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CHAPTER 1

SPARC M7 Basics

1.1 Background
SPARC M7 is the follow-on chip multi-threaded (CMT) processor to the SPARC M6 processor. SPARC
M7 incorporates a new processor core (Core S4) a new L2 cache, and a new L3 cache structure. IO has
moved off chip to an external ASIC, connected to SPARC M7 with a high speed serial link interface.

The SPARC M7 product line fully implements Oracle’s Throughput Computing initiative for the
horizontal system space. Throughput Computing is a technique that takes advantage of the thread-
level parallelism that is present in most commercial workloads. Unlike desktop workloads, which
often have a small number of threads concurrently running, most commercial workloads achieve their
scalability by employing large pools of concurrent threads.

SPARC M7 supports up to a eight way glueless (without external hub chips) coherent system using 7
coherence link channels. SPARC M7 has 32 SPARC physical processor cores. Each core has full hardware
support for eight strands, two integer execution pipelines, one floating-point execution pipeline, and
one memory pipeline. The SPARC cores are connected to L2 and L3 caches. There are 8 L3 caches, each
is 8 MB, 2-banked, 8 way associative per bank.

Historically, microprocessors have been designed to target desktop workloads, and as a result have
focused on running a single thread as quickly as possible. Single thread performance is achieved in
these processors by a combination of extremely deep pipelines (over 20 stages in Pentium 4) and by
executing multiple instructions in parallel (referred to as instruction-level parallelism or ILP). The
basic tenet behind Throughput Computing is that exploiting ILP and deep pipelining has reached the
point of diminishing returns, and as a result current microprocessors do not utilize their underlying
hardware very efficiently. For many commercial workloads, the processor is idle most of the time
waiting on memory, and even when it is executing it will often be able to only utilize a small fraction
of its wide execution width. So rather than building a large and complex ILP processor that sits idle
most of the time, a number of small, single-issue processors that employ multithreading are built in
the same chip area. Combining multiple processors on a single chip with multiple strands per
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processor provides very high performance for highly threaded commercial applications. This
approach is called thread-level parallelism (TLP), and the difference between TLP and ILP is shown in
the FIGURE 1-1.

FIGURE 1-1 Differences Between TLP and ILP

The memory stall time of one strand can often be overlapped with execution of other strands on the
same processor, and multiple processors run their strands in parallel. In the ideal case, shown in
FIGURE 1-1, memory latency can be completely overlapped with execution of other strands. In contrast,
instruction-level parallelism simply shortens the time to execute instructions and does not help much
in overlapping execution with memory latency.1

Given this ability to overlap execution with memory latency, why don’t more processors utilize TLP?
The answer is that designing processors is a mostly evolutionary process, and the ubiquitous deeply
pipelined, wide ILP processors of today are the evolutionary outgrowth from a time when the
processor was the bottleneck in delivering good performance. With processors capable of multiple
GHz clocking, the performance bottleneck has shifted to the memory and I/O subsystems, and TLP
has an obvious advantage over ILP for tolerating the large I/O and memory latency prevalent in
commercial applications.

Unlike first-generation TLP processors, SPARC M7 seeks to provide the best of TLP and ILP
processors. In particular, SPARC M7 provides a robust out-of-order, dual-issue processor core that is
heavily threaded among eight strands. It has a 16-stage integer pipeline to achieve high operating
frequencies, advanced branch prediction to mitigate the effect of a deep pipeline, and dynamic
allocation of processor resources to threads. This allows SPARC M7 to achieve very high single-thread
performance while still scaling to very high levels of throughput.

1.2 SPARC M7 Overview
SPARC M7 is a chip multi-threaded (CMT) processor which supports cache-coherent multi-socket
systems. SPARC M7 contains 32 SPARC physical processor cores. Two SPARC physical cores connect
to a single 256 KB L2 data cache of 2 banks and 8 ways, and four SPARC physical cores connect to a
single 256 KB L2 instruction cache of 2 banks and 8 ways. The L2 instruction and data caches connect

1. Processors that employ out-of-order ILP can overlap some memory latency with execution. However, this overlap is typically limited
to shorter memory latency events such as L1 cache misses that hit in the L2 cache. Longer memory latency events such as main
memory accesses are rarely overlapped to a significant degree with execution by an out-of-order processor.

Strand 1

Strand 2

Strand 3

Strand 4

Executing Stalled on Memory

TLP

ILP Single strand
executing two
instructions per
cycle
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to an L3 cache. L2 and L3 caches have 64-byte lines. Each L3 cache is banked two ways and is local to
the four SPARC cores, the two L2 data caches, and the L2 instruction cache that attach to each L3
cache. This collection of four cores, L2 caches, and L3 cache is called a SPARC Cache Cluster (SCC).

1.3 SPARC M7 Components
This section describes each component in SPARC M7.

1.3.1 SPARC Physical Core
Each SPARC physical core has hardware support for eight strands. This support consists of a full
integer register file with eight register windows per strand, a full floating-point register file per
strand, and nearly all of the ASI, ASR, and privileged registers replicated per strand. The eight
strands share the instruction and data caches.Each SPARC physical core has a 16 KB, 4-way set-
associative instruction cache with 64-byte lines, a 16 KB, 4-way set-associative data cache (32-byte
lines) that are shared by the eight strands. The L1 data cache is write-through and does not allocate on
a write miss; the L2 is store-in and allocates on a write miss. All strands share a floating-point unit
incorporating fused multiply-add and VIS3.0 instruction support.

Two physical cores share a 256KB, 8-way set-associative L2D cache with 64B lines. Four physical cores
share a 256KB, 8-way set-associative L2I cache with 64B lines.
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The strands share a dual-issue, out-of-order pipeline, divided into two "slots". One instruction can be
issued each cycle to each slot. Slot 0 contains an integer unit and a load/store unit, while slot 1
contains an integer unit, a branch unit, and a floating-point and graphics unit. Up to two instructions
can complete each cycle for a peak operation rate of two instructions per cycle. The pipeline is both
horizontally and vertically threaded; various segments of the pipeline handle strands differently. The
instruction fetch unit fetches instructions from a given strand each cycle. Strands are selected for
fetching based upon a least-recently-fetched algorithm. Once fetched, strands are then selected for
decoding in a least-recently-decoded fashion and are then renamed and supplied into an out-of-order
processor core. Once inside the out-of-order core, strands are picked for issue independently between
slots, and in an oldest-ready-first fashion within a slot. Instructions complete out-of-order and are
committed in-order within a strand, but independently between strands. Up to 128 instructions can be
in flight within the processor core, in any combination across the active strands. In certain
circumstances, hardware may activate heuristics to avoid starvation or performance imbalances
resulting from unfair access to hardware resources. The L1 cache load-use latency is 5 cycles, the L2
cache load-use latency is 19 cycles, and the L3 load-use latency is 41 cycles.

1.3.1.1 Single-threaded and multi-threaded performance
SPARC M7 is dynamically threaded. While software can activate up to 8 strands on each core at a
time, hardware dynamically and seamlessly allocates core resources such as instruction, data, and L2
caches, and out-of-order execution resources such as the 128-entry re-order buffer in the core, among
the active strands.

Since the core dynamically allocates resources among the active strands, there is no explicit "single-
thread mode" or "multi-thread mode" for software to activate or deactivate. The extent to which
strands compete for core resources depends upon their execution characteristics. These characteristics
include cache footprints, inter-instruction dependencies in their execution streams, branch prediction
effectiveness, and others. Consider one process which has a small cache footprint and a high correct
branch prediction rate which, when running alone on a core, achieves 2 instructions per cycle (SPARC
M7’s peak rate of instruction execution). We term this a high-IPC process. If another process with
similar characteristics is activated on a different strand on the same core, each of the strands will
likely operate at approximately 1 instruction per cycle. In other words, the single-thread performance
of each process has been cut in half. As a rule of thumb, activating N high-IPC strands will result in
each strand executing at 1/N of its peak rate, assuming each strand is capable of executing close to 2
instructions per cycle.

Now consider a process which is largely memory-bound. Its native IPC will be small, perhaps 0.2. If
this process runs on one strand on a core with another clone process running on a different strand,
there is a good chance that both strands will suffer no noticeable performance loss, and the core
throughput will improve to 0.4 IPC. If a low-IPC process runs on one strand with a high-IPC process
running on another strand, it’s likely that the IPC of either strand will not be greatly perturbed. The
high-IPC strand may suffer a slight performance degradation (as long as the low-IPC strand does not
cause a substantial increase in cache miss rates for the high-IPC strand).

The guidelines above are only general rules-of-thumb. The extent to which one strand affects another
strand’s performance depends upon many factors. Processes which run fine on their own but suffer
from destructive cache interference when run with other strands may suffer unacceptable
performance losses. Similarly, it is also possible for strands to cooperatively improve performance
when run together. This may occur when the strands running on one core share code or data. In this
case, one strand may prefetch instructions or data that other strands will use in the near future.

The same discussion can apply between cores running in the chip. Since the L3 cache and memory
controllers are shared between the cores, activity on one core can influence the performance of strands
on another core.

1.3.2 L3 Cache
Each of the eight L3 cache is banked two ways. It is inclusive of all chip-local L2 caches. Each L3 cache
is 8 Mbytes, and each bank is 8-way set associative. The line size is 64 bytes.
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CHAPTER 2

Data Formats

Data formats supported by SPARC M7 are described in the Oracle SPARC Architecture 2015
specification.
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CHAPTER 3

Registers

3.1 Floating-Point State Register (FSR)
Each virtual processor has a Floating-Point State register. This register follows the Oracle SPARC
Architecture 2015 specification, with the ver and qne fields permanently set to 0 (SPARC M7 does not
support a FQ).

For more information on this register, see the Oracle SPARC Architecture 2015 specification.

3.2 Ancillary State Registers (ASRs)
This chapter discusses the SPARC M7 ancillary state registers. TABLE 3-1 summarizes and defines these
registers.

TABLE 3-1 Summary of SPARC M7 Ancillary State Registers

ASR
number ASR Name Access priv Description

0 Y RW N Y Register

1 Reserved — Any access causes a illegal_instruction
trap

2 CCR RW N Condition Code register

3 ASI RW N ASI register

4 TICK RO Y1 TICK register

5 PC RO2 N Program counter

6 FPRS RW N Floating-Point Registers Status register

07 - 13 Reserved - Any access causes an illegal_instruction
trap

15 (MEMBAR, STBAR) — N Instruction opcodes only, not an actual
ASR.

16 - 18 Reserved — Any access causes an illegal_instruction
trap

19 GSR RW N General Status register

20 SOFTINT_SET W Y4 Set bit in Soft Interrupt register

21 SOFTINT_CLR W Y4 Clear bit in Soft Interrupt register
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Notes:

1. An attempted write by nonprivileged software to this register causes a privileged_opcode trap.An
attempted write by privileged software to this register causes an illegal_instruction trap. See the
Oracle SPARC Architecture 2015 specification for more detail.

2. A write to this register causes an illegal_instruction trap.

3. An attempted access in nonprivileged mode causes a privileged_opcode trap.

4. Read accesses cause an illegal_instruction trap. An attempted write access in nonprivileged mode
causes a privileged_opcode trap.

5. A write by privileged or user software causes an illegal_instruction trap. See the Oracle SPARC
Architecture 2015 specification for more detail.

6. Reads are nonprivileged. A write by privileged or user software causes an illegal_instruction trap.

3.2.1 Tick Register (TICK)
The TICK register contains one field: counter. The counter field is shared by the eight strands on a
physical core.The counter increments each processor core clock.The format of this register is shown in
TABLE 3-2.

For more information on this register, see the Oracle SPARC Architecture 2015 specification.

3.2.2 Program Counter (PC)
Each strand has a read-only program counter register. The PC contains a 54-bit virtual address and
VA{63:54} is sign-extended from VA{53}. The format of this register is shown in TABLE 3-3.

22 SOFTINT RW Y3 Soft Interrupt register

23 Reserved - Any access causes an illegal_instruction
trap

24 STICK RW Y5 System Tick register

25 STICK_CMPR RW Y3 System TICK Compare register

26 CFR RO6 Y Compatibility Feature Register

27 PAUSE W N Any read causes an illegal_instruction
trap; PAUSE is write-only

28 MWAIT W N Any read causes an illegal_instruction
trap; MWAIT is write-only

29 - 31 Reserved — Any access causes an illegal_instruction
trap

TABLE 3-2 TICK Register – TICK (ASR 0416)

Bit Field RW Description

63 — RO Reserved

62:0 counter RW Tick counter, increments each processor core clock cycle.

TABLE 3-1 Summary of SPARC M7 Ancillary State Registers (Continued)

ASR
number ASR Name Access priv Description
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3.2.3 Floating-Point Registers State Register (FPRS)
This register is described in Oracle SPARC Architecture 2015.

3.2.4 General Status Register (GSR)
Each virtual processor has a nonprivileged general status register (GSR). When PSTATE.pef or
FPRS.fef is zero, accesses to this register cause an fp_disabled trap.

For more information on this register, see the Oracle SPARC Architecture 2015 specification.

3.2.5 Software Interrupt Register (SOFTINT)
Each virtual processor has a privileged software interrupt register. Nonprivileged accesses to this
register cause a privileged_opcode trap. The SOFTINT register contains two fields: sm, and int_level.
Note that while setting the sm (bit 16) or SOFTINT{14} bits generate interrupt_level_14, these bits are
considered completely independent of each other. Thus an STICK compare will only set bit 16 and
generate interrupt_level_14, not also set bit 14.

TABLE 3-4 specifies how interrupt_level_14 is shared between SOFTINT writes and STICK compares.

For more information on this register, see the Oracle SPARC Architecture 2015 specification.

3.2.6 System Tick Register (STICK)
Each SPARC M7 physical processor core implements an STICK register, shared by all strands of that
core.

TABLE 3-3 Program Counter – PC (ASR 0516)

Bit Field R/W Description

63:54 va_high RO Sign-extended from VA{53}.
53:2 va RO Virtual address contained in the program counter.
1:0 — RO The lower 2 bits of the program counter always read as 0.

Implementation
Note

SPARC M7 sets FPRS.du or FPRS.dl when an instruction that
updates the floating-point register file successfully completes, or
when an FMOVcc or FMOVr instruction that does not satisfy the
destination register update condition successfully completes.

TABLE 3-4 Sharing of interrupt_level_14

Event SOFTINT{14} sm Action

STICK compare when sm = 0 Unchanged 1 interrupt_level_14 if
PSTATE.ie = 1 and PIL < 14

Set sm = 1 when sm = 0 Unchanged 1 interrupt_level_14 if
PSTATE.ie = 1 and PIL < 14

Set SOFTINT{14} = 1 when
SOFTINT{14} = 0.

1 Unchanged interrupt_level_14 if
PSTATE.ie = 1 and PIL < 14
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Privileged software can read the STICK register with the RDSTICK instruction.Privileged software
cannot write the STICK register; an attempt by privileged software to execute the WRSTICK
instruction results in an illegal_instruction exception.

Nonprivileged software can read the STICK register with RDSTICK instruction.Nonprivileged
software cannot write the STICK register; an attempt by nonprivileged software to execute the
WRSTICK instruction results in an illegal_instruction exception.

In SPARC M7, the difference of the values of two different reads of the STICK register reflects the
amount of time that has passed between the reads;

(value2 - value1) * 1 = the number of nanoseconds that passed between the reads.

For more information on this register, see the Oracle SPARC Architecture 2015 specification.

3.2.7 System Tick Compare Register (STICK_CMPR)
Each virtual processor has a privileged System Tick Compare (STICK_CMPR) register. Nonprivileged
accesses to this register cause a privileged_opcode exception. STICK_CMPR contains two fields:
int_dis and stick_cmpr. Only bits 62:9 of the stick_cmpr field are compared against the STICK counter
field.

The int_dis bit controls whether a STICK interrupt_level_14 interrupt is posted in the SOFTINT
register when STICK_CMPR bits 62:9 match STICK bits 62:9. The format of this register is shown in
TABLE 3-6.

After a power-on reset trap, STICK_CMPR.int_dis is set to 1 and STICK_CMPR.cmpr is undefined.

An stick_match exception occurs in the cycle in which all of the following three conditions are met:

1. STICK_CMPR.int_dis == 0.

2. A transition occurs from

(STICK.counter)[62:9] < STICK_CMPR.cmpr[62:9]

in one cycle, to

(STICK.counter)[62:9] >= STICK_CMPR.cmpr[62:9]

in the following cycle

3. This transition of state occurs due to incrementing STICK, and not due to writing STICK, or
STICK_CMPR

TABLE 3-5 System Tick Register – STICK (ASR 1816)

Bit Field R/W Description

63 — RO Reserved.

62:0 stick RW Elapsed time value, measured in increments of 1 nS.

TABLE 3-6 System Tick Compare Register – STICK_CMPR (ASR 1916)

Bit Field R/W Description

63 int_dis RW stick_int interrupt disable. If 1, stick_int interrupt generation
is disabled.

62:9 stick_cmpr RW Compare value for stick_int interrupts.
8:0 — RO Reserved.
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When an stick_match interrupt occurs, SOFTINT{16} (sm) is set to 1. This has the effect of posting an
interrupt_level_14 trap request to the virtual processor, which causes an interrupt_level_14 trap when
(PIL < 14) and (PSTATE.ie == 1). The interrupt_level_14 trap handler must check SOFTINT{14} and
SOFTINT{16} (sm) to determine the cause of the interrupt_level_14 trap.

The reason the comparison of STICK_CMPR and STICK ignore bits 8 to 0 (and the reason
STICK_CMPR is not implemented below bit 9) is because at the minimum frequency of the processor
core, the STICK register could reflect as much as 384 ns passing between cycles (due to acceleration of
the STICK register increment by the ‘drift fix’).

For more information on this register, see the Oracle SPARC Architecture 2015 specification.

3.2.8 Compatibility Feature Register (CFR)
For general information on this register, see the Oracle SPARC Architecture 2015 specification.

Each virtual processor has a compatibility feature register (CFR). The CFR is read-only. The format of
the CFR is shown in Table 3-7 .

TABLE 3-7 Compatibility Feature Register – CFR (ASR 1A16)

Bit Field R/W Description

63:15 — RO Reserved

14 xmontsqr RO If set, the processor supports the XMONTSQR opcode. If not set, an
attempt to execute an XMONTSQR instruction results in a
compatibility_feature trap.

13 xmontmul RO If set, the processor supports the XMONTMUL opcode. If not set, an
attempt to execute an XMONTMUL instruction results in a
compatibility_feature trap.

12 xmpmul RO If set, the processor supports the XMPMUL opcode. If not set, an
attempt to execute an XMPMUL instruction results in a
compatibility_feature trap.

11 crc32c RO If set, the processor supports the CRC32C opcode. If not set, an
attempt to execute a CRC32C instruction results in a
compatibility_feature trap.

10 montsqr RO If set, the processor supports the MONTSQR opcode. If not set, an
attempt to execute a MONTSQR instruction results in a
compatibility_feature trap.

9 montmul RO If set, the processor supports the MONTMUL opcode. If not set, an
attempt to execute a MONTMUL instruction results in a
compatibility_feature trap.

8 mpmul RO If set, the processor supports the MPMUL opcode. If not set, an
attempt to execute an MPMUL instruction results in a
compatibility_feature trap.

7 sha512 RO If set, the processor supports the SHA512 opcode. If not set, an
attempt to execute a SHA512 instruction results in a
compatibility_feature trap.

6 sha256 RO If set, the processor supports the SHA256 opcode. If not set, an
attempt to execute a SHA256 instruction results in a
compatibility_feature trap.

5 sha1 RO If set, the processor supports the SHA1 opcode. If not set, an attempt
to execute a SHA1 instruction results in a compatibility_feature trap.

4 md5 RO If set, the processor supports the MD5 opcode. If not set, an attempt
to execute an MD5 instruction results in a compatibility_feature trap.

3 camellia RO If set, the processor supports Camellia opcodes (CAMELLIA_F,
CAMELLIA_FL, and CAMELLIA_FLI). If not set, an attempt to
execute a Camellia instruction results in a compatibility_feature trap.
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The CFR enumerates the capabilities that SPARC M7 supports. While the current definition of the
CFR only relates to cryptographic capability, additional capabilities may be added in future
processors. Software can use the CFR to determine whether a set of cryptographic opcodes associated
with a cryptographic function can be executed on an instance of SPARC M7. Hardware also uses the
CFR to determine whether a cryptographic capability associated with an opcode is present. When
SPARC M7 executes a cryptographic opcode, it associates a bit in the CFR with each opcode; the bit
must be set, otherwise a compatibility_feature trap occurs.

The CFR allows software to construct an architecture that enables opcode reuse. A complete
discussion is outside the scope of this document; however, a brief overview follows.

Consider the situation where a processor is introduced that supports three cryptographic opcodes:
opA, opB, and opC. Cryptographic requirements could be such that opA=AES, opB=DES, and
opC=Kasumi. Traditionally, for any derivative or next-generation processor for which different
ciphers were of interest, it would be necessary to expend additional opcodes to achieve the necessary
support: e.g. opD=Camellia, opE=MD5. OpA, OpB, and OpC would still be consumed in these follow-
on processors, even if there was no longer any interest in the AES, DES, and Kasumi algorithms.

