

1 Business / Technical Brief / When to Use Oracle Database In-Memory / Version 2.1

 Copyright © 2022, Oracle and/or its affiliates / Public

Business / Technical Brief

When to Use Oracle Database
In-Memory

Identifying Use Cases for Application Acceleration

March, 2022, Version 2.1

Copyright © 2022, Oracle and/or its affiliates

Public

2 Business / Technical Brief / When to Use Oracle Database In-Memory / Version 2.1

 Copyright © 2022, Oracle and/or its affiliates / Public

Purpose statement

This document provides an overview of Database In-Memory, enumerates high-level use cases, and explains the scenarios

under which it provides a performance benefit. It is intended solely to give you some general guidelines so that you can

determine whether your use case is a good match for this exciting new technology.

Disclaimer

This document in any form, software or printed matter, contains proprietary information that is the exclusive property of

Oracle. Your access to and use of this confidential material is subject to the terms and conditions of your Oracle software

license and service agreement, which has been executed and with which you agree to comply. This document and information

contained herein may not be disclosed, copied, reproduced or distributed to anyone outside Oracle without prior written

consent of Oracle. This document is not part of your license agreement nor can it be incorporated into any contractual

agreement with Oracle or its subsidiaries or affiliates.

This document is for informational purposes only and is intended solely to assist you in planning for the implementation and

upgrade of the product features described. It is not a commitment to deliver any material, code, or functionality, and should

not be relied upon in making purchasing decisions. The development, release, and timing of any features or functionality

described in this document remains at the sole discretion of Oracle. Due to the nature of the product architecture, it may not

be possible to safely include all features described in this document without risking significant destabilization of the code.

3 Business / Technical Brief / When to Use Oracle Database In-Memory / Version 2.1

 Copyright © 2022, Oracle and/or its affiliates / Public

Table of contents

Purpose statement 2

Disclaimer 2

Executive Overview 4

Introducing Database In-Memory 4

How Does Database In-Memory Improve Performance 5

High-Level Use Cases for Database In-Memory 6

Data Warehouse Systems 6

Enterprise OLTP Systems 7

Understanding Your Application 7

Areas that Benefit from Database In-Memory 8

Areas that do not benefit from Database In-Memory 8

What Types of Queries Benefit from Database In-Memory 9

THE FACTS ABOUT ORACLE DATABASE IN-MEMORY 11

Powering the Real-Time Enterprise 11

4 Business / Technical Brief / When to Use Oracle Database In-Memory / Version 2.1

 Copyright © 2022, Oracle and/or its affiliates / Public

Executive Overview

Oracle Database In-Memory is an unprecedented breakthrough in Oracle database performance, offering incredible

performance gains for a wide range of workloads. Oracle Database In-Memory can provide orders of magnitude performance

improvements for analytics workloads, as well as substantial improvements for mixed-workload Enterprise OLTP applications.

This document briefly introduces Database In-Memory, enumerates high-level use cases, and explains the scenarios under

which it provides a performance benefit. The purpose of this document is to give you some general guidelines so that you can

determine whether your use case is a good match for this exciting new technology.

Introducing Database In-Memory

Database In-Memory features a highly optimized In-Memory Column Store (IM column store) maintained alongside the

existing buffer cache as depicted below in Figure 1. The primary purpose of the IM column store is to accelerate column-

oriented data accesses made by analytic operations. It is similar in spirit to having a conventional index (for analytics) on every

column in a table. However, it is much more lightweight than a conventional index, requiring no logging, or any writes to the

database. Just as the performance benefit to an application from conventional indexes depends on the amount of time the

application spends accessing data in the tables that are indexed, the benefit from the IM column store also depends on the

amount of time the application spends on data access for analytic operations. It is therefore important to understand the basic

characteristics of your application to determine the potential benefits from Database In-Memory.

Figure 1: Dual format in-memory database with new in-memory column store

5 Business / Technical Brief / When to Use Oracle Database In-Memory / Version 2.1

 Copyright © 2022, Oracle and/or its affiliates / Public

How Does Database In-Memory Improve Performance

The IM column store includes several optimizations for accelerated query processing. These are described in detail in the

Database In-Memory Technical Brief so only a brief overview is provided here.

