

1 Business / Technical Brief / JavaScript for HeatWave MySQL

 Copyright © 2024, Oracle and/or its affiliates / Public

Business / Technical Brief

JavaScript for HeatWave MySQL

Use JavaScript stored programs in HeatWave

MySQL

June 2024

Copyright © 2024, Oracle and/or its affiliates

Public

2 Business / Technical Brief / JavaScript for HeatWave MySQL

 Copyright © 2024, Oracle and/or its affiliates / Public

Purpose statement

This document provides an overview of the JavaScript for HeatWave MySQL

feature. It is intended solely to help you assess the benefits of HeatWave MySQL

JavaScript support and to plan your I.T. projects.

Disclaimer

This document in any form, software or printed matter, contains proprietary

information that is the exclusive property of Oracle. Your access to and use of this

confidential material is subject to the terms and conditions of your Oracle software

license and service agreement, which has been executed and with which you agree

to comply. This document and information contained herein may not be

disclosed, copied, reproduced or distributed to anyone outside Oracle without

prior written consent of Oracle. This document is not part of your license

agreement, nor can it be incorporated into any contractual agreement with Oracle

or its subsidiaries or affiliates.

This document is for informational purposes only and is intended solely to assist

you in planning for the implementation and upgrade of the product features

described. It is not a commitment to deliver any material, code, or functionality,

and should not be relied upon in making purchasing decisions. The development,

release, and timing of any features or functionality described in this document

remains at the sole discretion of Oracle. Due to the nature of the product

architecture, it may not be possible to safely include all features described in this

document without risking significant destabilization of the code.

Benchmark queries are derived from the TPC-H benchmark, but results are not

comparable to published TPC-H benchmark results since they do not comply with

the TPC-H specification.

3 Business / Technical Brief / JavaScript for HeatWave MySQL

 Copyright © 2024, Oracle and/or its affiliates / Public

Table of contents

Purpose statement 2

Disclaimer 2

Executive Summary 4

Challenges 4

Procedural SQL Limitations 4

Development Ecosystem 4

Data Access API 4

Security 5

JavaScript for HeatWave MySQL 5

Why JavaScript 5

GraalVM 6

Graal.JS 6

Optimizations 6

Native Image 6

Virtual Machine 6

Use Case Scenario 6

Development Experience 7

Defining JavaScript Stored Programs 7

Executing JavaScript inside SQL statements 8

Executing SQL inside JavaScript code 9

Debuggability 10

Cloud Ready Architecture 10

Resource Utilization 11

Memory Resources 11

Compute Resources 11

Resource Observability 11

Security 11

Resource Restriction 11

Privileges 12

Advanced Mitigations 12

Performance 12

Native Integration 12

Graal.JS Implementation 13

Conclusion 13

Resources 13

References 14

4 Business / Technical Brief / JavaScript for HeatWave MySQL

 Copyright © 2024, Oracle and/or its affiliates / Public

Executive Summary

HeatWave MySQL is a fully managed cloud database service, powered by the built-in

HeatWave in-memory query accelerator. It’s available on OCI, AWS, Azure, and in

customers’ data centers with OCI Dedicated Region. HeatWave MySQL delivers the best

performance and price-performance in the industry for data warehousing.

HeatWave MySQL now includes rich procedural programming capability directly inside

the database, further enabling the user to cut down on data movement cost in favor of

server-side solutions. “JavaScript for HeatWave MySQL” is a new feature available

exclusively in HeatWave MySQL. It allows users to write JavaScript stored functions and

procedures in the server that are executed via GraalVM. The JavaScript functions and

procedures can manipulate existing MySQL data irrespective of the underlying storage

engine, i.e., InnoDB or HeatWave, all work transparently.

Users can now re-organize applications and move the data-intensive complex

operations closer to their data, this reduces the cloud egress cost and the effort

required to maintain data pipelines. In addition, it improves end-to-end application

performance and security by eliminating the need for client-server data movement.

