

Mitigating Risks of
SQL Injection

November, 2023, Version 1.0
Copyright © 2023, Oracle and/or its affiliates
Public

Purpose statement
This document provides an overview of features and enhancements included in the release Oracle Database 23c, and
Oracle Audit Vault and Database Firewall (AVDF) 20.10. It is intended solely to help you assess the business benefits
of upgrading to Oracle Database 23c or AVDF 20.10 and planning for the implementation and upgrade of the product
features described.

Disclaimer
This document in any form, software or printed matter, contains proprietary information that is the exclusive property
of Oracle. Your access to and use of this confidential material is subject to the terms and conditions of your Oracle
software license and service agreement, which has been executed and with which you agree to comply. This
document and information contained herein may not be disclosed, copied, reproduced or distributed to anyone
outside Oracle without prior written consent of Oracle. This document is not part of your license agreement nor can it
be incorporated into any contractual agreement with Oracle or its subsidiaries or affiliates.

This document is for informational purposes only and is intended solely to assist you in planning for the
implementation and upgrade of the product features described. It is not a commitment to deliver any material, code,
or functionality, and should not be relied upon in making purchasing decisions. The development, release, timing,
and pricing of any features or functionality described in this document remains at the sole discretion of Oracle. Due to
the nature of the product architecture, it may not be possible to safely include all features described in this document
without risking significant destabilization of the code.

2 Mitigating risks of SQL Injection / Version 1.0

Copyright © 2023, Oracle and/or its affiliates / Public

Executive summary
SQL injection is one of the oldest and most frequently encountered database attack patterns. Despite years of
research and efforts to solve the problem, it plagues data-driven web applications. The traditional efforts to use Web
Application Firewalls (WAFs) or add protection at the application level fail to mitigate the SQL Injection risks. Oracle
Database security provides two approaches to help mitigate the risk of SQL Injection against data-driven web
applications.

1. Network-based Database Firewall in Oracle Audit Vault and Database Firewall (AVDF)

2. Oracle SQL Firewall built into Oracle Database

This technical report discusses how you can leverage and configure these solutions to mitigate the SQL Injection risks
to your data-driven web applications and suggest strategies for selecting the approach that best fits your needs.

3 Mitigating risks of SQL Injection / Version 1.0

Copyright © 2023, Oracle and/or its affiliates / Public

Chapter contents

Introduction 6

Network-based Database Firewall 7

Database Firewall policy for mitigating SQL Injection risk 9

Database kernel-resident SQL Firewall 12

SQL Firewall policy for mitigating SQL Injection risk 13

Learning stage 13

Protecting stage 14

Managing SQL Firewall 15

Managing SQL Firewall with SYS.DBMS_SQL_FIREWALL package 15

Managing SQL Firewall with Data Safe 17

Deciding which to use: Database Firewall or SQL Firewall 20

Summary 20

List of figures

Figure 1: SQL Injection attack pattern

Figure 2: Network-based Database Firewall in AVDF

Figure 3: Mitigating SQL Injection risks with Database Firewall

Figure 4: Database Firewall: Policy for detecting and alerting on SQL Injection
attack patterns

Figure 5: Database Firewall: Session context rule

Figure 6: Database Firewall: SQL Statement rule

Figure 7: Database Firewall: SQL cluster set of normal application SQL traffic

Figure 8: Database Firewall: application service account profile

Figure 9: Database Firewall: Database Object rule

Figure 10: Database Firewall: Global sets with privileged users and sensitive objects

Figure 11: SQL Firewall built into Oracle Database kernel

Figure 12: SQL Firewall process flow

Figure 13: SQL Firewall policy

Figure 14: SQL Firewall policy enablement options: enforcement and action

Figure 15: Data Safe: SQL Firewall dashboard

Figure 16: Data Safe: create and start collection

Figure 17: Data Safe: SQL collection insights

4 Mitigating risks of SQL Injection / Version 1.0

Copyright © 2023, Oracle and/or its affiliates / Public

Figure 18: Data Safe: SQL Firewall policy with allow-lists

Figure 19: Data Safe: enabling SQL Firewall policy

Figure 20: Data Safe: SQL Firewall violations (fleet view)

Figure 21: Data Safe: Detailed SQL Firewall violation reports

Figure 22: Data Safe: Sample email notification on potential SQL Injection attempt

List of tables

Table 1. Deployment modes of Database Firewall

Table 2. Important PL/SQL procedures in SYS.DBMS_SQL_FIREWALL
package

5 Mitigating risks of SQL Injection / Version 1.0

Copyright © 2023, Oracle and/or its affiliates / Public

Introduction
SQL injection is one of the most popular attack patterns on the Open Web Application Security Project (OWASP) list of
the top ten threats to application security and has been since 2017. SQL injection involves injecting malicious SQL
code into input fields or parameters of data-driven applications, tricking the application into responding to the
injected SQL. A successful SQL injection attack causes the application to expose data or take actions not intended by
the application developer.