There are four basic architectural elements of the column store that enable orders of magnitude faster analytic query

processing:

1. Compressed columnar storage: Storing data contiguously in compressed column units allows an analytic query to scan

only data within the required columns, instead of having to skip past unneeded data in other columns as would be needed

for a row major format. Columnar storage therefore allows a query to perform highly efficient sequential memory

references while compression allows the query to optimize its use of the available system (processor to memory)

bandwidth.

2. Vector Processing: In addition to being able to process data sequentially, column organized storage also enables the use of

vector processing. Modern CPUs feature highly parallel instructions known as vector instructions. These instructions can

process multiple values in one instruction – for instance, they allow multiple values to be compared with a given value

(e.g. find sales with State = “California”) in one instruction. Vector processing of compressed columnar data further

multiplies the native scan speed obtained via columnar storage resulting in scan speeds exceeding tens of billions of rows

per second, per CPU core.

3. In-Memory Storage Indexes: The IM column store for a given table is divided into units known as In-Memory

Compression Units (IMCUs) that typically represent a large number of rows (typically around a half million rows). Each

IMCU automatically records the min and max values for the data within each column in the IMCU, as well as other

summary information regarding the data. This metadata serves as an In-Memory Storage Index: For instance, it allows an

entire IMCU to be skipped during a scan when it is known from the scan predicates that no matching value will be found

within the IMCU.

4. In-Memory Optimized Joins and Reporting: As a result of massive increases in scan speeds, the Bloom Filter operator

(introduced earlier in Oracle Database 10g) can be commonly selected by the optimizer. With the Bloom Filter

optimization, the scan of the outer (dimension) table generates a compact Bloom filter which can then be used to greatly

reduce the amount of data processed by the join from the scan of the inner (fact) table. And with In-Memory, Bloom filter

evaluation can run an order of magnitude faster thanks to vector processing. Similarly, an optimization known as Vector

Group By can be used to reduce a complex aggregation query on a typical star schema into a series of filtered scans against

the dimension and fact tables.

5. Unique Features on Exadata: Database In-Memory on Exadata provides the ability to automatically enable data to be

encoded in the Smart Flash Cache of the Storage Servers using the same in-memory columnar formats as those used in the

database tier. Exadata also enables the ability to duplicate objects in the Database In-Memory Column Store, a feature

known as In-Memory Fault Tolerance. In the event of a node failure, duplicated objects will still be available in a

surviving node's column store thus preserving analytic query performance. Further, when either the primary or the

Active Data Guard standby database is on an Exadata Database machine, Database In-Memory can be used to further

accelerate reporting queries on the Active Data Guard standby. Together, these three unique to Exadata Database In-

Memory features, along with the ability to exploit Exadata's unique hardware features, represents the best platform for

running Database In-Memory.

Apart from accelerating queries, Database In-Memory has the ability to speed up DML operations or writes to the database

with the ability to replace analytic Indexes: Since the IM column store enables superfast analytics, it is possible to drop

conventional indexes used only to accelerate analytic queries. Avoiding costly index maintenance allows update/insert/delete

operations to be an order of magnitude faster. As stated earlier, the IM column store is a purely in-memory structure, and

maintaining it has very low overhead.

https://www.oracle.com/a/tech/docs/twp-oracle-database-in-memory-19c.pdf

6 Business / Technical Brief / When to Use Oracle Database In-Memory / Version 2.1

 Copyright © 2022, Oracle and/or its affiliates / Public

The following table summarizes the key application design principles for maximizing the benefits of Database In-Memory.

None of these principles are new, but they are even more important to follow when using Database In-Memory because of the

incredible speedup it provides for analytic data access.

Table 1: General Guidelines for Maximizing the Benefits of Database In-Memory

Rule 1 Process Data in the Database, not in the

Application

Instead of reading rows out of the

database into the application in order to

compute a metric such as a total or an

average, it is far more efficient to push

that computation down into the database.

