

Confidential - Oracle Restricted

Confidential - Oracle Restricted

What’s in Oracle Database
23ai for Java Developers?
June, 2024, Version 1.0
Copyright © 2024, Oracle and/or its affiliates
Public

2 What’s in Oracle Database 23ai for Java Developers? / Version 1.0

 Copyright © 2024, Oracle and/or its affiliates / Public

Confidential - Oracle Restricted

Confidential - Oracle Restricted

Purpose statement
This document provides an overview of features and enhancements included in release 23ai. It is intended solely
to help you assess the business benefits of upgrading to 23ai and planning for the implementation and upgrade
of the product features described.

Disclaimer
This document in any form, software, or printed matter, contains proprietary information that is the exclusive
property of Oracle. Your access to and use of this confidential material is subject to the terms and conditions of
your Oracle software license and service agreement, which has been executed and with which you agree to
comply. This document and information contained herein may not be disclosed, copied, reproduced, or
distributed to anyone outside Oracle without prior written consent of Oracle. This document is not part of your
license agreement, nor can it be incorporated into any contractual agreement with Oracle or its subsidiaries or
affiliates.

This document is for informational purposes only and is intended solely to assist you in planning for the
implementation and upgrade of the product features described. It is not a commitment to deliver any material,
code, or functionality, and should not be relied upon in making purchasing decisions. The development, release,
timing, and pricing of any features or functionality described in this document remains at the sole discretion of
Oracle. Due to the nature of the product architecture, it may not be possible to safely include all features
described in this document without risking significant destabilization of the code.

3 What’s in Oracle Database 23ai for Java Developers? / Version 1.0

 Copyright © 2024, Oracle and/or its affiliates / Public

Confidential - Oracle Restricted

Confidential - Oracle Restricted

Table of contents

Purpose 5
Introduction 6
AI Vector Search and Vector Datatype 6

JDBC Support for Vector Data Type 6
The JDBC API 6

Ease of Development, Multi-Cloud 6
Ease of Development 7

JDBC Support for ARRAY ENQUEUE/DEQUEUE for JSON Payload 7
Oracle JVM Goes JDK 11 with Java Modules 7
JDBC-Thin Support for Relational-JSON Duality Views 7
JDBC Support for Native Boolean Data Type 7
JDBC Connection property sendBooleanAsNativeBoolean 8
Oracle JVM Web Services Callout Enhancements 8
JDBC-Thin Support for SQL Annotations 8

Cloud Computing and Multi-Cloud 9
AppConfig, Resource and Trace Events Providers 9

Java Performance and Scalability 11
TrueCache DataSource 12
Pipelined Database Operations 12
New DataLoad Mode for the Reactive Streams Ingestion 12
UCP Support for XA Transactions with Database Sharding 12
UCP Support for Connection Creation Consumer and Callback 13
UCP Support for Maximum Connection Reuse Time 13
Multi-Pool Support in DRCP 13
Reactive Extension to UCP 13
JDBC-Thin Support for Bequeath Protocol 14
Enhancement to executeBatch() executeLargeBatch() 14
Enhanced UCP Connection Borrow 14

Mission Critical Deployment, Security and Availability 14
Mission Critical Deployment 14

IaC - App Stack for Java 14
Observability 14

Security 15
Thumbprint-based Certificate Selection 15
Easy Connect support for LDAP/LDAPS 15
OJVM Support for FIPS 16
Support for Longer Passwords 16
Token-Based Authentication for OCI IAM and Azure AD 16
RADIUS Challenge-Response Authentication (a.k.a. 2FA) 17
Kerberos Enhancements 17

4 What’s in Oracle Database 23ai for Java Developers? / Version 1.0

 Copyright © 2024, Oracle and/or its affiliates / Public

Confidential - Oracle Restricted

Confidential - Oracle Restricted

Oracle JVM Support for HTTP and TCP 17
Availability 17

Transparent Application Continuity Enhancement 17
Conclusion 18

5 What’s in Oracle Database 23ai for Java Developers? / Version 1.0

 Copyright © 2024, Oracle and/or its affiliates / Public

Confidential - Oracle Restricted

Confidential - Oracle Restricted

Purpose
This document provides an overview of features and enhancements included in release 23ai. It is intended solely
to help you assess the business benefits of upgrading to 23ai and planning for the implementation and upgrade
of the product features described.

6 What’s in Oracle Database 23ai for Java Developers? / Version 1.0

 Copyright © 2024, Oracle and/or its affiliates / Public

Confidential - Oracle Restricted

Confidential - Oracle Restricted

Introduction
I am a Java developer or a Java architect, why should I read this document? There are several reasons for you to
read this document. This technical brief gives you a summary of Java features in Oracle Database 23ai. The new
features address the areas of Java support for Oracle AI Vector Search, ease of development, Multi-Cloud, Java
apps performance and scalability, mission critical deployments, security, and availability.

AI Vector Search and Vector Datatype
A vector is an array of one or more numeric values i.e., integers (..., -2, -1, 0, 1, 2, ...) or fractional numbers (..., -
2.2, -1.1, 0.0, 1.1, 1.1, ...). Vector embeddings are the mathematical representations of the meanings and
relationships of objects). Vector embeddings are generated by models.

AI Vector Search allows question answering and similarity search i.e., semantic relationship between objects
(words, phrases, images, and so on).

The VECTOR data type has been introduced for storing and indexing vector embeddings for fast retrieval and
similarity search. The possible numeric types of a VECTOR are: INT8, FLOAT32, and FLOAT64.

