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Executive Summary 
Microservices architecture is increasingly being adopted by organizations to improve scalability, 

isolation, fault tolerance, faster time to market, and more.  Because of these advantages over traditional 

monolithic application development, many monolithic applications are being decomposed into a set of 

microservices.  However, developing applications in a microservices world provides some challenges 

related to data consistency.  In traditional monolithic application development, typically a single data 

source is used and accessed by a single application.  The only transactional requirements are for local 

transactions.  At most a couple of data sources are used such as a database and a messaging system and 

the application platform or application server provides transactional consistency across them.  In the 

microservices world, multiple data sources are involved with each microservices typically having its own 

data source(s).  Now a typical transaction spans multiple microservices and multiple data sources.  This 

presents a consistency problem without some sort of distributed transaction coordination. 

The following example describes the issue with data consistency. Let's consider that you are transferring 

money from one financial institution to another financial institution by using the microservices that each 

institution provides. Typically, this is done with an actor such as a bank teller that withdraws money 

from one account and deposits it in another.  This might look like the following set of state transitions 

for transferring 100 from account A to account B: 

State Action Teller “balance” Account A balance Account B balance 

S0  0 500 700 

S1 Withdraw 100 100 400 700 

S2 Deposit 100 0 400 800 

 

If all goes well, both the withdraw action and the deposit action both occur.  Presumably if the 

Withdraw fails, the teller won’t even try the Deposit, so the state remains S0.  However, if the Withdraw 

succeeds and the Deposit fails, then the teller is left with 100 from Account A.  To help alleviate this 

problem, applications can rely upon the services of a transaction coordinator to ensure either both the 

Withdraw and Deposit requests succeed or they both fail. 

Introduction to Distributed Transactions 
Distributed transactions are those transactions that typically span multiple sources of data or multiple 

participants accessing the same data.  Traditional monolithic applications use local transactions, 

meaning transactions that are started and completed by a single participant and only interact with a 

single data source.  Once an application becomes distributed or accesses multiple data sources some 



coordination is needed in the form of a distributed transaction.  Distributed transactions are used in two 

cases: 

1. Transactions that span multiple data sources 

2. Transactions that span multiple application components that access a single data source  

A common example of a distributed transaction is something that transfers money from one 

microservice to another microservice.  The issue is that if part of the transfer is completed, say the 

withdrawal, and the other part of the transaction, say a deposit fails, at the end of the transaction, the 

money transferred is in limbo.  It’s no longer in the account the money was withdrawn from, and it’s not 

in the account that was supposed to receive the transfer.  This results in an inconsistent state between 

the two microservices. 

To alleviate this problem a transaction manager (also called a transaction coordinator) is used to ensure 

that either both the withdrawal and the deposit occur successfully, or both fail.  This is the most 

common model for a distributed transaction.  There are other models that allow for one part to 

complete and the other part to fail which then requires the first part to be compensated or rolled back.  

These are called eventual consistency models as there are points of time when the data among the 

participants isn’t consistent. 

ACID – Atomicity, Consistency, Isolation, Durability 
The ideal solution for distributed transactions is one that provides the ACID properties typically 

associated with transactions. 

Atomicity 
Atomicity is the property of a transaction such that all changes to all participants either succeed or fail. 

Consistency 
Consistency or sometimes called correctness is a property that the participants move from one valid 

state to another.  This means there are no externally visible changes to one participant that are 

inconsistent with the changes to another participant.  The participating resources (databases, queuing 

systems, etc.) external view is always consistent. 

Isolation 
Isolation ensures that the participants transactions execute as though they were executed serially. 

Durability 
Durability ensures that once the outcome of a transaction has been decided, the decision is written to a 

persistent storage mechanism to allow recovery in the presence of failures. 

Common Transaction Models 
There are several distributed transaction models to solve these consistency issues.  The most widely 

known of these models is the XA Distributed Transaction Model.  This model guarantees the ACID 

properties of a distributed transaction.  It is widely implemented by application servers and transaction 

processing monitors.  Another model is the Eclipse MicroProfile Long Running Actions or LRAs.  LRAs are 

specific form of Sagas defined by a set of Java annotations.  Sagas provide a form of eventual 
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consistency meaning that until the Saga has completed, each of the systems involved will likely be in 

inconsistent states with respect to each other and that are visible to others.  The third model covered in 

this paper is the Try-Confirm/Cancel model.  This model relies on resources being able to be placed in a 

reserved state.  Once all the reservations are made, all the reservations are either confirmed or canceled 

placing the reserved resource back into an available status. 

XA 
The XA transaction model defines three components.  The application (AP) which is the component that 

provides the business logic and demarcates transaction boundaries.  Resource managers (RM) are the 

components that manage stateful resources such as databases, queuing or messaging systems, caches, 

and others.  And finally, it defines a transaction manager (TM) that provides the transaction 

coordination amongst the participants. 