Most three-tier applications connect to the database as an application service account, which is a special type of non-
human privileged account used to execute application SQL queries in the underlying database and run automated
services and other processes. Application service accounts are privileged accounts with all necessary privileges to
perform any action the application might be expected to perform. They typically have access to the entire application
schema (including all data) and procedures. The application tier enforces access control in the middle tier based on
the end user's identity and authorization. An SQL injection attack consists of the insertion or “injection” of malicious
code into the input fields of the application. The attack forces the application to respond to the injected SQL, which
could do anything to the database that the application service account is authorized to do. It is a perfect technique to
bypass the authentication and authorization mechanisms of a web application and use the application service
account’s privileged access to retrieve the contents of the database - including unauthorized access to sensitive data:
customer information, personal data, trade secrets, intellectual property, and more. Attackers may try to use SQL
injection to add, modify, and delete records in the database.

SQL injection is often the entry point for a more extensive compromise. In addition to exfiltrating data from the
compromised database, attackers may move laterally to other hosts on the internal network. There are many types of
SQL injection vulnerabilities, attacks, and techniques. But all of them have a similar attack pattern:

Figure 1: SQL Injection attack pattern

Preventing or mitigating SQL injection attacks is not easy. Traditional approaches incorporate protection at the
application level, including improved user authentication, enforcing least privilege, using prepared statements,
avoiding dynamic queries, and performing input validation. Although these methods provide more protection and
should be practiced, even minor gaps in development or configuration controls can introduce vulnerabilities. For
legacy applications, you need access to the source code to modify SQL injection vulnerabilities.

WAFs are another way to block SQL injection attempts by filtering out suspicious HTTP traffic before it reaches the
application. Most WAFs depend on regex pattern matching - they may be able to detect and block well-known SQL
injection payloads but are usually helpless in the face of zero-day exploits or complex SQL injection attacks. A WAF
cannot evaluate the actual content of the injection payload and cannot use the full SQL context when making
decisions.

6 Mitigating risks of SQL Injection / Version 1.0

Copyright © 2023, Oracle and/or its affiliates / Public

https://owasp.org/www-project-top-ten/

Another approach to block SQL injection attacks is to filter database traffic before the database processes it. This is
where a database firewall comes into the picture. Database firewalls offer a simple but effective way to analyze incoming
SQL to detect injection attacks, raise alerts when required, and block injection attacks from reaching the database.
Oracle Database security provides two approaches to filter database traffic to mitigate the risk of SQL injection attacks:

1. Network-based Database Firewall in Oracle Audit Vault and Database Firewall (AVDF)

2. SQL Firewall built into Oracle Database and included as part of both Database Vault and AVDF

Unlike other application-based firewalls, neither of the above approaches relies on regular expression patterns to
match. Instead, the database firewall learns typical application SQL traffic and can reject or alert if the SQL statement
does not match its trained model.

SQL Firewall in Oracle Database 23c moves protection even closer to the data, shifting the point of enforcement from
the network into the database kernel. Enforcing protection within the database kernel avoids the complexity of
routing database traffic through an external Database Firewall. Applications can leverage this powerful new database
security feature to reduce the risk of SQL injection attacks.

Let's look at both these solutions to understand how they mitigate the risk of SQL injection. Both network and built-in
firewalls can address these three use cases:

• Provide real-time protection against some zero-day attacks by restricting database access to only authorized
SQL statements and database connections.

• Mitigate SQL injection attacks, anomalous access, and credential theft/abuse risks.

• Enforce trusted database connection paths.

Network-based Database Firewall
Database Firewall, an AVDF component, acts as the database's first line of defense on the network, monitoring SQL
traffic and enforcing expected database access behavior while helping prevent SQL injection, application bypass, and
other malicious activities from reaching the database. A single Database Firewall can protect multiple databases of
different types from a central location. It monitors enterprise databases, including Oracle, MySQL, Microsoft SQL
Server, SAP Sybase and IBM Db2.