In conjunction with appropriate software architecture and infrastructure, the CFR enables opcode
reuse by future processor generations when cryptographic algorithms become obsolete. Potential
aliasing problems are disambiguated using the CFR. Each bit in the CFR is permanently assigned to a
different cryptographic operation. For instance, bits 0, 1, and 2 are assigned to AES, DES, and Kasumi
family opcodes, as shown above. The mapping in the CFR is fixed for all future and derivative
processors. When an application wishes to perform an AES operation, it registers that request using
the appropriate software architectural means, and uses opA in its binary. Prior to executing, system
software or the application checks to make sure that the target processor binds the AES function to
opA. It does so by examining the CFR to see if bit 0 is set. If so, the program executes using native
AES instructions (opA); if not, system software and/or the application must support a non-native
AES instruction implementation using standard instructions. It is expected that cryptographic
libraries will contain the necessary checking, so hardware cryptographic support will be transparent
to applications that perform cryptographic operations using cryptographic library calls. If the
application does not use cryptographic libraries, it should check the CFR to make sure that hardware
supports the appropriate function, otherwise it should emulate the function using standard
instructions. Alternatively, if performance is not critical, it may rely on trap-and-emulate support
provided by higher-level system software.

When the first generation of processor (G1) executes an AES opcode it checks that CFR bit 0 is set. If
so, the hardware performs the requested AES operation. Accordingly, on G1, an application is free to
perform AES operations using opA. Similar enforcement is applied to DES and Kasumi, respectively.

2 — RO Reserved

1 des RO If set, the processor supports DES opcodes (DES_ROUND, DES_IP,
DES_IIP, and DES_KEXPAND). If not set, an attempt to execute a
DES instruction results in a compatibility_feature trap.

0 aes RO If set, the processor supports AES opcodes (AES_EROUND01,
AES_EROUND23, AES_DROUND01, AES_DROUND23,
AES_EROUND_01_LAST, AES_EROUND_23_LAST,
AES_DROUND_01_LAST, AES_DROUND_23_LAST,
AES_KEXPAND0, AES_KEXPAND1, and AES_KEXPAND2). If not
set, an attempt to execute an AES instruction results in a
compatibility_feature trap.

Programming
Note

For optimal performance, prior to using instruction-level
cryptographic functions, applications and libraries should first
check the CFR to ensure that the desired algorithm is supported
by the hardware.

TABLE 3-7 Compatibility Feature Register – CFR (ASR 1A16)

Bit Field R/W Description
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Now consider what happens if the application is moved to a future processor (G2) which has re-used
opA to provide support for Camellia; i.e. opA=Camellia. When system software checks the
capabilities for the program, or the program checks, it will see that G2 does not support AES using
opA (CFR bit 0 will be 0). This allows system software or the application to emulate AES support
using standard instructions. Note that if the application somehow runs without this check having
been performed and issues opA, the G2 processor will examine the CFR bit for Camellia, and if set,
the application will execute, and get erroneous results (Camellia instead of AES). A similar problem
exists if the application is developed for G2 hardware, but somehow runs on a G1 processor. Thus it
is vital that system software and/or the application appropriately register their intent and check
hardware capability prior to executing cryptographic opcodes.

As a result, given appropriate software infrastructure, instruction set designers may reuse opcodes to
perform a variety of different operations and applications will continue to see the expected results on
different generation platforms.

3.2.9 Pause (PAUSE)
SPARC M7 physically implements a 16-bit PAUSE register. The value written to the PAUSE register
via the WRPAUSE instruction is an unsigned 20-bit value that is then right-shifted by 4 bits (divided
by 16) since hardware decrements the PAUSE register once every 16 ns. Thus the unsigned 16-bit
value represents a count from 0 to a maximum of 1048576 ns. Writing to the non-privileged PAUSE
register stalls a thread for the number of nanoseconds specified by the XOR of the source operands,
except as follows:

1. Writing 0 to the PAUSE register stalls the thread for the minimum time (greater than zero since
there is a minimum stall time due to internal pipeline delays).

2. Writing a value larger than 220 - 1 causes hardware to saturate the 16-bit PAUSE register; hardware
sets PAUSE to F_FFF016 prior to decrementing it.

3. If the STICK register is disabled (not measuring time), then writing any value to the PAUSE
register behaves the same as writing 0 to the PAUSE register.

When the PAUSE register is written to a nonzero value, the strand is scheduled to be flushed and
made inactive (i.e., all resources released by that strand, no core activity other than PAUSE register
maintenance and monitoring for unmasked disrupting exceptions). No instructions are fetched by the
strand while its PAUSE register is nonzero. An unmasked disrupting exception terminates the
PAUSE. Once the PAUSE register reaches value 0 or an unmasked disrupting exception occurs, the
virtual processor restarts fetch and execution of the strand. The reactivated strand restarts at either
the instruction following the WRPAUSE or a disrupting trap handler.

For more information on this instruction, see the Oracle SPARC Architecture 2015 specification or
Section 5.3, WRPAUSE, on page 36.

3.2.10 MWAIT
SPARC M7 shares the physical implementation of the PAUSE register for much of the MWAIT register
functionality. That is, the counters for the PAUSE and MWAIT registers are physically the same
counter. See the description of the PAUSE register in Section 3.2.9, Pause (PAUSE), on page 23.

For more information on MWAIT, see the Oracle SPARC Architecture 2015 specification.

Note Prior implementations implemented PAUSE based on cycles, not
not nanoseconds. Software written for prior implementations
using PAUSE may need to adjust due to this change.
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3.3 Privileged PR State Registers
TABLE 3-8 lists the privileged registers.

3.3.1 Trap State Register (TSTATE)
Each virtual processor has MAXPTL (2) Trap State registers. These registers hold the state values from
the previous trap level. The format of one element the TSTATE register array (corresponding to one
trap level) is shown in TABLE 3-9.

TABLE 3-8 Privileged Registers

Register Register Name Access Description

0 TPC RW Trap PC1

1. SPARC M7 only implements bits 53:0 of the TPC, TNPC, and TBA registers. Bits
63:54 are always sign-extended from bit 53.

1 TNPC RW Trap Next PC1

2 TSTATE RW Trap State

3 TT RW Trap Type

4 TICK RW Tick

5 TBA RW Trap Base Address1

6 PSTATE RW Process State

7 TL RW Trap Level

8 PIL RW Processor Interrupt Level

9 CWP RW Current Window Pointer

10 CANSAVE RW Savable Windows

11 CANRESTORE RW Restorable Windows

12 CLEANWIN RW Clean Windows

13 OTHERWIN RW Other Windows

14 WSTATE RW Window State

16 GL RW Global Level

TABLE 3-9 Trap State Register

Bit Field R/W Description

63:42 — RO Reserved.
41:40 gl RW Global level at previous trap level
39:32 ccr RW CCR at previous trap level
31:24 asi RW ASI at previous trap level
23:21 — RO Reserved

20 pstate tct RW PSTATE.tct at previous trap level
18 — RO Reserved (corresponds to bit 10 of PSTATE)
17 pstate cle RW PSTATE.cle at previous trap level
16 pstate tle RW PSTATE.tle at previous trap level
15:13 — RO Reserved (corresponds to bits 7:5 of PSTATE)
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For more information on this register, see the Oracle SPARC Architecture 2015 specification.

3.3.2 Processor State Register (PSTATE)
Each virtual processor has a Processor State register. More details on PSTATE can be found in the
Oracle SPARC Architecture 2015 specification. The format of this register is shown in TABLE 3-10; note
that the memory model selection field (mm) mentioned in Oracle SPARC Architecture 2015 is not
implemented in SPARC M7.

For more information on this register, see the Oracle SPARC Architecture 2015 specification.

3.3.3 Trap Level Register (TL)
Each virtual processor has a Trap Level register. Writes to this register saturate at MAXPTL (2). This
saturation is based on bits 2:0 of the write data; bits 63:3 of the write data are ignored.

For more information on this register, see the Oracle SPARC Architecture 2015 specification.

3.3.4 Current Window Pointer (CWP) Register
Since N_REG_WINDOWS = 8 on SPARC M7, the CWP register in each virtual processor is implemented
as a 3-bit register.

12 pstate pef RW PSTATE.pef at previous trap level
11 pstate am RW PSTATE.am at previous trap level
10 pstate priv RW PSTATE.priv at previous trap level
9 pstate ie RW PSTATE.ie at previous trap level
8 — RO Reserved (corresponds to bit 0 of PSTATE)
7:3 — RO Reserved

2:0 cwp RW CWP from previous trap level

TABLE 3-10 Processor State Register

Bit Field R/W Description

63:13 — RO Reserved

12 tct RW Trap on control transfer
10 — RO Reserved

9 cle RW Current little endian
8 tle RW Trap little endian
7:6 — RO Reserved (mm; not implemented in SPARC M7)
5 — RO Reserved

4 pef RW Enable floating-point
3 am RW Address mask
2 priv RW Privileged mode
1 ie RW Interrupt enable
0 — RO Reserved (was ag)

Programming
Note

Hyperprivileged changes to translation in delay slots of delayed
control transfer instructions should be avoided.

TABLE 3-9 Trap State Register (Continued)

Bit Field R/W Description
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For more information on this register, see the Oracle SPARC Architecture 2015 specification.

3.3.5 Global Level Register (GL)
Each virtual processor has a Global Level register, which controls which set of global register
windows is in use. The maximum global level (MAXPGL) for SPARC M7 is 2. GL is implemented as a
2-bit register on SPARC M7. On a trap, GL is set to min(GL + 1,MAXPTL).

Writes to the GL register saturate at MAXPTL. This saturation is based on bits 1:0 of the write data; bits
63:2 of the write data are ignored.

The format of the GL register is shown in TABLE 3-11.

For more information on this register, see the Oracle SPARC Architecture 2015 specification.

TABLE 3-11 Global Level Register

Bit Field R/W Description

63:2 — RO Reserved

1:0 gl RW Global level.
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CHAPTER 4

Instruction Format

Instruction formats are described in the Oracle SPARC Architecture 2015 specification.
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CHAPTER 5

Instruction Definitions

5.1 Instruction Set Summary
The SPARC M7 CPU implements the Oracle SPARC Architecture 2015 instruction set.

TABLE 5-1 lists the complete SPARC M7 instruction set supported in hardware. All instructions that
are part of Oracle SPARC Architecture 2015 are documented in the Oracle SPARC Architecture 2015
specification; any instructions that are extensions to OSA 2011 are documented in this chapter.
.

TABLE 5-1 Complete SPARC M7 Hardware-Supported Instruction Set (1 of 6)

Opcode Description

ADD (ADDcc) Add (and modify condition codes)
ADDC (ADDCcc) Add with carry (and modify condition codes)
ADDXC (ADDXCcc) Add extended with carry (and modify condition codes)
AES_DROUND01 AES decrypt round, columns 0 & 1
AES_DROUND23 AES decrypt round, columns 2 & 3
AES_DROUND01_LAST AES decrypt last round, columns 0 & 1
AES_DROUND23_LAST AES decrypto last round, columns 2 & 3
AES_EROUND01 AES encrypt round, columns 0 & 1
AES_EROUND23 AES encrypt round, columns 2 & 3
AES_EROUND01_LAST AES encrypt last round, columns 0 & 1
AES_EROUND23_LAST AES encrypt last round, columns 2 & 3
AES_KEXPAND0 AES key expansion without round constant
AES_KEXPAND1 AES key expansion with round constant
AES_KEXPAND2 AES key expansion without SBOX
ALIGNADDRESS Calculate address for misaligned data access
ALIGNADDRESS_LITTLE Calculate address for misaligned data access (little-endian)
ALLCLEAN Mark all windows as clean
AND (ANDcc) And (and modify condition codes)
ANDN (ANDNcc) And not (and modify condition codes)
ARRAY{8,16,32} 3-D address to blocked byte address conversion
Bicc Branch on integer condition codes
BMASK Writes the GSR.mask field
BPcc Branch on integer condition codes with prediction
BPr Branch on contents of integer register with prediction
BSHUFFLE Permutes bytes as specified by the GSR.mask field
CALL1 Call and link
CAMELLIA_F Camellia F operation
CAMELLIA_FL Camellia FL operation
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CAMELLIA_FLI Camellia FLI operation
CASA Compare and swap word in alternate space
CASXA Compare and swap doubleword in alternate space
CBcond Fused 32 or 64 bit compare and conditional branch
CMASK{8,16,32} Create GSR.maskfrom SIMD operation result
CRC32C CRC32C polynomial instruction
DES_IP DES initial permutation
DES_IIP DES inverse initial permutation
DES_KEXPAND DES key expansion
DES_ROUND DES round
DONE Return from trap
EDGE{8,16,32}{L}{N} Edge boundary processing {little-endian} {non-condition-code altering}
FABS(s,d) Floating-point absolute value
FADD(s,d) Floating-point add
FALIGNDATAg Perform data alignment for misaligned data
FALIGNDATAi Perform data alignment for misaligned data using integer register
FANDNOT1{s,d} Negated src1 and src2

FANDNOT2{s,d} Src1 and negated src2

FAND{s,d} Logical and

FBfcc Branch on floating-point condition codes
FBPfcc Branch on floating-point condition codes with prediction
FCHKSM16 16-bit partitioned checksum
FCMP(s,d) Floating-point compare
FCMPE(s,d) Floating-point compare (exception if unordered)
FDIV(s,d) Floating-point divide
FEXPAND Four 8-bit to 16-bit expand
FHADD{s,d} Floating-point add and halve
FHSUB{s,d} Floating-point subtract and halve
FiTO(s,d) Convert integer to floating-point
FLCMP{s,d} Lexicographic compare
FLUSH Flush instruction memory
FLUSHW Flush register windows
FMADD{s,d} Floating-point multiply-add single/double (fused)
FMEAN16 16-bit partitioned average
FMOV(s,d) Floating-point move
FMOV(s,d)cc Move floating-point register if condition is satisfied
FMOV(s,d)R Move floating-point register if integer register contents satisfy condition
FMSUB{s,d} Floating-point multiply-subtract single/double (fused)
FMUL(s,d) Floating-point multiply
FMUL8SUx16 Signed upper 8- x 16-bit partitioned product of corresponding components
FMUL8ULx16 Unsigned lower 8- x 16-bit partitioned product of corresponding components
FMUL8x16 8- x 16-bit partitioned product of corresponding components
FMUL8x16AL Signed lower 8- x 16-bit lower α partitioned product of four components
FMUL8x16AU Signed upper 8- x 16-bit lower α partitioned product of four components
FMULD8SUx16 Signed upper 8- x 16-bit multiply → 32-bit partitioned product of components
FMULD8ULx16 Unsigned lower 8- x 16-bit multiply → 32-bit partitioned product of components
FNADD(s,d) Floating-point add and negate

TABLE 5-1 Complete SPARC M7 Hardware-Supported Instruction Set (2 of 6)

Opcode Description
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FNAND{s} Logical nand (single precision)
FNEG(s,d) Floating-point negate
FNHADD{s,d} Floating-point add and halve, then negate
FNMADD{s,d} Floating-point multiply-add and negate
FNMSUB{s,d} Floating-point negative multiply-subtract single/double (fused)
FNMUL{s,d} Floating-point multiply and negate
FNOR{s,d} Logical nor

FNOT1{s,d} Negate (1’s complement) src1

FNOT2{s,d} Negate (1’s complement) src2

FNsMULd Floating-point multiply and negate
FONE{s,d} One fill
FORNOT1{s,d} Negated src1 or src2

FORNOT2{s,d} src1 or negated src2

FOR{s,d} Logical or

FPACKFIX Two 32-bit to 16-bit fixed pack
FPACK{16,32} Four 16-bit/two 32-bit pixel pack
FPADD8 Eight 8-bit partitioned add
FPADD{16,32}{s} Four 16-bit/two 32-bit partitioned add
FPADD64 Fixed-point partitioned add
FPADD{U}S8 Fixed-point partitioned add
FPADDS{16,32}{s} Fixed-point partitioned add
FPADDUS16 Fixed-point partitioned add
FPCMPEQ{16,32} Four 16-bit / two 32-bit compare: set integer dest if src1 = src2

FPCMPGT{8,16,32} Eight 8-bit /four 16-bit / two 32-bit compare: set integer dest if src1 > src2

FPCMPLE{8,16,32} Eight 8-bit /four 16-bit / two 32-bit compare: set integer dest if src1 ≤ src2

FPCMPNE{16,32} Four 16-bit / two 32-bit compare: set integer dest if src1 ≠ src2

FPCMPU{GT,LE,NE,EQ}8 Compare 8-bit unsigned fixed-point values
FPCMPU{GT,LE}{16,32} Compare four 16-bit/two 32-bit unsigned fixed-point values
FPMADDX Unsigned integer multiply-add
FPMADDXHI Unsigned integer multiply-add, return high-order 64 bits of result
FPMAX{U}{8,16,32} Partitioned integer maximum
FPMERGE Two 32-bit to 64-bit fixed merge
FPMIN{U}{8,16,32} Partitioned integer minimum
FPSUB8 Eight 8-bit partitioned subtract
FPSUB{16,32}{s} Four 16-bit/two 32-bit partitioned subtract (single precision)
FPSUB64 Fixed-point partitioned subtract, 64-bit
FPSUB{U}S8 Fixed-point partitioned subtract
FPSUBS{16,32}{s} Fixed-point partitioned subtract
FPSUBUS16 Fixed-point partitioned subtract
FSLL{16,32} 16- or 32-bit partitioned shift, left (old mnemonic FSHL)
FSLAS{16,32} 16- or 32-bit partitioned shift, left or right (old mnemonic FSHLAS)
FSRA{16,32} 16- or 32-bit partitioned shift, left or right (old mnemonic FSHRA)
FSRL{16,32} 16- or 32-bit partitioned shift, left or right (old mnemonic FSHRL)
FsMULd Floating-point multiply single to double
FSQRT(s,d) Floating-point square root
FSRC1{s,d} Copy src1

FSRC2d Copy src2 (double precision)

TABLE 5-1 Complete SPARC M7 Hardware-Supported Instruction Set (3 of 6)

Opcode Description
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FSRC2s Copy src2 (single precision)
F(s,d)TO(s,d) Convert between floating-point formats
F(s,d)TOi Convert floating point to integer
F(s,d)TOx Convert floating point to 64-bit integer
FSUB(s,d) Floating-point subtract
FXNOR{s,d} Logical xnor

FXOR{s,d} Logical xor

FxTO(s,d) Convert 64-bit integer to floating-point
FZERO{s} Zero fill (single precision)
ILLTRAP Illegal instruction
INVALW Mark all windows as CANSAVE
JMPL Jump and link
LDBLOCKF 64-byte block load
LDDF Load double floating-point
LDDFA Load double floating-point from alternate space
LDF Load floating-point
LDFA Load floating-point from alternate space
LDFSR Load floating-point state register lower
LDSB Load signed byte
LDSBA Load signed byte from alternate space
LDSH Load signed halfword
LDSHA Load signed halfword from alternate space
LDSTUB Load-store unsigned byte
LDSTUBA Load-store unsigned byte in alternate space
LDSW Load signed word
LDSWA Load signed word from alternate space
LDTW Load twin words
LDTWA Load twin words from alternate space
LDUB Load unsigned byte
LDUBA Load unsigned byte from alternate space
LDUH Load unsigned halfword
LDUHA Load unsigned halfword from alternate space
LDUW Load unsigned word
LDUWA Load unsigned word from alternate space
LDX Load extended
LDXA Load extended from alternate space
LDXEFSR Load extended floating-point state register
LDXFSR Load extended floating-point state register
LZCNT Leading zero count on 64-bit integer register
MD5 MD5 hash
MEMBAR Memory barrier
MONTMUL Montgomery multiplication
MONTSQR Montgomery squaring
MOVcc Move integer register if condition is satisfied
MOVdTOx Move floating-point register to integer register
MOVr Move integer register on contents of integer register
MOVsTO{u,s}w Move floating-point register to integer register

TABLE 5-1 Complete SPARC M7 Hardware-Supported Instruction Set (4 of 6)

Opcode Description
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MOVwTOs Move integer register to floating-point register
MOVxTOd Move integer register to floating-point register
MPMUL Multiple-precision multiplication
MULScc Multiply step (and modify condition codes)
MULX Multiply 64-bit integers
NOP No operation
NORMALW Mark other windows as restorable
OR (ORcc) Inclusive-or (and modify condition codes)
ORN (ORNcc) Inclusive-or not (and modify condition codes)
OTHERW Mark restorable windows as other
PDIST Distance between 8 8-bit components
PDISTN Pixel component distance
POPC Population count
PREFETCH Prefetch data
PREFETCHA Prefetch data from alternate space
PST Eight 8-bit/4 16-bit/2 32-bit partial stores
RDASI Read ASI register
RDASR Read ancillary state register
RDCCR Read condition codes register
RDCFR Read compatibility feature register
RDFPRS Read floating-point registers state register
RDPC Read program counter
RDPR Read privileged register
RDTICK Read TICK register
RESTORE Restore caller’s window
RESTORED Window has been restored
RETRY Return from trap and retry
RETURN Return
SAVE Save caller’s window
SAVED Window has been saved
SDIV (SDIVcc) 32-bit signed integer divide (and modify condition codes)
SDIVX 64-bit signed integer divide
SETHI Set high 22 bits of low word of integer register
SHA1 SHA-1 hash
SHA256 SHA-256 hash
SHA512 SHA-512 hash
SIAM Set interval arithmetic mode
SLL Shift left logical
SLLX Shift left logical, extended
SMUL (SMULcc) Signed integer multiply (and modify condition codes)
SRA Shift right arithmetic
SRAX Shift right arithmetic, extended
SRL Shift right logical
SRLX Shift right logical, extended
STB Store byte
STBA Store byte into alternate space
STBAR Store barrier

TABLE 5-1 Complete SPARC M7 Hardware-Supported Instruction Set (5 of 6)

Opcode Description
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STBLOCKF 64-byte block store
STD Store doubleword
STDA Store doubleword into alternate space
STDF Store double floating-point
STDFA Store double floating-point into alternate space
STF Store floating-point
STFA Store floating-point into alternate space
STFSR Store floating-point state register
STH Store halfword
STHA Store halfword into alternate space
STPARTIALF Eight 8-bit/4 16-bit/2 32-bit partial stores
STTW Store twin words
STTWA Store twin words into alternate space
STW Store word
STWA Store word into alternate space
STX Store extended
STXA Store extended into alternate space
STXFSR Store extended floating-point state register
SUB (SUBcc) Subtract (and modify condition codes)
SUBC (SUBCcc) Subtract with carry (and modify condition codes)
SUBXC (SUBXCcc) Subtract extended with carry (and modify condition codes)
SWAP Swap integer register with memory
SWAPA Swap integer register with memory in alternate space
TADDcc
(TADDccTV)

Tagged add and modify condition codes (trap on overflow)

Tcc Trap on integer condition codes (with 8-bit sw_trap_number, if bit 7 is set trap to
hyperprivileged)

TSUBcc
(TSUBccTV)

Tagged subtract and modify condition codes (trap on overflow)

UDIV (UDIVcc) Unsigned integer divide (and modify condition codes)
UDIVX 64-bit unsigned integer divide
UMUL (UMULcc) Unsigned integer multiply (and modify condition codes)
UMULXHI Unsigned 64 x 64 multiply, returning upper 64 product bits
WRASI Write ASI register
WRASR Write ancillary state register
WRCCR Write condition codes register
WRFPRS Write floating-point registers state register
WRPR Write privileged register
XMONTMUL XOR Montgomery multiplication
XMONTSQR XOR Montgomery squaring
XMPMUL XOR multiple-precision multiplication
XMULX{HI} XOR multiply
XNOR (XNORcc) Exclusive-nor (and modify condition codes)
XOR (XORcc) Exclusive-or (and modify condition codes)

1. The PC format saved by the CALL instruction is the same as the format of the PC register spec-
ified in Section 3.2.2, Program Counter (PC), on page 18.