This is especially true with Database In-

Memory, since the benefits of processing

within the database are much higher.

Rule 2

Process Data in Sets, not Row by Row This rule is generally applicable to any

analytics workload since the costs of

database entry and exit are amortized by

the number of rows processed. Since the

Database In-Memory Option can process

billions of rows per second, it is important

to give the database enough data to

process on each invocation.

Rule 3

Use Representative Optimizer statistics Plan differences can make a huge

difference to the performance of a query

especially when the in-memory access

paths can provide orders of magnitude

faster performance. To ensure that you

have optimal plans, follow Oracle’s

recommended best practices for gathering

a representative set of statistics.

Rule 4 When Possible, Use Parallel SQL With Database In-Memory, IO

bottlenecks are alleviated and CPU time

dominates the overall execution profile.

Parallelism is essential to maximize

performance, using all available CPU

cores for In-Memory processing. This is

especially true in an Oracle Real

Application Cluster environment, where

Auto DOP is needed to fully utilize all

available CPU cores across the cluster.

High-Level Use Cases for Database In-Memory

As depicted in Figure 2 below, Database In-Memory can be used both within Enterprise OLTP systems and within Data

Warehouses for real time analytics.

Data Warehouse Systems

For Data Warehouses, Database In-Memory can significantly improve the performance of analytics and reporting on data that

can be accommodated within the IM column store, such as on table partitions representing relatively near-term data.

7 Business / Technical Brief / When to Use Oracle Database In-Memory / Version 2.1

 Copyright © 2022, Oracle and/or its affiliates / Public

 Tables within the Foundation layer and within the Access layer can leverage Database In-Memory. Due to the

massive performance gains for queries on in-memory tables within the Foundation layer, it may be possible to

eliminate indexes and other summary objects such as (pre-computed cubes) from the Access layer.

 Database In-Memory is particularly applicable to data marts. Pre-computed summaries and aggregates (such as Key

Performance Indicators), can usually be stored easily within memory.

Note: Database In-Memory is not useful for the ETL or Staging layer where data tends to be written and read only once.

Enterprise OLTP Systems

Enterprise OLTP systems (those running packaged ERP, CRM, HCM applications such as Siebel, Peoplesoft, JD Edwards, etc.)

typically include a mixture of both OLTP transactions and periodic analytic reporting. In these systems, Database In-Memory

can be used for real-time reporting against the base OLTP data. As stated earlier, the IM column store can potentially replace

analytic indexes in these systems with significant speedups for OLTP DML operations.

Removing analytic indexes results in many system-wide benefits, e.g. it reduces the total size of the database resulting in

reduced storage requirements and faster backups. Analytic index removal also improves buffer cache hit rates, reduces overall

redo and undo generation rates, and reduces the total I/O to the database.

Note: For specialized pure OLTP systems such as real-time trading or real-time telecommunications applications that do not

have an Analytics component, there is no benefit from Database In-Memory. For such systems, the Oracle TimesTen In-

Memory Database may be a better choice if the data can be stored in-memory.

Figure 2: Use cases for Database In-Memory within the Enterprise

Understanding Your Application

Once there is a high-level match between Database In-Memory and your use case, it is important to understand where your

application bottleneck is (i.e. where it spends the majority of its time) in order for you to be able to estimate overall benefits

from Database In-Memory. The abstract pie chart shown in Figure 3 below depicts a typical application time profile.

8 Business / Technical Brief / When to Use Oracle Database In-Memory / Version 2.1

 Copyright © 2022, Oracle and/or its affiliates / Public

Areas that Benefit from Database In-Memory

As described above, Database In-Memory provides optimizations for dramatically faster Analytic queries. Therefore the

following workload time components potentially benefit from Database In-Memory (marked with a (*) in the pie chart):

1. Data Access for Analytics and Reporting: This is the core value proposition of Database In-Memory, to enable orders of

magnitude faster analytic data access.