Figure 2: Network-based Database Firewall in AVDF

Database Firewalls can be deployed in various modes, as shown in the Table1:

7 Mitigating risks of SQL Injection / Version 1.0

Copyright © 2023, Oracle and/or its affiliates / Public

Table1. Deployment modes of Database Firewall

MODE Details Monitoring or blocking

Proxy All the traffic to database server is routed through the Database
Firewall, including return traffic.

• Monitoring

• Blocking

Host monitor Host Monitor is deployed on the same machine as the database
and captures SQL traffic going to the database, and then securely
forwards it to the Database Firewall.

• Monitoring

Out-of-band Database Firewall listens to the network traffic sent to the
database. There are several technologies such as span ports, port
replicators, etc. that can be used to send a copy of the database
traffic to the Database Firewall.

• Monitoring

The choice of deployment mode depends on whether you want to detect and monitor potential SQL Injection attacks
or if you wish to enforce trusted access patterns to the database by blocking un-authorized activity.

If you only want to monitor for attacks (without blocking), then both host monitor or out-of-band modes are
acceptable. Both modes work by "sniffing" network traffic and looking for SQL statements that violate the Database
Firewall's policy. Host monitor sniffs network activity from the database server, capturing incoming SQL traffic and
relaying it to the Database Firewall for analysis. Out-of-band mode sniffs SQL traffic directly from the network and
forwards it to the Database Firewall.

To block unauthorized SQL traffic, the firewall must be in-line with the incoming SQL traffic using a proxy
deployment. Proxy enforcement can initially be set to monitor traffic (without blocking) and just alert on unauthorized
activity. Once you are confident with the firewall policy, you can switch to the blocking mode to enforce the policy and
block SQL statements that are not in your allow-list, as well as other unauthorized access.

Database Firewall inspects incoming SQL traffic and determines whether to allow, log, alert, substitute, or block SQL
commands. The firewall evaluates SQL traffic through multiple stages, including checks for the IP address, database
user, OS user, program name, SQL statement category, data definition language (DDL, data manipulation language
(DML), and database tables accessed.

Database Firewall supports both allow-list and deny-list policies, but in most cases, we recommend using allow-lists.
After all, the universe of "bad" SQL statements is nearly infinite. In contrast, the universe of statements an application
should be making is a small subset of the total number of possible variations. Put another way, it's much easier to
describe the things the firewall SHOULD let through than it is to list all the things the firewall SHOULD NOT allow to
pass!

Figure 3: Mitigating SQL Injection risks with Database Firewall

Building allow-lists/acceptable baselines in a Database Firewall policy makes it an effective control to mitigate the risk
of SQL Injection, including many zero-day exploits.

8 Mitigating risks of SQL Injection / Version 1.0

Copyright © 2023, Oracle and/or its affiliates / Public

Database Firewall policy for mitigating SQL Injection risk
A typical allow-list policy for mitigating SQL Injection risk looks like the following:

Figure 4: Database Firewall: Policy for detecting and alerting on SQL Injection attack patterns

Leverage the following sequential checks (aka rules) in Database Firewall policy to examine the incoming SQL traffic
before it proceeds to the database:

1. Use Session Context rule(s) to help ensure database users (like administrators or application service
accounts) access the database through trusted application paths as shown below. Alert (or block) when SQL
traffic originates from untrusted client connections. The SQL traffic from trusted sources flows into
subsequent rules for further processing.

Figure 5: Database Firewall: Session Context rule

9 Mitigating risks of SQL Injection / Version 1.0

Copyright © 2023, Oracle and/or its affiliates / Public

2. Use SQL Statement rule(s) to help ensure only explicitly approved SQL statements are allowed to reach the
database from trusted connection paths as shown below. The rest of the SQL traffic flows into subsequent
rules for further processing.

Figure 6: Database Firewall: SQL Statement rule

Use SQL cluster set in the rule to represent an allow-list of approved SQL statements. Train the Database Firewall to
learn the normal authorized SQL traffic from trusted connection paths. Database Firewall groups unique SQL
statements in the SQL traffic to SQL clusters, which can then be used in the SQL cluster set as shown below.

Figure 7: Database Firewall: SQL cluster set of normal application SQL traffic

Use profile in the rule to represent the authorized database users who have a valid business reason to access the
approved SQL statements in the SQL cluster set from a trusted connection path as shown below.

