

DMU PCI Express Configuration Register (0065310044 /
014)575

Packet Scoreboard DMA Register Set (0066000074—
006600F81 / 01¢)575

Packet Scoreboard PIO Register Set (0066400014~
0066407814 / 016)576

Transaction Scoreboard Register Set (0067000044
006700F8;4 / 014)576

20 UltraSPARC T2 Supplement « Draft D1.4.3, 19 Sep 2007

21.4.3.75
21.4.3.76
21.4.3.77
21.4.3.78
21.4.3.79

21.4.3.80
21.4.3.81

21.4.3.82

21.4.3.83

21.4.3.84

21.4.3.85

21.4.3.86

21.4.3.87

21.4.3.88

21.4.3.89

21.4.3.90

21.4.3.91

21.4.3.92

21.4.3.93

21.4.3.94

21.4.3.95

21.4.3.96

21.4.3.97

21.4.3.98

21.4.3.99

Transaction Scoreboard Status Register (0067010044 / 114)
577

PEU Control Register (0068000014 / 11g) - - - - -« oo 577
PEU Status Register (0068000814 / 011¢) « - ..o 579
PEU PME Turn Off Generate Register (0068001014 / 01¢)

579

PEU Ingress Credits Initial Register (0068001874 /
10000200C044)580

PEU Diagnostic Register (0068010014 / 01¢) - 580

PEU Egress Credits Consumed Register (0068020014 / 0)1¢
582

PEU Egress Credit Limit Register (006802084 / 01¢). 582

PEU Egress Retry Buffer Register (0068021044 / 01¢) . 583

PEU Ingress Credits Allocated Register (006802181¢ /
10000200C0+4)583

PEU Ingress Credits Received Register (0068022014 / 01¢)
583

PEU Other Event Log Enable Register (0068100014 /
FFFFFF;4)584

PEU Other Event Interrupt Enable Register (0068100814 /
014)584

PEU Other Event Interrupt Status Register (0068101044 /
016)584

PEU Other Event Status Clear Register (0068101814 / 01¢)
585

PEU Other Event Status Set Register (0068102014 / 01¢)
586

PEU Receive Other Event Header1 Log Register
(0068102814 / 014)588

PEU Receive Other Event Header2 Log Register
(006810301¢ / 014)589

PEU Transmit Other Event Headerl Log Register
(0068103814 / 014)590

PEU Transmit Other Event Header2 Log Register
(006810404¢ / 014)590

PEU Performance Counter Select Register (00682000+¢ /
016)591

PEU Performance Counter Zero Register (006820084 /
014)592

PEU Performance Counter One Register (006820104 / 01¢)
592

PEU Performance Counter Two Register (006820184 / 01¢)
593

PEU Debug Select A Register (0068300014 / 01¢) - . . . 593

21.4.3.100 PEU Debug Select B Register (0068300814 / 01¢). 593
21.4.3.101 PEU Device Capabilities Register (006900001¢ / 21¢) - 594
21.4.3.102 PEU Device Control Register (006900081¢ / 01¢)5%4

21.4.3.103 PEU Device Status Register (0069001014 / O1¢) . - - . . . 595

21.4.3.104 PEU Link Capabilities Register (006900184 / 15C8114)595

21.4.3.105 PEU Link Control Register (006900201¢ / O1¢) - - - . - . 596

21.4.3.106 PEU Link Status Register (0069002814 / 01g). 596

21.4.3.107 PEU Slot Capabilities Register (006900304 / 01¢) - ..597

21.4.3.108 PEU Uncorrectable Error Log Enable Register
(006910004¢/ 17F011,4)598

21.4.3.109 PEU Uncorrectable Error Interrupt Enable Register
(0069100814 / 014)598

21.4.3.110 PEU Uncorrectable Error Interrupt Status Register
(0069101044 / 014)598

21.4.3.111 PEU Uncorrectable Error Status Clear Register (006910184
/ 014)599

21.4.3.112 PEU Uncorrectable Error Status Set Register (0069102044 /
014)600

21.4.3.113 PEU Receive Uncorrectable Error Headerl Log Register
(0069102814 / 014)601

21.4.3.114 PEU Receive Uncorrectable Error Header2 Log Register
(006910304¢ / 014)601

21.4.3.115 PEU Transmit Uncorrectable Error Headerl Log Register
(0069103814 / 014)602

21.4.3.116 PEU Transmit Uncorrectable Error Header2 Log Register
(0069104044 / 014)602

21.4.3.117 PEU Correctable Error Log Enable Register (006A1000+¢ /
11C144)603

21.4.3.118 PEU Correctable Error Interrupt Enable Register
(006A10081¢ / 014)603

21.4.3.119 PEU Correctable Error Interrupt Status Register
(006A10104¢ / 014)603

21.4.3.120 PEU Correctable Error Status Clear Register (006A1018,¢4 /
014)604

21.4.3.121 PEU Correctable Error Status Set Register (006A10204¢ /
014)604

21.4.3.122 PEU CXPL/SerDes Revision Register (006E2000+¢4 / 0)1¢
605

21.4.3.123 PEU CXPL DLL AckNak Latency Threshold Register
(006E20081¢ / 4314)605

21.4.3.124 PEU CXPL DLL AckNak Latency Timer Register
(006E20104¢ / 0014)606

21.4.3.125 PEU CXPL DLL Replay Timer Threshold Register
(006E201814 / FC16)606

21.4.3.126 PEU CXPL DLL Replay Timer Register (006E20204¢ / 001¢)
606

21.4.3.127 PEU CXPL DLL Vendor DLLP Message Register
(006E20404¢ / 0044)607

21.4.3.128 PEU CXPL LTSSM Control Register (006E205014 / 001¢).
607

22 UltraSPARC T2 Supplement « Draft D1.4.3, 19 Sep 2007

21.4.3.129 PEU CXPL DLL Control Register (006E20587¢ / 00F9004¢)
608

21.4.3.130 PEU CXPL MACL/PCS Control Register (006E20604¢ /
400004¢)609

21.4.3.131 PEU CXPL MACL Lane Skew /Receiver Detection/Bit
Lock Timer Control Register (006E20684 / 0014)610

21.4.3.132 PEU CXPL MACL Symbol Number Control Register
(006E20704¢ / 33AA1)611

21.4.3.133 PEU CXPL MACL Symbol Timer Register (006E2078,4 /
350014)612

21.4.3.134 PEU CXPL Core Status Register (006E21001¢ / 01¢) . . 612

21.4.3.135 PEU CXPL Event/Error Log Enable Register (006E21081¢)
613

21.4.3.136 PEU CXPL Event/Error Interrupt Enable Register
(006E211014 / 0)14614

21.4.3.137 PEU CXPL Event/Error Interrupt Status Register
(006E2118, / 01)614

21.4.3.138 PEU CXPL Event/Error Status Clear Register (006E2120+4
/ 01¢)614

21.4.3.139 PEU CXPL Event/Error Status Set Register (006E2128;¢ /
014)615

21.4.3.140 PEU Link Bit Error Counter I Register (006E21301¢ /01¢)
616

21.4.3.141 PEU Link Bit Error Counter II Register (006E21381¢ / 01¢)
617

21.4.3.142 PEU SerDes PLL Control/Status Register (006E22004¢ /
114)618

21.4.3.143 PEU SerDes Receiver Lane 0-7 Control Register
(006E23004¢ — 006E23384 / 44414)618

21.4.3.144 PEU SerDes Receiver Lane 0-7 Status Register (006E2380+4
—006E23B81¢ / 014)619

21.4.3.145 PEU SerDes Transmitter Lane 0 - 7 Control Register
(006E24004¢ — 006E243814 / 1F8;)620

21.4.3.146 PEU SerDes Transmitter Lane 0 - 7 Status Register
(006E24804, — 006E24B81¢ / 014)620

21.4.3.147 PEU SerDes MACRO 0 - 1 Test Configuration Register
(006E25004¢ — 006E25081¢ / 0314)620

21.5 PIU Error Event Summary............. ... i 621
21.6 PIU OperationSequence ...ttt 638
21.6.1 PCI-Express Link Training Sequence 638
21.6.2 PCI-Express Hot Reset Sequence. 639
21.6.3 PCI-Express Link Disable Sequence 639
21.6.4 DrainState 639
21.6.5 PCI-Express Retrain the Link After Link Down 640
21.6.6 PEU SerDes Clock and Electrical Configuration. 641
21.6.7 PEU Deterministic Mode (DTM) Behavior and Sequence 641

22 Network Interface Unit: Introductionttt innnennnn 645

22.1 Features i 645
222 GlOSSATY . . ot vttt 646
223 Functional Overview i 648
22.3.1 Resource Grouping And Virtualization Support............. 649

22.3.2 Interrupt Hierarchy 650

22.3.3 PIO and Datapath Interfaces 651

22.3.4 LifeofaPacket........... o il 651

22.3.5 Notes on Register Definition and DMA Addressing.......... 657

23 Network Interface Unit: Interrupts and Virtualization 659
23.1 Address Assignment and Multifunction / Multidevice Support.......... 659
23.2 Virtualization Region.............. 663
23.3 System Interrupts.......... 667
234 Miscellaneous 672
23.4.1 Reset 672

23.4.2 Device Error Status il 672

23.4.3 Meta Arbiter.......... 673

2344 SMX .. 674

23.4.5 Debug ... 676

235 Errata 677
23.5.1 Spurious Interrupt......... L o o 677

24 Network Interface Unit: Receive Packet Classification 679
241 Ethernet MACSubsystem i 679
242 Layer2Classification............. i i 679
24.3 Layer 2/3/4 Classification.......... L. 681
24.3.1 TCAM Software Interface............................. ... 684

24.3.2 Flow Classification and Software Interface 689

24.4 Header Parser RDC Selection (FFLP)........... i i, 690
245 ChecksumOffload i i 692
24.6 Receive Packet Header Format and Alignment 692
24.7 FFLP Hardware Control Registers 694
24.8 Error Registers. 696
25 Network Interface Unit: Receive DMA i, 701
25.1 Receive DMA Channel Selection 702
252 PortScheduler....... 703
25.3 Partitioning Support. 704
25.4 Weighted Random Early Discard (Weighted RED) 707
25.5 Receive DMA Datapath Configuration 709
25.5.1 Receive Block Ring Configuration......................... 710

25.5.2 Receive Completion Ring (RCR) 716

25.5.3 Receive DMA Interrupt Behavior 718

25.5.4 Recommendation for Threshold and Timeout Settings 725

24 UltraSPARC T2 Supplement « Draft D1.4.3, 19 Sep 2007

26

27

25.6 Receive Performance Management and Discard Statistics 725

25.7 Receive DMA Hardware Registers. 726
25.8 1IPP Data FIFO Hardware Registers 729
25.9 ZCP Control FIFO Hardware Registers............................... 740
25.10 Error Handling Registers., 748
2511 Erratao 751
25.11.1 Address Relocation For Jumbo Packet 751
25.11.2 Minimum RxDMA packetsize............................ 751
Network Interface Unit: Transmit DMA Channels 753
26.1 Partitioning Support. 753
26.2 Packet Descriptor Structure. i 756
26.3 Transmit Ring Configuration 757
26.4 Transmit DMA Operation 759
26.5 Transmit Ring Scheduler............. 765
26.5.1 DRR Performance Monitoring 766
26.6 Internal Transmit Frame Header Format.............................. 766
26.7 Hardware Control and Error Registers 767
26.8 Errata........ ... 778
26.8.1 Tx Descriptor Bug: ID 112918. 778
26.8.2 Tx Mailbox Address : ID 113524 779
26.8.3 Tx Address Mode: ID 113526ot 780
Network Interface Unit: Ethernet Media Adaptation Controller MAC) 781
271 MAC Configurationiii i 782
27.1.1 UltraSPARC T2 MAC Normal Configuration 783
2712 UltraSPARC T2 MAC Loopback Mode. 784
272 MACInitSequence. 786
27.2.1 Notes for BCM 8704. i 789
27.3 MAC Warm ResetSequence 790
27.3.1 Changing Operation Mode Sequence 791
274 1G ATCA Mode SerDes Init Sequence Routine 791
275 MACInterrupts ... 792
27.5.1 XMAC . . 792
2752 XPCS .. 792
27.5.3 PCS . 793
2754 MIF ... o 793
27.6 xMAC (10G/1G/100M/10M Quad Speed MAC) Programmable Resources793
27.6.1 xMAC Command Registers 793
27.6.2 xMAC Status and Mask Registers 794
27.6.3 xMAC Configuration Registers 798
27.6.4 xMAC Protocol Parameters Registers 802
27.6.5 xMAC Statistics Registers. 804
27.6.6 xMAC Miscellaneous MAC Registers...................... 809
27.6.7 MAC Station Address Format Programming Guide.......... 810

27.6.8 MAC Unique Address/Reserved Multicast Address......... 811

27.6.9 MAC Flow Control Frame 812
27.6.10 xMAC Alternate MAC Address Registers 813
27.6.11 xMAC Address Filter Registers 826
27.6.12 xMAC Hash Table Registers.............................. 828

27.7 XPCS Programmable Resources, 842
27.7.1 Register Description i 842

27.7.2 Programming Guide 851
27.72.1 Initialization Programming Sequence............. 851

27.7.2.2 XPCS Link Loss Notification..................... 851

27.7.2.3 XPCS SerDes Operational Modes 852

27.8 PCS Programmable Resourceso, 852
27.9 MIF Programmable Resourcescoiiiiiiii.... 858
27.9.1 Bit-Bang Mode Theory of Operation....................... 858

27.9.2 Frame Mode Theory of Operation......................... 859

27.9.3 Poll Theory of Operation 862

27.9.4 MIF Operation Examples 864

27.10 ESR Control Programmable Resources 866
27.10.1 Common NIURegisters................................. 866

27.11 MAC Register Maps. ...t i 867
27111 xMACRegisterMap. 868

2712 XPCS Address Mapot 873
2713 MIF Register Map 874
27.14 ESR Control Register Map i i 874
27.15 Side Effect Registers i 875
27.15.1 N2_NIU "Hedwig Lite" XAUI SerDes Register Map.......... 876

28 Network Interface Unit: Ethernet SerDesl 879
28.1 OVeIVIEW ... i 879
28.1.1 SerDeso 879
28.1.1.1 The Role of SerDes in 10G Ethernet............... 879

28.1.1.2 The Role of SerDes in 1G Ethernet on Fiber..... ... 880

28.1.1.3 Transceiver’s Role in 1G Copper Ethernet 881

28.1.2 Transceiver 881
28.1.2.1 Transceiver’s Role in 10G Ethernet 881

28.1.2.2 Transceiver’s Role in 1G Fiber Ethernet:........... 882

28.1.2.3 Transceiver’s Role in 1G Copper Ethernet 882

28.1.3 PHY ... 882

28.2 SerDes and Transceiversc.oiiiiiiiiiiiiinani... 883
28.2.1 UltraSPARC T2 SerDes 884

28.2.2 10G Optical Transceiver, 884

28.3 SerDes / Transceiver Usageooiiiiiiiiiiiiniiiin... 884
28.4 ProgramI/Olnterface............... 885
28.4.1 Management Interface. 885

28.4.2 MIF Operations, 885

26 UltraSPARC T2 Supplement « Draft D1.4.3, 19 Sep 2007

28.4.3 Accessing Transceiver Registers 886

28.4.4 Accessing SerDes Registers 886

28.5 Programming Reference Model, 887
28.5.1 TI SerDes Programming Model 887

28.5.2 BCM 10G Optical Transceiver Programming Model. 890

28.5.3 10G Copper Transceiver Programming Model 890

28.5.4 BCM 1G Copper PHY Programming Model 890

28.6 Initialization Sequence........... i 890
28.6.1 TI SerDes Initialization 891

28.6.2 BCM 10G Fiber Transceiver Initialization Sequence 893

28.6.3 10G Copper Transceiver Initialization Sequence............. 893

28.6.4 BCM 1G PHY Initialization Sequence...................... 894

28.7 REfErENCES . . . oottt et 894
Programming Guidelines..............oi ittt 895
Al Multithreading 895
A2 InstructionLatency............. i 896
IEEE 754 Floating-Point Support.cooiiiiiiiii ittt 905
B.1 Special Operand Handling 905
B.1.1 Infinity Arithmetic.......... 906
B.1.1.1 One Infinity Operand Arithmetic................. 906

B.1.1.2 Two Infinity Operand Arithmetic................. 909

B.1.2 Zero Arithmeticttt 911

B.1.3 NaN Arithmetic....... ... 912

B.14 Special Inexact Exceptions 913

B.2 SubnormalHandling 914
B.2.1 One or Both Subnormal Operands 918

B.2.2 Normal Operand(s) Giving Subnormal Result 921
Differences From UltraSPARC T1.oiiiiii i iiii it iiniiineeennnen 923
C.1 General Architectural and Microarchitectural Differences 923
C.2 ISA DIfferencCeso ottt ettt et e e e e e e 924
C.3 MMUDIfferencesovuvt ettt e e e e e 925
C4 Performance Instrumentation Differences............. 926
C.5 ResetDifferences. 926
C.6 Error Handling Differences.............. 927
C.7 Power Management Differences.................................... 928
C.8 Cryptography Unit Differences..................................... 928
C.9 Configuration, Diagnostic, and Debug Differences 928
Caches and Cache Coherencycoiiiiiiiiiniiiiiniiiiineennnnn, 929
D.1 Cache and Memory Interactions.iiiiiin ... 929
D.2 CacheFlushing 929
D.2.1 Displacement Flushing 930

D.2.2 Memory Accesses and Cacheability 930

D.2.3 Coherence Domains, 931

D.2.3.1 Cacheable Accesses.c.coiiiiiiiennenn... 931

D.2.3.2 Noncacheable and Side-Effect Accesses. 931

D.2.3.3 Global Visibility and Memory Ordering 932

D.24 Memory Synchronization: MEMBAR and FLUSH 933
D.241 MEMBAR#LoadlLoad.......................... 933

D.242 MEMBAR#StorelLoad 933

D.24.3 MEMBAR#LoadStore ..., 933

D.2.44 MEMBAR#StoreStore and STBAR............. 933

D.245 MEMBAR#Lookaside 934

D.2.4.6 MEMBAR#Mem ssue..............ccovvivnnn... 934

D.24.7 MEMBAR #Sync (Issue Barrier). 934

D.2.48 Self-Modifying Code (FLUSH) 934

D.25 Atomic Operations 935
D.251 SWAPInstruction............ ..., 935

D.2.5.2 LDSTUBInstruction..................couvvn.... 936

D.2.5.3 Compare and Swap (CASX) Instruction 936

D.2.6 Nonfaulting Load 936

D.3 L1I-Cache 937
D.3.1 LFSR Replacement Algorithm 937

D.3.2 Direct-Mapped Mode 937

D.3.3 I-Cache Disable 937

D4 L1D-Cache. 938
D.4.1 LRU Replacement Algorithm. 938

D.4.2 Direct-Mapped Mode 938

D.4.3 D-CacheDisable 938

D5 L2Cache. 939
D.5.1 NRU Replacement Algorithm 940

D.5.2 Directory Coherence 941

D.5.3 Direct-Mapped Mode 941

D.5.4 L2CacheDisable.......... 941

D.6 1I/OOrderingRules 942
L€ 0T T 2 945
Bibliography.o i e 949
ECC CodeS. i ittt ittt it ieteneeeeneeeeneeeensesensosensosansanaanns 951
G1 ECCSUMMATIY.ttt 951
G2 IRFECCCOAE . ..ttt e e 952
G3 fRFECCCOAE . ..ttt 954
G4 TSA,TCA,and SCAECC Code.t 954
G.5 Store Buffer Data Array (SBD), L2 UA, L2 VD, and L2 Data ECC Code . . .957
G6 L2TagECCCode ...t i i e 958
G.7 Memory Extended ECC Support 959
G.7.1 Nomenclature and NibbleOrder. 959
G.7.1.1 External Hardware BitOrder 960

28 UltraSPARC T2 Supplement « Draft D1.4.3, 19 Sep 2007

G.7.2 Memory ECC Code Description. 960

G.73 Memory Address Parity Protection...................... 962

G.74 Galois Field Multiplication Table. 963

G.75 DRAM Syndrome Interpretation........................ 963

G.8 DataPoisoning 968
G.8.1 ECC Conversion of UEs as Poison Source 969

G.8.2 Poisoning L1.......... ... o i 969

G.83 Poisoning L2.......... ... o i 969
G.8.3.1 Partial Write Details 970

G.84 PoisoningMemory. i 970

G.8.5 ErasingPoison 970

H JTAG (IEEE 1149.1) Scan Interfacecotiiniiiiiiririnenenenenannns 971
H.1 System JTAGCommands. i, 971
H.2 JTAGCREGINnterface. 974
H.2.1 I/0O Mapped Register Accesses 975
H.2.1.1 JTAG Instructions Used to Access the UCB......... 975

H.2.1.2 Expected Data and Address Format............... 977

H.2.1.3 Accesses to Unsupported I/O Addresses 977

H.2.2 TAP Access to CPU ASI Registers 977

H3 JTAG AccesstoMemoryttt 977
H3.1 JTAGL2 AccessRegisters.............................. 977
H.3.11 MemoryWrite................................. 978

H312 MemoryRead 978

H.4 JTAG Private Instruction Accessible and Software Accessible Registers. . . 979
H.5 Shadow ScanChains 982
H.5.1 SPARC Shadow Scan............. ..., 982

H52 IL2Shadow Scan.............., 983

H6 JTAGMemory BIST 983
H.6.1 MBISTModes. ... 984
H.6.11 SerialMode................. 984

H.6.12 ParallelMode 984

H.6.1.3 DiagnosticMode............................... 985

H.6.14 AbortMode........... L. 985

H.6.2 JTAGMBIST Registers. 986

H.6.3 MBIST Clock Stop and Scan Dump 986

H.6.4 MBIST DMO: Direct Memory Observe................... 987

H.7 JTAGLogicBIST 988
H.7.1 JTAG Logic BIST Registers 988

H.7.2 Accessing Pass/Fail Signature.......................... 989

T 991

30 UltraSPARC T2 Supplement « Draft D1.4.3, 19 Sep 2007

CHAPTER 1

UltraSPARC T2 Basics

1.1

Background

UltraSPARC T2 is the follow-on chip multi-threaded (CMT) processor to the highly
successful UltraSPARC T1 processor. The UltraSPARC T1 product line fully
implements Sun’s Throughput Computing initiative for the horizontal system space.
Throughput Computing is a technique that takes advantage of the thread-level
parallelism that is present in most commercial workloads. Unlike desktop
workloads, which often have a small number of threads concurrently running, most
commercial workloads achieve their scalability by employing large pools of
concurrent threads.

Historically, microprocessors have been designed to target desktop workloads, and
as a result have focused on running a single thread as quickly as possible. Single
thread performance is achieved in these processors by a combination of extremely
deep pipelines (over 20 stages in Pentium 4) and by executing multiple instructions
in parallel (referred to as instruction-level parallelism or ILP). The basic tenet behind
Throughput Computing is that exploiting ILP and deep pipelining has reached the
point of diminishing returns, and as a result current microprocessors do not utilize
their underlying hardware very efficiently. For many commercial workloads, the
processor will be idle most of the time waiting on memory, and even when it is
executing it will often be able to only utilize a small fraction of its wide execution
width. So rather than building a large and complex ILP processor that sits idle most
of the time, a number of small, single-issue processors that employ multithreading
are built in the same chip area. Combining multiple processors on a single chip with

multiple strands per processor, allows very high performance for highly threaded
commercial applications. This approach is called thread-level parallelism (TLP), and
the difference between TLP and ILP is shown in the FIGURE 1-1.

FIGURE 1-1 Differences Between TLP and ILP

Strand 1

Strand 2
TLP

Strand 3

Strand 4

Single strand
executing two
instructions per

cycle
-Executing -Stalled on Memory

ILP

The memory stall time of one strand can often be overlapped with execution of other
strands on the same processor, and multiple processors run their strands in parallel.
In the ideal case, shown in FIGURE 1-1, memory latency can be completely
overlapped with execution of other strands. In contrast, instruction-level parallelism
simply shortens the time to execute instructions and does not help much in
overlapping execution with memory latency.!

Given this ability to overlap execution with memory latency, why don’t more
processors utilize TLP? The answer is that designing processors is a mostly
evolutionary process, and the ubiquitous deeply pipelined, wide ILP processors of
today are the evolutionary outgrowth from a time when the processor was the
bottleneck in delivering good performance. With processors capable of multiple GHz
clocking, the performance bottleneck has shifted to the memory and I/O
subsystems, and TLP has an obvious advantage over ILP for tolerating the large I/O
and memory latency prevalent in commercial applications. Of course, every
architectural technique has its advantages and disadvantages. The one disadvantage
to employing TLP over ILP is that execution of a single thread will be slower on the
TLP processor than an ILP processor. With processors running well over a GHz, a
strand capable of executing only a single instruction per cycle is fully capable of
completing tasks in the time required by the application, making this disadvantage a
nonissue for nearly all commercial applications.

1 Processors that employ out-of-order ILP can overlap some memory latency with execution. However, this
overlap is typically limited to shorter memory latency events such as L1 cache misses that hit in the L2 cache.
Longer memory latency events such as main memory accesses are rarely overlapped to a significant degree
with execution by an out-of-order processor.

2 UltraSPARC T2 Supplement « Draft D1.4.3, 19 Sep 2007

1.2

UltraSPARC T2 Overview

UltraSPARC T2 is a single chip multi-threaded (CMT) processor. UltraSPARC T2
contains eight SPARC physical processor cores. Each SPARC physical processor core
has full hardware support for eight strands, two integer execution pipelines, one
floating-point execution pipeline, and one memory pipeline. The floating-point and
memory pipelines are shared by all eight strands. The eight strands are hard-
partitioned into two groups of four, and the four strands within a group share a
single integer pipeline. While all eight strands run simultaneously, at any given time
at most two strands will be active in the physical core, and those two strands will be
issuing either a pair of integer pipeline operations, an integer operation and a
floating-point operation, an integer operation and a memory operation, or a floating-
point operation and a memory operation. Strands are switched on a cycle-by-cycle
basis between the available strands within the hard-partitioned group of four using
a least recently issued priority scheme. When a strand encounters a long-latency
event, such as a cache miss, it is marked unavailable and instructions will not be
issued from that strand until the long-latency event is resolved. Execution of the
remaining available strands will continue while the long-latency event of the first
strand is resolved.

Each SPARC physical core has a 16 KB, 8-way associative instruction cache (32-byte
lines), 8 Kbytes, 4-way associative data cache (16-byte lines), 64-entry fully-
associative instruction TLB, and 128-entry fully associative data TLB that are shared
by the eight strands. The eight SPARC physical cores are connected through a
crossbar to an on-chip unified 4 Mbyte, 16-way associative L2 cache (64-byte lines).
The L2 cache is banked eight ways to provide sufficient bandwidth for the eight
SPARC physical cores. The L2 cache connects to four on-chip DRAM controllers,
which directly interface to a pair of fully buffered DIMM (FBD) channels. In
addition, an on-chip PCI-EX controller, two 1-Gbit/10-Gbit Ethernet MACs, and
several on-chip I/O-mapped control registers are accessible to the SPARC physical
cores. Traffic from the PCI-EX port coherently interacts with the L2 cache.

A block diagram of the UltraSPARC T2 chip is shown in FIGURE 1-2.

Fully Buffered

DIMMs (FBD)
UltraSPA RC T2 14Ghz . _ 8ooMhz 4.8Ghz
| = 10 L.
SPARC Core L2 BankO 8 MCU 0 1= —j*—j¢g : ¢E
64 - 2 = = aE
SPARC Core L2 Bank1 14
LT T LT LT
64 0 IR]
SPARC Core | Cache L2 BankO < w1 e WS
Crossbar Jms MCU 1 1w L LY S
(CCX) 64 2 B e
SPARC Core L2 Bank1 N 7 < < B
s 10 I
SPARC Core L2 BankO = >z
-J 128 MCU 2 14 L L,
10
SPARC Core L2 Bank1 6 < 'jﬁjz e
14
SPARC Core L2 Banko 64 1o ‘j:jz .
[128 MCU 3 13 = L)
SPARC Core L2 Bank1 6 gﬁ%j: B
14
LT i
‘ v H ccu ‘ ‘ eFuse ‘ DIMMs: 1 2 3 === 8
Ranks: 1 or 2 per DIMM
10 Gb MAC NIU PCLEX
10 Gb MAC SIU
Optional dual Channel Mode
FCRAM Intf SS| ROM Intf PCI-EX
FIGURE 12 UltraSPARC T2 Chip Block Diagram

4 UltraSPARC T2 Supplement « Draft D1.4.3, 19 Sep 2007

1.3

1.3.1

1.3.2

1.3.3

UltraSPARC T2 Components

This section describes each component in UltraSPARC T2.

SPARC Physical Core

Each SPARC physical core has hardware support for eight strands. This support
consists of a full register file (with eight register windows) per strand, with most of
the ASI, ASR, and privileged registers replicated per strand. The eight strands share
the instruction and data caches and TLBs. An auto-demap feature is included with
the TLBs to allow the multiple strands to update the TLB without locking.

Each SPARC physical core contains a floating-point unit, shared by all eight strands.
The floating-point unit performs single- and double-precision floating-point
operations, graphics operations, and integer multiply and divide operations.

L2 Cache

The L2 cache is banked eight ways. To provide for better partial-die recovery,
UltraSPARC T2 can also be configured in 4-bank and 2-bank modes (with 1/2 and
1/4 the total cache size respectively). Bank selection based on physical address bits
8:6 for 8 banks, 7:6 for 4 banks, and 6 for 2 banks. The cache is 4 Mbytes, and 16-way
set associative. The line size is 64 bytes. Unloaded access time is 26 cycles for an L1
data cache miss and 24 cycles for an L1 instruction cache miss.

Memory Controller Unit (MCU)

UltraSPARC T2 has four MCUs, one for each memory branch with a pair of L2 banks
interacting with exactly one DRAM branch. The branches are interleaved based on
physical address bits 7:6, and support 1-16 DDR2 DIMMs. Each memory branch is
two FBD channels wide. A branch may use only one of the FBD channels in a
reduced power configuration.

Each DRAM branch operates independently and can have a different memory size
and a different kind of DIMM (for example, a different number of ranks or different
CAS latency). Software should not use address space larger than four times the
lowest memory capacity in a branch because the cache lines are interleaved across
branches. The DRAM controller frequency is the same as that of the DDR (Double
Data Rate) data buses, which is twice the DDR frequency. The FBDIMM links run at
six times the frequency of the DDR data buses.

The UltraSPARC T2 MCU implements a DDR2 FBD design model that is based on
various JEDEC-approved DDR2 SDRAM and FBDIMM standards. JEDEC has
received information that certain patents or patent applications may be relevant to
FBDIMM Advanced Memory Buffer standard (JESD82-20) as well as other standards
related to FBDIMM technology (JESD206) (For more information, see

http:/ /www.jedec.org/download/search/FBDIMM /Patents.xls). Sun
Microsystems does not provide any legal opinions as to the validity or relevancy of
such patents or patent applications. Sun Microsystems encourages prospective users
of the UltraSPARC T2 MCU design to review all information assembled by JEDEC
and develop their own independent conclusion

1.3.4 Noncacheable Unit (NCU)

The NCU performs an address decode on I/0O-addressable transactions and directs
them to the appropriate block (for example, NIU, DMU, CCU). In addition, the NCU
maintains the register status for external interrupts.

1.3.5 System Interface Unit (SIU)

The System Interface Unit connects the NIU, DMU and L2 Cache. SIU is the L2
Cache access point for the Network and PCI-Express subsystems. The SIU-L2 Cache
interface is also the ordering point for PCI-Express ordering rule.

1.3.6 Data Management Unit (DMU)

The DMU manages Transaction Layer Packet (TLP) to/from the PEU and maintains
the same ordering as from the PCI-Express Unit (PEU) and then to the SIU. For
maintaining ordering between PEU and SIU, the DMU requires the policy that has
PIO reads pulling DMA writes to completion. When the PEU issues complete TLP
transactions to the DMU, the DMU segments the TLP packet into multiple cacheline-
oriented SIU commands and issues them to the SIU. The DMU also queues the
response cachelines from SIU, reassembly the multiple cachelines into one TLP
packet with maximal payload size. Furthermore, the DMU accepts and queues the
PIO transactions requests from NCU, and coordinates with the appropriate
destination, to which the address and data will be sent.

The DMU encapsulates the functions necessary to resolve a virtual PCI-Express
packet address into a L2 cacheline physical address which can be presented on the
SIU interface. The DMU also encapsulates the functions necessary to interpret PCI-
Express message signaled interrupts, emulated INTX interrupts and provides the
functions to post interrupt events to queues managed by software in main memory
and generates the Solaris Interrupt Mondo to notify software. The DMU decodes

6 UltraSPARC T2 Supplement ¢ Draft D1.4.3, 19 Sep 2007

1.3.7

1.3.8

1.3.9

INTACK and INTNACK from interrupt targets and conveys the information to the
interrupt function so that it can move on to service the next interrupt if any (for
INTACK) or replay the current interrupt (for INTNACK).

PCI-Express Unit (PEU)

The PEU implements the root complex behavior of the PCI-Express Base Spec 1.0A
published by PCI-SIG. It interfaces to the Data Management Unit.

The PEU implements the three layers specified:

= Transaction Layer

= Data Link Layer

= Logical sub-block of the Physical Layer

The PEU supports x1, x2, x4 and x8 configuration at the data rate of 2.5 Gb/s. The
PEU also supports the lane reversal feature.

Network Interface Unit (NIU)

The NIU connects a pair of on-chip 10 Gb/s Ethernet MACs to the rest of the system.
The NIU also contains the registers to control Ethernet traffic.

SSI ROM Interface (SSI)

UltraSPARC T2 has a 50 Mb/s serial interface (SSI), which connects to an external
field-programmable gate array (FPGA) that interfaces to the boot ROM. In addition,
the SSI supports PIO accesses across the SSI, thus supporting optional Control and
Status registers (CSRs) or other interfaces within the FPGA.

8 UltraSPARC T2 Supplement « Draft D1.4.3, 19 Sep 2007

CHAPTER 2

Data Formats

Data formats supported by UltraSPARC T2 are described in the UltraSPARC
Architecture 2007 specification.

10 UltraSPARC T2 Supplement « Draft D1.4.3, 19 Sep 2007

CHAPTER 3

Registers

3.1

Ancillary State Registers (ASRs)

This chapter discusses the UltraSPARC T2 ancillary state registers. TABLE 3-1
summarizes and defines these registers.

TABLE 3-1 Summary of UltraSPARC T2 Ancillary State Registers
Replicated

Address ASR Name Access priv per-Strand Description

0014 Y RW N Y Y Register

0144 Reserved — Any access causes a illegal_instruction
trap

0244 CCR RW N Y Condition Code register

0314 ASI RW N Y ASI register

0414 TICK RW Y! Partially TICK register

0516 PC RO? N Y Program counter

0614 FPRS RW N Y Floating-Point Registers Status register

0716-0E1¢ Reserved - — Any access causes an illegal_instruction
trap

0F¢ (MEMBAR, STBAR, SIR) — N — Instruction opcodes only, not an actual
ASR.

1044 PCR RW Y3 Y Performance counter control register

1144 PIC RW \& Y Performance instrumentation counter

1244 Reserved — Any access causes an illegal_instruction
trap

1344 GSR RW N Y General Status register

11

TABLE 3-1 Summary of UltraSPARC T2 Ancillary State Registers (Continued)

Replicated
Address ASR Name Access priv per-Strand Description
1444 SOFTINT_SET W Y2 Y Set bit in Soft Interrupt register
1514 SOFTINT_CLR w Y? Y Clear bit in Soft Interrupt register
1646 SOFTINT RW Y3 Y Soft Interrupt register
1714 TICK_CMPR RW Y3 Y TICK Compare register
1814 STICK RW Y0 Partially System Tick register
1944 STICK_CMPR RW Y3 Y System TICK Compare register
1A14-1F14 Reserved — — Any access causes an illegal_instruction
trap

Notes:

1. Nonprivileged software may read this register if the npt bit is 0. An attempt to
read this register by nonprivileged software with npt =1 causes a
privileged_action trap. An attempted write by privileged software causes an
illegal_instruction trap. An attempted write by nonprivileged software causes a
privileged_opcode trap.

2. An attempted write to this register causes an illegal_instruction trap.
3. An attempted access in nonprivilged mode causes a privileged_opcode trap.

4. An attempted access in nonprivilged mode with PCR.priv =1 causes a
privileged_action trap.

5. Read accesses cause an illegal_instruction trap. An attempted write access in
nonprivilged mode causes a privileged_opcode trap.

6. Nonprivileged software may read this register if the npt bit is 0. An attempt to
read this register by nonprivileged software with npt =1 causes a
privileged_action trap. A write by privileged or user software causes an
illegal_instruction trap.

3.1.1 Tick Register (TICK)

The TICK register contains two fields: npt and counter. The npt field is replicated per
strand, while the counter field is shared by the eight strands on a physical core.

Hyperprivileged software on any strand can write the TICK register. A write of the
TICK register will update both the shared counter as well as the writing strand’s npt
field (the npt fields for other strands will be unaffected). The counter increments

each processor core clock that ASI _CMI_TI CK_ENABLE. tick_enable is set to 1. See
ASI_CMT_TICK_ENABLE on page 189 for more details. On a warm reset, npt is set to

12 UltraSPARC T2 Supplement « Draft D1.4.3, 19 Sep 2007

1, but counter continues counting (if ASI _CMI_TI CK_ENABLE. tick_enable is 1) or
remains unchanged (if ASI _CMT_TI CK_ENABLE. tick_enable is 0). On all other
resets, TICK does not change (other than the normal counting of counter).

For more information on this register, see the UltraSPARC Architecture 2007
specification.

3.1.2 Program Counter (PC)

Each strand has a read-only program counter register. The PC contains a 48-bit
virtual address and VA{63:48} is sign-extended from VA{47}. The format of this
register is shown in TABLE 3-2.

TABLE 3-2 Program Counter — PC (ASR 05¢4)

Initial
(POR)
Bit Field Value R/W Description
63:48 va_high FFFF;4! RO Sign-extended from VA({47}.
47:2 va 3FFFFC000008, " RO Virtual address contained in the program counter.
1:0 — 0 RO The lower 2 bits of the program counter always read as 0.

1. Initial value listed is when ASI _RST_VEC MASK. VEC_MASK = 0. If
AS| _RST_VEC_MASK. VEC_MASK = 1, the initial value for the register is 20;4. See Section

20.1.4, ASI_RST_VEC_MASK, on page 448 for more details.

For more information on this register, see the UltraSPARC Architecture 2007
specification.

3.1.3 Floating-Point State Register (FSR)

Each virtual processor has a Floating-Point State register. This register follows the
UltraSPARC Architecture 2007 specification, with the ver field permanently set to 0
and the gne field permanently set to 0 (UltraSPARC T2 does not support a FQ).

For more information on this register, see the UltraSPARC Architecture 2007
specification.

3.14 General Status Register (GSR)

Each virtual processor has a nonprivileged general status register (GSR). When
PSTATE.pef or FPRS fef is zero, accesses to this register cause an fp_disabled trap.

For more information on this register, see the UltraSPARC Architecture 2007
specification.

3.1.5

Software Interrupt Register (SOFTINT)

Each virtual processor has a privileged software interrupt register. Nonprivileged
accesses to this register cause a privileged_opcode trap. The TICK_CMPR register
contains three fields: sm, int_level, and tm. Note that while setting the sm (bit 16), tm
(bit 0), and SOFTINT{14} bits all generate interrupt_level_14, these bits are
considered completely independent of each other. Thus a STICK compare will only
set bit 16 and generate interrupt_level_14, not also set bit 14.

TABLE 3-3 specifies how interrupt_level_14 will be shared between SOFTINT writes,
STICK compares, and TICK compares.

TABLE 3-3 Sharing of interrupt_level_14

Event tm SOFTINT{14} sm Action

STICK compare when sm=0 Unchanged Unchanged 1 interrupt_level_14 if
PSTATE.ie =1 and PIL < 14

Set sm =1 when sm =0 Unchanged Unchanged 1 interrupt_level_14 if
PSTATE.ie =1 and PIL <4

Set SOFTINT{14} = 1 when Unchanged 1 Unchanged interrupt_level_14 if

SOFTINT{14} = 0.

PSTATE.ie=1 and PIL <4

TICK compare when tm =0 1 Unchanged Unchanged interrupt_level_14 if

PSTATE.ie=1 and PIL <4

Set tm=1 when tm =0 1 Unchanged Unchanged interrupt_level_14 if

PSTATE.ie=1 and PIL <4

3.1.6

For more information on this register, see the UltraSPARC Architecture 2007
specification.

Tick Compare Register (TICK_CMPR)

Each virtual processor has a privileged Tick compare register. Nonprivileged
accesses to this register cause a privileged_opcode trap. The TICK_CMPR register
contains two fields: int_dis and tick_cmpr. A full 63-bit tick_cmpr field is
implemented in the register, but the bottom seven bits are ignored when comparing
against the TICK counter field. The int_dis bit controls whether a TICK
interrupt_level_14 interrupt is posted in the SOFTINT register when tick_cmpr bits
62:7 match TICK bits 62:7.

Caution | To reliably create interrupt_level_14 interrupts using the tick
compare register, software should ensure that the value written
to bits 62:7 of the Tick Compare Register is larger than the value
subsequently read from bits 62:7 of the TICK Register.

14 UltraSPARC T2 Supplement « Draft D1.4.3, 19 Sep 2007

3.1.7

3.1.8

For more information on this register, see the UltraSPARC Architecture 2007
specification.

System Tick Register (STICK)

STICK and TICK are derived from the same register. Writes to STICK affect TICK
and vice versa.

Writes by user-level code to TICK generate a privileged_opcode trap, while writes by
user-level code to STICK generate an illegal_instruction trap.

Reads of STICK.counter{6:0} are tied to 7Fy¢. This prevents software from setting the
System Tick Compare Register or Hyperprivileged System Tick Compare Register to
a value that should cause a subsequent interrupt but that would not be detected due
to the System Tick Compare Register and Hyperprivileged System Tick Compare
implementation. The compare registers are not continuously compared to STICK,
but are compared periodically (at least once every 128 cycles).

For more information on this register, see the UltraSPARC Architecture 2007
specification.

System Tick Compare Register (STICK_CMPR)

Each virtual processor has a privileged System Tick Compare (STICK_CMPR
register. Nonprivileged accesses to this register cause a privileged_opcode trap.
STICK_CMPR contains two fields: int_dis and stick_cmpr. A full 63-bit stick_cmpr
field is implemented in the register, but the bottom seven bits are ignored when
comparing against the STICK counter field. To assist software in reliably creating
interrupt_level_14 interrupts using the system tick compare register, UltraSPARC T2
always returns reads of the system tick register with bits 6:0 set to 7’h7F. This
ensures that if software writes a value to the system tick compare register that is
greater than the value subsequently read from the system tick register that a match
will occur in the future.

The int_dis bit controls whether a STICK interrupt_level_14 interrupt is posted in the
SOFTINT register when stick_cmpr bits 62:7 match STICK bits 62:7.

For more information on this register, see the UltraSPARC Architecture 2007
specification.

3.2

TABLE 3-4 lists the privileged registers.

Privileged PR State Registers

TABLE 3-4 Privileged Registers
Replicated
Register Register Name Access per-Strand Description
0014 TPC RW Y Trap PC!
0144 TNPC RW Y Trap Next PC!
0214 TSTATE RW Y Trap State
03¢ T RW Y Trap Type
0444 TICK RW Partially Tick
0514 TBA RW Y Trap Base Address!
0614 PSTATE RW Process State
0716 TL RW Y Trap Level
0816 PIL RW Y Processor Interrupt Level
0916 CwP RW Y Current Window Pointer
0A 14 CANSAVE RW Y Savable Windows
0B1¢ CANRESTORE RW Y Restorable Windows
0Cqg CLEANWIN RW Y Clean Windows
0D14 OTHERWIN RW Y Other Windows
0Eq¢ WSTATE RW Window State
1046 GL RW Y Global Level

1. UltraSPARC T2 only implements bits 47:0 of the TPC, TNPC, and TBA
registers. Bits 63:48 are always sign-extended from bit 47.

3.2.1

Trap State Register (TSTATE)

Each virtual processor has MAXTL (6) Trap State registers. These registers hold the
state values from the previous trap level. The format of one element the TSTATE
register array (corresponding to one trap level) is shown in TABLE 3-5.

16 UltraSPARC T2 Supplement « Draft D1.4.3, 19 Sep 2007

3.2.2

TABLE 35 Trap State Register
Initial
(POR)
Bit Field Value R/W Description
63:42 — 0 RO Reserved.
41:40 al 0 RW Global level at previous trap level
39:32 ccr 0 RW CCR at previous trap level
31:24 asi 0 RW ASI at previous trap level
23:21 — 0 RO Reserved
20 pstate tct 0 RW PSTATE.tct at previous trap level
19:18 — 0 RO Reserved (corresponds to bits 11:10 of PSTATE)
17 pstate cle 0 RW PSTATE.cle at previous trap level
16 pstate tle 0 RW PSTATE.tle at previous trap level
15:13 — 0 RO Reserved (corresponds to bits 7:5 of PSTATE)
12 pstate pef 0 RW PSTATE.pef at previous trap level
11 pstate am 0 RW PSTATE.am at previous trap level
10 pstate priv 0 RW PSTATE.priv at previous trap level
9 pstate ie 0 RW PSTATE.ie at previous trap level
8 — 0 RO Reserved (corresponds to bit 0 of PSTATE)
7:3 — 0 RO Reserved
2:0 cwp 0 RW CWP from previous trap level

For more information on this register, see the UltraSPARC Architecture 2007
specification.

Processor State Register (PSTATE)

Each virtual processor has a Processor State register. More details on PSTATE can be
found in the UltraSPARC Architecture 2007 specification. The format of this register
is shown in TABLE 3-6; note that the memory model selection field (mm) mentioned in
UltraSPARC Architecture 2007 is not implemented in UltraSPARC T2.