CREATE TABLE my_vectors (id NUMBER, embedding VECTOR(768, INT8)) ;

In this example, each vector has 768 dimensions, and each dimension is an INT8.

JDBC Support for Vector Data Type
JDBC Support for the Vector datatype allows developers build robust, scalable, and high-performance Java
applications with Artificial Intelligence focus.

Values of the INT8 type are 8-bit two's complement numbers, corresponding to a "byte" in Java. Values of the
FLOAT32 type are 32-bit floating point numbers, corresponding to a "float" in Java. Values of the FLOAT64 type
are 64-bit floating point numbers, corresponding to a "double" in Java.

The JDBC API
The Oracle JDBC driver implement the necessary components to support AI Vector Search for Java applications
including SQLType, DatabaseMetaData, ResultSetMetaData and ParameterMetaData, VectorMetaData, Java to
SQL Conversions with PreparedStatement and CallableStatement, SQL to Java Conversions with
CallableStatement, SQL to Java Conversions with CallableStatment and ResultSet, and VECTOR Datum class.

Using these APIs, you may implement an interactive command line program that performs a similarity search
using a vector embedding of text sentences.

PreparedStatement query = connection.prepareStatement(

 "SELECT info"

 + " FROM my_data"

 + " ORDER BY VECTOR_DISTANCE(v, ?, COSINE)"

 + " FETCH APPROX FIRST ? ROWS ONLY");

See the Oracle JDBC doc for more details.

Ease of Development, Multi-Cloud
This release brings new features for ease of development and multi-Cloud.

7 What’s in Oracle Database 23ai for Java Developers? / Version 1.0

 Copyright © 2024, Oracle and/or its affiliates / Public

Confidential - Oracle Restricted

Confidential - Oracle Restricted

Ease of Development
Features for ease of development include Oracle JVM support for Java SE 11 and Java Modules, JDBC-Thin
support for Native Boolean type, JDBC-Thin support for Relational-JSON Duality Views, Oracle JVM Web Services
Callout Enhancements, JDBC-Thin support for SQL Annotations, and Multi-Cloud support.

JDBC Support for ARRAY ENQUEUE/DEQUEUE for JSON Payload
In this release JDBC fixes a bug regarding the correctness of the array object for enqueue and dequeue calls with
JSON payload.

Oracle JVM Goes JDK 11 with Java Modules
In this DB 23.4.0.24.05 release, the database resident JVM a.k.a. Oracle JVM now supports JDK 11 and Java
modules.
Project Jigsaw led to the Java module system introduced in Java 9. The design goals were:

§ Make it easier for developers to construct and maintain libraries and large applications

§ Improve the security and maintainability of Java SE Platform Implementations in general, and the JDK in
particular

§ Enable improved application performance

§ Enable the Java SE Platform, and the JDK, to scale down for use in small computing devices and dense cloud
deployments.

Java modules support with Oracle JVM works as follows

1. The Java SE modules that make the Oracle JVM system, are automatically included in the module root set

2. If the main class of a Java class is a member of a module, then it is added to the module root set

3. Other modules can be added using one of the following options

a. loadjava --add-modules option when the main class is loaded already. This is like the JDK’s
java –-add-modules command-line argument

b. Specifying the oracle.aurora.addmods system property. See setting property, here.

4. The final set of modules is examined for consistency and completeness at Oracle JVM session start up.

JDBC-Thin Support for Relational-JSON Duality Views
The Relational-JSON Duality Views are a new Oracle Database 23ai feature which gives developers the best of the
Relational (the efficiency of space management, the queryability, consistency, the powerful analytics and
reporting capabilities of SQL) and JSON (self-describing, self-contained, and schema-less, ease of development
i.e., access JSON data programmatically, hierarchical data, common interchange format, binary JSON, and ease of
conversion to Java types) worlds.

See my blog post for more details.

JDBC Support for Native Boolean Data Type
The Oracle JDBC supports the ISO SQL standard-compliant BOOLEAN data type in oracle.jdbc.OracleType

with the following APIs

https://openjdk.org/projects/jigsaw/
https://docs.oracle.com/en/database/oracle/oracle-database/23/jjdev/DBMS-JAVA-package.html#GUID-83B19700-4B35-4196-BF26-4AA65DCDEACD
https://docs.oracle.com/en/database/oracle/oracle-database/23/jsnvu/overview-json-relational-duality-views.html#GUID-CE7227BF-B4AF-4024-A578-ED52795F4525
https://kuassimensah.medium.com/whats-in-oracle-db-23c-free-developer-release-for-java-developers-26931081682c

8 What’s in Oracle Database 23ai for Java Developers? / Version 1.0

 Copyright © 2024, Oracle and/or its affiliates / Public

Confidential - Oracle Restricted

Confidential - Oracle Restricted

INSERT

...

String query = "INSERT INTO BoolTable values (?) ";

PreparedStatement pstmt = con.prepareStatement(query);

pstmt.setBoolean(1, true);

pstmt.execute();

...

FETCH
...

Statement stmt = con.createStatement();

ResultSet rs = stmt.executeQuery("select * from BoolTable");

while(rs.next()) {

 System.out.print("Value: " + rs.getBoolean("booleanColumn"));

...

}

ResultSetMetaData should return getColumnType = 16 and getColumnTypeName = BOOLEAN

My colleague @juarezjunior explores extensively, in his blog post, the BOOLEAN type and compatibility
with table columns that use NUMBER and VARCHAR data types as logical Boolean values.