Figure 8: Database Firewall: application service account profile

10 Mitigating risks of SQL Injection / Version 1.0

Copyright © 2023, Oracle and/or its affiliates / Public

3. Use Database object rule(s) to ensure privileged users perform only authorized operations on sensitive
application database objects over the network as shown below. Alert (or block) on any abnormal operations
by privileged users. The rest of the SQL traffic flows into subsequent rules for further processing.

Figure 9: Database Firewall: Database Object rule

Leverage Global Sets to identify privileged users and sensitive data as shown below. Use profile in the Database
Object rule to represent the named set of privileged users like application DBAs and their trusted connection paths.
Use the named set of discovered sensitive objects in the rule and choose the unauthorized operations that you wish
to be alerted on.

Figure 10: Database Firewall: Global sets with privileged users and sensitive objects

4. Use the Default rule to help ensure that all newer SQL traffic proceeds to the database after being scrutinized.
Newer SQL traffic might come in following application updates, the addition of new users or applications, or
those not explicitly approved. The SQL statements are logged and are available in reports for viewing. Once
the approved SQL baselines are well-established, you should switch the action to alert such traffic.

Alerts raised in the Database Firewall are sent to the Audit Vault server, where notifications are triggered according to
the policies you set. Consider monitoring (and alerting) to detect any SQL Injection attack pattern occurrence. You
might want to switch to blocking action in the Session Context, Database Object, and Default rule on a well-trained
system to adopt a zero-tolerance and preventive strategy to SQL Injection risks (including zero-day attacks).

11 Mitigating risks of SQL Injection / Version 1.0

Copyright © 2023, Oracle and/or its affiliates / Public

Database kernel-resident SQL Firewall
SQL Firewall is a new feature built into Oracle Database 23c. Like the Database Firewall, SQL Firewall helps mitigate
the risks of web application attacks such as SQL Injection on data-driven web applications. Unlike the Database
Firewall, SQL Firewall does not require additional product installation or network configuration, greatly simplifying
deployment. Because SQL Firewall is built into Oracle Database, it only works for Oracle Database 23c and higher.

SQL Firewall is part of the Oracle Database kernel, operating closer to where data resides, eliminating the possibility of
bypassing the control. SQL Firewall inspects all incoming SQL statements and helps ensure the database executes
only explicitly authorized SQLs coming from trusted database connection paths. It can examine all SQL statements -
whether local or over the network, encrypted or clear text. Unlike regular expression-based pattern matching
protection mechanisms, SQL Firewall cannot be bypassed by encoding the SQL statement, referencing synonyms, or
using dynamically generated object names.

Figure 11: SQL Firewall built into Oracle Database kernel

While other database security features built into the Oracle Database provide different security controls to
monitor/prevent web application attacks, SQL Firewall is the only one that inspects all incoming SQL statements and
allows only authorized SQL. It logs and blocks unauthorized SQL from executing in the database, offering high levels
of protection against SQL Injection database attacks for the Oracle Database.

SQL Firewall can also observe (or block) unusual access patterns such as connections not coming from trusted IP
addresses, operating system usernames, or program names, helping ensure that any access to your databases comes
exclusively from trusted endpoints. This function is useful when you want to put some protection in place
immediately. At the same time, you create the allow-list of SQL statements for your applications, which requires you
to extensively train the firewall to so that all possible SQL statements have been captured. The allow-list rules from
session context attributes are easy to capture and, if desired, can be manually entered.

By building the SQL Firewall inside the database and streamlining its implementation, its performance overhead is
negligible, making it suitable for all production workloads. SQL firewall is included with Oracle Database Vault. Use of
SQL Firewall with AVDF is also included for Oracle Databases being monitored.

12 Mitigating risks of SQL Injection / Version 1.0

Copyright © 2023, Oracle and/or its affiliates / Public

SQL Firewall policy for mitigating SQL Injection risk
SQL Firewall policies work at a database account level, whether of an application service account or a direct database
user, such as a reporting user or a database administrator. In other words, you might have one SQL Firewall policy for
the database user “HR” and another for the database user “JOE.” This flexibility allows you to gradually build up the
protection level of the database, starting from either the database administrators or the application service accounts.

SQL Firewall policy for every database account consist of two different allow-lists. An allow-list of authorized SQL
statements, and an allow-list of associated trusted database connection paths. SQL Firewall’s allow-lists help ensure
that only authorized SQL statements from trusted database connections are permitted for execution inside the Oracle
Database while alerting/blocking any unauthorized attempts to access sensitive data stored within them.