TABLE3-6 Processor State Register
Initial
(POR)
Bit Field Value R/W Description
63:13 — 0 RO Reserved
12 tct 0 RW Trap on control transfer
11:10 — 0 RO Reserved
9 cle 0 RW Current little endian
8 tle 0 RW Trap little endian

TABLE3-6 Processor State Register

Initial
(POR)
Bit Field Value R/W Description
7:6 — 0 RO Reserved (mm; not implemented in UltraSPARC T2)
5 — 0 RO Reserved (was red)
4 pef 1 RW Enable floating-point
3 am 0 RW Address mask
2 priv 1 RW Privileged mode
1 ie 0 RW Interrupt enable
0 — 0 RO Reserved (was ag)

Implementation
Note

Programming
Note

Traps to hyperprivileged space will set PSTATE.priv to 0.
PSTATE.priv could be set to either a 0 or 1 for this case, as
HPSTATE.hpriv being a 1 overrides the setting in PSTATE.priv.

Hyperprivileged changes to translation in delay slots of delayed
control transfer instructions should be avoided; see Section
12.3.2, Real-to-Physical Address Mapping and Speculative Instruction
Fetch, on page 115.

For more information on this register, see the UltraSPARC Architecture 2007

specification.

3.2.3 Trap Level Register (TL)

Each virtual processor has a Trap Level register. Writes to this register saturate at
MAXPTL (2) when in privileged mode and at MAXTL (6) in hyperprivileged mode. This
saturation is based on bits 2:0 of the write data; bits 63:3 of the write data are

ignored.

Note

Hyperprivileged software can set TL to greater than MAXPTL for
user or supervisor code by writing to TSTATE followed by a
DONE/RETRY, doing a JMPL/WRHPR pair, etc. Operation of
the UltraSPARC T2 chip when HPSTATE.hpriv =0 and TL >
MAXPTL follows UltraSPARC Architecture, and while in this state
all traps destined for privileged level will instead be delivered
to hyperprivileged level using the guest watchdog vector.

For more information on this register, see the UltraSPARC Architecture 2007

specification.

18 UltraSPARC T2 Supplement « Draft D1.4.3, 19 Sep 2007

324

3.2.5

Current Window Pointer (CWP) Register

Since N_REG_WINDOWS = 8 on UltraSPARC T2, the CWP register in each virtual
processor is implemented as a 3-bit register.

For more information on this register, see the UltraSPARC Architecture 2007
specification.

Global Level Register (GL)

Each virtual processor has a Global Level register, which controls which set of four
global register windows is in use. The maximum global level (MAXGL) for
UltraSPARC T2 is 3, so GL is implemented as a 2-bit register on UltraSPARC T2. GL
is restricted to be less than or equal to MAXPTL (2) for privileged and nonprivileged
code. On a trap, GL is set to min(GL + 1, MAXGL) for traps to hyperprivileged mode
and to min(GL + 1,MAXPTL) for traps to privileged mode. On a DONE or RETRY, if
executed with HTSTATE[TL].HPSTATE.hpriv = 1 (so that the DONE or RETRY places
the virtual processor in hyperprivileged mode), the value of GL is restored from
TSTATE[TL].gl.

Writes to the GL register saturate at MAXPTL when in privileged mode, and MAXGL in
hyperprivileged mode. This saturation is based on bits 3:0 of the write data; bits 63:4
of the write data are ignored.

The format of the GL register is shown in TABLE 3-7.

TABLE3-7 Global Level Register

Initial

(POR)
Bit Field Value R/W Description
63:2 — 0 RO Reserved
1:0 gl 3 RW Global level.

Note | Hyperprivileged software can still set GL to greater than MAXPTL
for nonprivileged or privileged code (although this is not
recommended, except in diagnostic code) by doing a JMPL/
WRHPR pair when GL > MAXPTL. The UltraSPARC T2 chip
allows software normal access to the global registers when
HPSTATE.hpriv = 0 and GL > MAXPTL.

For more information on this register, see the UltraSPARC Architecture 2007
specification.

3.3 Hyperprivileged Registers

TABLE 3-8 shows the format of the UltraSPARC T2 hyperprivileged registers.

TABLE 3-8 Hyperprivileged Registers
Replicated
Register Register Name Access by Strand Description
0044 HPSTATE RW Y Hypervisor Processor State register
0144 HTSTATE RW Y Hypervisor Trap State register
0314 HINTP RW Y Hypervisor Interrupt Pending register
0514 HTBA RW Y Hypervisor Trap Base Address registerl
0616 HVER RO N Version register
1Eq4 HALT RW Y Halt instruction
1Fq¢ HSTICK_CMPR RW Y Hypervisor System Tick Compare register

1. UltraSPARC T2 only implements bits 47:14 of the tha field. Bits 63:48 are
always sign-extended from bit 47.

3.3.1 Hypervisor Processor State Register (HPSTATE)

Each virtual processor has a Hypervisor Processor State register, HPSTATE.

Full documentation on the Hypervisor Processor State register can be found in the
UltraSPARC Architecture 2007 specification.

Note | The tlz bit retains its current value when a trap is taken, which is
different from the UltraSPARC Architecture specification, which
specifies it is cleared when any trap is taken.

Programming | Hyperprivileged changes to translation in delay slots of delayed

Note | control transfer instructions should be avoided; see Section
12.3.2, Real-to-Physical Address Mapping and Speculative Instruction
Fetch, on page 115.

3.3.2 Hypervisor Trap State Register (HTSTATE)

Each virtual processor has a set of Hypervisor Trap State registers, one per trap
level. These registers hold the hyperprivileged state values from the previous trap
level. Full documentation on this register can be found in the UltraSPARC
Architecture specification.

20 UltraSPARC T2 Supplement « Draft D1.4.3, 19 Sep 2007

3.3.3

3.3.4

3.3.5

3.3.6

3.3.7

Hypervisor Interrupt Pending Register (HINTP)

Each virtual processor has a Hypervisor Interrupt Pending register. Full
documentation on this register can be found in the UltraSPARC Architecture
specification.

Hypervisor Trap Base Address Register (HTBA)

Each virtual processor has a Hypervisor Trap Base Address Register. Full
documentation on this register can be found in the UltraSPARC Architecture
specification.

Note | UltraSPARC T2 only implements bits 47:14 of the tba field of

HTBA. Bits 63:48 are always sign-extended from bit 47.

Hyperprivileged Version Register (HVER)

The strands on a physical core share a read-only Version register. Writes to this
register generate an illegal_instruction trap.

Hyperprivileged System Tick Compare Register
(HSTICK_CMPR)

Each virtual processor has a Hyperprivileged System Tick Compare register.
HSTICK_CMPR register contains two fields: int_dis and hstick_cmpr.

In the UltraSPARC T2 implementation, a full 63-bit hstick_cmpr field is implemented
in the register but the bottom seven bits are ignored when comparing to the STICK
counter field. To assist software in reliably creating hstick_match traps using the
hyperprivileged system tick compare register, UltraSPARC T2 always returns reads
of the system tick register with bits 6:0 set to 7Fq¢ (all ones). This ensures that if
software writes a value to HSTICK_CMPR that is greater than the value
subsequently read from the system tick register, a match will occur in the future.

For more information on this register, see the UltraSPARC Architecture 2007
specification.

Halt

UltraSPARC T2 provides an iimplementation-specific “halt” pseudo-instruction that
can place the virtual processor (strand) executing it into the hal t state. The “halt”
pseudo-instruction is encoded as a write (via WRHPR) to HPR 1E4 (the “halt”

psuedo-register) The virtual strand enters the hal t state when:

(a) hyperprivileged software writes to HPR 1E;¢ and

(b) there are no pending interrupts or modes (as described below) that would
prevent entering the hal t state.

A RDHPR of HPR 1E;4 returns zero.

The format of the “halt” pseudo-register is shown in Table 3-9 .

TABLE3-9 "Halt" Pseudo-Register

Initial
(POR)
Bit Field Value R/W Description
63:0 — 0 RW Reserved.Reads return zero and write data is ignored.

The operation of the Halt pseudo-instruction is as follows. The virtual processor can
be parked, disabled, running, or halted. A virtual processor can be enabled or
disabled by writing to ASI_CORE_ENABLE (see 14.1.3 on page 188). A virtual
processor, when enabled, can either be parked or unparked, by writing to the
ASI_CORE_RUNNING_RW register (see 14.1.7 on page 190). When enabled and
unparked, the virtual processor is normally running. A running virtual core may be
halted by writing to the Halt register. Once halted, the virtual processor remains
halted until an interrupt arrives. When the interrupt arrives, the processor
transitions back to running. It resumes execution at the NPC of the Halt instruction.

When halted, the virtual processor consumes no execution resource. It is similar to
the parked state except that it awakens upon an interrupt.

If an interrupt arrives coincident with the execution of the Halt instruction, the
virtual processor remains running and takes the interrupt.

The following interrupts transition a halted virtual processor back to the running
state:

1. The virtual processor receives an interrupt from another virtual processor via the
Interrupt Vector Dispatch Register(see 7.3.3 on page 60).

2. The virtual processor receives an XIR.

3. The virtual processor receives any disrupting or deferred error leading to a
software_recoverable_error trap, hardware_corrected_error trap, or a deferred
store_error trap. Note: ASI_SETER masking is not applied, so even if the virtual
processors ASI_SETER masks the error trap, the virtual processor transitions to
the running state.

4. The virtual processor sets softint[16] (softint.sm). Only stick_match can do this
while in halted state. If softint[16] is 1 when the Halt instruction executes, the
virtual processor remains in running state. Masking via PIL is not applied, so
even if PIL masks the exception, the virtual processor transitions to running state.

22 UltraSPARC T2 Supplement « Draft D1.4.3, 19 Sep 2007

5. The virtual processor sets softint[0] (softint.tm). Only tick_match can do this
while in halted state. If softint[0] is 1 when the Halt instruction executes, the
virtual processor remains in running state. Masking via PIL is not applied, so
even if PIL masks the exception, the strand transitions to running state

6. The virtual processor receives an hstick_match_interrupt. If hintp is 1 when the
Halt instruction executes, the strand remains in running state.

7. The virtual processor receives an interrupt_vector exception.

8. The virtual processor receives a park request, as a result of another virtual
processor writing to the ASI_ CORE_RUNNING_RW or
ASI_CORE_RUNNING_WIC registers. In this case, the virtual processor
transitions from halted to running to parked.

9. Entry to Single Step mode
10. Entry to Disable Overlap mode

Note: If the virtual processor is executing in Single Step or Disable Overlap mode
and executes a Halt instruction, the virtual processor remains running in that mode.
It does not enter halt state.

24 UltraSPARC T2 Supplement « Draft D1.4.3, 19 Sep 2007

CHAPTER 4

Instruction Format

Instruction formats are described in the UltraSPARC Architecture 2006 specification.

25

26 UltraSPARC T2 Supplement « Draft D1.4.3, 19 Sep 2007

CHAPTER 5

Instruction Definitions

5.1 Instruction Set Summary

The UltraSPARC T2 CPU implements the UltraSPARC Architecture 2007UltraSPARC
Architecture 2007 instruction set.

TABLE 5-1 lists the complete UltraSPARC T2 instruction set supported in hardware.
All instructions are documented in the UltraSPARC Architecture 2007 specification.

TABLE 5-1

Complete UltraSPARC T2 Hardware-Supported Instruction Set (1 of 6)

Opcode

Description

ADD (ADDcc)
ADDC (ADDCcc)
ALIGNADDRESS
ALIGNADDRESSL
ALLCLEAN

AND (ANDcc)
ANDN (ANDNCcc)
ARRAY(8,16,32}
Bicc

BMASK

BPcc

BPr

BSHUFFLE

CALL!

CASA

CASXA

DONE
EDGE{8,16,32}{L}{N}

Add (and modify condition codes)

Add with carry (and modify condition codes)
Calculate address for misaligned data access
Calculate address for misaligned data access (little-endian)
Mark all windows as clean

And (and modify condition codes)

And not (and modify condition codes)

3-D address to blocked byte address conversion
Branch on integer condition codes

Writes the GSR.mask field

Branch on integer condition codes with prediction
Branch on contents of integer register with prediction
Permutes bytes as specified by the GSR.mask field
Call and link

Compare and swap word in alternate space

Compare and swap doubleword in alternate space
Return from trap

Edge boundary processing {little-endian} {non-condition-code altering}

27

TABLE 5-1 Complete UltraSPARC T2 Hardware-Supported Instruction Set (2 of 6)

Opcode Description

FABS(s,d) Floating-point absolute value

FADD(s,d) Floating-point add

FALIGNDATA Perform data alignment for misaligned data

FANDNOT1({s}
FANDNOT?2{s}
FAND({s}
FBPfcc

FBfcc
FCMP(s,d)
FCMPE(s,d)
FCMPEQ{16,32}
FCMPGT{16,32}
FCMPLE({16,32}
FCMPNE(16,32}
FDIV(s,d)
FEXPAND
FiTO(s,d)
FLUSH
FLUSHW
FMOV(s,d)
FMOV(s,d)cc
FMOV(s,d)R
FMUL(s,d)
FMULS8SUX16
FMULSULX16
FMULS8X16
FMULSX16AL
FMULS8X16AU
FMULD8SUX16
FMULDS8ULX16
FNAND(s}
FNEG(s,d)
FNOR(s}
FNOT1{s}
FNOT2{s}
FONE(s}
FORNOT1{s}

Negated srcl and src2 (single precision)

Srcl and negated src2 (single precision)

Logical and (single precision)

Branch on floating-point condition codes with prediction

Branch on floating-point condition codes

Floating-point compare

Floating-point compare (exception if unordered)

Four 16-bit / two 32-bit compare: set integer dest if src1 = src2

Four 16-bit / two 32-bit compare: set integer dest if src1 > src2

Four 16-bit / two 32-bit compare: set integer dest if src1 < src2

Four 16-bit / two 32-bit compare: set integer dest if src1 # src2
Floating-point divide

Four 8-bit to 16-bit expand

Convert integer to floating-point

Flush instruction memory

Flush register windows

Floating-point move

Move floating-point register if condition is satisfied

Move floating-point register if integer register contents satisfy condition
Floating-point multiply

Signed upper 8- X 16-bit partitioned product of corresponding components
Unsigned lower 8- x 16-bit partitioned product of corresponding components
8- x 16-bit partitioned product of corresponding components

Signed lower 8- x 16-bit lower a partitioned product of four components
Signed upper 8- x 16-bit lower a partitioned product of four components
Signed upper 8- x 16-bit multiply — 32-bit partitioned product of components
Unsigned lower 8- x 16-bit multiply — 32-bit partitioned product of components
Logical nand (single precision)

Floating-point negate

Logical nor (single precision)

Negate (1's complement) src1 (single precision)

Negate (1's complement) src2 (single precision)

One fill (single precision)

Negated srcl or src2 (single precision)

28 UltraSPARC T2 Supplement « Draft D1.4.3, 19 Sep 2007

TABLE 5-1 Complete UltraSPARC T2 Hardware-Supported Instruction Set (3 of 6)

Opcode Description

FORNOT2(s} srcl or negated src2 (single precision)
FOR({s} Logical or (single precision)

FPACKFIX Two 32-bit to 16-bit fixed pack
FPACK({16,32} Four 16-bit/two 32-bit pixel pack
FPADD({16,32}{s} Four 16-bit/two 32-bit partitioned add (single precision)
fPMERGE Two 32-bit to 64-bit fixed merge
FPSUB{16,32}{s} Four 16-bit/two 32-bit partitioned subtract (single precision)
FsMULd Floating-point multiply single to double
FSQRT(s,d) Floating-point square root

FSRC1{s} Copy srcl (single precision)

FSRC2({s} Copy src2 (single precision)

F(s,d)TO(s,d) Convert between floating-point formats
F(s,d)TOi Convert floating point to integer

F(s,d)TOx Convert floating point to 64-bit integer
FSUB(s,d) Floating-point subtract

FXNOR(s} Logical xnor (single precision)

FXOR(s} Logical xor (single precision)

FxTO(s,d) Convert 64-bit integer to floating-point
FZERO({s} Zero fill (single precision)

ILLTRAP Illegal instruction

INVALW Mark all windows as CANSAVE

JMPL Jump and link

LDBLOCKF 64-byte block load

LDDF Load double floating-point

LDDFA Load double floating-point from alternate space
LDF Load floating-point

LDFA Load floating-point from alternate space
LDFSR Load floating-point state register lower
LDSB Load signed byte

LDSBA Load signed byte from alternate space
LDSH Load signed halfword

LDSHA Load signed halfword from alternate space
LDSTUB Load-store unsigned byte

LDSTUBA Load-store unsigned byte in alternate space
LDSW Load signed word

LDSWA Load signed word from alternate space

LDTW Load twin words

TABLE 5-1 Complete UltraSPARC T2 Hardware-Supported Instruction Set (4 of 6)

Opcode Description

LDTWA Load twin words from alternate space
LDUB Load unsigned byte

LDUBA Load unsigned byte from alternate space
LDUH Load unsigned halfword

LDUHA Load unsigned halfword from alternate space
LDUW Load unsigned word

LDUWA Load unsigned word from alternate space
LDX Load extended

LDXA Load extended from alternate space
LDXFSR Load extended floating-point state register
MEMBAR Memory barrier

MOVcc Move integer register if condition is satisfied
MOVr Move integer register on contents of integer register
MULScc Multiply step (and modify condition codes)
MULX Multiply 64-bit integers

NOP No operation

NORMALW Mark other windows as restorable

OR (ORcc) Inclusive-or (and modify condition codes)
ORN (ORNCcc) Inclusive-or not (and modify condition codes)
OTHERW Mark restorable windows as other

PDIST Distance between 8 8-bit components

POPC Population count

PREFETCH Prefetch data

PREFETCHA Prefetch data from alternate space

PST Eight 8-bit/4 16-bit/2 32-bit partial stores
RDASI Read ASI register

RDASR Read ancillary state register

RDCCR Read condition codes register

RDFPRS Read floating-point registers state register
RDHPR Read hyperprivileged register

RDPC Read program counter

RDPR Read privileged register

RDTICK Read TICK register

RDY Read Y register

RESTORE Restore caller’s window

RESTORED Window has been restored

RETRY Return from trap and retry

30 UltraSPARC T2 Supplement « Draft D1.4.3, 19 Sep 2007

TABLE 5-1 Complete UltraSPARC T2 Hardware-Supported Instruction Set (5 of 6)

Opcode Description

RETURN Return

SAVE Save caller’s window
SAVED Window has been saved

SDIV (SDIVcc)
SDIVX
SETHI
SIAM

SIR

SLL

SLLX

SMUL (SMULcc)
SRA

SRAX

SRL

SRLX

STB

STBA
STBAR
STBLOCKF
STDF
STDFA

STF

STFA

STFSR

STH

STHA
STTW
STTWA
STW

STWA

STX

STXA
STXFSR
SUB (SUBcc)
SUBC (SUBCcc)
SWAP
SWAPA

32-bit signed integer divide (and modify condition codes)
64-bit signed integer divide

Set high 22 bits of low word of integer register
Set interval arithmetic mode

Software-initiated reset

Shift left logical

Shift left logical, extended

Signed integer multiply (and modify condition codes)
Shift right arithmetic

Shift right arithmetic, extended

Shift right logical

Shift right logical, extended

Store byte

Store byte into alternate space

Store barrier

64-byte block store

Store double floating-point

Store double floating-point into alternate space
Store floating-point

Store floating-point into alternate space

Store floating-point state register

Store halfword

Store halfword into alternate space

Store twin words

Store twin words into alternate space

Store word

Store word into alternate space

Store extended

Store extended into alternate space

Store extended floating-point state register
Subtract (and modify condition codes)
Subtract with carry (and modify condition codes)
Swap integer register with memory

Swap integer register with memory in alternate space

31

TABLE 5-1 Complete UltraSPARC T2 Hardware-Supported Instruction Set (6 of 6)

Opcode Description

TADDcc Tagged add and modify condition codes (trap on overflow)

(TADDccTV)

TSUBcc Tagged subtract and modify condition codes (trap on overflow)

(TSUBccTV)

Tec Trap on integer condition codes (with 8-bit sw_trap_number, if bit 7 is set trap to

UDIV (UDIVcc)
UDIVX

UMUL (UMULcc)
WRASI

WRASR
WRCCR
WRFPRS
WRHPR

WRPR

WRY

XNOR (XNORcc)
XOR (XORcc)

hyperprivileged)

Unsigned integer divide (and modify condition codes)
64-bit unsigned integer divide

Unsigned integer multiply (and modify condition codes)
Write ASI register

Write ancillary state register

Write condition codes register

Write floating-point registers state register

Write hyperprivileged register

Write privileged register

Write Y register

Exclusive-nor (and modify condition codes)

Exclusive-or (and modify condition codes)

1. The PC format saved by the CALL instruction is the same as the format of the PC register spec-
ified in Section 3.1.2, Program Counter (pc), on page 13.

TABLE 5-2 lists the SPARC V9 and sun4v instructions that are not directly
implemented in hardware by UltraSPARC T2, and the exception that occurs when an
attempt is made to execute it.

TABLE 5-2 UltraSPARC Architecture 2007 Instructions Not Directly Implemented by UltraSPARC T2
Hardware (1 of 2)

Opcode Description Exception

FABSq Floating-point absolute value quad illegal_instruction
FADDq Floating-point add quad illegal_instruction
FCMPq Floating-point compare quad illegal_instruction
FCMPEq Floating-point compare quad (exception if unordered) illegal_instruction
FDIVq Floating-point divide quad illegal_instruction
FdMULq Floating-point multiply double to quad illegal_instruction
FiTOq Convert integer to quad floating-point illegal_instruction
FMOVq Floating-point move quad illegal_instruction
FMOVqcc Move quad floating-point register if condition is satisfied illegal_instruction

32 UltraSPARC T2

Supplement ¢ Draft D1.4.3, 19 Sep 2007

TABLE 5-2 UltraSPARC Architecture 2007 Instructions Not Directly Implemented by UltraSPARC T2
Hardware (2 of 2)

Opcode Description Exception
FMOVqr Move quad floating-point register if integer register contents illegal_instruction
satisfy condition

FMULq Floating-point multiply quad illegal_instruction
FNEGq Floating-point negate quad illegal_instruction
FSQRTq Floating-point square root quad illegal_instruction
F(s,d,q)TO(q) Convert between floating-point formats to quad illegal_instruction
FQTOI Convert quad floating point to integer illegal_instruction
FQTOX Convert quad floating point to 64-bit integer illegal_instruction
FSUBq Floating-point subtract quad illegal_instruction
FxTOq Convert 64-bit integer to floating-point illegal_instruction
IMPDEP1 (not listed Implementation-dependent instruction illegal_instruction
in TABLE 5-1)

IMPDEP2 (not listed Implementation-dependent instruction illegal_instruction
in TABLE 5-1)

LDQF Load quad floating-point illegal_instruction
LDQFA Load quad floating-point into alternate space illegal_instruction
STQF Store quad floating-point illegal_instruction
STQFA Store quad floating-point into alternate space illegal_instruction

5.2 UltraSPARC T2-Specific Instructions

5.3 Block Load and Store Instructions

See the LDBLOCKF and STBLOCKEF instruction descriptions in the UltraSPARC
Architecture 2007 specification for the standard definitions of these instructions.

Block loads are not allowed to IO space (which is indicated on UltraSPARC T2 by
PA{39} = 1).

A block load to IO space generates a DAE_nc_page trap.

Block stores to IO space are permitted.

Block store commits in UltraSPARC T2 do NOT force the data to be written to
memory as specified in the UltraSPARC Architecture 2007 specification. Block store
commits are implemented the same as block stores in UltraSPARC T2. As with all
stores, block stores and block store commits will maintain coherency with all I-
caches, but will not flush any modified instructions executing down a pipeline.
Flushing those instructions requires the pipeline to execute a FLUSH instruction.

Notes | If LDBLOCKEF is used with an ASI _BLK _COMM T_{PR,S} and a
destination register number rd is specified which is not a
multiple of 8 (a misaligned rd), UltraSPARC T2 generates an
illegal_instruction exception (impl. dep. #255-U3-Cs10).

If LDBLOCKEF is used with an ASI _BLK_COW T_{RS} and a
memory address is specified with less than 64-byte alignment,
UltraSPARC T2 generates a mem_address_not_aligned
exception (impl. dep. #256-U3)

These instructions are used for transferring large blocks of data
(more than 256 bytes); for example, bcopy() and bfill ().On
UltraSPARC T2, a block load forces a miss in the primary cache
and will not allocate a line in the primary cache, but does
allocate in L2.

UltraSPARC T2 treats block loads as interlocked with respect to following
instructions. That is, all floating-point registers are updated before any subsequent
instruction issues.

STBLOCKEF source data registers are interlocked against completion of previous
instructions, including block load instructions.

LDBLOCKF does not follow memory model ordering with respect to stores. In
particular, read-after-write hazards to overlapping addresses are not detected. The
side-effect bit associated with the access is ignored (see Translation Table Entry (TTE)
on page 105). If ordering with respect to earlier stores is important (for example, a
block load that overlaps previous stores), then there must be an intervening
MEMBAR #St or eLoad or stronger MEMBAR. If the LDBLOCKEF overlaps a
previous store and there is no intervening MEMBAR or data reference, the
LDBLOCKEF may return data from before or after the store.

Compatibility | Prior UltraSPARC implementations may have provided the first
Note | two registers at the same time. If code depends upon this
unsupported behavior it must be modified for UltraSPARC T2.

STBLOCKEF does not follow memory model ordering with respect to loads, previous
block stores, or subsequent stores. (UltraSPARC T2 orders block stores with respect
to previous nonblock stores). In particular, read-after-write hazards to overlapping

addresses are not detected. The side-effects bit associated with the access is ignored.

34 UltraSPARC T2 Supplement « Draft D1.4.3, 19 Sep 2007

If ordering with respect to later loads is important then there must be an intervening
MEMBAR instruction. If the STBLOCKF overlaps a later load and there is no
intervening MEMBAR #St or eLoad instruction, the contents of the block are

undefined.

Compatibility
Notes

Block load and store operations do not obey the ordering
restrictions of the currently selected processor memory model
(TSO, PSO, or RMO); block operations always execute under an
RMO memory ordering model. In general, explicit MEMBAR
instructions are required to order block operations among
themselves or with respect to normal loads and stores. In
addition, block operations do not generally conform to
dependence order on the issuing virtual processor; that is, no
read-after-write or write-after-read checking occurs between
block loads and stores. Explicit MEMBARs are required to
enforce dependence ordering between block operations that
reference the same address. However, UltraSPARC T2 partially
orders some block operations.

TABLE 5-3 describes the synchronization primitives required in
UltraSPARC T2, if any, to guarantee TSO ordering between
various sequences of memory reference operations. The first
column contains the reference type of the first or earlier
instruction; the second column contains the reference type of the
second or the later instruction. UltraSPARC T2 orders loads and
block loads against all subsequent instructions.

TABLE5-3 UltraSPARC T2 Synchronization Requirements for Memory Reference

Operations
First reference Second reference Synchronization Required
Load Load —
Block load —
Store —

Block store —

Block load Load —

Block load —

Store —

Block store —

TABLE5-3 UltraSPARC T2 Synchronization Requirements for Memory Reference

Operations
First reference Second reference Synchronization Required
Store Load —
Block load MEMBAR #St or eLoad or #Sync
Store —

Block store —

Block store Load MEMBAR #St or eLoad or #Sync
Block load MEMBAR #St or eLoad or #Sync
Store MEMBAR #Sync
Block store MEMBAR #Sync

Block Initializing Store ASIs

ASI

Instruction imm_asi Value Operation

ST[B,H,W,TW,X]A ASI _ST_BLKINI T_AS_| F_USER_ 2214 64-byte block initialing store to
PRI MARY (ASI _STBI _Al UP) primary address space, user privilege
ASI _ST BLKINI T_AS | F_USER SEC 2315 64-byte block initialing store to
ONDARY (ASI _STBI _Al US) secondary address space, user

privilege

ASI| _ST_BLKI NI T_NUCLEUS 2714 64-byte block initialing store to
(ASI _STBI _N) nucleus address space
ASlI _ST BLKINIT_AS | F_USER PRI 2Aq1¢ 64-byte block initialing store to
MARY_LI TTLE primary address space, user privilege,
(ASI _STBI _Al UPL) little-endian
ASI _ST_BLKI NI T_AS_| F_USER_SEC 2By 64-byte block initialing store to
ONDARY_LI TTLE secondary address space, user
(ASI _STBI _Al US_L) privilege, little-endian
ASI _ST_BLKINI T_NUCLEUS_LI TTLE 2F;¢ 64-byte block initialing store to
(ASI _STBI _NL) nucleus address space, little-endian
ASI _ST_BLKI NI T_PRI MARY E214 64-byte block initialing store to

(ASl_STBI _P)

primary address space

36 UltraSPARC T2 Supplement « Draft D1.4.3, 19 Sep 2007

ASI

Instruction imm_asi Value Operation
ASI _ST_BLKI NI T_SECONDARY E31¢ 64-byte block initialing store to
(ASI _STBI _S) secondary address space
AS| _ST_BLKINI T_PRIMARY_LI TTLE ~ EA; 64-byte block initialing store to
(ASI _STBI _PL) primary address space, little-endian
AS| _ST_BLKI NI T_SECONDARY_LI TTLE EBy4 64-byte block initialing store to
(ASI_STBI _SL) secondary address space, little-endian
Description Block initializing store instructions are selected by using one of the block initializing

store ASIs with integer store instructions. These ASIs allow block initializing stores
to be performed to the same address spaces as normal stores. Little-endian ASIs
access data in little-endian format, otherwise the access is assumed to be big-endian.

Integer stores of all sizes (to alternate space) are allowed to use these ASIs

All stores to these ASIs operate under relaxed memory ordering (RMO), regardless
of the PSTATE.mm setting, and software must follow a sequence of these stores with
a MEMBAR #Sync to ensure ordering with respect to subsequent loads and stores.
Stores to these ASIs where the least-significant 6 bits of the address are non-zero
(that is, not the first word in the cache line) behave the same as a normal RMO store.
A store to these ASIs where the least-significant 6 bits are zero will load a cache line
in the L2 cache with either all zeros or the existing data, and then update that line
with the new store data. This special store will make sure the line maintains
coherency when it is loaded into the cache, but will not generally fetch the line from
memory (initializing it with zeros instead). Stores using these ASIs to a noncacheable
address (PA{39} = 1) will behave the same as a normal store.

Note | These instructions are used for transferring large blocks of data
(more than 256 bytes); for example, bcopy() and bfill ().On
UltraSPARC T2, a quad load forces a miss in the primary cache
and will not allocate a line in the primary cache, but does
allocate in L2.

Access to these ASIs by a floating-point store (STFA, STDFA) will result in a
DAE_invalid_ASI trap (or mem_address_not_aligned trap if not properly aligned for
the store size).

The following pseudocode shows how these ASIs can be used to do a quadword
aligned (on both source and destination) copy of N quadwords from A to B (where
N > 3). Note that the final 64 bytes of the copy is performed using normal stores,
guaranteeing that all initial zeros in a cache line are overwritten with copy data.
%O — [A]

%1 — [B

prefetch [% 0]

for (i = 0; i < N-4; i++) {

if (1(i %4)) {
prefetch [% 0+64]
}

I dtxa [% 0] #ASI _TWNX P, %2

add %0, 16, %0

stxa %2, [%1] #ASl _ST BLKI NI T_PRI MARY
add %1, 8, %1

stxa %3, [%1] #ASI _ST BLKI NI T_PRI MARY
add %1, 8, %1

for (i = 0; i < 4; i++) {
I dtxa [% 0] #ASI _TWNX P, %2
add %0, 16, %0
stx %2, [%1]
stx %3,d [% 1+8]
add %1, 16, %1
}
menbar #Sync

Programming | These ASIs are specific to UltraSPARC T2 to provide a high-

Notes | performance bcopy alternative to block load and store (which
fetch the lined stored to from memory to the L2 cache, requiring
three memory operations for bcopy() and two memory
operations for a bf i I'| ()). These ASIs are of Class "N" and are
only allowed in dynamically linked, platform-specific, OS-
enabled libraries.

These ASIs provide a higher-performance bcopy() orbfill ()
than LDBLOCKF and STBLOCKEF, due to their ability to avoid
the unnecessary fetch from memory of the data that is
overwritten by the store.

5.3.1 Load Twin Extended Word

Load Twin Extended Word instructions are not allowed to access 10 space (indicated
by PA{39} =1 on UltraSPARC T2). An LDTXA to IO space generates a
DAE_nc_page trap.

38 UltraSPARC T2 Supplement « Draft D1.4.3, 19 Sep 2007

CHAPTER 6

Traps

6.1 Trap Levels

Each virtual processor supports six trap levels (MAXTL = 6). Traps to privileged mode
(supervisor software) while in privileged mode when TL = MAXPTL (2) will trap
instead to the hyperprivileged mode (hypervisor software), using the guest
watchdog vector in the hyperprivileged trap table. TL will be incremented, but the
processor will not enter RED_st at e and the trap type will be set to that of the trap
that caused the event, not the watchdog trap type.

6.2 Trap Behavior

TABLE 6-1 specifies the codes used in the tables below.

TABLE 6-1 Table Codes

Code Meaning
H Trap is taken via the Hyperprivileged trap table, in Hyperprivileged mode (HSTATE.hpriv = 1)
p Trap is taken via the Privileged trap table, in Privileged mode (PSTATE.priv = 1)

39

TABLE 6-1 Table Codes
Code Meaning

HY Trap is taken via the Hyperprivileged trap table, in Hyperprivileged mode (HSTATE.hpriv = 1).
However, the trap is unexpected. While hardware can legitimately generate this trap, it should not
do so unless there is a programming error or some other error. Therefore, occurrence of this trap
indicates an actual error to hyperprivileged software.

-X- Not possible. Hardware cannot generate this trap in the indicated running mode. For example, all
privileged instructions can be executed in both privileged and hyperprivileged modes, therefore a
privileged_opcode trap cannot occur in privileged or hyperprivileged mode.

— This trap can only legitimately be generated by hyperprivileged software, not by the CPU
hardware. So, for the purposes of sun4v, the trap vector has to be correct, but for a hardware CPU
implementation these trap types are not generated by the hardware, therefore the resultant
running mode is irrelevant.

For example, trap 1 (“power on reset”) in TABLE 6-2, if delivered in any running
mode, results in a delivery directly to the hypervisor mode.
TABLE 6-2 Trap Behavior (1 of 3)
From privilege level:

TT # Hardware Trap Name Priority Nonprivileged Privileged Hyperprivileged
016 Reserved — — — —
16 power_on_reset 0 H H H
244 watchdog_reset variable? H H H

guest watchdog variable® H H —
316 externally_initiated_reset 1.1 H H H
446 software_initiated_reset 1.3 -X- -X- H
516 RED_state_exception 14 H H H
616 Reserved — — — —
716 store_error 21 H H H
816 IAE_privilege_violation 3.1 H -X- -X-
916 instruction_access_ MMU_miss 2.8 H H -x-?
Aqg instruction_access_error 4 H H H
Byg IAE_unauth_access 2.9 H H HY
Cis IAE_nfo_page 33 H H HY
Dyg instruction_address_range 2.6 H H HY
Eig instruction_real_range 2.6 H H HY
Fi6 Reserved — — — —
1014 illegal_instruction 6.1 H H H
1144 privileged_opcode 7 P -X- -X-
1244 unimplemented_LDTW — — — —
1344 unimplemented_STTW — — — —

40 UltraSPARC T2 Supplement « Draft D1.4.3, 19 Sep 2007

TABLE 6-2 Trap Behavior (2 of 3)
From privilege level:
TT # Hardware Trap Name Priority Nonprivileged Privileged Hyperprivileged
1414 DAE_invalid_asi 12.1 H H HY
1514 DAE_privilege_violation 12.4 H H HY
1614 DAE_nc_page 12.5 H H HY
1714 DAE_nfo_page 12.6 H H HY
1814-1Fq¢ Reserved — — — —
2044 fp_disabled 8.1 P P HY
2144 fp_exception_ieee_754 11.1 P P HY
2246 fp_exception_other 11.1 P P HY
2346 tag_overflow 14 P P HY
2414274 clean_window 10.1 P P HY
2816 division_by_zero 15 P P HY
2916 internal_processor_error 8.2 or H H H
12.10°

2A44 instruction_invalid_TSB_entry 2.107 H H -X-
2Byg data_invalid_TSB_entry 12.3 H H H
2Cq4 Reserved — — — —
2Dy mem_real_range 11.3 H H HY
2Eq4 mem_address_range 11.3 H H Hv
2Fq6 Reserved — — — —
3044 DAE_so_page 12.6 H H HY
3146 data_access_MMU_miss 12.3 H H H
3216 data_access_error 12.9 H H H
3316 data_access_protection — — — —
3444 mem_address_not_aligned 10.2 H H HY
3516 LDDF_mem_address_not_aligned 10.1 H H HY
3616 STDF_mem_address_not_aligned 10.1 H H Hv
3716 privileged_action 11.1 H H -X-
3816 LDQF_mem_address_not_aligned — — — —
3916 STQF_mem_addess_not_aligned — — — —
3A44 Reserved — — — —
3B16 unsupported_page_size 13 H H HY
3Cq6 control_word_queue_interrupt 16.5 H H H
3Dy4 modular_arithmetic_interrupt 16.4 H H H
3E1g inst_real_translation_miss 2.8 H H N?
3F¢ data_real_translation_miss 12.3 H H H
40 sw_recoverable_error 33.1 H H H
4114-4F14 interrupt_level_n 32-n P P -X-

41

TABLE 6-2 Trap Behavior (3 of 3)

From privilege level:

TT # Hardware Trap Name Priority Nonprivileged Privileged Hyperprivileged
4F14 pic_overflow (interrupt_level_15) 16.0, P P -X-
variable®

5014-5D1g Reserved —

5E1¢ hstick_match 16.1 H H H
5F16 trap_level_zero 2.2 H H -X-
6016 interrupt_vector_trap 16.3 H H H
6144 PA_watchpoint 12.8 H H H
6214 VA_watchpoint 11.2 H H -X-
6316 hw_corrected_error 33.2 H H H
64161 fast_instruction_access_MMU_miss 2.8 H H -X-
68161 fast_data_access_MMU_miss 12.3 H H H
6C161 fast_data_access_protection 12.7 H H H
7014 Reserved — — — —
7116 instruction_access_MMU_error 2.7 H H -X-
7214 data_access_MMU_error 12.2 H H H
7316 Reserved — — — —
7444 control_transfer_instruction 111 P P H
7516 instruction_VA_watchpoint 2.5 H H -X-
7614 instruction_breakpoint 6.2 H H H
7716-7B16 Reserved — — — —
7Cq6 cpu_mondo_trap 16.6 P P -X-
7Di6 dev_mondo_trap 16.7 P P -X-
7E16 resumable_error 33.3 p P -X=
7F1 nonresumable_error — — — —
(generated by software only)
8014-9C14! spill_n_normal (n = 0-7) 9 P P HY
A0-BCy¢' spill_n_other (1 = 0-7) 9 P P HY
C0,4-DCy6! fill_n_normal (n = 0-7) 9 P P Hv
E0,-FCys" fill_n_other (n = 0-7) 9 P P HY
100,4-17F1¢ trap_instruction 16.2 p p H
180,¢-1FFy, htrap_instruction 16.2 x- H HY

1. Trap extends across four TT #s to allow trap handler to contain 32 inline instructions
instead of the standard 8 inline instructions.

2. The watchdog_reset priority is inherited from the underlying exception.

. The guest_watchdog priority is inherited from the underlying exception.

4. UltraSPARC T2 deviates from the 3.2 priority in UltraSPARC Architecture 2007 for
IAE_unauth_access.

(08

42 UltraSPARC T2 Supplement « Draft D1.4.3, 19 Sep 2007

. UltraSPARC T2 deviates from UltraSPARC Architecture 2007 and swaps the priority of

illegal_instruction (6.2 in UltraSPARC Architecture 2007) and instruction_breakpoint
(6.1 in UltraSPARC Architecture 2007)

. IRF/FRF errors that are encountered on the second or subsequent passes of a multicycle

operation (partial store, compare and swap, block store) generate an
internal_processor_error trap at priority 12.10. All other internal_processor_error
traps are priority 8.2. See Error Trap Vectors on page 212.

. UltraSPARC T2 deviates from the UltraSPARC Architecture 2007 priority of 2.8 for

instruction_invalid_TSB_entry.

. To make the pic_overflow trap the highest-priority disrupting trap, pic_overflow has an

elevated priority over a normal interrupt_level_15 trap (such as would be generated by
writing 1 to SOFTINT{15}). Per Section 10.2, SPARC Performance Instrumentation
Counter, on page 90, if the pic_overflow trap is taken on the instruction that caused the
overflow, then the effective priority of the pic_overflow inherits from the condition that
caused the overflow.

. Hyperprivileged instruction access always bypasses translation. See Translation on page

128.

6.3

Trap Masking

TABLE 6-3 specifies the codes used inTABLE 6-3.

TABLE6-3 Codes

Code Meaning

(nm) Never Masked — when the condition occurs in this running mode, it is

never masked out and the trap is always taken.

(ie) When the outstanding disrupting trap condition occurs in this privilege
mode, it may be conditioned (masked out) by PSTATE.ie = 0 (but remains
pending).

PIL Masked by PSTATE.ie and PIL

tet Masked by PSTATE.tct

ibe Masked by HPSTATE.ibe

tlz Masked by HPSTATE.tlz

43

TABLE 6-3 Codes (Continued)

Code Meaning

M Always masked

— This trap can only legitimately be generated by hyperprivileged software,
not by the CPU hardware. So, for the purposes of sun4v, the trap vector has
to be correct, but for a hardware CPU implementation these trap types are
not generated by the hardware, therefore the resultant running mode is
irrelevant.

For example, trap 7Cq¢ (“cpu mondo”) in TABLE 6-4 is masked by PSTATE.ie in
nonprivileged and privileged mode and is always masked in hyperprivileged mode.

TABLE 6-4 lists the trap mask behavior.

TABLE6-4 Trap Mask Behavior (1 of 3)

From privilege level:

TT # Hardware Trap Name Type Nonprivileged Privileged Hyperprivileged
016 Reserved Reset (nm) (nm) (nm)
116 power_on_reset Reset (nm) (nm) (nm)
216 watchdog_reset Reset (nm) (nm) (nm)
guest watchdog Reset (nm) (nm) —
316 externally_initiated_reset Reset (nm) (nm) (nm)
446 software_initiated_reset Reset (nm) (nm) (nm)
516 RED_state_exception Reset (nm) (nm) (nm)
616 Reserved — — — —
716 store_error Deferred (nm) (nm) (nm)
816 IAE_privilege_violation Precise (nm) (nm) (nm)
916 instruction_access_MMU_miss Precise (nm) (nm) —
Aqg instruction_access_error Precise (nm) (nm) (nm)
Big IAE_unauth_access Precise (nm) (nm) (nm)
Cis IAE_nfo_page Precise (nm) (nm) (nm)
Dqg instruction_address_range Precise (nm) (nm) (nm)
Eqg instruction_real_range Precise (nm) (nm) (nm)
Fi6 Reserved — — — —
1044 illegal_instruction Precise (nm) (nm) (nm)
1144 privileged_opcode Precise (nm) — —
1246 unimplemented_LDTW — — — —
1344 unimplemented_STTW — — — —
1444 DAE_invalid_asi Precise (nm) (nm) (nm)
1514 DAE_privilege_violation Precise (nm) (nm) (nm)
1614 DAE_nc_page Precise (nm) (nm) (nm)

44 UltraSPARC T2 Supplement « Draft D1.4.3, 19 Sep 2007

TABLE6-4 Trap Mask Behavior (2 of 3)

From privilege level:
TT # Hardware Trap Name Type Nonprivileged Privileged Hyperprivileged
1714 DAE_nfo_page Precise (nm) (nm) (nm)
181¢—1F1¢ Reserved — — — —
2044 fp_disabled Precise (nm) (nm) (nm)
2144 fp_exception_ieee_754 Precise (nm) (nm) (nm)
2216 fp_exception_other Precise (nm) (nm) (nm)
2346 tag_overflow Precise (nm) (nm) (nm)
2416-271¢ clean_window Precise (nm) (nm) (nm)
2844 division_by_zero Precise (nm) (nm) (nm)
2916 internal_processor_error Precise (nm) (nm) (nm)
2A44 instruction_invalid_TSB_entry Precise (nm) (nm) —
2B1g data_invalid_TSB_entry Precise (nm) (nm) (nm)
2Cq4 Reserved — — — —
2Dqg mem_real_range Precise (nm) (nm) (nm)
2Eq¢ mem_address_range Precise (nm) (nm) (nm)
2F16 Reserved — — — —
3014 DAE_so_page Precise (nm) (nm) (nm)
3144 data_access_MMU_miss Precise (nm) (nm) (nm)
3246 data_access_error Precise (nm) (nm) (nm)
3316 data_access_protection — — — —
3444 mem_address_not_aligned Precise (nm) (nm) (nm)
3516 LDDF_mem_address_not_aligned Precise (nm) (nm) (nm)
3616 STDF_mem_address_not_aligned Precise (nm) (nm) (nm)
3716 privileged_action Precise (nm) — —
3816 LDQF_mem_address_not_aligned — — — —
3916 STQF_mem_addess_not_aligned — — — —
3A1¢ Reserved — — — —
3B1g unsupported_page_size Precise (nm) (nm) (nm)
3C16 control_word_queue_interrupt Disrupting (nm) (nm) (ie)
3Dqg modular_arithmetic_interrupt Disrupting (nm) (nm) (ie)
3Eq6 inst_real_translation_miss Precise (nm) (nm) —
3F16 data_real_translation_miss Precise (nm) (nm) (nm)
40 sw_recoverable_error Disrupting (nm) (nm) (ie)
4114-4Fq4 interrupt_level_n Disrupting PIL PIL M
4F4 pic_overflow (interrupt_level_15) Disrupting PIL PIL M
5014-5D14 Reserved — — — —
5Eq¢ hstick_match Disrupting (nm) (nm) (ie)

TABLE6-4 Trap Mask Behavior (3 of 3)

From privilege level:

TT # Hardware Trap Name Type Nonprivileged Privileged Hyperprivileged
5F¢ trap_level_zero Disrupting tlz tlz —
6016 interrupt_vector_trap Disrupting (nm) (nm) (ie)
6146 PA_watchpoint Precise (nm) (nm) (nm)
6214 VA_watchpoint Precise (nm) (nm) —
6316 hw_corrected_error Disrupting (nm) (nm) (ie)
64161 fast_instruction_access_ MMU_miss Precise (nm) (nm) —
68161 fast_data_access_MMU_miss Precise (nm) (nm) (nm)
6C161 fast_data_access_protection Precise (nm) (nm) (nm)
7014 Reserved — — — —
7144 instruction_access MMU_error Precise (nm) (nm) —
7214 data_access_MMU_error Precise (nm) (nm) (nm)
7316 Reserved — — — —
7444 control_transfer_instruction Precise tct tct tct
7516 instruction_VA_watchpoint Precise (nm) (nm) —
7614 instruction_breakpoint Precise ibe ibe ibe
7716-7B16 Reserved — — — —
7C16 cpu_mondo_trap Disrupting (ie) (ie) M
7D1¢ dev_mondo_trap Disrupting (ie) (ie) M
7Eq6 resumable_error Disrupting (ie) (ie) M
7F14 nonresumable_error (generated by — — — —
software only)

8016—9(:161 spill_n_normal (n = 0-7) Precise (nm) (nm) (nm)
AO—BC161 spill_n_other (n = 0-7) Precise (nm) (nm) (nm)
C0y6-DCyg! fill_n_normal (1 =0-7) Precise (nm) (nm) (nm)
E016—FC161 fill_n_other (n = 0-7) Precise (nm) (nm) (nm)
10044-17F;¢ trap_instruction Precise (nm) (nm) (nm)
18016-1FF;¢ htrap_instruction Precise — (nm) (nm)

1. Trap extends across four TT #s to allow trap handler to contain 32 inline instructions instead
of the standard 8 inline instructions.