JDBC Connection property sendBooleanAsNativeBoolean
A new property sendBooleanAsNativeBoolean, ensures backward compatibility with the older JDBC driver
release.

When set to false (the default is true), this property will restore the old behaviour of sending integer values (0/1)
as Boolean data type. This feature brings compatibility to Java applications that rely on the old behaviour of the
Boolean data type thereby simplifying upgrading to the latest JDBC driver without breaking existing Java
applications.

Oracle JVM Web Services Callout Enhancements
The ability to invoke or callout external REST or SOAP Web Services from with the database is a popular use case.
In this release, the Oracle JVM Web Services Callout Utility embeds the wadl2java tool; no need for a separate
download of that tool and no need for specifying its location using the -t <wadl2java tool location> option
of the loadjava utility.

See more details here.

JDBC-Thin Support for SQL Annotations
A database table, view or column can be associated with an application metadata or annotation thereby allowing
central management of changes. JDBC-Thin furnishes a new API for retrieving annotations.

getAnnotations(java.lang.String objectName, java.lang.String domainName,
java.lang.String domainOwner) throws java.sql.SQLException

https://medium.com/oracledevs/the-new-boolean-data-type-in-oracle-database-23c-with-the-oracle-jdbc-drivers-23c-21c-jdbc-f3252b200838
https://docs.oracle.com/en/database/oracle/oracle-database/23/jjdev/database-as-web-service-consumer.html#GUID-F84EC95B-0F0A-48B7-B0B1-E04BE9E704D8

9 What’s in Oracle Database 23ai for Java Developers? / Version 1.0

 Copyright © 2024, Oracle and/or its affiliates / Public

Confidential - Oracle Restricted

Confidential - Oracle Restricted

getAnnotations(java.lang.String objectName, java.lang.String columnName,
java.lang.String domainName, java.lang.String domainOwner) throws java.sql.SQLException

Cloud Computing and Multi-Cloud
This section covers new features to support Cloud computing using Oracle Cloud Infrastructure. On the multi-
Cloud front, Oracle and Microsoft have been working together to ensure Java apps can run across Azure (Apps)
and Oracle Cloud (Autonomous Database) seamlessly. The new features include centralized AppConfig and
resource providers. Some of these features can be used on-premises and in private Clouds.

AppConfig, Resource and Trace Events Providers

Cloud computing fosters the need for storing applications configurations and resources separately from
application code in Cloud storages or Vaults and retrieve these securely. Centralized AppConfigs allows
configuration changes at runtime, without making changes to your Java apps.

In this release, the Oracle JDBC supports centralized App config and resource providers through a new
extensibility or plugin mechanism based on the standard Service Provider Interface.

Java developers can now store and retrieve their entire app configs and/or discrete data (e.g., database
username, database password, database access token, TLS/SSL configuration) from Oracle Cloud Infrastructure
Object Storage, Azure App config, JSON https server or from on-premises (e.g., file system). Sensitive data such
as database connection passwords database access tokens, are stored as secrets in Vaults.
The centralization allows seamless config update without Java app code change.

https://github.com/oracle-samples/ojdbc-extensions

Centralized Configuration Providers

If the JDBC URL starts with jdbc:oracle:thin:@config-<provider> (e.g., jdbc:oracle:thin:@config-azure) then the
driver will attempt to load the config-<provider.jar> (e.g., config-azure.jar) from the list of registered service
providers.

The list of currently supported config providers includes the built-in providers, Azure App Config, OCI Object
Storage, OCI Database Tools Connections and user-defined custom providers. See the JDBC providers Github
repository.

Built-in providers: file system and https servers:
 jdbc:oracle:thin:@config-file:config.json

 jdbc:oracle:thin:@config-https://server/config/myappconfig?key=dev

1) Azure App Config connect_descriptor with optional user; password and wallet_location are optional as well
but specified as secrets in Azure Key Vault.
URL= jdbc:oracle:thin:@config-azure:{appconfig-name}[?key=prefix&label=value&option1=value1…]
Example: jdbc:oracle:thin:@config-azure:myappconfig?key=sales_app1&label=dev
As illustrated in figured 1, the combination of the app-config name (e.g., myappconfig), the prefix (e.g.,
/sales_app1) and the label (e.g., dev) are used for retrieving key-value pairs specified in the app config.
Specific Oracle JDBC properties may also be specified and retrieved using <prefix>/jdbc.

https://docs.oracle.com/javase/9/docs/api/java/util/ServiceLoader.html
https://github.com/oracle-samples/ojdbc-extensions
https://github.com/oracle-samples/ojdbc-extensions
https://github.com/oracle-samples/ojdbc-extensions

10 What’s in Oracle Database 23ai for Java Developers? / Version 1.0

 Copyright © 2024, Oracle and/or its affiliates / Public

Confidential - Oracle Restricted

Confidential - Oracle Restricted

Figure 1 - App config

2) OCI Object Storage connect_descriptor with optional user; password as well as wallet_location are optional or
specified as secrets in Azure Key Vault.
URL = jdbc:oracle:thin:@config-ociobject:{object-url}[?key=name&option1=value1...]
The connect_descriptor is stored under Object Storage / Buckets / Object → Object Details.
Example: jdbc:oracle:thin:@config-ociobject:https://objectstorage.us-phoenix-
1.oraclecloud.com/n/oracleonpremjava/b/bucket1/o/payload_ojdbc_objectstorage.json

{"connect_descriptor": "(description=(retry_count=20)(retry_delay=3)(address=(protocol=tc
ps)(port=1521)(host=adb.us-phoenix-
1.oraclecloud.com))(connect_data=(service_name=gebqqvpozhjbqbs_dbtest_medium.adb.oraclecl
oud.com))(security=(ssl_server_dn_match=yes)))",
 "user": "scott",
 "password": {
 "type": "vault-oci",
 "value": "ocid1.vaultsecret.oc1.phx.amaaaaaxxxx",
 "authentication": {
 "method": "OCI_INSTANCE_PRINCIPAL"
 }
 }

3) OCI Database Tools Connections with optional reference to OCI Vault for secrets.
Each configuration has an OCID that will be used to identify which connection is used. It contains a
connectionString, userName, userPassword, keyStores and advancedProperties.