2. Analytic Index Maintenance: Database In-Memory often enables analytic indexes to be dropped, and eliminating the

maintenance of these indexes improves overall application performance.

Figure 3: Abstract Time Profile for a Typical Application

Areas that do not benefit from Database In-Memory

As the pie chart shows, there are a number of other workload components that do not benefit since they are unrelated to

analytic data access or indeed, to any aspect of SQL execution. The same Oracle Database best practices that have been in

vogue prior to the existence of Database In-Memory still apply when minimizing the time spent in these areas.

1. Application Time: Time within the application is unaffected by optimizations within the database. Application–specific

optimizations, including pushing more work into the database (as stated earlier in Table 1), are required to minimize this

time.

2. Network communication between client and database: This is not affected by how fast the database runs. Standard

techniques for reducing this time include using batched or array execution when possible to amortize the cost of database

round-trips.

3. Logon and Logoff: Database connect / disconnect can be expensive, including the cost of authentication, process creation /

teardown, etc. This time is completely unrelated to data processing. Standard techniques for minimizing this include

keeping connections open and reusing connections when possible (e.g. connection pools).

Application Network
communication

Database
Logon/Logoff

Parse

PL/SQL execution

SQL function
execution

Data Access -
OLTP queries

OLTP Index
Maintenance

Data Writes
(DML)- Database

Tables

Analytic Index
Maintenance (*)

Data Access -
Analytics and
Reporting (*)

9 Business / Technical Brief / When to Use Oracle Database In-Memory / Version 2.1

 Copyright © 2022, Oracle and/or its affiliates / Public

4. Parse Time: While Database In-Memory can make the execution of SQL statements much faster, it has no impact on the

time required to parse and optimize a SQL statement. Parse time should be minimized through common best practices by

using bind variables, keeping cursors open, using session cached cursors, etc.

The remaining areas that do not benefit from Database In-Memory are more fundamental to the application, and it is less

likely that they can be addressed without some application redesign:

5. PL/SQL and SQL function execution: If the application spends most of its time within PL/SQL procedures, functions, or

within built-in or user-defined SQL functions, then the bottleneck is in computation, and not in analytic data access.

While Database In-Memory does accelerate the evaluation of many query predicate expressions as well as many

aggregation functions such as MIN(), MAX(), SUM(), etc., in general, a heavily compute-intensive application will benefit

less from Database In-Memory.

6. Data access by OLTP queries: OLTP queries, characterized by highly selective lookups (e.g. by Primary Key) or simple

primary-foreign key joins, will not benefit from Database In-Memory. If a workload is dominated by this type of data

access, the Oracle TimesTen In-Memory Database may be a better match (if the data being accessed can fit in memory).

7. OLTP index maintenance: Likewise, the indexes that are present in order to purely accelerate OLTP queries (such as

Primary / Foreign key indexes) or those required for referential integrity, are still necessary even if Database In-Memory

is used. Thus the time spent in maintaining these indexes remains unchanged with Database In-Memory. Again, Oracle

TimesTen may be a match for use cases dominated by this type of index access (if the data being accessed can be

accommodated in memory).

8. Writes to Database Tables: The time spent on update/insert/delete DMLs against application tables will remain unchanged

whether the tables are in memory or not. An application that is extremely write-intensive, and bottlenecked on DML,

will be unlikely to benefit from Database In-Memory.

What Types of Queries Benefit from Database In-Memory

So far we have explained some of the high-level use cases for Database In-Memory, and shown an abstract breakdown of

application execution time to show what areas can benefit from Database In-Memory. It is also necessary to understand what

type of analytic queries benefit most from the IM column store since not all queries will benefit equally.

As a general rule of thumb: the greater the ratio of the total data accessed by a query to the data actually processed by the

query, the greater the potential benefit from Database In-Memory.

In Table 2, below, we enumerate various query properties that impact how much a query can benefit from Database In-

Memory. For each property, we show two queries that vary only in terms of the specified query property – showing one query

for which Database In-Memory provides a smaller benefit, and one for which it provides a larger benefit. This is not intended

to be a comprehensive list, rather to serve as a rough guide to help you understand what to look for when estimating the

benefits from in-memory execution.