The UltraSPARC T2 implmentation deviates from UltraSPARC Architecture 2007 in
following way: when an SIR or XIR reset occurs, the virtual processor enters
RED_st at e regardless of the value of TL (that is, when TL = MAXTL, as well as when
TL < MAXTL.). In particular, when TL = MAXTL and an XIR occurs, UltraSPARC

46 UltraSPARC T2 Supplement « Draft D1.4.3, 19 Sep 2007

Architecture 2007 specifies that the virtual processor enters error _stat e to
generate a WDR reset, but an UltraSPARC T2 virtual processor instead directly takes
an XIR reset.

48 UltraSPARC T2 Supplement « Draft D1.4.3, 19 Sep 2007

CHAPTER 7

Interrupt Handling

The chapter describes the hardware interrupt delivery mechanism for the
UltraSPARC T2 chip. I/O and CPU cross-call interrupts are delivered to
hyperprivileged code on each virtual processor using an interrupt vector trap as
described in Interrupt Flow on page 50. Error interrupts are delivered to
hyperprivileged code on each virtual processor using the sw_recoverable_error and
hw_corrected_error traps. These error interrupts are described in Chapter 16, Error
Handling.

Hyperprivileged code notifies privileged code about interrupt_vector traps,
sw_recoverable_error traps hw_corrected_error traps (and precise error traps)
through the cpu_mondo, dev_mondo, and resumable_error traps as described in
Interrupt Queue Registers on page 57. Software interrupts are delivered to each virtual
processor using the interrupt_level_n traps. Software interrupts are described in the
UltraSPARC Architecture 2006 Specification. The pic_overflow trap, generated by the
performance counters, is described in Chapter 10, Performance Instrumentation. The
hstick_match and trap_level_zero interrupts are described in the UltraSPARC
Architecture 2006 specification.

Interrupt vector traps have a corresponding 64-bit ASI _I NTR_RECEI VE register. I/
O devices and inter-CPU cross-call interrupts contain a 6-bit identifier, which
determines which interrupt vector (level) in the ASI _I NTR_RECEI VE register the
interrupt will target. Each virtual processor’s ASI _I NTR_RECEI VE register can
queue up to 64 outstanding interrupts, one for each interrupt vector. Interrupt
vectors are implicitly prioritized, with vector 63 being the highest priority and
vector 0 being the lowest priority.

Two types of I/O interrupts are supported. “Internal” I/O interrupts, such as those
generated by the Network Interface Unit, are generated by I/O devices on the
UltraSPARC T2 processor. Unlike “mondo” interrupts, these interrupts do not
contain any additional data payload. Each internal I/O interrupt source has a
hardwired interrupt number, which is used to index a table of interrupt vector
information (INT_MAN) in the NCU. Generally, each I/O interrupt source will be
assigned a unique virtual processor target and vector level. This association is
defined by software programming of the interrupt vector and strand fields in the
INT_MAN table in the NCU. Software must maintain the association between
interrupt vector and hardware interrupt number to index the appropriate entry in
the INT_MAN table.

49

The second type of interrupts are external “mondo” interrupts, such as those
generated by PCI-Express. These interrupts follow the standard mondo interrupt
ACK/NACK flow control. Only the first two 64-bit words of mondo data are
supported by UltraSPARC T2.

7.1

7.1.1

7.1.2

Interrupt Flow

Sources

CPU cross-call interrupts can be generated by writing the Interrupt Vector Dispatch
register described in Interrupt Vector Dispatch Register on page 60. Dispatching inter-
CPU interrupts is described in Dispatching on page 50.

TAP interrupts can be generated by writing the NCU Interrupt Vector/Trap Dispatch
Register described in Mondo Data Tables on page 55.

SSI error interrupts (device ID = 1) are caused by SSI detected errors, as described in
Boot ROM Interface (SSI) on page 315.

SSI interrupts (device ID = 2) are caused by an assertion (edge trigger) on the
EXT_INT_L pin.

The network interface unit generates interrupts with device IDs 64-127.

PCI-Express interrupts can either come from INTx emulation or message signaled
interrupts (MSI) as described in Interrupt Model on page 512 and errors described in
Error Register Overview on page 524.

Dispatching

CPU cross-call interrupts can be generated by writing the Interrupt Vector Dispatch
register described in Interrupt Vector Dispatch Register on page 60. Unlike mondo
interrupts, interrupts are always received by the destination, and stores to this
register will follow the TSO memory model (no MEMBAR #Sync is required). The
store data supplies the destination virtual processor and vector. The bit
corresponding to the specified vector is set in the Interrupt Receive register of the
destination virtual processor.

50 UltraSPARC T2 Supplement ¢ Draft D1.4.3, 19 Sep 2007

7.1.3

Note | An interrupt that is sent to a virtual processor that is not
enabled (has its bit clear in ASI _CORE_ENABLE_STATUS
described in ASI_CORE_ENABLE_STATUS on page 187) will be
lost. An interrupt that is sent to a virtual processor that is
parked (has its bit clear in ASI _CORE_RUNNI NG_STATUS
described in ASI_CORE_RUNNING_STATUS on page 191) will
result in the bit in the interrupt receive register being set, and
the interrupt will be taken once the virtual processor is
unparked and the interrupt is enabled.

States

Each bit in the Interrupt Receive register can be in one of two states: set or

cl ear ed. If an incoming interrupt attempts to set an already set bit, the additional
incoming interrupt will be lost (there is no overflow indication on the interrupt bits).
Writes to the Interrupt Receive register will clear any bit in which the corresponding
write data is 0, and reads to the Incoming Vector register will clear the bit of the
highest-priority pending interrupt as a side effect. If another interrupt attempts to
set a bit on the same cycle as the bit is being cleared by an Interrupt Receive register
write or Incoming Vector register read, the additional interrupt will take precedence
over the clear and the bit will remain set.

Mondo interrupts have two states in the MONDO_INT_BUSY table, namely, BUSY
and | DLE (not BUSY). When a mondo interrupt transaction is received, if the current
state is | DLE, the transaction is accepted (and ACKed to the requestor), state is
changed to BUSY, the mondo data is stored in the MONDO_INT_DATAO/1 table, and
the bit specified by MONDO_INT_VEC is set in the Interrupt Receive register of the
virtual processor specified in the INT transaction. While in the BUSY state, any INT
transactions to the same virtual processor will be rejected and NACKed back to the
requestor, and the requestor is responsible for preserving that interrupt in a pending
state. When software has adequately serviced the interrupt, it explicitly clears the
busy bit in the MONDO_INT_BUSY register to return to the | DLE state.

For “internal” I/O interrupts, such as an SSI, network interface unit, or MCU error
interrupt, the bit specified by INT_MAN is set in the Interrupt Receive register of the
virtual processor specified in INT_MAN. Software can use the Incoming Vector
register described in Incoming Vector Register on page 60 to atomically clear and
return the vector of the highest status bit. Since there is no ACK/NACK flow control
on the internal interrupts and no indication of interrupt bit overflow, for sources
capable of generating multiple interrupts between interrupt servicing, software will
need to properly handle the multiple interrupt case.

7.1.4

7.1.5

7.1.6

Prioritizing

Interrupt vector traps are implicitly prioritized by the Incoming Vector register
described in Section 7.3.4 from bit 63 (highest) to bit 0 (lowest).

The priority of I/O interrupts is done by specifying the vector value in the INT_MAN
table and in MONDO_INT_VEC (see Section 7.2.1).

Initialization

The interrupt vector traps are initialized by writing 014 to the Interrupt Receive
register described in Interrupt Receive Register on page 59.

I/0 interrupt handling is initialized by

a. Initializing the PIU event queues as described in Interrupt Model on page 512
and setting up the NIU logical device groups as described in System Interrupts
on page 667.

b. Specifying the strand/vector pair to receive “internal” I/O interrupts, such as
those generated by the network interface unit, by programming the INT_MAN
table, described in SSI/NIU Interrupt Management Registers on page 54.

c. Specifying the interrupt vector to receive external “mondo” interrupts, such as
those generated by PCI-Express, by programming the MONDO_INT_VEC
register, described in SSI/NIU Interrupt Management Registers on page 54.

d. Clearing the busy bits in the MONDO_INT_BUSY table, described in Mondo
Interrupt Busy Table on page 56.

Servicing

Interrupt vector traps are typically serviced by reading the Incoming Vector register
described in Incoming Vector Register on page 60. When this register is read by
software, the 6-bit vector corresponding to the highest priority pending interrupt in
the Interrupt Receive register is returned. The pending interrupt bit for that vector is
cleared.

If the incoming interrupt matches the virtual processor and vector for SSI error
interrupts (device ID = 1), the handler should read the SSI error logs, described in
SSI Error Registers on page 316, to determine the cause of the interrupt. It should
service the interrupt appropriately, checking for multiple interrupts that could have
occurred on the same bit in the Interrupt Receive register.

52 UltraSPARC T2 Supplement ¢ Draft D1.4.3, 19 Sep 2007

If the incoming interrupt matches the virtual processor and vector for SSI interrupts
(device ID = 2), the handler should service the interrupt appropriately, checking for
multiple interrupts that could have occurred on the same bit in the Interrupt Receive
register.

If the incoming interrupt matches the virtual processor and vector for NIU
interrupts (device ID = 64-127), the handler should service the interrupt
appropriately, checking for multiple interrupts that could have occurred on the same
bit in the Interrupt Receive register.

If the incoming interrupt matches the vector for “mondo” interrupts, the handler
should then read the mondo source and data, from the MONDO_INT_ADATAO0/1
registers (described in Mondo Data Tables) and MONDO_INT_ABUSY registers
(described in Mondo Interrupt Busy Table). After reading these registers, it should
enable receiving the next mondo interrupt to this virtual processor by clearing the
busy bit in the MONDO_INT_ABUSY register.

7.2

NCU Interrupt Registers

The following registers are defined for interrupt and reset management. The base
address is defined below.

The NCU handles two types of interrupts: those generated on chip by the NIU and
those generated externally through the SSI EXT_INT_L pin.

TABLE 7-1 lists the device ID assignment for interrupts.

TABLE7-1 Device ID Assignments

Device ID Range Comment

Reserved 0

SSI Errors 1 SSI parity or timeout error.

SSI Interrupt 2 SSI interrupt from EXT_INT_L pin.
Reserved 3-63

NIU 64-127 NIU interrupts

On-chip interrupt hardware contains an SSI/NIU Interrupt Management table. Each
internal “Device ID” in the I/O subsystem has an entry in the SSI/NIU Interrupt
Management Table described in SSI/NIU Interrupt Management Registers.

Device ID 0 is used internally by hardware but is architecturally reserved.

7.2.1

Device ID 1 is used to report SSI Errors. Software will have to poll the SSI error
registers to determine the error type.

Device ID 2 is the interrupt from EXT_INT_L pin, of the SSI interface, which is
intended for use as a console interrupt.

Device IDs 3-63 are reserved.

Device IDs 64-127 are used for NIU interrupts

Note | The 64 NIU device IDs (64-127) correspond to the Logical
Device Group Numbers, described in System Interrupts on page
667, where 64 has been added to the Logical Device Group
Number.

SSI/NIU Interrupt Management Registers

The SSI/NIU Interrupt Management registers specify the CPU ID to send the
interrupt and the interrupt vector associated with the interrupt issued by the NCU
on behalf of the device.

Each device will send its device ID to the NCU. The device ID is used to index into
the SSI/NIU Interrupt Management table. Before changing the SSI/NIU Interrupt
Management register, software must disable all incoming interrupts. Note that the
offset address of the corresponding device can be calculated by multiplying the
device ID by 8 for INT_MAN.

Software or boot code must program the INT_MAN table before any of the non-
mondo type interrupt is generated. Reading of the INT_MAN table without first
initializing it by software or boot code will result in false parity errors in NCU.

TABLE 7-2 shows the format of the SSI/NIU Interrupt Management register.

TABLE 7-2 SSI/NIU Interrupt Management — INT_MAN Register (80 0000 0000+¢)

Bit Field Initial Value R/W Description

63:14 — 0 RO Reserved

13:8 cpu X RW ID of virtual processor to manage the device.

7:6 — 0 RO Reserved

5:0 vector 0 RW Interrupt vector (encodes bit set in ASI _| NTR_RECEI VE).

7.2.2

Mondo Interrupt Vector Register

The Mondo Interrupt Vector register specifies the interrupt vector for PCI-Express
mondo interrupts. Since the virtual strand ID is specified in the mondo interrupt,
this register is shared among the 64 virtual processors.

54 UltraSPARC T2 Supplement ¢ Draft D1.4.3, 19 Sep 2007

TABLE 7-3 shows the format of the Mondo Interrupt Vector register.

TABLE 7-3 Mondo Interrupt Vector Register - MONDO_INT_VEC (80 0000 0A004¢)

Bit Field Initial Value R/W Description
63:6 — 0 RO Reserved
5:0 vector RW Interrupt vector for mondo interrupts (encodes bit set in

ASI _| NTR_RECEI VE).

7.2.3

MONDO_INT_VEC performs the identical function for PCI-Express Mondo
interrupts that INT_MAN performs for the SSI/NIU interrupts, except that the virtual
strand ID is specified in the mondo interrupt transaction.

Mondo Data Tables

The following registers manage the receipt from mondo interrupts.
The base address of the mondo interrupt registers is defined below.

There are two Mondo Interrupt Data tables. The tables are read-only by software,
and the entries are updated by an incoming mondo interrupts provided that the
interrupt is not busy. The NCU will ACK the interrupt if it is not busy; otherwise,
the NCU will NACK it.

TABLE 7-4 shows the format of the Mondo Interrupt Data 0 table.

TABLE 7-4 Mondo Interrupt Data 1 — MONDO_INT_DATAO (80 0004 0000¢)

Bit Field Initial Value R/W Description

63:0 data0 X RO First 64 bits of mondo interrupt data.

TABLE 7-5 shows the format of the Mondo Interrupt Data 1 table.

TABLE 7-5 Mondo Interrupt Data 1 — MONDO_INT_DATAL (80 0004 02004¢)

Bit Field Initial Value R/W Description

63:0 datal X RO Second 64 bits of mondo interrupt data.

TABLE 7-6 shows the format of the Mondo Interrupt Alias Data 0 table.

This register address is actually an alias for MONDO_INT_DATAO[My CPUID], so
each virtual processor can read its own interrupt payload without having to do an
address calculation based on strand_id. This address should never be accessed by the
TAP (since it does not have a strand_id).

TABLE 7-6 Mondo Interrupt Alias Data 0 — MONDO_INT_ADATAO (80 0004 04004¢)

Bit Field Initial Value R/W Description

63:0 data0 X RO First 64 bits of mondo interrupt data.

TABLE 7-7 shows the format of the Mondo Interrupt Alias Data 1 Table.

This register address is actually an alias for MONDO_INT_DATA1[My CPUID], so
each virtual processor can read its own interrupt payload, without having to do an
address calculation based on strand_id. This address should never be accessed by the
TAP (since it does not have a strand_id).

TABLE 7-7 Mondo Interrupt Alias Data 1 — MONDO_INT_ADATA1 (80 0004 0600+¢)

Bit Field Initial Value R/W Initial Value
63:0 datal X RO Second 64 bits of mondo interrupt data.

724 Mondo Interrupt Busy Table

When the NCU receives a mondo interrupt, it sets the busy bit to 1 and ACKs the
interrupt. When the busy bit is set, it implies an interrupt is waiting to be serviced or
is being serviced. Software will reset the busy bit when it completes servicing the
interrupt. If the busy bit is already set when an interrupt is received, a NACK will be
sent to the interrupt source. The busy bit is set after a reset and software has to clear
it to begin receiving interrupts.

TABLE 7-8 shows the format of the Mondo Interrupt Busy table.

TABLE 7-8 Mondo Interrupt Busy - MONDO_INT_BUSY (80 0004 0800)14

Bit Field Initial Value R/W Description

63:7 — 0 RO Reserved

6 busy 1 RW Hardware sets busy to 1 when an interrupt is received.
Hardware NACKs an incoming interrupt if busy is set.

5:0 — 0 RO Reserved

TABLE 7-9 shows the format of the Mondo Interrupt Alias Busy table.

This register address is actually an alias for MONDO_INT_BUSY[My CPUID], so
each virtual processor can update its own mondo interrupt busy bit without having
to do an address calculation based on strand_id. This address should never be
accessed by the TAP (since it does not have a strand_id).

56 UltraSPARC T2 Supplement ¢ Draft D1.4.3, 19 Sep 2007

TABLE 7-9 Mondo Interrupt Alias Busy — MONDO_INT_ABUSY (80 0004 0A00+4)

Bit Field Initial Value R/W Description

63:7 — 0 RO Reserved

6 busy 1 RW Hardware sets busy to 1 when an interrupt is received.
Hardware NACKSs an incoming interrupt if busy is set.

5:0 — 0 RO Reserved

7.3

7.3.1

CPU Interrupt Registers

Interrupt Queue Registers

Each virtual processor has eight ASI _ QUEUE registers at ASI = 254,

VA({63:0} = 3C014-3F84 that are used for communicating interrupts to the operating
system. These registers contain the head and tail pointers for four supervisor
interrupt queues: cpu_mondo, dev_mondo, resumable_error, nonresumable_error.
The tail registers are read-only by supervisor, and read/write by hypervisor. Writes
to the tail registers by the supervisor generate a DAE_invalid_ASI trap. The head
registers are read/write by both supervisor and hypervisor.

Whenever the CPU_MONDO_HEAD register does not equal the CPU_MONDO_TAIL
register, a cpu_mondo trap is generated. Whenever the DEV_MONDO_HEAD
register does not equal the DEV_MONDO_TAIL register, a dev_mondo trap is
generated. Whenever the RESUMABLE_ERROR_HEAD register does not equal the
RESUMABLE_ERROR_TAIL register, a resumable_error trap is generated. Unlike
the other queue register pairs, the nonresumable_error trap is not automatically
generated whenever the NONRESUMABLE_ERROR_HEAD register does not equal
the NONRESUMABLE_ERROR_TAIL register; instead, the hypervisor will need to
generate the nonresumable_error trap.

TABLE 7-10 through TABLE 7-17 define the format of the eight ASI _ QUEUE registers.

TaBLE7-10 CPU Mondo Head Pointer — ASI _ QUEUE_CPU_MONDO_HEAD (ASI 25;¢, VA 3C044)

Bit Field Initial Value R/W Description

63:18 — 0 RO Reserved

17:6 head X RW Head pointer for CPU mondo interrupt queue.
5:0 — 0 RO Reserved

TABLE7-11 CPU Mondo Tail Pointer — ASI _QUEUE_CPU_MONDO_TAI L (ASI 25;4, VA 3C8¢)

Bit Field Initial Value R/W Description

63:18 — 0 RO Reserved

17:6 tail RW (hyperpriv) Tail pointer for CPU mondo interrupt queue.
RO (priv)

5:0 — 0 RO Reserved

TABLE7-12 Device Mondo Head Pointer — ASI _ QUEUE_DEV_MONDO_HEAD (ASI 2544, VA 3D04¢)

Bit Field Initial Value R/W Description

63:18 — 0 RO Reserved

17:6 head RW Head pointer for device mondo interrupt queue.

5:0 — 0 RO Reserved

TABLE 7-13 Device Mondo Tail Pointer — ASI _QUEUE_DEV_MONDO_TAI L (ASI 2544, VA 3D84)

Bit Field Initial Value R/W Description

63:18 — 0 RO Reserved

17:6 tail X RW (hyperpriv) Tail pointer for device mondo interrupt queue.
RO (priv)

5:0 — 0 RO Reserved

TABLE7-14 Resumable Error Head Pointer — ASI _ QUEUE_RESUMABLE_HEAD (ASI 254, VA 3E014)

Bit Field Initial Value R/W Description

63:18 — 0 RO Reserved.

17:6 head RW Head pointer for resumable error queue.

5:0 — 0 RO Reserved

TABLE 7-15 Resumable Error Tail Pointer — ASI _QUEUE_RESUMABLE_TAI L (ASI 25;4, VA 3E8;¢)

Bit Field Initial Value R/W Description

63:18 — 0 RO Reserved

17:6 tail RW (hyperpriv) Tail pointer for resumable error queue.

RO (priv)
5:0 — 0 RO Reserved

58 UltraSPARC T2 Supplement « Draft D1.4.3, 19 Sep 2007

TABLE7-16 Nonresumable Error Head Pointer — ASI _ QUEUE_NONRESUVABLE_HEAD (ASI 2544, VA 3F0+4)
Bit Field Initial Value R/W Description
63:18 — 0 RO Reserved
17:6 head X RW Head pointer for nonresumable error queue.
5:0 — 0 RO Reserved
TABLE7-17 Nonresumable Error Tail Pointer — ASI _ QUEUE_NONRESUMABLE_TAI L (ASI 2514, VA 3F844)
Bit Field Initial Value R/W Description
63:18 — 0 RO Reserved
17:6 tail RW (hyperpriv) Tail pointer for nonresumable error queue.
RO (priv)
5:0 — 0 RO Reserved

7.3.2

Interrupt Receive Register

Each virtual processor has a hyperprivileged ASI _I NTR_RECEI VE register at

ASI = 7214, VA{63:0} = 0. Each time an interrupt transaction arrives for that virtual
processor, the bit corresponding to the interrupt vector will be set. Bit zero of the
register corresponds to interrupt vector number zero and so on. Interrupt vectors are
implicitly prioritized with vector number 63 being the highest priority and vector
number 0 being the lowest priority. Software writes to this register are anded with
the register contents to allow the software to selectively clear register bits, although
normally the incoming vector register described in Section 7.3.4 will be used to clear
the bit corresponding to the pending interrupt. When an interrupt arrives at the
same time as a register write, the interrupt will take precedence over the write and
the bit will be set. Software can read this register to determine all pending
interrupts, although normally the incoming vector register will be used to get the
highest priority pending interrupt. Nonprivileged or supervisor access to this
register causes a privileged_action trap.

TABLE 7-18 defines the format of the ASI _I NTR_RECEI VE register.

TABLE7-18 Interrupt Receive Register — ASI _| NTR_RECEI VE (ASI 7214, VA 014)
Bit Field Initial Value R/W Description
63:0 pending X RW Pending interrupts.

7.3.3

Interrupt Vector Dispatch Register

Each virtual processor has a hyperprivileged write-only ASI _| NTR_Wregister at
ASI = 7314, VA{63:0} = 0 that is used to send CPU cross-call interrupts to other
virtual processors. Unlike mondo interrupts, interrupts cannot be NACKed by the
destination, and multiple interrupts that set the same Interrupt Receive register bit
before it has been cleared will only generate a single interrupt. Interrupts generated
by stores to this register will follow the TSO memory model (no MEMBAR #Sync is
required). The store data supplies the destination virtual processor and vector. The
bit corresponding to the specified vector is set in the Interrupt Receive register of the
destination virtual processor.

Programming | After an interrupt vector trap is taken by the destination virtual
Note | processor, it is the responsibility of the interrupt handler to clear
the highest-priority pending bit in the interrupt register, usually
by a read to the Incoming Vector register as described in
Incoming Vector Register.

The format of the register is shown in TABLE 7-19.

TABLE7-19 Interrupt Vector Dispatch Register — ASI _| NTR_W(ASI 7314, VA 04¢)

Bit Field Initial Value R/W Description

63:14 — 0 RO Reserved

13:8 strand X W Destination virtual processor

7:6 — 0 RO Reserved.

5:0 vector X w Interrupt Vector (encodes bit set in ASI _| NTR_RECEI VE)

7.3.4

Nonprivileged or supervisor access to this register causes a privileged_action trap. A
read from this ASI causes a DAE_invalid_asi trap.

Implementation | This register is actually implemented in the NCU and is also
Note | available at address 90145-01CCq4-000014 as described in Interrupt
Vector Dispatch Register (ASI 7316 VA 016) on page 207.

Incoming Vector Register

Each virtual processor has a hyperprivileged read-only ASI _I NTR_Rregister at
ASI = 7414, VA{63:} = 014. When this register is read by software, the 6-bit vector
corresponding to the highest priority pending interrupt in the Interrupt Receive
register is returned. The pending interrupt bit for that vector is cleared. If no
interrupt bits are set, a read of this register will return all zeros. When an interrupt
arrives at the same time as the register is read, the interrupt will take precedence
over the clearing and the bit will remain set. Nonprivileged or supervisor access to
this register causes a privileged_action trap. A store to this register will result in a
DAE_invalid_ASI trap.

60 UltraSPARC T2 Supplement ¢ Draft D1.4.3, 19 Sep 2007

Programming | The interrupt handler will normally use the Incoming Vector
Note | register to determine the highest-priority interrupt that is
pending while atomically clearing the bit corresponding to that
highest priority interrupt.

TABLE 7-20 defines the format of the ASI _I NTR_R register.

TABLE 7-20 Incoming Vector Register — ASI _| NTR_R (ASI 7444, VA 014)
Bit Field Initial Value R/W Description

63:6 — 0 RO Reserved

5:0 vector X RO Interrupt vector.

62 UltraSPARC T2 Supplement « Draft D1.4.3, 19 Sep 2007

CHAPTER 8

Memory Models

SPARC V9 defines the semantics of memory operations for three memory models.
From strongest to weakest, they are Total Store Order (TSO), Partial Store Order
(PSO), and Relaxed Memory Order (RMO). The differences in these models lie in the
freedom an implementation is allowed in order to obtain higher performance during
program execution. The purpose of the memory models is to specify any constraints
placed on the ordering of memory operations in uniprocessor and shared-memory
multiprocessor environments. UltraSPARC T2 supports only TSO, with the exception
that certain ASI accesses (such as block loads and stores) may operate under RMO.

Although a program written for a weaker memory model potentially benefits from
higher execution rates, it may require explicit memory synchronization instructions
to function correctly if data is shared. MEMBAR is a SPARC V9 memory
synchronization primitive that enables a programmer to control explicitly the
ordering in a sequence of memory operations. Processor consistency is guaranteed in
all memory models.

The current memory model is indicated in the PSTATE.mm field. It is unaffected by
normal traps, but is set to TSO (PSTATE.mm = 0) when the virtual processor enters
RED_st at e. UltraSPARC T2 ignores the value set in this field and always operates
under TSO.

A memory location is identified by an 8-bit address space identifier (ASI) and a 64-
bit virtual address. The 8-bit ASI may be obtained from a ASI register or included in
a memory access instruction. The ASI is used to distinguish between and provide an
attribute for different 64-bit address spaces. For example, the ASI is used by the
UltraSPARC T2 MMU and memory access hardware to control virtual-to-physical
address translations, access to implementation-dependent control and data registers,
and for access protection. Attempts by nonprivileged software (PSTATE.priv = 0) to
access restricted ASIs (ASI{7} = 0) cause a privileged_action trap.

Memory is logically divided into real memory (cached) and I/O memory
(noncached with and without side effects) spaces, based on bit 39 of the physical
address (0 for real memory, 1 for I/O memory). Real memory spaces can be accessed
without side effects. For example, a read from real memory space returns the
information most recently written. In addition, an access to real memory space does

63

not result in program-visible side effects. In contrast, a read from I/O space may not
return the most recently written information and may result in program-visible side
effects.

8.1

8.1.1

Supported Memory Models

The following sections contain brief descriptions of the two memory models
supported by UltraSPARC T2. These definitions are for general illustration. Detailed
definitions of these models can be found in The SPARC Architecture Manual-Version 9.
The definitions in the following sections apply to system behavior as seen by the
programmer.

Notes | Stores to UltraSPARC T2 internal ASIs, block loads, and block
stores and block initializing stores are outside the memory
model; that is, they need MEMBARSs to control ordering.

Atomic load-stores are treated as both a load and a store and can
only be applied to cacheable address spaces.

TSO

UltraSPARC T2 implements the following programmer-visible properties in Total
Store Order (TSO) mode:

= Loads are processed in program order; that is, there is an implicit MEMBAR
#LoadLoad between them.

= Loads may bypass earlier stores. Any such load that bypasses such earlier stores
must check (snoop) the store buffer for the most recent store to that address. A
MEMBAR #Lookasi de is not needed between a store and a subsequent load at
the same noncacheable address.

= A MEMBAR #St or eLoad must be used to prevent a load from bypassing a prior
store if Strong Sequential Order is desired.

= Stores are processed in program order.
= Stores cannot bypass earlier loads.

= Accesses with PA{39] set (that is, to I/O space) are all strongly ordered with
respect to each other.

64 UltraSPARC T2 Supplement ¢ Draft D1.4.3, 19 Sep 2007

8.1.2

Compatibility | Prior UltraSPARC implementations strongly order accesses
Note | based on the e bit being set. The e bit is ignored by UltraSPARC
T2 for the purposes of strong ordering; only PA{39} is used for
determining strong ordering.

= An L2 cache update is delayed on a store hit until all outstanding stores reach
global visibility. For example, a cacheable store following a noncacheable store is
not globally visible until the noncacheable store has reached global visibility;
there is an implicit MEMBAR #Mem ssue between them.

RMO

UltraSPARC T2 implements the following programmer-visible properties for special
ASI accesses that operate under Relaxed Memory Order (RMO) mode:

= There is no implicit order between any two memory references, either cacheable
or noncacheable, except that noncacheable accesses with PA{39} set (that is, to I/O
space) are all strongly ordered with respect to each other.

Compatibility | Prior UltraSPARC implementations strongly order accesses
Note | based on the e bit being set. The e bit is ignored by UltraSPARC
T2 for the purposes of strong ordering, only PA{39} is used for
determining strong ordering.

= A MEMBAR must be used between cacheable memory references if stronger
order is desired. A MEMBAR #Menl ssue is needed for ordering of cacheable
after noncacheable accesses. A MEMBAR #Lookasi de should be used between a
store and a subsequent load at the same noncacheable address.

66 UltraSPARC T2 Supplement « Draft D1.4.3, 19 Sep 2007

CHAPTER 9

Address Spaces and ASIs

9.1 Physical Address Spaces

UltraSPARC T2 supports a 48-bit virtual address space and a 40-bit physical address
space. The 40-bit physical address space is further broken into two sections, based
on bit 39. If bit 39 is a 0, the address maps to a memory location. If bit 39 is a 1, the
address maps to an I/0 location.

9.1.1 Access to Nonexistent Physical Memory
Addresses

Access to nonexistent physical memory addresses is described in Access to
Nonexistent Memory on page 369.

9.1.2 Access to Nonexistent I/O Addresses

A load access from a nonexistent memory or I/O location will cause a
data_access_error exception. An instruction fetch from a nonexistent memory or I/
O location will cause an instruction_access_error exception. A store access to a
nonexistent memory or I/0 location will be silently discarded by the system.

9.1.3 Instruction Fetching from I/0O

Instruction fetching from I/O addresses is only permitted from the SSI

(FF 0000 00004¢—-FF FFFF FFFC44) and L2CSR spaces (A0 0000 000044—

BF FFFF FFFCyg). Instruction fetches from I/O addresses outside the SSI and L2CSR
spaces will take an instruction_access_error trap.

67

9.14

9.1.5

Warning | Instruction fetching from the L2CSR space can cause undefined
behavior. Software needs to prevent instruction fetches from
accessing the L2CSR space.

Supported vs. Unsupported Access Sizes to I/0O

All I/0O locations internal to UltraSPARC T2 are 64-bit locations, and only support 8-
byte (64-bit) loads and stores. Accesses in other sizes may cause traps or have other
unexpected results. In particular, non-8-byte aligned load accesses to internal
UltraSPARC T2 I/O addresses (except internal PCI-Express or SSI locations) will
result in data_access_error trap. Non-8-byte-aligned store accesses to internal
UltraSPARC T2 I/0O addresses (except internal PCI-Express or SSI locations) will be
silently discarded by the system. Non-8-byte-aligned load accesses from internal
PCI-Express or SSI locations are treated internally as 8-byte loads, with potentially
undefined results. Non-8-byte-aligned store accesses to internal PCI-Express or SSI
locations are treated internally as 8-byte stores, also with potentially undefined
results.

UltraSPARC T2 supports 1-byte, 2-byte, 4-byte, and 8-byte loads and stores via the
SSI bus (Boot ROM port). 8-byte stores under mask (generated by STDFA to

ASI _PST*) are undefined. 16-byte loads (generated by an LDDA to ASI _TW NX*),
block loads, and block stores generate a DAE_nc_page exception. (UltraSPARC T2

cannot generate a 16-byte store.)

UltraSPARC T2 supports 1-byte, 2-byte, 4-byte, and 8-byte loads and stores, plus 8-
byte stores under mask (generated by STDFA to ASI _PST*) and block stores, to
PCI-Express (for external PCI-Express locations). 16-byte loads (generated by an
LDDA to ASI _TW NX*) and block loads are not supported to PCI-Express and
generate a DAE_nc_page exception.

48-bit Virtual and Real Address Spaces

UltraSPARC T2 supports a 48-bit subset of the full 64-bit virtual and real address
spaces. Although the full 64 bits are generated and stored in integer registers, legal
addresses are restricted to two equal halves at the extreme lower and upper portions
of the full virtual (real) address space. Virtual (real) addresses between

0000 8000 0000 0000, and FFFF 7FFF FFFF FFFF4 inclusive lie within a “VA hole”
(“RA hole”), are termed “out-of-range”!, and are illegal. Prior UltraSPARC
implementations introduced the additional restriction on software to not use pages
within 4 Gbytes of the VA (RA) hole as instruction pages to avoid problems with
prefetching into the VA (RA) hole. UltraSPARC T2 implements a hardware check for
instruction fetching near the VA (RA) hole and generates an
instruction_address_range or instruction_real_range trap when instructions are

L Another way to view an out-of-range address is as any address where bits {63:48} are not all equal to bit {47}.

68 UltraSPARC T2 Supplement ¢ Draft D1.4.3, 19 Sep 2007

executed from a location in the address range 0000 7FFF FFFF FFEQ;¢ to

0000 7FFF FFFF FFFFy, inclusive. However, even though UltraSPARC T2 provides
this hardware checking, it is still recommended that software should not use the 8-
Kbyte page before the VA (RA) hole for instructions. Address translation and MMU
related descriptions can be found in Translation on page 128.

FFFF FFFF FFFF FFFF

FFFF 8000 0000 0000

% FFFF 7FFF FFFF FFFF
Out of Range VA (RA)
(the “VA Hole” (‘RA Hole")
// 0000 8000 0000 0000

See Note (1) 0000 7FFF FFFF FFFF
0000 7FFF FFFF DFFF

0000 0000 0000 0000
Note (1): Use of this region restricted to data only.

FIGURE 9-1 UltraSPARC T2’s 48-bit Virtual and Real Address Spaces, With Hole

Throughout this document, when virtual (real) address fields are specified as 64-bit
quantities, they are assumed to be sign-extended based on VA{47} (RA{47}).

A number of state registers are affected by the reduced virtual and real address
spaces. The PC, I/D-TLB Tag Access, instruction and data watchpoint registers are
48 bits, sign-extended to 64-bits on read accesses. DMMU SFAR, TBA, TPC, and
TNPC, registers are 48-bits and their values are not sign-extended when read. No
checks are done when these registers are written by software. It is the responsibility
of privileged (or hyperprivileged) software to properly update these registers.

An out-of-range virtual (real) address during an instruction access, caused by
execution into the VA (RA) hole or into 0000 7FFF FFFF FFEQ,4 to

0000 7FFF FFFF FFFF;¢ inclusive, results in an instruction_address_range
(instruction_real_range) trap if PSTATE.am = 0. In addition, UltraSPARC T2
hardware detects when a branch target or the target of a DONE or RETRY
instruction is in the VA (RA) hole, and PSTATE.am changes from being set ('1") for
the branch, DONE, or RETRY to being cleared ('0’) for the target instruction (via the
branch delay slot instruction or TSTATE) and generates an
instruction_address_range (instruction_real_range) exception.

9.1.6

Note | The instruction_address_rangne and instruction_real_range
exceptions occur on a fetch that enters the VA hole or that is in
the cache line immediately before the VA hole (or when the
target of a branch or DONE/RETRY instruction is in the VA hole
and VA hole detection is enabled only for the target). Hardware
does not store state to create an instruction_address_range or
instruction_real_range exception when the strand is executing
from the VA hole in a state that cannot detect VA hole
exceptions (for example, when PSTATE.am = 1), and then
software transitions the strand to be able to detect the VA hole
(for example, by setting PSTATE.am = 0) from within the VA
hole itself.

If the target virtual (real) address of a JMPL, RETURN, branch, or CALL instruction
is an out-of-range address and PSTATE.am =0, a mem_address_range
(mem_real_range) trap is generated with TPC equal to the address of the JMPL,
RETURN, branch, or CALL instruction. The target address is loaded into the D-
MMU SFAR. Because the D-MMU SFAR contains only 48 bits, the trap handler must
decode the load or store instruction if the full 64-bit virtual address is needed. See
also I-/D-MMU Synchronous Fault Address Registers (SFAR) on page 139.

An out-of-range virtual (real) address during a data access results in a
mem_address_range (mem_real_range) trap if PSTATE.am = 0. Because the D-MMU
SFAR contains only 48 bits, the trap handler must decode the load or store
instruction if the full 64-bit virtual address is needed. See also I-/D-MMU
Synchronous Fault Address Registers (SFAR) on page 139.

I/O Address Spaces

I/0 addresses are distinguished from memory addresses via their high-order
physical address bit (bit 39). If bit 39 is 0, the address is a memory address. If bit 39
is 1, the address is an I/0O address.

TABLE 9-1 summarizes the UltraSPARC T2 address space, which is broken down into
sections based on the eight most significant bits of the physical address.

TABLE9-1 UltraSPARC T2 Address Space

Address Range

(PA{39:32}) Block Name Comment

0016 — 7F1¢ DRAM Main memory

8014 NCU Noncacheable Unit
8114 NIU Network Interface Unit
8214 — Reserved

8316 CCU Clock Unit.

70 UltraSPARC T2 Supplement « Draft D1.4.3, 19 Sep 2007

TABLE9-1 UltraSPARC T2 Address Space (Continued)

Address Range

(PA{39:32}) Block Name Comment

8444 MCU Memory Control Unit, address bits {13:12} select one of the
four MCUs.

8516 TCU JTAG/TAP unit.

8614 DBG Debug.

8716 —1 Reserved

8816 DMU DMU CSRs.

8916 RST Reset.

8A16-8F¢ —2 Reserved

9016 ASI CPU shared registers (directly accessible only by JTAG/TAP
unit).

91,6-9F16 —2 Reserved

A01¢-BFq4 L2CSR L2 control and status registers.

C0:4-CFq4 PCIE PCI-Express (64 GB) and DMU PIO.

DO0y6-FE4¢ —3 Reserved

FFq SSI Boot ROM.

Programming | Address space 90,4 provides an alias for the shared CPU

9.2

Note | registers. This alias is directly accessible only by the JTAG/TAP

unit. Access to these shared CPU registers by the strands should
be done directly through the ASIs listed in Alternate Address
Spaces on page 71.

Alternate Address Spaces

TABLE 9-2 summarizes the ASI usage in UltraSPARC T2. The Section/Page column
contains a reference to the detailed explanation of the ASI (the page number refers to
this chapter). For internal ASIs, the legal VAs are listed (or the field contains “Any”
if all VAs are legal). Only bits 47:0 are checked when determining the legal VA range.
An access outside the legal VA range will generate a DAE_invalid_asi trap.

Notes

All internal, nontranslating ASIs in UltraSPARC T2 can only be
accessed using LDXA and STXA.

ASIs 8014—FF;¢ are unrestricted (access allowed in all modes --
nonprivileged, privileged, and hyperprivileged). ASIs 0014-2F;4
are restricted to privileged and hyperprivileged modes, while
ASIs 30,¢-7F;¢ are restricted to hyperprivileged mode only.
Attempted access by nonprivileged or privileged code to a
hyperprivileged ASI will result in a privileged_action trap.