You train the SQL Firewall by capturing authorized SQL statements and trusted database connection paths for a
database user. That training model is used to generate the SQL firewall policy with allow-lists from the captured SQL
activities. After that, you enable the SQL firewall policy to prevent or detect potential SQL injection attacks.

SQL Firewall generates a violation log entry when it detects unauthorized activity (anything not in the allow-lists). If
desired, you can configure SQL Firewall to block violating SQL traffic or connections. The process flow is captured
here:

Figure 12: SQL Firewall process flow

Learning stage
Capture (or collect) SQL activities: For every database account you wish to protect with SQL Firewall, you let the
SQL firewall learn the normal SQL traffic of the database user by capturing authorized SQL statements over trusted
database connection paths. SQL Firewall captures the following categories of information to create the allow-lists of
the firewall policy.

• Database session information—client IP address, OS program name, and the OS username

• Unique SQL statements identified by their SQL signature

• Execution context attributes:

o Current user

o Granularity of SQL query (top-level user-initiated statements, or SQL statements issued within
PL/SQL procedures on their behalf)

SQL Firewall relies on an SQL signature to identify unique SQL statements. Every SQL statement is captured once per
session, even if the statement is executed multiple times in the same session. The SQL statement is normalized,
concatenated with database objects list, and subsequently hashed to generate the SQL signature.

13 Mitigating risks of SQL Injection / Version 1.0

Copyright © 2023, Oracle and/or its affiliates / Public

Review the capture (or collection): SQL Firewall lets you monitor the progress of the SQL capture to help ensure it
has fully learned the application SQL traffic. Review DBA_SQL_FIREWALL_CAPTURE_LOGS (or Oracle Data Safe:
Collection insights) and stop the collection once you are no longer capturing new unique statements.

Generate firewall policy with allow-lists: Generate the firewall policy with allow-lists that set the baseline for allowed
SQL statements and allowed contexts.

Allowed SQL statements are a collection of unique combination pairs of <SQL signature, execution context>. Any
incoming SQL queries that have a structure syntactically similar to the SQL signature in the policy allow-list will be
passed for execution if the corresponding run-time execution context also matches the one in the allow-list.

Allowed contexts represent trusted database connection paths and consist of three distinct groups—client IP
addresses, OS program names, and OS usernames. They help ensure that access to your databases comes exclusively
from trusted endpoints defined in the allow-lists. Firewall policy with allow-lists are shown below:

Figure 13: SQL Firewall policy

Protecting stage
Enable the firewall policy: Enable the generated firewall policy to protect the database user. The SQL Firewall
enforces checks on the allow-lists when the user connects to the database and issues SQL statements. You can let the
SQL Firewall know if you want to enforce checks on allowed contexts, allowed SQL statements, or both.

If the database connection paths and/or SQL statements in the incoming SQL traffic do not match the entries in the
enabled and enforced allow-lists, a SQL Firewall violation is triggered and this incident is logged in the violation log.
You can let the SQL Firewall know how to respond to SQL Firewall violation incident: allow the traffic to proceed to the
database or block. Blocking raises ORA-47605: SQL Firewall violation, preventing anomalous database access without
disrupting client connections. The significance of enforcement scope and firewall action is pictorially represented in
Figure 14. SQL Firewall logs every violation and optionally blocks the database user from performing the actions.

14 Mitigating risks of SQL Injection / Version 1.0

Copyright © 2023, Oracle and/or its affiliates / Public

Figure 14: SQL Firewall policy enablement options: enforcement and action

SQL Firewall lets you append newer SQL statements and connection paths to the allow-lists in the enabled firewall
policy; it is effective immediately.

Monitor violations: SQL Firewall raises and logs violations in real-time for every unmatched scenario of database
connection or SQL command execution against the entries in the enabled allow-lists of the SQL Firewall policy. The
security administrator can monitor the SQL Firewall violation log to detect the presence of these abnormalities. Data
Safe can collect violation logs and visually present them in its reports. You might want to audit SQL Firewall violations
(especially the blocked ones); their occurrence potentially indicates abnormal database access attempts including SQL
Injection and credential theft/abuse. Auditing violations places a record of the violation in the database’s audit trail,
where it can be protected from tampering.

