

Application Checklist for
Continuous Service for MAA
Solutions
Version [1.0]
Copyright © 2024, Oracle and/or its affiliates
Public

2 Application Checklist for Continuous Service for MAA Solutions / Version [1.0]

 Copyright © 2024, Oracle and/or its affiliates / Public

Table of contents

Introduction 3
Configure URL or Connection String for High Availability 5
Enable Fast Application Notification (FAN) 6
Use Recommended Practices That Support Draining 7
Enable Application Continuity or Transparent Application Continuity 11
Steps for Using Application Continuity (AC/TAC) 11
Monitoring 12
Configure Clients 15
Use ACCHK to deep-dive into your protection 18
APPENDIX 19
Developer Best Practices for Continuous Availability 19
Align Application and Server Timeouts 21
Tracking your Grants for keeping original values 22
Debugging FAST APPLICATION NOTIFICATION 23
Additional Materials 25

3 Application Checklist for Continuous Service for MAA Solutions / Version [1.0]

 Copyright © 2024, Oracle and/or its affiliates / Public

Introduction

The following checklist is useful for preparing your environment for continuous
availability for your applications. Even if Application Continuity is not enabled on your
database service, or is not used by your applications, the points discussed here provide
great value in preparing your systems to support Continuous Availability.

The steps can be staged, they are building blocks:

• Use Database Services

• Configure URL or Connection String for High Availability

• Enable Fast Application Notification (FAN)

• Use Recommended Practices that Support Draining

• Enable Application Continuity or Transparent Application Continuity

The primary audience for this checklist is application developers and application owners. Operation examples are
included for your DBA’s and PDB administrators.

4 Application Checklist for Continuous Service for MAA Solutions / Version [1.0]

 Copyright © 2024, Oracle and/or its affiliates / Public

Use Database Services
Service is a logical abstraction for managing work. Services hide the complexity of the underlying system from the
client by providing a single system image for managing work. Your application must connect to a service to use
the high availability features: FAN, Draining and Application Continuity. This cannot be the default database
service or the default PDB service (the service with the same name as the database or PDB).

Server-Side Steps for Services
To create a service, use a command similar to the provided commands.

When using multiple sites, services should be created using the primary role for the primary site, and standby role
for services that will be open on secondary sites managed by Active Data Guard. Services start and stop
automatically at a site based on their role.

Basic Service Creation

Transparent Application Continuity

Application Continuity

TAF Select Plus

Notes

failoverretry and failoverdelay are not required when RETRY_COUNT and RETRY_DELAY are set in the connection
string as recommended and are not shown here.

Starting with 19c, a failback option (-failback) is available in srvctl for services with preferred and available
instances. When the preferred instance becomes available, a service that is not running there will failback. This
option is not recommended for high availability as the database sessions incur an unnecessary outage. Services
should be location transparent. However, some deployments wanting services at preferred instances may find the
failback option helpful.

$ srvctl add service -db mydb -service MYSERVICE –preferred inst1 -available

inst2 -pdb mypdb -notification TRUE -drain_timeout 300 -stopoption IMMEDIATE

-role PRIMARY

$ srvctl add service -db mydb -service TACSERVICE -pdb mypdb –preferred inst1

-available inst2 -failover_restore AUTO -commit_outcome TRUE -failovertype

AUTO -replay_init_time 600 -retention 86400 -notification TRUE -drain_timeout

300 -stopoption IMMEDIATE -role PRIMARY

$ srvctl add service -db mydb -service ACSERVICE -pdb mypdb -preferred inst1 -available
inst2 -failover_restore LEVEL1 -commit_outcome TRUE -failovertype TRANSACTION -
session_state dynamic -replay_init_time 600 -retention 86400 -notification TRUE -
drain_timeout 300 -stopoption IMMEDIATE -role PRIMARY

$ srvctl add service -db mydb -service TAFSERVICE -pdb mypdb -preferred inst1 -
available inst2 -failover_restore LEVEL1 -commit_outcome TRUE -failovertype SELECT - -
notification TRUE -drain_timeout 300 -stopoption TRANSACTIONAL -role PRIMARY

5 Application Checklist for Continuous Service for MAA Solutions / Version [1.0]

 Copyright © 2024, Oracle and/or its affiliates / Public

Configure URL or Connection String for High Availability
Oracle recommends that your application uses the following connection string configuration for successfully
connecting at basic startup, failover, switchover, and fallback.

Set RETRY_COUNT, RETRY_DELAY, CONNECT_TIMEOUT and TRANSPORT_CONNECT_TIMEOUT parameters to allow
connection requests to wait for service availability and to connect successfully. Tune these values to allow failover
across RAC node failures and across Data Guard role transitions depending on your MAA solution.

RULES: (see section: Align Application and Server Timeouts for more details)

Always set RETRY_DELAY when using RETRY_COUNT.

Set (RETRY_COUNT +1) * RETRY_DELAY > MAXIMUM of RAC and Data Guard recovery times.

Set TRANSPORT_CONNECT_TIMEOUT in the range 1-5 seconds unless using a slow wide area
network.

Set CONNECT_TIMEOUT to a high value to prevent login storms. Low values can result in ‘feeding frenzies’

logging in due to the application or pool cancelling and retrying connection attempts.

Do not use Easy Connect Naming on the client as EZCONNECT prevents FAN auto-configuration capabilities.

You can specify the wait time units in either centiseconds (cs) or milliseconds (ms). The default unit is seconds (s).

Maintain your Connect String or URL in a central location such as LDAP or tnsnames.ora. Do not scatter the
connect string or URL in property files or private locations as doing so makes them extremely difficult to maintain.
Using a centralized location helps you preserve standard format, tuning and service settings.

This is the recommended Connection String for ALL Oracle drivers 12.2 and later, specific values may be tuned
but the values quoted in this example are reasonable starting points:

Alias (or URL) = (DESCRIPTION =
(CONNECT_TIMEOUT=
90)(RETRY_COUNT=50)(RETRY_DELAY=3)(TRANSPORT_CONNECT_TIMEOUT=3)
 (ADDRESS_LIST =
 (LOAD_BALANCE=on)
 (ADDRESS = (PROTOCOL = TCP)(HOST=primary-scan)(PORT=1521)))
 (ADDRESS_LIST =
 (LOAD_BALANCE=on)
 (ADDRESS = (PROTOCOL = TCP)(HOST=secondary-scan)(PORT=1521)))
 (CONNECT_DATA=(SERVICE_NAME = gold-cloud)))

6 Application Checklist for Continuous Service for MAA Solutions / Version [1.0]

 Copyright © 2024, Oracle and/or its affiliates / Public

Enable Fast Application Notification (FAN)
FAN is a required component for interrupting the application to failover. When a node or network fails, the
application needs to be interrupted in real time. Failing to enable FAN will lead to applications hanging when
HARD physical failures, such as node, network, or site failures occur.