TABLE 9-2 UltraSPARC T2 ASI Usage (1 of 11)
Copy per
ASI ASI Name R/W VA Strand Description Section/Page
0014-031¢ Any — DAE_invalid_asi
0444 ASI _NUCLEUS RW Any — Implicit address space, (See UA-2007)
nucleus context, TL >0
0516_OB16 Any — DAE_inValid_aSi
0Cq4 ASlI NUCLEUS_LI TTLE RW Any — Implicit address space, (See UA-2007)
nucleus context, TL >0
(LE)
0D16_0F16 Any — DAE_inValid_aSi
1044 AS| _AS | F_USER PRI MARY RW Any — Primary address space, (See UA-2007)
user privilege
1144 AS| _AS | F_USER_SECONDA RW Any — Secondary address space, (See UA-2007)
RY user privilege
1216_1316 Al’ly —
144¢ AS| _REAL RW Any — Real address (normally page 82
used as cacheable)
1546 ASI _REAL_I O RW Any — Real address (normally page 82
used as noncacheable,
with side effect)
1644 AS|I _BLOCK_AS | F_USER P RwW Any — 64-byte block load/store, 5.3
RI MARY primary address space,
user privilege
1714 AS|I _BLOCK_AS | F_USER S RW Any — 64-byte block load/store, 5.3
ECONDARY secondary address space,
user privilege
1844 ASl _AS_| F_USER PRI MARY RW Any — Primary address space, (See UA-2007)
_LITTLE user privilege (LE)
1944 ASI _AS | F_USER_SECONDA RW Any — Secondary address space, (See UA-2007)
RY_LI TTLE user privilege (LE)
1A16_1Bl6 Any —_—

72 UltraSPARC T2 Supplement « Draft D1.4.3, 19 Sep 2007

TABLE 9-2 UltraSPARC T2 ASI Usage (2 of 11)

Copy per
ASI ASI Name R/W VA Strand Description Section/Page
1Cy¢ AS|I _REAL_LITTLE RW Any — Real address (normally page 82
used as cacheable) (LE)
1Dq4 ASI _REAL_I O LITTLE RW Any — Real address (normally page 82
used as noncacheable,
with side effect) (LE)
1E6 AS|I _BLOCK_AS | F_USER P RW Any — 64-byte block load/store, 5.3
RI MARY_LI TTLE primary address space,
user privilege (LE)
1F¢ ASI _BLOCK_AS | F_USER_S RwW Any — 64-byte block load/store, 5.3
ECONDARY_LI TTLE secondary address space,
user privilege (LE)
2044 ASI| _SCRATCHPAD RW 0161816 Y Scratchpad registers page 82
2014 AS| _SCRATCHPAD RW 2016~ — page 82
2814
2014 AS| _SCRATCHPAD RW 3016 Y Scratchpad registers page 82
3816
2144 ASl _MwJ RW 816 Y I/DMMU Primary 12.10.2
Context register 0
2144 ASl _MwJ RW 104¢ Y DMMU Secondary 12.10.2
Context register 0
2144 ASl _MwJ RW 10844 Y I/DMMU Primary 12.10.2
Context register 1
2144 ASl _MwJ RW 11044 Y DMMU Secondary 12.10.2
Context register 1
2246 ASI _TW NX_AI UP, RW Any — Load: 128-bit atomic ~ 5.7.4
AS| _STBI _Al UP load twin extended
word, primary address
space, user privilege
Store: Block initializing
store, primary address
space, user privilege
2316 ASI _TW NX_AI US, RW Any — Load: 128-bit atomic (See UA-2007)
ASI _STBI _Al US load twin extended
word, secondary address
space, user privilege
Store: Block initializing
store
2444 ASI _TW NX RO Any — 128-bit atomic load twin (See UA-2007)
extended word
2544 ASI _QUEUE RW 3C044 Y CPU Mondo Queue head 7.3.1
pointer

TABLE 9-2 UltraSPARC T2 ASI Usage (3 of 11)
Copy per
ASI ASI Name R/W VA Strand Description Section/Page
2544 ASI _QUEUE RW 3C8 Y CPU Mondo Queue tail 7.3.1
(hyperpriv) pointer
RO (priv)
2516 ASI _QUEUE RW 3D044 Y Device Mondo Queue 7.3.1
head pointer
2516 ASI _QUEUE RW 3D84 Y Device Mondo Queue 7.3.1
(hyperpriv) tail pointer
RO (priv)
2516 ASI _QUEUE RW 3E0q4 Y Resumable Error Queue 7.3.1
head pointer
2516 ASI _QUEUE RW 3E844 Y Resumable Error Queue 7.3.1
(hyperpriv) tail pointer
RO (priv)
2514 ASI _QUEUE RW 3F04¢ Y Nonresumable Error 7.3.1
Queue head pointer
2514 ASI _QUEUE RW (hyper- 3F84 Y Nonresumable Error 7.3.1
priv) Queue tail pointer
RO (priv)
2616 ASI _TW NX_REAL R Any — 128-bit atomic LDDA, (See UA-2007)
real address
2716 ASI _TW NX_NUCLEUS, RW Any — Load: 128-bit atomic (See UA-2007)
ASlI _STBI _N load twin extended word
from nucleus context
Store: Block initializing
store from nucleus
context
2816_2916 Any — DAE_|nVaI|d_aS|
2A44 ASI _TW NX_AI UPL, RW Any — Load: 128-bit atomic (See UA-2007)

AS| _STBI _Al UPL

load twin extended
word, primary address
space, user privilege,
little endian

Store: Block initializing
store, primary address
space, user privilege,
little endian

74 UltraSPARC T2 Supplement « Draft D1.4.3, 19 Sep 2007

TABLE 9-2

UltraSPARC T2 ASI Usage (4 of 11)

ASI

ASI Name R/W

VA

Copy per
Strand

Description Section/Page

2B16

2C16
2Eq¢

2F ¢

3046
3146

3216-351¢
3616

3716
3816

3916

3A16_3D16
3E¢

3F6

ASI _TW NX_AI USL, RW

AS| _STBI _Al USL

ASI _TW NX_LI TTLE RO

ASI _TW NX_REAL_LI TTLE

ASI_TW NX_NL, RW

ASl _STBI _NL

ASI _AS | F_PRIV_PRIMARY RW

AS| _AS_ | F_PRI V_SECONDA
RY

RW

ASI _AS | F_PRIV_NUCLEUS RW

ASI _AS | F_PRIV_PRIMARY RW

_LITTLE

ASI _AS | F_PRIV_SECONDA RW

RY_LI TTLE

ASI _AS | F_PRIV_NUCLEUS RW

_LITTLE

Any

Load: 128-bit atomic
load twin extended
word, secondary address
space, user privilege,
little endian

Store: Block initializing
store, secondary address
space, user privilege,
little endian

128-bit atomic load twin (See UA-2007)
extended word, little

endian

DAE_invalid_asi

128-bit atomic LDDA,
real address (LE)

Load: 128-bit atomic
load twin extended word
from nucleus context,
little endian

Store: Block initializing
store from nucleus
context, little endian

(See UA-2007)

(See UA-2007)

(See UA-2007)

Primary address space, (See UA-2007)

privilege access
Secondary address space, (See UA-2007)
privilege access
DAE_invalid_asi
Nucleus address space,
privilege access
DAE_invalid_asi
Primary address space,

privileged access, little
endian

Secondary address space, (See UA-2007)
privilege access, little
endian
DAE_invalid_asi
Nucleus address space,
privilege access, little
endian

DAE_invalid_asi

(See UA-2007)

(See UA-2007)

(See UA-2007)

TABLE 9-2 UltraSPARC T2 ASI Usage (5 of 11)
Copy per

ASI ASI Name R/W VA Strand Description Section/Page

4144 ASI _CMr RO 0 S Strand available 14.1.1

4144 ASI _CMr RO 1044 S Strand enable status 14.1.2

4144 ASI _CMr RW 2044 S Strand enable 14.1.3

4144 ASI _CMT RW 3046 S XIR steering 14.1.4

4146 AS| _CMr RW 3816 S Tick_Enable 14.1.5

4146 AS| _CMr RW 5014 S Running_RW 14.1.7

4144 ASI _CMr RO 581¢ S Running Status 14.1.8

4144 ASI _CMT WO 6016 S Running W1S 14.1.9

4146 AS| _CMr WO 6816 S Running WIC 14.1.10

4214 ASI _I NST_MASK_REG RW 816 N SPARC Instruction Mask 19.3.1
register

4214 ASl _LSU_DI AG_REG RW 1046 N Load/Store Unit 19.4.1
Diagnostic register

4314 ASI _ERROR_| NDECT_REG RW 0 N ASI_ERROR_INJECT_R 16.8.9
EG

4446 Any DAE_invalid_asi

4514 AS| _LSU_CONTROL_REG RW 0 Y Load/Store Unit Control 19.1
register

4514 AS| _DECR RW 816 Trap unit 16.7.10

4514 AS| _RST_VEC_MASK RW 1846 S sOC 20.1.4

4614 AS| _DCACHE_DATA RW Any Dcache data array 19.6.1
diagnostic access

4716 ASI _DCACHE_TAG RW Any Y Dcache tag and valid bit 19.6.2
diagnostic access

4814 AS| _| RF_ECC_REG RO Any Y IRF ECC diagnostic 19.7.1
access

4914 AS| _FRF_ECC_REG RO Any Y FRF ECC diagnostic 19.8.1
access

4A44 AS| _STB_ACCESS RO Any Y Store buffer diagnostic 19.9
access

4By¢ Any — DAE_invalid_asi

4Cq4 AS| _DESR RO 0 Y Disrupting Error Status 16.8.5
register (DESR)

4Cq6 ASI _DFESR RO 816 Y Deferred Error Status 16.8.6
register

4Cq4 AS| _CERER RW 1046 N ASI _CORE_ERROR_ 16.8.1

RECORDI NG_ENABLE_R
EG STER

76 UltraSPARC T2 Supplement « Draft D1.4.3, 19 Sep 2007

TABLE 9-2 UltraSPARC T2 ASI Usage (6 of 11)
Copy per
ASI ASI Name R/W VA Strand Description Section/Page
4Cq¢ ASI _SETER RW 1844 Y ASI _STRAND ERROR T 16.8.2
RAP_ENABLE _
REG STER
4Cq4 ASI _CLESR RO 2044 Y ASI_CLESR 16.8.7
4Cq¢ ASI _CLFESR RO 2814 Y ASI_CLFESR 16.8.8
4Dqg DAE_invalid_asi
4Eq4 ASI _SPARC_PWR_MGMT RW 0 N SPARC power 18.1
management register
4Fq4 ASI _HYP_SCRATCHPAD RW 016-381¢ Y Hypervisor scratchpad page 83
5016 ASI _| TSB_TAG TARGET RO 0 Y IMMU Tag Target 12.10.3
register
5016 ASI _I SFSR RW 18 Y IMMU Synchronous 16.8.3
Fault Status register
5016 ASI _| TLB_TAG_ACCESS RW 30 Y IMMU TLB Tag Access 12.10.5
register
5016 ASI _| MVU_VA _ RW 38 Y IMMU Watchpoint 19.2.2
WATCHPOI NT register
5114 ASI _VMRA _ACCESS RO Y HWTW MRA access 19.13
5214 ASI _MMJ_REAL_RANGE 0 RW 10844 Y MMU TSB real range 0 12.10.9
5216 ASI _MMJ_REAL_RANCGE_1 RW 11044 Y MMU TSBreal range 1 12.10.9
5216 ASI _MMJ_REAL_RANCE_2 RW 11844 Y MMU TSB real range 2 12.10.9
5216 ASI _MMUJ_REAL_RANGE_3 RW 12044 Y MMU TSB real range 3 12.10.9
5214 ASI _MMJ_PHYSI CAL _ RW 20814 Y MMU TSB physical offset 12.10.10
OFFSET_0O 0
5214 ASI _MMJ_PHYSI CAL _ RW 21044 Y MMU TSB physical offset 12.10.10
OFFSET_1 1
5214 ASI _MMJ_PHYSI CAL _ RW 21844 Y MMU TSB physical offset 12.10.10
OFFSET_2 2
5214 ASI _MMJ_PHYSI CAL _ RW 22014 Y MMU TSB physical offset 12.10.10
OFFSET_3 3
5314 ASI _| TLB_PROBE RO Y ITLB Probe 12.10.8
5416 ASI _| TLB_DATA | N_REG WO 0, 40044 Y IMMU data in register 12.10.15
5416 ASI _MMJ_ZERO RW 1014 Y Context zero TSB Config 12.10.11
CONTEXT_TSB_CONFI G 0 0
5416 ASI _MMJ_ZERO RW 1814 Y Context zero TSB Config 12.10.11
CONTEXT_TSB_CONFI G_1 1
5416 ASI _MMJ_ZERO RW 2044 Y Context zero TSB Config 12.10.11
CONTEXT_TSB_CONFI G_2 2
5416 ASI _MMJ_ZERO RW 2844 Y Context zero TSB Config 12.10.11

CONTEXT_TSB_CONFI G_3

3

TABLE 9-2 UltraSPARC T2 ASI Usage (7 of 11)
Copy per
ASI ASI Name R/W VA Strand Description Section/Page
5416 ASI _MMJ_NONZERO _ RW 3046 Y Context nonzero TSB 12.10.11
CONTEXT_TSB_CONFI G 0 Config 0
5416 ASI _MMJ_NONZERO _ RW 3816 Y Context nonzero TSB 12.10.11
CONTEXT_TSB_CONFI G_1 Config 1
5416 ASI _MMJ_NONZERO _ RW 4044 Y Context nonzero TSB 12.10.11
CONTEXT_TSB_CONFI G 2 Config 2
544 ASI _MMJ_NONZERO_CONTEX RW 4816 Y Context nonzero TSB 12.10.11
T _TSB _CONFI G 3 Config 3
544 ASI _MMJ I TSB_PTR 0O RO 5014 Y I-ITSB Pointer 0 12.10.12
5444 ASI _MMJ_ | TSB_PTR_1 RO 5816 Y I-TSB Pointer 1 12.10.12
5416 ASI _MMUJ | TSB_PTR_2 RO 6016 Y I-TSB Pointer 2 12.10.12
5446 ASI _MVU I TSB_PTR_ 3 RO 6816 Y I-TSB Pointer 3 12.10.12
544 ASI _MMJ DTSB_PTR O RO 7014 Y D-TSB Pointer 0 12.10.12
5444 ASI _MWJ_DTSB_PTR_1 RO 7816 Y D-TSB Pointer 1 12.10.12
5416 ASI _MMJ DTSB_PTR_2 RO 8016 Y D-TSB Pointer 2 12.10.12
5416 ASI _MWU DTSB_PTR_3 RO 8816 Y D-TSB Pointer 3 12.10.12
5444 ASI _PENDI NG_TABLEWALK _ RW 9014 Y Pending tablewalk 12.10.13
CONTROL control
544 ASI _PENDI NG_TABLEWALK _ RO 9816 N Pending Tablewalk 12.10.14
STATUS status
5514 ASI | TLB_DATA ACCESS R RW 0-1F844, Y IMMU TLB Data Access 12.10.15
EG 40016— register
5F8
5616 ASI _| TLB_TAG READ RO 0-1F84¢, Y IMMU TLB Tag Read 12.10.15
REG 40016— register
5F84¢
5716 ASI _| MVU_DENAP WO Any Y IMMU TLB demap 12.11.1
5816 ASI _DTSB_TAG TARGET RO 0 Y DMMU Tag Target 12.10.3
register
5816 ASI _DSFSR RW 1846 Y DMMU Synchronous 16.8.4.1
Fault Status register
5816 ASI _DSFAR RO 2044 Y DMMU Synchronous 16.8.4.2
Fault Address register
5816 ASI _DTLB_TAG_ACCESS RW 3016 Y DMMU TLB Tag Access 12.10.5
register
5816 ASI _DMMUJ_WATCHPO NT RW 3816 Y DMMU Watchpoint 19.2.1
register
5816 ASI _HWI'W CONFI G RW 4044 Y I/DMMU Hardware 12.10.7
Tablewalk Config
register
5816 ASI _PARTITION_I D RW 8016 Y I/DMMU Partition ID 12.10.6

78 UltraSPARC T2 Supplement « Draft D1.4.3, 19 Sep 2007

TABLE 9-2 UltraSPARC T2 ASI Usage (8 of 11)
Copy per
ASI ASI Name R/W VA Strand Description Section/Page
5916 AS| _SCRATCHPAD _ RO Any Y Scratchpad register 19.10
ACCESS diagnostic access
5A14 ASI _TI CK_ACCESS RO 0-816, Y TICK register diagnostic 19.11
1016, access
2016~
3016
5B1¢ ASI _TSA_ACCESS RO Any Y TSA diagnostic access 19.12
5C16 AS| _DTLB_DATA | N_REG WO 0,4004¢ Y DMMU data-in register 12.10.15
5D1¢ AS| _DTLB_DATA_ACCESS_R RW 0-7F814 Y DMMU TLB Data Access 12.10.15
EG register
5Eq¢ AS| _DTLB_TAG_READ_REG RO 0-7F814 Y DMMU TLB Tag Read 12.10.15
register
5F1¢ AS| _DMMJ_DENMAP WO Any Y DMMU TLB demap 12.11
6016_6216 Any DAE_inValid_aSi
6316 ASI _CMI_CORE_I NTR_I D RO 0 Y Strand interrupt ID 14.2.1
6316 AS| _CMTI_STRAND | D RO 1044 Y Strand ID 14.2.2
6416_6516 Any DAE_inVaIid_aSi
6616 ASI _I CACHE_I NSTR RW Any Y Icache data array 19.5.1
diagnostics access
6716 ASI _| CACHE_TAG RW Any Y Icache tag and valid bit 19.5.2
diagnostics access
6816_7116 Any DAE_inValid_aSi
7214 AS| _I NTR_RECEI VE RW 0 Y Interrupt Receive register7.3.2
7316 ASI _I NTR_ W WO 0 Y Interrupt Vector Dispatch7.3.3
register
7414 ASI _I NTR_R RO 0 Y Incoming Vector register 7.3.4
7516_7F16 Any —_— DAE_|nVaI|d_aS|
8014 AS| _PRI MARY RW Any — Implicit primary address (See UA-2007)
space
8144 AS| _SECONDARY RW Any — Implicit secondary (See UA-2007)
address space
8214 AS| _PRI MARY_NO_FAULT RO Any — Primary address space, (See UA-2007)
no fault
8316 AS| _SECONDARY_NO RO Any — Secondary address space, (See UA-2007)
FAULT no fault
8416_8716 Any — DAE_inValid_aSi
8816 AS| _PRI MARY_LI TTLE RW Any — Implicit primary address (See UA-2007)
space (LE)
8916 AS| _SECONDARY_LI TTLE RwW Any — Implicit secondary (See UA-2007)

address space (LE)

TABLE 9-2 UltraSPARC T2 ASI Usage (9 of 11)
Copy per
ASI ASI Name R/W VA Strand Description Section/Page
8A14 ASI _PRI MARY_NO_ RO Any — Primary address space, (See UA-2007)
FAULT LI TTLE no fault (LE)
8B1g ASI _SECONDARY_NO_ RO Any — Secondary address space, (See UA-2007)
FAULT LI TTLE no fault (LE)

8C16_BF16 Any — DAE_|nVaI|d_aS|

C014 AS|I _PST8_P Any — Eight 8-bit conditional (See UA-2007)
stores, primary address

Clye ASlI _PST8_S Any — Eight 8-bit conditional (See UA-2007)
stores, secondary address

C244 AS|I _PST16_P Any — Four 16-bit conditional (See UA-2007)
stores, primary address

C345 ASlI _PST16_S Any — Four 16-bit conditional (See UA-2007)
stores, secondary address

C444 AS|I _PST32_P Any — Two 32-bit conditional (See UA-2007)
stores, primary address

C545 ASlI _PST32_S Any — Two 32-bit conditional (See UA-2007)
stores, secondary address

C616_C716 Any — DAE_inValid_aSi

C814 AS| _PST8_PL Any — Eight 8-bit conditional (See UA-2007)
stores, primary address,
little endian

C946 ASl _PST8_SL Any — Eight 8-bit conditional (See UA-2007)
stores, secondary
address, little endian

CAqq AS| _PST16_PL Any — Four 16-bit conditional (See UA-2007)
stores, primary address,
little endian

CBy ASI _PST16_SL Any — Four 16-bit conditional (See UA-2007)
stores, secondary
address, little endian

CCy ASI _PST32_PL Any — Two 32-bit conditional (See UA-2007)
stores, primary address,
little endian

CDy4 ASl _PST32_SL Any — Two 32-bit conditional (See UA-2007)
stores, secondary
address, little endian

CEq4_CFqq Any — DAE_invalid_asi

D044 ASlI _FL8_P Any — 8-bitload/store, primary (See UA-2007)
address

D1y¢ ASI _FL8_S Any — 8-bit load/store, (See UA-2007)

secondary address

80 UltraSPARC T2 Supplement « Draft D1.4.3, 19 Sep 2007

TABLE 9-2

UltraSPARC T2 ASI Usage (10 of 11)

ASI

ASI Name

R/W

Copy per
Strand

Description Section/Page

D316

D416-D716
D81¢

D9

DBy

DC¢-DFq4
EO0¢¢

Ellﬁ

E216

E316

E416-E9%¢
EAq¢

ASI _FL16_P

ASl _FL16_S

ASI _FL8_PL

ASI _FL8_SL

ASl _FL16_PL

ASl _FL16_SL

ASI _BLK_COWM T_PRI MARY

AS| _BLK_COVM T_SECONDA
RY

ASI_TW NX_P

AS| _STBI _P

ASI _TW NX_S
ASI _STBI _S

ASI_TW NX_PL
ASI _STBI _PL

RW

RW

RW

RW

RW

16-bit load/store, (See UA-2007)
primary address

16-bit load/store, (See UA-2007)
secondary address

DAE_invalid_asi

8-bit load/store, primary (See UA-2007)
address, little endian

8-bit load /store, (See UA-2007)
secondary address, little
endian

16-bit load/store, (See UA-2007)
primary address, little
endian

16-bit load /store, (See UA-2007)
secondary address, little
endian

DAE_invalid_asi

64-byte block commit 5.3
store, primary address

64-byte block commit 5.3
store, secondary address

Load: 128-bit atomic (See UA-2007)
load twin extended

word, primary address

space

Store: Block initializing

store, primary address

space

Load: 128-bit atomic (See UA-2007)
load twin extended

word, sedondary address

space

Store: Block initializing

store, sedondary address

space

DAE_invalid_ASI

Load: 128-bit atomic (See UA-2007)
load twin extended

word, primary address

space, little endian

Store: Block initializing

store, primary address

space, little endian

TABLE 9-2 UltraSPARC T2 ASI Usage (11 of 11)
Copy per
ASI ASI Name R/W VA Strand Description Section/Page
EBqg ASI _TW NX_PL, RW Any — Load: 128-bit atomic (See UA-2007)
ASI _STBI _PL load twin extended
word, sedondary address
space, little endian
Store: Block initializing
store, sedondary address
space, little endian
EC1¢-EFq4 Any — DAE_invalid_asi
FOq¢ ASI _BLK_P RW Any — 64-byte block load/store, 5.3
primary address
Fly4 ASI _BLK_S RW Any — 64-byte block load/store, 5.3
secondary address
F2,6-F71¢ Any — DAE_invalid_asi
F81¢ ASI _BLK_PL RW Any — 64-byte block load/store, 5.3
primary address (LE)
F91¢ ASI _BLK_SL RW Any — 64-byte block load/store, 5.3
secondary address (LE)
FA16_FF16 Any — DAE_inValid_aSi

9.2.1

9.2.2

ASI _REAL, ASI REAL_LI TTLE, ASI _REAL_I O
and ASI _REAL_| O LI TTLE

These ASIs are used to bypass the VA-to-RA translation. For these ASIs, the real
address is set equal to the truncated virtual address (that is, RA{39:0} — VA{39:0}),
and the attributes used are those present in the matching TTE. The hypervisor will
normally set the TTE attributes for ASI _REAL and ASI _REAL_LI TTLE to cacheable
(cp = 1) and for ASI _REAL_| Oand ASI _REAL_I| O_LI TTLE to noncacheable, with
side effect (cp =0, e = 1).

ASI _SCRATCHPAD

Each virtual processor has a set of six privileged ASI _ SCRATCHPAD registers at ASI
2016 with VA{63:} = 014-1814, 3014-381¢. These registers are for scratchpad use by
privileged software.

UltraSPARC T2 | Standard support of the ASI _SCRATCHPAD is eight registers, so
Implementation | accesses to VA 2014 and 28,4 cause a DAE_invalid_asi trap to
Note | allow hyperprivileged software to emulate the additional
registers.

82 UltraSPARC T2 Supplement « Draft D1.4.3, 19 Sep 2007

UltraSPARC T2
Implementation
Note

There is only a single set of eight scratchpad registers, which are
accessible via both ASI _ SCRATCHPAD and

AS| _HYP_SCRATCHPAD. ASI _SCRATCHPAD is intended to used
primarily by privileged code, and only has access to the first
four and last two registers of the eight entry scratchpad array.
ASI _HYP_SCRATCHPAD can only be accessed when
hyperprivileged and has full access to all eight scratchpad
registers. Note that the registers at VA 20,4 and 284 are
exclusively (directly) accessible via ASI _HYP_SCRATCHPAD.

9.2.3 AS| _HYP_SCRATCHPAD

Each virtual processor has a set of eight hyperprivileged ASI _HYP_SCRATCHPAD
registers at ASI 4F4, VA{63:0} = 014-31¢8. These registers are for scratchpad use by
the hypervisor and for aliased access to the supervisor scratchpad registers.

UltraSPARC T2
Implementation
Note

There is only a single set of eight scratchpad registers, which are
accessible via both ASI _ SCRATCHPAD and

AS| _HYP_SCRATCHPAD. ASI _SCRATCHPAD is intended to used
primarily by privileged code and only has access to the first four
and last two registers of the eight entry scratchpad array.

ASI _HYP_SCRATCHPAD can only be accessed when
hyperprivileged, and has full access to all eight scratchpad
registers. Note that the registers at VA 20,4 and 28,4 are
exclusively (directly) accessible via ASI _HYP_SCRATCHPAD.

84 UltraSPARC T2 Supplement « Draft D1.4.3, 19 Sep 2007

CHAPTER 10

Performance Instrumentation

10.1

SPARC Performance Control Register

Each virtual processor has a privileged Performance Control register. Nonprivileged
accesses to this register cause a privileged_opcode trap. The Performance Control
register contains thirteen fields: hold_ov1, hold_ov0, ov1l, sl1, mask1, ovO0, slO,
masko, toe, ht, ut, st, and priv. hold_ov1 and hold_ovO read as 0 and control whether
ovl and ovO0, respectively, are updated on a write. All bits except ovl and ovO are
always updated on a Performance Control register write. ovl and ovO0 are state bits
associated with the PIC.h and PIC.I overflow traps and are provided to allow
software to determine which PIC counter has overflowed. sl1 and sl0 controls which
events are counted in PIC.h and PIC.|, respectively. maskl (mask0) is used in
conjunction with sl1 (sl0) in determining which set of subevents are counted in
PIC.h (PIC.I). toe controls whether a trap is generated when the PIC counter
overflows. ut controls whether user-level events are counted. st controls whether
supervisor-level events are counted. ht controls whether hypervisor level events are
counted. priv controls whether the PIC register can be read or written by
nonprivileged software. The format of this register is shown in TABLE 10-1. Note that
changing the fields in PCR does not affect the PIC values. To change the events
monitored, software needs to disable counting via PCR, reset the PIC, and then
enable the new event via the PCR.

Note | As the ht bit controls the counting of hyperprivileged events,
writes to this bit while privileged are ignored.

85

TABLE10-1 Performance Control Register - PCR (ASR 1044)
Initial

Bit Field Value R/W Description

63 hold_ov1 0 Write to 0 or 1, If set to 0 on a write, update ovl from bit 31 of the write data; else,

reads as 0 don’t update ovl. In this case ov1 holds its previous value.

62 hold_ov0 0 Write to 0 or 1, If set to 0 on a write, update ovO from bit 18 of the write data; else,

reads as 0 don’t update ovO. In this case ov0 holds its previous value.

61:32 — RO Reserved

31 ovl RwW Set to 1 when PIC.h wraps from 232 -1 to 0, or when PIC.h is within
--16..-1 inclusively, and an event occurs which causes PIC.h to
increment. Once set, ov1l remains set until reset by software.

30:27 sl1 0 RW Selects 1 of 16 events to be counted for PIC.h as per the following
table.

26:19 maskl RW Mask event for PIC.h as listed in TABLE 10-2.

18 ov0 RwW Set to 1 when PIC.| wraps from 232 -1 to 0, or when PIC.| is within
--16..-1 inclusively, and an event occurs which causes PIC.| to
increment. Once set, ov0 remains set until reset by software.

17:14 slo 0 RW Selects one of sixteen events to be counted for PIC.| as per the
following table.

13:6 maskO0 RW Mask event for PIC.| as listed in TABLE 10-2.

5:4 toe RwW Trap-on-Event: This field controls whether a disrupting trap to
hyperprivileged software (pic_overflow) will occur if the
corresponding counter overflows. toe{1} corresponds to ov1l, and
toe{0} to ov0. Hardware will and the value of toe{i} with ov{i} to
produce a trap. Events in event groups 2) and 3) are “precisely”
trapped, assuming that PCR.toe = 1 — TPC will contain the
address of an instruction that generated a count event. If
PCR.toe = 0 when the counter overflows, TPC will contain the
address of the instruction to be executed next when the trap is
eventually taken. Events in other event groups are not directly
related to the instruction stream; therefore, the TPC may be some
number of instructions later than when the overflow event
occurred.

3 ht 0 RO (priv) If ht =1, count events in hyperprivileged mode; otherwise, ignore

RW (hyperpriv) hyperprivileged mode events.

2 ut 0 RW If ut = 1, count events in user mode; otherwise, ignore user mode
events.

1 st 0 RwW If st = 1, count events in privileged mode; otherwise, ignore
privileged mode events.

0 priv 0 RW If priv = 1, prevent access to PIC by user-level code. If priv =0,

allow access to PIC by user-level code.

86 UltraSPARC T2 Supplement ¢ Draft D1.4.3, 19 Sep 2007

Note that hold_ov1 and hold_ov0 control whether ovl and ovO0, respectively, are
updated when a write occurs. All of the 4 combinations of the hold_ov1 and
hold_ovO fields are supported: both, either, or none of the ovl and ovO0 bits can be
updated independently. This allows software to avoid a race condition that may
occur, for example, if ovl is set when the trap handler is entered, then ovO is set by
a counter overflow between the time software reads PCR and resets ov1 prior to
leaving the trap handler.

TABLE 10-2 describes the settings of the sl0 and sl1 fields. Note that with the exception
of sl =0, all events correspond to a given strand. Most sl fields have a mask
associated with them. Setting multiple mask bits at the same time can lead to
multiple events being counted as one event. More details are described in TABLE 10-2.

TABLE10-2 sl Field Settings (1 of 3)
sl mask Event Description
0 — All strands idle Count cycles when no strand can be gicked for the physical core on
which the monitoring strand resides.
1 — — Reserved
2 014 Completed branches
0244 Taken branches Taken branches are always mispredic:ted3
0446 FGU arithmetic All FADD, FSUB, FCMP, convert, FMUL, FDIV, FNEG, FABS, FSQRT,
instructions FMOV, FPADD, FPSUB, FPACK, FEXPAND, FPMERGE, FMULS,
FMULDS, FALIGNDATA, BSHUFFLE, FZERO, FONE, FSRC, FNOT1,
FNOT2, FOR, FNOR, FAND, FNAND, FXOR, FXNOR, FORNOT1,
FORNOT2, FANDNOT1, FANDNOT2, PDIST, SIAM.
0814 Load instructions
1044 Store instructions
2016 os/eghi %i (fc0001g), Software count instructions.
]
4044 Other instructions
8016 Atomics Atomics are LDSTUB/A, CASA/XA, SWAP/A
Any other Any subset of Count instruction types identified by a 1 in the corresponding mask
value 0314 instructions register bit; e.g., FD4 counts all instructions.
FFi¢ Certain instructions (e.g., LDSTUB, CAS, SWAP) are decoded as both

Load and Store instructions.

TABLE10-2 sl Field Settings (2 of 3)
sl mask Event Description
3 0136 Icache misses Note: This counts only primary instruction cache misses, and does not
count duplicate instruction cache misses.* Also, only “true” misses are
counted. If a thread encounters an I$ miss, but the thread is redirected
(due to a branch misprediction or trap, for example) before the line
returns from L2 and is loaded into the I$, then the miss is not counted.
0244 Dcache misses Note: This counts both primary and duplicate data cache misses.*
0446 — Undefined operation.
0814 — Undefined operation.
1044 L2 cache instruction
misses
2046 L2 cache load misses Note: Block loads are treated as one L2 miss event. In reality, each

0316, 1146,

Subset of misses

individual load can hit or miss in the L2 since the block load is not
atomic.

Count subset of misses identified by a '1"' in corresponding mask bit;

1246, 131, e.g., 2314 counts I-cache, D-cache, and L2 load misses; this counter can

2146, 2216, advance at most 1 per cycle.

2316, 3014, Note: Instructions that get both an I-Cache miss (or an L2 cache

3116, 3216, instruction miss) and a D-Cache miss (or L2 cache load miss) count as

3316 one event.

Any other — Reserved, Undefined operation.

value

4 0144 — Reserved

0244 — Reserved

0444 ITLB references to L2 For each ITLB miss with hardware tablewalk enabled, count each
access the ITLB hardware tablewalk makes to L2.

0816 DTLB references to L2 For each DTLB miss with hardware tablewalk enabled, count each
access the DTLB hardware tablewalk makes to L2.

1044 ITLB references to L2 For each ITLB miss with hardware tablewalk enabled, count each

which miss in L2 access the ITLB hardware tablewalk makes to L2 which misses in L2.

Note: Depending upon the hardware table walk configuration, each
ITLB miss may issue from 1 to 4 requests to L2 to search TSBs.

2014 DTLB references to L2 For each DTLB miss with hardware tablewalk enabled, count each

which miss in L2 access the DTLB hardware tablewalk makes to L2 which misses in L2.

Note: Depending upon the hardware tablewalk configuration, each
DTLB miss may issue from 1 to 4 requests to L2 to search TSBs.

Ci4 1414, Subset of above events Count subset of misses identified by a 1 in corresponding mask bit;

18414, 1C1¢,
2416, 2844,
2C1¢, 3446,
3816 3C16

Any other
value

e.g., 1414 counts ITLB and DTLB hardware tablewalk references to L2;
this counter can advance at most 1 per cycle. Certain combinations
(1416, 2814, 3416, 3816, 3Cq¢) are likely not useful.

Reserved. Undefined operation.

88 UltraSPARC T2 Supplement ¢ Draft D1.4.3, 19 Sep 2007

TABLE10-2 sl Field Settings (3 of 3)

sl mask Event Description
5
00140114 — Reserved
0444 CPU Load to PCX Count CPU loads to L2.
0814 CPU I-fetch to PCX Count I-fetches to L2.
1044 CPU Store to PCX Count CPU stores to L2.
2014 MMU Load to PCX Count MMU loads to L2.
Any other Subset of PCX requests Count subset of PCX requests identified by a '1" in corresponding
value 0314 mask bit; e.g., 3F;¢counts all PCX requests; this counter increments at
3F16 most one per cycle.
4014-FF14 — Reserved
61
0016-3F1g —
40,4-FF14 — Reserved
71
0016-3F1g —
40,4-FF14 — Reserved
8-10 — — Reserved
11 0444 ITLB misses Includes all misses (successful and unsuccessful tablewalks).
0815 DTLB misses Includes all misses (successful and unsuccessful tablewalks).
0Cq4 TLB misses Count both ITLB and DTLB misses, including successful and
unsuccessful tablewalks.
Any other — Reserved. Undefined operation.
value
12-15 — — Reserved

1. PCR.UT, PCR.HT, and PCR.ST must all be set in order to properly count events in groups 6 and 7.

2. Unrestricted access to performance events for sl field setting 0 may have security implications
since they contain information about other strands. Privileged software can protect against unre-
stricted access by setting the PCR.priv bit. Hyperprivileged software can protect against unre-
stricted access by not having partitions span an eight-strand boundary.

3. In conjunction with the completed branch count, the taken branch count can be used to compute
not-taken prediction accuracy. Also it can be used to sum idle cycles in single-strand mode by
assuming a fixed number of pipeline bubble cycles per mispredicted branch.

4. A duplicate miss is a miss for which another thread has already missed in the cache for the line,
and the cache fill is pending. UltraSPARC {N2} does not count duplicate I-cache misses but does
count duplicate D-cache misses.

10.2

SPARC Performance Instrumentation
Counter

Each virtual processor has a Performance Instrumentation Counter register. Access
privilege is controlled by the setting of PCR.priv. When PCR.priv =1 an attempt to
access this register in nonprivileged mode causes a privileged_action trap.

The PIC counter contains two fields: h and |. The h field counts the event select by
PCR.sll1. The | field counts the event selected by PCR.slO0. The ut, st, and ht fields for
PCR control which combination of user, supervisor, and/or hypervisor events are
counted.

For the setting sl0 (sl1) =2 and slO (sl1) = 3, when a counter overflow occurs for the
event, hardware generates a disrupting pic_overflow trap that is guaranteed to occur
immediately before an instruction that generated a count event. This instruction
causing the counter to be within epsilon1 of overflow will not have been executed,
and the PC and NPC of the instruction will be stored on the trap stack, assuming the
pic_overflow trap is enabled and is the highest priority trap when the counter
overflows?. The corresponding PIC counter will be incremented. In addition, the ov0
or ovl bit (depending on which counter overflowed) will be set to help software
determine which counter overflowed. ov0 and ov1 can be cleared independently by
a write that sets the bit to 0 (see TABLE 10-1 on page 86 above).

For other settings of slO (sl1), the trap will not be “precise” to the instruction causing
the counter overflow. The amount of skid possible is TBD.

Counter overflow is recorded in the ov0 or ov1 bit of the counter as well as in bit 15
of the SOFTINT register. The overflow causes a disrupting pic_overflow exception.
The strand takes a pic_overflow trap if PSTATE.ie is set and the value in the
Processor Interrupt Level (PIL) is less than 15. The pic_overflow priority of 16.0 is
higher than the interrupt_level_15 trap priority of 17.

The format of the PIC register is shown in TABLE 10-3.

1 The definition of epsilon is —16 to -1, inclusive, instructions generating the event being counted before /after
the overflow. The PC is guaranteed to point to an instruction that generated the event being counted, if the
trap is taken when the counter "overflows".

2 In certain corner cases, the counter will not be incremented nor will the corresponding ov0/1 bit be set. These
cases are: [a) the counter is in range and the instruction will cause the counter to increment, or, b) the OV bit is
already set and the instruction will cause the counter to increment,] and c) one of the following four pending
disrupting conditions are present: i) "disrupting single step completion" exception (this only occurs for
special 'replay’ conditions that occur in Single Step mode, which is a debug mode controlled via JTAG), or ii)
XIR request, or iii) store_error trap request, or iv) SIR (i.e., this instruction is an SIR instruction).

90 UltraSPARC T2 Supplement « Draft D1.4.3, 19 Sep 2007

TABLE 10-3 Performance Instrumentation Counter Register — PIC (ASR 1144)

Bit Field Initial Value R/W Description
63:32 h 0 RW Programmable event counter, event controlled by PCR.sl1.
31:0 I 0 RW Programmable event counter, event controlled by PCR.slO.

10.3 DRAM Performance Counter

Each DRAM channel has a pair of performance counters, packed into a single
register, plus a register to control what is counted. The counters count all events for
that particular DRAM channel, which corresponds to traffic from a pair of L2 banks.

TABLE 10-4 DRAM Performance Control Register - DRAM_PERF_CTL_REG (8444-000014-04004¢) (Count
4 Step 4096)

Bit Field Initial Value R/W Description

63:8 — X RO Reserved

7:4 sel0 0 RW Select code for performance counter 0.
3:0 sell 0 RW Select code for performance counter 1.

TABLE10-5 DRAM Performance Counter Register - DRAM_PERF_COUNT_REG (8414-000014-0408;¢)
(Count 4 Step 4096)

Bit Field Initial Value R/W Description

63 sticky0 0 RW Sticky overflow for counter 0.
62:32 counter0 0 RW Performance counter 0

31 stickyl 0 RW Sticky overflow for counter 1.
30:0 counterl 0 RW Performance counter 1.

TABLE 10-6 DRAM Performance Counter Select Codes

Select Description

0000 Read transactions.

0001 Write transactions.
0010 Read + write transactions.
0011 Bank busy stalls; incremented by 1 each cycle there are requests in the queue, but none can issue

because of bank conflicts

TABLE 10-6 DRAM Performance Counter Select Codes

Select Description

0100 Read queue latency; incremented by n each cycle, where n is the number of read transactions in the
queue.

0101 Write queue latency; incremented by 7 each cycle, where 7 is the number of write transactions in the
queue

0110 (Read + Write) queue latency; incremented by n each cycle, where n is the number of transactions in the
queue

0111 Writeback buffer hits; incremented by 1 each time a read transaction is deferred because it conflicts with

a queued write transaction.

Ixxx Reserved

10.4 PCI-EX Performance Counters

The PCI-Express performance counters are documented in Performance Register
Overview on page 526

10.5 Ethernet Performance Counters

Ethernet performance counters are described in DRR Performance Monitoring on page
766, Port Scheduler on page 703, and Receive Performance Management and Discard
Statistics on page 725.

92 UltraSPARC T2 Supplement « Draft D1.4.3, 19 Sep 2007

CHAPTER 11

Implementation Dependencies

11.1

11.1.1

11.1.2

11.1.3

SPARC V9 General Information

Level-2 Compliance (Impdep #1)

UltraSPARC T2 is designed to meet Level-2 SPARC V9 compliance. It
= Correctly interprets all nonprivileged operations, and

= Correctly interprets all privileged elements of the architecture.

Note | System emulation routines (for example, quad-precision
floating-point operations) shipped with UltraSPARC T2 also
must be Level-2 compliant.

Unimplemented Opcodes, ASIs, and ILLTRAP

SPARC V9 unimplemented, reserved, ILLTRAP opcodes, and instructions with
invalid values in reserved fields (other than reserved FPops) encountered during
execution cause an illegal_instruction trap. Unimplemented and reserved ASI values
cause a DAE_invalid_ASI trap.

Trap Levels (Impdep #37, 38, 39, 40, 114, 115)

UltraSPARC T2 supports two privileged trap levels and six hyperprivileged trap
levels; that is, MAXPTL = 2 and at MAXTL = 6. Normal execution is at TL = 0. Traps at
MAXTL — 1 cause the virtual processor to enter RED_st at e. If a trap is generated
while the virtual processor is operating at TL = MAXTL, the virtual processor will pass
through err or _st at e and generate a watchdog reset (WDR). Window traps that
cause a watchdog reset trap still update CWP if they would have done so with no
watchdog trap being generated.

93

A virtual processor normally executes at trap level 0 (execut e_st at e, TL = 0). Per
SPARC V9, a trap causes the virtual processor to enter the next higher trap level,
which is a very fast and efficient process because there is one set of trap state
registers for each trap level. After saving the most important machine states (PC,
NPC, PSTATE) on the trap stack at this level, the trap (or error) condition is
processed.

For a complete description of traps and RED_st at e handling, see Machine State
After Reset and in RED_State on page 171.

Note | The RED_st at e trap vector address (RSTVADDR) is 256 Mbytes
below the top of the virtual address space; this is, at virtual
address FFFF FFFF F000 00004, which is passed through to
physical address FF FOO0 00004 in RED_st at e.

11.1.4 Trap Handling (Impdep #16, 32, 33, 35, 36, 44)

UltraSPARC T2 supports precise trap handling for all operations except for deferred
and disrupting traps from hardware failures and interrupts. UltraSPARC T2
implements precise traps, interrupts, and exceptions for all instructions, including
long-latency floating-point operations. Multiple traps levels are supported, allowing
graceful recovery from faults. Three of the trap levels (zero through two) are
provided for application and OS use. The remaining three levels are provided for
hyperprivileged and RED_st at e use. UltraSPARC T2 can efficiently execute kernel
code even in the event of multiple nested traps, promoting strand efficiency while
dramatically reducing the system overhead needed for trap handling.

Four sets of global registers are provided, for use by TLO, TL1, TL2, and TL3-5. This
further increases OS performance, providing fast trap execution by avoiding the
need to save and restore registers while processing exceptions.

All traps supported in UltraSPARC T2 are listed in TABLE 6-2 on page 40.

11.1.5 SIR Support (Impdep #116)

UltraSPARC T2 initiates a software-initiated reset (SIR) by executing a SIR
instruction while in hyperprivileged mode. When executed in privileged or user
mode, SIR generates an illegal_instruction trap. See also Watchdog Reset (WDR) and
error_state on page 170.

94 UltraSPARC T2 Supplement « Draft D1.4.3, 19 Sep 2007

11.1.6 Secure Software

To establish an enhanced security environment, it may be necessary to initialize
certain virtual processor states between contexts. Examples of such states are the
contents of integer and floating-point register files, condition codes, and state
registers. See also Clean Window Handling (Impdep #102).

11.1.7 Operation in Nonprivileged Mode with TL > 0

Operation with HPSTATE.hpriv = 0, PSTATE.priv =0, and TL > 0 is invalid and will
result in an IAE_privilege_violation trap on UltraSPARC T2.

11.1.8 Address Masking (Impdep #125)

UltraSPARC T2 follows UltraSPARC Architecture 2007 for PSTATE.am masking. In
addition to the masking required by UltraSPARC Architecture 2007, addresses to
non-translating ASIs and *REAL* ASIs are masked if PSTATE.am = 1. Translating
accesses that bypass translation are also masked if PSTATE.am = 1.

11.2 SPARC V9 Integer Operations

11.2.1 Integer Register File and Window Control
Registers (Impdep #2)

UltraSPARC T2 implements an eight-window 64-bit integer register file; that is,
N_REG_WINDOWS = 8. UltraSPARC T2 truncates values stored in the CWP,
CANSAVE, CANRESTORE, CLEANWIN, and OTHERWIN registers to three bits. This
includes implicit updates to these registers by SAVE, SAVED, RESTORE, and
RESTORED instructions. The most significant two bits of these registers read as zero.

11.2.2 Clean Window Handling (Impdep #102)

SPARC V9 introduced the concept of “clean window” to enhance security and
integrity during program execution. A clean window is defined to be a register
window that contains either all zeroes or addresses and data that belong to the
current context. The CLEANWIN register records the number of available clean
windows.

When a SAVE instruction requests a window and there are no more clean windows,
a clean_window trap is generated. System software needs to clean one or more
windows before returning to the requesting context.

11.2.3 Integer Multiply and Divide

Integer multiplications (MULScc, SMUL{cc}, MULX) and divisions (SDIV{cc},
UDIV{cc}, UDIVX) are executed directly in hardware.

11.2.4 MULScc

SPARC V9 does not define the value of xcc and rd{63:32] for MULScc. UltraSPARC
T2 sets xcc.n to 0, xce.z to 1 if rd{63:0} is zero and to 0 if rd{63:0} is not zero, Xcc.v to
0, and xcc.c to 0. UltraSPARC T2 sets rd{63:33} to zeros, and sets rd{32} to icc.c (that
is, rd{32} is set if there is a carry-out of rd{31}; otherwise, it is cleared).

11.2.5 Version Register (Impdep #2, 13, 101, 104)

Consult the product data sheet for the contents of the Version register for a specific
UltraSPARC T2 implementation. The format of the Version register is described in
Hyperprivileged Version Register (hver) on page 21.

11.3 ~ SPARC V9 Floating-Point Operations

11.3.1 Subnormal Operands and Results; Nonstandard
Operation

UltraSPARC T2 handles some cases of subnormal operands or results directly in
hardware and traps on the rest. In the trapping cases, an fp_exception_other

[fft = unfinished_FPop] trap is signaled and these operations are handled in system
software.

Because trapping on subnormal operands and results can be quite costly,
UltraSPARC T2 supports the nonstandard result option of the SPARC-V9
architecture. When the FSR.ns bit is set, subnormal operands or results encountered
in trapping cases are flushed to zero and the unfinished_FPop floating-point trap is
not taken.

96 UltraSPARC T2 Supplement ¢ Draft D1.4.3, 19 Sep 2007

11.3.2

11.3.3

Overflow, Underflow, and Inexact Traps (Impdep
#3, 55)

UltraSPARC T2 implements precise floating-point exception handling. Underflow is
detected before rounding. Prediction of overflow, underflow, and inexact traps for
operations as well as prediction of invalid operation is used to simplify the
hardware.

Significant performance degradation may be observed while
running with the inexact exception enabled.

Quad-Precision Floating-Point Operations
(Impdep #3)

All quad-precision floating-point instructions, listed in TABLE 11-1, cause an
illegal_instruction trap. These operations are then emulated by system software.

TABLE 11-1 Unimplemented Quad-Precision Floating-Point Instructions

Instruction Description

F<s1d>TOq Convert single-/double- to quad-precision floating-point.
F<ilx>TOq Convert 32-/64-bit integer to quad-precision floating-point.
FqTO<s|d> Convert quad- to single-/double-precision floating-point.
FqTO<i I x> Convert quad-precision floating-point to 32-/64-bit integer.
FCMP<E>q Quad-precision floating-point compares.

FMOVq Quad-precision floating-point move.

FMOVqcc Quad-precision floating-point move if condition is satisfied.
FMOVqr Quad-precision floating-point move if register match condition.
FABSq Quad-precision floating-point absolute value.

FADDq Quad-precision floating-point addition.

FDIVq Quad-precision floating-point division.

FAMULq Double- to quad-precision floating-point multiply.

FMULq Quad-precision floating-point multiply.

FNEGq Quad-precision floating-point negation.

FSQRTq Quad-precision floating-point square root.

FSUBq Quad-precision floating-point subtraction.

11.3.4 Floating-Point Upper and Lower Dirty Bits in
FPRS Register

The FPRS_dirty_upper (du) and FPRS_dirty_lower (dl) bits in the Floating-Point
Registers State (FPRS) register are set when an instruction that modifies the
corresponding upper or lower half of the floating-point register file is issued.
Floating-point register file modifying instructions include floating-point operate,
graphics, floating-point loads and block load instructions.

While SPARC V9 allows FPRS.du and FPRS.dI to be set pessimistically, UltraSPARC
T2 only sets FPRS.du or FPRS.dl when an instruction that updates the floating-point
register file successfully completes. This implies that floating-point instructions that
do not update a floating-point register (for example, an FMOVcc that does not meet
the condition or a floating-point operate instruction that takes a trap) leave FPRS.du
and FPRS.dl unchanged.