For this we assume a simple star schema representing sales by an online marketplace: A single SALES fact table and various

dimension tables such as STORES, PRODUCTS, SHIPMENTS, CUSTOMERS, etc.

10 Business / Technical Brief / When to Use Oracle Database In-Memory / Version 2.1

 Copyright © 2022, Oracle and/or its affiliates / Public

Table 2: Typical Query Properties and how they impact the benefit from Database In-Memory

Query Property Description Example Queries

Less Benefit More Benefit

Number of columns selected As more table columns are selected

by a query, column-stitching costs

start to dominate, reducing the

benefit.

SELECT * FROM Sales; SELECT revenue FROM Sales;

Less benefit since the query selects
all columns

More benefit since the query selects
only 1 column

Number of values returned The greater the number of values

returned by a query, the smaller

the IM benefit, because returning

data back to the client will

dominate the costs.

SELECT revenue
FROM Sales;

SELECT SUM(Revenue)
FROM Sales;

Less benefit since the query returns
a value for each row in the table
back to the application

More benefit since the query
returns only one value even though
it scans all rows in the table

Selectivity of column predicates A more selective column predicate

enables more filtering on the scan

results, and reduces the amount of

data that intermediate query plan

nodes need to process. Selective

predicates can also leverage in-

memory storage indexes.

SELECT MEDIAN(revenue)
FROM Sales
WHERE revenue > 2;

SELECT MEDIAN(revenue) FROM
Sales
WHERE revenue < 2;

Less benefit since most rows will
qualify (most sales are for items
priced higher than $2) and a larger
fraction of the query execution
time will be spent in calculating the
median.

More benefit since fewer rows will
qualify and a smaller fraction of the
query execution time will be spent
in calculating the median.

Selectivity of Join Conditions Similar to the above property, a

more selective join condition will

result in less data being processed

by the join. The Bloom filter

optimization, if it is used, will

greatly improve performance.

SELECT S1.id, S.revenue,
P.id
FROM Sales S,
 Products P
WHERE S.prod_id=P.id;

SELECT S.id, S.revenue,
P.id
FROM Sales S,
 Products P
WHERE S.prod_id=P.id
AND P.type='Footwear';

The above join will return a row for
all sales records since each sale has
a matching product. As a result the
query will spend more of its time
processing the join result.

This join will only return rows that
correspond to sales of footwear
products, a subset of total sales. The
above query can also potentially
leverage the Bloom filter
optimization that will build a
compact bit vector of footwear
product ids and apply it during the
scan of the Sales table.

Number of tables being joined The greater the number of tables in

a join, the larger the percentage of

time spent in the join processing.

SELECT <select list>
FROM Sales, Products,
Customers, Shipments,
Stores, Suppliers,
Warehouses
WHERE <Join Condition>

SELECT <select list>
FROM Sales, Products,
Customers
WHERE <join condition>

The above query involves a join
between 7 tables and will spend
more time in join processing as a
fraction of the total execution time
and will benefit less with the tables
in-memory.

The above query involves a join
between 3 tables and will spend less
time in join processing as a fraction
of total execution time, and will
benefit more with the tables in-
memory.

Complexity of SQL functions Queries involving computationally

expensive SQL functions will

benefit less from in-memory.

SELECT I.id, sum(revenue)
FROM Sales S, Items I
WHERE S.item_id=I.id
AND MyMatch(I.name,"LED
TV")=1
GROUP BY I.id;

SELECT I.id, sum(revenue)
FROM Sales S, Items I
WHERE S.item_id=I.id
AND I.name LIKE "%LED%TV"
GROUP BY I.id;

The above query will spend more
of in predicate evaluation using the
user defined function MyMatch()
and benefit less from Database In-
Memory.

The query will spend less time in
predicate processing by applying
the built-in string match LIKE
operator to each item and benefit
more from Database In-Memory.