Starting with Oracle Database 19c and Oracle client 19c, there are two important enhancements for FAN:

• FAN is sent in-band, directly to the drivers for planned events. For Java, you will need the fix for bug
31112088

• The Oracle Database and Oracle client drivers drain on connection tests and at request boundaries on
receipt of FAN

Server Side

The FAN port must be opened on your RAC, RAC-One and ADG nodes. This step is very important not to miss
including for ADB-D, EXA, and ExaCC, as shown in the example.

Client Side

There are no code changes to use FAN. Starting with Oracle Database 12c and Oracle client 12c, and Oracle Grid
Infrastructure 12c, FAN is auto-configured and enabled out of the box. When connecting to the Oracle database,
the Oracle database reads the URL or TNS connect string and auto-configures FAN at the client. Using the TNS
format shown above is important for auto-configuration of FAN (using a different format prevents FAN from
being auto-configured). To use FAN, you must connect to a database service (step one) and be able to receive
events from the Oracle Notification Service (ONS).

To observe the receipt of FAN events, you can use the FANWatcher utility described in this paper:

http://www.oracle.com/technetwork/database/options/clustering/applicationcontinuity/learnmore/fastapplic
ationnotification12c-2538999.pdf

If the FANWatcher utility can subscribe to ONS using the auto-configuration method described above, and print
events as they are received, this demonstrates that your application can as well. If FANWatcher is unable to
perform this task you should:

• Check that the ONS port (on the Grid Infrastructure cluster) is not blocked by a firewall

• Confirm that a client subscription from your application has been created

Refer to the Section on FAN DEBUGGING for additional information.

Refer to the client configuration for additional client-specific steps. Note that application code changes are not
required to use FAN.

http://www.oracle.com/technetwork/database/options/clustering/applicationcontinuity/learnmore/fastapplicationnotification12c-2538999.pdf
http://www.oracle.com/technetwork/database/options/clustering/applicationcontinuity/learnmore/fastapplicationnotification12c-2538999.pdf

7 Application Checklist for Continuous Service for MAA Solutions / Version [1.0]

 Copyright © 2024, Oracle and/or its affiliates / Public

Use Recommended Practices That Support Draining
There is never a need to restart application servers when planned maintenance follows best practice.

For planned maintenance, the recommended approach is to provide time for current work to complete before
maintenance is started. You do this by draining work. Several methods for draining are available. Choose the one that
best suits your application:

• Oracle Connection Pools

• Standard Driver-Side Connection tests

• Server-side Connection tests and more rules

• Planned failover with Transparent Application Continuity

Use draining in combination with your chosen failover solution for those requests that do not complete within the
allocated time for draining. Your failover solution will try to recover sessions that are expected not to not drain in the
allocated time.

Use an Oracle Connection Pool
Using an Oracle connection pool is the recommended solution for hiding planned maintenance. There is no impact to
users during maintenance when your application uses an Oracle Pool and returns connections to the pool between
requests. Supported Oracle Pools include UCP, WebLogic Active GridLink, Tuxedo, OCI Session Pool, and ODP.NET
Managed and Unmanaged providers. No application changes whatsoever are needed to drain other than making sure
that your connections are returned to pool between usages. Enabling connection tests is also recommended.

Use UCP with Third-Party Application Servers or a Connection Pool with no
Request Boundaries
If you are using a third party, Java-based application server, the most effective method to achieve draining and failover is
to replace the pooled data source with UCP. This approach is supported by many application servers including Oracle
WebLogic Server, IBM WebSphere and IBM Liberty (XA and non-XA usage), Apache Tomcat, Hikari CP, and others. Using
UCP as the data source allows UCP features such as Fast Connection Failover, Runtime Load Balancing and Application
Continuity to be used with full certification.

If your application is using J2EE or Container Managed Transactions (CMT) with Red Hat JBoss, request boundaries are
provided with version Red Hat JBoss EAP 7.4. This configuration supports draining with FAN (XA and non-XA usage) and
Application Continuity (non-XA usage).

NOTE: Return Connections to the Connection Pool
The application should return the connection to the connection pool at end of each request. It is best practice that an
application checks-out a connection only for the time that it needs it. Holding a connection instead of returning it to the
pool does not perform. An application should therefore check-out a connection and then check-in that connection

immediately the work is complete. The connections are then available for later use by other threads, or your thread
when needed again. Returning connections to a connection pool is a general recommendation for good performance.

Use Connection Tests to Drain your Application
If you cannot use an Oracle Pool, then the Oracle client drivers 19c or Oracle Database 19c will drain the sessions for you.
When services are relocated or stopped, or there is a switchover to a standby site via Oracle Data Guard, the Oracle
Database and Oracle client drivers are notified to look for safe places to release connections according to the following:

• Standard connection tests for connection validity
• Predefined rules at the server for draining

8 Application Checklist for Continuous Service for MAA Solutions / Version [1.0]

 Copyright © 2024, Oracle and/or its affiliates / Public

• Custom SQL tests for connection validity

Do NOT use a connection test failing to decide to stop more processes. The connection test applies to that connection.
The connection pool will close the connection and get another.

Use Standard Connection Tests with Thin JDBC Driver
To use connection tests with the JDBC driver:

• Set ValidateConnectionOnBorrow = true

• Set the Java system properties

o -Doracle.jdbc.fanEnabled=true (use false for ADB-S only)

o -Doracle.jdbc.defaultConnectionValidation=SOCKET. (optional)

and set the following test: java.sql.Connection.isValid(int timeout)

NOTE: Use failing session option only for your pool, disable flushing and destroying the pool on connection test failure.

Use Connection Tests with OCI Driver
To use the OCI driver directly, use OCI_ATTR_SERVER_STATUS. This is the only method that is a code change. In your

code, check the server handle when borrowing and returning connections to see if the session is disconnected. When
the service is stopped or relocated, the value OCI_ATTR_SERVER_STATUS is set to OCI_SERVER_NOT_CONNECTED.

When using OCI session pool, this connection check is done for you.

The following code sample shows how to use OCI_ATTR_SERVER_STATUS:

Use Connection Tests to the Oracle Database
If you cannot use an Oracle Pool, the Oracle Database 19c can drain your sessions.

Use the view DBA_CONNECTION_TESTS to see the connection tests and rules that are enabled for you. If using a SQL-
based connection test, use the same SQL that is enabled in your database (the same identical statement) at your
connection pool or application server.