11.3.5 Floating-Point Status Register (FSR) (Impdep #13,
19, 22, 23, 24)

UltraSPARC T2 supports precise-traps and implements all three exception fields
(tem, cexc, and aexc) conforming to IEEE Standard 754-1985.

UltraSPARC T2 implements the FSR register according to the definition in
UltraSPARC Architecture 2007, with the following implementation-specific
clarifications:

= UltraSPARC T2 does not contain an FQ, therefore FSR.qne always reads as 0 and
an attempt to read the FQ with an RDPR instruction causes an illegal_instruction
trap.

» UltraSPARC T2 does not detect the unimplemented_FPop, sequence_error,
hardware_error or invalid_fp_register floating-point trap types directly in
hardware, therefore does not generate a trap when those conditions occur.

11.4 SPARC V9 Memory-Related Operations

11.4.1 Load/Store Alternate Address Space (Impdep #5,
29, 30)

Supported ASI accesses are listed in Alternate Address Spaces on page 71.

98 UltraSPARC T2 Supplement « Draft D1.4.3, 19 Sep 2007

11.4.2

11.4.3

11.4.4

11.4.5

Read /Write ASR (Impdep #6, 7, 8, 9, 47, 48)

Supported ASRs are listed in Chapter 3, Registers.

MMU Implementation (Impdep #41)

UltraSPARC T2 memory management is based on Hardware Tablewalk-managed (or
software-managed if Hardware Tablewalk is disabled) instruction and data
Translation Lookaside Buffers (TLBs) and in-memory Translation Storage Buffers
(TSBs) backed by a Software Translation Table. See Chapter 12, Memory Management
Unit for more details.

FLUSH and Self-Modifying Code (Impdep #122)

FLUSH is needed to synchronize code and data spaces after code space is modified
during program execution. FLUSH is described in Memory Synchronization:
MEMBAR and FLUSH on page 933. On UltraSPARC T2, the FLUSH effective address
is ignored, and as a result, FLUSH cannot cause a DAE_invalid_ASI or a
data_access_MMU_miss trap.

Note | SPARC V9 specifies that the FLUSH instruction has no latency
on the issuing virtual processor. In other words, a store to
instruction space prior to the FLUSH instruction is visible
immediately after the completion of FLUSH. When a flush is
performed, UltraSPARC T2 guarantees that earlier code
modifications will be visible across the whole system.

PREFETCH{A} (Impdep #103, 117)

For UltraSPARC T2, PREFETCH{A} instructions follow TABLE 11-2 based on the fcn
value. All prefetches in UltraSPARC T2 are of the "weak" variety (that is, on an
MMU miss, the prefetch is dropped) so the only trap generated by prefetch is
illegal_instruction (for fcn = 515-F).

TABLE 11-2 PREFETCH{A} Variants in UltraSPARC T2

fcn Prefetch Function Action

016 Weak prefetch for several reads Weak prefetch into Level 2 cache.
116 Weak prefetch for one read

216 Weak prefetch for several writes

316 Weak prefetch for one write

TABLE 11-2 PREFETCH{A} Variants in UltraSPARC T2

fcn Prefetch Function Action

416 Prefetch Page No operation.

516-F16 — lllegal_instruction trap.

1044 Invalidate read-once prefetch Weak prefetch into Level 2 cache.
1146 Prefetch for read to nearest unified cache =~ Weak prefetch into Level 2 cache.
1214-1314 Strong prefetches Weak prefetch into Level 2 cache.
1446 Strong prefetch for several reads Weak prefetch into Level 2 cache.
1544 Strong prefetch for one read

1644 Strong prefetch for several writes

1744 Strong prefetch for one write

1846 Invalidate cache entry No operation for PREFETCHA.

For Prefetch, if executed in user or
privileged mode, no operation. If
executed while hyperprivileged,
invalidate cache line from Level 2
cache (writing back to memory if
dirty) leaving Level 2 cache line
invalid.

1914-1F — No operation

11.4.6 LDD/STD Handling (Impdep #107, 108)

LDD and STD instructions are directly executed in hardware.

Note | LDD/STD are deprecated in SPARC V9. In UltraSPARC T2 it is
more efficient to use LDX/STX for accessing 64-bit data. LDD/
STD take longer to execute than two 32- or 64-bit loads/stores.

11.4.7 FP mem_address_not_aligned (Impdep #109, 110,
111, 112)

LDDF{A}/STDF{A} cause an LDDF_/STDF_ mem_address_not_aligned trap if the
effective address is 32-bit aligned but not 64-bit (doubleword) aligned.

LDQF{A}/STQF{A} are not directly executed in hardware; they cause an
illegal_instruction trap.

100 UltraSPARC T2 Supplement « Draft D1.4.3, 19 Sep 2007

11.4.8

11.4.9

11.4.10

Supported Memory Models (Impdep #113, 121)

UltraSPARC T2 supports only the TSO memory model, although certain specific
operations such as block loads and stores operate under the RMO memory model.
See Chapter 8, Section 8.2. Supported Memory Models.”.

I/0 Operations (Impdep #118, 123)

I/0 spaces and their accesses are specified in I/O Address Spaces on page 70.

Implicit ASI When TL > 0 (Impdep #124)

UltraSPARC T2 matches all UltraSPARC Architecture implementations and makes
the implicit ASI for instruction fetching ASI _NUCLEUS when TL > 0, while the
implicit ASI for loads and stores when TL > 0 is ASI _NUCLEUS if PSTATE.cle=0 or
AS| _NUCLEUS_LI TTLE if PSTATE.cle=1.

11.5

11.5.1

11.5.2

11.5.3

Non-SPARC V9 Extensions

Cache Subsystem

UltraSPARC T2 contains one or more levels of cache. The cache subsystem
architecture is described in Appendix D, Caches and Cache Coherency.

Memory Management Unit

UltraSPARC T2 implements a multi-level memory management scheme. The MMU
architecture is described in Chapter 12, Memory Management Unit.

Error Handling

UltraSPARC T2 implements a set of programmer-visible error and exception
registers. These registers and their usage are described in Chapter 16, Error Handling.

101

11.5.4

11.5.5

11.5.6

11.5.7

11.5.8

11.5.9

11.5.10

Block Memory Operations
UltraSPARC T2 supports 64-byte block memory operations utilizing a block of eight

double-precision floating point registers as a temporary buffer. See Block Load and
Store Instructions on page 33.

Partial Stores

UltraSPARC T2 supports 8-/16-/32-bit partial stores to memory. See Block Load and
Store Instructions on page 33.

Short Floating-Point Loads and Stores

UltraSPARC T2 supports 8-/16-bit loads and stores to the floating-point registers.

Load Twin Extended Word

UltraSPARC T2 supports 128-bit atomic load operations to a pair of integer registers.
See Load Twin Extended Word on page 38.

Interrupt Vector Handling

CPUs and I/0 devices can interrupt a selected virtual processor by assembling and
sending an interrupt packet. This allows hardware interrupts and cross-calls to have
the same hardware mechanism and to share a common software interface for
processing. Interrupt vectors are described in Chapter 7, Interrupt Handling.

Power-Down Support

UltraSPARC T2 supports the ability to power down virtual processors and I/O
devices to reduce power requirements during idle periods.

UltraSPARC T2 Instruction Set Extensions
(Impdep #106)

The UltraSPARC T2 processor supports VIS 2.0. VIS instructions are designed to
enhance graphics functionality and improve the efficiency of memory accesses.

102 UltraSPARC T2 Supplement « Draft D1.4.3, 19 Sep 2007

11.5.11

11.5.12

Unimplemented IMPDEP1 and IMPDEP2 opcodes encountered during execution
cause an illegal_instruction trap.

Performance Instrumentation

UltraSPARC T2 performance instrumentation is described in Chapter 10, Performance
Instrumentation.

Debug and Diagnostics Support

UltraSPARC T2 support for debug and diagnostics is described in Chapter 19,
Configuration and Diagnostics Support.

« 103

104 UltraSPARC T2 Supplement « Draft D1.4.3, 19 Sep 2007

CHAPTER 12

Memory Management Unit

This chapter provides detailed information about the UltraSPARC T2 Memory
Management Unit. It describes the internal architecture of the MMU and how to
program it.

12.1

Translation Table Entry (TTE)

The Translation Table Entry holds information for a single page mapping. The TTE is
broken into two 64-bit words, representing the tag and data of the translation. Just as
in a hardware cache, the tag is used to determine whether there is a hit in the TSB.

. TABLE 12-1 shows the sun4v TTE tag format.

TABLE12-1 TTE Tag Format
Bit Field Description
63:61 — Reserved
60:48 context The 13-bit context identifier associated with the TTE.
47:42 — Reserved
41:0 va Virtual Address Tag{63:22}. The virtual page number. Bits 21 through

13 are not maintained in the tag, since these bits are used to index the
smallest TSB (512 entries).
NOTE: Hardware only supports a 48-bit VA.

The sundv TTE data format is shown in TABLE 12-2.

105

TABLE 12-2

TTE Data Format

Bit

Field

Description

63
62

61:56

55:13

12

11

10:9

v
nfo

soft2

ra

cp, cv

Valid. If the Valid bit is set, the remaining fields of the TTE are meaningful.

No-fault-only. If this bit is set, loads with ASI _PRI MARY_NO_FAULT{_LI TTLE},

AS| _SECONDARY_NO_FAULT{_LI TTLE]} are translated. Any other DMMU access will
trap with a DAE_nfo_page trap. For the IMMU, if the nfo bit is set, an iae_nfo_page
trap will be taken.

soft2 and soft are software-defined fields, provided for use by the operating system.
Software fields are not implemented in the UltraSPARC T2 TLB. soft and soft2 fields
may be written with any value; they read from the TLB as zero, with the exception of
soft{61}, which contains the TLB data parity bit.

The real page! number. For UltraSPARC T2, a 40-bit real address range is supported by
the hardware tablewalker, and bits {55:40} should always be zero.

NOTE: UltraSPARC T2 TLBs store physical addresses, not real addresses.
Hyperprivileged code is responsible for translation between real and physical
addresses. The UltraSPARC T2 TLBs store PA{39:13}.

Invert endianess. If this bit is set, accesses to the associated page are processed with
inverse endianness from what is specified by the instruction (big-for-little and little-
for-big). See Section 12.6 on page 126 for details. For the IMMU, the ie bit in the TTE is
written into the ITLB but ignored during ITLB operation. The value of the ie bit
written into the ITLB will be read out on an ITLB Data Access read.

Note: This bit is intended to be set primarily for noncacheable accesses.

Side effect. If this bit is set, noncacheable memory accesses other than block loads and
stores are strongly ordered against other e bit accesses, and noncacheable stores are
not merged. This bit should be set for pages that map I/O devices having side effects.
Note, however, that the e bit does not prevent normal instruction prefetching. For the
IMMU, the e bit in the TTE is written into the ITLB, but ignored during ITLB
operation. The value of the e bit written into the ITLB will be read out on an ITLB Data
Access read.

NOTE: The e bit does not force an uncacheable access. It is expected, but not required,
that the cp and cv bits will be set to zero when the e bit is set.

The cacheable-in-physically-indexed-cache and cacheable-in-virtually-indexed-cache
(cp, cv) bits determine the placement of data in UltraSPARC T2 caches, according to
TABLE 12-3. The MMU does not operate on the cacheable bits, but merely passes them
through to the cache subsystem. The cv bit is ignored by UltraSPARC T2, and is not
written into the TLBs and returns zero on a Data Access read.

TABLE 12-3 Cacheable Field Encoding (from TSB)

Meaning of TTE When Placed in:

Cacheable iTLB dTLB
(cp:cv) (I-cache PA-Indexed) (D-cache PA-Indexed)
Cacheable L2 cache only Cacheable L2 cache only
0x

Cacheable L2 cache, I-cache Cacheable L2 cache, D-cache
1x

106 UltraSPARC T2 Supplement « Draft D1.4.3, 19 Sep 2007

TABLE 12-2

TTE Data Format (Continued)

Bit

Field

Description

5:4
3:0

p

ep

soft
size

Privileged. If the p bit is set, only privileged software can access the page mapped by
the TTE. If the p bit is set and an access to the page is attempted when

PSTATE.priv = 0, the MMU will signal an IAE_privilege_violation or
DAE_privilege_violation trap.

Executable. If the ep bit is set, the page mapped by this TTE has execute permission
granted. Otherwise, execute permission is not granted and the hardware table-walker
will not load the ITLB with a TTE with ep = 0. For the IMMU and DMMU, the ep bit
in the TTE is not written into the TLB, and returns zero on a Data Access read.

Writable. If the w bit is set, the page mapped by this TTE has write permission granted.
Otherwise, write permission is not granted and the MMU will cause a
fast_data_access_protection trap if a write is attempted. For the IMMU, the w bit in
the TTE is written into the ITLB, but ignored during ITLB operation. The value of the
w bit written into the ITLB will be read out on an ITLB Data Access read.

(see soft2, above)

The page size of this entry, encoded as shown in TABLE 12-4.

TABLE 12-4 Size Field Encoding (from TTE)

Size{2:0} Page Size
0000 8 KB
0001 64 KB
0010 Reserved
0011 4 MB
0100 Reserved
0101 256 MB
0110-1111 Reserved

1. sun4v supports translation from virtual addresses (VA) to real addresses (RA) to physical addresses (PA).
Privileged code manages the VA-to-RA translations, while hyperprivileged code manages the RA-to-PA
translations. The TLBs contain VA-to-PA translations or RA-to-PA translations (the latter are distinguished
from the former by a Real bit in the TLB).

12.2

Translation Storage Buffer (TSB)

A TSB is an array of TTEs managed entirely by software. It serves as a cache of the
Software Translation table, used to quickly reload the TLB in the event of a TLB
miss. The discussion in this section assumes the use of the hardware support for TSB
access described in Section 12.3.1, although the operating system is not required to
make use of this support hardware.

Inclusion of the TLB entries in a TSB is not required; that is, translation information
may exist in the TLB that is not present in the TSB.

e 107

A TSB is arranged as a direct-mapped cache of TTEs. The UltraSPARC T2 MMU
provides hardware tablewalk support and precomputed pointers into the TSB(s) for
both zero and nonzero contexts for four different TSB, as specified in the following
registers:

« ASI _MMU_ZERO CONTEXT_TSB_CONFI G 0

« ASI _MMJ_ZERO CONTEXT_TSB_CONFI G 1

« ASI _MMU_ZERO CONTEXT_TSB_CONFI G 2

=« AS| _MVJ_ZERO CONTEXT_TSB_CONFI G 3

= AS|I _MVJ_NONZERO CONTEXT_TSB_CONFI G 0

=« AS|I _MVJ_NONZERO CONTEXT_TSB_CONFI G 1

=« AS|I _MVJ_NONZERO CONTEXT_TSB_CONFI G _2

= AS|I _MVU_NONZERO_CONTEXT_TSB_CONFI G_3

In each case, the 1 least significant bits of the respective virtual page number are
used as the offset from the TSB base address, with n equal to log base 2 of the
number of TTEs in the TSB.

Hardware TSB indexing support is provided for TTEs in the following registers:
= ASI_MMU_I TSB_PTR_ O

= ASI_MMU_ITSB_PTR 1

= ASI_MMU_I TSB_PTR 2

= ASI_MMU_I TSB_PTR 3

=« AS|I _MWUJ_DTSB_PTR 0, ASI _MVWJ_DTSB_PTR 1

=« AS|I _MMJ_DTSB_PTR 2

=« AS| _MMUJ_DTSB_PTR 3

While the hardware tablewalk uses the TSB configuration generated by these
pointers, the hardware tablewalk can be disabled and a full software implementation
for TLB miss handling can be used. Under a full software implementation, simple
modifications to the index pointers provided by the hardware allow formation of an
M-way set-associative TSB, multiple TSBs per page size, multiple page sizes per TSB,
and multiple TSBs per process.

The TSB exists as a normal data structure in memory and therefore may be cached.
Indeed, the speed of the TLB miss handler relies on the TSB accesses hitting the
level-2 cache at a substantial rate. This policy may result in some conflicts with
normal instruction and data accesses, but the dynamic sharing of the level-2 cache
resource should provide a better overall solution than that provided by a fixed
partitioning.

FIGURE 12-1 shows the TSB organization. The constant N is determined by the size
field in the TSB register; it may range from 512 entries to 16 M entries.

108 UltraSPARC T2 Supplement « Draft D1.4.3, 19 Sep 2007

Tag1 (8 bytes) A Datal (8 bytes)
0000 0008
® NlinesinTSB 16
TagN (8 bytes)] DataN (8 bytes)

FIGURE 12-1 TSB Organization

12.3

Hardware Support for Hypervisor

To support hypervisor, a number of additions to the MMU are included.

First, a 3-bit pid (partition ID) field is included in each TLB entry to allow multiple
guest OSs to share the MMU. This field is loaded with the value of the Partition
Identifier register when a TLB entry is loaded. In addition, the PID entry of a TLB is
compared against the Partition Identifier register to determine if a TLB hit occurs.

Second, the MMU is designed to support both virtual-to-physical and real-to-
physical translations, using a single r (real translation) bit included in the TLB entry.
This field is loaded with bit 10 from the VA used by the store to the I-/D-TLB Data
In register or the I-/D-TLB Data Access register. The real bit distinguishes between
VA - PA translations (r = 0) and RA - PA translations (r = 1). If the real bit is 1, the
context ID is ignored when determining a TLB hit. TLB misses on real to physical
translations generate a data_real_translation_miss or inst_real_translation_miss trap
instead of the fast_data_access_MMU_miss and fast_instruction_access_MMU_miss
traps respectively.

Finally, the translation operation performed depends on the state of HPSTATE.hpriv,
PSTATE.priv, the MMU enables, and PSTATE.red (for IMMU), as described in
Translation on page 128.

When the MMU is bypassed, TABLE 12-5 specifies the default physical page attribute
bits. When bypassed, all LDXA and STXA operations to internal registers are
correctly performed, and traps based on the page attribute bits are signaled just as if
the MMU were not bypassed.

« 109

TABLE 12-5 Default Physical Page Attribute Bits
Physical Page Attribute Bits
Physical
Address{39} cp ie cv e p ep w nfo
0 1 0 0 0 0 1 1 0
1 0 0 0 1 0 1 1 0

12.3.1

Hardware Support for TSB Access

The MMU hardware provides services to allow the TLB miss handler to efficiently
reload a missing TLB entry. These services include:

» Hardware reload of missing TTE entry (hardware tablewalk).
= Formation of TSB Pointers based on the missing virtual address.
» Formation of the TTE Tag Target used for the TSB tag comparison.

= Efficient atomic write of a TLB entry with a single store ASI operation.

12.3.1.1 Hardware Tablewalk

Hardware Tablewalk is a hardware state machine that services reload requests from
the TLBs. It accesses the TSBs to find TTEs that match the VA and one of the contexts
of the request. Hardware Tablewalk can access up to four separate TSBs for each
request.

Note | If any of a strand’s TSB Config Registers has the Enable bit sit,
hardware tablewalk is considered to be enabled for the strand.

Hardware Tablewalk also provides a real page number (RPN) to physical page
number (PPN) translation mechanism. The supervisor controls the TTE, but the
supervisor cannot access or control physical memory, so its TTEs contain RPNs, not
PPNs The hypervisor programs the RPN-to-PPN translation within Hardware
Tablewalk to permit Hardware Tablewalk to load supervisor-controlled TTEs into
the TLBs that can translate VAs into PAs.

Hardware Tablewalk does not translate real requests. In the event that a Real
Address misses the TLB, the TLU signals a inst_real_translation_miss or
data_real_translation_miss trap, and software loads the TLB as described in Software
TLB Reload on page 114.

Hardware Tablewalk is stranded and pipelined; up to four TSB accesses for each of
the eight strands can be in the pending at one time. The basic dataflow is pipelined,
so that a single instance of the dataflow supports all eight strands.

110 UltraSPARC T2 Supplement « Draft D1.4.3, 19 Sep 2007

A typical TLB miss and refill sequence when hardware tablewalk is enabled is as
follows:

1. Hardware Tablewalk uses the TSB Configuration registers and the VA of the

access to calculate the address of the TTE to examine. The TSB Configuration
register provides the base address of the TSB as well as the number of TTEs in the
TSB and the size of the pages translated by the TTEs.! Hardware Tablewalk uses
a Nonzero Context TSB Configuration register if the context of the request is
nonzero; otherwise, it uses a Zero Context TSB Configuration register. The context
of the request is assumed to be the content of Context register 0 (in the event of a
TLB miss on a Primary or Secondary Context access). Hardware Tablewalk uses
the page size from the TSB Configuration register to calculate the presumed VPN
for the given VA.2 The VPN is generated with VA{63:48} sign-extended from
VA({47} to allow TTE entries pointing into the VA hole to mismatch in the
hardware tablewalk VPN comparison. Hardware Tablewalk then uses the number
of TTE entries and the presumed VPN to generate an index into the TSB. This
index is concatenated with the upper bits of the base address to generate the TTE
address, using the formula specified in MMU I-/D-TSB Pointer Registers on page
146.

. Hardware Tablewalk forwards a quadword load request for the TTE address to
the L2 cache. At some later time, the L2 returns the TTE to Hardware Tablewalk.

. Hardware Tablewalk compares the VPN (masked using the page size of the TTE)
and context of the request and the page size from the configuration register to
that from the TTE, and also examines the v bit, and for an ITLB miss, the ep bit of
the TTE. If the v bit is set, reserved fields in the TTE Tag ({63:61} and {47:42}) are
zero, the page size of the TTE is a supported page size that is not smaller than the
page size of the configuration register, and the VPN and context match (and for
an ITLB miss, the TTE ep bit is 1), Hardware Tablewalk forwards the TTE to the
TLB with the RPN translated into a PPN (see Real Page Number To Physical Page
Number Translation below). For an ITLB miss, if the v bit is set, reserved fields in
the TTE Tag are zero, the page size of the TTE is supported and not smaller than
the page size of the configuration register, and the VPN and context match, but
the ep bit of the TTE is 0, an IAE_unauth_access trap is generated. If the v bit is
clear, reserved fields in the TTE Tag are not all zero, the page size of the TTE is
unsupported or smaller than the page size of the configuration, or the VPN or
context do not match, Hardware Tablewalk waits for the rest of the enabled TSBs
to return TTEs; Hardware Tablewalk supports four TSBs per strand for zero
contexts and four for nonzero contexts. In some configurations, Hardware
Tablewalk ignores the context match; see Multiple Contexts below.

! Hardware tablewalk will only be able to refill the TLB when the desired TTE in the TSB is the same size or
larger than that specified in the TSB Configuration register.

2 1f pages of size larger than that specified in the TSB Configuration register are also cached in the TSB, this
implies that the TTE entry for the larger pages must be replicated in the TSB (e.g., a 64-Kbyte page in a TSB
configured for 8-Kbyte pages must occupy eight consecutive TSB entries).

- 111

4. If none of the TTE entries from the four TSBs meet the v bit, reserved TTE Tag
fields, page size, and matching VPN and context requirements, hardware
generates an instruction_access_MMU_miss or data_access_MMU_miss trap.

Multiple Contexts. Multiple primary and secondary contexts permit different
processes to share TTEs within the TLBs. The use_context_0 and use_context_1 bits
in the TSB Configuration register disable the context match for Hardware Tablewalk.
Hardware Tablewalk ignores the contexts in the TSB TTEs if either of these bits is
active for requests with nonzero contexts. If either bit is 1 and the TTE v bit is set,
reserved fields in the TTE Tag are zero, the page size is supported by UltraSPARC T2
and not smaller than the page size in the configuration register, and the VPN
matches, Hardware Tablewalk signals the TLB to write either context 0 or context 1
(depending on which bit is set) as the context of the TTE when it is loaded (instead
of the context in the TTE itself). Hardware Tablewalk ignores these bits for requests
with a zero (nucleus) context value.

Real Page Number To Physical Page Number Translation. When Hardware
Tablewalk fetches a TTE from a TSB, it can treat the ra field as either an RA or a PA
under control of the ra_not_pa field of the TSB config register. If the ra_not_pa bit is
set, the hardware tablewalker will translate the Real Page Number in the TTE into a
Physical Page Number. The TLBs store this physical page number. The TLBs use this
PPN to translate VAs into PAs. The hypervisor controls the RPN to PPN translation
mechanism.

The RPN-to-PPN translation mechanism provides both range checking as well as
mapping of address ranges from one location to another. The first check is that the
RPN does not contain a non-zero bits 55:40. If RPN{55:40} is nonzero, then an
instruction_invalid_TSB_entry or data_invalid_TSB_entry trap is generated to the
strand that initiated the Hardware Tablewalk. Otherwise, the translation mechanism
uses the RPN and page size in the TTE and calculates the starting and ending
addresses for the specified real page. It then checks that these addresses lie in one of
four ranges specified by the Real Range registers. If the real page lies completely
inside one of the ranges (and the range is enabled), then the translation mechanism
adds the RPN in the TTE to the corresponding field in the Physical Offset register to
create the Physical Page Number.! If the real page does not lie completely within
either range, then an instruction_invalid_TSB_entry or data_invalid_TSB_entry trap
is generated to strand that initiated the Hardware Tablewalk. Each strand has four
dedicated ranges with corresponding physical offsets. The RPN-to-PPN translation
does not depend on the context value being zero or nonzero.

Note | When the TSB Conlfig register has ra_not_pa = 0, no range
checking is provided for PPNs.

1 Strictly speaking, this is not a real page number but a real address, as the bits below the page size boundary in
the RPN may not be zeroed. They are zeroed when written into the TLB so the value that is written into the
TLBis a true RPN.

112 UltraSPARC T2 Supplement « Draft D1.4.3, 19 Sep 2007

The following is pseudocode for the hardware tablewalk sequence (translation miss
address is in VA, miss context in ct Xt , instruction miss is in i nst _t ransl at e,
context type selection is in primary):

tsb_config = (ctxt) ? TSB_NONZERO CONFIFi] : TSB_ZERO CONFIJHi];
for (i =0; i <4, i++) {

vpn = generate_vpn(VA, tsb_config. page_size);

i gnore_context = (ctxt == 0) || tsb_config.use_context_0O ||

tsb_config.use_context_1;

tte_ptr = generate_tte_ptr(VA, tsb_config);

tte = *tte _ptr;

tte_vpn = generate_tte_vpn(tte.va, tsb_config. page_size)

if ((tte.v == 1) && (tte.rsvd0 == 0) && (tte.rsvdl == 0) &&

((tte.size < 2) || (tte.size ==3) || (tte.size == 5)) &&
(tte.size >= tsb_config. page_size) &&
(ignore_context || (tte.context == ctxt)) &&

(tte_vpn == vpn)) {
if (inst_translate & (tte.ep == 0) raise | AE_UNAUTH_ACCESS;
br eak;
}
}
if (i ==4) {
/1 no matching TTE found
raise (inst_translate) ?
I NST_ACCESS MMJ M SS : DATA _ACCESS MMU_M SS;
}
if (ctxt == 0) {
tte.context = O;
} else if (tsb_config.use_context_0) {
tte.context = (primary_context) ? ASI_PRI MARY_CONTEXT_ O :
AS| _SECONDARY_CONTEXT_0;
} else if (tsb_config.use_context_1) {
tte.context = (primary_context) ? ASI_PRI MARY_CONTEXT_1 :
ASI _SECONDARY_CONTEXT_1;
}
if (tsb_config.RA not_PA == 0) {
load_tlb(tte);
} else {
if (tte.ra & RA 55_40_MASK) ({
raise (inst_translate) ?
I NST_I NVALI D_TSB_ENTRY : DATA | NVALI D_TSB_ENTRY;,
}
mask = (1 << (tte.size*3)) - 1;
rpn_low = tte.ra & ~nask;
rpn_high = tte.ra | nask;
for (i =0; i <4; i++) {
if ((rpn_low >= MMJ REAL_RANGE[i].rpn_l ow) &&
(rpn_high <= MMJ_REAL_RANCE[i].rpn_high)) {
tte.ra += MMJ_PHYSI CAL_OFFSET[i] . ppn;

« 113

load_tlb(tte);
br eak;
}
}
if (i == 4) {
/1 ra does not lie entirely inside any real range
raise (inst_translate) ?
I NST_I NVALI D_TSB_ENTRY : DATA_| NVALI D_TSB_ENTRY;

12.3.1.2 Software TLB Reload

TLB misses can be either for virtual-to-physical translations or for real-to-physical
translations.

Virtual to Physical Address Translation. For a virtual address, a typical TLB
miss and refill sequence when hardware tablewalk is disabled is as follows:

1. A TLB miss causes either a fast_instruction_access_ MMU_miss or a
fast_data_access_MMU_miss exception.

2. The appropriate TLB miss handler loads the TSB Pointers and the TTE Tag Target
with loads from the MMU alternate space.

3. Using this information, the TLB miss handler checks to see if the desired TTE
exists in the TSB. If so, the TTE data is stored into the TLB Data In register (with
the Real bit in the virtual address clear) to initiate an atomic write of the TLB
entry chosen by the replacement algorithm.

4. If the TTE does not exist in the TSB, the TLB miss handler jumps to a more
sophisticated (and slower) TSB miss handler.

The virtual address used in the formation of the pointer addresses comes from the
Tag Access register (described in I-/D-TLB Tag Access Registers on page 140), which
holds the virtual address oF the load or store responsible for the MMU exception.
(Note that there are no separate physical registers in UltraSPARC T2 hardware for
the Pointer registers, but rather they are implemented through a dynamic re-
ordering of the data stored in the Tag Access and the TSB registers.)

Pointers are provided by hardware in the TSB Pointer registers for all four TSBs.
These pointers give the physical addresses where the TTEs for that VA and context
combination would be stored if it is present in the TSB.

The TSB Tag Target register (described in I-/D-TSB Tag Target Registers on page 138) is
formed by aligning the missing access VA (from the Tag Access register) and the
current context to positions found in the description of the TTE tag. This allows an
XOR instruction for TSB hit detection.

114 UltraSPARC T2 Supplement « Draft D1.4.3, 19 Sep 2007

12.3.2

Real-to-Physical Address Translation. For a real address, a typical TLB miss and
refill sequence when hardware tablewalk is disabled is as follows:

1. A TLB miss causes either a instruction_real_translation_miss or a
data_real_translation_miss exception.

2. The appropriate real miss handler determines whether and how to create a real to
physical translation.

3. If a real-to-physical translation is created it is inserted into the TLB with the r bit
set and the instruction is retried.

The real address used in the software formation of the pointer addresses comes from
the Tag Access register (described in Section 12.10.5), which holds the real address
and context of the load or store responsible for the MMU exception.

No pointers are provided by hardware for real to physical translations.

The TSB Tag Target register (described in Section 12.10.3) is formed by aligning the
missing access RA (from the Tag Access register) and the current context to positions
found in the description of the TTE tag. This allows an XOR instruction for TSB hit
detection.

Real-to-Physical Address Mapping and
Speculative Instruction Fetch

UltraSPARC T2 speculatively fetches instructions. Under certain conditions, this can
cause the memory controller to receive an unsupported physical address. Consider
the following instruction sequence which exits hyperprivileged mode and returns to
user or privileged mode (executed with HPSTATE.hpriv initially set to 1):

jmpl %3 + %0, %0

wr hpr %90, %90, Y%hpstate

This will cause the IMMU to go from bypass (during which VA{39:0} is passed
directly to PA{39:0}) into either RA - PA or VA - PA translation. However, since
the fetch of the target of the jmpl is fetched speculatively, the memory controller may
see VA{39:0} of the target of the jmpl as a physical address. This address may not be
supported, in which case a disrupting software_recoverable_error trap could result,
even though no real error has occurred.

To avoid this disrupting trap, hypervisor should avoid changing translation in the
delay slot of delayed control transfer instructions. For example, the sequence above
could be replaced with the following code:

nov %1, %5

add %5, 1, %5

nov %95, %l

e 115

nov %93, % npc
nmov 0, %htstate
done

Although the example refers to changes in HPSTATE, any instruction that can
potentially change translation should avoid being placed in the delay slot of delayed
control transfer instructions. These include writes to PSTATE, I-/D-TLB Data-In/
Data-Access registers, I-/D-MMU Demap registers, and the
ASI _LSU_CONTRCOL_REG register.

12.4

TABLE 12-6 lists the traps recorded by the MMU.

TABLE 12-6 MMU Traps

MMU-Related Faults and Traps

Register Update

I-Tag D-Tag
Trap Name Trap Cause Access D-SFAR Access

fast_instruction_access_ MMU_miss iTLB miss with hardware tablewalk X

disabled
instruction_access_MMU_miss iTLB miss with hardware tablewalk X

enabled
instruction_real_translation_miss iTLB miss X
instruction_invalid_TSB_entry RA out of range on iTLB hardware X

tablewalk reload
IAE_privilege_violation Privilege violation X
IAE_unauth_access Hardware tablewalk attempts to load X

IMMU with page with ep clear
IAE_NFO_page Instruction fetch from nfo page X
instruction_address_range Fetch address out of range X
instruction_real_range Fetch address out of range

X

fast_data_access_ MMU_miss dTLB miss with hardware tablewalk

disabled X
data_access_MMU_miss dTLB miss with hardware tablewalk

enabled X
data_invalid_TSB_entry RA out of range on dTLB hardware X

tablewalk reload
data_real_translation_miss dTLB miss X
DAE_invalid_asi Invalid AS], size, etc. X

116 UltraSPARC T2 Supplement « Draft D1.4.3, 19 Sep 2007

TABLE 12-6 MMU Traps (Continued)

Register Update

|-Tag D-Tag

Trap Name Trap Cause Access D-SFAR Access
DAE_privilege_violation Privilege violation X X
DAE_nc_page Atomic to noncacheable X X
DAE_nfo_page Access to nfo page by non no-faulting X X
DAE_side_effect_page Access to page with e =1 by nonfaulting X X

load

mem_address_range va out of valid range X
mem_real_range ra out of valid range X
fast_data_access_protection Protection violation X X
privileged_action Use of privileged ASI
pa_watchpoint, va_watchpoint Data watchpoint hit X
instruction_va_watchpoint Instruction watchpoint hit
*_mem_address_not_aligned Misaligned memory op X

unsupported_page_size

TLB or TSB register loaded with illegal
page size

12.4.1

data_access_protection trap.

fast_instruction_access_MMU_miss Trap

Note | The fast_data_access_protection trap is generated instead of the

This trap occurs when Hardware Tablewalk is disabled and the I-'MMU is unable to
find a translation for an instruction access that is executing using a virtual address.

12.4.2

Real-to-physical translations (for example, when
LSU_CONTROL.im = 0) that miss in the MMU generate an
instruction_real_translation_miss trap instead.

instruction_access_MMU_miss Trap

This trap occurs when Hardware Tablewalk is enabled and the -MMU is unable to
find a translation for an instruction access that is executing using a virtual address.

Implementation | This trap is taken when the appropriate TTE is not present in the
iTLB with the r bit cleared and Hardware Tablewalk is unable to
find the appropriate TTE in any of up to four TSBs.

117

12.4.3

12.4.4

12.4.5

12.4.6

Note | Real-to-physical translations (for example, when
LSU_CONTROL.im=0) that miss in the MMU generate an
instruction_real_translation_miss trap instead.

instruction_real_translation_miss Trap

This trap occurs when the I-MMU is unable to find a translation for an instruction
access that is executing using a real address.

Note | Hardware Tablewalk does not load real to physical translations,
and therefore instruction_real_translation_miss is taken
regardless of whether Hardware Tablewalk is enabled or
disabled.

Programming | The MMU Real Range and Physical Offset registers are used in
Note | the real-to-physical translation portion of a Hardware
Tablewalk’s virtual-to-physical translation and have no effect on

whether an instruction_real_translation_miss trap is taken.

instruction_invalid_TSB_entry Trap

This trap occurs when the Hardware Tablewalk is loading the -MMU with RA-to-
PA translation enabled and is unable to complete the RA-to-PA portion of the
translation due to the real address not lying completely in the range specified by any
of the valid MMU Range registers. It also occurs on real to physical translations
where bits 55:40 of the real address are non-zero.

|AE_privilege_violation Trap

The I-MMU detects a privilege violation for an instruction fetch; that is, an
attempted access to a privileged page when PSTATE.priv = 0.

|AE_unauth_access Trap

The I-MMU detects an access to a page marked with the ep (execute privilege) bit
clear during hardware tablewalk. There is no ep bit in the I-MMU, so on software
loads of the -MMU there is no hardware check of the ep bit.

118 UltraSPARC T2 Supplement « Draft D1.4.3, 19 Sep 2007

12.4.7

12.4.8

12.4.9

12.4.10

12.4.11

|AE_nfo_page Trap

The I-MMU detects an access to a page marked with the nfo (no-fault-only) bit.

Implementation | The nfo bit is only checked on I-MMU translations. It is not
Note | checked on hardware tablewalk.

instruction_address_range Trap

The instruction_address_range occurs when the virtual address out of range and
PSTATE.am = 0 (see 48-bit Virtual and Real Address Spaces on page 68). It also occurs
whenever UltraSPARC T2 is fetching from the address range 0000 7FFF FFFF FFEO;¢
to FFFF 7FFF FFFF FFFF;, inclusive, the IMMU is in VA - PA translation mode, and
PSTATE.am = 0. The instruction_address_range exception also occurs whenever a
branch target or the target of a DONE or RETRY instruction is in the range

0000 800 0000 00044 to FFFF 7FFF FFFF FFFF4 inclusive, the IMMU is in VA - PA
translation mode, and PSTATE.am = 0.

instruction_real_range Trap

The instruction_real_range trap occurs when the Real address out of range (see 48-bit
Virtual and Real Address Spaces on page 68). It also occurs whenever UltraSPARC T2
is fetching from the address range 0000 7FFF FFFF FFEQ,, to FFFF 7FFF FFFF FFFF¢
inclusive, the IMMU is in RA — PA translation mode, and PSTATE.am = 0. The
instruction_real_range exception also occurs whenever a branch target or the target
of a DONE or RETRY instruction is in the range 0000 8000 0000 0000+ to

FFFF 7FFF FFFF FFFF g4 inclusive, the IMMU is in RA - PA translation mode, and
PSTATE.am = 0.

fast_data_access_MMU_miss Trap

This trap occurs when Hardware Tablewalk is disabled and the MMU is unable to
find a translation for a data access that is using a virtual-to-physical translation.

Note | Real-to-physical translations (for example, through
ASI| _* REAL*) that miss in the MMU generate a
data_real_translation_miss trap instead.

data_access_MMU_miss Trap

This trap occurs when Hardware Tablewalk is enabled and the MMU is unable to
find a translation for a data access that is using a virtual-to-physical translation.

« 119

12.4.12

12.4.13

12.4.14

12.4.15

12.4.16

Note | Real-to-physical translations (for example, through
ASI _* REAL*) that miss in the MMU generate a
data_real_translation_miss trap instead.

data_invalid_TSB_entry Trap

This trap occurs when Hardware Tablewalk is loading the D-MMU with RA-to-PA
translation enabled and is unable to complete the RA-to-PA portion of the
translation due to the real address not lying completely in the range specified by any
of the valid MMU Range registers. It also occurs on real-to-physical translations
where bits 55:40 of the real address are non-zero.

data_real_translation_miss Trap

This trap occurs when the MMU is unable to find a translation for a data access that
is using a real-to-physical translation.

Note | Hardware Tablewalk does not load real-to-physical translations,
and therefore data_real_translation_miss is taken regardless of
whether hardware tablewalk is enabled or disabled.

Programming | The MMU Real Range and Physical Offset registers are used in
Note | the real-to-physical translation portion of a Hardware
Tablewalk’s virtual-to-physical translation and have no effect on

whether a data_real_translation_miss trap is taken.

DAE_ privilege_violation Trap

The D-MMU detects a privilege violation for a data access; that is, an attempted
access to a privileged page when PSTATE.priv = 0.

DAE_side_effect_page Trap

A speculative (nonfaulting) load instruction issued to a page marked with the side-
effect (e) bit=1.

DAE_nc_page Trap

An atomic instruction (including 128-bit atomic load) issued to a memory address
marked uncacheable in a physical cache; that is, with cp = 0 or with PA{39} = 1.

120 UltraSPARC T2 Supplement « Draft D1.4.3, 19 Sep 2007

12.4.17

12.4.18

12.4.19

12.4.20

12.4.21

Implementation | For UltraSPARC T2, cp only controls cacheability in the primary

Note | cache, not the shared secondary, and thus the hardware
supports the ability to complete an atomic operation for pages
with the cp bit = 0 as long as the secondary cache is enabled.
However, to keep UltraSPARC T2 compliant with the
UltraSPARC Architecture 2006 specification, the DAE_nc_page
trap is generated when an atomic is issued to a memory address
marked with cp = 0.

DAE_invalid_asi Trap
An invalid LDA /STA ASI value, invalid virtual address, read to write-only register,

or write to read-only register, but not for an attempted user access to a restricted ASI
(see the privileged_action trap described below).

DAE_nfo_page Trap

An access with an ASI other than

ASI _{PRI MARY,SECONDARY}_NO_FAULT{_LI TTLE} to a page marked with the nfo
(no-fault-only) bit.

mem_address_range Trap

Virtual address out of range and PSTATE.am = 0 for data access, JMPL/RETURN, or
branch/CALL. See 48-bit Virtual and Real Address Spaces on page 68.
mem_real_range Trap

Real address out of range for data access, JMPL/RETURN, or branch/CALL. See 48-
bit Virtual and Real Address Spaces on page 68.
fast_data_access_protection Trap

This trap occurs when the MMU detects a protection violation for a data access. A

protection violation is defined to be an attempted store to a page without write
permission.

Note | Protection violations are checked for both virtual-to-physical
translations and real-to-physical translations.

e 121

12.4.22

12.4.23

12.4.24

12.4.25

12.4.26

privileged_action Trap

This trap occurs when an access is attempted using a restricted ASI while in non-
privileged mode (PSTATE.priv = 0).

instruction_VA_watchpoint Trap

This trap occurs when instruction virtual watchpoints are enabled and the I-MMU
detects a instruction execution at the virtual address specified by the VA Instruction
Watchpoint register. See Watchpoint Support on page 409.

Programming | instruction_VA_watchpoint is never generated when
Note | HPSTATE.red = 1 or HPSTATE.hpriv = 1. In addition,
instruction_VA_watchpoint traps are only generated when a
virtual-to-physical translation is performed. Real accesses do not
generate instruction_VA_watchpoint traps.

VA_watchpoint Trap

This trap occurs when virtual watchpoints are enabled and the D-MMU detects a
load or store to the virtual address specified by the VA Data Watchpoint register. See
Watchpoint Support on page 409.

Programming | VA_watchpoint is never generated when HPSTATE.hpriv = 1. In
Note | addition, VA_watchpoint traps are only generated when a
virtual-to-physical translation is performed. Real accesses (for
example, through ASI _* REAL*) do not generate VA_watchpoint
traps.

PA_watchpoint Trap

This trap occurs when physical watchpoints are enabled and the D-MMU detects a
load or store to the physical address specified by the PA Data Watchpoint register. See
Watchpoint Support on page 409.

*_mem_address_not_aligned Traps

The Iddf_mem_address_not_aligned, stdf mem_address_not_aligned, and
mem_address_not_aligned traps occur when a load, store, atomic, or JMPL/
RETURN instruction with a misaligned address is executed. The LSU signals this
trap, but the D-MMU records the fault information in the DSFAR.

122 UltraSPARC T2 Supplement « Draft D1.4.3, 19 Sep 2007

12.4.27 Unsupported_page_size Trap

This trap occurs when the IMMU or DMMU is loaded with an illegal page size, or a
TSB register is programmed with an illegal page size.

12.5 MMU Operation Summary

TABLE 12-9 summarizes the behavior of the D-MMU for noninternal ASIs using
tabulated abbreviations. TABLE 12-10 summarizes the behavior of the -'MMU. In each
case, and for all conditions, the behavior of the MMU is given by one of the
abbreviations in TABLE 12-7. TABLE 12-8 lists abbreviations for ASI types.

TABLE 12-7 Abbreviations for MMU Behavior

Abbreviation Meaning

ok Normal translation

dmiss fast_data_access_MMU_miss or data_access_MMU_miss trap
dasi DAE_invalid_asi trap

dreal data_real_translation_miss trap

dpriv DAE_privilege_violation trap

dse DAE_side_effect_page trap

dprot fast_data_access_protection trap

imiss fast_instruction_access_MMU_miss or instruction_access_MMU_miss trap
ireal instruction_real_translation_miss trap

iexc IAE_privilege_violation trap

TABLE 12-8 Abbreviations for ASI Types

Abbreviation Meaning

NUC AS| _NUCLEUS*

PRIM Any ASI with PRIMARY translation, except * NO_FAULT
SEC Any ASI with SECONDARY translation, except * NO_FAULT
PRIM_NF AS| _PRI MARY_NO_FAULT*

SEC_NF AS| _SECONDARY_NO_FAULT*

U_PRIM ASl _*_AS_| F_USER PRI MARY*

U_SEC ASl _*_AS_| F_USER_SECONDARY*

U_PRIV ASI _*_AS_|F_PRIV_*

REAL AS| _*REAL*

e 123

Note | The * _LI TTLE versions of the ASIs behave the same as the big-
endian versions with regard to the MMU table of operations.

Other abbreviations include “w” for the writable bit, “e” for the side-effect bit, and
“p” for the privileged bit.

TABLE 12-9 and TABLE 12-10 do not cover the following cases:

Invalid ASIs, ASIs that have no meaning for the opcodes listed, or nonexistent
ASlIs; for example, ASI _PRI MARY_NO_FAULT for a store or atomic; also, access to
UltraSPARC T2 internal registers other than LDXA, LDFA, STDFA or STXA; the
MMU signals a DAE_invalid_asi trap for this case.

Attempted access using a restricted ASI in nonprivileged mode; the MMU signals
a privileged_action trap for this case. Attempted use of a hyperprivileged ASI in
privileged mode; the MMU also signals privileged_action trap for this case.

An atomic instruction (including 128-bit atomic load) issued to a memory address
marked uncacheable in a physical cache (that is, with cp = 0 or pa{39} = 1); the
MMU signals a DAE_nc_page trap for this case.

A data access with an ASI other than

AS| _{PRI MARY,SECONDARY}_NO FAULT{_LI TTLE} or an instruction access to a
page marked with the nfo (no-fault-only) bit; the MMU signals a DAE_nfo_page
or IAE_nfo_page trap for this case.