TABLE 5-1 Complete SPARC M7 Hardware-Supported Instruction Set (6 of 6)

Opcode Description
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TABLE 5-2 lists the SPARC V9 and sun4v instructions that are not directly implemented in hardware by
SPARC M7, and the exception that occurs when an attempt is made to execute them.

5.2 PREFETCH/PREFETCHA
See the PREFETCH and PREFETCHA instruction descriptions in the Oracle SPARC Architecture 2011
specification for the standard definitions of these instructions. This section describes how SPARC M7
handles PREFETCH instructions.

SPARC M7 interprets the function codes for prefetch variants as follows:

TABLE 5-2 Oracle SPARC Architecture 2015 Instructions Not Directly Implemented by SPARC M7 Hardware

Opcode Description Exception

FABSq Floating-point absolute value quad illegal_instruction
FADDq Floating-point add quad illegal_instruction
FCMPq Floating-point compare quad illegal_instruction
FCMPEq Floating-point compare quad (exception if unordered) illegal_instruction
FDIVq Floating-point divide quad illegal_instruction
FdMULq Floating-point multiply double to quad illegal_instruction
FiTOq Convert integer to quad floating-point illegal_instruction
FMOVq Floating-point move quad illegal_instruction
FMOVqcc Move quad floating-point register if condition is satisfied illegal_instruction
FMOVqr Move quad floating-point register if integer register contents satisfy

condition
illegal_instruction

FMULq Floating-point multiply quad illegal_instruction
FNEGq Floating-point negate quad illegal_instruction
FSQRTq Floating-point square root quad illegal_instruction
F(s,d,q)TO(q) Convert between floating-point formats to quad illegal_instruction
FQTOI Convert quad floating point to integer illegal_instruction
FQTOX Convert quad floating point to 64-bit integer illegal_instruction
FSUBq Floating-point subtract quad illegal_instruction
FxTOq Convert 64-bit integer to floating-point illegal_instruction
IMPDEP1 (not listed
in TABLE 5-1)

Implementation-dependent instruction illegal_instruction

IMPDEP2 (not listed
in TABLE 5-1)

Implementation-dependent instruction illegal_instruction

LDQF Load quad floating-point illegal_instruction
LDQFA Load quad floating-point into alternate space illegal_instruction
STQF Store quad floating-point illegal_instruction
STQFA Store quad floating-point into alternate space illegal_instruction

TABLE 5-3 SPARC M7 interpretation of prefetch variants

fcn Prefetch Variant Action

0 Weak prefetch for several reads Prefetch to L1 data cache and L2 cache
1 Weak prefetch for one read Prefetch to L2 cache
2 Weak prefetch for several writes Prefetch to L2 cache (exclusive)
3 Weak prefetch for one write Prefetch to L2 cache (exclusive)
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..

5.3 WRPAUSE
WRPAUSE is a mnemonic for a WRASR to ASR 27, the PAUSE register.

4 Prefetch Page NOP - no action taken
5 - 15 Reserved illegal_instruction trap
16 NOP NOP - no action taken
17 Strong prefetch to nearest unified

cache
Prefetch to L2 cache

18 - 19 NOP NOP - no action taken
20 Strong prefetch for several reads Prefetch to L1 data cache and L2 cache
21 Strong prefetch for one read Prefetch to L2 cache
22 Strong prefetch for several writes Prefetch to L2 cache (exclusive)
23 Strong prefetch for one write Prefetch to L2 cache (exclusive)
24-31 NOP NOP - no action taken

Programming
Note

SPARC M7 does not implement any prefetch functions that
prefetch solely to the L3 cache.

Implementation
Note

On SPARC M7, prefetches can be dropped either at the L1 data
cache, the L2 cache, or the L3 cache. Prefetches may be dropped
regardless of whether they are strong or weak. Weak prefetches
are dropped if they miss the DTLB, whereas strong prefetches
are dropped if hardware tablewalk returns an error or is not
enabled; otherwise, the following conditions apply to either
type. Prefetches are dropped when:

1. The prefetch is to an I/O page, or a page marked as non-
cacheable or with side-effects.

2. The miss buffer in the L1 data cache fills beyond a high-
water mark (this only applies when more than one thread
is unparked).

3. The prefetch is for a data cache miss which is already
outstanding.

4. The prefetch is a read prefetch that hits in the L1 cache.

5. The prefetch is a read prefetch to L2 which hits in the L2
cache.

6. The prefetch is a write prefetch which exists in the L2
cache in the exclusive state.

7. The prefetch misses in the L2 cache, and the L2 miss
buffer fills beyond a high water mark.

8. The prefetch misses in the L3 cache, and the L3 miss
buffer fills beyond a high water mark.

TABLE 5-3 SPARC M7 interpretation of prefetch variants (Continued)

fcn Prefetch Variant Action
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Writing to the PAUSE register suspends a strand for a specified number of nanoseconds. The PAUSE
register is write-only; the PAUSE register cannot be read. SPARC M7 implements a 16-bit PAUSE
register as described below:

When WRPAUSE is executed, the following sequence of events occurs in SPARC M7:

1. Hardware places the strand in a paused state. Hardware flushes the strand, thereby making the
strand inactive and releasing shared resources to the active strands.

2. Hardware checks the value that will be written to the PAUSE register. Hardware updates the
strand’s PAUSE register with the value of ((min (216 - 1, (R[rs1] xor simm13)) >> 4)) or the value
((min (216 - 1, (R[rs1] xor R[rs2])) >> 4)), depending upon the instruction format. If the value
written to PAUSE is 0, hardware will pause the strand for a minimum delay. The value placed in
the PAUSE register is divided by 16 since each strand’s PAUSE register is decremented once every
16 ns. Thus the actual duration of a WRPAUSE ranges between a minimum delay of approximately
10 ns to a maximum of 1048576 ns.

3. Hardware decrements the PAUSE register every 16 ns. The strand remains in the paused state until
either:

a. The PAUSE register decrements to zero, or

b. Any unmasked disrupting trap request, any deferred trap request, an XIR trap request, or a
request to change the strand state from Running to Parked is received (See Section 15.1.2.6,
STRAND_RUNNING, on page 458 for more details on Running and Parked states and
transitions). Also see Oracle SPARC Architecture 2015 for more details on what terminates a
WRPAUSE. These requests immediately force the PAUSE register to become 0.

4. When the PAUSE register becomes 0, SPARC M7 resumes instruction fetch and execution at the
NPC of the WRPAUSE1.

A masked trap request does not affect the PAUSE register or suspension of the strand.

Any disrupting trap request that is posted after WRPAUSE has updated the PAUSE register and the
strand has suspended forward progress does not result in a trap being taken on the WRPAUSE
instruction; the trap is taken on a later instruction. This ensures forward progress when the trap
handler retries the instruction on which the trap was taken.

5.4 WRMWAIT
WRMWAIT is a mnemonic for a WRASR to ASR 28, the MWAIT register.

Writing to the MWAIT register suspends a strand up to a specified number of nanoseconds, or until
the monitored memory address is modified. The MWAIT register is write-only; the MWAIT register
cannot be read. SPARC M7 leverages the PAUSE register to implement the MWAIT register
(specifically in respect to suspending a strand for a number of nanoseconds).

TABLE 5-4 PAUSE Register

Bit Field R/W Description

63:20 — WO Reserved.
19:4 pause WO Pause value from 0..1048576 nanoseconds
3:0 — WO Ignored.

1. Hardware releases the post-sync at the Select stage, enabling subsequent instructions to enter the pipeline.

Programming
Note

WRPAUSE is intended to be used as part of a progressive
(exponential) backoff algorithm.
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See Oracle SPARC Architecture 2015 for details of MWAIT functionality, see Section 5.3 for
implementation details relative to PAUSE, and see Section 11.5.8 for implementation dependencies.

5.5 Block Load and Store Instructions
See the LDBLOCKF and STBLOCKF instruction descriptions in the Oracle SPARC Architecture 2015
specification for the standard definitions of these instructions.

Block store commits in SPARC M7 do NOT force the data to be written to memory as specified in the
Oracle SPARC Architecture 2015 specification. Block store commits are implemented the same as
block stores in SPARC M7. As with all stores, block stores and block store commits maintain
coherency with all I-caches, but will not flush any modified instructions executing down a pipeline.
Flushing those instructions requires the pipeline to execute a FLUSH instruction.

Notes If LDBLOCKF is used with an ASI_BLK_COMMIT_{P,S} and a
destination register number rd is specified which is not a
multiple of 8 (a misaligned rd), SPARC M7 generates an
illegal_instruction exception (impl. dep. #255-U3-Cs10).

If LDBLOCKF is used with an ASI_BLK_COMMIT_{P,S} and a
memory address is specified with less than 64-byte alignment,
SPARC M7 generates a DAE_invalid_ASI exception (impl. dep.
#256-U3)
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SPARC M7 treats LDBLOCKF as interlocked with respect to following instructions. All later
instructions see the effect of the newly loaded values.

STBLOCKF source data registers are interlocked against completion of previous instructions,
including block load instructions; STBLOCKF instructions don’t commit until all previous instructions
commit. Thus STBLOCKF instructions read the most recent value of the floating-point source
register(s) when committing to memory. STBLOCKF instructions may or may not initialize the target
memory locations to 0 prior to updating them with the source data. Thus another strand may observe
these intermediate zero values prior to observing the final source data value.

LDBLOCKF does not follow memory model ordering with respect to stores. In particular, a read-
after-write hazard to overlapping addresses is not detected. The side-effect bit associated with the
access is ignored (see Translation Table Entry (TTE) on page 75). If ordering with respect to earlier
stores is important (for example, a block load that overlaps previous stores), then there must be an
intervening MEMBAR #StoreLoad (or stronger MEMBAR). If the LDBLOCKF overlaps a previous
store and there is no intervening MEMBAR or data reference, the LDBLOCKF may return data from
before or after the store.

These instructions are used for transferring large blocks of data
(more than 256 bytes); for example, memcpy() and memset().
On SPARC M7, a block load forces a miss in the primary cache
and will not allocate a line in the primary cache, but does
allocate in L2.

SPARC M7 breaks block load and store instructions into 8
individual "helper" instructions. Each helper is translated as an
independent instruction. Thus, it is possible that any individual
helper or set of helpers translates to a different memory page
from other helpers from the same instruction, if the underlying
memory mapping is changed by another process during the
execution of the block instruction. Any individual helper or set
of helpers may also trap if memory mapping attributes are
changed by another process in the midst of a series of helper
translations. In the event multiple helpers have exceptions,
SPARC M7 commits the helpers in program order from the
lowest virtual address to the highest virtual address. Thus, the
helper with the lowest virtual address which experiences an
exception determines which trap will be taken. SPARC M7
makes no guarantee about the atomicity of address translation
for block operations.

Block stores execute differently on SPARC M7 than on prior
UltraSPARC processors. On previous processors, such as
UltraSPARC T2, UltraSPARC T2+, and SPARC T3, block stores
fetched the data from memory prior to updating the line with
the store data. On SPARC M7, the processor first establishes the
line in the L2 cache and zeroes the data, prior to updating the
line with the store source data. The block store is helperized into
8 individual block init stores. The first helper establishes the line
in the L2 cache, zeroes the line out, then updates the first 8 bytes
of the line with the first 8 bytes of the store source data. The
remaining seven helpers collectively update the remaining 56
bytes with the remaining 56 bytes of store source data. As a
result, it is possible for another process to see the old data, the
new data, or a value of zero while the block store is being
executed.
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STBLOCKF instructions do not conform to TSO store-store ordering with respect to older non-
overlapping stores. A subsequent load to the same address as a STBLOCKF may not read the results
of the STBLOCKF. The side-effects bit associated with the access is ignored. If ordering with respect
to later loads is important then there must be an intervening MEMBAR instruction. If the STBLOCKF
overlaps a later load and there is no intervening MEMBAR #StoreLoad instruction, the result of the
load is undefined.

Compatibility
Notes

Block load and store operations do not obey the ordering
restrictions of the currently selected processor memory model
(TSO, PSO, or RMO). In general, explicit MEMBAR instructions
are required to order block memory operations among
themselves or with respect to normal loads and stores. In
addition, block operations do not generally conform to
dependence order on the issuing virtual processor; that is, no
read-after-write or write-after-read checking occurs between
block loads and stores. Explicit MEMBARs are required to
enforce dependence ordering between block operations that
reference the same address
TABLE 5-5 describes the synchronization primitives required in
SPARC M7, if any, to guarantee TSO ordering between various
sequences of memory reference operations. The first column
contains the reference type of the first or earlier instruction; the
second column contains the reference type of the second or the
later instruction. SPARC M7 orders loads and block loads
against all subsequent instructions.

TABLE 5-5 SPARC M7 Synchronization Requirements for Memory Reference Operations

First reference Second reference Synchronization Required

Load Load —

Block load MEMBAR #LoadLoad

Store —

Block store —

Block load Load —

Block load MEMBAR #LoadLoad

Store —

Block store —

Store Load —

Block load MEMBAR #StoreLoad or #Sync

Store —

Block store MEMBAR #StoreStore or stronger, if to non-
overlapping addresses

Block store Load MEMBAR #StoreLoad or #Sync

Block load MEMBAR #StoreLoad or #Sync

Store MEMBAR #StoreStore or stronger, if to non-
overlapping addresses

Block store MEMBAR #StoreStore or stronger, if to non-
overlapping addresses
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5.6 Block Initializing Store ASIs

Description Block initializing store instructions are selected by using one of the block initializing store ASIs with
integer or floating-point store instructions. These ASIs allow block initializing stores to be performed
to the same address spaces as normal stores. Little-endian ASIs access data in little-endian format,
otherwise the access is assumed to be big-endian.

Integer and floating-point stores of all sizes (to alternate space) are allowed to use these ASIs.

All stores to these ASIs operate under relaxed memory ordering (RMO). To ensure ordering with
respect to subsequent stores and loads, software must follow a sequence of these stores with a
MEMBAR #StoreStore or #StoreLoad, respectively. To ensure ordering with respect to prior
stores, software must precede these stores with a MEMBAR #StoreStore.

Instruction imm_asi
ASI
Value Operation

ST[B,H,W,TW,X]A,
STFA, STDFA

ASI_ST_BLKINIT_AS_IF_USER_PRIMARY
(ASI_STBI_AIUP)

2216 64-byte block initializing store to primary
address space, user privilege

ASI_ST_BLKINIT_AS_IF_USER_SECONDARY
(ASI_STBI_AIUS)

2316 64-byte block initializing store to secondary
address space, user privilege

ASI_ST_BLKINIT_REAL
(ASI_STBI_R)

2616 64-byte block initializing store to real
address

ASI_ST_BLKINIT_NUCLEUS
(ASI_STBI_N)

2716 64-byte block initializing store to nucleus
address space

ASI_ST_BLKINIT_AS_IF_USER_PRIMARY_LITTLE
(ASI_STBI_AIUPL)

2A16 64-byte block initializing store to primary
address space, user privilege, little-endian

ASI_ST_BLKINIT_AS_IF_USER_SECONDARY_LITTLE
(ASI_STBI_AIUS_L)

2B16 64-byte block initializing store to secondary
address space, user privilege, little-endian

ASI_ST_BLKINIT_REAL_LITTLE
(ASI_STBI_RL)

2E16 64-byte block initializing store to real
address, little-endian

ASI_ST_BLKINIT_NUCLEUS_LITTLE
(ASI_STBI_NL)

2F16 64-byte block initializing store to nucleus
address space, little-endian

ST[B,H,W,TW,X]A,
STFA, STDFA

ASI_ST_BLKINIT_PRIMARY
(ASI_STBI_P)

E216 64-byte block initializing store to primary
address space

ASI_ST_BLKINIT_SECONDARY
(ASI_STBI_S)

E316 64-byte block initializing store to secondary
address space

ASI_ST_BLKINIT_PRIMARY_LITTLE
(ASI_STBI_PL)

EA16 64-byte block initializing store to primary
address space, little-endian

ASI_ST_BLKINIT_SECONDARY_LITTLE
(ASI_STBI_SL)

EB16 64-byte block initializing store to secondary
address space, little-endian

ASI_ST_BLKINIT_MRU_PRIMARY
(ASI_STBIMRU_P)

F216 64-byte block initializing store to primary
address space, install as MRU in L2 cache

ASI_ST_BLKINIT_MRU_SECONDARY
(ASI_STBIMRU_S)

F316 64-byte block initializing store to secondary
address space, install as MRU in L2 cache

ASI_ST_BLKINIT_MRU_PRIMARY_LITTLE
(ASI_STBIMRU_PL)

FA16 64-byte block initializing store to primary
address space, little-endian,
install as MRU in L2 cache

ASI_ST_BLKINIT_MRU_SECONDARY_LITTLE
(ASI_STBIMRU_SL)

FB16 64-byte block initializing store to secondary
address space, little-endian,
install as MRU in L2 cache
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Stores to these ASIs where the least-significant 6 bits of the address are non-zero (that is, not the first
word in the L2 cache line) behave the same as a normal RMO store. A store to these ASIs where the
least-significant 6 bits are zero will load a 64 byte line in the L2 cache with all zeros, and then update
that line with the new store data. The zeroing of the line and the storing of the new data are not
atomic, therefore while a block-initializing store is being performed, another strand may observe any
of the following: (1) the old data value, (2) zero, or (3) the new data value. When the operation is
complete, only the new data value will be seen. This special store will make sure the 64B lines
maintain coherency when they are loaded into the L2 cache, but will not fetch the line from memory
(initializing it with zeros instead), except as noted above. Stores using these ASIs to a noncacheable
address behave the same as a normal store.

The ASIs F216, F316, FA16, and FB16 establish the line in the L2 cache as recently-used, thereby helping
to ensure they are not replaced shortly after being established. (The naming of the ASIs refers to MRU
in this case, although the L2 does not use a true LRU policy.) This can aid in cases where the newly-
established line is expected to be referenced in the near future from a process running on the same
physical core. The remaining block initializing store ASIs establish the line in the L2 cache as not-
used, increasing the likelihood of the line being replaced. This is useful when data is not expected to
be used in the near future as it reduces the amount of cached data displaced by the copy routine.

One way the MRU and LRU variants can be used is in a copy routine. The first block initializing
stores to the line can be of the MRU variety. This will reduce the chance that the line will be lost
before all stores to the line are complete. The final block initializing store to the line would then be of
the LRU variety, causing the line to then be favored for replacement and reducing the cache pollution
associated with the copy operation.

The following pseudocode shows how these ASIs can be used to do a quadword-aligned (on both
source and destination) copy of N quadwords from A to B (where N > 3). Note that the final 64 bytes
of the copy is performed using normal stores, guaranteeing that all initial zeros in a cache line are
overwritten with copy data. This pseudocode may not be optimal for SPARC M7; it is provided as an
example only.