 

The basic flow is: 

1. AP asks the TM to begin a transaction 

2. AP updates one or more RMs using the transaction context 

3. AP asks the TM to commit or rollback the transaction 

4. TM asks all RMs to prepare or rollback 

5. If commit, TM asks all RMs to commit 

https://pubs.opengroup.org/onlinepubs/009680699/toc.pdf


Sagas or Long Running Actions 
In the Sagas or Long Running Actions (LRA) transaction model, participants enlist their involvement in 

the LRA by calling an LRA coordinator and providing it with callback URIs.  The LRA coordinator uses 

these URIs to manage the transaction flow.  Each participant uses local transactions that are 

independent from each other.  The basic flow is: 

1. The initiator of the LRA calls the LRA coordinator to begin the LRA and pass it callback URIs 

2. The initiator calls one or more other participants passing along the ID of the LRA in headers 

3. The other participants enlist in the LRA by calling the LRA coordinator passing their callback URIs 

4. The initiator calls the LRA coordinator to either complete or compensate the LRA 

5. The LRA coordinator calls each participant’s complete callback URI or compensate callback URI 

depending upon whether the initiator asked to complete or compensate the LRA 

 

 

 

Because Sagas use local transactions there will be periods when the overall state of the system is 

inconsistent with a goal of eventually being consistent at the end of the Saga.  This is because the local 

transactions complete or compensate independently.  As a result, there will be a period when one or 

more local transactions will have completed or compensated while others have not.  Due to the lack of 



locking and isolation other systems or users will be able to see these inconsistent states and potentially 

make incorrect decisions based upon those inconsistent states. 

Try-Confirm/Cancel 
The Try-Confirm/Cancel (TCC) transaction model relies upon the participants in the transaction 

maintaining reservations, i.e., some resources that are held in a reserved state until either confirmed or 

canceled.  The model relies on the basic HTTP verbs POST, PUT, and DELETE.  A POST is used to create a 

new reservation.  PUT is used to confirm the reservation while DELETE is used to cancel the reservation. 

A transaction coordinator (TC) is often used to ensure that all participants either confirm their 

reservations or cancel their reservations.    The basic flow is: 

1. Initiator calls the TC to begin the TCC transaction 

2. Initiator invokes POST (Try) on one or more other participants to create reservations 

3. The participants will call the TC to indicate their participation in the TCC transaction 

4. Initiator calls the TC to either Confirm or Cancel the TCC transaction 

5. The TC then calls PUT (Confirm) or DELETE (Cancel) on each participant depending upon what 

decision the initiator made on the outcome of the transaction 

 

Heuristic Outcomes 
With any distributed transaction model there is always a possibility that the transaction will end up with 

an inconsistent outcome.  An example of this in XA is that after all RMs have been prepared, one or 

more of them fails to commit.  While this should be a highly unusual circumstance, it can happen.  In 

eventually consistent transaction models such as LRAs, a participant that is asked to complete or 



compensate may be unable to do so because of failures or due to intervening transactions leading to a 

heuristic outcome. 

Timeouts are one of the more common reasons for a heuristic outcome as most transaction models 

provide a timeout mechanism to ensure progress is made.  In the TCC model, each participant provides a 

timeout value indicating how long it will hold a reservation.  After that period of time, the participant 

can unilaterally decide to cancel the reservation.  This might happen even as the transaction is being 

confirmed which can lead to some participants confirming the transaction and some canceling the 

transaction.  Unfortunately, in many cases heuristic outcomes require some sort of manual intervention 

to resolve and should be avoided as much as possible.   

Advantages and Disadvantages of Each Model 
It’s likely that one or more of the above transaction models could be used in any given application 

depending upon the consistency and performance requirements.  In this section we’ll cover the 

advantages and disadvantages of each transaction model with respect to consistency, performance, and 

required developer effort. 

XA 
While the XA transaction model provides the strongest consistency guarantees, it is often considered an 

anti-pattern in the world of microservices.  The primary reasons for XA being considered an anti-pattern 

is that it adds additional coupling between microservices and can lead to significant performance 

impacts.  The claim about additional coupling is largely a red herring as presumably there is some 

business requirements (coupling) that the microservices must adhere to for the sake of consistency.  The 

claim about performance is real, although proper application design can make the performance impact 

over other transaction models far less significant.   

The major benefits of XA transactions are: 

1. Global ACID properties – all the participants move from one consistent state to another, with 

complete isolation and serializability 

2. The programming model places minimal requirements on the application, with the application 

only determining the boundaries and desired outcome of a transaction without any need to 

code compensating actions. 