If you need additional connection tests, you can add, delete, enable or disable connection tests for a service, a pluggable
database, or non-container database. For example:

ub4 serverStatus = 0

OCIAttrGet((dvoid *)srvhp, OCI_HTYPE_SERVER,

 (dvoid *)&serverStatus, (ub4 *)0, OCI_ATTR_SERVER_STATUS, errhp);

if (serverStatus == OCI_SERVER_NORMAL)

printf("Connection is up.\n");

else if (serverStatus == OCI_SERVER_NOT_CONNECTED)

 printf("Connection is down.\n");

SQL> EXECUTE

 dbms_app_cont_admin.add_sql_connection_test('SELECT COUNT(1) FROM DUAL');

SQL> EXECUTE n

SQL> SET LINESIZE 120

SQL> SELECT * FROM DBA_CONNECTION_TESTS

9 Application Checklist for Continuous Service for MAA Solutions / Version [1.0]

 Copyright © 2024, Oracle and/or its affiliates / Public

Note: For connection tests you will need the fix for Bug 31863118, which is applicable to all SQL draining, released with

DBRU19.10 and later release updates.

Use USERENV to Drain PLSQL Workloads
If your application uses long-running PLSQL, use the function userenv to determine whether your session is in

draining mode. For example, use this function as a check to exit the PLSQL block between batches when in a long
running PL/SQL loop. This feature is available starting Oracle Database 19c, release update 10.

Use Planned Failover with Transparent Application Continuity
Oracle Database 19c introduces Planned Failover to Application Continuity. For applications that are discoverable by
TAC, i.e. they close their cursors in fetch and clear or do not use Oracle complex PLSQL states, planned failover with TAC

is an out of the box solution for failing over at planned and unplanned outages.

When maintenance is underway, planned failover occurs at the start of new requests and when implicit boundaries are
detected by TAC. Planned failover is used by SQL*PLUS. It is beneficial for applications that mostly use SELECTS,

INSERTS, UPDATES and DELETES. (TIP Oracle 19c only: do not set SERVEROUTPUT)

This feature is enabled for OCI clients in Oracle Database 19c and JDBC thin clients 19RU12 when using TAC and also
AC.

Use TAF SELECT Plus
Some older OCI-based configurations may use pre-compilers (PRO*C, PRO*COBOL) or Oracle ODBC, and some may use
OCI API’s not yet covered by Application Continuity for OCI. For planned maintenance with older OCI-based applications,
TAF SELECT PLUS may be good option to drain. To use TAF SELECT PLUS, create a separate service, with the following
service attributes set: FAILOVER_TYPE=SELECT, FAILOVER_RESTORE=LEVEL1, COMMIT_OUTCOME=TRUE.

Server-Side Steps for Draining
Services connected to the Oracle Database are configured with connection tests and a drain_timeout specifying how
long to allow for draining, and the stopoption, IMMEDIATE, that applies after the drain timeout expires. The stop,
relocate, and switchover commands managed by SRVCTL include a drain_timeout and stopoption switch to override
values set on the service if needed.

Maintenance commands are similar to the commands described below. Oracle tools, such as Fleet Patching and
Provisioning (FPP) use these commands. Use these commands to start draining. Include additional options, if needed, as
described in My Oracle Support (MOS) Note: Doc ID 1593712.1.

For example, to stop an instance to do RAC maintenance use the command below. Services that can relocate, will be
relocated. CRS may start instances that aren't currently running but can run a service that requires that
instance. Services that cannot be

SQL> select SYS_CONTEXT('USERENV', 'DRAIN_STATUS') from dual ;

SYS_CONTEXT('USERENV','DRAIN_STATUS')

DRAINING

SQL> select SYS_CONTEXT('USERENV', 'DRAIN_STATUS') from dual ;

SYS_CONTEXT('USERENV','DRAIN_STATUS')

NONE

10 Application Checklist for Continuous Service for MAA Solutions / Version [1.0]

 Copyright © 2024, Oracle and/or its affiliates / Public

1. relocated or do not need relocation, are stopped. If a singleton service is defined with no other "available" instances, then it

may incur complete downtime which is expected behavior. It is better to have preferred instances always.

 Tip : If using these in scripts, you may find it helpful to include wait = yes.

2. After the RAC instance is restarted, no additional srvctl action is required because the clusterware service attribute will

automatically determine where services will end up

For example, to stop an instance with draining:

to relocate all services by database, node, or PDB:

to stop a service named GOLD on an instance named inst1 (a given instance):

to switchover to Data Guard secondary site with a wait timeout of 60 seconds using Data Guard Broker:

to switchover to Data Guard secondary site with a wait timeout from the services using Data Guard Broker:

srvctl stop instance -db <db_name> -node <node_name> -stopoption immediate –
drain_timeout <#> -force -failover

srvctl stop instance -db <db_name> -node <node_name> -stopoption immediate –
drain_timeout <#> -force -failover -role primary

srvctl relocate service -database <db_unique_name> -oldinst <old_inst_name> [-
newinst <new_inst_name>] -drain_timeout <timeout> -stopoption <stop_option> -
force

srvctl relocate service -database <db_unique_name> -currentnode <current_node> [-
targetnode <target_node>] -drain_timeout <timeout> -stopoption <stop_option> -
force

srvctl relocate service -database <db_unique_name> -pdb <pluggable_database> {-
oldinst <old_inst_name> [-newinst <new_inst_name>] | -currentnode <current_node>
[-targetnode <target_node>]} -drain_timeout <timeout> -stopoption <stop_option>
-force

srvctl stop service –db myDB –service GOLD –instance inst1 -drain_timeout
<timeout> -stopoption <stop_option>

SWITCHOVER TO dg_south WAIT 60

SWITCHOVER TO dg_south WAIT

11 Application Checklist for Continuous Service for MAA Solutions / Version [1.0]

 Copyright © 2024, Oracle and/or its affiliates / Public

Enable Application Continuity or Transparent Application
Continuity
Application Continuity is highly recommended for failover when your application will not drain, and for handing
timeouts and unplanned outages. Application Continuity is enabled on the database service in one of two
configurations:

Application Continuity (AC)
Application Continuity (AC) hides outages, starting with Oracle database 12.1 for thin Java-based applications,
and Oracle Database 12.2 for OCI and ODP.NET based applications with support for open-source drivers, such as
Node.js, and Python, beginning with Oracle Database 19c. Application Continuity rebuilds the session by
recovering the session from a known point which includes session states and transactional states. Application
Continuity rebuilds all in-flight work. The application continues as it was, seeing a slightly delayed execution time
when a failover occurs. The standard mode for Application Continuity is for OLTP applications using an Oracle
connection pool.

Transparent Application Continuity (TAC)
Starting with Oracle Database19c, Transparent Application Continuity (TAC) transparently tracks and records
session and transactional state so the database session can be recovered following recoverable outages. This is
done with no reliance on application knowledge or application code changes, allowing TAC to be enabled for your
applications. Application transparency and failover are achieved by consuming the state-tracking information
that captures and categorizes the session state usage as the application issues user calls.

Steps for Using Application Continuity (AC/TAC)

Return Connections to the Connection Pool
Request Boundaries are required for Application Continuity and are recommended for Transparent Application Continuity.