Managing SQL Firewall
You can manage the SQL Firewall in two ways:

• PL/SQL procedures in SYS.DBMS_SQL_FIREWALL package

• Data Safe

Use PL/SQL procedures in the SYS.DBMS_SQL_FIREWALL package if you wish to manage SQL Firewall within each
database instance. Use Data Safe if you’re looking for centralized violation reporting, UI-based management or to
manage multiple SQL firewalls centrally. You can use the Data Safe REST APIs, software developer kits (SDKs), CLI,
and Terraform for further automation and integration. You can also utilize the extensive Oracle Cloud Infrastructure
(OCI) ecosystem for integrating SQL Firewall violations with OCI alerts and notifications.

Managing SQL Firewall with SYS.DBMS_SQL_FIREWALL package
PL/SQL procedures in SYS.DBMS_SQL_FIREWALL let you administer and manage the SQL Firewall configuration. The
table below captures some common operations for configuring SQL Firewall for the sample application service
account: EMPLOYEESEARCH_PROD.

15 Mitigating risks of SQL Injection / Version 1.0

Copyright © 2023, Oracle and/or its affiliates / Public

Table2. Important PL/SQL procedures in SYS.DBMS_SQL_FIREWALL package

Procedures Values

Capture (or
collect) SQL
Activities

DBMS_SQL_FIREWALL.CREATE_CAPTURE
• Creates (and starts) a SQL capture for the database user

DBMS_SQL_FIREWALL.CREATE_CAPTURE(‘EMPLOYEESEARCH_PROD’);

DBMS_SQL_FIREWALL.STOP_CAPTURE
• Reviews the capture and then stops the capture

SELECT * FROM DBA_SQL_FIREWALL_CAPTURE_LOGS WHERE USERNAME =
‘EMPLOYEESEARCH_PROD’;

DBMS_SQL_FIREWALL.STOP_CAPTURE(‘EMPLOYEESEARCH_PROD’);

Generate
firewall policy
with allow-list
rules

DBMS_SQL_FIREWALL.GENERATE_ALLOW_LIST

• Generates a SQL Firewall policy with allow-list rules

DBMS_SQL_FIREWALL.GENERATE_ALLOW_LIST(‘EMPLOYEESEARCH_PROD’);

DBMS_SQL_FIREWALL.ADD_ALLOW_LIST/ DELETE_ALLOWED_CONTEXT
• Modifies the allowed context values (i.e., client IP address, OS program name, and OS username)

DBMS_SQL_FIREWALL.ADD_ALLOWED_CONTEXT(USERNAME => ‘EMPLOYEESEARCH_PROD’,
CONTEXT_TYPE => SYS.DBMS_SQL_FIREWALL.IP_ADDRESS, VALUE =>
’10.0.0.0/24’);

DBMS_SQL_FIREWALL.APPEND_ALLOW_LIST
• Appends newer SQL statements to existing allow-lists following application updates from

capture log /violation log, and the changes will be effective immediately

DBMS_SQL_FIREWALL.APPEND_ALLOW_LIST(‘EMPLOYEESEARCH_PROD’,
SYS.DBMS_SQL_FIREWALL.CAPTURE_LOG);

Enable the
firewall policy

DBMS_SQL_FIREWALL.ENABLE_ALLOW_LIST
• Enables the SQL firewall policy for the user, and the change will be effective immediately. Choose

your enforcement option (contexts/ SQL statements/both) and let the SQL Firewall know how to
respond in case of mismatch (allow/block) while logging any violation.

DBMS_SQL_FIREWALL.ENABLE_ALLOW_LIST(USERNAME => ‘EMPLOYEESEARCH_PROD’,
ENFORCE => SYS.DBMS_SQL_FIREWALL.ENFORCE_ALL, BLOCK => FALSE);

Export/Import
allow-list

DBMS_SQL_FIREWALL.EXPORT_ALLOW_LIST/ IMPORT_ALLOW_LIST
• Exports (or imports) the firewall policy with an allow-list for the database user in JSON format.

DBMS_SQL_FIREWALL.EXPORT_ALLOW_LIST(USERNAME => ‘EMPLOYEESEARCH_PROD’,
ALLOW_LIST => POLICY_CLOB)

16 Mitigating risks of SQL Injection / Version 1.0

Copyright © 2023, Oracle and/or its affiliates / Public

SQL Firewall violation events are generated and written into the violations log (DBA_SQL_FIREWALL_VIOLATIONS)
for every unmatched scenario of database connections and/or SQL statements execution. If the SQL Firewall policy is
enabled in blocking mode, clients will receive the following ORA error when they attempt an action that is not
permitted by the policy:

ORA-47605 SQL FIREWALL VIOLATION

You have two options to monitor SQL Firewall violations:

1. Read from the SQL Firewall violation log DBA_SQL_FIREWALL_VIOLATIONS.

2. Audit SQL Firewall violations of the database user by configuring audit policy for SQL Firewall, and read
from audit trail UNIFIED_AUDIT_TRAIL.