URL = jdbc:oracle:thin:@config-ocidbtools:ocid1.databasetoolsconnection.oc1.phx.ama ...

4) Custom providers: Java developers may build their own providers by implementing the
oracle.jdbc.spi.OracleConfigurationProvider interface. That interface is in the JDBC Driver’s jar;
the built-in providers implement it. These providers must define their names and return
java.util.Properties.

The Java app must

• Include the provider JAR file in the classpath or the provider reference in the POM file

• Set the required values in the connection URL.

https://objectstorage.us-phoenix-1.oraclecloud.com/n/oracleonpremjava/b/bucket1/o/payload_ojdbc_objectstorage.json
https://objectstorage.us-phoenix-1.oraclecloud.com/n/oracleonpremjava/b/bucket1/o/payload_ojdbc_objectstorage.json
http://adb.us-phoenix-1.oraclecloud.com/
http://adb.us-phoenix-1.oraclecloud.com/
http://gebqqvpozhjbqbs_dbtest_medium.adb.oraclecloud.com/
http://gebqqvpozhjbqbs_dbtest_medium.adb.oraclecloud.com/
vault://ocid1.vaultsecret.oc1.phx.amaaaaaxxxx/

11 What’s in Oracle Database 23ai for Java Developers? / Version 1.0

 Copyright © 2024, Oracle and/or its affiliates / Public

Confidential - Oracle Restricted

Confidential - Oracle Restricted

 Resource Providers

A Resource Provider furnishes the Oracle JDBC with a single resource such as database connection string,
database username, database password, database access token, TLS/SSL configuration and Trace event listener.
Resource providers are configured by connection properties that identify the name of the resource providers
including: oracle.jdbc.provider.connectionString, oracle.jdbc.provider.username,
oracle.jdbc.provider.password, oracle.jdbc.provider.accessToken,

oracle.jdbc.provider.tlsConfiguration, and oracle.jdbc.provider.traceEventListener.

In the following code snippet, a connection property is used for configuring a password provider:

 oracle.jdbc.provider.password=password-provider

 oracle.jdbc.provider.password.vaultId=9999-8888-7777

The "oracle.jdbcprovider.password" property configures the name of a password provider while the
"oracle.jdbc.provider.password.vaultId" property configures a vaultId which is recognized by the

password provider.

Trace Event Listener Provider - OpenTelemetry

The Oracle JDBC driver may generate events such as database roundtrips during query execution, IP address
retries while establishing a connection, the beginning of Application Continuity (AC) recovery from a database
outage, a successful AC recovery.

The JDBC driver defines a listener that receives application and system tracing events from the Oracle Database
JDBC drivers. See the oracle.jdbc.TraceEventListener javadoc for more details.

The JDBC driver also defines an oracle.jdbc.spi.TraceEventListenerProvider Service Provider
interface that can be used to register a listener for publishing those events to OpenTelemetry or registering a
custom TraceEventListener.

1. You can Implement programmatically using OracleConnectionBuilder.traceEventListener(TraceEventListener)

2. Or use an OracleResourceProvider implementation: either your own one or the Oracle’s open-source
provider for OpenTelemetry. The new TraceEventListener OpenTelemetry Provider is an implementation of
the TraceEventListenerProvider interface; it has been published @ https://github.com/oracle-
samples/ojdbc-extensions/tree/main/ojdbc-provider-opentelemetry.

3. Identify the Trace Event Listener Provider with oracle.jdbc.provider.traceEventListener connection property

oracle.jdbc.provider.traceEventListener=example-provider

oracle.jdbc.provider.traceEventListener.traceLevel=INFO

Here is the SpringBoot example
spring.datasource.url=jdbc:oracle:thin:@tcps://adb.us-phoenix-
1.oraclecloud.com:1521/xyz.adb.oraclecloud.com?oracle.jdbc.provider.traceEventListener=open-
telemetry-trace-event-listener-provider

The other JDBC providers are @ https://github.com/oracle-samples/ojdbc-extensions.

Expect more built-in and open-source providers in future releases.

Java Performance and Scalability
The new features for performance and scalability include: the TrueCache data source, JDBC support for pipelined
database operations, a new DataLoad mode for the Reactive Streams Ingestion library (RSI), multi-pool support in
DRCP, UCP support for Sharding Split Partition Set , UCP support for XA Transactions with Sharding, UCP support
for Connection Creation Consumer and Callback, UCP support for Maximum Connection Reuse Time, Reactive

https://docs.oracle.com/en/database/oracle/oracle-database/23/jajdb/oracle/jdbc/TraceEventListener.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/jajdb/oracle/jdbc/spi/OracleResourceProvider.html
https://tinyurl.com/5aw5x2sc
https://tinyurl.com/5aw5x2sc
https://docs.oracle.com/en/database/oracle/oracle-database/23/jajdb/oracle/jdbc/spi/TraceEventListenerProvider.html
https://github.com/oracle-samples/ojdbc-extensions/tree/main/ojdbc-provider-opentelemetry
https://github.com/oracle-samples/ojdbc-extensions/tree/main/ojdbc-provider-opentelemetry
https://github.com/oracle-samples/ojdbc-extensions

12 What’s in Oracle Database 23ai for Java Developers? / Version 1.0

 Copyright © 2024, Oracle and/or its affiliates / Public

Confidential - Oracle Restricted

Confidential - Oracle Restricted

Extension to UCP, JDBC-Thin support for Bequeath protocol, performance enhancement for
executeBatch()/andexecuteLargeBatch(), and enhanced UCP connection borrow.