%l0 ← [A]
%l1 ← [B]
prefetch [%l0]
for (i = 0; i < N-4; i++) {

if ((i mod 4) ≠ 0) {
      prefetch [%l0+64]
   }
   ldtxa [%l0] #ASI_TWINX_P, %l2
   add %l0, 16, %l0
   stxa %l2, [%l1] #ASI_ST_BLKINIT_PRIMARY
   add %l1, 8, %l1
   stxa %l3, [%l1] #ASI_ST_BLKINIT_PRIMARY
   add %l1, 8, %l1
}
for (i = 0; i < 4; i++) {
   ldtxa [%l0] #ASI_TWINX_P, %l2
   add %l0, 16, %l0
   stx %l2, [%l1]
   stx %l3,d [%l1+8]
   add %l1, 16, %l1
}
membar #Sync

Note These instructions are used for transferring large blocks of data
(more than 256 bytes); for example, memcpy() and memset().
On SPARC M7, a twin load forces a miss in the primary cache
and will not allocate a line in the primary cache, but does
allocate in L2.
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Programming
Notes

The Block Initializing Store ASIs are of Class "N" and are only
allowed in dynamically linked, platform-specific, OS-enabled
libraries.
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CHAPTER 6

Traps

6.1 Trap Levels
Only SPARC M7 specific behavior is described in this chapter; refer to Oracle SPARC Architecture
2015 for more detail on trap handling.

Each virtual processor supports two trap levels (MAXPTL = 2).

6.2 Trap Behavior
TABLE 6-1 specifies the codes used in the tables below.

6.3 Trap Masking
TABLE 6-2 specifies the codes used inTABLE 6-2.

TABLE 6-1 Table Codes

Code Meaning

H Trap is taken in Hyperprivileged mode

P Trap is taken via the Privileged trap table, in Privileged mode (PSTATE.priv = 1)

-x- Not possible. Hardware cannot generate this trap in the indicated running mode. For example, all
privileged instructions can be executed in privileged mode, therefore a privileged_opcode trap
cannot occur in privileged mode.

— This trap can only legitimately be generated by hyperprivileged software, not by the CPU
hardware. So, for the purposes of sun4v, the trap vector has to be correct, but for a hardware CPU
implementation these trap types are not generated by the hardware, therefore the resultant
running mode is irrelevant.
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TABLE 6-2 Codes

Code Meaning

(nm) Never Masked — when the condition occurs in this running mode, it is
never masked out and the trap is always taken.

(ie) When the outstanding disrupting trap condition occurs in this privilege
mode, it may be conditioned (masked out) by PSTATE.ie = 0 (but remains
pending).

PIL Masked by PSTATE.ie and PIL

-x- This trap can only legitimately be generated by hyperprivileged software,
not by the CPU hardware. So, for the purposes of sun4v, the trap vector has
to be correct, but for a hardware CPU implementation these trap types are
not generated by the hardware, therefore the resultant running mode is
irrelevant.
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CHAPTER 7

Interrupt Handling

The chapter describes the hardware interrupt delivery mechanism for the SPARC M7 chip.

Hyperprivileged code notifies privileged code about sw_recoverable_error traps through the
cpu_mondo, dev_mondo, and resumable_error traps as described in Interrupt Queue Registers on page
47. Software interrupts are delivered to each virtual processor using the interrupt_level_n traps.
Software interrupts are described in the Oracle SPARC Architecture 2015 specification.

7.1 Interrupt Flow

7.1.1 Sources
The processor SOFTINT_SET register can be written from sources external to the processor core.

7.1.2 States

7.2 CPU Interrupt Registers

7.2.1 Interrupt Queue Registers
Each virtual processor has eight ASI_QUEUE registers at ASI = 2516, VA{63:0} = 3C016-3F816 that are
used for communicating interrupts to the operating system. These registers contain the head and tail
pointers for four supervisor interrupt queues: cpu_mondo, dev_mondo, resumable_error,
nonresumable_error. The tail registers are read-only by supervisor, and read/write by hypervisor.
Writes to the tail registers by the supervisor generate a DAE_invalid_ASI trap. The head registers are
read/write by both supervisor and hypervisor.

Whenever the CPU_MONDO_HEAD register does not equal the CPU_MONDO_TAIL register, a
cpu_mondo trap is generated. Whenever the DEV_MONDO_HEAD register does not equal the
DEV_MONDO_TAIL register, a dev_mondo trap is generated. Whenever the
RESUMABLE_ERROR_HEAD register does not equal the RESUMABLE_ERROR_TAIL register, a
resumable_error trap is generated. Unlike the other queue register pairs, the nonresumable_error trap
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is not automatically generated whenever the NONRESUMABLE_ERROR_HEAD register does not
equal the NONRESUMABLE_ERROR_TAIL register; instead, the hypervisor will need to generate the
nonresumable_error trap.

TABLE 7-1 through TABLE 7-8 define the format of the eight ASI_QUEUE registers.

TABLE 7-1 CPU Mondo Head Pointer – ASI_QUEUE_CPU_MONDO_HEAD (ASI 2516, VA 3C016)

Bit Field Initial Value Access Description

63:31 — 0 RO Reserved

30:6 head X RW Head pointer for CPU mondo interrupt queue.
5:0 — 0 RO Reserved

TABLE 7-2 CPU Mondo Tail Pointer – ASI_QUEUE_CPU_MONDO_TAIL (ASI 2516, VA 3C816)

Bit Field Initial Value Access Description

63:31 — 0 RO Reserved

30:6 tail X RW Tail pointer for CPU mondo interrupt queue.
5:0 — 0 RO Reserved

TABLE 7-3 Device Mondo Head Pointer – ASI_QUEUE_DEV_MONDO_HEAD (ASI 2516, VA 3D016)

Bit Field Initial Value Access Description

63:31 — 0 RO Reserved

30:6 head X RW Head pointer for device mondo interrupt queue.
5:0 — 0 RO Reserved

TABLE 7-4 Device Mondo Tail Pointer – ASI_QUEUE_DEV_MONDO_TAIL (ASI 2516, VA 3D816)

Bit Field Initial Value Access Description

63:31 — 0 RO Reserved

30:6 tail X RW Tail pointer for device mondo interrupt queue.
5:0 — 0 RO Reserved

TABLE 7-5 Resumable Error Head Pointer – ASI_QUEUE_RESUMABLE_HEAD (ASI 2516, VA 3E016)

Bit Field Initial Value Access Description

63:31 — 0 RO Reserved.
30:6 head X RW Head pointer for resumable error queue.
5:0 — 0 RO Reserved

TABLE 7-6 Resumable Error Tail Pointer – ASI_QUEUE_RESUMABLE_TAIL (ASI 2516, VA 3E816)

Bit Field Initial Value Access Description

63:31 — 0 RO Reserved

30:6 tail X RW Tail pointer for resumable error queue.
5:0 — 0 RO Reserved
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TABLE 7-7 Nonresumable Error Head Pointer – ASI_QUEUE_NONRESUMABLE_HEAD (ASI 2516, VA 3F016)

Bit Field Initial Value Access Description

63:31 — 0 RO Reserved

30:6 head X RW Head pointer for nonresumable error queue.
5:0 — 0 RO Reserved

TABLE 7-8 Nonresumable Error Tail Pointer – ASI_QUEUE_NONRESUMABLE_TAIL (ASI 2516, VA 3F816)

Bit Field Initial Value Access Description

63:31 — 0 RO Reserved

30:6 tail X RW Tail pointer for nonresumable error queue.
5:0 — 0 RO Reserved
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CHAPTER 8

Memory Models

SPARC V9 defines the semantics of memory operations for three memory models. From strongest to
weakest, they are Total Store Order (TSO), Partial Store Order (PSO), and Relaxed Memory Order
(RMO). The differences in these models lie in the freedom an implementation is allowed in order to
obtain higher performance during program execution. The purpose of the memory models is to
specify any constraints placed on the ordering of memory operations in uniprocessor and shared-
memory multiprocessor environments. SPARC M7 supports only TSO, with the exception that certain
ASI accesses (such as block loads and stores) may operate under RMO.

Although a program written for a weaker memory model potentially benefits from higher execution
rates, it may require explicit memory synchronization instructions to function correctly if data is
shared. MEMBAR is a SPARC V9 memory synchronization primitive that enables a programmer to
control explicitly the ordering in a sequence of memory operations. Processor consistency is
guaranteed in all memory models.

The current memory model is indicated in the PSTATE.mm field. It is unaffected by normal traps.
SPARC M7 ignores the value set in this field and always operates under TSO.

A memory location is identified by an 8-bit address space identifier (ASI) and a 64-bit virtual address.
The 8-bit ASI may be obtained from a ASI register or included in a memory access instruction. The
ASI is used to distinguish between and provide an attribute for different 64-bit address spaces. For
example, the ASI is used by the SPARC M7 MMU to control access to implementation-dependent
control and data registers and for access protection. Attempts by nonprivileged software
(PSTATE.priv = 0) to access restricted ASIs (ASI{7} = 0) cause a privileged_action trap.

Real memory spaces can be accessed without side effects. For example, a read from real memory space
returns the information most recently written. In addition, an access to real memory space does not
result in program-visible side effects.

8.1 Supported Memory Models
The following sections contain brief descriptions of the two memory models supported by SPARC M7.
These definitions are for general illustration. Detailed definitions of these models can be found in The
SPARC Architecture Manual-Version 9. The definitions in the following sections apply to system
behavior as seen by the programmer.

Notes Stores to SPARC M7 internal ASIs, block loads, and block stores
and block initializing stores are outside the memory model; that
is, they need MEMBARs to control ordering.

Atomic load-stores are treated as both a load and a store and can
only be applied to cacheable address spaces.
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8.1.1 TSO
SPARC M7 implements the following programmer-visible properties in Total Store Order (TSO) mode:

■ Loads are processed in program order; that is, there is an implicit MEMBAR #LoadLoad between
them.

■ Loads may bypass earlier stores. Any such load that bypasses such earlier stores must check
(snoop) the store buffer for the most recent store to that address. A MEMBAR #Lookaside is not
needed between a store and a subsequent load at the same noncacheable address.

■ A MEMBAR #StoreLoad must be used to prevent a load from bypassing a prior store if Strong
Sequential Order is desired.

■ Stores are processed in program order.

■ Stores cannot bypass earlier loads.

■ Accesses to I/O space are all strongly ordered with respect to each other.

■ An L2 cache update is delayed on a store hit until all outstanding stores reach global visibility. For
example, a cacheable store following a noncacheable store is not globally visible until the
noncacheable store has reached global visibility; there is an implicit MEMBAR #MemIssue
between them.

8.1.2 RMO
SPARC M7 implements the following programmer-visible properties for special ASI accesses that
operate under Relaxed Memory Order (RMO) mode:

■ There is no implicit order between any two memory references, either cacheable or noncacheable,
except that noncacheable accesses to I/O space) are all strongly ordered with respect to each other.

■ A MEMBAR must be used between cacheable memory references if stronger order is desired. A
MEMBAR #MemIssue is needed for ordering of cacheable after noncacheable accesses.
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CHAPTER 9

Address Spaces and ASIs

9.1 Address Spaces
SPARC M7 supports a 54-bit virtual address space.

9.1.1 54-bit Virtual and Real Address Spaces
SPARC M7 supports a 54-bit subset of the full 64-bit virtual and real address spaces. Although the full
64 bits are generated and stored in integer registers, legal addresses are restricted to two equal halves
at the extreme lower and upper portions of the full virtual (real) address space. Virtual (real)
addresses between 0020 0000 0000 000016 and FFDF FFFF FFFF FFFF16 inclusive lie within a “VA hole”
(“RA hole”), are termed “out-of-range”1, and are illegal. Prior UltraSPARC implementations
introduced the additional restriction on software to not use pages within 4 Gbytes of the VA (RA) hole
as instruction pages to avoid problems with prefetching into the VA (RA) hole. SPARC M7
implements a hardware check for instruction fetching near the VA (RA) hole and generates a trap
when instructions are executed from a location in the address range 001F FFFF FFFF FFC016 to
001F FFFF FFFF FFFF16, inclusive,if PSTATE.am = 0. However, even though SPARC M7 provides this
hardware checking, it is still recommended that software should not use the 8-Kbyte page before the
VA (RA) hole for instructions. Address translation and MMU related descriptions can be found in
Translation on page 81.

FIGURE 9-1 SPARC M7’s 52-bit Virtual and Real Address Spaces, With Hole

1. Another way to view an out-of-range address is as any address where bits {63:52} are not all equal to bit {51}.

FFFF FFFF FFFF FFFF

FFE0 0000 0000 0000

0000 0000 0000 0000

001F FFFF FFFF FFFF

FFDF FFFF FFFF FFFF

0020 0000 0000 0000

001F FFFF FFFF BFFF
See Note (1)

Note (1): Use of this region restricted to data only.

Out of Range VA (RA)
(the “VA Hole” (“RA Hole”))
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Throughout this document, when virtual (real) address fields are specified as 64-bit quantities, they
are assumed to be sign-extended based on VA{53} (RA{53}).

A number of state registers are affected by the reduced virtual and real address spaces. The PC
register is 54 bits, sign-extended to 64-bits on read accesses. The TBA, TPC, and TNPC registers are 54
bits wide. No checks are done when these registers are written by software. It is the responsibility of
privileged software to properly update these registers.

If the target virtual (real) address of a JMPL, RETURN, branch, or CALL instruction is an out-of-range
address and PSTATE.am = 0, a trap is generated with TPC equal to the address of the JMPL, RETURN,
branch, or CALL instruction.

An out-of-range virtual (real) address during a data access results in a trap if PSTATE.am = 0.

9.2 Alternate Address Spaces
The table below summarizes the ASI usage in SPARC M7. The Section/Page column contains a
reference to the detailed explanation of the ASI (the page number refers to this chapter). For internal
ASIs, the legal VAs are listed (or the field contains “Any” if all VAs are legal). An access outside the
legal VA range generates a DAE_invalid_asi trap.

Notes All internal, nontranslating ASIs in SPARC M7 can only be
accessed using LDXA and STXA.

ASIs 8016–FF16 are unrestricted (access allowed in all modes --
nonprivileged, privileged). ASIs 0016–2F16 are restricted to
privileged and hyperprivileged modes.

TABLE 9-1 SPARC M7 ASI Usage (1 of 7)

ASI ASI Name R/W VA
Copy per
Strand Description Section/Page

0016–0116 Any — DAE_invalid_asi
0316 Any — DAE_invalid_asi
0416 ASI_NUCLEUS RW Any — Implicit address space,

nucleus context, TL > 0
(See UA-2015)

0616–0B16 Any — DAE_invalid_asi
0C16 ASI NUCLEUS_LITTLE RW Any — Implicit address space,

nucleus context, TL > 0
(LE)

(See UA-2015)

0D16–0F16 Any — DAE_invalid_asi
1016 ASI_AS_IF_USER_PRIMARY RW Any — Primary address space,

user privilege
(See UA-2015)

1116 ASI_AS_IF_USER_SECONDA
RY

RW Any — Secondary address space,
user privilege

(See UA-2015)

1216 ASI_MONITOR_AS_IF_USER
_PRIMARY

RO Any — Primary address space,
user privilege, set load
monitor

(See UA-2015
and
Section 11.5.8)

1316 ASI_MONITOR_AS_IF_USER
_SECONDARY

RO Any — Secondary address space,
user privilege, set load
monitor

(See UA-2015
and
Section 11.5.8)

1416 ASI_REAL RW Any — Real address (normally
used as cacheable)

9.2.1
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1516 ASI_REAL_IO RW Any — Real address (normally
used as noncacheable,
with side effect)

9.2.1

1616 ASI_BLOCK_AS_IF_USER_P
RIMARY

RW Any — 64-byte block load/store,
primary address space,
user privilege

5.5

1716 ASI_BLOCK_AS_IF_USER_S
ECONDARY

RW Any — 64-byte block load/store,
secondary address space,
user privilege

5.5

1816 ASI_AS_IF_USER_PRIMARY
_LITTLE

RW Any — Primary address space,
user privilege (LE)

(See UA-2015)

1916 ASI_AS_IF_USER_SECONDA
RY_LITTLE

RW Any — Secondary address space,
user privilege (LE)

(See UA-2015)

1A16–1B16 Any — DAE_invalid_asi
1C16 ASI_REAL_LITTLE RW Any — Real address (normally

used as cacheable) (LE)
9.2.1

1D16 ASI_REAL_IO_LITTLE RW Any — Real address (normally
used as noncacheable,
with side effect) (LE)

9.2.1

1E16 ASI_BLOCK_AS_IF_USER_P
RIMARY_LITTLE

RW Any — 64-byte block load/store,
primary address space,
user privilege (LE)

5.5

1F16 ASI_BLOCK_AS_IF_USER_S
ECONDARY_LITTLE

RW Any — 64-byte block load/store,
secondary address space,
user privilege (LE)

5.5

2016 ASI_SCRATCHPAD RW 016–1816 Y Scratchpad registers 9.2.2
2016 ASI_SCRATCHPAD 2016–2816 — DAE_invalid_asi
2016 ASI_SCRATCHPAD RW 3016–3816 Y Scratchpad registers 9.2.2
2116 ASI_MMU RW 816 Y I/DMMU Primary

Context register 0
13.7.2

2116 ASI_MMU RW 1016 Y DMMU Secondary
Context register 0

13.7.2

2116 ASI_MMU RW 2816 Y I/DMMU Primary
Context register 0 (no
Primary Context register
1 update)

13.7.2

2116 ASI_MMU RW 3016 Y DMMU Secondary
Context register 0 (no
Secondary Context
register 1 update)

13.7.2

2116 ASI_MMU RW 10816 Y I/DMMU Primary
Context register 1

13.7.2

2116 ASI_MMU RW 11016 Y DMMU Secondary
Context register 1

13.7.2

2216 ASI_TWINX_AIUP,
ASI_STBI_AIUP

RW Any — Load: 128-bit atomic load
twin extended word,
primary address space,
user privilege
Store: Block initializing
store, primary address
space, user privilege

5.7.4
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2316 ASI_TWINX_AIUS,
ASI_STBI_AIUS

RW Any — Load: 128-bit atomic load
twin extended word,
secondary address space,
user privilege
Store: Block initializing
store

(See UA-2015)

2416 Any — DAE_invalid_asi
2516 ASI_QUEUE RW 3C016 Y CPU Mondo Queue head

pointer
7.2.1

2516 ASI_QUEUE RW
(hyperpriv)
RO (priv)

3C8 Y CPU Mondo Queue tail
pointer

7.2.1

2516 ASI_QUEUE RW 3D016 Y Device Mondo Queue
head pointer

7.2.1

2516 ASI_QUEUE RW
(hyperpriv)
RO (priv)

3D816 Y Device Mondo Queue
tail pointer

7.2.1

2516 ASI_QUEUE RW 3E016 Y Resumable Error Queue
head pointer

7.2.1

2516 ASI_QUEUE RW
(hyperpriv)
RO (priv)

3E816 Y Resumable Error Queue
tail pointer

7.2.1

2516 ASI_QUEUE RW 3F016 Y Nonresumable Error
Queue head pointer

7.2.1

2516 ASI_QUEUE RW (hyper-
priv)
RO (priv)

3F816 Y Nonresumable Error
Queue tail pointer

7.2.1

2616 ASI_TWINX_REAL,
ASI_STBI_REAL

RW Any — Load:128-bit atomic
LDDA, real address
Store: Block initializing
store, real address

(See UA-2015)

2716 ASI_TWINX_NUCLEUS,
ASI_STBI_N

RW Any — Load: 128-bit atomic load
twin extended word
from nucleus context
Store: Block initializing
store from nucleus
context

(See UA-2015)

2816–2916 Any — DAE_invalid_asi
2A16 ASI_TWINX_AIUPL,

ASI_STBI_AIUPL
RW Any — Load: 128-bit atomic load

twin extended word,
primary address space,
user privilege, little
endian
Store: Block initializing
store, primary address
space, user privilege,
little endian

(See UA-2015)
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2B16 ASI_TWINX_AIUSL,
ASI_STBI_AIUSL

RW Any — Load: 128-bit atomic load
twin extended word,
secondary address space,
user privilege, little
endian
Store: Block initializing
store, secondary address
space, user privilege,
little endian

((See UA-2015)

2C16 Any — DAE_invalid_asi
2D16 Any — DAE_invalid_asi
2E16 ASI_TWINX_REAL_LITTLE,

ASI_STBI_REAL_LITTLE
RW Any — Load: 128-bit atomic

LDDA, real address (LE)
Store: Block initializing
store, real address (LE)

(See UA-2015)

2F16 ASI_TWINX_NL,
ASI_STBI_NL

RW Any — Load: 128-bit atomic load
twin extended word
from nucleus context,
little endian
Store: Block initializing
store from nucleus
context, little endian

(See UA-2015)

8016 ASI_PRIMARY RW Any — Implicit primary address
space

(See UA-2015)

8116 ASI_SECONDARY RW Any — Implicit secondary
address space

(See UA-2015)

8216 ASI_PRIMARY_NO_FAULT RO Any — Primary address space,
no fault

(See UA-2015)

8316 ASI_SECONDARY_NO_
FAULT

RO Any — Secondary address space,
no fault

(See UA-2015)

8416 ASI_MONITOR_PRIMARY RO Any — Primary address space,
set load monitor

(See UA-2015
and
Section 11.5.8)

8516 ASI_MONITOR_SECONDARY RO Any — Secondary address space,
set load monitor

(See UA-2015
and
Section 11.5.8)

8616–8716 Any — DAE_invalid_asi
8816 ASI_PRIMARY_LITTLE RW Any — Implicit primary address

space (LE)
(See UA-2015)