CREATE AUDIT POLICY EMPSEARCH_APPLICATION_AUDIT_POLICY ACTIONS COMPONENT =
SQL_FIREWALL ALL ON EMPLOYEESEARCH_PROD;

AUDIT POLICY EMPSEARCH_APPLICATION_AUDIT_POLICY;

Auditing of SQL Firewall enables tracking anomalous database activity of the user that has drifted from the typical
expected access connection paths or approved SQL statements and can help demonstrate compliance. SQL Firewall
violations are populated into UNIFIED_AUDIT_TRAIL with all contextual information, and the existing audit trail can be
leveraged to monitor them from upstream applications like AVDF or Data Safe.

Managing SQL Firewall with Data Safe
With Data Safe you can manage multiple SQL firewalls centrally and get a comprehensive view of SQL Firewall
violations across a fleet of Oracle databases as shown below. SQL Firewall administrators can use Data Safe to collect
SQL activities of a database user with its associated database connection paths (IP address, OS program, OS user),
and monitor the progress of the collection. Data Safe lets you generate and enable the SQL Firewall policy from the
collected SQL traffic. Data Safe automatically collects the violation logs, and lets you monitor SQL Firewall violations
from the console.

Figure 15: Data Safe: SQL Firewall dashboard

17 Mitigating risks of SQL Injection / Version 1.0

Copyright © 2023, Oracle and/or its affiliates / Public

The violation summary in the dashboard provides a comprehensive view of SQL Firewall violations from all the
targets in the compartment that have SQL Firewall enabled for the chosen period. You can drill down into the
violations for detailed analysis. A summary of SQL collection status and Firewall policy enforcement status for
database users protected by SQL Firewall is also shown across the database estate. You can modify the SQL Firewall
configuration for a target on drill down. Let us take a look into the workflow in Data Safe to configure SQL Firewall for
the sample application service account: EMPLOYEESEARCH_PROD.

Select the database user from the dropdown list to
create and start a collection of authorized SQL traffic
for that user as shown here.

Once the collection starts, run the expected SQL
application workload of the database user from all
trusted database connection paths.

Data Safe lets you monitor the progress of SQL
collection using SQL collection insights to help ensure
that SQL Firewall has fully learned the SQL application
traffic as shown here.
It is best to run the collection until the number of
unique new SQL statements drops to and remains at
zero. Session context attributes are also available to
allow SQL Firewall to learn normal traffic patterns.
Once you complete the review, stop the collection and
generate the firewall policy.

You can review the contents of allow-lists (allowed
contexts and allowed SQL statements) within SQL
Firewall policy in Data Safe as shown here.
You can modify allowed contexts to add new IP
addresses, OS usernames and OR program names if
required. You can generate a report of allowed SQL
statements, along with a list of the database objects
those SQL statements accessed for offline validation or
change management.

Data Safe lets you enable the SQL Firewall policy on a
target with appropriate values for enforcement scope,
action (observe or block) while logging, and audit as
shown here.

Figure 16: Data Safe: create and start collection

Figure 17: Data Safe: SQL collection insights

Figure 18: Data Safe: SQL Firewall policy with allow-lists

Figure 19: Data Safe: enabling SQL Firewall policy

18 Mitigating risks of SQL Injection / Version 1.0

Copyright © 2023, Oracle and/or its affiliates / Public

Once the SQL Firewall policy is enabled, Data Safe automatically collects violations from the target's violation log and
stores them in Data Safe's repository for 12 months. SQL Firewall violations stored in Data Safe are available for
online analysis and reporting across your database fleet as shown here:

Figure 20: Data Safe: SQL Firewall
violations (fleet view)

Figure 21: Data Safe: SQL Firewall violation reports

Data Safe lets you alert on audited SQL Firewall violations which you can further integrate with larger OCI ecosystem
like OCI Events to pro-actively notify you by email or send to SIEM solutions. If you want to take advantage of alerts
don’t forget to turn on audit when you enable a SQL Firewall policy and start the unified audit trail for the target to
let Data Safe collect the audited violations. Associate the SQL Firewall violations alert policy to the target.