TrueCache DataSource
A True Cache instance is an in-memory, mostly diskless, fully functional, read-only replica of the primary Oracle
database. It resides in the middle-tier, collocated with the application. It is enabled at JDBC level by setting the
new oracle.jdbc.useTrueCacheDriverConnection property to true. Once enabled, the True Cache
datasource creates a logical connection which can be used either against the True Cache database instance or
against the primary database.

For marking a connection as Read-Only, the True Cache data source uses the
standard java.sql.Connection.setReadOnly(boolean) and java.sql.Connection.isReadOnly()

methods. By default, the read-only mode for a connection is set to false.

The following example illustrates using TrueCache

https://gist.github.com/Kuassim/350e775c6dcf7b4448418c920b4f9425

Pipelined Database Operations
A database pipeline consists of a sequence of multiple database requests submitted without waiting for a
response between operations. The database sends a response when the results of each query are ready.
Pipelined database operations foster an asynchronous programming model, in which a user thread returns
immediately upon submitting a SQL statement for execution without waiting for its execution and the ResultSets.

Java developers would leverage database pipelining through the Oracle JDBC Reactive Extensions, the Reactive
Streams libraries (R2DBC, Reactor, RxJava, Akka Streams, Vert/x, etc), Java Virtual Threads.
See my blog post for code samples illustrating each of these use cases and the transparent pipelined operations
support for the standard JDBC batching.

New DataLoad Mode for the Reactive Streams Ingestion
The Reactive Streams Ingestion library (RSI) allows fast data ingest into the Oracle database, using the direct path
load and Reactive Streams mechanisms. It leverages the Java connection pool (UCP) as well as table partitions,
Oracle RAC connection affinity and the Oracle Globally Distributed Database (formerly Database Sharding).

In this release, a new DataLoad mode has been added to the default Streaming mode. In the Streaming mode, the
worker threads share a pool of JDBC connections, and the ingested data is committed on a frequent basis
whereas in the DataLoad mode, the number of connections could be large and the ingested data are committed
only when the RSI instance is closed.

ReactiveStreamsIngestion.Builder rsiBuilder = ReactiveStreamsIngestion.builder()
 .useDataLoadMode()
 .username("<user_name>")
 .password("<password>")
 .url("jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)
(HOST=myhost.com)(PORT=5521))(CONNECT_DATA=(SERVICE_NAME=myservice.com)))")
 .table("customers")
 .columns (new String[] { "id", "name", "region" });
// Use try-with-resource statement to ensure that RSI instance is closed at the
// end of the statement.
try (ReactiveStreamsIngestion rsi = rsiBuilder.build()){
 // Publish Records.
}

See more details and code samples in the Oracle Database 23ai JDBC Dev guide.

UCP Support for XA Transactions with Database Sharding
Java applications that use the UCP native data source in WebLogic Server to connect to Sharded Oracle databases
can participate in JTA/XA transactions managed by the WebLogic Transaction Manager (TM).

https://gist.github.com/Kuassim/350e775c6dcf7b4448418c920b4f9425
https://kuassimensah.medium.com/whats-in-oracle-db-23c-free-developer-release-for-java-developers-26931081682c
https://docs.oracle.com/en/database/oracle/oracle-database/23/jjdbc/support-for-high-speed-ingestion-of-data-streams.html#GUID-4795D4BF-6DFE-4F15-9DC6-B0B981F73488

13 What’s in Oracle Database 23ai for Java Developers? / Version 1.0

 Copyright © 2024, Oracle and/or its affiliates / Public

Confidential - Oracle Restricted

Confidential - Oracle Restricted

UCP Support for Connection Creation Consumer and Callback
This feature allows a Java application to register “a connection creation consumer” for a specific
PoolDataSource object. That consumer will be notified i.e., called back, upon explicit (i.e., by the Java

application) or implicit (i.e., by UCP to adjust sizing settings) connection creation.

See chapter 4 of the UCP Dev guide for more details and code samples for registering a connection creation
consumer, unregistering it, checking its status, and so on.

UCP Support for Maximum Connection Reuse Time
The typical use case for this feature is when the middle-tier and the database tier are separated by a firewall; in
that case, some connections may be blocked by the firewall, and remain idle in the pool for a long time.
Setting the maximum connection reuse time (in seconds) to a smaller value than the firewall timeout will avoid
such situation.

pds.setMaxConnectionReuseTime(300);

Setting the new system property oracle.ucp.timersAffectAllConnections to TRUE, allows the periodic

poll, to check all available connection for the maximum connection reuse time.

See more details in section 5.4.1.1 of the UCP Dev guide.

Multi-Pool Support in DRCP
The Database Resident Connection Pool (DRCP) is an RDBMS-side pool either at a Pluggable Database (PDB) level
or at the managing infrastructure also known as Container Database (CDB) level. Java applications can refer to
DRCP, using (SERVER=POOLED) in the JDBC connect string.