Challenges

Even with rich transaction processing, analytics, and machine learning inside the

database, complex and rapidly evolving data-intensive applications still force the user

to move large amount of data into the client side of applications. This is done to access

the rich procedural programming language eco-system not available inside the

database. Enabling the same capability in the database has some practical challenges:

Procedural SQL Limitations

MySQL allows stored programs in SQL procedural-dialect “Compound Statements” [4].

This allows users to deploy server-side programs but comes with limitations. SQL

stored programs are interpreted and do not take advantage of compiler optimizations.

Furthermore, the SQL dialects lack basic features compared to modern language

runtime, such as user-defined types, containers (arrays, maps), and functional

programming constructs. This makes it hard for the user to implement complex logic.

Development Ecosystem

Only allowing procedural language runtime inside the database is not sufficient, the

challenge is to give developers the freedom to use the development ecosystem that

comes with the language runtime. The development ecosystem may include tools such

as 3rd party package managers, debuggers, editors, testing frameworks, etc…

Data Access API

Accessing and manipulating database data is central to procedural language

integration. Introducing a new data access API to the developer community introduces

a steep learning curve and hinders adoption. Reusing interfaces such as existing

https://www.oracle.com/mysql/heatwave/performance/
https://www.oracle.com/mysql/heatwave/performance/

5 Business / Technical Brief / JavaScript for HeatWave MySQL

 Copyright © 2024, Oracle and/or its affiliates / Public

database client-server connectors and ORMs does not directly map to the needs of

server-centric data processing.

Security

Adding a new execution engine in the database server means expanding the attack

surface for the database against new vulnerabilities. It also means preventing

unnecessary access to valuable compute and memory resources by the procedural

code that would have been otherwise used by the database.

JavaScript for HeatWave MySQL

To address the challenges discussed above, we are introducing support for JavaScript

stored programs in HeatWave MySQL. Users can now express rich procedural logic

inside the database and access their MySQL datasets seamlessly without incurring ETL

costs. The JavaScript runtime is integrated via GraalVM, where the user can use all

GraalVM’s Enterprise Edition (EE) features such as compiler optimizations,

performance, and security features at no additional cost.

In the initial release the feature supports

• JavaScript language based on ECMAScript 2023

• MySQL data types such as all variations of integers, floating point, temporal

and VARCHAR, CHAR types with full utf8mb4 support

• Data access API based on MySQL Shell JavaScript XDevAPI

Why JavaScript

JavaScript is one of the most popular programming languages [1]. As of 2023, more

than 98% of all the websites use JavaScript [5]. Apart from support in all major web

browsers, JavaScript is widely used in server-side runtime such as Node.js[7] and

Deno[8]. The language has a collection of over a million reusable 3rd party packages in

“npm” alone, the package manager is used by tens of millions of developers [6].

With JavaScript, developers can take advantage of the weakly-typed procedural

language inside the server. The JavaScript built-in library includes many commonly

used operations and data structures that make implementation easy and expressive.

6 Business / Technical Brief / JavaScript for HeatWave MySQL

 Copyright © 2024, Oracle and/or its affiliates / Public

The developer can also reuse available 3rd party libraries without reimplementing

everything from scratch.

GraalVM

The feature uses the Enterprise edition of GraalVM [2]. GraalVM is an Oracle compiler

ecosystem that includes JDK, language implementation such as JavaScript, R, Python,

Ruby and Java. It includes just-in-time (JIT) and ahead-of-time (AOT) compilation

technology. It also provides a fully managed virtual machine with sandboxing capability

and tooling support. More details below:

Graal.JS

GraalVM has its own JavaScript implementation based on the ECMAScript 2023

standard. The language implementation is competitive in terms of performance [9]

even though it is implemented using GraalVM’s Polyglot framework which focuses on

extending language support in the same VM.

Optimizations

GraalVM comes with its own state-of-the-art compiler optimizations including

aggressive inlining and partial escape analysis. It also provides a profile guided just-in-

time (JIT) compiler that switches between interpreter and native compilation at

runtime.