8916 ASI_SECONDARY_LITTLE RW Any — Implicit secondary
address space (LE)

((See UA-2015)

8A16 ASI_PRIMARY_NO_
FAULT_LITTLE

RO Any — Primary address space,
no fault (LE)

(See UA-2015)

8B16 ASI_SECONDARY_NO_
FAULT_LITTLE

RO Any — Secondary address space,
no fault (LE)

(See UA-2015)

8C16–8F16 Any — DAE_invalid_asi
9116 Any — DAE_invalid_asi
9316–AF16 Any — DAE_invalid_asi
B016 ASI_PIC RW 016 Y Performance

Instrumentation Counter
0

10.3
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B016 ASI_PIC RW 816 Y Performance
Instrumentation Counter
1

10.3

B016 ASI_PIC RW 1016 Y Performance
Instrumentation Counter
2

10.3

B016 ASI_PIC RW 1816 Y Performance
Instrumentation Counter
3

10.3

B116–BF16 Any — DAE_invalid_asi
C016 ASI_PST8_P WO Any — Eight 8-bit conditional

stores, primary address
(See UA-2015)

C116 ASI_PST8_S WO Any — Eight 8-bit conditional
stores, secondary address

(See UA-2015)

C216 ASI_PST16_P WO Any — Four 16-bit conditional
stores, primary address

(See UA-2015)

C316 ASI_PST16_S WO Any — Four 16-bit conditional
stores, secondary address

(See UA-2015)

C416 ASI_PST32_P WO Any — Two 32-bit conditional
stores, primary address

(See UA-2015)

C516 ASI_PST32_S WO Any — Two 32-bit conditional
stores, secondary address

(See UA-2015)

C616–C716 Any — DAE_invalid_asi
C816 ASI_PST8_PL WO Any — Eight 8-bit conditional

stores, primary address,
little endian

((See UA-2015)

C916 ASI_PST8_SL WO Any — Eight 8-bit conditional
stores, secondary
address, little endian

(See UA-2015)

CA16 ASI_PST16_PL WO Any — Four 16-bit conditional
stores, primary address,
little endian

(See UA-2015)

CB16 ASI_PST16_SL WO Any — Four 16-bit conditional
stores, secondary
address, little endian

(See UA-2015)

CC16 ASI_PST32_PL WO Any — Two 32-bit conditional
stores, primary address,
little endian

(See UA-2015)

CD16 ASI_PST32_SL WO Any — Two 32-bit conditional
stores, secondary
address, little endian

(See UA-2015)

CE16–CF16 Any — DAE_invalid_asi
D016 ASI_FL8_P RW Any — 8-bit load/store, primary

address
(See UA-2015)

D116 ASI_FL8_S RW Any — 8-bit load/store,
secondary address

(See UA-2015)

D216 ASI_FL16_P RW Any — 16-bit load/store,
primary address

(See UA-2015)

D316 ASI_FL16_S RW Any — 16-bit load/store,
secondary address

(See UA-2015)

D416–D716 Any — DAE_invalid_asi
D816 ASI_FL8_PL RW Any — 8-bit load/store, primary

address, little endian
(See UA-2015)
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D916 ASI_FL8_SL RW Any — 8-bit load/store,
secondary address, little
endian

(See UA-2015)

DA16 ASI_FL16_PL RW Any — 16-bit load/store,
primary address, little
endian

(See UA-2015)

DB16 ASI_FL16_SL RW Any — 16-bit load/store,
secondary address, little
endian

(See UA-2015)

DC16–DF16 Any — DAE_invalid_asi
E016 ASI_BLK_COMMIT_PRIMARY WO Any — 64-byte block commit

store, primary address
5.5

E116 ASI_BLK_COMMIT_SECONDA
RY

WO Any — 64-byte block commit
store, secondary address

5.5

E216 ASI_TWINX_P,
ASI_STBI_P

RW Any — Load: 128-bit atomic load
twin extended word,
primary address space
Store: Block initializing
store, primary address
space

(See UA-2015)

E316 ASI_TWINX_S,
ASI_STBI_S

RW Any — Load: 128-bit atomic load
twin extended word,
secondary address space
Store: Block initializing
store, secondary address
space

(See UA-2015)

E416–E916 Any — DAE_invalid_asi

EA16 ASI_TWINX_PL,
ASI_STBI_PL

RW Any — Load: 128-bit atomic load
twin extended word,
primary address space,
little endian
Store: Block initializing
store, primary address
space, little endian

(See UA-2015)

EB16 ASI_TWINX_SL,
ASI_STBI_SL

RW Any — Load: 128-bit atomic load
twin extended word,
secondary address space,
little endian
Store: Block initializing
store, secondary address
space, little endian

(See UA-2015)

EC16–EF16 Any — DAE_invalid_asi
F016 ASI_BLK_P RW Any — 64-byte block load/store,

primary address
5.5

F116 ASI_BLK_S RW Any — 64-byte block load/store,
secondary address

5.5

F216 ASI_STBIMRU_PRIMARY WO Any Block initializing store to
primary, install as MRU
in L2 cache

5.6

F316 ASI_STBIMRU_SECONDARY WO Any Block initializing store to
secondary, install as
MRU in L2 cache

5.6

F416–F716 Any — DAE_invalid_asi
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9.2.1 ASI_REAL, ASI_REAL_LITTLE, ASI_REAL_IO, and
ASI_REAL_IO_LITTLE (ASIs 1416, 1C16, 1516, 1D16)
These ASIs are used to bypass the VA-to-RA translation. For these ASIs, the real address is set equal
to the truncated virtual address (that is, RA{51:0} ← VA{51:0}), and the attributes used are those
present in the matching TTE. The hypervisor will normally set the TTE attributes for ASI_REAL and
ASI_REAL_LITTLE to cacheable (cp = 1) and for ASI_REAL_IO and ASI_REAL_IO_LITTLE to
noncacheable, with side effect (cp = 0, e = 1). The hardware, however, does not require this, i.e. it
allows an ASI_REAL/ASI_REAL_LITTLE to be issued to a noncacheable address (PA{49} = 1) or an
ASI_REAL_IO/ASI_REAL_IO_LITTLE to be issued to a cacheable address (PA{49} = 0); no error is
flagged in this case.

9.2.2 ASI_SCRATCHPAD (ASI 2016, VA 016-1816, 3016-3816)
Each virtual processor has a set of privileged ASI_SCRATCHPAD registers at ASI 2016 with
VA{63:0} = 016–1816, 3016–3816. These registers are for scratchpad use by privileged software.

F816 ASI_BLK_PL RW Any — 64-byte block load/store,
primary address (LE)

5.5

F916 ASI_BLK_SL RW Any — 64-byte block load/store,
secondary address (LE)

5.5

FA16 ASI_STBIMRU_PRIMARY_LI
TTLE

WO Any Block initializing store to
primary little-endian,
install as MRU in L2
cache

5.6

FB16 ASI_STBIMRU_SECONDARY_
LITTLE

WO Any Block initializing store to
secondary little-endian,
install as MRU in L2
cache

5.6

FC16–FF16 Any — DAE_invalid_asi

Future
Implementation

Note

Future implementations should explore generating an exception
for the case of ASI_REAL_IO or ASI_REAL_IO_LITTLE used
with TTE.cp = 1.

M7
Implementation

Note

Accesses to VA 2016 and 2816 are much slower than to the other
six scratchpad registers.
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CHAPTER 10

Performance Instrumentation

10.1 Introduction
As in previous UltraSPARC CMT processors, SPARC M7 supports monitoring processor performance
by virtue of a set of performance counters. Significant differences from SPARC M5 are as follows:

1. SPARC M7 has a new cache hierarchy. All events associated with instruction cache hit/miss,
instruction prefetch hit/miss/drop, data cache hit/miss and software/hardware prefetch hit/
miss/drop have been updated to reflect the new cache hierarchy

2. SPARC M7 supports an additional 16GB page size. TLB fill events have been updated to include
this page size

3. support of pipeline flush events

4. SPARC M7 supports new L2I and L2D events

5. SPARC M7 supports a richer set of per functional unit performance counters in the SOC blocks.

10.2 SPARC Performance Control Registers
Each virtual processor has four hyperprivileged, read/write Performance Control registers: PCR0,
PCR1, PCR2, and PCR3. Each PCR controls its corresponding PIC: PCR0 controls PIC0, PCR1 controls
PIC1, PCR2 controls PIC2, and PCR3 controls PIC3.

Each Performance Control register contains ten fields: ntc, picnht, picnpt, sl, mask, ht, ut, st, toe, and
ov. All bits except ntc and ov are always updated on a Performance Control register write. ov is a state
bit associated with PIC overflow traps and is provided to allow software to determine whether a PIC
counter has overflowed.

ntc and ov can be reset by software but can never be written to 1. sl controls which events are counted
in a PIC. mask is used in conjunction with sl to determine which set of subevents are counted in a
PIC. toe controls whether a trap is generated when the PIC counter overflows. ut controls whether
user-level events are counted. st controls whether supervisor-level events are counted. ht controls
whether hypervisor level events are counted.The format of this register is shown in TABLE 10-1. Note
that changing a field in the PCR does not directly affect a PIC value. To reliably change the events
being monitored, software should perform the following sequence:

1. Disable counting by writing zeroes to PCR.sl and clearing PCR.ut, PCR.ht, and PCR.st.

2. Reset the PIC.
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3. Enable the new event via writing a non-zero value to PCR.sl and setting PCR.ut, PCR.ht, or PCR.st,
as appropriate.

10.3 SPARC Performance Instrumentation Counter
Each virtual processor has four Performance Instrumentation Counter registers: PIC0, PIC1, PIC2,
and PIC3. PCR0 controls PIC0, PCR1 controls PIC1, PCR2 controls PIC2, and PCR3 controls PCR3.
Access privilege is controlled by the settings of PCR.picnht and PCR.picnpt. When PCR.picnht = 1 an
attempt to access this register in privileged or nonprivileged mode causes a privileged_action trap.
When PCR.picnpt = 1 an attempt to access this register in nonprivileged mode causes a
privileged_action trap.

The PIC counter contains a single 32-bit counter field. The field counts the event selected by PCR.sl.
The ut, st, and ht fields for PCR control which combination of user, supervisor, and/or hypervisor
events are counted.

The format of the PIC registers are shown in TABLE 10-2.

TABLE 10-1 Performance Control Registers – PCR0-3 (ASI 6416, VA 0016, 0816, 1016, 1816)

Bit Field
Initial
Value R/W Description

63:19 — 0 RO Reserved

18 ntc 0 RW Set to 1 when PIC wraps from 232 –1 to 0 on a next-to-commit (ntc)
instruction1. Once set, ntc remains set until reset by software.
Hardware sets ntc whenever it sets ov on a next-to-commit
instruction.

1. The following instructions are next-to-commit instructions: MD5, SHA1, SHA256, SHA512, MPMUL, MONT-
MUL, MONTSQR, XMPMUL, XMONTMUL, XMONTSQR, loads and stores to I/O space, CAS{X}A,
LDSTUB, SWAP, WRHPR, WRASR, WRPR, RDHPR, RDPR, RDASR instructions, and any non-translating load
or store alternate instruction as defined in Table 9-1, “SPARC M7 ASI Usage,” on page 54.

17 picnht 0 RW PIC non-hyperprivileged trap. Privileged software can access the
PIC only if picnht = 0, otherwise a privileged_action trap occurs.
Non-privileged software can access PIC only when picnht = 0 and
picnpt = 0, otherwise a privileged_action trap occurs.

16 picnpt 0 RW PIC non-privileged trap. Non-privileged software can access PIC
only when picnht = 0 and picnpt = 0, otherwise a privileged_action
trap occurs.

15:11 sl 0 RW Selects one of 32 events to be counted for PIC as per the following
table.

10:5 mask 0 RW Mask event for PIC as listed in TABLE 10-2.
4 ht 0 RW If ht = 1, count events in hyperprivileged mode; otherwise, ignore

hyperprivileged mode events.
3 st 0 RW If st = 1, count events in privileged mode; otherwise, ignore

privileged mode events.
2 ut 0 RW If ut = 1, count events in user mode; otherwise, ignore user mode

events.
1 toe 0 RW Trap-on-Event: This field controls whether a trap to

hyperprivileged software occurs if the corresponding PIC counter
overflows. Hardware ANDs the value of toe with ov to produce a
trap.

0 ov 0 RW Set to 1 when PIC wraps from 232 –1 to 0. Once set, ov remains set
until reset by software.
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TABLE 10-2 Performance Instrumentation Counter Register – PIC0-3 (ASI B016, VA 0016, 0816, 1016, 1816)

Bit Field Initial Value R/W Description

63:32 — 0 RW Reserved

31:0 counter 0 RW Programmable event counter, event controlled by PCR.sl.
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CHAPTER 11

Implementation Dependencies

11.1 SPARC V9 General Information
SPARC M7 complies with Oracle SPARC Architecture 2015 except where specifically noted. Oracle
SPARC Architecture 2015 is generally a superset of SPARC V9.

11.1.1 Level-2 Compliance (Impdep #1)
SPARC M7 is designed to meet Level-2 SPARC V9 compliance. It

■ Correctly interprets all nonprivileged operations, and

■ Correctly interprets all privileged elements of the architecture.

11.1.2 Unimplemented Opcodes, ASIs, and ILLTRAP
SPARC V9 unimplemented, reserved, ILLTRAP opcodes, and instructions with invalid values in
reserved fields (other than reserved FPops) encountered during execution cause an illegal_instruction trap.
Unimplemented and reserved ASI values cause a DAE_invalid_ASI trap.

11.1.3 Trap Levels (Impdep #37, 38, 39, 40, 114, 115)
SPARC M7 supports two trap levels; that is, MAXPTL = 2. Normal execution is at TL = 0.

A virtual processor normally executes at trap level 0 (execute_state, TL = 0). Per SPARC V9, a trap
causes the virtual processor to enter the next higher trap level, which is a very fast and efficient
process because there is one set of trap state registers for each trap level. After saving the most
important machine states (PC, NPC, PSTATE) on the trap stack at this level, the trap (or error)
condition is processed.

11.1.4 Trap Handling (Impdep #16, 32, 33, 35, 36, 44)
SPARC M7 supports precise trap handling for all operations except for deferred and disrupting traps
from hardware failures and interrupts. SPARC M7 implements precise traps, interrupts, and
exceptions for all instructions, including long-latency floating-point operations. Multiple traps levels

Note System emulation routines (for example, quad-precision
floating-point operations) shipped with SPARC M7 also must be
Level-2 compliant.
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are supported, allowing graceful recovery from faults. SPARC M7 can efficiently execute kernel code
even in the event of multiple nested traps, promoting strand efficiency while dramatically reducing
the system overhead needed for trap handling.

Three sets of global registers are provided. This further increases OS performance, providing fast trap
execution by avoiding the need to save and restore registers while processing exceptions.

All traps supported in SPARC M7 are listed in TABLE 6-2 on page 102.

11.1.5 Secure Software
To establish an enhanced security environment, it may be necessary to initialize certain virtual
processor states between contexts. Examples of such states are the contents of integer and floating-
point register files, condition codes, and state registers. See also Clean Window Handling (Impdep #102).

11.1.6 Address Masking (Impdep #125)
SPARC M7 follows Oracle SPARC Architecture 2015 for PSTATE.am masking and for PSTATE.vme
masking. Addresses to non-translating ASIs, *REAL* ASIs, and accesses that bypass translation are
never masked.

11.2 Integer Operations

11.2.1 Integer Register File and Window Control Registers
(Impdep #2)
SPARC M7 implements an eight-window 64-bit integer register file; that is, N_REG_WINDOWS = 8.
SPARC M7 truncates values stored in the CWP, CANSAVE, CANRESTORE, CLEANWIN, and
OTHERWIN registers to three bits. This includes implicit updates to these registers by SAVE, SAVED,
RESTORE, and RESTORED instructions. The most significant two bits of these registers read as zero.

11.2.2 Clean Window Handling (Impdep #102)
SPARC V9 introduced the concept of “clean window” to enhance security and integrity during
program execution. A clean window is defined to be a register window that contains either all zeroes
or addresses and data that belong to the current context. The CLEANWIN register records the number
of available clean windows.

When a SAVE instruction requests a window and there are no more clean windows, a clean_window
trap is generated. System software needs to clean one or more windows before returning to the
requesting context.

11.2.3 Integer Multiply and Divide
Integer multiplications (MULScc, SMUL{cc}, MULX) and divisions (SDIV{cc}, UDIV{cc}, UDIVX) are
executed directly in hardware.
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11.2.4 MULScc
SPARC V9 does not define the value of xcc and rd{63:32} for MULScc. SPARC M7 sets xcc.n to 0, xcc.z
to 1 if rd{63:0} is zero and to 0 if rd{63:0} is not zero, xcc.v to 0, and xcc.c to 0. SPARC M7 sets rd{63:33}
to zeros, and sets rd{32} to icc.c (that is, rd{32} is set if there is a carry-out of rd{31}; otherwise, it is
cleared).

11.3 SPARC V9 Floating-Point Operations

11.3.1 Overflow, Underflow, and Inexact Traps (Impdep #3, 55)
SPARC M7 implements precise floating-point exception handling. Tininess, as it pertains to underflow
is detected before rounding.

11.3.2 Quad-Precision Floating-Point Operations (Impdep #3)
All quad-precision floating-point instructions, listed in TABLE 11-1, cause an illegal_instruction trap.
These operations are then emulated by system software.

TABLE 11-1 Unimplemented Quad-Precision Floating-Point Instructions

Instruction Description

F<s|d>TOq Convert single-/double- to quad-precision floating-point.

F<i|x>TOq Convert 32-/64-bit integer to quad-precision floating-point.

FqTO<s|d> Convert quad- to single-/double-precision floating-point.

FqTO<i|x> Convert quad-precision floating-point to 32-/64-bit integer.

FCMP<E>q Quad-precision floating-point compares.

FMOVq Quad-precision floating-point move.

FMOVqcc Quad-precision floating-point move if condition is satisfied.

FMOVqr Quad-precision floating-point move if register match condition.

FABSq Quad-precision floating-point absolute value.

FADDq Quad-precision floating-point addition.

FDIVq Quad-precision floating-point division.

FdMULq Double- to quad-precision floating-point multiply.

FMULq Quad-precision floating-point multiply.

FNEGq Quad-precision floating-point negation.

FSQRTq Quad-precision floating-point square root.

FSUBq Quad-precision floating-point subtraction.
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11.3.3 Floating-Point Upper and Lower Dirty Bits in FPRS
Register
The FPRS_dirty_upper (du) and FPRS_dirty_lower (dl) bits in the Floating-Point Registers State
(FPRS) register are set when an instruction that modifies the corresponding upper or lower half of the
floating-point register file is issued. Floating-point register file modifying instructions include
floating-point operate, graphics, floating-point loads and block load instructions.

SPARC V9 allows FPRS.du and FPRS.dl to be set pessimistically. SPARC M7 sets FPRS.du or FPRS.dl
either when an instruction that updates the floating-point register file successfully completes, or when
an FMOVcc or FMOVr that does not meet the condition successfully completes.

11.3.4 Floating-Point Status Register (FSR) (Impdep #13, 19, 22, 23,
24)
SPARC M7 supports precise-traps and implements all three exception fields (tem, cexc, and aexc)
conforming to IEEE Standard 754-1985.

SPARC M7 implements the FSR register according to the definition in Oracle SPARC Architecture
2015, with the following implementation-specific clarifications:

■ SPARC M7 does not contain an FQ, therefore FSR.qne always reads as 0 and an attempt to read the
FQ with an RDPR instruction causes an illegal_instruction trap.

■ SPARC M7 does not detect the unimplemented_FPop, unfinished_FPop, sequence_error,
hardware_error, or invalid_fp_register floating-point trap types directly in hardware, therefore
does not generate a trap when those conditions occur.

TABLE 11-2 documents the fields of the FSR.

TABLE 11-2 Floating-Point Status Register Format

Bits Field RW Description

63:38 — RO Reserved

37:36 fcc3 RW Floating-point condition code (set 3). One of four sets of 2-bit floating-point
condition codes, which are modified by the FCMP{E} (and LD{X}FSR)
instructions. The FBfcc, FMOVcc, and MOVcc instructions use one of these
condition code sets to determine conditional control transfers and conditional
register moves.
Note: fcc0 is the same as the FCC in SPARC V8.

35:34 fcc2 RW Floating-point condition code (set 2). See fcc3 description.
33:32 fcc1 RW Floating-point condition code (set 1) See fcc3 description.
31:30 rd RW IEEE Std. 754-1985 rounding direction, as follows:

29:28 — RO Reserved

27:23 tem RW IEEE-754 trap enable mask. Five-bit trap enable mask for the IEEE-754 floating-
point exceptions. If a floating-point operate instruction produces one or more
exceptions, the corresponding cexc/aexc bits are set and an
fp_exception_ieee_754 (with FSR.ftt = 1, IEEE_754_exception) exception is
generated.

rd Round Toward

0 Nearest (even if tie)
1 0

2 +∞
3 –∞
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11.4 SPARC V9 Memory-Related Operations

11.4.1 Load/Store Alternate Address Space (Impdep #5, 29, 30)
Supported ASI accesses are listed in Section 9.2.

11.4.2 Read/Write ASR (Impdep #6, 7, 8, 9, 47, 48)
Supported ASRs are listed in Chapter 3, Registers.

22 ns RO Nonstandard floating-point results. SPARC M7 does not implement a non-
standard floating-point mode. FSR.ns always reads as 0, and writes to it are
ignored.