11 Business / Technical Brief / When to Use Oracle Database In-Memory / Version 2.1

 Copyright © 2022, Oracle and/or its affiliates / Public

THE FACTS ABOUT ORACLE DATABASE IN-MEMORY

Powering the Real-Time Enterprise

Transparently Speed Up Analytics by Orders

of Magnitude

Oracle Database In-Memory transparently extends industry-leading Oracle Database 12c with

columnar in-memory technology. Users get immediate answers to business questions that

previously took hours because highly optimized in-memory column formats and SIMD vector

processing enable analytics to run at a rate of billions of rows per second per CPU core.

Unique Architecture Runs Analytics in Real-

Time while Accelerating Mixed Workload

OLTP

Column format is optimal for analytics while row format is optimal for OLTP. Oracle Database In-

Memory uses both formats simultaneously to allow real-time analytics on both Data Warehouses

and OLTP databases. Indexes previously required for analytics can be dropped, accelerating mixed-

workload OLTP.

Compatible with All Existing Applications Deploying Oracle Database In-Memory with any existing Oracle Database-compatible application

is as easy as flipping a switch, no application changes are required. All of Oracle’s extensive

features, data types, and APIs continue to work transparently.

Industry-Leading Scale-Up Oracle’s highly mature scale-up technologies enable application transparent In-Memory scale-up

on SMP computers with up to tens of terabytes of memory and thousands of CPU threads. Data is

analyzed at the enormous rate of hundreds of billions of rows per second with outstanding

efficiency and no feature limitations.

Industry-Leading Scale-Out Oracle’s highly mature scale-out technologies enable application transparent In-Memory scale-out

across large clusters of computers with 100s of terabytes of memory and thousands of CPU threads.

Data is analyzed at the enormous rate of trillions of rows per second with no feature limitations.

Industry-Leading High Availability and

Security

Oracle’s renowned Availability and Security technologies all work transparently with Oracle

Database In-Memory ensuring extreme safety for mission critical applications. On Oracle

Engineered Systems, In-Memory fault tolerance duplicates in-memory data across nodes enabling

queries to instantly use an in-memory copy of data if a node fails.

Cost Effective for Even the Largest Database Oracle Database In Memory does not mandate that all data must fit in memory. Frequently

accessed data can be kept In-Memory while less active data is kept on much lower cost flash and

disk.

Powering the Real-Time Enterprise The ability to easily perform real-time data analysis together with real-time transaction processing

on all existing applications enables organizations to transform into Real-Time Enterprises that

quickly make data-driven decisions, respond instantly to customer demands, and continuously

optimize all key processes.

12 Business / Technical Brief / When to Use Oracle Database In-Memory / Version 2.1

 Copyright © 2022, Oracle and/or its affiliates / Public

Connect with us

Call +1.800.ORACLE1 or visit oracle.com. Outside North America, find your local office at: oracle.com/contact.

 blogs.oracle.com facebook.com/oracle twitter.com/oracle

Copyright © 2022, Oracle and/or its affiliates. All rights reserved. This document is provided

for information purposes only, and the contents hereof are subject to change without notice.

This document is not warranted to be error-free, nor subject to any other warranties or

conditions, whether expressed orally or implied in law, including implied warranties and

conditions of merchantability or fitness for a particular purpose. We specifically disclaim any

liability with respect to this document, and no contractual obligations are formed either

directly or indirectly by this document. This document may not be reproduced or transmitted

in any form or by any means, electronic or mechanical, for any purpose, without our prior

written permission.

This device has not been authorized as required by the rules of the Federal Communications

Commission. This device is not, and may not be, offered for sale or lease, or sold or leased,

until authorization is obtained.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be

trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC

trademarks are used under license and are trademarks or registered trademarks of SPARC International,

Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered

trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group. 0120

Disclaimer: If you are unsure whether your data sheet needs a disclaimer, read the revenue recognition

policy. If you have further questions about your content and the disclaimer requirements, e-mail

REVREC_US@oracle.com.

mailto:REVREC_US@oracle.com
https://blogs.oracle.com/
https://www.facebook.com/Oracle/
https://twitter.com/oracle