When using an Oracle connection pool, such as Universal Connection Pool (UCP) or OCI Session Pool, or ODP.Net Unmanaged

Provider or when using WebLogic Active GridLink and also RedHat JBoss, request boundaries are embedded for you. The

application must return the connection to the Oracle connection pool on each request to obtain request boundaries.

Transparent Application Continuity, in addition, will discover request boundaries. The conditions for discovering a boundary in

Oracle Database 19c are:

• No transaction in progress

• Cursors are not left in fetch

• No un-restorable session state exists (PLSQL globals, OJVM, populated temporary tables). Using
RESET_STATE on the service will clear these for you.

FAILOVER_RESTORE on the Service

The attribute FAILOVER_RESTORE should be set on your database service. Use FAILOVER_RESTORE=LEVEL1 for
AC or FAILOVER_RESTORE=AUTO for TAC. All modifiable parameters are restored automatically by using a
wallet with FAILOVER_RESTORE (refer to Ensuring Application Continuity in Oracle Real Application Clusters).

12 Application Checklist for Continuous Service for MAA Solutions / Version [1.0]

 Copyright © 2024, Oracle and/or its affiliates / Public

Wallets are enabled for ADBD and ADBS and are the same as those used for database links.

To configure additional custom values at connection establishment and failover use:

• A logon trigger

• Connection Initialization Callback or UCP label for Java or TAF Callback for OCI and ODP.NET

• UCP or WebLogic Server Connection Labeling

Restore Original Function Values
Support for keeping the original results of Oracle functions is provided for SYSDATE, SYSTIMESTAMP, SYS_GUID,
sequence.NEXTVAL, CURRENT_TIMESTAMP and LOCALTIMESTAMP. Identity sequences are supported for owned sequences

in SQL. If the original values are not kept and different values are returned to the application at replay, replay is rejected.

Oracle Database 19c KEEPs the original values for SQL automatically. If you are using PLSQL, then GRANT KEEP for application

users, and the KEEP clause for a sequence owner.

For example:

Side Effects
When a database request includes an external call such as sending MAIL or transferring a file then this is termed a side
effect. When replay occurs, there is a choice as to whether side effects should be replayed. Many applications want to
repeat side effects such as journal entries, and sending mail. For Application Continuity side effects are replayed (and
may be disabled using disableReplay). Conversely, as Transparent Application Continuity is on by default, TAC does not
replay side effects.

Monitoring

Application Continuity collects statistics to monitor your protection levels. These statistics are saved in the Automatic

Workload Repository and are available in Automatic Workload Repository reports.

The following statistics are available for query:

Statistic
--
cumulative begin requests
cumulative end requests
cumulative user calls in requests
cumulative user calls protected by Application Continuity
successful replays by Application Continuity
rejected replays by Application Continuity
cumulative DB time protected in requests

SQL> GRANT KEEP DATE TIME to scott;

SQL> GRANT KEEP SYSGUID to scott;

SQL> GRANT KEEP SEQUENCE mySequence on mysequence.myobject to scott;

13 Application Checklist for Continuous Service for MAA Solutions / Version [1.0]

 Copyright © 2024, Oracle and/or its affiliates / Public

To report protection history by service for example you could run:

This would display output in the following format:

Reports could also be structured to show results for a PDB:

set pagesize 60
set lines 120
col Service_name format a30 trunc heading "Service"
break on con_id skip1
col Total_requests format 999,999,9999 heading "Requests"
col Total_calls format 9,999,9999 heading "Calls in requests"
col Total_protected format 9,999,9999 heading "Calls Protected"
col Protected format 999.9 heading "Protected %"
col time_protected format 999.999 heading "Time Prot"

select con_id, service_name, total_requests,
total_calls,total_protected,time_protected,total_protected*100/NULLIF(total_cal
ls,0) as Protected
from(
select * from
(select a.con_id, a.service_name, c.name,b.value
 FROM gv$session a, gv$sesstat b, gv$statname c
 WHERE a.sid = b.sid
 AND a.inst_id = b.inst_id
 AND b.value != 0
 AND b.statistic# = c.statistic#
 AND b.inst_id = c.inst_id
 AND a.service_name not in ('SYS$USERS','SYS$BACKGROUND'))
pivot(
 sum(value)
 for name in ('cumulative begin requests' as total_requests, 'cumulative end
requests' as Total_end_requests, 'cumulative user calls in requests' as
Total_calls, 'cumulative DB time protected in requests' as time_protected,
'cumulative user calls protected by Application Continuity' as total_protected)
))
order by con_id, service_name;

CON_ID Service Requests Calls in requests Calls Protected Time Prot Protected %

---------- --------------- --------------- ------------- ----------------- --------------- ------

109 RDDAINSUH6U1OKC_TESTY_high.adb 11 7 63
 RDDAINSUH6U1OKC_TESTY_tp.adb.o 7 9 9 100

14 Application Checklist for Continuous Service for MAA Solutions / Version [1.0]

 Copyright © 2024, Oracle and/or its affiliates / Public

Similar to:

Or for a period of time. In this example 3 days:

set lines 85
col Service_name format a30 trunc heading "Service"
break on con_id skip1
col Total_requests format 999,999,9999 heading "Requests"
col Total_calls format 9,999,9999 heading "Calls in requests"
col Total_protected format 9,999,9999 heading "Calls Protected"
col Protected format 999.9 heading "Protected %"

select con_id, total_requests,
total_calls,total_protected,total_protected*100/NULLIF(total_calls,0) as
Protected
from(
select * from
(select s.con_id, s.name, s.value
 FROM GV$CON_SYSSTAT s, GV$STATNAME n
 WHERE s.inst_id = n.inst_id
 AND s.statistic# = n.statistic#
 AND s.value != 0)
pivot(
 sum(value)
 for name in ('cumulative begin requests' as total_requests, 'cumulative
end requests' as Total_end_requests, 'cumulative user calls in requests' as
Total_calls, 'cumulative user calls protected by Application Continuity' as
total_protected)
))
order by con_id;

CON_ID Requests Calls in requests Calls Protected Protected %

---------- ------------- ----------------- --------------- -----------
 854 70 283 113 39.9

15 Application Checklist for Continuous Service for MAA Solutions / Version [1.0]

 Copyright © 2024, Oracle and/or its affiliates / Public

Restrictions
Be aware of these restrictions and considerations when using Application Continuity (Restrictions and Other
Considerations for Application Continuity).