21:20 — RO Reserved

19:17 ver RO FPU version number. This field identifies a particular implementation of the
SPARC M7 FPU architecture.

16:14 ftt RW Floating-point trap type. Set whenever a floating-point instruction causes the
fp_exception_ieee_754 or fp_exception_other traps. Values are as follows:

Note: SPARC M7 neither detects nor generates the unimplemented_FPop,
unfinished_FPop, sequence_error, hardware_error or invalid_fp_register trap
types directly in hardware.
Note: SPARC M7 does not contain an FQ. An attempt to read the FQ with an
RDPR instruction causes an illegal_instruction trap.

13: qne RW Floating-point deferred-trap queue (FQ) not empty. Not used, because SPARC
M7 implements precise floating-point exceptions.

12 — RO Reserved

11:10 fcc0 RW Floating-point condition code (set 0). See fcc3 description.
9:5 aexc RW Accumulated outstanding exceptions. Accumulates IEEE 754 exceptions while

floating-point exception traps are disabled (that is, while corresponding bit in
FSR.tem is zero)

4:0 cexc RW Current outstanding exceptions. Indicates the most recently generated IEEE 754
exceptions.

TABLE 11-2 Floating-Point Status Register Format (Continued)

Bits Field RW Description

ftt Floating-Point Trap Type Trap Signalled

0 None —
1 IEEE_754_exception fp_exception_ieee_754
2 reserved —
3 reserved —
4 reserved —
5 reserved —
6 invalid_fp_register fp_exception_other
7 reserved —
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11.4.3 MMU Implementation (Impdep #41)
SPARC M7 memory management is based on in-memory Translation Storage Buffers (TSBs) backed by
a Software Translation Table. See Chapter 13, Memory Management Unit for more details.

11.4.4 FLUSH and Self-Modifying Code (Impdep #122)
FLUSH is needed to synchronize code and data spaces after code space is modified during program
execution. FLUSH is described in Section D.2.4. On SPARC M7, the FLUSH effective address is
ignored, and as a result, FLUSH cannot cause a DAE_invalid_ASI trap.

11.4.5 PREFETCH{A} (Impdep #103, 117)
For SPARC M7 PREFETCH{A} instruction documentation, see Section 5.2, PREFETCH/PREFETCHA,
on page 35.

11.4.6 LDD/STD Handling (Impdep #107, 108)
LDD and STD instructions are directly executed in hardware.

11.4.7 FP mem_address_not_aligned (Impdep #109, 110, 111, 112)
LDDF{A}/STDF{A} cause an LDDF_/STDF_ mem_address_not_aligned trap if the effective address
is 32-bit aligned but not 64-bit (doubleword) aligned.

LDQF{A}/STQF{A} are not directly executed in hardware; they cause an illegal_instruction trap.

11.4.8 Supported Memory Models (Impdep #113, 121)
SPARC M7 supports only the TSO memory model, although certain specific operations such as block
loads and stores operate under the RMO memory model. See Chapter 8, Section 8.2. Supported
Memory Models.”.

11.4.9 Implicit ASI When TL > 0 (Impdep #124)
SPARC M7 matches all Oracle SPARC Architecture implementations and makes the implicit ASI for
instruction fetching ASI_NUCLEUS when TL > 0, while the implicit ASI for loads and stores when TL
> 0 is ASI_NUCLEUS if PSTATE.cle=0 or ASI_NUCLEUS_LITTLE if PSTATE.cle=1.

Note SPARC V9 specifies that the FLUSH instruction has no latency
on the issuing virtual processor. In other words, a store to
instruction space prior to the FLUSH instruction is visible
immediately after the completion of FLUSH. When a flush is
performed, SPARC M7 guarantees that earlier code
modifications will be visible across the whole system.

Note LDD/STD are deprecated in SPARC V9. In SPARC M7 it is more
efficient to use LDX/STX for accessing 64-bit data. LDD/STD
take longer to execute than two 32- or 64-bit loads/stores.
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11.5 Non-SPARC V9 Extensions

11.5.1 Cache Subsystem
SPARC M7 contains one or more levels of cache. The cache subsystem architecture is described in
Appendix D, Cache Coherency and Ordering.

11.5.2 Block Memory Operations
SPARC M7 supports 64-byte block memory operations utilizing a block of eight double-precision
floating point registers as a temporary buffer. See Section 5.5.

11.5.3 Partial Stores
SPARC M7 supports 8-/16-/32-bit partial stores to memory. See Section 5.5.

11.5.4 Short Floating-Point Loads and Stores
SPARC M7 supports 8-/16-bit loads and stores to the floating-point registers.

11.5.5 Load Twin Extended Word
SPARC M7 supports 128-bit atomic load operations to a pair of integer registers.

11.5.6 SPARC M7 Instruction Set Extensions (Impdep #106)
The SPARC M7 processor supports VIS 3.0. VIS instructions are designed to enhance graphics
functionality and improve the efficiency of memory accesses.

Unimplemented IMPDEP1 and IMPDEP2 opcodes encountered during execution cause an
illegal_instruction trap.

Other instruction extensions are described in Chapter 3, Registers.

11.5.7 Performance Instrumentation
SPARC M7 performance instrumentation is described in Chapter 10, Performance Instrumentation.
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11.5.8 ASI_MONITOR_AS_IF_USER_PRIMARY,
ASI_MONITOR_AS_IF_USER_SECONDARY,
ASI_MONITOR_PRIMARY, ASI_MONITOR_SECONDARY
When using these ASIs with a load, SPARC M7 monitors for stores to the L1 data cache line (32 bytes)
that contains the address of the load. Upon detecting that the a store has occurred to the L1 data
cache line, the load monitor is invalidated. If a subsquent MWAIT has suspended the strand, then the
strand resumes on detection of the store to the L1 data cache line.
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CHAPTER 12

Cryptographic Extensions

SPARC M7 provides cryptographic support via non-privileged instructions. The instructions
accelerate bulk ciphers, secure hashes, and public-key algorithms. Since these instructions are non-
privileged, they can be used directly by applications, or by commonly used open source
cryptographic libraries such as OpenSSL.

In SPARC M7, symmetric ciphers are implemented such that a single instruction is capable of
performing a significant portion of a round. Secure hashes are implemented such that a single
instruction performs a single block of the hash operation (i.e. multiple rounds). Public-key operations
are accelerated via instructions that perform large (up to 2048-bit) Montgomery multiplication
operations. More details on these instructions can be found in Chapter 5, Instruction Definitions.

The SPARC M7 implements the Compatibility Feature Register (CFR), which allows future
UltraSPARC processors to drop support for older, deprecated ciphers (and introduce support for new
ones) by reclaiming opcodes previously reserved for old ciphers.

12.1 CFR Register
The CFR is described in Chapter 3, Registers.

12.2 Cryptographic Instructions
SPARC M7 introduces a number of new cryptographic opcodes, which are detailed in Chapter 5,
Instruction Definitions.

12.3 Cryptographic performance
For a single-thread executing on a core, the basic low-level performance on SPARC M7 is detailed in
the following tables.
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12.4 SPARC M7 crypto coding guidance
It is anticipated that the SPARC M7 cryptographic instructions will be widely deployed - not only in
Solaris libraries, but also in Open Source libraries like OpenSSL. Implementation of key cryptographic
algorithms using these instructions is very straight-forward, and example use is provided in the
instructions chapter. It is important that software use the CFR as detailed in Section 3.2.8,
Compatibility Feature Register (CFR), on page 21, or software may perform sub-optimally on future
processors.

TABLE 12-1 Symmetric-key performance

Algorithm Block Size (Bytes) Block Latency (Cycles)

DES-ECB 8

3DES-ECB 8

AES-128-ECB 16

AES-192-ECB 16

AES-256-ECB 16

Camellia

TABLE 12-2 Secure hash performance

Algorithm Block Size (Bytes) Block Latency (Cycles)

MD5 64 186

SHA-1 64 220

SHA-256 64 188

SHA-512 128 236
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CHAPTER 13

Memory Management Unit

This chapter provides detailed information about the SPARC M7 Memory Management Unit. It
describes the internal architecture of the MMU and how to program it.

13.1 Translation Table Entry (TTE)
The Translation Table Entry holds information for a single page mapping. The TTE is broken into two
64-bit words, representing the tag and data of the translation. Just as in a hardware cache, the tag is
used to determine whether there is a hit in the TSB.

SPARC M7 supports the sun4v TTE format as shown in the MMU chapter of Oracle SPARC
Architecture 2015, with the following notes:

■ SPARC M7 supports a 16- bit TTE Tag context ID field, formed from bits 63:48 of the TTE Tag

■ SPARC M7 only supports 54-bit Virtual Addresses

■ On SPARC M7, bits 55:13 of TTE Data contains the real page1 number. Bits {55:50} should always
be zero. .

■ The meaning of the cp bit in TTE Data on SPARC M7 is:

■ For the IMMU and DMMU, on SPARC M7 the ep bit in the TTE is not written into the TLB, and
returns zero on a Data Access read.

■ On SPARC M7, the value of the w bit written into the ITLB will be read out on an ITLB Data Access read
(impl. dep. #__).

■ The following page sizes are supported on SPARC M7 (in TTE.sz): 8 KB, 64 KB, 4 MB, 256 MB,
2 GB, and 16 GB. Other encodings of TTE.sz are reserved.

TABLE 13-2 shows the Oracle SPARC Architecture 2015 TSB TTE tag format as interpreted by SPARC
M7.

1. sun4v supports translation from virtual addresses (VA) to real addresses (RA). Privileged code manages the VA-to-RA translations.

TABLE 13-1 Cacheable Field Encoding (from TSB)

Cacheable
(cp)

Meaning of TTE When Placed in:

iTLB
(I-cache PA-Indexed)

dTLB
(D-cache PA-Indexed)

0
Cacheable in L2 and L3

caches only
Cacheable in L2 and L3 caches

only

1
Cacheable in L3 cache, L2

cache, and I-cache
Cacheable in L3 cache, L2 cache,

and D-cache



76 SPARC M7 Supplement • Draft D1.0, 30 Jun 2016

The sun4v TSB TTE data format is shown in TABLE 13-3.

TABLE 13-2 sun4v TSB TTE Tag Format

Bit Field Description

63:48 context The 16-bit context identifier associated with the TTE.
47:42 0 Must be 0
41:0 va Virtual Address Tag{63:22}. The virtual page number. Bits 21 through

13 are not maintained in the tag, since these bits are used to index the
smallest TSB (512 entries).
NOTE: SPARC M7 hardware only supports a 54-bit VA.

TABLE 13-3 sun4v TSB TTE Data Format

Bit Field Description

63 v Valid. If the Valid bit is set, the remaining fields of the TTE are meaningful.
62 nfo No-fault-only. If this bit is set, loads with ASI_PRIMARY_NO_FAULT{_LITTLE},

ASI_SECONDARY_NO_FAULT{_LITTLE} are translated. Any other DMMU access will
trap with a DAE_nfo_page trap. For the IMMU, if the nfo bit is set, an iae_nfo_page
trap will be taken.

61:56 soft2 soft2 and soft are software-defined fields, provided for use by the operating system.
Software fields are not implemented in the SPARC M7 TLB. soft and soft2 fields may
be written with any value; hardware ignores these fields. The fields are not presserved
in the TLBs.

55:13 ra The real page1 number. For SPARC M7, a 50-bit real address range is supported by the
hardware tablewalker, and bits {55:50} should always be zero.

12 ie Invert endianess. If this bit is set, accesses to the associated page are processed with
inverse endianness from what is specified by the instruction (big-for-little and little-
for-big). For the IMMU, the ie bit in the TTE is written into the ITLB but ignored
during ITLB operation. The value of the ie bit written into the ITLB will be read out on
an ITLB Data Access read.
Note: This bit is intended to be set primarily for noncacheable accesses.

11 e Side effect. If this bit is set, noncacheable memory accesses other than block loads and
stores are strongly ordered against other e bit accesses, and noncacheable stores are
not merged. This bit should be set for pages that map I/O devices having side effects.
Note, however, that the e bit does not prevent normal instruction prefetching. For the
IMMU, the e bit in the TTE is written into the ITLB, but ignored during ITLB
operation. The value of the e bit written into the ITLB will be read out on an ITLB Data
Access read.
NOTE: The e bit does not force an uncacheable access. It is expected, but not required,
that the cp bit will be set to zero when the e bit is set.

10 cp The cacheable-in-physically-indexed-cache (cp) bit determines the placement of data in
SPARC M7 caches, according to TABLE 13-4. The MMU does not operate on the
cacheable bit, but merely passes them through to the cache subsystem.

TABLE 13-4 Cacheable Field Encoding (from TSB)

Cacheable
(cp)

Meaning of TTE When Placed in:
iTLB

(I-cache PA-Indexed)
dTLB

(D-cache PA-Indexed)

0
Cacheable in L2 and L3

caches only
Cacheable in L2 and L3 caches only

1
Cacheable in L3 cache, L2

cache, and I-cache
Cacheable in L3 cache, L2 cache, and

D-cache
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13.2 Translation Storage Buffer (TSB)
A TSB is an array of TTEs managed entirely by software. It serves as a cache of the Software
Translation table

A TSB is arranged as a direct-mapped cache of TTEs.

The TSB exists as a normal data structure in memory and therefore may be cached. This policy may
result in some conflicts with normal instruction and data accesses, but the dynamic sharing of the
level-2 cache resource should provide a better overall solution than that provided by a fixed
partitioning.

FIGURE 13-1 shows the TSB organization. The constant N is determined by the size field in the TSB
register; it may range from 512 entries to 1T entries.

8 p Privileged. If the p bit is set, only privileged software can access the page mapped by
the TTE. If the p bit is set and an access to the page is attempted when
PSTATE.priv = 0, the MMU will signal an IAE_privilege_violation or
DAE_privilege_violation trap.

7 ep Executable. If the ep bit is set, the page mapped by this TTE has execute permission
granted. Otherwise, execute permission is not granted and the hardware table-walker
will not load the ITLB with a TTE with ep = 0. For the IMMU and DMMU, the ep bit
in the TTE is not written into the TLB. It returns one on a Data Access read for the
ITLB and zero on a Data Access read for the DTLB.

6 w Writable. If the w bit is set, the page mapped by this TTE has write permission granted.
Otherwise, write permission is not granted and the MMU will cause a trap if a write is
attempted. For the IMMU, the w bit in the TTE is written into the ITLB, but ignored
during ITLB operation. The value of the w bit written into the ITLB will be read out on
an ITLB Data Access read.

5:4 soft (see soft2, above)
3:0 size The page size of this entry, encoded as shown in TABLE 13-5.

1. sun4v supports translation from virtual addresses (VA) to real addresses (RA) to physical addresses (PA).
Privileged code manages the VA-to-RA translations.

TABLE 13-3 sun4v TSB TTE Data Format (Continued)

Bit Field Description

TABLE 13-5 Size Field Encoding (from TTE)

Size{3:0} Page Size

0000 8 KB
0001 64 KB
0010 Reserved
0011 4 MB
0100 Reserved
0101 256 MB
0110 2 GB
0111 16 GB
1000-1111 Reserved
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FIGURE 13-1 TSB Organization

13.3 MMU-Related Faults and Traps

13.3.1 IAE_privilege_violation Trap
The I-MMU detects a privilege violation for an instruction fetch; that is, an attempted access to a
privileged page when PSTATE.priv = 0.

13.3.2 IAE_nfo_page Trap
During a hardware tablewalk, the I-MMU matches a TTE entry whose nfo (no-fault-only) bit is set.

13.3.3 DAE_privilege_violation Trap
This trap occurs when the D-MMU detects a privilege violation for a data access; that is, a load or
store instruction attempts access to a privileged page when PSTATE.priv = 0.

13.3.4 DAE_side_effect_page Trap
This trap occurs when a (nonfaulting) load instruction is issued to a page marked with the side-effect
(e) bit = 1.

13.3.5 DAE_nc_page Trap
This trap occurs when an atomic instruction (including a 128-bit atomic load) is issued to a memory
address marked uncacheable; for example,, with cp = 0.

Implementation
Note

The nfo bit is only checked on I-MMU translations. It is not
checked on hardware tablewalks.

Implementation
Note

For SPARC M7, cp only controls cacheability in the L1 cache, not
the private L2 caches or the shared L3. SPARC M7 performs
atomic operations in the L2 cache and supports the ability to
complete an atomic operation for pages with the cp bit = 0 even
if the L2 cache is disabled. However, to keep SPARC M7
compliant with the Oracle SPARC Architecture 2011
specification, a DAE_nc_page trap is generated when an atomic
is issued to a memory address marked with cp = 0.

Tag1 (8 bytes) Data1 (8 bytes)
000016 000816

TagN (8 bytes) DataN (8 bytes)

N Lines in TSB
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13.3.6 DAE_invalid_asi Trap
This trap occurs when an invalid LDA/STA ASI value, invalid virtual address, read to write-only
register, or write to read-only register occurs, but not for an attempted user access to a restricted ASI
(see the privileged_action trap described below).

13.3.7 DAE_nfo_page Trap
This trap occurs when an access occurs with an ASI other than
ASI_{PRIMARY,SECONDARY}_NO_FAULT{_LITTLE} to a page marked with the nfo (no-fault-only) bit.

13.3.8 privileged_action Trap

13.3.9 This trap occurs when an access is attempted using a restricted ASI while in non-privileged mode

(PSTATE.priv = 0). *mem_address_not_aligned Traps
The lddf_mem_address_not_aligned, stdf_mem_address_not_aligned, and mem_address_not_aligned
traps occur when a load, store, atomic, or JMPL/RETURN instruction with a misaligned address is
executed.

13.4 MMU Operation Summary
TABLE 13-8 summarizes the behavior of the D-MMU for noninternal ASIs using tabulated
abbreviations. TABLE 13-11 summarizes the behavior of the I-MMU. In each case, and for all conditions,
the behavior of the MMU is given by one of the abbreviations in TABLE 13-6. TABLE 13-7 lists
abbreviations for ASI types.

TABLE 13-6 Abbreviations for MMU Behavior

Abbreviation Meaning

ok Normal translation
dasi DAE_invalid_asi trap
dpriv DAE_privilege_violation trap
dse DAE_side_effect_page trap
ipriv IAE_privilege_violation trap

TABLE 13-7 Abbreviations for ASI Types

Abbreviation Meaning

NUC ASI_NUCLEUS*

PRIM Any ASI with PRIMARY translation, except *NO_FAULT
SEC Any ASI with SECONDARY translation, except *NO_FAULT
PRIM_NF ASI_PRIMARY_NO_FAULT*

SEC_NF ASI_SECONDARY_NO_FAULT*

U_PRIM ASI_*_AS_IF_USER_PRIMARY*
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Other abbreviations include “w” for the writable bit, “e” for the side-effect bit, and “p” for the
privileged bit.

TABLE 13-8 and TABLE 13-11 do not cover the following cases:

■ Invalid ASIs, ASIs that have no meaning for the opcodes listed, or nonexistent ASIs; for example,
ASI_PRIMARY_NO_FAULT for a store or atomic; also, access to SPARC M7 internal registers other
than LDXA, LDFA, STDFA or STXA; the MMU signals a DAE_invalid_asi trap for this case.

■ Attempted access using a restricted ASI in nonprivileged mode; the MMU signals a
privileged_action trap for this case. Attempted use of a hyperprivileged ASI in privileged mode; the
MMU also signals privileged_action trap for this case.

■ An atomic instruction (including 128-bit atomic load) issued to a memory address marked
uncacheable in a physical cache (that is, with cp = 0 or pa{49} = 1); the MMU signals a
DAE_nc_page trap for this case.

■ A data access with an ASI other than ASI_{PRIMARY,SECONDARY}_NO_FAULT{_LITTLE} to a page
marked nfo; the MMU signals a DAE_nfo_page for this case.

■ An instruction access to a page marked with the nfo (no-fault-only) bit. The MMU signals an
IAE_nfo_page trap for this case.

■ An instruction fetch to a memory address marked non-executable (ep = 0). This is checked when
Hardware Tablewalk attempts to load the I-MMU, and an IAE_unauth_access trap is taken instead.

■ Real address out of range; the MMU signals an instruction_real_range trap for this case.

■ Virtual address out of range and PSTATE.am is not set; the MMU signals an
instruction_address_range trap for this case.

U_SEC ASI_*_AS_IF_USER_SECONDARY*

U_PRIV ASI_*_AS_IF_PRIV_*

REAL ASI_*REAL*

Note The *_LITTLE versions of the ASIs behave the same as the big-
endian versions with regard to the MMU table of operations.

TABLE 13-8 D-MMU Operations for Normal ASIs

Condition Behavior

Opcode priv Mode ASI w
e = 0
p = 0

e = 0
p = 1

e = 1
p = 0

e = 1
p = 1

Load

non-
privileged

PRIM, SEC — ok dpriv ok dpriv
PRIM_NF, SEC_NF — ok dpriv dse dpriv

privileged

PRIM, SEC, NUC — ok
PRIM_NF, SEC_NF — ok dse
U_PRIM, U_SEC — ok dpriv ok dpriv
REAL — ok

FLUSH

non-
privileged

— ok

privileged — ok

TABLE 13-7 Abbreviations for ASI Types

Abbreviation Meaning
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See Section 9.2, Alternate Address Spaces, on page 54 for a summary of the SPARC M7 ASI map.