An instruction fetch to a memory address marked non-executable (ep = 0). This is
checked when Hardware Tablewalk attempts to load the I-MMU, and an
IAE_unauth_access trap is taken instead.

Real address out of range; the MMU signals an instruction_real_range or
mem_real_range trap for this case.

Virtual address out of range and PSTATE.am is not set; the MMU signals an
instruction_address_range or mem_address_range trap for this case.

124 UltraSPARC T2 Supplement « Draft D1.4.3, 19 Sep 2007

TABLE 12-9 D-MMU Operations for Normal ASIs

Condition Behavior
e=0 e=0 e=1 e=1
Opcode priv Mode ASI w |TLB Miss| p=0 p=1 p=0 p=1
non- PRIM, SEC — | dmiss ok dpriv ok dpriv
privileged [PRIM_NF, SEC_NF — | dmiss ok dpriv dse dpriv
PRIM, SEC, NUC — | dmiss ok
. PRIM_NF, SEC_NF — | dmiss ok dse
privileged - - -
U_PRIM, U_SEC — | dmiss ok dpriv ok dpriv
Load REAL — | dreal ok
hyper- [PRIM, SEC, NUC! 1 — ok — ok —
privileged [pRIM_NF, SEC_NF' 1] — ok — [dse | —
U_PRIM, U_SEC — | dmiss ok dpriv ok dpriv
U_PRIV — | dmiss ok
REAL — | dreal ok
non- — ok
privileged
FLUSH | privileged — ok
hyper- — ok
privileged
non- |PRIM, SEC 0 | dmiss | dprot | dpriv | dprot | dpriv
privileged 1 | dmiss ok dpriv ok | dpriv
PRIM, SEC, NUC 0 dmiss dprot
1 | dmiss ok
. U_PRIM, U_SEC 0 | dmiss | dprot | dpriv | dprot | dpriv
privileged - - -
1 | dmiss ok dpriv ok dpriv
Store or REAL 0 dreal dprot
Atomic 1 dreal ok
PRIM, SEC, NUC' 1 — ok — ok —
U_PRIM, U_SEC 0 | dmiss | dprot | dpriv | dprot [dpriv
1 | dmiss ok dpriv ok dpriv
hyper- -
o U_PRIV 0 | dmiss | dprot ok dprot | ok
privileged
1 dmiss ok
REAL 0 dreal dprot
1 dreal ok

1. When hyperprivileged, these context values use the default physical page attributes from
TABLE 12-5, which specify that w =1, e = PA{39}, and p=0.

When LSU_CONTROL_REG.dm = 0, the table above applies, but dmiss entries in the
TLB Miss column change to dreal.

e 125

TABLE 12-10 I-MMU Operations

Condition Behavior

priv Mode TLB Miss P=0 P=1
nonprivileged imiss ok iexc
privileged imiss ok
hyperprivileged — ok

When LSU_CONTROL_REG.im = 0, the table above applies, but imiss entries in the
TLB Miss column change to ireal. When HPSTATE.red = 1, the ITLB is bypassed and
has the same behavior as the hyperprivileged mode row in the table.

See Alternate Address Spaces on page 71 for a summary of the UltraSPARC T2 ASI

map.

12.6

ASI Value, Context, and Endianness
Selection for Translation

The MMU uses a two-step process to select the context for a translation:

1. The ASI is determined (conceptually by the Integer Unit) from the instruction,
trap level, and the virtual processor endian mode

2. The context register is determined directly from the ASL

The ASI value and endianness (little or big) are determined for the I-MMU and D-
MMU respectively according to TABLE 12-11 and TABLE 12-12 on page 127.

Notes

The secondary context is never used to fetch instructions.

The endianness of a data access is specified by three conditions:
the ASI specified in the opcode or ASI register, the PSTATE
current little endian bit, and the D-MMU invert endianness bit.

The D-MMU invert endianness (ie) bit inverts the endianness for
all accesses to translating ASIs, including LD/st/Atomic
alternates that have specified an ASI. That is, LDXA

[%g1]ASI _PRI MARY_LI TTLE will be big-endian if the ie bit is
on. Accesses to nontranslating ASIs are not affected by the
D-MMU's ie bit. See Alternate Address Spaces on page 71 or

information about nontranslating ASIs.

126 UltraSPARC T2 Supplement « Draft D1.4.3, 19 Sep 2007

TABLE 12-11 ASI Mapping for Instruction Accesses

Condition for Instruction Access

Resulting Action

PSTATE.tI Endianness ASI Value (in SFSR)
0 Big ASI _PRI MARY
>0 Big ASI _NUCLEUS

TABLE 12-12 ASI Mapping for Data Accesses

Condition for Data Access

Access Processed with:

PSTATE. PSTATE. TTE. ASI Value
Opcode tl cle ie Endianness (Recorded in SFSR)
0 0 0 Big AS| _PRI MARY
1 Little
1 0 Little ASI _PRI MARY_LI TTLE
LD/ST/Atomic/FLUSH 1 Big
(Using Default ASI) >0 0 0 Big |ASI _NUCLEUS
1 Little
1 0 Little ASI _NUCLEUS LI TTLE
1 Big
LD/st/Atomic Alternate Don’t Don’t 0 Big1 Specified ASI value from immediate field
with specified ASI not Care Care 1 Little! |in opcode or ASI register
ending in “_LITTLE”
LD/st/Atomic Alternate Don’t Don’t Little Specified ASI value from immediate field
with specified ASI Care Care 1 Big in opcode or ASI register
ending in ‘_LITTLE”

1

Accesses to nontranslating ASIs are always made in “big endian” mode, regardless of the setting of the

various ie bits. See Alternate Address Spaces on page 71 for information about nontranslating ASIs.

The context registers used by the data and instruction MMUs is determined from
TABLE 12-13. A comprehensive list of ASI values can be found in the ASI map in
Alternate Address Spaces on page 71. The context register selection is not affected by

the endianness of the access

TABLE 12-13 [-MMU and D-MMU Context Register Usage

ASI Value Context Register
ASI_*NUCLEUS*! Nucleus (0000, hard-wired)
ASI_*PRIMARY*? Primary 0 and Primary 1
ASI_*SECONDARY*? Secondary 0 and Secondary 1
All other ASI values (Not applicable, no translation)

1. Any ASI name containing the string “NUCLEUS”.
2. Any ASI name containing the string “PRIMARY”.

e 127

3. Any ASI name containing the string “SECONDARY”.

12.7 Translation

The translation operation of MMUs is determined by the LSU_CONTROL_REG and
the HPSTATE registers.

12.7.1 Instruction Translation

TABLE 12-14 describes the operation of the I-MMU.

TABLE 12-14 IMMU Translation

Control State

LSU.im HPSTATE.hpriv HPSTATE.red IMMU Translation
Don’t Care Don’t Care 1 Bypass1
Don’t Care 1 0 Bypass!
0 0 0 RA - PA2
1 0 0 VA - PA®

1. VA{39:0} passed directly to PA{39:0}

2. VA{47:0} passed directly to RA{47:0}, RA{47:0} translated via the
IMMU.

3. VA{47:0} translated via the IMMU.

12.7.1.1 Instruction Prefetching

UltraSPARC T2 fetches instructions sequentially (including delay slots). UltraSPARC
T2 fetches delay slots before the branch is resolved (before whether the delay slot
will be annulled is known). UltraSPARC T2 also fetches the target of a DCTI before
the delay slot executes. For both these cases, UltraSPARC T2 may fetch from a
nonexistent PA (in the case of a fetch from memory) or from an I/O address with
side effects. Hypervisor should protect against this for virtual- and real-to-physical
translations by maintaining valid mappings of sequential and target addresses at all
times. Hypervisor should protect against this for bypassing translations by ensuring
that all sequential and target addresses are backed by memory.

128 UltraSPARC T2 Supplement « Draft D1.4.3, 19 Sep 2007

12.7.2

Certain instructions change the translation mode (writes to HPSTATE, stores to

ASI _LSU_CONTROL_REG). Both of these translation mode changes can only be made
while hyperprivileged. Since ASI _LSU_CONTROL_REG.im has no effect on
translation while hyperprivileged, there are no issues with the hypervisor storing to
AS| _LSU CONTROL_REG,

However, a write to HPSTATE may change both the translation and privilege level at
the same time. This translation change may result in the sequential instruction or the
branch target being fetched in both the old translation mode (bypass) and then
refetched in the new translation mode (either real to physical or virtual to physical)
when UltraSPARC T2 realizes that translation has changed. For this case, it is
desirable that the hypervisor enforce that valid translations exist for fetches in both
the old translation mode (bypass) and the new translation mode (real to physical or
virtual to physical). If the hypervisor is only able to enforce translations for the real
or virtual to physical case, it is possible that an error may be encountered on the
bypassing instruction fetch. Any precise error trap associated with the error will be
suppressed and not be presented to the strand; however, the error status registers in
the L2 cache, memory controller, and/or 10 subsystem will still record the error (and
possibly generate a disrupting trap in addition). Therefore, if the hypervisor is
unable to enforce translation for both the bypass and real-/virtual-to-physical
translations, it must be able to handle the potential spurious error logging in the L2
cache, memory controller, and/or IO subsystem.

Data Translation

TABLE 12-15 describes the operation of the D-MMU.

TABLE 12-15 DMMU Translation

Control State
LSU.dm HPSTATE.hpriv DMMU Translation
0 0 RA - PA!
0 1 Follows
1 See Follows
1. VA{63:0} passed directly to RA{63:0}, RA{63:0} trans-
lated via the DMMU.

e 129

TABLE 12-16 DMMU Translation When LSU_CONTROL_REG.dm =1 or HPSTATE.hpriv=1 (1 of 5)
ASI Translation
Value
(hex) ASI NAME Nonprivileged Privileged Hypervisor
0016— Reserved privileged_action DAE_invalid_asi DAE_invalid_asi
0316
0446 ASI _NUCLEUS privileged_action VA - PA bypass
0516 Reserved privileged_action DAE_invalid_asi DAE_invalid_asi
0B14
0C15 ASI _NUCLEUS_LI TTLE privileged_action VA - PA bypass
0D16— Reserved privileged_action DAE_invalid_asi DAE_invalid_asi
0Fy4
1044 ASI _AS_| F_USER_PRI MARY privileged_action VA - PA VA - PA
1144 ASI _AS_| F_USER_SECONDARY privileged_action VA - PA VA - PA
1246— Reserved privileged_action DAE_invalid_asi DAE_invalid_asi
1344
1444 AS| _REAL privileged_action RA - PA RA - PA
1544 ASI _REAL_I O privileged_action RA - PA RA - PA
1644 ASI _BLOCK_AS_| F_USER PRI MARY privileged_action VA - PA VA - PA
1714 ASI _BLOCK_AS_| F_USER_ privileged_action VA - PA VA - PA
SECONDARY
1844 ASI _AS_| F_USER PRI MARY_LI TTLE privileged_action VA - PA VA - PA
1914 ASI _AS_| F_USER_SECONDARY_ privileged_action VA - PA VA - PA
LI TTLE
1A 16— Reserved privileged_action ~ DAE_invalid_asi DAE_invalid_asi
1Bq4
1Cq61 ASI _REAL_LI TTLE privileged_action RA - PA RA - PA
1D1¢ ASI _REAL_I O LI TTLE privileged_action RA - PA RA - PA
1Eq4 ASI _BLOCK_AS_| F_USER PRI MARY_ privileged_action VA - PA VA - PA
LI TTLE
1Fq¢ ASI _BLOCK_AS_| F_USER _ privileged_action VA - PA VA - PA
SECONDARY_LI TTLE
2044 ASI| _SCRATCHPAD privileged_action nontranslating nontranslating
2144 ASI _MWJ privileged_action nontranslating nontranslating
2246 ASI _TW NX_Al UP, privileged_action VA - PA VA - PA
ASI _STBI _Al UP
2316 ASI _TW NX_AI US, privileged_action VA - PA VA - PA
AS| _STBI _Al US
2446 ASI _TW NX privileged_action VA - PA bypass
2544 ASI _QUEUE privileged_action nontranslating nontranslating
2614 ASI _TW NX_REAL privileged_action RA - PA RA - PA

130 UltraSPARC T2 Supplement « Draft D1.4.3, 19 Sep 2007

TABLE 12-16 DMMU Translation When LSU_CONTROL_REG.dm =1 or HPSTATE.hpriv=1 (2 of 5)
ASI Translation
Value
(hex) ASI NAME Nonprivileged Privileged Hypervisor
2716 ASI _TW NX_NUCLEUS, privileged_action VA - PA bypass
ASI _STBI _N
2816~ Reserved privileged_action DAE_invalid_asi DAE_invalid_asi
2916
2A44 ASI _TW NX_AI UPL, privileged_action VA - PA VA - PA
ASI _STBI _Al UPL
2B1g ASI _TW NX_AI USL, privileged_action VA - PA VA - PA
ASI _STBI _Al USL
2Cq6 ASI _TW NX_LI TTLE privileged_action VA - PA bypass
2Dy4 Reserved privileged_action DAE_invalid_asi DAE_invalid_asi
2E16 ASI _TW NX_REAL_LITTLE privileged_action RA - PA RA - PA
2F16 ASI _TW NX_NL, privileged_action VA - PA bypass
ASlI _STBI _NL
3014 ASI _AS | F_PRI V_PRI MARY privileged_action privileged_action VA - PA
3144 ASI _AS_| F_PRI V_SECONDARY privileged_action privileged_action VA - PA
3216~ Reserved privileged_action privileged_action DAE_invalid_asi
3516
3616 ASI _AS_| F_PRI V_NUCLEUS privileged_action privileged_action VA - PA
3716 Reserved privileged_action privileged_action DAE_invalid_asi
3816 ASI _AS | F_PRIV_PRI MARY_LI TTLE privileged_action privileged_action VA - PA
3916 ASI _AS_| F_PRI V_SECONDARY_LI TT privileged_action privileged_action VA - PA
LE
3A16- Reserved privileged_action privileged_action DAE_invalid_asi
3Dy
3Eq¢ ASI _AS_| F_PRI V_NUCLEUS_LI TTLE privileged_action privileged_action VA - PA
3F¢ Reserved privileged_action privileged_action DAE_invalid_asi
4044 ASI| _STREAM privileged_action privileged_action nontranslating
4144 ASI _CwP privileged_action privileged_action nontranslating
4246 ASI _| NST_MASK_REG/ privileged_action privileged_action nontranslating
ASI _LSU_DI AG_REG
4344 ASI _ERROR_| NJECT_REG privileged_action privileged_action nontranslating
4446 Reserved privileged_action privileged_action DAE_invalid_asi
4544 ASI _LSU_CONTROL_REG privileged_action privileged_action nontranslating
AS|I _DECR,
AS| _RST_VEC_MASK
4614 ASI| _DCACHE_DATA privileged_action privileged_action nontranslating
4716 AS| _DCACHE_TAG privileged_action privileged_action nontranslating
4816 ASI _| RF_ECC_REG privileged_action privileged_action nontranslating
4916 AS|I _FRF_ECC_REG privileged_action privileged_action nontranslating

« 131

TABLE 12-16 DMMU Translation When LSU_CONTROL_REG.dm =1 or HPSTATE.hpriv=1 (3 of 5)
ASI Translation
Value
(hex) ASI NAME Nonprivileged Privileged Hypervisor
4A14 ASI _STB_ACCESS privileged_action privileged_action nontranslating
4By6 Reserved privileged_action privileged_action DAE_invalid_asi
4Cq¢ ASI _DESR/ASI _DFESR/ASI _CERER/ privileged_action privileged_action nontranslating
ASI _SETER/ASI _CLESR/ASI _
CLFESR
4Dy Reserved privileged_action privileged_action DAE_invalid_asi
4Eq¢ ASI _SPARC_PWR_MGMT' privileged_action privileged_action nontranslating
4Fq4 ASI _HYP_SCRATCHPAD privileged_action privileged_action nontranslating
5016 ASI _I MU privileged_action privileged_action nontranslating
5146 ASI _HYP_SCRATCHPAD privileged_action privileged_action nontranslating
5216 ASI _I MU privileged_action privileged_action nontranslating
5316 ASI _HYP_SCRATCHPAD privileged_action privileged_action nontranslating
5416 ASI _I MU privileged_action privileged_action nontranslating
5516 ASI _HYP_SCRATCHPAD privileged_action privileged_action nontranslating
5614 ASI _| MU privileged_action privileged_action nontranslating
5716 ASI _HYP_SCRATCHPAD privileged_action privileged_action nontranslating
5816 ASI _I MU privileged_action privileged_action nontranslating
5916 ASI _HYP_SCRATCHPAD privileged_action privileged_action nontranslating
5A14 ASI _I MU privileged_action privileged_action nontranslating
5B1g ASI _HYP_SCRATCHPAD privileged_action privileged_action nontranslating
5C16 ASI _I MU privileged_action privileged_action nontranslating
5Dq4 ASI _HYP_SCRATCHPAD privileged_action privileged_action nontranslating
5E¢ ASI _I MU privileged_action privileged_action nontranslating
5F16 ASI _HYP_SCRATCHPAD privileged_action privileged_action nontranslating
6016~ Reserved privileged_action privileged_action DAE_invalid_asi
6216
6316 ASI _HYP_SCRATCHPAD privileged_action privileged_action nontranslating
6416— ASI _I MW privileged_action privileged_action DAE_invalid_asi
6516
6614 ASI _| CACHE_I NSTR privileged_action privileged_action nontranslating
6716 ASI _| CACHE_TAG privileged_action privileged_action nontranslating
6416— Reserved privileged_action privileged_action DAE_invalid_asi
7116
7214 ASI _| NTR_RECEI VE privileged_action privileged_action nontranslating
7316 ASI _I NTR_W privileged_action privileged_action nontranslating
7416 ASI _INTR R privileged_action privileged_action nontranslating

132 UltraSPARC T2 Supplement « Draft D1.4.3, 19 Sep 2007

TABLE 12-16 DMMU Translation When LSU_CONTROL_REG.dm =1 or HPSTATE.hpriv=1 (4 of 5)
ASI Translation
Value
(hex) ASI NAME Nonprivileged Privileged Hypervisor
7516~ Reserved privileged_action privileged_action DAE_invalid_asi
7Fi6
8014 ASI _PRI MARY VA - PA VA - PA bypass
8146 AS| _SECONDARY VA - PA VA - PA bypass
8216 ASI _PRI MARY_NO_FAULT VA - PA VA - PA bypass
8316 AS| _SECONDARY_NO_FAULT VA - PA VA - PA bypass
8416~ Reserved DAE_invalid_asi DAE_invalid_asi DAE_invalid_asi
8716
8816 AS| _PRI MARY_LI TTLE VA - PA VA - PA bypass
8916 AS| _SECONDARY_LI TTLE VA - PA VA - PA bypass
8A14 ASI _PRI MARY_NO_FAULT_LI TTLE VA - PA VA - PA bypass
8B1g AS| _SECONDARY_NO_FAULT_ VA - PA VA - PA bypass
LI TTLE
8C16— Reserved DAE_invalid_asi DAE_invalid_asi DAE_invalid_asi
BFy6
C044 ASI _PST8_P VA - PA VA - PA bypass
Clye ASI _PST8_S VA - PA VA - PA bypass
C244 AS| _PST16_P VA - PA VA - PA bypass
C345 ASI _PST16_S VA - PA VA - PA bypass
C444 AS| _PST32_P VA - PA VA - PA bypass
C5¢5 ASI _PST32_S VA - PA VA - PA bypass
C616— Reserved DAE_invalid_asi DAE_invalid_asi DAE_invalid_asi
C716
C815 AS| _PST8_PL VA - PA VA - PA bypass
C915 ASI _PST8_SL VA - PA VA - PA bypass
CAqg ASI _PST16_PL VA - PA VA - PA bypass
CByg AS| _PST16_SL VA - PA VA - PA bypass
CCys AS| _PST32_PL VA - PA VA - PA bypass
CD;, ASI_PST32_SL VA - PA VA - PA bypass
CEq6- Reserved DAE_invalid_asi DAE_invalid_asi DAE_invalid_asi
CFs
D044 ASI _FL8_P VA - PA VA - PA bypass
D1y¢ ASI _FL8_S VA - PA VA - PA bypass
D244 ASI _FL16_P VA - PA VA - PA bypass
D344 ASI _FL16_S VA - PA VA - PA bypass
D46— DAE_invalid_asi DAE_invalid_asi DAE_invalid_asi
D714
D844 ASI _FL8_PL VA - PA VA - PA bypass

« 133

TABLE 12-16 DMMU Translation When LSU_CONTROL_REG.dm =1 or HPSTATE.hpriv=1 (5 of 5)
ASI Translation
Value
(hex) ASI NAME Nonprivileged Privileged Hypervisor
D946 AS| _FL8_SL VA - PA VA - PA bypass
DAq4 AS| _FL16_PL VA - PA VA - PA bypass
DBy ASI _FL16_SL VA - PA VA - PA bypass
DCyg— Reserved DAE_invalid_asi DAE_invalid_asi DAE_invalid_asi
DFy4
EO0q¢ ASI| _BLK_COW T_PRI MARY VA - PA VA - PA bypass
Elyq AS| _BLK_COWM T_SECONDARY VA - PA VA - PA bypass
E24 ASI _TW NX_P, VA - PA VA - PA bypass
ASI _STBI _P
E3¢¢ ASI _TW NX_S, VA - PA VA - PA bypass
ASI _STBI _S
E46- Reserved DAE_invalid_asi DAE_invalid_asi DAE_invalid_asi
E9¢¢
EAqq ASI _TW NX_PL, VA - PA VA - PA bypass
AS| _STBI _PL
EByg ASI _TW NX_PL, VA - PA VA - PA bypass
AS| _STBI _PL
ECq4- Reserved DAE_invalid_asi DAE_invalid_asi DAE_invalid_asi
EFy6
FOq6 AS| _BLK_PRI MARY VA - PA VA - PA bypass
Flig AS| _BLK_SECONDARY VA - PA VA - PA bypass
F246- Reserved DAE_invalid_asi DAE_invalid_asi DAE_invalid_asi
F716
F816 AS| _BLK_PRI MARY_LI TTLE VA - PA VA - PA bypass
F946 AS| _BLK_SECONDARY_LI TTLE VA - PA VA - PA bypass
FA16- Reserved DAE_invalid_asi DAE_invalid_asi DAE_invalid_asi
FFig

12.8

MMU Behavior During Reset and Upon
Entering RED st at e

MMU Reset and RED_st at e behavior is described in Machine State After Reset and in
RED_State on page 171.

134 UltraSPARC T2 Supplement « Draft D1.4.3, 19 Sep 2007

12.9

Compliance With the SPARC V9 Annex F

The UltraSPARC T2 MMU complies completely with the SPARC V9 MMU
Requirements described in Annex F of the The SPARC Architecture Manual, Version 9.
TABLE 12-17 shows how various protection modes can be achieved, if necessary,
through the presence or absence of a translation in the I- or D-MMU. Note that this
behavior requires specialized TLB miss handler code to guarantee these conditions.

TABLE 12-17 MMU Compliance With SPARC V9 Annex F Protection Mode

Condition
TTE in TTE in Writable Resultant
D-MMU I-MMU Attribute Bit Protection Mode
Yes No 0 Read-only
No Yes Don’t Care |Execute-only
Yes No 1 Read/Write
Yes Yes 0 Read-only/Execute
Yes Yes 1 Read /Write/Execute

12.10

12.10.1

MMU Internal Registers and ASI
Operations

Accessing MMU Registers

All internal MMU registers can be accessed directly by the virtual processor through
ASIs defined by UltraSPARC T2.

See Section 12.7 for details on the behavior of the MMU during all other UltraSPARC
T2 ASI accesses.

Note | STXA to an MMU register does not require any subsequent
instructions such as a MEMBAR #Sync, FLUSH, DONE, or
RETRY before the register effect will be visible to load / store /
atomic accesses. UltraSPARC T2 resolves all MMU register
hazards via an automatic synchronization on all MMU register
writes.

e 135

If the low order three bits of the VA are non-zero in an LDXA/STXA to/from these
registers, a mem_address_not_aligned trap occurs. Writes to read-only, reads to
write-only, illegal ASI values, or illegal VA for a given ASI may cause a
DAE_invalid_asi trap.

Caution | UltraSPARC T2 does not check for out-of-range virtual
addresses during an STXA to any internal register; it simply
sign-extends the virtual address based on VA{47}. Software must
guarantee that the VA is within range.

Writes to the TSB register, Tag Access register, and Instruction and Data Watchpoint
Address registers are not checked for out-of-range VA. No matter what is written to
the register, VA{63:47} will always be identical on a read.

TABLE 12-18 UltraSPARC T2 MMU Internal Registers and ASI Operations

I-MMU D-MMU

ASI ASI VA{63:0} Access Register or Operation Name
2144 816 Read/Write Primary Context 0 register
— 2144 1044 Read/Write Secondary Context 0 register
2144 10844 Read/Write Primary Context 1 register
— 2144 11044 Read/Write Secondary Context 1 register
5014 5816 016 Read-only I-/D-TSB Tag Target registers
— 5816 2044 Read-only = D-TLB Synchronous Fault Address register
5014 5816 3014 Read/Write I-/D-TLB Tag Access registers
5016 5816 3816 Read/Write Watchpoint address
5816 4044 Read/Write Hardware Tablewalk Config register
5816 8014 Read/Write Partition identifier
5216 10814 Read/Write MMU Real Range 0 register
5216 11044 Read/Write MMU Real Range 1 register
5214 11844 Read/Write MMU Real Range 2 register
5216 12044 Read/Write MMU Real Range 3 register
5216 20816 Read/Write MMU Physical Offset 0 register
5216 21044 Read/Write MMU Physical Offset 1 register
5244 21814 Read/Write MMU Physical Offset 2 register
5216 22014 Read/Write MMU Physical Offset 3 register
5416 1014 Read/Write MMU Context Zero TSB Config 0 register
54,4 1816 Read/Write MMU Context Zero TSB Config 1 register
5444 2014 Read/Write MMU Context Zero TSB Config 2 register
5444 2814 Read/Write MMU Context Zero TSB Config 3 register
5416 3016 Read/Write MMU Context Nonzero TSB Config 0 register
54,4 3816 Read/Write MMU Context Nonzero TSB Config 1 register
5444 4044 Read/Write MMU Context Nonzero TSB Config 2 register

136 UltraSPARC T2 Supplement « Draft D1.4.3, 19 Sep 2007

12.10.2

TABLE 12-18 UltraSPARC T2 MMU Internal Registers and ASI Operations (Continued)

I-MMU D-MMU

ASI ASI VA{63:0} Access Register or Operation Name
544 4816 Read/Write MMU Context Nonzero TSB Config 3 register
544 5014 Read-only = MMU I-TSB Pointer 0 register
5416 5816 Read-only = MMU I-TSB Pointer 1 register
544 6014 Read-only =~ MMU I-TSB Pointer 2 register
5444 6814 Read-only MMU I-TSB Pointer 3 register
5444 7014 Read-only = MMU D-TSB Pointer 0 register
5416 7816 Read-only = MMU D-TSB Pointer 1 register
544 8014 Read-only =~ MMU D-TSB Pointer 2 register
5444 8816 Read-only MMU D-TSB Pointer 3 register
5444 9014 Read/Write MMU Tablewalk Pending Control register
5416 9816 Read-only = MMU Tablewalk Pending Status register
5416 5C15 See Write-only I-/D-TLB Data In registers
Section 12.10.15
5516 5Dq4 See Read/Write I-/D-TLB Data Access registers
Section 12.10.15
5616 5E14 See Read-only I-/D-TLB Tag Read register
Section 12.10.15
5716 5F16 See Write-only I-/D-MMU demap operation

Section 12.11.1

Context Registers

UltraSPARC T2 supports a pair of primary and a pair of secondary context registers
per strand, which are shared by the I- and D-MMUs. Primary Context 0 and Primary
Context 1 are the primary context registers, and a TLB entry for a translating
primary ASI can match the context field with either Primary Context 0 or Primary
Context 1 to produce a TLB hit. Secondary Context 0 and Secondary Context 1 are
the secondary context registers, and a TLB entry for a translating secondary ASI can
match the context field with either Secondary Context 0 or Secondary Context 1 to
produce a TLB hit.

Compatibility | To maintain backward compatibility with software designed for
Note | a single primary and single secondary context register, writes to
Primary (Secondary) Context 0 Register also update Primary
(Secondary) Context 1 Register.

The Primary Context 0 and Primary Context 1 registers are defined as shown in
FIGURE 12-2, where pcontext is the context value for the primary address space.

e 137

12.10.3

— pcontext
63 1312 0

FIGURE 12-2 Primary Context 0/1 register

The Secondary Context 0 and Secondary Context 1 Registers are defined in
FIGURE 12-3, where scontext is the context value for the secondary address space.

— scontext

63 1312 0
FIGURE 12-3 Secondary Context 0/1 Register

The contents of the Nucleus Context register are hardwired to the value zero:

0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
63 0

FIGURE 12-4 Nucleus Context Register

I-/D-TSB Tag Target Registers

The I- and D-TSB Tag Target registers are simply respective bit-shifted versions of
the data stored in the I- and D-Tag Access registers. Since the I- or D-Tag Access
registers are updated on I- or D-TLB misses, respectively, the I- and D-Tag Target
registers appear to software to be updated on an I- or D-TLB miss. A write to this
register results in a DAE_invalid_asi trap being taken. The registers are illustrated in
FIGURE 12-5 and described in the table below the figure.

[ooo] context | —] va{63:22}
63 61 60 48 47 42 41 0

FIGURE 12-5 MMU Tag Target Registers (Two Registers)

Bit Field Description

60:48 context I/D context{12:0}: The context associated with the missing virtual
address. For real translations, the context value is set to zero.

41:0 va I/D context{12:0}: The context associated with the missing virtual
address. For real translations, the context value is set to zero.

138 UltraSPARC T2 Supplement « Draft D1.4.3, 19 Sep 2007

12.10.4

Notes | When PSTATE.am = 1, the upper 32 bits of the VA captured in
this register will be zero.

For a 256-Mbyte page, VA{27:22} contain bits 27:22 of the virtual
address and are not zeroed by hardware.

I-/D-MMU Synchronous Fault Address Registers
(SFAR)

12.10.4.1 I-MMU Fault Address

There is no I-MMU Synchronous Fault Address register. Instead, software must read
the TPC register appropriately as discussed here.

For instruction_access_MMU_miss traps, TPC contains the virtual address that was
not found in the I-MMU TLB.

For IAE_privilege_violation, IAE_unauth_access, and IAE_nfo_page traps, TPC
contains the virtual address of the instruction in the privileged page that caused the
exception.

For instruction_address_range and instruction_real_range traps, note that the TPC in
these cases contains only a 48-bit virtual (real) address, which is sign-extended based
on bit VA{47} (RA{47}) for read. Thus, the TPC contains only the lower 48 bits of the
virtual (real) address that is out of range.

12.10.4.2 D-MMU Fault Address

The Synchronous Fault Address register contains the virtual memory address of the
access that caused the following exceptions:

DAE_invalid_asi
DAE_privilege_violation
DAE_nc_page
DAE_nfo_page
DAE_side_effect_page
mem_address_range
mem_real_range
asi_data_access_protection
privileged_action
VA_watchpoint
PA_watchpoint
mem_address_not_aligned
LDDF_mem_address_not_aligned

« 139

= STDF_mem_address_not_aligned

This register is read-only, a write to this register results in a DAE_invalid_asi trap
being taken.

FIGURE 12-6 illustrates the D-SFAR; the va field is described below the table.

Fault Address va{63:0}
63 0
FIGURE 12-6 D-MMU Synchronous Fault Address Register (SFAR) Format

Bit Field Description

63:0 va Fault Address: The virtual (real) address associated with the
translation fault. This field is sign-extended based on VA{47}
(RA{47}), so bits VA{63:48} (RA{63:48}) do not correspond to the
virtual (real) address used in the translation for the case of a VA
(RA) out-of-range mem_address_range (mem_real_range) trap (for
this case, software must disassemble the trapping instruction).

Notes | When PSTATE.am = 1, the upper 32 bits of the VA captured in
this register will be zero.

The DSFAR is shared for precise error handling, and contains
the error address as described in DMMU Synchronous Fault
Address Register on page 247 following an
internal_processor_error, data_access_MMU_error, or
data_access_error.

12.10.5 I-/D-TLB Tag Access Registers

In each MMU the Tag Access register is used as a temporary buffer for writing the
TLB Entry tag information. The Tag Access register may be updated during any of
the following operations:

1. When the MMU signals a trap due to a miss, exception, or protection. The MMU
hardware automatically writes the missing VA and the appropriate context
(ASI _PRI MARY_CONTEXT_O for primary context accesses,
ASI _SECONDARY_CONTEXT_O for secondary context accesses,
ASI _NUCLEUS_CONTEXT for other accesses) into the Tag Access register to
facilitate formation of the TSB Tag Target register. See TABLE 12-6 for the Tag
Access register update policy.

140 UltraSPARC T2 Supplement « Draft D1.4.3, 19 Sep 2007

2. An ASI write to the Tag Access register. Before an ASI store to the TLB Data
Access registers, the operating system must set the Tag Access register to the
values desired in the TLB Entry. Note that an ASI store to the TLB Data-In register
for automatic replacement also uses the Tag Access register, but typically the
value written into the Tag Access register by the MMU hardware is appropriate.

3. An I-/D-MMU demap operation. For an I-/D-MMU demap operation, the
corresponding Tag Access register va field is loaded with the matching VA bits
from the demap store address. If the Context ID field of the demap store address
(see Section 12.11.1) is 00, then the context field of the Tag Access register is
loaded with the context of ASI _PRI MARY_CONTEXT_0. Otherwise, the context
field of the Tag Access register is loaded with all zeros.

4. An I-/D-TLB load by the Hardware Tablewalker.

Note | Any update to the Tag Access registers immediately affects the
data that is returned from subsequent reads of the Tag Target
and TSB Pointer registers.

Compatibility | The updating of Tag Access on a demap operation and hardware

Note | tablewalk is specific to UltraSPARC T2. No previous
UltraSPARC processors updated Tag Access on demap, and no
previous UltraSPARC processors supported Hardware
Tablewalk.

The TLB Tag Access registers are defined in FIGURE 12-7; register bits are described in
the table below the figure.

va{63:13} context{12:0} |
63 13 12 0
FIGURE 12-7 I/D MMU TLB Tag Access Registers

Bit Field Description

63:13 va The 51-bit virtual page number. Note that writes to this field are not
checked for out-of-range violation, but sign extended based on
VA{47}.

NOTE: When PSTATE.am = 1, the upper 32 bits of the VA captured
in this register will be zero.

12:0 context The 13-bit context identifier. This field reads zero when there is no
associated context with the access, such as for an internal ASI or a
real to physical translation.

Caution — Stores to the Tag Access registers are not checked for out-of-range
violations. Reads from these registers are sign-extended based on VA{47}.

e 141

12.10.6 Partition Identifier

A partition identifier register is provided per strand to allow multiple OSs to share
the same TLB. The partition identifier register contents are compared in all TLB
operations such as demaps and translations, and are loaded into the pid field of the
TLB tag during insertions.

The Partition Identifier register is defined in FIGURE 12-8, where pid is the 3-bit
partition identifier.

— pid
63 3 2 0

FIGURE 12-8 Partition Identifier Register

12.10.7 Hardware Tablewalk Configuration Register

Each strand has a Hardware Tablewalk Configuration register that controls
operation of the Hardware Tablewalk unit.

The Hardware Tablewalk Configuration register is defined in FIGURE 12-9; the
register bits are described in the table below the figure.

— predict burst
63 2 1 0
FIGURE 12-9 Hardware Tablewalk Config Register
Bit Field Description
1 predict If burst is set to 0, predict controls whether hardware prediction is used to

order the TSB reads. If set to 0, the order of TSBs is always 0, 1, 2, 3. If set to
1, a hardware predictor is used to order the TSB reads as either 0,1,2,3 or 1,
0, 2, 3. Initial value is 0.

0 burst If set to 1, TSB reads are issued to all four TSBs in parallel. If set to 0, TSB
reads are issued sequentially, stopping when a TSB hit is detected. Initial
value is 0.

12.10.8 ITLB Probe

A read-only ITLB probe ASI assists software with determining the physical address
assigned to a virtual address of an instruction. The virtual address used with the ASI
is presented to the ITLB, and if a translation exists for the specified address and the
primary contexts in the ITLB, the result data will contain the physical page address
and have the valid bit set. If a translation does not exist for the specified address and

142 UltraSPARC T2 Supplement « Draft D1.4.3, 19 Sep 2007

the primary contexts in the ITLB, the result data will have the valid bit clear. The
ITLB probe does not trap on a probe that specifies a virtual address in the VA hole;
bits 63:48 of the address are ignored.

Programming | The ITLB probe always uses the primary context registers to
Note | determine an ITLB hit. If software desires to check for a nucleus
translation, it must first zero the primary context before issuing
a load to the ITLB probe ASI.

The format of the ITLB probe virtual address is shown in FIGURE 12-10; the fields are
described in the table below the figure

— va{47:13} ‘ real ‘ 0000 |
63 40 39 5 4 3 0
FIGURE 12-10 ITLB Probe Address Format.
Bit Field Description
39:13 va The 35-bit virtual page number (real page number if the real bit is 1).
4 real If set, the ITLB is checked for real-to-physical translations. If cleared, the

ITLB is checked for virtual-to-physical translations.

The ITLB probe data format is defined in FIGURE 12-11; the fields are described in
TABLE 12-19.

| v‘mh‘ tp‘dp‘ — pa{39:13} —
63 62 61 60 59 40 39 13 12 0

FIGURE 12-11 ITLB Probe Data Format.

TABLE 12-19 Format of ITLB Probe Data Fields

Bit Field Description

63 v Valid bit for the physical page number. Set if there was a match in the TLB.
62 mh Multiple hit. Valid only if v is 1. Set if there were multiple matches in the TLB.

61 tp Tag parity error. Valid only if v is 1 and mh is 0. Set if there was a tag parity
error in the matching TLB entry.

60 dp Data parity error. Valid only if v is 1, mh is 0, and tp is 0. Set if there was a data
parity error in the matching TLB entry.

39:13 pa The 27-bit physical page number.

. 143

12.10.9

12.10.10

MMU Real Range Registers

There are four Real Range registers per strand. The RPN-to-PPN translation
associates each Real Range register with its corresponding Physical Offset register.
The RA-to-PA translation applies to TTEs from TSBs with the ra_not_pa bit set in the
TSB Config register, regardless of zero or non-zero context, as described in Hardware
Tablewalk on page 110.

If the enable field is 0, then this range and offset pair are not used. If all range and
offset pairs are disabled, any hit in a TSB with the ra_not_pa bit set in the TSB
Config register results in an instruction_invalid_TSB_entry or
data_invalid_TSB_entry trap.

TABLE 12-20 lists the fields of the MMU Real Range registers.

TABLE 12-20 MMU Real Range Register Format

Bit Field Description

63 enable Enables range and offset pair.

62:54 — Reserved

53:27 rpn_high RA{39:13} of the upper limit of the RPN range (bounds).
26:0 rpn_low RA{39:13} of the lower limit of the RPN range (base).

MMU Physical Offset Registers

There are four Physical Offset registers per strand. The RPN-to-PPN translation
associates each Real Range register with its corresponding Physical Offset register.
The RA-to-PA translation applies to TTEs from TSBs with the ra_not_pa bit set in the
TSB Conlfig register, regardless of zero or nonzero context, as described in

Section 12.3.1.1.

Programming | For proper operation at all page sizes, the value programmed
Note | into the ppn field must be aligned to the size of the largest page
that will use the Physical Offset register for RA-to-PA
translation.

TABLE 12-21 lists the fields of the MMU Physical Offset registers.

TABLE 12-21 MMU Physical Offset Register Format

Bit Field Description

63:40 — Reserved

39:13 ppn Added to RA{39:13} of the request to generate PA{39:13}.
12:0 — Reserved

144 UltraSPARC T2 Supplement « Draft D1.4.3, 19 Sep 2007

12.10.11 MMU TSB Config Registers

The TSB Config registers (MMU_{NON}ZERO_CONTEXT_TSB_CONFIG_<0,1,2,3>)
to provide information for Hardware Tablewalk and for the hardware formation of
TSB pointers and tag targets to assist software in handling TLB misses quickly. If the
TSB concept is not employed in the software memory management strategy, and
therefore the hardware tablewalk, pointer, and tag access registers are not used, then
the TSB Config registers need not contain valid data other than having the enable bit
set to 0. Each strand has four separate TSB pointers for both the zero and non-zero
contexts.

TABLE 12-22 describes the fields of the TSB Config registers.

TABLE 12-22 TSB Config Register Format

Bit

Field Description

63

62

61
60:40
39:13
12:9

7:4

enable If set to 1, Hardware Tablewalk will search this TSB on TLB misses.
NOTE: If any of a strand’s TSB Config registers has the enable bit set, Hardware
Tablewalk is considered to be enabled for the strand.

use_context_0 With use_context_1, controls whether Hardware Tablewalk checks the context
value in the TTE from this TSB and what context value is written into the TTE in
the TLB. If both bits are 0, then Hardware Tablewalk compares the context in the
TTE from the TSB to the context of the request and stores that context into the
TLB if the TTE matches. If either bit is 1, Hardware Tablewalk ignores the context
of the TTE from the TSB. If use_context_0 is 1, Hardware Tablewalk writes the
value of Context Register 0 to the TLB; otherwise, if use_context_1is 1,
Hardware Tablewalk writes the value of Context Register 1 to the TLB.
NOTE: When the requesting context is zero (nucleus), Hardware Tablewalk
ignores these bits.

use_context_1 See use_context_0 above.

— Reserved

tsb_base PA{39:13} of the base of the TSB table
— Reserved

ra_not_pa If set, enables RPN-to-VPN translation in Hardware Tablewalk.
CAUTION! When using Hardware Tablewalk for a TSB, the TSB may contain
either RAs or PAs, but not both. The ra_not_pa bit should be set when the TSB
contains RAs.

page_size Contains the size of the pages mapped by the TTEs in the TSB. This page size is
used to generate the TSB pointer. If a reserved page size value is attempted to be
stored to this field, an unsupported_page_size trap is taken instead.

. 145

TABLE 12-22 TSB Config Register Format (Continued)

Bit Field

Description

3:0 tsh_size The size field provides the size of the TSB according to the following:

 Number of entries in the TSB = 512 x 2!SP_size,

e Number of entries in the TSB ranges from 512 entries at tsb_size = 0 (8-Kbyte
TSB), to 16 M entries at tsb_size =1 5 (256-Mbyte TSB).

NOTE: When the page size for a TSB Base is set to 5 (256-Mbyte pages), setting

tsb_size to a value greater than 11 is a programming error that creates a TSB that

maps a larger than 48-bit VA range. UltraSPARC T2 forces the TSB pointer bits

generated by VA bits above VA{47} to be 0 for this case.

NOTE: Any update to the TSB Config register immediately affects the data that is

returned from later reads of the corresponding TSB Pointer registers.

12.10.12

12.10.13

MMU I-/D-TSB Pointer Registers

The per-strand TSB Pointer registers (MMU_ITSB_POINTER_<0,1,2,3>,
MMU_DTSB_POINTER_<0,1,2,3>) are provided to allow software to location of a
missing TTE in a software-maintained TSB.

The TSB Pointer registers are implemented as a reorder of the current data stored in
the Tag Access register and the appropriate TSB Config register. If the Tag Access
register or the TSB Config register is updated through a direct software write (via an
STXA instruction), then the Pointer registers” values will be updated as well.

The I-/D-TSB Pointer registers are defined in FIGURE 12-12. pa{39:0} is the full
physical address of the TTE in the TSB, as determined by the MMU hardware. The
formula to generate this field is as follows:

PA{39:0} = TSB_Base{39: 13+N} || VA{21+N+3*PS: 13+3*PS} || 0000

where N is defined to be the tsb_size field of the TSB Config register; it ranges from
0 to 15. TSB_Base refers to the tsb_base field of the TSB Config register. PS refers to
the page_size field of the TSB Config register.

| 00046 pa{39:0}
63 40 39 0

FIGURE 12-12 I-/D-TSB Pointer Registers

MMU Tablewalk Pending Control Register

Each strand has a MMU Tablewalk Pending Control register. This register can be
used by software to indicate the status of a software tablewalk. Minimally, software
should write a 1 to the stp bit before it fetches a TTE from a TSB and should write a
0 to the STP bit after it has written the TTE to the TLB or has determined that the
TTE will not be written to the TLB.

Note | This register is completely maintained by software.

146 UltraSPARC T2 Supplement « Draft D1.4.3, 19 Sep 2007

12.10.14

12.10.15

TABLE 12-24 lists the fields of the MMU Tablewalk Pending Control register.

TABLE 12-23 MMU Tablewalk Pending Control Register Format

Bit Field Description
63:1 — Reserved
0 stp Indicates whether a software tablewalk is in progress.

MMU Tablewalk Pending Status Register

Each physical core has a read-only MMU Tablewalk Pending Status register. This
register allows software to identify when in-progress tablewalks have completed.
Software can invalidate an entry in a TSB and then poll this register to identify
tablewalks that may be temporarily caching the entry that has been invalidated. The
bits that are 1 on the initial poll indicate pending tablewalks. A bit that initially
sampled as 1 but later samples as 0 indicates an in-progress tablewalk has
completed. Once each of the bits that initially were sampled as 1 have been sampled
as 0, all tablewalks that were in progress when the initial poll was taken have been
completed.

Programming | Because successive hardware tablewalks can set the htp bits
Note | again, it is possible for software to undersample. That is, polling
software can miss a 1 to 0 transition if hardware clears and sets
the bit between adjacent polls. Polling software should be
structured to minimize the possibility of undersampling.

TABLE 12-24 lists the fields of the MMU Tablewalk Pending Control register.

TABLE 12-24 MMU Tablewalk Pending Control Register Format

Bit Field Description

63:40 — Reserved

39:32 htp Indicates whether a hardware tablewalk is in progress for strands 7:0.
31:8 — Reserved

7:0 stp Indicates whether a software tablewalk is in progress for strands 7:0.