The new multi-pool feature allows sub-partitioning the DRCP between several applications by naming the sub-
partitions using (POOL_NAME= <pool_name>) in the connect string.

Here is an example of connect string with DRCP and multi-pool.

(DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)(HOST=)(PORT=))

 (CONNECT_DATA=(SERVER=POOLED)(POOL_NAME=)))

You can add or remove a pool to/from the multi-pool using the add_pool () and remove_pool() procedures
of the dbms_connection_pool package.

exec dbms_connection_pool.add_pool('mypool')

exec dbms_connection_pool.remove_pool('mypool')

Reactive Extension to UCP
The previous Oracle Database 21c release introduced the reactive extensions to Oracle JDBC, an implementation
of the Java util concurrent Flow interface. In this release the Java connection pool a.k.a. UCP has been extended
with Reactive extension allowing to issue asynchronous connection borrowing requests.
It works as follows:

1. Instantiate either a UCPConnectionBuilder or an UCPXAConnectionBuilder

2. Request a vanilla connection asynchronously with the UCPConnectionBuilder using either a
CompletableFuture<Connection> or a Publisher<Connection>. Alternatively, you may request
an XA connection asynchronously with the UCPXAConnectionBuilder using either a
CompletableFuture<XAConnection> or a Publisher<XAConnection>.

3. The asynchronous borrow operation runs with the default ForkJoinPool executor if you have not
implemented the java.util.concurrent.Executor interface in your Java code.

4. The CompletableFuture or the Publisher are notified when the borrow operation is complete.

5. You can then perform operations on the connections object.

https://docs.oracle.com/en/database/oracle/oracle-database/23/jjucp/connection-creation-consumer.html#GUID-0D68FD82-0412-4F82-99CF-C19E5AA2C444
https://docs.oracle.com/en/database/oracle/oracle-database/23/jjucp/stale-ucp-connections.html#GUID-84A56318-AB65-448F-A9C3-8B12FAF477DF
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/concurrent/Flow.html

14 What’s in Oracle Database 23ai for Java Developers? / Version 1.0

 Copyright © 2024, Oracle and/or its affiliates / Public

Confidential - Oracle Restricted

Confidential - Oracle Restricted

See code samples in chapter 11 of the UCP Developer’s Guide.

JDBC-Thin Support for Bequeath Protocol
This protocol allows the database client (e.g., Java/JDBC application) and the database server process residing on
the same Linux host, to communicate directly without the network layer and the network listener. Using that
protocol to connect to an Oracle database requires setting the values of ORACLE_HOME and ORACLE_SID
variables either in the connection URL (as shown hereafter) or as application environment variable.

jdbc:oracle:thin:@(DESCRIPTION=(LOCAL=YES)(ADDRESS=(PROTOCOL=beq))(ENVS=ORACLE_HOME=/

var/lib/oracle/dbhome,ORACLE_SID=oraclesid))

Enhancement to executeBatch() executeLargeBatch()
In this release, the response time of PreparedStatement.executeBatch() and
PreparedStatement.executeLargeBatch() has been significantly improved through a single round trip for batches
larger than 2MB. In the previous releases, the JDBC driver was making multiple database calls for each batch DML
operation.

Enhanced UCP Connection Borrow
Connection borrow may take longer than the connectionWaitTimeout specified value, if UCP must create a new
connection to fulfill the request. In this release, if a connection has been released by another thread in the
meantime, UCP allocates the just-released connection rather than waiting for the one being created.

Mission Critical Deployment, Security and Availability
This section covers new features to support mission critical deployment of Java apps, security and availability
(zero-downtown).

Mission Critical Deployment
This section gives a summary of the new App Stack for Java, and the new Observability features.

IaC - App Stack for Java
When deploying Java apps in the Cloud developers face several pain points including configuring the virtual
network, provisioning of the deployment platform, as well as the database, configuring the JDBC datasource, as
well as the load balancer and DNS, generating the build and deployment of CI/CD pipelines. An infrastructure as
Code (IaC) framework (the App Stack for Java) allows automating most tasks involved with provisioning Cloud
infrastructure resources thereby eliminating those pains.

The App Stack for Java is not technically part of the Oracle DB23ai release; I covered it in this blog post; please
check it out.

Observability
Observability refers to monitoring, capturing, and dynamically analyzing the logs, metrics and traces of your
applications and diagnosing issues in real-time. It is a crucial requirement for modern, service-based applications
development, deployment, DevOps, and so on. This release brings enhanced logging, new debugging (diagnose
on first failure), and new tracing capabilities.

SQL Statement ID1

Need to retrieve the hash value of a SQL statement for diagnosing performance issues?

1 See https://docs.oracle.com/en/database/oracle/oracle-database/23/jajdb/oracle/jdbc/OracleStatement.html#getSqlId()

https://docs.oracle.com/en/database/oracle/oracle-database/23/jjucp/UCP-asynchronous-extensions.html#GUID-710718EB-BEED-4A88-B532-C1AC166E4FDE
https://kuassimensah.medium.com/app-stack-for-java-caaf7cd05102

15 What’s in Oracle Database 23ai for Java Developers? / Version 1.0

 Copyright © 2024, Oracle and/or its affiliates / Public

Confidential - Oracle Restricted

Confidential - Oracle Restricted

The new getSqlid() method in oracle.jdbc.OracleStatement interface returns the SQL ID for the
statement object in question.

Single Jar for all use cases

Let me start with the good news “No more switching between the production jar and the debug jar to investigate
an issue”!