13.5 Translation

13.5.1 Instruction Translation

13.5.1.1 Instruction Prefetching
SPARC M7 fetches instructions sequentially (including delay slots). SPARC M7 fetches delay slots
before the branch is resolved (before whether the delay slot will be annulled is known). SPARC M7
also fetches the target of a DCTI before the delay slot executes.

13.5.2 Data Translation

Store or
Atomic

non-
privileged

PRIM, SEC 0 dpriv dpriv
1 ok dpriv ok dpriv

privileged

PRIM, SEC, NUC 0
1 ok

U_PRIM, U_SEC 0 dpriv dpriv
1 ok dpriv ok dpriv

REAL 0
1 ok

TABLE 13-9 DMMU Translation (1 of 4)

ASI
Value
(hex)

Translation

ASI NAME Nonprivileged Privileged Hypervisor

0016–
0116

Reserved privileged_action DAE_invalid_asi

0316 Reserved privileged_action DAE_invalid_asi
0416 ASI_NUCLEUS privileged_action VA → PA
0616–
0B16

Reserved privileged_action DAE_invalid_asi

0C16 ASI_NUCLEUS_LITTLE privileged_action VA → PA
0D16–
0F16

Reserved privileged_action DAE_invalid_asi

1016 ASI_AS_IF_USER_PRIMARY privileged_action VA → PA
1116 ASI_AS_IF_USER_SECONDARY privileged_action VA → PA
1216 ASI_MONITOR_AS_IF_USER_

PRIMARY
privileged_action VA → PA

1316 ASI_MONITOR_AS_IF_USER_
SECONDARY

privileged_action VA → PA

1416 ASI_REAL privileged_action RA → PA
1516 ASI_REAL_IO privileged_action RA → PA
1616 ASI_BLOCK_AS_IF_USER_PRIMARY privileged_action VA → PA

TABLE 13-8 D-MMU Operations for Normal ASIs

Condition Behavior

Opcode priv Mode ASI w
e = 0
p = 0

e = 0
p = 1

e = 1
p = 0

e = 1
p = 1
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1716 ASI_BLOCK_AS_IF_USER_
SECONDARY

privileged_action VA → PA

1816 ASI_AS_IF_USER_PRIMARY_LITTLE privileged_action VA → PA
1916 ASI_AS_IF_USER_SECONDARY_

LITTLE
privileged_action VA → PA

1A16–
1B16

Reserved privileged_action DAE_invalid_asi

1C161 ASI_REAL_LITTLE privileged_action RA → PA
1D16 ASI_REAL_IO_LITTLE privileged_action RA → PA
1E16 ASI_BLOCK_AS_IF_USER_PRIMARY_

LITTLE
privileged_action VA → PA

1F16 ASI_BLOCK_AS_IF_USER_
SECONDARY_LITTLE

privileged_action VA → PA

2016 ASI_SCRATCHPAD privileged_action nontranslating
2116 ASI_PRIMARY_CONTEXT_0_REG,

ASI_PRIMARY_CONTEXT_1_REG,
ASI_SECONDARY_CONTEXT_0_REG,
ASI_SECONDARY_CONTEXT_1_REG

privileged_action nontranslating

2216 ASI_TWINX_AIUP,
ASI_STBI_AIUP

privileged_action VA → PA

2316 ASI_TWINX_AIUS,
ASI_STBI_AIUS

privileged_action VA → PA

2416 Reserved privileged_action DAE_invalid_asi
2516 ASI_QUEUE privileged_action nontranslating
2616 ASI_TWINX_REAL,

ASI_STBI_REAL
privileged_action RA → PA

2716 ASI_TWINX_NUCLEUS,
ASI_STBI_N

privileged_action VA → PA

2816–
2916

Reserved privileged_action DAE_invalid_asi

2A16 ASI_TWINX_AIUPL,
ASI_STBI_AIUPL

privileged_action VA → PA

2B16 ASI_TWINX_AIUSL,
ASI_STBI_AIUSL

privileged_action VA → PA

2C16 Reserved privileged_action DAE_invalid_asi
2D16 Reserved privileged_action DAE_invalid_asi
2E16 ASI_TWINX_REAL_LITTLE,

ASI_STBI_REAL_LITTLE
privileged_action RA → PA

2F16 ASI_TWINX_NL,
ASI_STBI_NL

privileged_action VA → PA

8016 ASI_PRIMARY VA → PA VA → PA
8116 ASI_SECONDARY VA → PA VA → PA
8216 ASI_PRIMARY_NO_FAULT VA → PA VA → PA
8316 ASI_SECONDARY_NO_FAULT VA → PA VA → PA
8416 ASI_MONITOR_PRIMARY VA → PA VA → PA
8516 ASI_MONITOR_SECONDARY VA → PA VA → PA
8616–
8716

Reserved DAE_invalid_asi DAE_invalid_asi

8816 ASI_PRIMARY_LITTLE VA → PA VA → PA

TABLE 13-9 DMMU Translation (2 of 4)

ASI
Value
(hex)

Translation

ASI NAME Nonprivileged Privileged Hypervisor
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8916 ASI_SECONDARY_LITTLE VA → PA VA → PA
8A16 ASI_PRIMARY_NO_FAULT_LITTLE VA → PA VA → PA
8B16 ASI_SECONDARY_NO_FAULT_

LITTLE
VA → PA VA → PA

8C16–
8F16

Reserved DAE_invalid_asi DAE_invalid_asi

9116 Reserved DAE_invalid_asi DAE_invalid_asi
9316–
AF16

Reserved DAE_invalid_asi DAE_invalid_asi

B016 ASI_PIC0,
ASI_PIC1,
ASI_PIC2,
ASI_PIC3

nontranslating nontranslating

B116–
BF16

Reserved DAE_invalid_asi DAE_invalid_asi

C016 ASI_PST8_P VA → PA VA → PA
C116 ASI_PST8_S VA → PA VA → PA
C216 ASI_PST16_P VA → PA VA → PA
C316 ASI_PST16_S VA → PA VA → PA
C416 ASI_PST32_P VA → PA VA → PA
C516 ASI_PST32_S VA → PA VA → PA
C616–
C716

Reserved DAE_invalid_asi DAE_invalid_asi

C816 ASI_PST8_PL VA → PA VA → PA
C916 ASI_PST8_SL VA → PA VA → PA
CA16 ASI_PST16_PL VA → PA VA → PA
CB16 ASI_PST16_SL VA → PA VA → PA
CC16 ASI_PST32_PL VA → PA VA → PA
CD16 ASI_PST32_SL VA → PA VA → PA
CE16–
CF16

Reserved DAE_invalid_asi DAE_invalid_asi

D016 ASI_FL8_P VA → PA VA → PA
D116 ASI_FL8_S VA → PA VA → PA
D216 ASI_FL16_P VA → PA VA → PA
D316 ASI_FL16_S VA → PA VA → PA
D416–
D716

DAE_invalid_asi DAE_invalid_asi

D816 ASI_FL8_PL VA → PA VA → PA
D916 ASI_FL8_SL VA → PA VA → PA
DA16 ASI_FL16_PL VA → PA VA → PA
DB16 ASI_FL16_SL VA → PA VA → PA
DC16–
DF16

Reserved DAE_invalid_asi DAE_invalid_asi

E016 ASI_BLK_COMMIT_PRIMARY VA → PA VA → PA
E116 ASI_BLK_COMMIT_SECONDARY VA → PA VA → PA
E216 ASI_TWINX_P,

ASI_STBI_P
VA → PA VA → PA

TABLE 13-9 DMMU Translation (3 of 4)

ASI
Value
(hex)

Translation

ASI NAME Nonprivileged Privileged Hypervisor



84 SPARC M7 Supplement • Draft D1.0, 30 Jun 2016

13.6 Compliance With the SPARC V9 Annex F
The SPARC M7 MMU complies completely with the SPARC V9 MMU Requirements described in
Annex F of the The SPARC Architecture Manual, Version 9. TABLE 13-10 shows how various protection
modes can be achieved, if necessary, through the presence or absence of a translation in the I- or
D-MMU.

E316 ASI_TWINX_S,
ASI_STBI_S

VA → PA VA → PA

E416–
E916

Reserved DAE_invalid_asi DAE_invalid_asi

EA16 ASI_TWINX_PL,
ASI_STBI_PL

VA → PA VA → PA

EB16 ASI_TWINX_SL,
ASI_STBI_SL

VA → PA VA → PA

EC16-
EF16

Reserved DAE_invalid_asi DAE_invalid_asi

F016 ASI_BLK_PRIMARY VA → PA VA → PA
F116 ASI_BLK_SECONDARY VA → PA VA → PA
F216 ASI_STBI_MRU_PRIMARY VA → PA VA → PA
F316 ASI_STBI_MRU_SECONDARY VA → PA VA → PA
F416-
F716

Reserved DAE_invalid_asi DAE_invalid_asi

F816 ASI_BLK_PL VA → PA VA → PA
F916 ASI_BLK_SL VA → PA VA → PA
FA16 ASI_STBI_MRU_PRIMARY_LITTLE VA → PA VA → PA
FB16 ASI_STBI_MRU_SECONDARY_LITTLE VA → PA VA → PA
FC16-
FF16

Reserved DAE_invalid_asi DAE_invalid_asi

TABLE 13-10 MMU Compliance With SPARC V9 Annex F Protection Mode

Condition

Resultant
Protection Mode

TTE in
D-MMU

TTE in
I-MMU

Writable
Attribute Bit

Yes No 0 Read-only
No Yes Don’t Care Execute-only
Yes No 1 Read/Write
Yes Yes 0 Read-only/Execute
Yes Yes 1 Read/Write/Execute

TABLE 13-9 DMMU Translation (4 of 4)

ASI
Value
(hex)

Translation

ASI NAME Nonprivileged Privileged Hypervisor
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13.7 MMU Internal Registers and ASI Operations

13.7.1 Accessing MMU Registers
All internal MMU registers can be accessed directly by the virtual processor through ASIs defined by
SPARC M7.

See Section 13.5 for details on the behavior of the MMU during all other SPARC M7 ASI accesses.

If the low order three bits of the VA are nonzero in an LDXA/STXA to/from these registers, a
mem_address_not_aligned trap occurs. Writes to read-only, reads to write-only, illegal ASI values, or
illegal VA for a given ASI may cause a DAE_invalid_asi trap.

13.7.2 Context Registers
SPARC M7 supports a pair of primary and a pair of secondary context registers per strand, which are
shared by the I- and D-MMUs. Primary Context 0 and Primary Context 1 are the primary context
registers, and a TLB entry for a translating primary ASI can match the context field with either
Primary Context 0 or Primary Context 1 to produce a TLB hit. Secondary Context 0 and Secondary
Context 1 are the secondary context registers, and a TLB entry for a translating secondary ASI can
match the context field with either Secondary Context 0 or Secondary Context 1 to produce a TLB hit.

Note STXA to an MMU register does not require any subsequent
instructions such as a MEMBAR #Sync, FLUSH, DONE, or
RETRY before the register effect will be visible to load / store /
atomic accesses. SPARC M7 resolves all MMU register hazards
via an automatic synchronization on all MMU register writes.

Caution SPARC M7 does not check for out-of-range virtual addresses
during an STXA to any internal register; it simply sign-extends
the virtual address based on VA{53}. Software must guarantee
that the VA is within range.

TABLE 13-11 SPARC M7 MMU Internal Registers and ASI Operations

I-MMU
ASI

D-MMU
ASI VA{63:0} Access Register or Operation Name

2116 816 Read/Write Primary Context 0 register
— 2116 1016 Read/Write Secondary Context 0 register
2116 2816 Read/Write Primary Context 0 register (no Context 1

update)
— 2116 3016 Read/Write Secondary Context 0 register (no Context 1

update)
2116 10816 Read/Write Primary Context 1 register
— 2116 11016 Read/Write Secondary Context 1 register

Compatibility
Note

To maintain backward compatibility with software designed for
a single primary and single secondary context register, writes to
Primary (Secondary) Context 0 Register also update Primary
(Secondary) Context 1 Register when using the original ASI and
VA for the context registers (ASI 2116, VA 816 and 0x1016).
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The Primary Context 0 and Primary Context 1 registers are defined as shown in FIGURE 13-2, where
pcontext is the context value for the primary address space. ASI 2116, VA 0x816 provides backward
compatibility for software that does not use Primary Context 1; this register updates both Primary
Context 0 and Primary Context 1. ASI 2116, VA 0x2816 updates only Primary Context 0, and leaves
Primary Context 1 unaltered.

FIGURE 13-2 Primary Context 0/1 registers: ASI 2116, VA 816; ASI 2116, VA 2816; and ASI 2116, VA 10816

The Secondary Context 0 and Secondary Context 1 Registers are defined in FIGURE 13-3, where
scontext is the context value for the secondary address space. ASI 2116, VA 0x1016 provides backward
compatibility for software that does not use Secondary Context 1; this register updates both Secondary
Context 0 and Primary Context 1. ASI 2116, VA 0x3016 updates only Secondary Context 0, and leaves
Secondary Context 1 unaltered.

FIGURE 13-3 Secondary Context 0/1 Registers: ASI 2116, VA 1016; ASI 2116, VA 3016; and 2116, VA 11016

The contents of the Nucleus Context register are hardwired to the value zero:

FIGURE 13-4 Nucleus Context Register

63 16 15 0

— pcontext

63 16 15 0

— scontext

63 0

0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
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APPENDIX A

Programming Guidelines

A.1 Multithreading
In SPARC M7, each physical core contains eight strands. Each strand has a full set of architected state
registers and appears to software as a complete processor1. In general, each of the 8 strands share the
execution pipeline including the instruction, data, and L2 caches, branch predictor, out-of-order
scheduling, execution pipelines, and retirement mechanisms. The pipeline is both horizontally and
vertically threaded. It is vertically threaded since instructions from different strands can be in adjacent
pipeline stages. It is horizontally threaded where parellelism allows. For example, each cycle the Pick
unit may pick one instruction from one thread, and another instruction from a different thread, to be
issued to independent execution units. SPARC M7 utilizes advanced branch prediction, dual
instruction issue, out-of-order execution with up to 128 instructions in flight using a reorder buffer,
hardware prefetching of instruction and data cache misses, and seamless hardware thread switching
to provide high per-thread performance as well as high throughput. The pipeline is partitioned into
several major subsections: instruction fetch, select/decode/rename, pick/issue/execute, and commit,
each of which are mostly independent of one another.

A.1.1 Instruction fetch
Each cycle an arbiter chooses one strand for instruction fetching. The least-recently-fetched strand
among the strands which are ready for fetching is the one chosen. A strand may not be ready for
fetching due to instruction cache misses, instruction buffer full conditions, or other reasons. Once
selected for fetch, up to four instructions may be fetched from the instruction cache and placed in per-
strand instruction buffers. Instruction fetching occupies the first few stages of the pipeline. Instruction
fetching is decoupled from the rest of the pipeline by the Select stage.

A.1.2 Select/Decode/Rename
In the same fashion that instruction fetch chooses a strand for fetching, Select chooses a strand for
decoding, renaming, and transfer to the Pick unit. Each cycle, in parallel with and independent of
instruction fetch, Select determines which strand, among the ready strands, is the least-recently
selected. A strand may not be ready due to per-strand wait conditions, such as an empty instruction
buffer or a post-synchronizing2 instruction pending, or due to pipeline-wide resource constraints,
such as a lack of reorder buffer entries.

Select then reads up to 2 instructions per cycle from that strand’s instruction buffers, and decodes and
renames the instructions. As it decodes the instructions it identifies any intra-strand dependencies
upon prior instructions, and enforces these dependencies until the instructions are sent to the Pick
1. Certain state registers are shared across strands to conserve hardware resources. These shared registers will (eventually) be listed in

this Appendix.
2. A post-synchronizing instruction stalls instruction issue for the strand after issuing the post-synchronizing instruction until the

instruction commits. Instructions which are post-synchronizing are listed in Section TABLE A-1, SPARC M7 Instruction Latencies, on
page 153 below.
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unit and written into the pick queue. Decode also assigns instructions to “slots”. There are 2 primary
slots. Slot 0 is reserved for integer and load/store instructions. Slot 1 is reserved for integer, floating-
point, graphics, cryptographic, and control transfer instructions. There is a third auxiliary slot, slot 2,
which is reserved for store data operations.

A.1.3 Pick/Issue/Execute
Pick selects up to 2 instructions per cycle (an additional store data operation may also be picked)
without regard to strand ID from a 36-entry out-of-order scheduler termed the pick queue.
Instructions are written with a relative age in mind, so the pick queue picks the oldest ready
instruction within a slot. An instruction is ready when all of its source data is available. Only one
instruction can be picked for each slot each cycle. There are never any inter-strand instruction
dependencies. As Pick issues instructions, pick queue entries are reclaimed, and made available for
use by subsequent instructions coming from Select/decode/rename.

As Pick issues instructions to the execution units, the instructions execute in one of several functional
units. There are 2 integer units, a floating-point and graphics unit, and a load/store unit. Each of these
units has independent pipelines and operates in parallel with other execution units. When
instructions finish execution, they report their completion status to the Commit unit.

A.1.4 Commit
Commit utilizes a 128-entry reorder buffer to hold completion status and other per-instruction
information. Instructions commit once their completion status is available. Instructions which cause
an exception complete, but do not commit. Instead, they trap, and the thread begins fetching
instructions from the trap handler. Similarly, if a branch misprediction occurs, instruction fetching
resumes from the correct path once the branch predictor has been updated, and execution resumes
once all instructions prior to the mispredicted branch commit.

Commit is threaded and each cycle attempts to commit instructions from the least-recently-committed
thread among the threads which are ready-to-commit.

A.1.5 Context Switching Between Strands
Since context switching is built into the SPARC M7 pipeline (via the instruction fetch, select/decode/
rename, pick/issue/execute, and commit blocks), strands can be switched each cycle with no pipeline
stall penalty.

A.1.6 Synchronization
Certain instructions require the pipeline to synchronize. One type of synchronization, post-
synchronizing or post-sync’ing, puts the strand in a wait state at Select. The strand remains in a wait
state, and subsequent instructions are not selected, decoded, or renamed until the post-sync clears.
This is resolved by the commit of the post-sync’ing instruction.
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A.2 Optimizing for Single-Threaded Performance or
Throughput
Section 1.3.1.1, Single-threaded and multi-threaded performance, on page 12 describes some aspects of
optimizing for single-threaded and/or multi-threaded performance.

A.3 Instruction Latency
TABLE A-1 lists the minimum single-strand instruction latencies for SPARC M7. When multiple strands
are executing, some or much of the additional latency for multicycle instructions will be overlapped
with execution of the additional strands.

A pre-sync’ing instruction waits at Pick for all prior instructions from the strand to commit before
being picked; therefore these instructions have a variable latency, whose minimum is listed in TABLE
A-1. A post-sync’ing instruction causes a flush after the instruction commits. Loads have a 5-cycle
load-use delay (4 cycles need to be filled but out-of-order execution covers much of this latency in
many cases).