I-/D-TLB Data-In/Data-Access/Tag-Read
Registers

Access to the TLB is complicated due to the need to provide an atomic write of a
TLB entry data item (tag and data) that is larger than 64 bits, the need to replace
entries automatically through the TLB entry replacement algorithm as well as
provide direct diagnostic access, the need to allow that multiple strands on the

e 147

TABLE 12-25

physical core that share the TLB to do a lock-free TLB update, and the need for
hardware assist in the TLB miss handler. TABLE 12-25 shows the effect of loads and
stores on the Tag Access register and the TLB.

Effect of Loads and Stores on MMU Registers

Software Operation

Effect on MMU Physical Registers

Load/Store Register TLB tag TLB data Tag Access Register
Load Tag Read No effect. No effect No effect
Contents returned
Tag Access No effect No effect No effect.
Contents returned
Data In Trap with DAE_invalid_asi
Data Access No effect No effect. No effect
Contents returned
Store Tag Read Trap with DAE_invalid_asi
Tag Access No effect No effect Written with store
data
Data In |TLB entry determined by TLB entry determined by No effect
replacement policy written with [replacement policy written
contents of Tag Access Register |with store data
Data Access |TLB entry specified by STXA |TLB entry specified by STXA No effect
address written with contents of [address written with store data|
Tag Access Register
TLB miss No effect No effect Written with VA and

context of access

The Data In and Data Access registers are the means of reading and writing the TLB
for all operations. The TLB Data In register is used for TLB miss and TSB-miss
handler automatic replacement writes; the TLB Data Access register is used for
operating system and diagnostic directed writes (writes to a specific TLB entry). The
real bit of the TLB is under the control of bit 10 of the VA. If this bit is set, the real bit
of the TLB entry is set; otherwise, the real bit of the TLB entry is cleared.

Notes | When a real-to-physical translation is loaded into the TLB, the
context value loaded into the TLB is always 31.

Hardware Tablewalk updates the corresponding I- or D-Data
In/Data Access registers (in addition to the Tag Access register)
whenever it loads a translation into the TLB.

The hardware supports an autodemap function to handle the case where two strands
sharing a TLB try to enter the same translation into the TLB (for example, due to
near-simultaneous TLB misses on the same page). A TLB replacement that attempts
to add an already existing translation will cause the existing translation to be
removed from the TLB.

148 UltraSPARC T2 Supplement « Draft D1.4.3, 19 Sep 2007

Notes | Autodemapping of existing translations will always remove an
existing page of the same size or larger than the one being
added to the TLB. For example, an insertion of a 8-Kbyte page
that sits inside the virtual address range of a 64-Kbyte page will
cause the 64-Kbyte page to be autodemapped. Smaller pages
that sit inside a page being added to the TLB may not be
autodemapped. For example, an insertion of a 4-Mbyte page
that overlaps the virtual address of one or more 64 KB pages
may not autodemap the overlapping 64-Kbyte pages.1 A
subsequent multiple-hit error in the TLB could be generated as
the result of a programming error that inserted a larger page in
the TLB that overlapped smaller pages present in the TLB. A
multiple-hit error occurs when a translation request matches
more than one TTE in the TSB, and so a multiple-hit error only
occurs for accesses of the region common to the overlapping
ages.
%h% pids and real bits on the pages must match for autodemap
to take place. If the real bit is 0, the context IDs must match as

well.
IF a TLB replacement is attempted using a reserved page size

value, an unsupported_page_size trap will be taken instead.
If a TLB replacement is attempted with the value of the valid bit

(v) equal to 0, the MMU will treat that the same as if the valid
bit was 1 for purposes of allocating and overwriting a TLB entry
and autodemapping matching pages, and the entry will be
written into the TLB with the v bit set to 0.

1. Whether the smaller pages are autodemapped depends on the actual demap address
used and the position of the smaller page within the larger page.

The format of the TLB Data-In register virtual address is shown in FIGURE 12-13,
where real is written to the real bit of the TLB entry.

— ‘ real ‘ — ‘ 000 |
63 11 10 9 3 2 0
FIGURE 12-13 MMU TLB Data-In Virtual Address Format

The format of the TLB Data Access register virtual address is shown in FIGURE 12-14
and described in the table below the figure.

— ‘ real ‘ TLB Entry ‘ 000 |

63 11 10 9 3 2 0
FIGURE 12-14 MMU TLB Data Access Virtual Address Format

. 149

Bit

Field

Description

10
9:3

real

TLB Entry

Written to the Real bit of the TLB entry.

The TLB Entry number to be accessed, in the range 0..63 for the
ITLB, 0..127 for the DTLB.

The data format for TLB Data In and TLB Data Access registers is shown in
TABLE 12-26. Reserved fields ignore writes and return all zeros on reads.

TABLE 12-26 [-/D-MMU TLB Data In and Data Access Registers

Bit Field Description

63 % Valid.

62 nfo No-fault-only.

61 parity Parity for the TLB Data Entry.!
60:40 — Reserved

39:13 pa PA{39:13}.

12 ie Invert endianess.

1 e Side-effect.

10 cp Cacheable in physically-indexed cache.
9 cv Reserved

8 p Privileged.

7 ep Reserved

6 w Writable.

5:4 soft Reserved

3:0 size Size.

1. Data parity is generated across pa{39:13}, nfo, ie, cp, e, p, w, and an encoded ver-
sion of the page size. The page size is encoded in three bits as follows: 111—256
Mbytes; 011 — 4 Mbytes; 001 — 64 Kbytes;

000 — 8 Kbytes. For the encoded page sizes, 256 Mbyte changes from the
size{2:0} value of 101 to 111, while the encoding for all other pages match

size{2:0}.

The format of the Tag Read register virtual address is shown in FIGURE 12-15 and
described in the table below the figure.

— ‘ctxtsel‘ TLB Entry ‘ 000 |

63

10 9 3 2 0

FIGURE 12-15 MMU Tag Read Virtual Address Format

150 UltraSPARC T2 Supplement « Draft D1.4.3, 19 Sep 2007

Bit Field Description

10 ctxtsel If 0, context A is read out in the context field. If 1, context B is read out in the context field.
NOTE: The TLBs store duplicate copies of the context field for error detection, and ctxtsel
allows software to examine both copies.

9:3 TLB Entry The TLB Entry number to be accessed, in the range 0..63 for the ITLB, 0..127 for the DTLB

The data format for the Tag Read register is shown in FIGURE 12-16 and described in

TABLE 12-27.
[pid | real jparity[used] _ | va ra{47:13} | context{12:0} |
63 61 60 59 58 57 48 47 13 12 0

FIGURE 12-16 I-/D-MMU TLB Tag Read Registers

TABLE 12-27 Data Format for I-/D-MMU TLB Tag Read Registers

Bit Field Description

63:61 pid 3-bit partition identifier.

69 real If set, identifies an RA-to-PA translation instead of a VA-to-PA.

59 parity Parity for the tag entry. Parity is generated across pid, real, va{47:13}, and the context value
that was written into the pair of context fields.

58 used Used bit for replacement algorithm.

47:13 va_ra If the r bit is 0, contains the lower bits of the 51-bit virtual page number (VA{47:13}). If the
r bit is 1, contains the lower bits of a 51-bit real page number (RA{47:13}). Page offset bits
for page sizes larger than 8 KB are stored as zeros in the TLB and returned for a Tag Read
register read; that is, va_ra{15:13}, va_ra{21:13}, and va_ra{27:13} are zeroed for 64-Kbyte,
4-Mbyte, and 256-Mbyte pages, respectively.

PROGRAMMING NOTE: Software needs to sign-extend the va_ra field based on
va_ra{47}.

PROGRAMMING NOTE: If the ra bit is 1, it is up to software to ensure that va_ra{47:40}
are all zeros.

12:0 context 13-bit context identifier. The copy of context loaded from the TLB Tag entry is selected by

the ctxtsel bit of the address. If ctxtsel is 0, this field contains context A If ctxtsel is 1, this
field contains context B.

An ASI store to the TLB Data Access register initiates an internal atomic write to the
specified TLB Entry. The TLB entry data is obtained from the store data, and the TLB
entry tag is obtained from the current contents of the TLB Tag Access register.

An AS] store to the TLB Data-In register initiates an automatic atomic replacement of
the TLB Entry pointed to by the replacement index generated internally by the TLB.
The TLB data and tag are formed as in the case of an ASI store to the TLB Data
Access register described above.

An ASI load from the TLB Data Access register initiates an internal read of the data
portion of the specified TLB entry.

« 151

An ASI load from the TLB Tag Read register initiates an internal read of the tag
portion of the specified TLB entry.

ASI loads from the TLB Data-In register are not supported and generate a
DAE_invalid_asi trap.

12.11 I/D-MMU Demap

12.11.1 I-/D-MMU Demap

Demap is an MMU operation, as opposed to a register operation as described above.
The purpose of demap is to remove zero, one, or more entries in the TLB. Four types
of demap operation are provided: Demap Page, Demap Context, Demap All, and
Demap All Pages. All demap operations only demap those pages whose PID
matches the PID specified in the Partition Identifier register. Demap Page removes
zero or one! TLB entry that matches exactly the specified virtual page number and
real bit. Demap Context removes zero, one, or many TLB entries that match the
specified context identifier and have the real bit cleared. Demap Context will never
demap a real translation (r = 1). Demap All Pages removes all pages that either have
their real bit set (if the r bit in the demap address is set) or their real bit clear (if the
r bit in the demap address is clear), regardless of their context. Demap All removes
all pages, regardless of their context or real bit.

The Demap Page operation has two forms: demap page and demap real page.
Address bit 10 controls which form of demap page is used. If address bit 10is a 1,
only a real translation entry in the TLB (r = 1) where the RA matches the VA portion
of the demap address will be demapped (the context is ignored on demap real
translation). If address bit 10 is a 0, only a virtual-to-physical translation entry in the
TLB (r = 0) where the VA of the entry matches the VA of portion of the demap
address and the context matches the specified context will be demapped.

Demap causes the associated tag access register to be updated; see Section 12.10.5, I-
/D-TLB Tag Access Registers, on page 140.

Demap is initiated by an STXA with ASI = 5714 for -MMU demap or 5F4 for
D-MMU demap. FIGURE 12-17 shows the Demap format; TABLE 12-28 describes the
fields.

1 Demap Page may in fact remove more than one TLB entry for the error case where multiple TLB entries match
the virtual page number and real bit. For this multiple match error case, Demap Page will remove all
matching TLB entries.

152 UltraSPARC T2 Supplement « Draft D1.4.3, 19 Sep 2007

va_ra{63:13} — | r | — | type | context 0000 Address

63

1312 1110 9 8 7 65 43 0

- Data

63

FIGURE 12-17 MMU Demap Operation Format

TABLE 12-28 Field Description for MMU Demap Operation Format

Bit Field

Description

63:13 va_ra

10 r

7:6 type

5:4 context

The virtual page number of the TTE to be removed from the TLB; This field is not
used by the MMU for the Demap Context, Demap All, or Demap All Pages operations.
NOTE: The virtual address for demap is not checked for out-of-range violations;
instead, va{63:48} is ignored.

Valid for Demap Page and Demap All Pages only, selects between demapping real
translation(s) (r = 1) or virtual translation(s) (r = 0).

The type of demap operation, as described in TABLE 12-29.

TABLE 12-29 MMU Demap Operation Type Field Description

Type Field Demap Operation

00 Demap Page

01 Demap Context
10 Demap All

11 Demap All Pages

Context ID: Context register selection, as described in TABLE 12-30; Use of the reserved
value causes the demap to be ignored for demap page and demap context, but is a
valid value for a Demap All Pages or Demap All operation.

TABLE 12-30 MMU Demap Operation Context Field Description

Context ID Field Context Used in Demap
00 Primary 0

01 Secondary 0

10 Nucleus

11 Reserved

Note | Address bits 12:11, 9:8 and 3 are ignored during a demap and
may be any value.

A demap operation does not invalidate the TSB in memory. It is the responsibility of
the software to modify the appropriate TTEs in the TSB before initiating any Demap
operation.

« 153

12.11.2

12.11.3

12.11.4

12.11.5

The demap operation produces no output.

I-/D-Demap Page (type = 0)

Demap Page removes the TTE from the specified TLB matching the specified virtual
page number, real bit, partition identifier register, and context register.

Virtual page offset bits {15:13}, {21:13}, and {27:13}, for 64-Kbyte, 4-Mbyte, and 256-
Mbyte page TLB entries, respectively, are stored in the TLB, but are always set to
zero and do not participate in the match for that entry. This is the same condition as
for a translation match.

Note | For the IMMU, the Demap Page operation does not support the
Secondary Context encoding, and using it will cause the demap

to be ignored.

I-/D-Demap Context (type = 1)

Demap Context removes all TTEs from the specified TLB having the specified
context, a real bit of 0, and matching the partition identifier register.

Note | For the IMMU, the Demap Context operation does not support
the Secondary Context encoding, and using it will cause the

demap to be ignored.

I-/D-Demap All (type = 2)

Demap All removes all TTEs from the specified TLB matching the partition identifier
register.

I-/D-Demap All Pages (type = 3)

Demap Real removes all TTEs from the specified TLB matching the specified real bit
and the partition identifier register.

154 UltraSPARC T2 Supplement « Draft D1.4.3, 19 Sep 2007

12.12

12.12.1

12.12.2

TLB Hardware

TLB Operations

The TLB supports exactly one of the following operations per clock cycle:

Translation. The TLB receives a virtual address or real address, a partition
identifier and context identifier as input and produces a physical address and
page attributes as output.

Demap operation. The TLB receives a virtual address and a context identifier as
input and sets the Valid bit to zero for any entry matching the demap page or
demap context criteria. This operation produces no output.

Read operation. The TLB reads either the CAM or RAM portion of the specified
entry. (Since the TLB entry is greater than 64 bits, the CAM and RAM portions
must be returned in separate reads. See I-/D-TLB Data-In/Data-Access/Tag-Read
Registers on page 147 for details.)

Write operation. The TLB simultaneously writes the CAM and RAM portion of
the specified entry, or the entry given by the replacement policy described in
Section 12.12.2.

No operation. The TLB performs no operation.

TLB Replacement Policy

UltraSPARC T2 uses a used bit scheme to generate a replacement index. Each TLB
entry has an associated valid and used bit. An entry’s used bit is set on each TLB
translation hit and also on the write of an entry. When setting the used bit for a
translation or TLB write would result in all used bits being set, the used bits for all
TLB entries are cleared instead.

On an automatic write to the TLB initiated through an ASI store to the TLB Data-In
register, the TLB replaces the first invalid or unused entry.

« 155

156 UltraSPARC T2 Supplement « Draft D1.4.3, 19 Sep 2007

CHAPTER 13

Clocks, Reset, RED st at e, and
Initialization

13.1

Clock Unit

The clock unit block contains the control registers for chipwide clocking.

UltraSPARC T2 has three synchronous clock domains and two asynchronous clock
domains. The synchronous clock domains consist of:

= CMP (physical processors, crossbar and L2 cache) clock domain (target 1.4 GHz)
= IO clock domain (target 350 MHz)
= Memory (DR) clock domain (target 333 MHz)

In the synchronous clock domains, all the clocks are derived from the same reference
clock. There is one PLL to generate CMP, 10, and memory clocks.

The two asynchronous clock domains are

= PCI-Express clock domain 250 MHz
» Ethernet MAC clock domain 312.5 MHz

The PCI-Express clock domain derives its clock from a PLL in the Tx SerDes which
is driven by an external clock. In mission mode, the external clock is asynchronous
to the CMP, I/0O, and memory clock domains. The Ethernet MAC also has its own
clock domain asynchronous to the rest of the chip. It comes from its SerDes.

Controls for the PLL are found in the PLL Control register, whose format is shown in
TABLE 13-1.

157

TABLE 13-1 PLL Control Register — PLL_CTL (83 0000 00004¢)
Initial WMR

Bit Field Value Protected R/W Description

63:37 — 0 — RO Reserved.

36 pll_clamp_ fltr 0 Yes RW PLL Clamp Filter Setting

35:34 st_delay_dr 016 Yes RW DR Stretch Delay Setting (40 ps intervals).

[00, 01, 10, 11] — [40, 80, 120, 160] ps

33 pll_char_in 0 Yes RW PLL characterization test input.

32 change 1 Yes RW If 1, change frequency on next warm reset.

31:30 align_shift 0 Yes RW Shift align detect point by [-1:1] CMP cycle. Affects
dr_sync pulse generation. All other sync pulses
unchanged.

00 : No shift, 01 : +1 cycle, 10 : -1 cycle, 11 : No shift.

29 serdes_dtm2 0 Yes RW Mode 2 - 10/102x set to DR rate; used for observing
debug data on MIO at (up to) CMP rate with DR sync en

28 serdes_dtm1l 0 Yes RW Mode 1 - I0/I02x set to DR rate; used for observing
PEU TX data and MCU TX CRC bits on MIO at DR rate

27:26 st_delay_ cmp 0 Yes RW CMP Stretch delay setting (40 ps intervals).

[00, 01, 10, 11] - [40, 80, 120, 160] ps

25 st_phase_hi 0 Yes RW If 1, stretch high phase of clock. If 0, stretch low phase of
clock.

24:18 pll_div4 8 Yes RW PLL VCO divisor (D4) for DR.

17:12 pll_div3 1 Yes RW PLL VCO divisor (D3) for CMP.

11:6 pll_div2 7 Yes RW PLL feedback divisor (D2).

5:0 pll_divl 1 Yes RW PLL prescalar (D1).

CAUTION! | The values of pll_div1, pll_div2, pll_div3, and pll_div4 in the

PLL_CTL register are interdependent and must be changed
together in a coherent fashion. Illegal values exist that will
inhibit correct functional operation. In addition, valid values
should not be reverse engineered by experimentation. Values
exist that may work at some process, voltage, and temperature
points, but do not allow sufficient margin for correct electrical
operation across PVT combinations.

The recommended procedure for doing a frequency change with warm reset is listed

below:

1. Write the PLL_CTL register to the values needed for the new frequency point.
This write should have the change bit set to a 1 and must be a 64-bit write

(doubleword store).

2. Generate a warm reset.

158 UltraSPARC T2 Supplement « Draft D1.4.3, 19 Sep 2007

The PLL is programmed through a combination of registers (csr fields), direct chip-
level pin control and combinational logic. External pin-level control is applicable
typically in test mode.

Dividers D1, D2, and D3 perform integer division. D4 has fractional divide
capability in discrete increments of 0.5 by using both phases of the VCO clock. The
divider configurations allow cmp_pll_clk to run at different multiples of pll_sys_clk,
but dr_pll_clk is always twice as fast as pll_sys_clk. The DR clock output may not
have 50/50 duty cycle, but should be within 10%.This is not an issue within
UltraSPARC T2 since there is no operation on the low phase.

The divider values are summarized in the table below with information on both
effective and actual bits.

TABLE13-2 PLL Divider Programming for Mission Mode
(Effective)
DIV Bits Valid Range Binary Encoded Values Comments
D1 6 2 00_0001 Binary value = Effective value - 1
D2 6 8-21 00_0111 - 01_0100 Binary value = Effective value - 1
D3 6 2 00_0001 Binary value = Effective value - 1
D4 7 4.0-10.5 00_0100_0 - 00_1010_1 Binary value {6:1} = Effective value; bit 0 = 0 for

integer effective, and 1 for effective x.5

Even though all four dividers can be programmed via CSR writes, there is a subset
of values that are valid. D3, for example, needs to be set to divide by 2. Putting a
divide by 3 or higher will result in a non 50/50 duty cycle CMP clock. dr_pll_clk may
not be produced correctly since it uses both phases of the VCO clock. Acceptable
values for normal operating or mission mode with corresponding clock frequencies
are given in Tables13-3 and 13-4.

The clock frequency multiplication equations with respect to the frequency (fsys) of
the sys_clk input pin are shown.

fvco ~ (D2 x D3 + D1) fsys

fecmp ~ (1 /D3) fvco ~ (D2 + D1) fsys

fdr ~ (1 /D4) fvco ~ (D2 x D3) + (D1 x D4) fsys
fio « 1/4fcmp ~ (D2 +4D1) fsys

fio2x « 1/2 femp ~ (D2 + 2D1) fsys

The first row in any of the three sets in the table below holds the default divider
ratio during power-on-reset. The rows in blue (14 and 10) of the two sets refer to the
targeted operating frequencies. Red sections are beyond the scope of expected
operation, even though within UltraSPARC T2 there is no check for these
configurations.

« 159

TABLE 13-3 Div Ratios for sys_clk = 133.33 MHz

Effec- Effec- Effec- Effec- cmp_ io_ i02x_ dr_ cmp
Sys_clk tive tive tive tive D2 * vco clk clk clk clk o dr
No (MHz) D1 D2 D3 D4 D3 (MHz) (MHz) (MHz) (MHz) (MHz) ratio
LOm® 28 2 4 de 6w BB INH 26T 2667 20
2 13333 2 9 2 4.5 18 1200 600 150 300 266.67 2.25
3 13333 2 10 2 5.0 20 1333.33 666.67 166.67 333.33 266.67 2.5
4 13333 2 11 2 55 22 1466.67 733.33 183.33 367.67 266.67 2.75
5 13333 2 12 2 6.0 24 1600 800 200 400 266.67 3.00
6 13333 2 13 2 6.5 26 1733.33 866.67 216.67 433.33 266.67 3.25
7 13333 2 14 2 7.0 28 1866.67 933.33 233.33 466.67 266.67 3.5
8 13333 2 15 2 7.5 30 2000 1000 250 500 266.67 3.75
9 13333 2 16 2 8.0 32 2133.33 1066.67 266.67 533.33 266.67 4.0
10 13333 2 17 2 8.5 34 2266.67 1133.33 283.33 566.67 266.67 4.25
11 13333 2 18 2 9.0 36 2400 1200 300 600 266.67 4.5
12 13333 2 19 2 9.5 38 2533.33 1266.67 316.67 633.33 266.67 4.75
13 13333 2 20 2 10.0 40 2666.67 1333.33 333.33 666.67 266.67 5.0
14 13333 2 21 2 10.5 42 2800 1400 350 700 266.67 5.25
TABLE 13-4 Div Ratios for sys_clk = 166.67 MHz
Effec- Effec- Effec- Effec- io_ dr_ cmp
Sys_clk tive tive tive tive D2 * vco cmp_clk clk io2x_clk clk o dr
No (MHz) D1 D2 D3 D4 D3 (MHz) (MHz) (MHz) (MHz) (MHz) ratio
Lolee 282 4 16 1M 66 leos B WA 20
2 166.67 2 9 2 4.5 18 1500 750 187.5 375 333.33 2.25
3 166.67 2 10 2 5.0 20 1666.67 833.33 208.33 416.67 333.33 2.5
4 166.67 2 11 2 5.5 22 1833.33 916.67 229.17 458.33 333.33 2.75
5 166.67 2 12 2 6.0 24 2000 1000 250 500 333.33 3.0
6 166.67 2 13 2 6.5 26 2166.67 1083.33 270.83 541.67 333.33 3.25
7 166.67 2 14 2 7.0 28 2333.33 1166.67 291.67 583.33 333.33 3.5
8 166.67 2 15 2 7.5 30 2500 1250 312.5 625 333.33 3.75
9 166.67 2 16 2 8.0 32 2666.67 1333.33 333.33 666.67 333.33 4.0
10 166.67 2 17 2 8.5 34 2833.33 1416.67 354.17 708.33 333.33 4.25

160 UltraSPARC T2 Supplement « Draft D1.4.3, 19 Sep 2007

TABLE 13-4 Div Ratios for sys_clk = 166.67 MHz

Effec- Effec- Effec- Effec- io_ dr_ cmp

Sys_clk tive tive tive tive D2 * vco cmp_clk clk io2x_clk clk s dr

No (MHz) D1 D2 D3 D4 D3 (MHz) (MHz) (MHz) (MHz) (MHz) ratio
11 166.67 2 18 2 9.0 36 3000 1500 375 750 333.33 4.5

13.1.1 Other Clock Unit Registers

The clock unit also contains the random number generator registers.

Note | Data is shifted serially, so doing more than 1 read in 64 cycles
will not produce truly random data in diagnostic mode
(rng_ctl =1).

TABLE 13-5 RNG_CTL Register (83 -0000 00204¢)

Initial WMR
Bit Field Value Protected R/W Description
63:25 Reserved 016 — R Reserved
24:9 rng_wait_ cnt 003E+4 No RW Minimum wait time before successive rng data is sent.
8 rng_bypass 016 No RW Controls VCO voltage source.
0 = sets noise cell VCO control voltage = output of
feedback amplifier. 1 sets noise cell VCO control voltage
= output of bias generator
7:6 rng_vcoctrl_sel 016 No RW Pmos diode D/A setting bus. Controls VCO rate for each
noise cell.
5:4 rng_anlg_ sel 016 No RW Analog mux select for characterization.
rng_ctl4 144 No RW Enables using LFSR or plain shift register. Set to LFSR
mode by default.
2 rng_ctl3 146 No RW Control for using noise cell 3.
rng_ctl2 116 No RW Control for using noise cell 2.
0 rng_ctll 116 No RW Control for using noise cell 1.

- 161

TABLE 13-6 RNG_DATA Register (83 0000 0030+¢)
Initial WMR
Bit Field Value Protected R/W Description
63:0 rng_data X — R Random-number-generator data.

The random number generator (rng) generates random numbers from three noise
cells. There is one rng block and one LFSR (Linear Feedback Shift Register) to be
shared among the eight processor cores. Only one of the cells may be active at a
time, all three may be active, or none of them may be active. Any other combination
defaults to selecting all three noise cells. The following encoding applies:

TABLE 13-7 Encoding for Noise Cell Selection

rng_ctl3 rng_ctl3 rng_ctl3 Effect

0 0 0 Deselect all noise cells (feeds 0 into LFSR)
0 0 1 Select noise cell 1

0 1 0 Select noise cell 2

1 0 0 Select noise cell 3

011,101,110,111 Select all 3 noise cells

The raw generators will serially output 1 data bit into a 64-bit register. Under
functional mode, the register generates data by implementing the CRC polynomial.

P(x) = x64 + x61 + x57 + x56 + x52 + x51 + x50 + x48 + x47 + x46 + x43 + x42 + x41
+ x39 + x38 + x37 + x35 + x32 + x28 + x25 + x22 + x21 + x17 + x15 + x13 + x12 + x11
+Xx7+x5+x+1

After each read request, it is important to not maintain any correlation with the past
generated values, so the LFSR will be flushed after every read acknowledge. The
register will be flushed with a non-zero state FFFF_FFFF_FFFF_FFFF¢. Also,
multiple requests for rng_data are automatically separated by n + 2 cycles, where n
can be programmed by writing to the 16-bit field rng_wait_cnt in the RNG_CTL
register.

In diagnostic mode (ctl4 = 0), the LFSR acts as a simple shift register capturing the
noise cell output directly, determined independently by ctl1, ctl2, and ctl3 as per
encoding. The additional constraint in this mode is that successive read requests for
the rng_data will be delayed by 64 iol2clk cycles. Also, flushing the LFSR after every
read will be disabled in this mode.

The nominal frequency of the oscillator in each noise cell that generates a serial
output can also be set independently by programming the rng_vcoctrl_sel{1:0} field.
There are four settings that correspond to four different frequencies; however, each

162 UltraSPARC T2 Supplement « Draft D1.4.3, 19 Sep 2007

cell must be programmed one at a time. As an example, consider the following
configuration: noise celll - 00 setting, cell2 - 10 setting, cell 3 — 01 setting, and
observe all 3 cells. One would proceed as follows:

1. Set CTL3,CTL2,CTL1 = 001 and set RNG_VCO_CTRL = 00
2. Set CTL3,CTL2,CTL1 = 010 and set RNG_VCO_CTRL = 10
3. Set CTL3,CTL2,CTL1 = 100 and set RNG_VCO_CTRL = 01

13.2

13.2.1

Reset Unit

Reset Generation

The Reset Generation register, shown in TABLE 13-8, allows software to generate an
external (XIR) resets to all processors specified in the ASI _XI R_STEERI NG register
or a chipwide warm reset (WMR) or debug reset (DBR).

TABLE 13-8 Reset Generation Register - RESET_GEN (89 0000 0808;¢)

Initial

Bit Field Value R/W Description

63:3 —0 0 RO Reserved

3 dbr_gen 0 RW Set to 1 to generate a DBR. Value is automatically cleared once the DBR is
complete.

2 — RO Reserved (was por_gen on Fire).

Xir_gen RW Set to 1 to generate an XIR. Value is automatically cleared once the XIR is

complete.

0 wmr_gen 0 RW Set to 1 to generate a WMR. Value is automatically cleared once the WMR is
complete.

13.2.2

Programming | Software may only write a 1 to one of the reset generation bits at
Note | a time. Behavior of UltraSPARC T2 is undefined if software
writes 1’s to multiple reset generation bits.

Reset Source

The Reset Source register, shown in TABLE 13-9 allows software to identify the source
of a reset. The bits in this register are write-one to clear.

* 163

TABLE13-9 Reset Source Register - RESET_SOURCE (89 0000 0818;4)

Initial
Bit Field Value R/W Description
63:16 —0 0 RO Reserved
15 12t7_fatal 0 RW1C Bank 7 of the L2 cache detected a fatal error.
14 12t6_fatal 0 RW1C Bank 6 of the L2 cache detected a fatal error.
13 12t5_fatal 0 RWI1C Bank 5 of the L2 cache detected a fatal error.
12 12t4_fatal 0 RW1C Bank 4 of the L2 cache detected a fatal error.
11 12t3_fatal 0 RW1C Bank 3 of the L2 cache detected a fatal error.
10 12t2_fatal 0 RW1C Bank 2 of the L2 cache detected a fatal error.
9 12t1_fatal 0 RWI1C Bank 1 of the L2 cache detected a fatal error.
8 12t0_fatal 0 RW1C Bank 0 of the L2 cache detected a fatal error.
7 ncu_fatal 0 RW1C The NCU or a block interfacing to it detected a fatal error.
6 pb_xir 0 RWI1C The user asserted the BUTTON_XIR_ input pin.
5 pb_rst 0 RWI1C The user asserted the PB_RST_L input pin.
4 pwron_rst 1 RWI1C The system processor asserted the PWRON_RST_L input pin.
3 dbr_gen 0 RW1C Software wrote a 1 to the dbr_gen field of the RESET_GEN register.
2 — 0 RO Reserved (In Fire was, software wrote a 1 to the por_gen field of the
RESET_GEN register).
1 xir_gen 0 RWI1C Software wrote a 1 to the xir_gen field of the RESET_GEN register.
0 wmr_gen 0 R/W1C Software wrote a 1 to the wmr_gen field of the RESET_GEN register.

13.2.3 Reset Fatal Error Enable

The Reset Fatal Error Enable register, shown in TABLE 13-10 allows software to control
whether L2 fatal errors generate a warm reset.

TABLE 13-10 Reset Fatal Error Enable Register - RESET_FEE (89 0000 0820+4)

Initial

Bit Field Value R/W Description

63:16 —0 0 RO Reserved

15 12t7_fee 0 RW Allow Bank 7 of the L2 cache to generate a fatal error.
14 12t6_fee 0 RW Allow Bank 6 of the L2 cache to generate a fatal error.
13 12t5_fee 0 RW Allow Bank 5 of the L2 cache to generate a fatal error.
12 12t4_fee 0 RW Allow Bank 4 of the L2 cache to generate a fatal error.
11 12t3_fee 0 RW Allow Bank 3 of the L2 cache to generate a fatal error.
10 12t2_fee 0 RW Allow Bank 2 of the L2 cache to generate a fatal error.

164 UltraSPARC T2 Supplement « Draft D1.4.3, 19 Sep 2007

TABLE 13-10 Reset Fatal Error Enable Register - RESET_FEE (89 0000 0820+)

Initial
Bit Field Value R/W Description
9 12t1_fee 0 RW Allow Bank 1 of the L2 cache to generate a fatal error.
8 12t0_fee 0 RW Allow Bank 0 of the L2 cache to generate a fatal error.
7:0 — 0 RO Reserved

13.24 Subsystem Reset

The Subsystem Reset Generation register, shown in TABLE 13-11, allows software to
reset selected I/O subsystems.

TABLE 13-11 Subsystem Reset Generation Register - SSYS_RESET (89 0000 0838¢)

Initial

Bit Field Value R/W Description

63:7 —0 0 RO Reserved

6 mac_protect 0 RW Set to 1 to suppress the reset of the NIU on warm reset.

5 mcu_selfrsh 0 RW Set to 1 to have the MCUs put the DRAM into self-refresh.

4 — 0 RW Reserved (was set to 1 to protect the FBDIMM interfaces of each MCU
from being reset by either warm reset or debug reset).

3:2 —2 0 RO Reserved

dmu_peu 0 RW Set to 1 to generate a warm reset to the PCI Express Unit (PIU), both

ingress and egress. Value is automatically cleared once the WMR is
complete.

0 niu 0 RW Set to 1 to generate a warm reset to the Ethernet subsystem, both
ingress and egress. Value is automatically cleared once the WMR is
complete.

13.2.5 Reset Status

The chip Reset Status register, shown in TABLE 13-12, is maintained for all chipwide
reset and power management commands. The reset source bits in this register are
writable to allow software to clear them after the chip reset sequence is complete, in
order for virtual processor warm resets to be distinguished from chip resets.
Hardware will copy the current reset status into a shadow status whenever a warm
reset occurs.

TABLE 13-12 Reset Status Register - RESET_STAT (89 0000 0810)44

Bit Field Initial Value R/W Description

63:12 —0 0 RO Reserved

11 freq_s 0 RO Shadow status of FREQ
10 por_s 0 RO Shadow status of POR

* 165

TABLE 13-12 Reset Status Register - RESET_STAT (89 0000 0810)4

Bit Field Initial Value R/W Description

9 wmr_s 0 RO Shadow status of WMR

8:5 — 0 RO Reserved

4 —2 0 RW Reserved

3 freq 0 RW Set to 1 if the reset is a warm reset that changed frequency.
2 por 1 RW Set to 1 if the reset is from PWRON_RST_L pin.

1 wmr 0 RW Set to 1 if the reset is from the PB_RST_L pin.

0 — 0 RO Reserved

13.2.6 Lock Time

The Lock Time register determines the length of time the Reset Unit in UltraSPARC
T2 waits for all the PLLs in UltraSPARC T2 to lock. The initial value is an estimated
time only that software can reprogram during the warm reset sequence. Moreover,
software can enable the pre-WMR boot code to perform warm reset with the same
PLL configuration register values, obviating the need to wait for the PLLs to relock.

TABLE 13-13 Lock Time Register - LOCK_TIME (89 0000 0870¢)

Initial
Bit Field Value R/W Description
63:16 — 0 RO Reserved
15:0 lock_time 140044 RW The length of time the Reset Unit in UltraSPARC T2 waits for all

the PLLs in UltraSPARC T2 to lock.

13.2.7 Propagation Time

The Propagation Time register indicates how long it takes for the longest scan chain
to flush. The register initializes to the estimated longest time needed (assuming the
highest planned reference clock frequency), that software can reprogram during
warm reset sequence.

TABLE 13-14 Propagation Time Register — PROP_TIME (89 0000 08804¢)

Bit Field Initial Value R/W Description
63:16 — 0 RO Reserved
15:0 prop_time C00¢4 RW Time taken for longest scan chain to flush.

166 UltraSPARC T2 Supplement « Draft D1.4.3, 19 Sep 2007

13.2.8 NIU Time

The NIU Time register indicates how long it takes for initial values to shift
throughout the NIU.The initial value is an estimate only that software can
reprogram during warm reset sequence.

TABLE 13-15 NIU Time Register — NIU_TIME (89 0000 0890+)

Bit Field Initial Value R/W Description
63:16 — 0 RO Reserved
15:0 prop_time 64014 RW Time taken by initial values to shift throughout the NIU.

13.3 Reset Overview

A reset is anything that causes an entry to RED_st at e. Two classes of resets exist:
chipwide and virtual processor.

Chipwide resets are power-on reset (POR), warm reset (WMR), and debug reset
(DBR). POR affects all subsystems in UltraSPARC T2, while WMR affects all
subsystems other than optionally NIU (through SSYS_RESET.mac_protect bit) and
DBR affects all subsystems except NIU and PIU. Chipwide resets are generated
from the PWRON_RST_L input pin (POR), PB_RST_L pin (WMR), by software
writing a 1 to the wmr_gen field of the RESET_GEN register (WMR) or to the
dbr_gen field of the RESET_GEN register (DBR) and from fatal errors in the
processor (WMR).

Virtual processor resets are XIR, WDR, SIR and are generated by the BUTTON_XIR_
pin (XIR), software resets (SIR), software writing a 1 to the xir_gen field of the
RESET_GEN register (XIR), and error conditions (WDR), and only affect the
operation of a single virtual processor (or for the case of XIR, only the virtual
processors specified in XIR_STEERING as described in ASI_XIR_STEERING on page
189). In addition to forcing entry to RED_st at e, various resets cause different effects
in initializing processor state, as discussed in the following sections. Reset priorities
from highest to lowest are: POR, WMR, DBR, XIR, WDR, SIR. Resets are not
maskable (that is, resets ignore PSTATE.ie).

Programming | Chipwide resets cause the virtual processors to enter
Note | RED_st at e and initialize some, but not all, of the processor
state. Significant programming effort is required to take the
UltraSPARC T2 chip from a chipwide reset to the point where
the operating system can be loaded.

« 167

13.4

13.4.1

13.4.2

Chipwide Resets

Chipwide resets affect all virtual processors in a chip, as well as all I/O, cache, and
DRAM subsystems and are categorized as power-on or warm reset. Power-on reset
is used when the chip power and clock inputs are outside their operating
specifications. Warm reset is used when the power and clock inputs are stable. Warm
reset is typically used to modify clock frequencies or ratios, or to reinitialize the chip
after an unrecoverable hardware or software failure. Warm reset resets all
subsystems in UltraSPARC T2 other than optionally NIU (through the
SSYS_RESET.mac_protect bit).

Power-on Reset (POR)

A power-on reset occurs when the PWRON_RST_L pin is asserted and then
deasserted. The PWRON_RST_L pin must be asserted until 1 clock after the CPU
voltages and input clocks reach their operating specifications. When the
PWRONL_RST_L pin is asserted, all other resets and traps are ignored. Power-on
reset has a trap type of 00144 at physical address offset 20;¢. Since POR and warm
reset share the same trap type and trap vector, the RSET_STAT register described in
Section 13.2.5 has separate POR and warm reset bits to allow software to distinguish
between POR and warm resets. All pending transactions are cancelled. Strand 0 of
the first available physical core begins executing at the RED_St at e_Tr ap_Vect or
base plus POR offset, while the remaining strands start out inactive. BIST testing
may optionally be initiated by software as part of the chip initialization sequence.

After a power-on reset, software must initialize values specified as unknown in
Machine State After Reset and in RED_State on page 171.

Note | Each unknown register must be initialized before it is used.
Failure to initialize registers or states properly before use may
result in unpredictable or incorrect results.

Warm Reset (WMR)

A warm reset occurs when the PB_RST_L pin is asserted and then deasserted, when
software writes a 1 to the wmr_gen field of the RESET_GEN register, or when a fatal
error is detected in the processor. When a warm reset is received, all other resets and
traps except POR are ignored. Warm reset has the same trap type and vector as
power-on reset: a trap type of 0014 at physical address offset 2014. Software can
distinguish between POR and the various sources of warm reset by checking the
RSET_STAT register. The memory controller places DRAM in self-refresh mode
prior to warm reset only if SSYS_RESET.mcu_selfrsh bit is set by software prior to

168 UltraSPARC T2 Supplement « Draft D1.4.3, 19 Sep 2007

13.4.3

the warm reset. Otherwise, on a warm reset, the memory controller does not put the
DRAM in self-refresh.Warm reset can be programmed to do BIST testing. After
warm reset, strand 0 of the first available physical core begins executing at the
RED_St at e_Tr ap_Vect or base plus POR offset, while the remaining strands start
out inactive.

After a warm reset, software must initialize values specified as unknown in Machine
State After Reset and in RED_State on page 171. If there was a clean shutdown, the
primary instruction, primary data, L2 caches, and main memory are still valid.
Otherwise, I-cache tags, D-cache tags, and L2 cache tags should be initialized before
enabling the caches. The iTLB and dTLB also must be initialized before enabling
memory management.

Note that if a warm reset is received without software first placing the chip in a
quiescent state, the hardware will still maintain the state of the primary instruction,
primary data, L2 caches, main memory, and all error registers/logs. However, the
caches and main memory may no longer be completely coherent after the warm
reset, because any transactions in flight when the warm reset was received will have
been lost. In particular, dirty lines in the process of being written back to main
memory may have been dropped.

Debug Reset (DBR)

A debug reset occurs when software writes a 1 to the dbr_gen field of the
RESET_GEN register. DBR behaves the same as warm reset, except that the NIU
and PIUs are not reset.

13.5

13.5.1

Virtual Processor Resets

Virtual processors can receive reset traps. Virtual processor reset traps do not set any
bits in the RSET_STAT register.

Externally Initiated Reset (XIR)

An externally initiated reset can be generated either from the BUTTON_XIR_ pin or
by writing a 1 to the xir_gen field of the RESET_GEN register. When either of these
events occurs, an XIR reset trap is sent to all virtual processors specified in the
XIR_STEERING register. This trap causes a SPARC V9 XIR, which has a trap type of
00314 at physical address offset 60+¢. It has higher priority than all other virtual
processor core resets. XIR is used for system debug.

* 169

13.5.2 Watchdog Reset (WDR) and error_state

A SPARC V9 WDR is generated when a virtual processor encounters a trap when
TL = MAXTL, it passes through err or _st at e and signals itself internally to take a
WDR trap. Window traps that cause watchdog traps still update CWP if they would
have done so with no watchdog trap being generated.

13.5.3 Software-Initiated Reset (SIR)

A SPARC V9 SIR interrupt can be generated on a virtual processor by issuing a SIR
instruction while operating in hyperprivileged mode. This virtual processor reset has
a trap type of 004, at physical address offset 80¢¢.

13.6 RED state

RED_st at e is an acronym for Reset, Error, and Debug State. RED_st at e is
described in the UltraSPARC Architecture 2007 specification.

13.7 RED_st at e Trap Vector

When a SPARC V9 virtual processor processes a reset or trap that enters

RED_st at e, it takes a trap at an offset relative to the RED_st at e_t r ap_vect or
base address (RSTVADDR). The trap offset depends on the type of red mode trap and
takes the values:

POR, WMR, or DBR 2044
XIR 6014

WDR 4044

SIR 8044

other AQq¢

In UltraSPARC T2 the RSTV base address is FFFF FFFF FOOO 0000, if

ASI _RST_VEC MASK.vec_mask = 0. If ASI _RST_VEC MASK.vec_mask =1, RSTV
base address is 0000 0000 0000 00004¢. See ASI_RST_VEC_MASK on page 448 for
more details on the ASI _RST_VEC_MASK register.

170 UltraSPARC T2 Supplement « Draft D1.4.3, 19 Sep 2007

13.8

TABLE 13-16 CPU State After Reset and in RED_st ate (1 of 11)

Machine State After Reset and in
RED St at e

TABLE 13-16 shows CPU state created as a result of any reset, or after entering
RED st at e.

Name Fields POR WMR|DBR |WDR |XIR SIR RED_State?
Integer Registers 0 Unchanged
Floating Point Registers 0 Unchanged
iTLB/dTLB Mappings All invalid |Unchanged
PSTATE tct 0 (Trap on control transfer)
mm 0 (TSO)
red 0 (RED_st at e bit is in HPSTATE register)
pef 1 (FPU on)
am 0 (Full 64-bit addresses)
priv 1
ie 0 (Disable interrupts)
ag 0 (Alternate globals always 0)
cle 0 (Current not little endian)
tle 0 (Trap not little endian)| Unchanged
ig 0 (Interrupt globals always 0)
mg 0 (MMU globals always 0)
HPSTATE ibe 0 (Instruction breakpoint disabled)
red 1 (RED_state)
hpriv 1 (Hyperprivileged mode)
tlz 0 (tlz traps disabled)
TBA{63:15} 0 Unchanged
HTBA{63:15} 0 Unchanged
Y 0 Unchanged
PIL 0 Unchanged
CwWP 0 Unchanged (except for window traps)
PC RSTV 12015 |RSTV 12075 RSTV 14015 RSTV 1604 RSTV8015 RSTVIAO44
NPC RSTV 12415 |RSTV 241, RSTV 1441, RSTVI64y, RSTV 11,84 RSTV A4y,
TT[TL] 1 1 20orTrap 3 4 Trap type
type
TPC[TL] PC

171

TABLE 13-16 ~ CPU State After Reset and in RED_state (2 of 11)
Name |Fie|ds POR WMR|DBR |WDR |XIR SIR |RED_State2
TNPCI[TL] 0 NPC
Store Buffer Empty | Unchanged |Empty
CCR 0 Unchanged
ASI 0 Unchanged
TL MAXTL min(TL+1,MAXTL)
GL MAXGL min(GL+1,MAXGL)
TSTATE[TL] GL 0 pre-WMR! GL
CCR 0 pre-WMR! CCR
ASI 0 pre-WMR! ASI
PSTATE 0 016 PSTATE
CWP 0 pre-WMR! CWP
HTSTATE[TL] ibe 0 0 HPSTATE.ibe
red 0 0 HPSTATE.red
hpriv 0 0 HPSTATE.hpriv
tlz 0 0 HPSTATE.tlz
TICK npt 1 1 Unchanged
counter 0 Count Count
CANSAVE 616 Unchanged
CANRESTORE 016 Unchanged
OTHERWIN 016 Unchanged
CLEANWIN 716 Unchanged
WSTATE other 016 Unchanged
normal 016 Unchanged
VER manuf 003E¢
impl 002444
mask Mask-dependent (4 bits major, 4 bits minor)
maxtl 6
maxgl 3
maxwin 7
FSR all 0 Unchanged
FPRS all 414 Unchanged
GSR all 0 Unchanged
PERF_CONTROL |all 0 (off) Unchanged
(PCR)
PIC 0 Unchanged
TICK_CMPR int_dis 1 Unchanged
tick_cmpr 0 Unchanged

172 UltraSPARC T2 Supplement « Draft D1.4.3, 19 Sep 2007

TABLE 13-16

CPU State After Reset and in RED state (3 of 11)

Name Fields POR WMR|DBR |WDR |XIR SIR RED_State?
STICK_CMPR int_dis 1 Unchanged
stick_cmpr 0 Unchanged
HSTICK_CMPR int_dis 1 Unchanged
hstick_cmpr |0 Unchanged

HINTP 0 Unchanged

SOFTINT 0 Unchanged

AS| _SCRATCHPAD 0_REG 0 Unchanged

ASI _SCRATCHPAD_1_REG 0 Unchanged

ASI _SCRATCHPAD_2_REG 0 Unchanged

AS| _SCRATCHPAD_3_REG 0 Unchanged

AS| _SCRATCHPAD 6_REG 0 Unchanged

ASI _SCRATCHPAD_7_REG 0 Unchanged

AS| _PRI MARY_CONTEXT_0O 0 Unchanged

AS| _SECONDARY_CONTEXT_O 0 Unchanged

AS| _PRI MARY_CONTEXT_1 0 Unchanged

ASI _SECONDARY_CONTEXT_1 0 Unchanged

ASI _CPU_MONDO_QUEUE_HEAD |0 Unchanged

AS| _CPU_MONDO_QUEUE_TAIL (0 Unchanged

AS| _DEVI CE_QUEUE_HEAD 0 Unchanged

ASI _DEVI CE_QUEUE_TAI L 0 Unchanged

ASI _RES_ERROR_QUEUE_HEAD |0 Unchanged

AS|I _RES_ERROR_QUEUE_TAIL (0 Unchanged

AS| _NONRES_ERROR_QUEUE_ 0 Unchanged

HEAD

AS| _NONRES_ERROR_QUEUE_ 0 Unchanged

TAI L

ASI _CORE_AVAI LABLE FFFFFFFFFF Unchanged
FFFFFFq¢ (if
all cores
available)

ASI _CORE_ENABLE_STATUS ASI _CORE_|ASI _CORE_ Unchanged
AVAI LABLE|ENABLE

ASI _CORE_ENABLE ASI _CORE_ Unchanged
AVAI LABLE

ASI _XI R_STEERI NG ASI _CORE_|ASI _CORE_ Unchanged
AVAI LABLE|ENABLE

ASI _CMI_TI CK_ENABLE 0 Unchanged

ASI _CORE_RUNNI NG_RW 116 (or lowest enabled Unchanged

strand)

173

TABLE 13-16 ~ CPU State After Reset and in RED_st ate (4 of 11)

Name Fields POR |WMR|DBR WDR |XIR SIR RED_State?