Configure Clients

JDBC Thin Driver Checklist
1. Configure FAN for Java called Fast Connection Failover (FCF)

For client drivers 12c and later
Use the recommended URL for auto-configuration of ONS

• Check that ons.jar, simpleFan.jar (when not using Oracle Pools) (plus optional WALLET jars,
osdt_cert.jar, osdt_core.jar, oraclepki.jar) are on the CLASSPATH

• Set the pool or driver property fastConnectionFailoverEnabled=true

• For third party JDBC pools, Universal Connection Pool (UCP) is recommended

• Open port 6200 for ONS (6200 is the default port, a different port may have been chosen)

 If you are not able to use the recommended connect string, configure your clients manually by setting:

 oracle.ons.nodes =XXX01:6200, XXX02:6200, XXX03:6200

JDBC Thin Driver Checklist For application continuity
1. Configure the Oracle JDBC Replay Data Source in the property file or on console:

set lines 85
col Service_name format a30 trunc heading"Service"
break on con_id skip1
col Total_requests format 999,999,9999 heading "Requests"
col Total_calls format 9,999,9999 heading "Calls in requests"
col Total_protected format 9,999,9999 heading "Calls Protected"
col Protected format 999.9 heading "Protected %"

select a.instance_number,begin_interval_time, total_requests, total_calls,
total_protected, total_protected*100/NULLIF(total_calls,0) as Protected
from(
select * from
(select a.snap_id, a.instance_number,a.stat_name, a.value
 FROM dba_hist_sysstat a
 WHERE a.value != 0)
pivot(
 sum(value)
 for stat_name in ('cumulative begin requests' as total_requests,
'cumulative end requests' as Total_end_requests, 'cumulative user calls in
requests' as Total_calls, 'cumulative user calls protected by Application
Continuity' as total_protected)
)) a,
dba_hist_snapshot b
where a.snap_id=b.snap_id
and a.instance_number=b.instance_number
and begin_interval_time>systimestamp - interval '3' day
order by a.snap_id,a.instance_number;

https://docs.oracle.com/en/database/oracle/oracle-database/19/racad/ensuring-application-continuity.html#GUID-2400FAAD-0BB2-48AF-B1F6-358EBA724028
https://docs.oracle.com/en/database/oracle/oracle-database/19/racad/ensuring-application-continuity.html#GUID-2400FAAD-0BB2-48AF-B1F6-358EBA724028

16 Application Checklist for Continuous Service for MAA Solutions / Version [1.0]

 Copyright © 2024, Oracle and/or its affiliates / Public

For applications using 19c DBRU client jars, use oracle.jdbc.replay.OracleDataSourceImpl in a
standalone manner, or configure them as connection factory class for a Java connection pool, such as UCP, or
WebLogic AGL Server connection pool.

The 19c UCP documentation explains how to enable AC/TAC on UCP (one would configure the above JDBC
driver data source class "oracle.jdbc.replay.OracleDataSourceImpl" as the connection factory class
on the UCP data source PoolDataSourceImpl) --

https://docs.oracle.com/en/database/oracle/oracle-database/19/jjucp/application-continuity-using-
ucp.html#GUID-EA541BD8-7B19-4A28-BF29-C4A623B41EEC

For applications using 21c DBRU client jars and later, use the data source that enables AC/TAC when on the
service automatically. datasource=oracle.jdbc.datasource.impl.OracleDataSource (available
since 21.1)

For WebLogic server, use the Oracle WebLogic Server Administration Console, choosing the local replay driver:
Oracle Driver (Thin) for Active GridLink Application Continuity Connections

2. Use JDBC Statement Cache
Use the JDBC driver statement cache in place of an application server statement cache. This allows the driver to
know that statements are cancelled and allows memory to be freed at the end of requests.
To use the JDBC statement cache, use the connection property
oracle.jdbc.implicitStatementCacheSize
(OracleConnection.CONNECTION_PROPERTY_IMPLICIT_STATEMENT_CACHE_SIZE). The value for the
cache size matches your number of open_cursors. For example:
oracle.jdbc.implicitStatementCacheSize=nnn where nnn is typically between 50 and 200 and is
equal to the number of open cursors your application maintains.

3. Tune the Garbage Collector
For many applications the default Garbage Collector tuning is sufficient. For applications that return and keep
large amounts of data you can use higher values, such as 2G or larger. For example:
 java -Xms3072m -Xmx3072m
It is recommended to set the memory allocation for the initial Java heap size (ms) and maximum heap size (mx)
to the same value. This prevents using system resources on growing and shrinking the memory heap.

4. Commit
For JDBC applications, if the application does not need to use AUTOCOMMIT, disable AUTOCOMMIT either in the
application itself or in the connection properties. This is important when UCP or the replay driver is embedded in
third-party application servers such as Apache Tomcat, IBM WebSphere, IBM Liberty and Red Hat WildFly
(JBoss).
Set autoCommit to false through UCP PoolDataSource connection properties
 connectionProperties="{autoCommit=false}"

5. JDBC Concrete Classes – Applies to jars 12.1 and 12.2 driver ONLY
For JDBC applications, Oracle Application Continuity does not support deprecated oracle.sql concrete classes
BLOB, CLOB, BFILE, OPAQUE, ARRAY, STRUCT or ORADATA. (See MOS note 1364193.1 New JDBC
Interfaces). Use ORAchk -acchk on the client to know if an application passes. The list of restricted concrete
classes for JDBC Replay Driver is reduced to the following starting with Oracle JDBC-thin driver version 18c and
later: oracle.sql.OPAQUE, oracle.sql.STRUCT, oracle.sql.ANYDATA

OCI (ORACLE CALL INTERFACE) DRIVER CHECKLIST (OCI-based clients include Node.js, Python, SODA in thick
mode)

1. To use FAN for OCI-based applications, do the following:

• Set aq_ha_notifications on the services

Use the recommended Connection String for auto-configuration of ONS

https://docs.oracle.com/en/database/oracle/oracle-database/19/jjucp/application-continuity-using-ucp.html#GUID-EA541BD8-7B19-4A28-BF29-C4A623B41EEC
https://docs.oracle.com/en/database/oracle/oracle-database/19/jjucp/application-continuity-using-ucp.html#GUID-EA541BD8-7B19-4A28-BF29-C4A623B41EEC
https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&id=1364193.1

17 Application Checklist for Continuous Service for MAA Solutions / Version [1.0]

 Copyright © 2024, Oracle and/or its affiliates / Public

Set auto_config, events, and wallet_location (optional) in oraaccess.xml

• Many applications, including open source, will already be threaded. If not, link the application with the O/S client
thread library

• Open port 6200 for ONS (6200 is the default port, a different port may have been chosen)

 If you are not able to use the recommended connect string, configure your clients manually:

• Oracle Call Interface (OCI) clients without native settings can use an oraacces.xml file and set
events to true

 Python, Node.js and PHP have native options. In Python and Node.js you can set an events mode when creating a
connection pool.
 In PHP, edit php.ini adding the entry oci8.events=on.
 SQL*Plus enables FAN by default.