Native Image

GraalVM introduces ahead-of-time (AOT) where the language implementation such as

JavaScript is compiled down into a native binary representation for fast processing.

Virtual Machine

The ecosystem comes with a fully memory managed VM with garbage collector and

includes security features such as memory isolation and sandboxing. The virtual

machine comes with development tools such as a live debugger.

Use Case Scenario

Let’s take an example where the user has a JavaScript application that sanitizes inputs

and stores them inside the database. The sanitization and validation implementation

would be dependent on the client application capability, such as which language it's

written in, which sanitization package is being used, and with what version. Having

multiple clients on different platforms is a common use case where data is being fed

into a central back-end database server. Such a solution can lead to discrepancies in

data quality in the database server.

Performing the data cleaning in the database server would be an ideal central location.

However, simple validation rules are hard to implement as they require international

standardization knowledge, and the problem becomes much worse if the

implementation needs to be done in a SQL dialect-based stored program. For example,

7 Business / Technical Brief / JavaScript for HeatWave MySQL

 Copyright © 2024, Oracle and/or its affiliates / Public

if the requirement is to verify if the given string is a valid email address, social security

number, ISSN, URL, mobile number, and postal code to name a few.

This is where procedural languages such as JavaScript become very useful. Not only do

they make the development easy, but the user can easily reuse already available

packages that specialize in making sure that such validation is based on standards.

Development Experience

Traditionally, database systems have their own procedural programming languages for

stored programs. These languages are unfamiliar to most developers, and they often

suffer from the lack of third-party libraries and poor support from development tools.

Different language dialects also make it difficult to port routines between database

systems. Compared to modern programming languages, program execution is also

slower since it is based on interpreted code.

Defining JavaScript Stored Programs

To overcome the challenges discussed above, we are introducing support for

JavaScript stored programs. To define a JavaScript stored program in MySQL, we use

the same SQL statements as for traditional stored functions and procedures:

Note that a LANGUAGE clause is used to specify the language of the stored function.

(Valid languages are SQL and JAVASCRIPT) The JavaScript code is specified in a new

AS clause as an ordinary character string enclosed in quotes.

Since the JavaScript code may itself contain single and double quotes, we are

introducing a new quoting mechanism, called dollar quotes, that can be used to avoid

conflicts. A dollar-quote is a character sequence consisting of a dollar sign ($), an

optional “tag” of zero or more characters, and another dollar sign. Above is an example

CREATE FUNCTION construct_url (path VARCHAR(50),
search VARCHAR(20)) RETURNS VARCHAR(100)
LANGUAGE JAVASCRIPT AS $$
 let url = `${path}
 ${search && !search.startsWith('?') ? '?' : ''}
 ${search ?? ''}`;
 return encodeURI(url);
$$

CREATE FUNCTION construct_url (path VARCHAR(50),
search VARCHAR(20)) RETURNS VARCHAR(100)
LANGUAGE JAVASCRIPT AS JS_CODE
 let url = `${path}
 ${search && !search.startsWith('?') ? '?' : ''}
 ${search ?? ''}`;
 return encodeURI(url);
JS_CODE

8 Business / Technical Brief / JavaScript for HeatWave MySQL

 Copyright © 2024, Oracle and/or its affiliates / Public

of a function that uses a regular expression to check if a prefix of the string argument

matches a suffix of the same string.

As seen from the above examples, the JavaScript code is embedded directly in the

definition of the SQL-callable function. The names of the arguments can be referred

directly in the JavaScript code, and when the function is called, there will be an implicit

type conversion between SQL types and JavaScript types.

Executing JavaScript inside SQL statements

A JavaScript function may be called from SQL statements anywhere a traditional SQL

function may be called; in SELECT expressions, WHERE, GROUP BY, and ORDER BY

clauses, DMLs, DDLs, Views etc... Here is an example of an SQL statement that calls the

string similarity function for each row of the table to find the Top-K most similar strings

for a given reference string.

CREATE FUNCTION string_similarity(

 s1 VARCHAR(255), s2 VARCHAR(255)) RETURNS INT

LANGUAGE JAVASCRIPT AS $$

 const [str1, str2, len1, len2] =

 s1.length < s2.length ?