AS| _CORE_RUNNI NG_STATUS 144 (or lowest enabled Unchanged
strand)

ASI _I NST_MASK_REG 0 Unchanged

ASI _LSU DI AG_REG 0 Unchanged

AS| _ERROR_I NJECT_REG 0 Unchanged

ASI _LSU_CONTROL_REG 0

ASI _DECR 0 Unchanged

AS| _RST_VEC_MASK 0 Unchanged

ASI _DESR 0 Unchanged

AS| _DFESR 0 Unchanged

ASI _CERER 0 Unchanged

AS| _CETER 0 Unchanged

ASI _cl esr 0 Unchanged

AS| _CLFESR 0 Unchanged

AS| _SPARC_PWR_MGMTI 0 Unchanged

AS| _HYP_SCRATCHPAD 0_REG (0 Unchanged

AS| _HYP_SCRATCHPAD 1_REG (0 Unchanged

ASI _HYP_SCRATCHPAD 2_REG |0 Unchanged

ASI _HYP_SCRATCHPAD_3_REG |0 Unchanged

AS| _HYP_SCRATCHPAD_4_REG (0 Unchanged

ASI _HYP_SCRATCHPAD 5 REG (0 Unchanged

ASI _HYP_SCRATCHPAD 6_REG |0 Unchanged

ASI _HYP_SCRATCHPAD_7_REG |0 Unchanged

ASI _I| MMU_TAG_TARGET 0 Unchanged

ASI _I MMU_SFSR 0 Unchanged

ASI _I MMU_TAG_ACCESS 0 Unchanged

ASI _I MMU_VA_ WATCHPO NT 0 Unchanged

AS|I _MMJ_REAL_RANGE_O 0 Unchanged

ASI _MMJ_REAL_RANGE_1 0 Unchanged

AS|I _MMUJ_REAL_RANGE_2 0 Unchanged

ASI _MMJ_REAL_RANGE_3 0 Unchanged

ASI _MMJ_PHYSI CAL_OFFSET_0 (0 Unchanged

ASI _MMJ_PHYSI CAL_OFFSET_1 |0 Unchanged

ASI _MMJ_PHYSI CAL_OFFSET_2 |0 Unchanged

ASI _MMJ_PHYSI CAL_OFFSET_3 |0 Unchanged

ASI _MMJ_ZERO _CONTEXT_TSB (0 Unchanged

_CONFI G 0

174 UltraSPARC T2 Supplement « Draft D1.4.3, 19 Sep 2007

TABLE 13-16 ~ CPU State After Reset and in RED_state (5 of 11)

Name Fields POR WMR|DBR |WDR |XIR SIR RED_State?
ASI_ MMU_ZERO_CONTEXT_ |0 Unchanged
TSB_CONFIG_1

ASI _MMJ_ZERO CONTEXT_TSB_ |0 Unchanged
CONFI G_2

ASI _MMJ_ZERO CONTEXT_TSB_ |0 Unchanged
CONFI G_3

ASI _MMJ_NONZERO _CONTEXT_ |0 Unchanged
TSB_CONFI G 0

ASI _MMUJ_NONZERO _CONTEXT_ |0 Unchanged
TSB_CONFI G_1

ASI _MMUJ_NONZERO_CONTEXT_ |0 Unchanged
TSB_CONFI G_2

ASI _MMJ_NONZERO _CONTEXT_ |0 Unchanged
TSB_CONFI G_3

ASI _MMJ_| TSB_PTR_0O 0 Unchanged
ASI _MWJ_I TSB_PTR 1 0 Unchanged
ASI _MMJ_| TSB_PTR_2 0 Unchanged
ASI _MMJ_ | TSB_PTR_3 0 Unchanged
ASlI _MMJ_DTSB_PTR_0O 0 Unchanged
ASI _MWJ_DTSB_PTR 1 0 Unchanged
ASI _MMJ_DTSB_PTR_2 0 Unchanged
ASI _MWJ_DTSB_PTR_3 0 Unchanged
ASI _PENDI NG_TABLEWALK__ 0 Unchanged
CONTROL

ASI _PENDI NG_TABLEWALK 0 Unchanged
STATUS

AS|I _DMVU_TAG_TARGET 0 Unchanged
AS|I _DMMJ_SFSR 0 Unchanged
AS|I _DMMJ_SFAR 0 Unchanged
AS|I _DMVJ_TAG_ACCESS 0 Unchanged
AS| _DMMJ_WATCHPOI NT 0 Unchanged
ASI _HWI'W_CONFI G 0 Unchanged
ASI _PARTI TIONLI D 0 Unchanged
ASI _CMI_CORE_I NTR_I D COREID

ASI _CMI_CORE_I NTR_I D 7003F0000,4 | COREID

AS| _| NTR_RECEI VE 0 Unchanged
PLL_CTL 1000204E144 Unchanged
I/D cache tags All invalid Unchanged if BISI not run, else invalid
L2 tags and data Unknown Unchanged if BISI not run, else invalid

175

TABLE 13-16 ~ CPU State After Reset and in RED_state (6 of 11)
Name Fields POR WMR|DBR |WDR |XIR SIR RED_State?
L2 directory All invalid Unchanged if BISI not run, else invalid
L2 Error En Reg all 0 (reporting disabled) | Unchanged
L2 Error Status Regsynd Unknown Unchanged
Other fields |0 Unchanged
L2 Error Address Unknown Unchanged
L2 NotData Error |vcid Unknown Unchanged
rw Unknown Unchanged
address Unknown Unchanged
Other fields |0 Unchanged
L2 Error Inject 0 Unchanged
L2 Mask Reg 0 Unchanged
L2 Address Compare Reg 0 Unchanged
L2 Bank Available FFq¢ (if all Unchanged
banks
available)
L2 Bank Enable FFq (if all Unchanged
banks
available)
L2 Bank Enable Status F00q¢ (if all |FOF4 (if all Unchanged
banks banks
available) |available)
L2 Index Hash Enable 016 Unchanged
L2 Control Reg 116 Unchanged
DRAM Refresh Counter 0 Unchanged
DRAM Error Status|synd Unknown Unchanged
Register Other fields |0 Unchanged
DRAM Error Address Unknown Unchanged
DRAM Error Inject 0 Unchanged
DRAM Error Counter 0 Unchanged
DRAM FBD Error Syndrome 0 Unchanged
DRAM Error Location Unknown Unchanged
DRAM Debug dbg_en 0 Unchanged
Enable Trigger Other fields |14¢4 Unchanged
DRAM CAS Address Width Big Unchanged
DRAM RAS Address Width Fi6 Unchanged
DRAM CAS Latency 316 Unchanged
DRAM Scrub Frequency FFFq4 Unchanged
DRAM Refresh Frequency 51444 Unchanged
DRAM Open Bank Max 0 Unchanged

176 UltraSPARC T2 Supplement « Draft D1.4.3, 19 Sep 2007

TABLE 13-16 ~ CPU State After Reset and in RED_state (7 of 11)

Name Fields POR WMR|DBR |WDR |XIR SIR RED_State?
DRAM Scrub Enable 0 Unchanged
DRAM Programmable Time 0 Unchanged
Counter

DRAM RAS to RAS Different 0 Unchanged
Banks Delay

DRAM RAS to RAS Same Bank |Cyq Unchanged
Delay

DRAM RAS to CAS Delay 3 Unchanged
DRAM Write to Read CAS Delay (0 Unchanged
DRAM Read to Write CAS Delay (0 Unchanged
DRAM Internal Read to Precharge (214 Unchanged
Delay

DRAM Active to Precharge Delay (914 Unchanged
DRAM Precharge Command 316 Unchanged
Period

DRAM Write Recover Period 316 Unchanged
DRAM Autorefresh to Active 2714 Unchanged
Period

DRAM Mode Register Set 216 Unchanged
Command Period

DRAM Four Activate Window 216 Unchanged
DRAM Internal Write to Read 216 Unchanged
Command Delay

DRAM DIMM Stacked 0 Unchanged
DRAM Extended Mode (2) 0 Unchanged
DRAM Extended Mode (1) 1844 Unchanged
DRAM Extended Mode (3) 0 Unchanged
DRAM 8 Bank Mode 116 Unchanged
DRAM Branch Disabled 0 Unchanged
DRAM Select Low Order Address |0 Unchanged
Bits

DRAM Single Channel Mode 0 Unchanged
DRAM DIMMs Present lie Unchanged
DRAM Fail-Over Status 0 Unchanged
DRAM Fail-Over Mask 0 Unchanged
FBD Channel State 0 Unchanged
FBD Fast Reset Flag 0 Unchanged
FBD Channel Reset 0 Unchanged
TS1 Southbound to Northbound |0 Unchanged

Mapping

177

TABLE 13-16 ~ CPU State After Reset and in RED_st ate (8 of 11)

Name Fields POR WMR|DBR |WDR |XIR SIR RED_State?

TS1 Test Parameter 0 Unchanged

TS3 Failover Configuration FFFFq4 Unchanged

Disable State Period 3Fq4 Unchanged

Calibrate State Period 0 Unchanged

Training State Minimum Time FFq¢ Unchanged

Training State Timeout FFyq Unchanged

Testing State Timeout FFq¢ Unchanged

Polling State Timeout FFyq Unchanged

DRAM Per-Rank CKE FFFFq¢ Unchanged

L0s Duration 2A1¢ Unchanged

Channel Sync Frame Frequency |2Aq¢ Unchanged

SerDes Configuration Bus 0 Unchanged

SerDes Transmitter and Receiver |0 Unchanged

Differential Pair Inversion

SerDes Test Configuration Bus C000¢¢ Unchanged

DRAM FBD Injected Error Source |0 Unchanged

DRAM FBR Count 0 Unchanged

IMU Error Log Enable Register |7FFFg Unchanged

IMU Error Status Clear Register [014 Unchanged

IMU Error Status Set Register 016 Unchanged

IMU RDS Error Log Register 016 Unchanged if any Primary Error bit in IMU Error Status Clear
Register in RDS Group is set

IMU SCS Error Log Register 016 Unchanged if any Primary Error bit in IMU Error Status Clear
Register in SCS Group is set

IMU EQS Error Log Register 016 Unchanged if any Primary Error bit in IMU Error Status Clear
Register in EQS Group is set

MMU Error Log Enable Register |1FFFFFq Unchanged

MMU Error Status Clear Register (014 Unchanged

MMU Translation Fault Address |04 Unchangedonly if any Primary Error bit is set inMMU Error

Register Status Clear Register

MMU Translation Fault Status 016 Unchangedonly if any Primary Error bit is set inMMU Error

Register Status Clear Register

MMU TTE Cache Data Registers (014 Unchanged

MMU DEV2IOTSB Registers 016 Unchanged

MMU IOTSBDESC Registers 016 Unchanged

ILU Error Log Enable Register FO4¢ Unchanged

ILU Error Status Clear Register (014 Unchanged

ILU Error Status Set Register 016 Unchanged

DMU ILU Diagnostic Register 016 Unchanged (only bits 3:2)

178 UltraSPARC T2 Supplement « Draft D1.4.3, 19 Sep 2007

TABLE 13-16 ~ CPU State After Reset and in RED_state (9 of 11)

Name Fields POR WMRIDBR [WDR [XIR SIR RED_State?

PEU Control Register 146 Unchanged

PEU Ingress Credits Initial 10000200C0, 4| Unchanged

Register

PEU Other Event Log Enable FFFFFFq Unchanged

Register

PEU Other Event Status Clear 016 Unchanged

Register

PEU Other Event Status Set 016 Unchanged

Register

PEU Receive Other Event Header1 {044 Unchanged only if any of Ingress completion header error,

Log Register Memory read capture, Write unsuccessful completion status,

Read unsuccessful completion status, Configuration request
retry completion status Primary Error bits in PEU Other Event
Status Clear Register is set
PEU Receive Other Event Header2 (014 Unchanged only if any of : Ingress completion header error,
Log Register Memory read capture, Write unsuccessful completion status,
Read unsuccessful completion status, Configuration request
retry completion status Primary Error bits in PEU Other Event
Status Clear Register is set

PEU Transmit Other Event 016 Unchanged only if any of Completion Timeout Error, Write

Header1 Log Register Unsuccessful Completion Status, Read Unsuccessful Completion
Status, Configuration Request Retry Completion Status Primary

error bits in PEU Other Event Status Clear Register is set

PEU Transmit Other Event 016 Unchanged only if any of Completion Timeout Error, Write

Header2 Log Register Unsuccessful Completion Status, Read Unsuccessful Completion
Status, Configuration Request Retry Completion Status Primary

error bits in PEU Other Event Status Clear Register is set

PEU Uncorrectable Error Log 17F01144 Unchanged

Enable Register

PEU Uncorrectable Error Status |044 Unchanged

Clear Register

PEU Uncorrectable Error Status |044 Unchanged

Set Register

PEU Receive Uncorrectable Error (014 Unchangedonly when a primary error bit is set in the PEU

Header1 Log Register Uncorrectable Error Status Clear register

PEU Receive Uncorrectable Error (04 Unchangedonly when a primary error bit is set in the PEU

Header2 Log Register Uncorrectable Error Status Clear register

PEU Transmit Uncorrectable Error (014 Unchangedonly when a primary error bit is set in the PEU

Header1 Log Register Uncorrectable Error Status Clear register

PEU Transmit Uncorrectable Error| 014 Unchangedonly when a primary error bit is set in the PEU

Header2 Log Register Uncorrectable Error Status Clear register

PEU Correctable Error Log Enable [11C1;¢ Unchanged

Register

e 179

TABLE 13-16 ~ CPU State After Reset and in RED_st ate (10 of 11)
Name Fields POR WMR|DBR |WDR |XIR SIR RED_State?
PEU Correctable Error Status 016 Unchanged
Clear Register
PEU Correctable Error Status Set |044 Unchanged
Register
PEU CXPL/SerDes Revision 016 Unchanged
Register
PEU CXPL Event/Error Log 31:24: Fyq Unchanged
Enable Register 17:0:
3FFFFy4
PEU CXPL Event/Error Status 016 Unchanged
Clear Register
PEU CXPL Event/Error Status Set|044 Unchanged
Register
PEU SerDes PLL Control/Status |1;4 Unchanged
Register
PEU SerDes Receiver Lane 0-7 4441¢ Unchanged
Control Register
PEU SerDes Receiver Lane 0-7 |044 bits 3,0 Unchanged
Status Register bit 1 can change to either 0, or 1,
Please refer to TABLE 21-168 on page 619

PEU SerDes Transmitter Lane 1F81¢ Unchanged
0-7 Control Register
PEU SerDes Transmitter Lane 016 Unchanged
0-7 Status Register
PEU SerDes MACRO 0-1 Test 0314 Unchanged
Configuration Register
IBIST Registers 0 Unchanged
NCU Debug Trigger Enable 0 Unchanged
SOC DECR 0 Unchanged
SOC Error Status 0 Unchanged
SOC Pending Error Status 0 Unchanged
SOC SII Error Syndrome 0 Unchanged
SOC NCU Error Syndrome 0 Unchanged
Debug Port Configuration 0 Unchanged
10 Quiesce Control|niu_stall 0 Unchanged

dmu_stall 0 Unchanged

Other fields |Unknown Unchanged
Serial Number Unique Value
EFUSE Status FFFF FFFF FFFF FFFF ¢4
OVERLAP_MODE 0 Unchanged
CLK_SCKSEL 0 Unchanged

180 UltraSPARC T2 Supplement « Draft D1.4.3, 19 Sep 2007

TABLE 13-16 ~ CPU State After Reset and in RED_st at e (11 of 11)

Name |Fie|ds POR WMR|DBR |WDR |XIR SIR RED_State?
SSI_LOG 016 Unchanged
MBIST_MODE Bits{3:0} 0 Unchanged
MBIST_BYPASS Bits {47:0} 0 Unchanged
MBIST_RESULT Bits {1:0} 0 Unchanged
MBIST_DONE Bits {47:0} 0 Unchanged
MBIST_FAIL Bits {47:0} 0 Unchanged
LBIST_MODE Bits {1:0} 0 Unchanged
LBIST_BYPASS Bits {7:0} 0 Unchanged
LBIST_DONE Bits {7:0} 0 Unchanged
DCR Bits {2:0} 0 Unchanged
TRIGOUT 0 Unchanged
PEU_TESTCONFI 0 Unchanged
G_EN

CYCLE_COUNTE |Bits {63:0} 0 Unchanged
R

CLOCK STOP Bits{6:0} 0 Unchanged
DELAY counter

MBIST_START 0 Unchanged
MBIST_ABORT 0 Unchanged
MBIST_START_W 0 Unchanged
MR

LBIST_START 0 Unchanged
LOCK TIME 140044 Unchanged
PROP TIME C00¢4 Unchanged
NIU TIME 6401¢ Unchanged

1. The TSTATE fields are sampled from the relevant registers on WMR. Since these registers are
preserved through WMR, the value in the TSTATE fields after a WMR are the pre-WMR values
from the relevant registers.

2. This column applies to all other traps that take the processor into RED_st at e (i.e., traps while at
MAXTL — 1).

13.9 Boot Sequence

A high-level overview of the typical UltraSPARC T2 power-up reset sequence is as
follows:

« 181

1. On power-up of the system, the system controller asserts PWRON_RST_L and
RST asserts all other reset signals. This causes (1) all UltraSPARC T2 internal
states to reset, including all control registers and memory refresh state machines,
(2) causes IO outputs to reset, and (3) protects the internal tristate muxes. The
main CPU PLL will be locking to the default clock ratio during this time. The
other PLLs, in the NIU SerDes and the PIU SerDes, also will be locking to their
frequencies during this time.

2. Once power is up in the system, the system controller then deasserts
PWRON_RST_L and the CPU fetches reset configuration programming code from
the boot PROM where configuration registers (clock ratios, etc.) are programmed.
RST must deassert all reset signals simultaneously and synchronously to their
respective clocks.

3. A second, warm reset caused by writing to wmr_gen bit is used to reset most of
UltraSPARC T2 (everything except items reset only by PWRON_RST_L above),
relock the CPU PLL, and restart instruction fetch of boot code running at the
reprogrammed clock ratio. The main PLL is locking during this time if the ratio is
updated.

4. Subsequent warm resets may take place later via writing to wmr_gen bit, which
do not disturb states which are reset only by PWRON_RST_L. Warm reset may
also be caused by assertion of the PB_RST_L pin.

13.9.1 Assumed POR Software Initialization Sequence

This is the sequence we envision a machine in normal use would follow. During
debug, an engineer may wish to forego some steps, such as the warm reset.

Guaranteed by hardware:

» L2 Tag, Data, and VUAD arrays, when BISTed to zeros, are initialized to empty
with good parity and good ECC.

= L2 Directory (of L1 tags) is marked invalid on reset.

» L1 I-cache, L1 D-cache, when BISTed to zeros, initialized to good parity

Assumptions:
= Main Memory - Fast ECC initialization with Bzero ASI.

= SPD (Serial Presence Detect) — SPD is launched by software, and can take up to
~1/12 of a second to complete.

Sequence:
1. Service processor asserts TRST_L and PWRON_RST_L.
2. Power ramps up.

3. PLLs start up, and clocks start toggling.

182 UltraSPARC T2 Supplement « Draft D1.4.3, 19 Sep 2007

4. Service processor asserts TMS and applies one TCK pulse.
5. Service processor deasserts TRST_L.

6. Service processor issues 5 TCK clock pulses - TMS still asserted.
At this point the JTAG logic is reset.

Once TRST_L is deasserted, registers in the JTag portion of the TCU may be accessed
via the JTag TAP using TCK while the PLLs in UltraSPARC T2 have not locked yet.
To do this, the user needs to execute TAP_JTPOR_ACCESS after deasserting TRST_L
but before deasserting PWRON_RST_L. The status of TCU can then be checked with
TAP_JTPOR_STATUS; a status of 1 indicates that the TCU is paused and the JTAG
programming window is active. JTAG instructions can be executed during this
window. To continue with POR, the user should execute TAP_JTPOR_CLEAR after
deasserting PWRON_RST_L, which will cause TCU to continue with the POR
sequence.

7. Service processor deasserts PWRON_RST_L. Note that it must deassert
PWRON_RST_L after deasserting TRST_L.

8. PLLs lock. NIU PLL must lock before the NIU starts.

9. The lowest-numbered available virtual processor begins fetching and executing
instructions at RSTVADDR | | 20;4,. The MMUs are turned off, in bypass mode,
with default mapping. At first, only PROM working. Software has to enable
everything else.

10. Read RSET_STAT register, which indicates POR.
11. Initialize CLK_DIV register with desired ratios.
12. Write 1 to wmr_gen bit of RESET_GEN, to initiate warm reset.

13. The lowest-numbered available virtual processor begins fetching and executing
instructions at RSTVADDR | | 20;4,. The MMUs are turned off, in bypass mode,
with default mapping. At first, only PROM working. Software has to enable
everything else.

14. Read RSET_STAT register, which indicates warm reset, with clock change.
15. Enable error detection on L1 and L2 caches.

16. Enable L1 and L2 caches.

17. Copy bootstrap into L2 cache, using ASI _BLK_I NI T_ST_*.

18. Branch to bootstrap (now executing from cache).

19. Copy/decode code segments from PROM space to cacheable space, using
ASI _BLK_I NI T_ST_*.

20. Initialize DRAM interface blocks.

« 183

21. Force refresh asynchronicity, by zeroing out the refresh counters on each DRAM
controller, at precise intervals (/4 of the refresh interval value).

22. Initialize main memory using ASI _BLK_| NI T_ST_*.
23. Initialize rest of blocks on the chips.

24. Slowly unpark the other enabled virtual processors via the
ASI _CORE_RUNNI NG_WLS or ASI _CORE_RUNNI NG_RWregisters. Additional
virtual processors should be unparked one at a time, with at least 20
microseconds elapsing between successive unpark operations to avoid surges in
power consumption.

25. All virtual processors initialize strand-specific state.

26. Strand 0 in each available physical core initializes physical core state (such as
enable L1$).

27. Jump into hypervisor.

13.9.2 Assumed Warm Reset Software Initialization
Sequence

Assumptions:

Need to check whether error reset or software-generated reset.

Sequence:

1. Read RSET_STAT register, which indicates warm reset.
. Check local error logs.

. If errors, go to crash-dump handling.

. If no errors, initialize/clear L1 caches.

. Turn on caches.

. Initialize strand-specific state.

N O ok WwN

. Slowly unpark the other enabled virtual processors via the
ASI _CORE_RUNNI NG_WLS or ASI _CORE_RUNNI NG_RWregisters. Additional
virtual processors should be unparked one at a time, with at least 20
microseconds elapsing between successive unpark operations to avoid surges in
power consumption.

8. All virtual processors initialize strand-specific state.

184 UltraSPARC T2 Supplement « Draft D1.4.3, 19 Sep 2007

13.9.3

9. Strand 0 in each available physical core initializes physical core state (such as
clear & enable L13$).

10. Continue, as desired by SW.

Reset Sequence for NIU

1. Software makes sure that all outstanding transactions are complete.
2. Software writes to the niu bit of the SSYS_RESET register.

3. Software waits until the niu bit of the SSYS_RESET register is cleared.

185

186 UltraSPARC T2 Supplement « Draft D1.4.3, 19 Sep 2007

CHAPTER 14

CMT

UltraSPARC T2 implements the Sun Microsystems Standard CMT Programming
Model Specification version 2.2.1 (as incorporated into the CMT chapter of the
UltraSPARC Architecture 2007 specification), with the exception that the

ASI _CMI_ERROR_STEERI NG register is not supported. Please refer to that
document for details of the operation of the CMT registers listed in this chapter.

141 CMT Registers

14.1.1 ASI _CORE_AVAI LABLE

All virtual processors share a single ASI _CORE_AVAI LABLE register at ASI 414,
VA{630} = 016'

TABLE 14-1 defines the format of this register.

TABLE14-1 Strand Available — ASI _CORE_AVAI LABLE (ASI 415, VA 05)

Bit Field Initial Value R/W Description

63:0 core_avail FFF FFFF FFFF FFFF;;] RO Bits are set to 1 if the virtual processor is available, 0 if
unavailable. Each physical core in UltraSPARC T2
(represented by a byte) will either be all Os or all 1s.

1. Initial value listed is for a fully available UltraSPARC T2. An UltraSPARC T2 with some physical
cores unavailable may contain 00,4 bytes in the initial value.

14.1.2 AS|I _CORE_ENABLE_STATUS

All virtual processors share a single ASI _CORE_ENABLE_STATUS register at ASI
4116, VA{63:0} = 104¢.

187

TABLE 14-2 defines the format of this register.

TABLE 14-2 Strand Enable Status — ASI _CORE_ENABLE_STATUS (ASI 41,4, VA 104¢)

Bit Field Initial Value R/W Description

63:0 enable_status FFF FFFF FFFF FFFF;;] RO Bits are set to 1 if the virtual processor is enabled, 0 if
disabled. Loaded with the contents of
AS| _CORE_AVAI LABLE upon completion of a power-
on reset. This register is loaded with the contents of
AS| _CORE_ENABLE upon completion of a warm reset.
Each physical core in UltraSPARC T2 (represented by a
byte) will either be all Os or all 1s.

1. Initial value listed is for a fully available UltraSPARC T2. An UltraSPARC T2 with some physical
cores unavailable may contain 00,4 bytes in the initial value.

Notes | The CMT spec uses CORE_ENABLE_STATUS instead of

AS| _CORE_ENABLE_STATUS. ASI _CORE_ENABLE_STATUS is
used in this document to avoid confusion between the two very
similar register names in the CMT spec.

If ASl _CORE_ENABLE is all zeros, the lowest available physical

core will remain enabled.
An interrupt sent to a disabled virtual processor will be ignored

by the disabled virtual processor and will not have any effect on
the virtual processor sending the interrupt.

1413 ASI _CORE_ENABLE

All virtual processors share a single ASI _CORE_ENABLE register at ASI 41y,
VA{630} = 2016'

TABLE 14-3 defines the format of this register.

TABLE 14-3 Strand Enable — ASI _CORE_ENABLE (ASI 41,4, VA 204¢)

Bit Field Initial Value R/W Description

63:0 enable FFF FFFF FFFF FFFF ! RW Set bit to 1 to enable the virtual processor on the next
warm reset. Set bit to 0 to disable the virtual processor on
the next warm reset. Loaded with the contents of
ASI _CORE_AVAI LABLE upon completion of a power-on
reset. Each physical core in UltraSPARC T2 (represented by
a byte) will either be all zeros or all ones. When written to,
if any bit within a byte is a zero, the whole byte will be set
to 0016'

1. Initial value listed is for a fully available UltraSPARC T2. An UltraSPARC T2 with some physical
cores unavailable may contain 00,4 bytes in the initial value.

188 UltraSPARC T2 Supplement « Draft D1.4.3, 19 Sep 2007

14.1.4

TABLE 14-4

ASI _XI R_STEERI NG

All virtual processors share a single ASI _XI R_STEERI NG register at ASI 41y,
VA{630} = 3016'

TABLE 14-4 defines the format of this register.

XIR Steering — ASI _XI R_STEERI NG (ASI 41,4, VA 3044)

Bit Field

Initial Value R/W Description

63:0 xirsteering FFF FFFF FFFF FFFF ¢! RW Bits are set to 1 if the virtual processor will receive an

XIR when the external XIR pin is asserted. Loaded with
the contents of ASI _CORE_AVAI LABLE upon
completion of a power-on reset. This register is loaded
with the contents of ASI _CORE_ENABLE upon
completion of a warm reset.

1. Initial value listed is for a fully available UltraSPARC T2. An UltraSPARC T2 with some physical
cores unavailable may contain 00,4 bytes in the initial value.

14.1.5

Note | UltraSPARC T2 allows the ASI _XI R_STEERI NG register to be
set to 014. When set to 014, assertion of the external XIR pin will
have no effect.

ASI _CMT_TI CK_ENABLE

All virtual processors share a single ASI _CMTI_TI CK_ENABLE register at ASI 41,
VA{63:0} = 3814. This register is preserved across warm reset.

TABLE 14-5 defines the format of this register.

TABLE 14-5 Tick Enable — ASI _CMT_TI CK_ENABLE (ASI 41,4, VA 381¢)
Initial
Bit Field Value R/W Description
63:1 — 016 RO Reserved
0 tick_enable 016 RW Set to 1 to enable incrementing of TICK register in all available,

enabled physical cores

The ASI _CMI_TI CK_ENABLE register synchronizes the tick registers in all physical
cores of UltraSPARC T2. Each physical core contains one tick register. A physical
core’s TICK register increments only when it is 1) available, 2) enabled, and 3)

ASI _CMT_TI CK_ENABLE is set to 1. The output of the ASI _CMI_TI CK_ENABLE
register is distributed synchronously and with the same delay to all physical cores.
Thus, when ASI _CMTI_TI CK_ENABLE changes, all available, enabled physical cores
start or stop incrementing their tick register at the same system clock cycle.

« 189

Programming | Hyperprivileged software can synchronize the tick registers
Note | across all available, enabled physical cores as follows. First, one
strand writes 0 to ASI _CMI_TI CK_ENABLE. Then it initializes a
mutex-protected counter (C) to the number of available, enabled
physical cores. Then, one strand on each available, enabled
physical core writes the desired tick value to its core’s tick
register and decrements c. Each strand checks the value of the
counter. If ¢ is 0, that strand writes a 1 to the
AS| _CMI_TI CK_ENABLE register.

14.1.6 AS|I _CMI'_ERROR_STEERI NG

UltraSPARC T2 does not implement the ASI _CMI_ERROR_STEERI NG (ASI 4144, VA
401¢) register.

14.1.7 ASI _CORE_RUNNI NG_RW

All virtual processors share a single ASI _CORE_RUNNI NG_RWregister at ASI 41,
VA{63:0} = 504.

TABLE 14-6 defines the format of this register.

TABLE 14-6 Strand Running RW — ASI _CORE_RUNNI NG_RW(ASI 41,4, VA 5044)

Bit Field Initial Value R/W Description

T,2

63:0 running_rw 1y¢ RW Bits are set to 0 to park a virtual processor and set to 1 to unpark

a virtual processor.

1. Initial value listed is that seen by software. After a power-on reset, the register contains 04 until

reset is complete and the initial strand is unparked, and an external agent viewing this register
(through the tap controller) may see the zero value.

2. Initial value listed is for a fully available UltraSPARC T2. An UltraSPARC T2 with some physical
cores enabled will have a single bit corresponding to the lowest enabled virtual processor set.

190 UltraSPARC T2 Supplement « Draft D1.4.3, 19 Sep 2007

14.1.8

Notes

WARNINGS!

As per the CMT Programming Model Specification, UltraSPARC T2
prevents software from parking all strands and forces one
hardware strand (the one performing the parking) to keep
running when an attempt is made to park all strands. However,
software must allow for a change in ASI _CORE_RUNNI NG_RWto
propagate by waiting for the value of

AS| _CORE_RUNNI NG_STATUS to match the value written to
ASI _CORE_RUNNI NG_RWbefore making another update,
otherwise hardware operation is unpredictable. In particular, a
strand or all strands may become parked or unparked and
remain unresponsive to further unpark or park commands, until
a warm reset or POR is performed.

If a strand parks itself, the strand is guaranteed to not execute
any instructions beyond the instruction that parked it (i.e. there
is no skid following the parking instruction).

Software must not attempt to park a strand that is not
completely unparked (that is, the strand’s bit in

ASI _CORE_RUNNI NG_STATUS must be 1 before clearing the
strand’s bit in ASI _CORE_RUNNI NG_RW. Operation of
UltraSPARC T2 is undefined when a strand that is not unparked
has its bit in ASI _CORE_RUNNI NG_RW(cleared. In particular, the
strand may become unparked and remain unresponsive to
further park commands, until a warm reset or POR is

}s)erformed.
oftware must not attempt to unpark a strand that is not

completely parked (that is, the strand’s bit in

ASI _CORE_RUNNI NG_STATUS must be 0 before setting the
strand’s bit in ASI _CORE_RUNNI NG_RW. Operation of
UltraSPARC T2 is undefined when a strand that is not parked
has its bit in ASI _CORE_RUNNI NG_RWset. In particular, the
strand may become parked and remain unresponsive to further
unpark commands, until a warm reset or POR is performed.

ASI _CORE_RUNNI NG _STATUS

All virtual processors share a single ASI _CORE_RUNNI NG_STATUS register at ASI
4116’ VA{630} = 5816'

TABLE 14-7 defines the format of this register.

« 191

TABLE 14-7 Strand Running Status — ASI _CORE_RUNNI NG_STATUS (ASI 4144, VA 584¢)

Bit Field Initial Value R/W Description

T,2

63:0 running_status 146 RO Bits are set to 0 if the virtual processor is currently parked and

set to 1 if the virtual processor is currently running.

1. Initial value listed is that seen by software. After a power-on reset, the register contains 04 until

reset is complete and the initial strand is unparked, and an external agent viewing this register
(through the tap controller) may see the zero value.

2. Initial value listed is for a fully available UltraSPARC T2. An UltraSPARC T2 with some physi-
cal cores enabled will have a single bit corresponding to the lowest enabled virtual processor set.

Note | While a virtual processor is parked, interrupt and XIR events
targeting the virtual processor will be held pending and will be
taken once the virtual processor is unparked.

14.1.9 AS|I _CORE_RUNNI NG_WLS

All virtual processors share a single ASI _CORE_RUNNI NG_WLS register at ASI 414,
VA{63:0} = 604¢.

TABLE 14-8 defines the format of this register.

TABLE 14-8 Strand Running W1S — ASI _CORE_RUNNI NG_W1S (ASI 41,4, VA 604¢)

Initial
Bit Field Value R/W Description
63:0 running_wils U WO Writing 1 to a bit will set the corresponding bit in

ASI _CORE_RUNNI NG_RW Writing 0 to a bit will leave the
corresponding bit in ASI _CORE_RUNNI NG_RWunchanged.

Software must not attempt to unpark a strand that is not completely parked (that is,
the strand’s bit in ASI _CORE_RUNNI NG_STATUS must be 0 before using

AS| _CORE_RUNNI NG_WLS to set the strand’s bit in ASI _CORE_RUNNI NG_RW,.
Operation of UltraSPARC T2 is undefined when a strand that is not parked has its
bit in ASI _CORE_RUNNI NG_RWset. In particular, the strand may become unparked
and remain unresponsive to further park commands, until a warm reset or POR is
performed.

14.1.10 ASI _CORE_RUNNI NG WL.C

All virtual processors share a single ASI _CORE_RUNNI NG_WAC register at ASI 414,
VA{630} = 6816.

192 UltraSPARC T2 Supplement « Draft D1.4.3, 19 Sep 2007

TABLE 14-9 defines the format of this register.

TABLE 14-9 Strand Running W1C — ASI _CORE_RUNNI NG_WLC (ASI 4114, VA 6814)
Initial
Bit Field Value R/W Description
63:0b running_wlc 016 WO Writing 1 to a bit will clear the corresponding bit in
ASI _CORE_RUNNI NG_RW Writing a zero to a bit will leave the
corresponding bit in ASI _CORE_RUNNI NG_RWunchanged.
Notes | As per the CMT Programming Model Specification, UltraSPARC T2

prevents software from parking all strands and forces one
hardware strand (the one performing the parking) to keep
running when an attempt is made to park all strands. However,
software must allow for a change in ASI _CORE_RUNNI NG_WL.C
to propagate by waiting for the value of

AS| _CORE_RUNNI NG_STATUS to match the value written to
ASI _CORE_RUNNI NG_WLC before making another update,
otherwise hardware operation is unpredictable. In particular, the
strand may become parked and remain unresponsive to further

unpark commands, until a warm reset or POR is performed.
If a strand parks itself, the strand is guaranteed to not execute

any instructions beyond the instruction that parked it (i.e. there
is no skid following the parking instruction).

Software must not attempt to park a strand that is not completely unparked (that is,
the strand’s bit in ASI _CORE_RUNNI NG_STATUS must be 1 before using

AS| _CORE_RUNNI NG_WLC to clear the strand’s bit in ASI _CORE_RUNNI NG_RW,.
Operation of UltraSPARC T2 is undefined when a strand that is not unparked has its
bit in ASI _CORE_RUNNI NG_RW(cleared. In particular, the strand may become parked
and remain unresponsive to further unpark commands, until a warm reset or POR is

performed.

14.2

14.2.1

ASI _ CMI_CORE Registers

ASI _CMT_CORE_|I NTR I D

Each virtual processor has a read-only ASI _CMI_CORE_| NTR_| D register at ASI

63]6/ VA{630} = 016'

« 193

TABLE 14-10 defines the format of this register.

TABLE 14-10 Strand Interrupt ID — ASI _CMI_CORE_I| NTR_| D (ASI 6314, VA 014)

Bit Field Initial Value R/W Description

63:16 — 014 RO Reserved

15:6 intr_id_hi 016 RO Upper bits of Interrupt ID are all 0.

5:0 intr_id_lo coreid RO Matches ASI _CMI_STRAND_|I D bits 5:0.

14.2.2

ASI _CMT_STRAND | D

Each virtual processor has a read-only ASI _CMI_STRAND | D register at ASI 634,
VA{63:0} = 104¢.

TABLE 14-11 defines the format of this register.

TABLE 14-11 Strand ID — AS| _CMI_STRAND_I D (ASI 6314, VA 10¢4)

Bit Field Initial Value R/W Description

63:38 — 016 RO Reserved

37:32 max_strand_id 744 RO Each physical core on UltraSPARC T2 consists of 8 strands.
31:22 — 016 RO Reserved

21:16 max_strand_id 3F4 RO UltraSPARC T2 contains 64 virtual processors

15:6 — 016 RO Reserved

5:0 strand_id coreid RO Physical strand ID in 5:3, strand ID in 2:0.

Note | The strand ID in UltraSPARC T2 is fixed based on physical core
and strand numbers. This implies that an UltraSPARC T2 with
unavailable cores will have holes in the strand ID space (for
example, if physical core 1 is unavailable, there will be no
strand_id 8,¢—F1¢).

194 UltraSPARC T2 Supplement « Draft D1.4.3, 19 Sep 2007

CHAPTER 15

Noncacheable Unit (NCU) and Boot
ROM Interfaces

15.1

Noncacheable Unit (NCU)

The main functions of the NCU are to route PIO accesses from the CMP virtual
processors to the I/O subsystem and to vector interrupts from the I/O subsystem to
the CMP virtual processors. The NCU provides CSRs for NCU management,
configuration of the PCI Express (PCIE) address space, and mondo interrupt
management.

The NCU decodes the I/0 physical address space. UltraSPARC T2 supports 40-bit
physical addresses, where the MSB (bit 39) is 0 for cacheable accesses (memory
system) and 1 for noncacheable accesses (I/O subsystem).

NCU determines the destination of a PIO access by examining the 8 MSB (bit 39:32)
of the physical address. All accesses received by NCU have bit 39 of the physical
address set to 1. The address range of each IO subsystem block can be found in the
following table.

TABLE15-1 Global Physical Address Assignments

MSB Address Range{39:32} Assignment

0014 ~ 7Fq4 Not supported by NCU (memory)

8014 NCU

8114 NIU

8214 Reserved

8316 CCU

8444 MCUs
13:12 = 00, for MCUO, 13:12 = 01, for MCU1
13:12 = 10, for MCU2, 13:12 = 11, for MCU3

8514 TCU (JTAG / TAP unit)

195

TABLE 15-1 Global Physical Address Assignments

MSB Address Range{39:32} Assignment

8616 DBG

8716 Reserved

8816 DMU

8916 RST

8A14 ~ 8Fq4 Reserved

9016 ASI CPU shared registers (directly accessible only by JTAG/TAP unit)
9116 ~ 9F44 Reserved

A0q¢ ~ BF¢ Not supported by NCU (L2 control and status registers)
C0q¢ ~ CFyq PCIE (64 Gbytes) / DMUPIO

DO0g ~ FEq4 Reserved

FFyq SSI (boot ROM)

15.2

15.2.1

NCU Management Registers

The NCU provides a unique serial number for each UltraSPARC T2 chip. In
addition, the NCU contains registers showing the eFuse, Sparc core, and L2 bank

status.

Serial Number

The serial number register format is show in TABLE 15-2.

TABLE15-2 Processor Serial Number — SER_NUM (80 0000 10004¢)

Bit Name Initial Value R/W Description

63:60 delta_vdd X RO Delta_Vdd[3] is a sign bit (increase or decrease
with respect to nominal). Bits [2:0] specify one of
8 increments.

59:50 delta_t X RO Indicates the temperature offset for the thermal
diode, in increments of 20 mV.

49 reserved 0 RO reserved for testinfo

48:46 fab X RO

45:41 reserved 0 RO reserved for testinfo

40 bin X RO

196 UltraSPARC T2 Supplement « Draft D1.4.3, 19 Sep 2007

TABLE15-2 Processor Serial Number — SER_NUM (80 0000 10004¢)
39:16 lot X RO
15:10 wafer X RO
9:5 column X RO
4:0 row X RO

15.2.2

eFuse Status

The eFuse Status register format is show in TABLE 15-3.

TABLE 15-3 eFuse Status — EFU_STAT (80 0000 1008¢)
Bit Name Initial Value R/W Description
63:0 efu_status FFFF FFFF FFFF FFFF¢ RO eFuse status programmed by eFuse block

15.2.3

Strand Available

The Strand Available register format is show in TABLE 15-4. This register is an alias
for the ASI_CORE_AVAILABLE register described in 14.1.1 ON PAGE 187.

TABLE 15-4 Strand Available — CORE_AVAIL (80 0000 101044)
Bit Name Initial Value R/W Description
63:0 avail FFFF FFFF FFFF FFFF ¢ RO Strand available programmed by eFuse. Note

that all strands within a physical core will be
programmed to the same value (all available or
all unavailable).

15.2.4

L2 Configuration Control and Status Registers

The NCU contains several L2 Configuration Control and Status registers.

The L2 Bank Available register is described in Section 19.14.2, L2 Bank Available,
on page 433.

The L2 Bank Enable register is described in Section 19.14.3, L2 Bank Enable, on
page 433.

The L2 Bank Enable Status Register is described in Section 19.14.4, L2 Bank Enable
Status, on page 435.

The L2 Index Hash Enable register is described in Section 19.14.5, L2 Index Hash
Enable, on page 436.

The L2 Index Hash Enable Status register is described in Section 19.14.6, L2 Index
Hash Enable Status, on page 437.

e 197

15.3 NCU PCIE Address Mapping Registers

Note | NCU adopted the Fire ASIC’s offset base and offset mask for
PCIE PIO mapping. This information is derived from the Fire
Programmer’s Reference Manual (PRM), Section 1.2.2.2. The
Fire PRM is available from either

http:/ /wikis.sun.com/display /FOSSdocs/Home
or

http:/ /www.sun.com/processors/documentation.html

15.3.1 Physical Address Partitioning

The 64-Gbyte region of noncacheable physical memory, from C0 0000 000044 to

CF FFFF FFFFy, is mapped by is reserved for mapping NCU to access PCIE address
space. This 64-Gbyte noncacheable space is split into three subregions: the PCI
Express configuration and I/O subregion; the 32-bit addressable PCI Express
memory subregion; and the 64-bit addressable PCI Express memory subregion.
These are associated with the one PCI Express link, which is called PCIE-A,
supported by UltraSPARC T2.

The base address and size of these subregions is programmed during chip
initialization using the Address Mask/Match registers defined in Section 15.3.6,
NCU PCIE Registers, on page 203. Accesses to PCIE’s 6-Gbyte noncacheable region
outside the subregions mapped by the Address Mask/Match registers are errors
(reads return an error and writes are silently dropped).

The subregions within the 64-Gbyte noncacheable region are summarized in
TABLE 15-5.

TABLE 15-5 64 GByte Noncacheable Reg