Here, a sample OCI email notification proactively notifying the security administrator of potential SQL Injection
attempts is shown below with all the relevant contextual details, including client connection, and the SQL command
that triggered the violation.

Figure 22: Data Safe: Sample email notification on potential SQL Injection attempt

19 Mitigating risks of SQL Injection / Version 1.0

Copyright © 2023, Oracle and/or its affiliates / Public

Deciding which to use: Database Firewall or SQL Firewall
Database Firewall is a network-based SQL Firewall that can monitor SQL traffic of Oracle and non-Oracle Databases. It
works across all supported Oracle Database versions. For non-Oracle Databases or Oracle Databases older than 23c,
AVDF’s Database Firewall is the only choice. For Oracle Database 23c and above, there are multiple factors that you
might want to consider when deciding between the two options:

• Performance Impact: A network-based Database Firewall has no performance impact on the database
server- it consumes no RAM, no additional CPU because all work is done off-server on the Database Firewall
machine. For most deployment modes, Database Firewall introduces zero performance overhead. In proxy
mode, the Database Firewall introduces minor additional network latency, with the degree of latency
primarily controlled by the position of the Database Firewall on the network. SQL Firewall introduces no
observable latency but does create minimal CPU overhead, not exceeding 1% to 1.5%.

• Deployment Options: Database Firewall is deployed on a dedicated virtual machine or hardware (separate
from the database server). Database Firewall has multiple deployment options: Proxy, Host Monitor, and Out-
of-Band. Proxy is the only inline configuration that supports blocking use cases, but using the proxy requires
client-side connection changes to route traffic through the proxy. SQL Firewall is part of the database,
requiring no client-side changes. SQL Firewall is the best solution for deployments where blocking is the
predominant use case or if it is impractical or undesirable to change client-side configurations.

• Scope of inspection: Database Firewall can only monitor SQL traffic coming over the network. It lacks
visibility into SQL traffic over local BEQ connections and is unaware of internal jobs/ stored procedure
executions. The SQL Firewall runs inside the database and sees ALL traffic, regardless of the origination
point.

• Processing of encrypted traffic: Handling encrypted SQL traffic requires additional configuration and
processing in the Database Firewall but is seamless and straightforward in the SQL Firewall because the
traffic has already been decrypted by the time it reaches the SQL Firewall.

• Disruption in blocking: Blocking SQL on the network (with Database Firewall) may disrupt transactions
because each operation is handled individually as a stand-alone statement. In contrast, SQL Firewall
understands database transactions and honors atomicity, consistency, isolation, and durability.

• High Availability: High availability for the Database Firewall is provided by redundant firewalls, with clients
distributing connects/failing over based on client connect parameters or using a third-party load balancer.
SQL Firewall is part of Oracle Database and takes advantage of high availability architectures like Real
Application Clusters and Data Guard.

• Separation of Duties: Database Firewall can monitor database traffic without any input or control by the
database administrators. SQL Firewall is part of Oracle Database and requires cooperation with the database
administrators to deploy.

Summary
SQL injection is the most common database attack pattern for data-driven web applications. To mitigate the risk for
Oracle Database, leverage Database Firewall in AVDF or SQL Firewall in Oracle Database. Neither relies on heuristic
regex pattern matches typically used by most network firewall solutions. Instead, they rely on actual SQL signature
and construct an allowed list of SQL statements. They combine allowed SQL with session context to learn the normal
application SQL traffic and detect and alert/block the violations in real-time.

20 Mitigating risks of SQL Injection / Version 1.0

Copyright © 2023, Oracle and/or its affiliates / Public

Connect with us

Call +1.800.ORACLE1 or visit oracle.com. Outside North America, find your local office at: oracle.com/contact.

blogs.oracle.com facebook.com/oracle twitter.com/oracle

Copyright © 2023, Oracle and/or its affiliates. This document is provided for information purposes only, and the contents hereof are subject to change without notice. This document is
not warranted to be error-free, nor subject to any other warranties or conditions, whether expressed orally or implied in law, including implied warranties and conditions of merchantability
or fitness for a particular purpose. We specifically disclaim any liability with respect to this document, and no contractual obligations are formed either directly or indirectly by this document.
This document may not be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, without our prior written permission.

Oracle, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

21 Mitigating risks of SQL Injection / Version 1.0

Copyright © 2023, Oracle and/or its affiliates / Public

http:blogs.oracle.com
http:oracle.com