 [[...s2], [...s1], s2.length, s1.length] :

 [[...s1], [...s2], s1.length, s2.length];

 var res = [...Array(len1 + 1)].map(x =>

 [...Array(len2 + 1).keys()]

);

 str1.forEach((c,i) => {

 res[i+1][0] = i+1;

 str2.forEach((d,j) => {

 res[i+1][j+1] = Math.min(

 res[i][j+1] + 1,

 res[i+1][j] + 1,

 res[i][j] + ((c == d) ? 0 : 1)

)

 })

 })

 return res[len1][len2];

$$

-- Query: Top-K Most Similar Strings from Table

SELECT string_similarity (my_col, "reference string")

FROM my_table

ORDER BY string_similarity (my_col, "reference string")

LIMIT 25

9 Business / Technical Brief / JavaScript for HeatWave MySQL

 Copyright © 2024, Oracle and/or its affiliates / Public

To call JavaScript stored procedures, the CALL statement should be used. Both input

and output parameters are supported for stored procedures. More on stored

procedures below.

Executing SQL inside JavaScript code

Executing JavaScript stored functions inside SQL statements is one way to interact with

MySQL data. The feature also provides an interface to issue SQL queries inside

JavaScript, which is particularly useful for JavaScript stored procedures that cannot be

invoked inside SELECT, DMLs, and DDL statements.

Both simple SQL statements and prepared statements are supported with full

parameter binding support. In the example below we demonstrate using a simple

SELECT query that iterates over constructed URLs built via the stored function in the

prior example. The constructed URLs are then inserted into a table using prepared

statement.

As for traditional SQL stored procedures, there are two modes for the user to consume

query results. First, as shown above, the user can use a cursor mode where the query

result can be iterated in JavaScript. The second option is a cursor-less mode where the

query result set is returned directly to the caller. Furthermore, JavaScript stored

procedures enable cursors with prepared statements, which is not possible currently

with traditional SQL stored procedures.

The data access API used is the MySQL JavaScript XDevAPI already available in the

Node.js MySQL connector and MySQL shell. The API ensures that the data type

conversion is seamless both for query result set and bind parameters. It fully supports

transactions, session variables, access to diagnostic information such as errors and

warnings and result set metadata.

CREATE PROCEDURE store_urls (OUT url_inserted INT)

LANGUAGE JAVASCRIPT AS $$

 let selectQuery = mysql.getSession ().sql(

 `SELECT construct_url(path, product)

 FROM my_table`);

 let insertQuery = mysql.getSession ().prepare(

 `INSERT INTO my_urls(url) VALUES (?)`);

 url_inserted = 0;

 let result = selectQuery.execute(), row = null;

 while(row = result.fetchOne()) {

 insertQuery.bind(row[0]).execute();

 url_inserted++;

 }

$$

10 Business / Technical Brief / JavaScript for HeatWave MySQL

 Copyright © 2024, Oracle and/or its affiliates / Public

Debuggability

The “JavaScript for HeatWave MySQL” feature focuses on the development experience,

it provides tools to help users debug their code. The global console JavaScript object

offers several methods that will write to either a standard IO stream or an error IO

stream. The feature introduces new SQL interfaces (UDFs) to enable developers to

access the standard output and error streams. For example:

SELECT mle_session_state(“stdout”);

Similarly, in case of runtime errors, the user might want to access the full stack trace in

addition to the error message to troubleshoot the issue. Such information is also

exposed via the same UDF interface. i.e.,

SELECT mle_session_state(“stack_trace”);

Cloud Ready Architecture

The new execution engine (GraalVM) is integrated inside the database server natively.

The feature is designed from the ground-up with the cloud service as the primary focus.

This provides smooth interaction with existing cloud features:

Compatibility: The feature is fully compatible with various server components such as

enterprise thread pool, audit, and replication variations etc... Existing clients and

connectors work seamlessly.