However, there are potential performance issues when using XA transactions, and it is largely related to 

the necessary locking the RMs must perform to ensure serializability.  RMs lock the resources that have 

been read, written, or deleted while the transaction is in process.  This means that other transactions 

using those same resources must wait until those locks are released.  This serialization of requests 

waiting for these locks can significantly limit the performance of an application and possibly introduce 

deadlocks.   

Significant performance problems using XA are typically caused by the design of the application.  

Applications that make updates to an RM should avoid making updates to common resources.  An 

example might be maintaining a balance value that tracks the sum of a set of records.  If that balance is 

updated every time one of the records is updated, it will force the serialization of the updates to those 

records as each update will have to wait for the lock on the balance.  The problem becomes worse as 

the length of a transaction increases.  If these transactions take 2 seconds to complete, the maximum 



throughput that can be achieved would be 30 transactions per minute.  Not a scalable solution and the 

major reason for XA being considered an anti-pattern for microservices. 

If maintaining or obtaining the balance of the records was done by a database query instead of updating 

some balance record on each request, then there would be no serialization of the updates to those 

records.  Using the above same 2 second time to complete a transaction, the throughput is essentially 

unlimited as an unlimited number of requests could be handled in parallel. 

Other examples of poor application design include: 

1. Having a counter that is updated by each request.  Assuming that counter is shared across 

requests, will cause all requests to be serialized. 

2. Any access to a resource that is shared by many or most transactions 

A properly designed application that minimizes lock conflicts can perform nearly as well as an 

application that doesn’t ensure any consistency.  As mentioned, the major impact will be on latency as 

there are more network requests involved in coordinating the transaction than if the application didn’t 

ensure consistency. 

Sagas or Long Running Actions 
Sagas or Long Running Actions (LRAs) were designed to handle situations where using XA might not be 

feasible or appropriate.  Because of the locking involved with XA transactions, it’s generally 

recommended that XA transactions be relatively short lived involving only machine to machine 

interactions.  Where Sagas or LRAs come into play is when there are users involved in the decision 

making for a transaction or for long workflows that may execute over minutes to hours or more.  The 

major advantage of Sagas or LRAs is their locks are held only for the duration of the local transactions, 

not the entire Saga or LRA, so they may not introduce as many serialization performance issues.   

While avoiding serialization performance issues is great for performance, Sagas or LRAs places some 

significant burdens on the application.  Specifically, when a Saga or LRA needs to be aborted or 

canceled, application logic is required to perform the appropriate compensating action.  This may sound 

easy as one can trivially compensate a deposit with a withdrawal.  Yet if another intervening withdrawal 

has taken place, it is conceivable that there aren’t enough funds to make the compensating withdrawal.  

In this case it is likely that the compensating action would fail leaving the transaction with a heuristic 

outcome.  Many other cases exist where it may be extremely difficult or impractical to implement 

compensating actions.  As well, these compensating actions are up to the developer to create and they 

may contain bugs like any other code and can be difficult to test under all failure scenarios. 

Try-Confirm/Cancel 
The Try-Confirm/Cancel (TCC) transaction model has the same global consistency guarantee that the XA 

transaction model provides, yet with limits on the type of application that can leverage the TCC 

transaction model.  TCC only works with application resources that can be held in reserve.  For example, 

and airline seat or hotel reservation.  With each reservation, the system moves from one consistent 

state to another.  The model is completely scalable as there are no imposed serialization constraints.  

Like XA TCC is easy for the developer to utilize as the developer just needs to demarcate the transaction 

boundaries and determine the outcome of the transaction.  The workflow to ensure all participants 



either confirm or cancel can be handled by the transaction coordinator, further minimizing the 

responsibilities placed on the application code. 

Choose the Model That Fits 
As with many things, there is no one size fits all approach to distributed transactions.  Each model has its 

own advantages and disadvantages and there is no reason to select only one.  For things like financial 

transactions between applications where no user interaction is involved in the transaction, XA offers the 

best consistency guarantees with the least amount of developer effort.  TCC offers similar consistency 

and minimal developer effort if the application can use a reservation model in its transactions.  Sagas or 

LRAs provide the most flexibility at the cost of developer complexity. 

Conclusion 
Ensuring consistency across disparate microservices can be difficult to achieve when required.  The level 

of consistency needed is determined by the business requirements for the microservices involved.  

Some microservices may require very strong consistency, while others may only require eventual 

consistency.  As with many things, there is no one size fits all approach to distributed transactions.  Each 

model has its own advantages and disadvantages and there is no reason to select only one.  For things 

like financial transactions between microservices where no user interaction is involved in the 

transaction, XA offers the best consistency guarantees with the least amount of developer effort.  TCC 

offers similar consistency and minimal developer effort if the application can use a reservation model in 

its transactions.  Sagas or LRAs provide the most flexibility at the cost of developer complexity.  Choose 

the distributed transaction models that best suits your business requirements. 
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