OCI Driver Considerations for ApPlication continuity
Check the documentation for the complete list of supported statements. Replace OCIStmtPrepare with OCIStmtPrepare2.
OCIStmtPrepare() has been deprecated since 12.2. All applications should use OCIStmtPrepare2(). TAC and AC allows
OCIStmtPrepare() and other OCI APIs not covered but does not replay these statements.

https://docs.oracle.com/en/database/oracle/oracle-database/19/lnoci/high-availability-in-oci.html#GUID-D30079AC-4E59-

4CC3-86E8-6487A4891BA2

https://docs.oracle.com/en/database/oracle/oracle-database/19/lnoci/deprecated-oci-functions.html#GUID-FD74B639-

8B97-4A5A-BC3E-269CE59345CA

ODP.NET Unmanaged Provider Driver Checklist
1. Ensure that all recommended patches are applied at the client. Refer to the MOS Note Client Validation

Matrix for Draining and Application Continuity (Doc ID 2511448.1)

2. To use FAN for OCI-based applications, do the following:

• Set aq_ha_notifications on the services

• Use Recommended Connection String for auto-configuration of ONS

• Set onsConfig and wallet_location (optional) in oraaccess.xml

Open port 6200 for ONS (6200 is the default port, a different port may have been chosen)

<default_parameters>
 (Other settings may be present in this section)
 <ons>

 <auto_config>true</auto_config>
 <wallet_location>/path/onswallet</wallet_location>
 </ons>
 <events>
 True
 </events>

</default_parameters>

https://docs.oracle.com/en/database/oracle/oracle-database/19/lnoci/high-availability-in-oci.html#GUID-D30079AC-4E59-4CC3-86E8-6487A4891BA2
https://docs.oracle.com/en/database/oracle/oracle-database/19/lnoci/high-availability-in-oci.html#GUID-D30079AC-4E59-4CC3-86E8-6487A4891BA2
https://docs.oracle.com/en/database/oracle/oracle-database/19/lnoci/deprecated-oci-functions.html#GUID-FD74B639-8B97-4A5A-BC3E-269CE59345CA
https://docs.oracle.com/en/database/oracle/oracle-database/19/lnoci/deprecated-oci-functions.html#GUID-FD74B639-8B97-4A5A-BC3E-269CE59345CA

18 Application Checklist for Continuous Service for MAA Solutions / Version [1.0]

 Copyright © 2024, Oracle and/or its affiliates / Public

• Set FAN in the connection string:

 "user id=oracle; password=oracle; data source=HA; pooling=true; HA

events=true;“

• (optional) Set Runtime Load Balancing, in the connection string:

 "user id=oracle; password=oracle; data source=HA; pooling=true; HA
events=true;
 load balancing=true;“

Use ACCHK to deep-dive into your protection

ACCHK is a database feature starting Oracle Database 19c RU11 (19.11). Database views and PL/SQL-based reports
show you the level of protection for your applications for failover. If an application is not fully protected, then ACCHK
identifies that application, finds out the reason why the application is not fully protected, and guides you how to

increase the protection.

ACCHK uses Application Continuity data to collect coverage for a workload and provides detailed information as per
your request. You must enable ACCHK to collect coverage before you execute a database workload. ACCHK also

provides diagnostics for failover.

More information can be found in the Oracle RAC Admin and Deployment Guide.

Enable acchk
To use acchk connect to the database (with SQL*Plus for example) and run the following commands:

• Grant read access to the users, who will run the Application Continuity Protection Check report and views,
using the ACCHK_READ role:

• Enable Application Continuity tracing for your applications using the dbms_app_cont_admin.acchk_set

procedure:

acchk is disabled after 600 seconds, by default. A different value can be set by providing a timeout value to the

acchk_set procedure. For example, to disable after 300 seconds:

 To manually disable acchk, run the following procedure:

Note that when manualy disabled only new sessions are affected, tracing will not be disabled for the current sessions
until the sessions are terminated.

With acchk enabled, exercise your application by running its functionality. It is not necessary to induce failures,
run maintenance tasks and so on, regular runtime operation is sufficient. Once you have executed your
application functions, disable acchk and then examine the in-built reports or the view-based data.

GRANT ACCHK_READ to myUser;

EXECUTE dbms_app_cont_admin.acchk_set(true);

EXECUTE dbms_app_cont_admin.acchk_set(true, 300);

EXECUTE dbms_app_cont_admin.acchk_set(false);

19 Application Checklist for Continuous Service for MAA Solutions / Version [1.0]

 Copyright © 2024, Oracle and/or its affiliates / Public

Examine the acchk report and VIEWS
After running your application’s database operations, examine the acchk report:

Report levels are FULL, WARNING, SUMMARY. The default report is SUMMARY.

A sample report shows:

Several views also exist, and can be queried to retrieve data. The views are DBA_ACCHK_EVENTS,

DBA_ACCHK_EVENTS_SUMMARY, DBA_ACCHK_STATISTICS, and DBA_ACCHK_STATISTICS_SUMMARY

APPENDIX

Developer Best Practices for Continuous Availability
The following are best practices for developers when writing applications that will be highly available.

Return Connections to the Connection Pool
The most important developer practice is to return connections to the connection pool at the end of each request. This is
important for best application performance at runtime, for draining work and for rebalancing work at runtime and during
maintenance, and for handing failover events. Some applications have a false idea that holding onto connections
improves performance. Holding a connection neither performs nor scales. One customer reported 40% reduction in mid-
tier CPU and higher throughput by returning their connections to the pool.

Clean Session State between Requests
RESET_STATE is one of the most valuable developer features in Oracle Database.

When an application returns a connection to the connection pool, cursors in FETCH status, and session state set on that
session remain in place unless an action is taken to clear them. For example, when an application borrows and returns a
connection to a connection pool, next usages of that connection can see this session state if the application does not
clean. At the end of a request, it is best practice to return your cursors to the statement cache and to clear application
related session state to prevent leakage to later re-uses of that database session.

Prior to Oracle Database 21c, use dbms_session.modify_package_state(dbms_session.reinitialize)to clear
PL/SQL global variables, use TRUNCATE to clear temporary tables, SYS_CONTEXT.CLEAR_CONTEXT to clear context and
cancel your cursors by returning them to the statement cache.

With Oracle Database 21c, the service attribute, RESET_STATE, clears session state set by the application with no
code required. Setting RESET_STATE to LEVEL1 on the service resets session states at explicit end of request.
RESET_STATE does not apply to implicit request boundaries discovered by TAC. When RESET_STATE is used,
applications can rely on the state being reset at end of request.

EXECUTE dbms_app_cont_report.acchk_report(dbms_app_cont_report.SUMMARY)

20 Application Checklist for Continuous Service for MAA Solutions / Version [1.0]

 Copyright © 2024, Oracle and/or its affiliates / Public

Clearing session state improves your protection when using TAC, TAC can re-enable more often. With Oracle Database
23c, RESET_STATE is available for all applications with and without TAC.