Storage engine: The feature is agnostic to storage engine, data can be accessed

transparently from InnoDB, HeatWave, etc…

Interoperability: JavaScript stored programs work with traditional SQL stored

programs. Interactions with features based on SQL stored programs, for example

HeatWave Autopilot and HeatWave AutoML, is seamless.

11 Business / Technical Brief / JavaScript for HeatWave MySQL

 Copyright © 2024, Oracle and/or its affiliates / Public

Resource Utilization

The feature is designed to be sensitive to resource utilization. More specifically, it uses

resources effectively and hence has zero memory and compute impact on the server

until a JavaScript stored program is invoked.

Memory Resources

The size of the GraalVM heap is automatically configured based on the size of the cloud

instance. A larger heap comes with a larger shape provisioned. Moreover, the VM is

fully managed and uses garbage collection to keep the peak memory footprint within

configured limit. GraalVM also allows code sharing so that multiple stored programs

instances do not occupy more space in the VM heap.

Compute Resources

JavaScript execution uses the same physical threads managed by the MySQL

Enterprise Thread Pool (ETP). ETP allows for queuing the user operations and reusing

a limited number of threads. Therefore, the JavaScript execution engine scales with the

ETP configured limits for the cloud instance. Stored programs are also cached and

reused in later re-execution for faster runtimes. Later executions will also be able to

take advantage of any JIT compilation that may have been applied to the code by earlier

executions. Hence, the more times the same code snippet is executed, the more

efficient will the execution be.

Resource Observability

Users can now monitor the feature state and resource utilization using MySQL status

variables.’mle_heap_usage’ provides the % VM memory allocated while

‘mle_heap_status’ allows the user to know if the VM is currently busy in garbage

collection. In addition, the SQL interface metrics are also integrated with cloud

monitoring tools.

Security

The “JavaScript for HeatWave MySQL” feature is part of the cloud offering and as such

offers the highest levels of security, isolation, and data protection. As discussed below,

“JavaScript for HeatWave MySQL” relies on the industry-proved Oracle’s GraalVM

security guarantees.

Resource Restriction

Using a custom-built VM with MySQL enables fine grained control over the sandboxing

policy to restrict access from the VM and JavaScript user code.

Memory Isolation: The VM ensures that no memory beyond what’s allocated will be

used – malicious code cannot compromise other modules of the MySQL server. Every

stored program is parsed and executed in its own context. This isolation policy does

not allow for one stored program to read or modify other stored programs’ data or

code.

Compute Restrictions: Spawning or manipulating threads from JavaScript user code

is restricted. Furthermore, access to ‘evaluate’ dynamic JavaScript source is restricted.

12 Business / Technical Brief / JavaScript for HeatWave MySQL

 Copyright © 2024, Oracle and/or its affiliates / Public

Since no new threads can be created in JavaScript code, the sandboxing ensures that

malicious code cannot slow down the server excessively.

Network Restriction: The JavaScript user code has no access to sockets or network

communication.

File System Restrictions: The VM has no file system footprint, and the JavaScript user

code is not allowed to use the persistent storage directly.

Privileges

The feature builds on the standard MySQL privileges model. Only privileged users are

allowed to create stored programs. The access to the SP can be controlled by other

privileges. One user may define the stored programs that can be executed by others,

and the proper user privileges will be applied for SQL execution inside stored

procedures.

Advanced Mitigations

In addition to the above, the VM is configured to counter advanced security attacks

such as JIT spraying attacks by using constant blinding and by using speculative

optimization barriers preventing side-channel attacks such as Spectre and Meltdown.

Performance

Apart from reducing client-server data transfer latency, the integration support for

JavaScript comes with additional performance benefits.

Native Integration

The JavaScript integration inside MySQL is done using a custom-built VM based on

GraalVM’s ahead-of-time (AOT) compilation technology. This allows the VM to be

finely tuned to the MySQL requirements and cloud shape. The VM built includes

custom memory management routines such as garbage collector and the Graal JIT

compiler. The VM is natively integrated inside the database process which avoids any

inter-process communication and serialization overheads. The VM is tightly integrated

with the Enterprise thread pool where thread management and observability are

executed by the database server. With this native integration, we achieve JavaScript

execution without causing overhead on background OLTP tasks. Below we can see that

the background OLTP is not impacted by JavaScript execution even though the

underlying VM uses background tasks such as JIT compilation and garbage collection.