A single ojdbc jar (e.g., ojdbc8.jar, ojdbc11.jar) for all use cases (production, debug, metrics). In other words, no
more ojdbc8_g.jar or ojdbc11_g.jar for debugging, no more ojdbc8dms.jar or ojdbc11dms.jar for the Oracle
Dynamic Monitoring Service (DMS) metrics, and no more ojdbc8dms_g.jar or ojdbc11dms_g.jar for DMS
debugging.

Diagnose on First Failure (Self-Driven Diagnosability)

This feature diagnoses the first occurrence of a failure in your Java app. It records the critical execution state in
memory, then dumps the recording on error. It is always ON (by default) but may be disabled via
-Doracle.jdbc.diagnostic.enableDiagnoseFirstFailure=false or using the DiagnosticMBeans
interface. You must configure java.util.logging to get diagnostic output on diagnose-on-first-failure.

See more details, specifically the handling of sensitive data, in my blog post.

Logging

The core JDBC Jars (i.e., ojdbc8.jar or ojdbc11.jar) include the logging capabilities which need to be turned on
using the following properties:
 -Doracle.jdbc.diagnostic.enableLogging=true.
 -Djava.util.logging.config.file=./logging.config
The handler as well as the granularity of the logging must also be specified.

Distributed Tracing - OpenTelemetry

See Trace Event Listener Provider – OpenTelemetry on page 9.

DMS Metrics

The Oracle Dynamic Monitoring Service (DMS) metrics are recorded if the dms.jar is in the classpath.

Security
The new security features for Java include:

Thumbprint based certificate selection, Easy Connect support for LDAP/LDAPS, JDBC support for TLS with DRCP,
OJVM support for FIPS; support for longer passwords; token-based authentication for Oracle Cloud Infrastructure
(OCI) Identity and Access Management (IAM) using OCI IAM token, and Azure Active Directory (AD) using OAuth
2.0 access tokens; RADIUS Challenge-Response Authentication (a.k.a. 2FA); enhancements for Kerberos support;
and Oracle JVM Support for HTTP and TCP.

Thumbprint-based Certificate Selection
JDBC Thin driver performs certificate selection based on alias when multiple certificates are present in the
KeyStore. The selected certificate and its thumbprint are used for client authentication through a TLS handshake.

Easy Connect support for LDAP/LDAPS
The syntax follows a combination of the LDAP URL syntax and the Easy Connect syntax:

ldap[s]://host[:port]/name[,context]?[parameter=value{¶meter=value}]

Example:

sqlplus
"<user_name>/<password>@ldaps://<host_name>/test?DIRECTORY_SERVER_TYPE=oid&WALLET_LOCATION

https://docs.oracle.com/en/database/oracle/oracle-database/23/jajdb/oracle/jdbc/diagnostics/package-summary.html
https://kuassimensah.medium.com/whats-in-oracle-db-23c-free-developer-release-for-java-developers-26931081682c

16 What’s in Oracle Database 23ai for Java Developers? / Version 1.0

 Copyright © 2024, Oracle and/or its affiliates / Public

Confidential - Oracle Restricted

Confidential - Oracle Restricted

=/oracle/network/admin&AUTHENTICATE_BIND=true&AUTHENTICATE_BIND_METHOD=LDAPS_SIMPLE_AUT
H"

See the JDBC doc for more details.

OJVM Support for FIPS
The database resident JVM a.k.a. OJVM now allows installing FIPS 140-2 Java classes thereby making JsafeJCE
the default cryptography provider. The steps for installing the Java classes and enabling FIPS are described in the
OJVM doc FIPS section.

Support for Longer Passwords
JDBC now supports long passwords up to 1024 bytes, transparently, i.e., no API change.

Token-Based Authentication for OCI IAM and Azure AD
The Oracle JDBC support for Cloud Directory services including Oracle Cloud Infrastructure (OCI) Identity and
Access Management (IAM) and Azure Active Directory (AD).

Token-Based Authentication for OCI IAM

The JDBC-Thin driver furnishes enhanced support for Oracle Cloud Infrastructure (OCI) Identity and Access
Management (IAM).
The steps are as follows

1) The Java app supplies a database token using any of the methods described hereafter

2) The database verifies the token with a public key obtained from the authentication service and completes the
user authorization.

3) The Java app sends a header proving it possesses a private key that is paired with a public key embedded in
the token.

4) If both the token and the signature are valid, and there exists a mapping between the IAM user and a
database user, then access to the database is granted to the JDBC application.

This authentication method can be used: for database tokens on file-system; using the
oracle.jdbc.accessToken Connection Property to pass the token value; using the
OracleConnectionBuilder.accesToken method to obtain the token from the authentication service; and
using the supplier function of the OracleDataSource class
OracleCommonDataSource.setTokenSupplier(AccessToken accessToken.

See the Client-side security chapter of the Oracle JDBC doc for more details.

Token-based Authentication for Azure AD

The JDBC-Thin driver supports Azure Active Directory OAuth2 access tokens.

The steps are as follows

1. The Java app supplies a database token using any of the methods described hereafter

2. The database verifies the token with a public key obtained from the authentication service and completes the
user authorization.

3. This authentication method can be used: for database tokens on file-system; using the
oracle.jdbc.accessToken Connection Property to pass the token value; using the
OracleConnectionBuilder.accesToken method to obtain the token from the authentication service;
and using the supplier function of the OracleDataSource class
OracleCommonDataSource.setTokenSupplier(AccessToken accessToken.