Do not embed COMMIT in PL/SQL and Avoid Commit on Success and
Autocommit
It is recommended practice to use a top-level commit, (OCOMMIT or COMMIT()or OCITransCommit). If your application
is using COMMIT embedded in PL/SQL or AUTOCOMMIT or COMMIT ON SUCCESS, it may not be possible to recover
following an outage or timeout. PL/SQL is not reentrant. Once a commit in PL/SQL has executed, that PL/SQL block
cannot be resubmitted. Applications either need to unpick the commit which is not sound as that data may have been
read, or for batch use a checkpoint and restart technique. When using AUTOCOMMIT or COMMIT ON SUCCESS, the
return message is lost.

If your application is using a top-level commit, then there is full support for Transparent Application Continuity (TAC),
Application Continuity (AC), and TAF Select Plus (12.2). If your application is using COMMIT embedded in PLSQL or
AUTOCOMMIT or COMMIT ON SUCCESS, it may not be possible to replay for cases where the call including the COMMIT
did not run to completion.

Use ORDER BY or GROUP BY in Queries
Application Continuity ensures that the application sees the same data at replay. If the same data cannot be restored,
Application Continuity will not accept the replay. When a SELECT uses ORDER BY or GROUP BY order is preserved. In a

RAC environment the query optimizer most often uses the same access path, which can help in the same ordering of the
results. Application Continuity also uses an AS OF clause under the covers to return the same query results everywhere
AS OF is allowed.

Considerations for SQL*Plus
SQL*Plus is often our go to tool for trying things out. SQL*Plus of course does not reflect your actual application that

will be used in production, so it is always better to use the real application test suite to test your failover plan and to
measure your protection. SQL*Plus is not a pooled application so does not have explicit request boundaries. Some
applications do use SQL*Plus for example for reports. To use SQL*Plus with failover check the following:

1. FAN is always enabled for SQL*Plus. Use the recommended connect string (described above) that auto-
configures ONS end points for you.

2. When using SQL*plus the key is to minimize round trips to the database:
https://blogs.oracle.com/opal/sqlplus-12201-adds-new-performance-features

3. SQL*Plus is supported for TAC starting Oracle 19c. For best results set a large arraysize e.g. (set arraysize

1000). Avoid enabling serveroutput as this creates unrestorable session state. This restriction is removed

with Oracle Database 23c.

4. SQL*Plus is supported for AC starting Oracle 12.2. AC does not have implicit boundaries so does not reenable
after your first commit.

End-to-End (e2e) Tracing
Enterprise Manager Top Consumers, TKPROF, Application Continuity statistics, ACCHK and more offer separation by
services and by module and action. You will be using services. It is good practice for applications to use module and
action to designate work. When using module and action tags, these are reported by EM top consumers, AWR, statistics

and ACCHK. To set module and action use the driver provided API's rather than the PL/SQL package
DBMS_APPLICATION_INFO - the API's are local driver calls so provide higher performance.

https://blogs.oracle.com/opal/sqlplus-12201-adds-new-performance-features

21 Application Checklist for Continuous Service for MAA Solutions / Version [1.0]

 Copyright © 2024, Oracle and/or its affiliates / Public

Align Application and Server Timeouts
If an application-level timeout is lower than timeouts provided for the detection and recovery times of the underlying
system, then there is insufficient time available for the underlying recovery to complete. Misaligned timers can result in

replay by Application Continuity starting before the system has recovered, potentially causing multiple replays to be
attempted before success, or requests timing out and an error being returned to your applications or users.

Resource manager is the feature recommended by Oracle to stop, quarantine or demote long running SQL, and to block
SQL from executing in the first place. If you wish to use READ_TIMEOUT for hung and dead systems, the value for
READ_TIMEOUT should be above recovery timeouts. It is not advisable to use READ_TIMEOUT with low values. This can

lead to unnecessary aborts to systems in recovery that have not failed.

Consider an application that uses READ_TIMEOUT or HTTP_REQUEST_TIMEOUT or a custom timeout, then the following

guidelines apply:

READ_TIMEOUT > EXADATA special node eviction (FDDN) (2 seconds)

READ_TIMEOUT > MISSCOUNT (default 30 sec, modifiable in 12c Grid Infrastructure)

READ_TIMEOUT > Data Guard Observer: FastStartFailoverThreshold (default 30 sec, modifiable)

FastStartFailoverThreshold > MISSCOUNT (must be at least twice)

READ_TIMEOUT > FAST_START_MTTR_TARGET (many systems choose 15 or 30 seconds)

READ_TIMEOUT > Oracle SQL*NET level: (RETRY_COUNT+1) * RETRY_DELAY

READ_TIMEOUT < Replay_Initiation_Timeout (modifiable on the service, default 300 seconds)

To avoid premature cancelling of requests the application timeout should be larger than the maximum of:

(MISSCOUNT (or FDNN) + FAST_START_MTTR_TARGET), or

(FastStartFailoverThreshold + FAST_START_MTTR_TARGET + TIME TO OPEN)

22 Application Checklist for Continuous Service for MAA Solutions / Version [1.0]

 Copyright © 2024, Oracle and/or its affiliates / Public

Tracking your Grants for keeping original values
Use SQL similar to the following to know which grants for KEEP are set on your database.

ALTER SESSION SET CONTAINER=&PDB_NAME ;

Which should return data in a format similar to the following example:

set pagesize 60
set linesize 90

ttitle "Sequences Kept for Replay"
col sequence_owner format A20 trunc heading "Owner"
col sequence_name format A30 trunc heading "Sequence Name"
col keep_value format A10 trunc heading "KEEP"
break on sequence_owner

select sequence_owner, sequence_name, keep_value
from all_sequences, all_users
where sequence_owner = username
and oracle_maintained = 'N'
order by sequence_owner, sequence_name;

ttitle "Date/Time Kept for Replay"
col grantee format A20 trunc heading "Grantee"
col PRIVILEGE format A20 trunc heading "Keep"
col ADMIN_OPTION format A8 trunc heading "Admin|Option"
break on grantee

select grantee, PRIVILEGE, ADMIN_OPTION
from dba_sys_privs, all_users
where
 grantee = username
and oracle_maintained = 'N'
and PRIVILEGE like '%KEEP%'
union
select distinct grantee, 'NO KEEP' PRIVILEGE, 'NO' ADMIN_OPTION
from dba_sys_privs l1, all_users
where
 grantee = username
and oracle_maintained = 'N'
and l1.grantee not in
 (select l2.grantee
 from dba_sys_privs l2
 where PRIVILEGE like '%KEEP%')
order by privilege, grantee;

23 Application Checklist for Continuous Service for MAA Solutions / Version [1.0]

 Copyright © 2024, Oracle and/or its affiliates / Public

Debugging FAST APPLICATION NOTIFICATION
FAN events are sent via two protocols:

• Oracle Notification Server (ONS) or full-FAN

• In-band FAN

In order to receive FAN events via ONS a subscription must be made to the ONS daemon which is publishing the
events. In the simplest configuration this is the ONS daemon installed as part of Grid Infrastructure and running
on the cluster which forms the database tier.