13 Business / Technical Brief / JavaScript for HeatWave MySQL

 Copyright © 2024, Oracle and/or its affiliates / Public

Graal.JS Implementation

The Graal compiler itself uses state-of-the-art optimizations such as aggressive inlining

and partial escape analysis. On top of these optimizations, the VM uses profile guided

JIT compilation where frequently executed JavaScript code will be compiled into native

code to accelerate execution on the GraalVM. The resulting Graal JavaScript engine has

comparable performance to the v8 JavaScript engine.

Conclusion

With the inclusion of the “JavaScript for HeatWave MySQL” feature (currently in limited

availability), developers can now express complex programming logic directly inside

the MySQL server. This allows developers to push data-intensive parts of their

applications close to their data, reducing data movement. The use of JavaScript based

on ECMAScript 2023 prevents vendor lock-in issues, while the user enjoys all the

benefits of GraalVM (Enterprise Edition) at no additional cost. Furthermore, the feature

integrates seamlessly with the HeatWave MySQL cloud service where the latest

innovations are available to developers.

Resources

Learn more about HeatWave MySQL: https://www.oracle.com/mysql/

Learn more about GraalVM: https://www.oracle.com/java/graalvm/

Try HeatWave MySQL for free; https://www.oracle.com/mysql/free

https://www.oracle.com/mysql/
https://www.oracle.com/java/graalvm/
https://www.oracle.com/mysql/free

14 Business / Technical Brief / JavaScript for HeatWave MySQL

 Copyright © 2024, Oracle and/or its affiliates / Public

References

[1] https://survey.stackoverflow.co/2023/#section-most-popular-technologies-

programming-scripting-and-markup-languages

[2] https://www.graalvm.org/

[3] https://tc39.es/ecma262/2023/

[4] https://dev.mysql.com/doc/refman/8.0/en/sql-compound-statements.html

[5] https://w3techs.com/technologies/details/cp-javascript

[6] https://www.npmjs.com/

[7] https://nodejs.org/en

[8] https://deno.com/

[9] https://www.graalvm.org/javascript/

Connect with us

Call +1.800.ORACLE1 or visit oracle.com. Outside North America, find your local office at: oracle.com/contact.

 blogs.oracle.com facebook.com/oracle twitter.com/oracle

Copyright © 2024, Oracle and/or its affiliates. All rights reserved. This document is

provided for information purposes only, and the contents hereof are subject to change

without notice. This document is not warranted to be error-free, nor subject to any other

warranties or conditions, whether expressed orally or implied in law, including implied

warranties and conditions of merchantability or fitness for a particular purpose. We

specifically disclaim any liability with respect to this document, and no contractual

obligations are formed either directly or indirectly by this document. This document

may not be reproduced or transmitted in any form or by any means, electronic or

mechanical, for any purpose, without our prior written permission.

Oracle, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names

may be trademarks of their respective owners.

Benchmark queries are derived from TPC-H benchmark, but results are not comparable to

published TPC-H benchmark results since they do not comply with TPC-H specification.

https://survey.stackoverflow.co/2023/#section-most-popular-technologies-programming-scripting-and-markup-languages
https://survey.stackoverflow.co/2023/#section-most-popular-technologies-programming-scripting-and-markup-languages
https://www.graalvm.org/
https://tc39.es/ecma262/2023/
https://dev.mysql.com/doc/refman/8.0/en/sql-compound-statements.html
https://w3techs.com/technologies/details/cp-javascript
https://www.npmjs.com/
https://nodejs.org/en
https://deno.com/
https://www.graalvm.org/javascript/
https://blogs.oracle.com/
https://www.facebook.com/Oracle/
https://twitter.com/oracle