See the Client-side security chapter of the Oracle JDBC doc for more details.

https://docs.oracle.com/en/database/oracle/oracle-database/23/jjdev/FIPS-support.html#GUID-C9213EC3-820E-414C-AE48-C7CD1FBE945B
https://docs.oracle.com/en/database/oracle/oracle-database/23/jjdbc/client-side-security.html#GUID-19E6A24B-0958-4E94-89A1-0F0A459409AB
https://docs.oracle.com/en/database/oracle/oracle-database/23/jjdbc/client-side-security.html#GUID-19E6A24B-0958-4E94-89A1-0F0A459409AB

17 What’s in Oracle Database 23ai for Java Developers? / Version 1.0

 Copyright © 2024, Oracle and/or its affiliates / Public

Confidential - Oracle Restricted

Confidential - Oracle Restricted

RADIUS Challenge-Response Authentication (a.k.a. 2FA)

1) The Java app performs the first level of authentication using the user name and password

2) The RADIUS server sends a challenge to the Java app.

3) The Java app responds to the challenge using a handler.

The handler is configured using either the oracle.net.radius_challenge_response_handler connection
property or the ConnectionBuilder.radiusChallengeResponseHandler method.

See more details including code samples in section 9.9.4 of the Oracle JDBC doc.

Kerberos Enhancements
Kerberos authentication has been simplified in this release by removing the requirement for a Ticket Grant Ticket
in the CredentialCache or instantiating the KerberosLoginModule.

Configuring the Kerberos Principal and Password Properties

For connecting to Oracle Database using Kerberos Principal

Set the PASSWORD_AUTH parameter to KERBEROS5 in the connection string. You can also
set PASSWORD_AUTH to KERBEROS5 using the oracle.jdbc.passwordAuthentication connection property.
The JDBC Thin driver initializes the KerberosLoginModule for your application thereby simplifying Kerberos
Authentication.

See the following code example

https://gist.github.com/Kuassim/3a628317a4501a0004b5e21fde829696

Kerberos Authentication Using the JAAS Configuration

By default, the JDBC-Thin driver uses the default Kerberos login module bundled with the Oracle JDK
(com.sun.security.auth.module.Krb5LoginModule) however, you can choose to use the JAAS
configuration instead.

See the following code example.

https://gist.github.com/Kuassim/fe6774588556f1f443334de57b408a99

Oracle JVM Support for HTTP and TCP

The database embedded JVM (a.k.a. OJVM) now supports enabling or disabling HTTP and TCP operations while
disabling other OS call.

See more details in Database Security in a Multitenant Environment.

Availability
With Transparent Application Continuity (TAC), we are making high-availability the most transparent possible for
Java Applications.

Transparent Application Continuity Enhancement
Application Continuity (AC) and Transparent Application Continuity (TAC) are high availability, and zero-
downtime features of the Oracle database that hide database instance or network failures from Java applications.
These features straddle the RDBMS server, the JDBC driver and UCP. Through releases, AC & TAC push most of

https://docs.oracle.com/en/database/oracle/oracle-database/23/jjdbc/client-side-security.html#GUID-1B96A812-5B66-4797-80AE-3112CB13C686
https://gist.github.com/Kuassim/3a628317a4501a0004b5e21fde829696
https://gist.github.com/Kuassim/fe6774588556f1f443334de57b408a99
https://docs.oracle.com/en/database/oracle/oracle-database/23/jjdev/DB-security-in-multitenant.html#GUID-71533511-C90F-4656-A46A-306A4E56787E

18 What’s in Oracle Database 23ai for Java Developers? / Version 1.0

 Copyright © 2024, Oracle and/or its affiliates / Public

Confidential - Oracle Restricted

Confidential - Oracle Restricted

the settings from the database clients and applications to the RDBMS server.
In this release, the JDBC drivers support resumable cursors; these are long-running cursors of a session, that stay
open beyond transactions. With resumable cursors, TAC establishes application request boundaries, implicitly and
more often, thereby ensuring broader TAC coverage.

Please read the entire chapter on Application Continuity for Java to get the whole picture and more details.

Conclusion
You got it. Through this technical brief, you got a complete summary of the new Java features in the Oracle
Database 23ai (23.4.0.24.05) in the areas of ease of development, Cloud computing, multi-Cloud, performance
and scalability, mission critical deployment, security, and availability. These features will undoubtedly help you
design and deploy modern Java applications.

@kmensah, #javaOracleDB, http://oracle.com/jdbc

https://docs.oracle.com/en/database/oracle/oracle-database/23/jjdbc/application-continuity.html#GUID-AAC6F9B7-9B4C-4098-B0D5-312BF9A13928

19 What’s in Oracle Database 23ai for Java Developers? / Version 1.0

 Copyright © 2024, Oracle and/or its affiliates / Public

Confidential - Oracle Restricted

Confidential - Oracle Restricted

Connect with us

Call +1.800.ORACLE1 or visit oracle.com. Outside North America, find your local office at: oracle.com/contact.

 blogs.oracle.com facebook.com/oracle twitter.com/oracle

Copyright © 2024, Oracle and/or its affiliates. This document is provided for information purposes only, and the contents hereof are subject to change without notice. This document
is not warranted to be error-free, nor subject to any other warranties or conditions, whether expressed orally or implied in law, including implied warranties and conditions of
merchantability or fitness for a particular purpose. We specifically disclaim any liability with respect to this document, and no contractual obligations are formed either directly or
indirectly by this document. This document may not be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, without our prior written
permission.

Oracle, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