The default port for ONS is 6200, which can be confirmed with:

The output will show the ONS configuration:

The Remote Port is the port through which events are sent. This port needs to be open for TCP POSTS through
any firewall that may be configured.

To confirm that a subscription to ONS has been opened by your client application, if you have access to the GI
cluster you can examine connections to the ONS daemon at runtime.

Which will show you the following information:

Tue Nov 16 page 1
 Sequences Kept for Replay

Owner Sequence Name KEEP
-------------------- ------------------------------ ----------
MOVIESTREAM MDRS_1715A$ Y
 MDRS_17165$ Y

Tue Nov 16 page 1
 Date/Time Kept for Replay

 Admin
Grantee Keep Option
-------------------- -------------------- --------
ADMIN NO KEEP NO
GGADMIN NO KEEP NO
MOVIESTREAM KEEP NO
RMAN$VPC NO KEEP NO

$ srvctl config nodeapps

ONS exists: Local port 6100, remote port 6200, EM port 2016, Uses SSL true
ONS is enabled
ONS is individually enabled on nodes:
ONS is individually disabled on nodes:

$ onsctl debug

24 Application Checklist for Continuous Service for MAA Solutions / Version [1.0]

 Copyright © 2024, Oracle and/or its affiliates / Public

The remote Port and the local host IP address (6200 in this example)

The clients connected at runtime where a connected client’s IP will be displayed

Have you set the appropriate settings on the client side for FAN?

• For Universal Connection Pool with JDBC thin driver, ensure the Boolean pool property
FastConnectionFailoverEnabled = true is set when using Universal Connection Pool with the JDBC

thin driver

• For ODP.Net, ensure that pooling=true; HA events=true is set in the connect string

• For OCI clients

o Set “<events>true</events>” in oraaccess.xml and

o enable notifications on the dynamic database service srvctl modify service –notification
TRUE

• For WebLogic Active Grid Link, FAN is on by default. This is visible in the admin console. Also set
ons.configuration at the admin console for the ONS end points.

 IP ADDRESS PORT TIME SEQUENCE FLAGS
------------------------ ----- -------- -------- --------
 123.123.1.123 6200 6205af70 00000008 00000008

<<< Information removed >>>

Client connections: (5)

 ID CONNECTION ADDRESS PORT FLAGS SNDQ REF PHA SUB
-------- --------------------------------------- ----- ------- ---- --- --- ---
 0 internal 0 000044a 0 1 IO 1
 3 127.0.0.1 16576 040041a 0 1 IO 0
 d 127.0.0.1 16598 040041a 0 1 IO 1
 e 127.0.0.1 16600 040041a 0 1 IO 1
 f ::ffff:100.101.102.103 61838 04c042a 0 1 IO 1

25 Application Checklist for Continuous Service for MAA Solutions / Version [1.0]

 Copyright © 2024, Oracle and/or its affiliates / Public

Additional Materials
Oracle Technology Network (OTN) Home page for Application Continuity

http://www.oracle.com/goto/ac

Application Continuity

Ensuring Application Continuity (https://docs.oracle.com/en/database/oracle/oracle-
database/21/racad/ensuring-application-continuity.html#GUID-C1EF6BDA-5F90-448F-A1E2-
DC15AD5CFE75)

Graceful Application Switchover in RAC with No Application Interruption
My Oracle Support (MOS) Note: Doc ID 1593712.1

Embedding UCP with JAVA Application Servers:

WLS UCP Datasource, https://blogs.oracle.com/weblogicserver/wls-ucp-datasource

Design and Deploy WebSphere Applications for Planned, Unplanned Database Downtimes and Runtime
Load Balancing with UCP (http://www.oracle.com/technetwork/database/application-
development/planned-unplanned-rlb-ucp-websphere-2409214.pdf)

Reactive programming in microservices with MicroProfile on Open Liberty 19.0.0.4
(https://openliberty.io/blog/2019/04/26/reactive-microservices-microprofile-19004.html#oracle)

Design and deploy Tomcat Applications for Planned, Unplanned Database Downtimes and Runtime Load
Balancing with UCP (http://www.oracle.com/technetwork/database/application-development/planned-
unplanned-rlb-ucp-tomcat-2265175.pdf).

Fast Application Notification

http://www.oracle.com/technetwork/database/options/clustering/applicationcontinuity/learnmore/fastapplicat
ionnotification12c-2538999.pdf

http://www.oracle.com/goto/ac
https://docs.oracle.com/en/database/oracle/oracle-database/21/racad/ensuring-application-continuity.html#GUID-C1EF6BDA-5F90-448F-A1E2-DC15AD5CFE75
https://docs.oracle.com/en/database/oracle/oracle-database/21/racad/ensuring-application-continuity.html#GUID-C1EF6BDA-5F90-448F-A1E2-DC15AD5CFE75
https://docs.oracle.com/en/database/oracle/oracle-database/21/racad/ensuring-application-continuity.html#GUID-C1EF6BDA-5F90-448F-A1E2-DC15AD5CFE75
https://blogs.oracle.com/weblogicserver/wls-ucp-datasource
http://www.oracle.com/technetwork/database/application-development/planned-unplanned-rlb-ucp-websphere-2409214.pdf
http://www.oracle.com/technetwork/database/application-development/planned-unplanned-rlb-ucp-websphere-2409214.pdf
https://openliberty.io/blog/2019/04/26/reactive-microservices-microprofile-19004.html%23oracle
http://www.oracle.com/technetwork/database/application-development/planned-unplanned-rlb-ucp-tomcat-2265175.pdf
http://www.oracle.com/technetwork/database/application-development/planned-unplanned-rlb-ucp-tomcat-2265175.pdf
http://www.oracle.com/technetwork/database/options/clustering/applicationcontinuity/learnmore/fastapplicationnotification12c-2538999.pdf
http://www.oracle.com/technetwork/database/options/clustering/applicationcontinuity/learnmore/fastapplicationnotification12c-2538999.pdf

26 Application Checklist for Continuous Service for MAA Solutions / Version [1.0]

 Copyright © 2024, Oracle and/or its affiliates / Public

Connect with us

Call +1.800.ORACLE1 or visit oracle.com. Outside North America, find your local office at: oracle.com/contact.

 blogs.oracle.com facebook.com/oracle twitter.com/oracle

Copyright © 2024, Oracle and/or its affiliates. This document is provided for information purposes only, and the contents hereof are subject to change without notice. This document
is not warranted to be error-free, nor subject to any other warranties or conditions, whether expressed orally or implied in law, including implied warranties and conditions of
merchantability or fitness for a particular purpose. We specifically disclaim any liability with respect to this document, and no contractual obligations are formed either directly or
indirectly by this document. This document may not be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, without our prior written
permission.

Oracle, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