TABLE A-1 SPARC M7 Instruction Latencies (1 of 9)

Instruction Description Latency Post-sync Notes

ADD (ADDcc) Add (and modify condition codes) 1

ADDC (ADDCcc) Add with carry (and modify condition codes) 1

ADDXC (ADDXCcc) Add extended with carry (and modify condition codes) 1

AES_DROUND01 AES decrypt round, columns 0 & 1 3 or 111

AES_DROUND23 AES decrypt round, columns 2 & 3 3 or 111

AES_DROUND01_
LAST

AES decrypt last round, columns 0 & 1 3 or 111

AES_DROUND23_
LAST

AES decrypto last round, columns 2 & 3 3 or 111

AES_EROUND01 AES encrypt round, columns 0 & 1 3 or 111

AES_EROUND23 AES encrypt round, columns 2 & 3 3 or 111

AES_EROUND01_
LAST

AES encrypt last round, columns 0 & 1 3 or 111

AES_EROUND23_
LAST

AES encrypt last round, columns 2 & 3 3 or 111

AES_KEXPAND0 AES key expansion without round constant 3 or 111

AES_KEXPAND1 AES key expansion with round constant 3 or 111

AES_KEXPAND2 AES key expansion without SBOX 3 or 111

ALIGNADDRESS Calculate address for misaligned data access 3 or 121

ALIGNADDRESS_
LITTLE

Calculate address for misaligned data access (little-endian) 3 or 121

ALLCLEAN Mark all windows as clean 1 breaks decode
group
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AND (ANDcc) Logical and (and modify condition codes) 1

ANDN (ANDNcc) Logical and not (and modify condition codes) 1

ARRAY{8,16,32} 3-D address to blocked byte address conversion 12

Bicc Branch on integer condition codes 1

BMASK Write the GSR.mask field 3 or 121

BPcc Branch on integer condition codes with prediction 1

BPr Branch on contents of integer register with prediction 1

BSHUFFLE Permute bytes as specified by the GSR.mask field 3 or 111

CALL Call and link 1

CAMELLIA_F Camellia F operation 3 or 111

CAMELLIA_FL Camellia FL operation 3 or 111

CAMELLIA_FLI Camellia FLI operation 3 or 111

CASA Compare and swap word in alternate space 20-30 Done in L2 cache

CASXA Compare and swap doubleword in alternate space 20-30 Done in L2 cache

CBcond Compare and branch 1

CMASK{8,16,32} Create GSR.mask from SIMD operation result 3 or 121

CRC32C Two CRC32c operations 3 or 111

DES_IP DES initial permutation 3 or 111

DES_IIP DES inverse initial permutation 3 or 111

DES_KEXPAND DES key expansion 3 or 111

DES_ROUND DES round 3 or 111

DONE Return from trap 23 Causes flush and
redirect to TNPC
(23 cycle bubble)

EDGE{8,16,32}{L}{N} Edge boundary processing {little-endian} {non-condition-code
altering}

12

FABS(s,d) Floating-point absolute value 11

FADD(s,d) Floating-point add 11

FALIGNDATAg Perform data alignment for misaligned data 3 or 111

FALIGNDATAi Perform data alignment for misaligned data using integer
register

3 or 111

FANDNOT1{s,d} Negated src1 and src2 3 or 111

FANDNOT2{s,d} src1 and negated src2 3 or 111

FAND{s,d} Logical and 3 or 111

FBfcc Branch on floating-point condition codes 1

FBPfcc Branch on floating-point condition codes with prediction 1

FCHKSM16 16-bit partitioned checksum 11

FCMP(s,d) Floating-point compare 11

FCMPE(s,d) Floating-point compare (exception if unordered) 11

TABLE A-1 SPARC M7 Instruction Latencies (2 of 9)

Instruction Description Latency Post-sync Notes
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FDIV(s,d) Floating-point divide 24 SP, 37
DP

FEXPAND Four 8-bit to 16-bit expand 11

FHADD{s,d} Floating-point add and halve 11

FHSUB{s,d} Floating-point subtract and halve 11

FiTO(s,d) Convert integer to floating-point 11

FLCMP{s,d} Lexicographic compare 11

FLUSH Flush instruction memory 27 Y Flushes pipeline,
27 cycle bubble
minimum

FLUSHW Flush register windows 1 breaks decode
group

FMADD{s,d} Floating-point multiply-add single/double (fused) 11

FMEAN16 16-bit partitioned average 11

FMOV(s,d) Floating-point move 11

FMOV(s,d)cc Move floating-point register if condition is satisfied 11

FMOV(s,d)R Move floating-point register if integer register contents satisfy
condition

11 Cracked into 2
ops, breaks
decode group

FMSUB{s,d} Floating-point multiply-subtract single/double (fused) 11

FMUL(s,d) Floating-point multiply 11

FMUL8SUx16 Signed upper 8- x 16-bit partitioned product of corresponding
components

11

FMUL8ULx16 Unsigned lower 8- x 16-bit partitioned product of corresponding
components

11

FMUL8x16 8- x 16-bit partitioned product of corresponding components 11

FMUL8x16AL Signed lower 8- x 16-bit lower α partitioned product of 4
components

11

FMUL8x16AU Signed upper 8- x 16-bit lower α partitioned product of 4
components

11

FMULD8SUx16 Signed upper 8- x 16-bit multiply → 32-bit partitioned product
of components

11

FMULD8ULx16 Unsigned lower 8- x 16-bit multiply → 32-bit partitioned
product of components

11

FNADD(s,d) Floating-point add and negate 11

FNAND{s,d} Logical nand 3 or 111

FNEG(s,d) Floating-point negate 11

FNHADD{s,d} Floating-point add and halve, then negate 11

FNMADD{s,d} Floating-point add and negate 11

FNMSUB{s,d} Floating-point negative multiply-subtract single/double (fused) 11

FNMUL{s,d} Floating-point multiply and negate 11

FNOR{s,d} Logical nor 3 or 111

TABLE A-1 SPARC M7 Instruction Latencies (3 of 9)

Instruction Description Latency Post-sync Notes
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FNOT1{s,d} Negate (1’s complement) src1 3 or 111

FNOT2{s,d} Negate (1’s complement) src2 3 or 111

FNsMULd Floating-point multiply and negate 11

FONE{s,d} One fill 3 or 111

FORNOT1{s,d} Negated src1 or src2 3 or 111

FORNOT2{s,d} src1 or negated src2 3 or 111

FOR{s,d} Logical or 3 or 111

FPACKFIX Two 32-bit to 16-bit fixed pack 11

FPACK{16,32} Four 16-bit/two 32-bit pixel pack 11

FPADD8 Eight 8-bit partitioned add 3 or 111

FPADD{16,32}{s} Four 16-bit/two 32-bit partitioned add 3 or 111

FPADD64 Fixed-point partitioned add 3 or 111

FPADD{U}S8 Fixed-point partitioned add 3 or 111

FPADDS{16,32}{s} Fixed-point partitioned add 3 or 111

FPADDUS16 Fixed-point partitioned add 3 or 111

FPCMPEQ{16,32} Four 16-bit / two 32-bit compare: set integer dest if src1 = src2 3 or 121

FPCMPGT{8,16,32} Eight 8-bit /four 16-bit / two 32-bit compare: set integer dest if
src1 > src2

3 or 121

FPCMPLE{8,16,32} Eight 8-bit /four 16-bit / two 32-bit compare: set integer dest if
src1 ≤ src2

3 or 121

FPCMPNE{16,32} Four 16-bit / two 32-bit compare: set integer dest if src1 ≠ src2 3 or 121

FPCMPU
{GT,LE,NE,EQ}8

Compare 8-bit unsigned fixed-point values 3 or 121

FPCMPU
{GT,LE}{16,32}

Compare four 16-bit/two 32-bit unsigned fixed-point values 3 or 121

FPMADDX Unsigned integer multiply-add 11

FPMADDXHI Unsigned integer multiply-add, return high-order 64 bits of
result

11

FPMAX{U}{8,16,32} Partitioned integer maximum 3 or 111

FPMERGE Two 32-bit to 64-bit fixed merge 11

FPMIN{U}{8,16,32} Partitioned integer minimum 3 or 111

FPSUB8 Eight 8-bit partitioned subtract 3 or 111

FPSUB{16,32}{s} Four 16-bit/two 32-bit partitioned subtract 3 or 111

FPSUB64 Fixed-point partitioned subtract, 64-bit 3 or 111

FPSUB{U}S8 Fixed-point partitioned subtract 3 or 111

FPSUBS{16,32}{s} Fixed-point partitioned subtract 3 or 111

FPSUBUS16 Fixed-point partitioned subtract 3 or 111

FSLL{16,32} 16- or 32-bit partitioned shift, left (old mnemonic FSHL) 11

FSLAS{16,32} 16- or 32-bit partitioned shift, left or right (old mnemonic
FSHLAS)

11

TABLE A-1 SPARC M7 Instruction Latencies (4 of 9)
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FSRA{16,32} 16- or 32-bit partitioned shift, left or right (old mnemonic
FSHRA)

11

FSRL{16,32} 16- or 32-bit partitioned shift, left or right (old mnemonic
FSHRL)

11

FsMULd Floating-point multiply single to double 11

FSQRT{s,d} Floating-point square root 24 SP, 37
DP

FSRC1{s.d} Copy src1 3 or 111

FSRC2d Copy src2 double precision 2

FSRC2s Copy src2 single precision 3 or 111

F(s,d)TO(s,d) Convert between floating-point formats 11

F(s,d)TOi Convert floating point to integer 11

F(s,d)TOx Convert floating point to 64-bit integer 11

FSUB(s,d) Floating-point subtract 11

FXNOR{s,d} Logical xnor 3 or 111

FXOR{s,d} Logical xor 3 or 111

FxTO(s,d) Convert 64-bit integer to floating-point 11

FZERO{s} Zero fill (single precision) 3 or 111

ILLTRAP Illegal instruction 23

INVALW Mark all windows as CANSAVE 1 breaks decode
group

JMPL Jump and link 1

LDBLOCKF 64-byte block load 8

LDD Load doubleword 1

LDDA Load doubleword from alternate space 1

LDDF Load double floating-point 1

LDDFA Load double floating-point from alternate space 1

LDF Load floating-point 1

LDFA Load floating-point from alternate space 1

LDFSR Load floating-point state register lower variable Y

LDSB Load signed byte 1

LDSBA Load signed byte from alternate space 1

LDSH Load signed halfword 1

LDSHA Load signed halfword from alternate space 1

LDSTUB Load-store unsigned byte 20-30 Done in L2 cache

LDSTUBA Load-store unsigned byte in alternate space 20-30 Done in L2 cache

LDSW Load signed word 1

LDSWA Load signed word from alternate space 1

LDTW Load twin word 2 breaks decode
group

TABLE A-1 SPARC M7 Instruction Latencies (5 of 9)
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LDTWA Load twin word 2 breaks decode
group

LDUB Load unsigned byte 1

LDUBA Load unsigned byte from alternate space 1

LDUH Load unsigned halfword 1

LDUHA Load unsigned halfword from alternate space 1

LDUW Load unsigned word 1

LDUWA Load unsigned word from alternate space 1

LDX Load extended 1

LDXA Load extended from alternate space variable
if from
nontrans
lating
ASI, else
1

LDXEFSR Load extended floating-point state register variable Y

LDXFSR Load extended floating-point state register variable Y

LZCNT Leading zero count on 64-bit integer register 12

MD5 MD5 hash 192 Y

MEMBAR Memory barrier variable membar
#sync is post-
sync’ing;
other
membar
forms are not

MONTMUL Montgomery multiplication variable Y pre-sync

MONTSQR Montgomery squaring variable Y pre-sync

MOVcc Move integer register if condition is satisfied 1

MOVdTOx Move floating-point register to integer register 2

MOVr Move integer register on contents of integer register 1 breaks decode
group

MOVsTO{u,s}w Move floating-point register to integer register 3 or 121

MOVwTOs Move integer register to floating-point register 3 or 111

MOVxTOd Move integer register to floating-point register 1

MPMUL Multiple-precision multiplication variable Y pre-sync

MULScc Multiply step (and modify condition codes) 12 pre-sync

MULX Multiply 64-bit integers 12

NOP No operation 1

NORMALW Mark other windows as restorable 1 breaks decode
group

OR (ORcc) Inclusive-or (and modify condition codes) 1

ORN (ORNcc) Inclusive-or not (and modify condition codes) 1

TABLE A-1 SPARC M7 Instruction Latencies (6 of 9)
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OTHERW Mark restorable windows as other 1 breaks decode
group

PDIST Distance between eight 8-bit components 11

PDISTN Pixel component distance 12

POPC Population count 12

PREFETCH Prefetch data 1

PREFETCHA Prefetch data from alternate space 1

RDASI Read ASI register variable Y

RDASR Read ancillary state register variable Y

RDCCR Read condition codes register variable Y

RDCFR Read compatibility feature register variable

RDFPRS Read floating-point registers state register variable Y

RDPC Read PROGRAM COUNTER 2

RDPR Read privileged register variable Y

RDTICK Read TICK register variable Y

RESTORE Restore caller’s window 1 breaks decode
group

RESTORED Window has been restored 1 breaks decode
group

RETRY Return from trap and retry 23 Causes flush and
redirect to TPC
(23 cycle bubble)

RETURN Return 1 breaks decode
group

SAVE Save caller’s window 1 breaks decode
group

SAVED Window has been saved 1 breaks decode
group

SDIV (SDIVcc) 32-bit signed integer divide (and modify condition codes) 42-61 pre-sync

SDIVX{i} 64-bit signed integer divide 26-44

SETHI Set high 22 bits of low word of integer register 1

SHA1 SHA-1 hash 226 Y pre-sync

SHA256 SHA-256 hash 194 Y pre-sync

SHA512 SHA-512 hash 242 Y pre-sync

SIAM Set interval arithmetic mode 1

SLL Shift left logical 1

SLLX Shift left logical, extended 1

SMUL (SMULcc) Signed integer multiply (and modify condition codes) 12

SRA Shift right arithmetic 1

SRAX Shift right arithmetic, extended 1

SRL Shift right logical 1

TABLE A-1 SPARC M7 Instruction Latencies (7 of 9)
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SRLX Shift right logical, extended 1

STB Store byte 1

STBA Store byte into alternate space 1

STBAR Store barrier variable

STBLOCKF 64-byte block store 8

STD Store doubleword 1

STDA Store doubleword into alternate space 1

STDF Store double floating-point 1

STDFA Store double floating-point into alternate space 1

STF Store floating-point 1

STFA Store floating-point into alternate space 1

STFSR Store floating-point state register variable Y

STH Store halfword 1

STHA Store halfword into alternate space 1

STPARTIALF Eight 8-bit/4 16-bit/2 32-bit partial stores 1

STTW Store twin words 2

STTWA Store twin words into alternate space 2

STW Store word 1

STWA Store word into alternate space 1

STX Store extended 1

STXA Store extended into alternate space variable
if from
nontrans
lating
ASI, else
1

depends
upon ASI

STXFSR Store extended floating-point state register variable Y pre-sync

SUB (SUBcc) Subtract (and modify condition codes) 1

SUBC (SUBCcc) Subtract with carry (and modify condition codes) 1

SUBXC (SUBXCcc) Subtract extended with carry (and modify condition codes) 1

SWAP Swap integer register with memory 20-30 Done in L2 cache

SWAPA Swap integer register with memory in alternate space 20-30 Done in L2 cache

TADDcc
(TADDccTV)

Tagged add and modify condition codes (trap on overflow) 1

Tcc Trap on integer condition codes (with 8-bit sw_trap_number, if
bit 7 is set, trap to hyperprivileged)

1 if no
trap or
23 if trap
taken

TSUBcc
(TSUBccTV)

Tagged subtract and modify condition codes (trap on overflow) 1

UDIV (UDIVcc) Unsigned integer divide (and modify condition codes) 42-61 pre-sync

UDIVX 64-bit unsigned integer divide 26-44

TABLE A-1 SPARC M7 Instruction Latencies (8 of 9)
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UMUL (UMULcc) Unsigned integer multiply (and modify condition codes) 12

UMULXHI Unsigned 64 x 64 multiply, returning upper 64 product bits 12

WRASI Write ASI register variable Y

WRASR Write ancillary state register variable Y

WRCCR Write condition codes register variable Y

WRFPRS Write floating-point registers state register variable Y

WRPR Write privileged register variable Y

XMONTMUL XOR Montgomery multiplication variable Y pre-sync

XMONTSQR XOR Montgomery squaring variable Y pre-sync

XMPMUL XOR multiple-precision multiplication variable Y pre-sync

XMULX{HI} XOR multiply 12

XNOR (XNORcc) Exclusive-nor (and modify condition codes) 1

XOR (XORcc) Exclusive-or (and modify condition codes) 1

1. Latency is 3 cycles only if the consumer of the operations result is also capable of 3 cycle latency.

TABLE A-1 SPARC M7 Instruction Latencies (9 of 9)
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APPENDIX B

IEEE 754 Floating-Point Support

SPARC M7 conforms to Oracle SPARC Architecture 2015 and the corresponding IEEE Std 754-1985
Requirements chapter.

B.1 Special Operand and Result Handling
The SPARC M7 FGU provides full hardware support for subnormal operands and results for all
instructions. SPARC M7 never generates an unfinished_FPop trap type. SPARC M7 does not
implement a non-standard floating-point mode. The NS bit of the FSR is always read as 0, and writes
to it are ignored.

Note SPARC M7 detects tininess before rounding.
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APPENDIX C

Differences Between SPARC M7 and SPARC
M6

This chapter describes the differences between the earlier SPARC M6 and SPARC M7. A summary of
the differences is provided in the table below.

Area vs SPARC M6 Description

Architecture and
Microarchitecture

Different Section C.1

Data Format Same

Registers Different Section C.2

Instruction Format Same

Instruction
Definitions

Same

Traps Different Section C.3

Interrupt Handling Different Section C.4

Memory Models Same

Address Spaces &
ASIs

Different Section C.2

Performance
Mesurement

Different Section C.7

Crypto Same

MMU Different

Clocks & Reset Different Section C.8

CMT Different Section C.9

Error Handling Different Section C.10

Power Management Different

Configuration Different Section C.12

Diagnostic Different Section C.13

HW Debug Different Section C.14
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C.1 Architectural and Microarchitectural Differences
SPARC M7 modifies the SPARC core from SPARC M6 and SPARC M6, the unified L3 cache is shared
among 16 cores (vs six in SPARC M6), and all the SPARC M7 SOC components are either re-designed
or modified from SPARC M6. <under construction>

The architecutral differences in the core are:

■ Virtual, real, addresses is increased by two bits (VA is 54 bits, RA are 50 bits)

■ Kasumi cipher instructions are no longer supported

■ XOR versions of MPMUL, MONTMUL, and MONTSQR are now supported

■ The core implements VA masking support for data accesses

The microarchitectural changes in the core are

■ Instruction cache line size is increased to 64B

SPARC M7 is capable of supporting up to 8 processors in a glue-less fashion and provides scalability
ports for scaling beyond 8 processors.

For details, refer to the following chapters:

■ For details of overall architectural and microarchitectural differences, see VT Basic Chapter.

C.2 Address Spaces and ASIs Differences

C.2.1 ASIs
Addressing of all preexisting ASIs in SPARC core (including L2) does not change from SPARC M6 to
SPARC M7. SPARC M7 does add several new ASIs

See Address Spaces and ASIs Chapter for details.
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APPENDIX D

Cache Coherency and Ordering

D.1 Cache and Memory Interactions
This appendix describes various interactions between the caches and memory, and the management
processes that an operating system must perform to maintain data integrity in these cases. In
particular, it discusses the following:

■ Invalidation of one or more cache entries—when and how to do it

■ Differences between cacheable and noncacheable accesses

■ Ordering and synchronization of memory accesses

■ Accesses to addresses that cause side effects (I/O accesses)

■ Nonfaulting loads

■ Cache sizes, associativity, replacement policy, etc.

D.2 Cache Flushing
Data in the level-1 (read-only or writethrough) caches can be flushed by invalidating the entry in the
cache (in a way that also leaves the L2 directory in a consistent state). Modified data in the level-2 and
level-3 (writeback) caches must be written back to memory when flushed.

Cache flushing is required in the following cases:

■ I-cache: Flush is needed before executing code that is modified by a local store instruction. This is
done with the FLUSH instruction, which just forces previous stores to complete to all affected
caches.. Flushing the I-cache with ASI accesses (Section 20.6, L1 I-Cache Diagnostic Access, on page
1006) also works, because the L2 directory correctly handles the cases where the directory thinks
the line is in the L1, but the L1 doesn’t.

■ D-cache: Flush is needed when a physical page is changed from (physically) cacheable to
(physically) noncacheable. This is done with a displacement flush (Displacement Flushing, below), or
with ASI accesses (see Section 20.7, L1 D-Cache Diagnostic Access, on page 1009), which work for
similar reasons as for the I-cache.

■ L2 cache: Flush is needed for stable storage. Examples of stable storage include battery-backed
memory and transaction logs. The recommended way to perform this is by using PIO line flushes
to L2I and L2D CSR space to flush given index/ways (see Section 20.16.2, L2I Line Flush with
Optional Retire and Section 20.16.5, L2D Line Flush with Optional Retire). This mechanism can also be
used to "retire" cache lines that have persistent errors. Flushing the L2 caches flushes the
corresponding blocks from the I- and D-caches, because SPARC M7 maintains inclusion between
the L2 and L1 caches
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■ .L3 cache: Flush is needed for stable storage. Examples of stable storage include battery-backed
memory and transaction logs. The recommended way to perform this is by using diagnostic writes
to L3 CSR space to flush given index/ways (see Section 20.22, L3 diagnostic access and CSRs, L3 Off,
on page 1055). This mechanism can also be used to "retire" cache lines that have persistent errors.
Alternatively, this can be done by a displacement flush (see the next section). Flushing the L3 cache
flushes the corresponding blocks from the I- and D-caches, and L2I and D cache because SPARC
M7 maintains inclusion between the L3, L2 and L1 caches

■ Errors: Flush is needed for error processing. Examples include (1) forcing UE data from a cache to
memory, in order to convert it to NotData, or (2) using flushes to force memory (not cache) reads
and writes, to diagnose a memory error, or (3) writing a line of good data and flushing it to
memory, to overwrite a memory soft error.

D.2.1 Displacement Flushing
Cache flushing of the L3 cache or the D-cache can be accomplished by a displacement flush. This is
done by placing the cache in direct-map mode, and reading a range of read-only addresses that map
to the corresponding cache line being flushed, forcing out modified entries in the local cache. Care
must be taken to ensure that the range of read-only addresses is mapped in the MMU before starting
a displacement flush; otherwise, the TLB miss handler may put new data into the caches. In addition,
the range of addresses used to force lines out of the cache must not be present in the cache when
starting the displacement flush.

The L2 caches do not support a direct mapped mode. Flushing of the L2 caches should be done with
PIO line flushes.

D.2.2 Memory Accesses and Cacheability

In SPARC M7, all memory accesses are cached in the L2 and L3 caches (as long as the caches are
enabled). The cp bit in the TTE corresponding to the access controls whether the memory access will
be cached in the primary caches (if cp = 1, the access is cached in the primary caches; if cp = 0 the
access is not cached in the primary caches). Atomic operations are always performed at the L2 cache.

D.2.3 Coherence Domains
Two types of memory operations are supported in SPARC M7: cacheable and noncacheable accesses,
as indicated by the page translation. Cacheable accesses are inside the coherence domain;
noncacheable accesses are outside the coherence domain.

SPARC V9 does not specify memory ordering between cacheable and noncacheable accesses. SPARC
M7 maintains TSO ordering, regardless of the cacheability of the accesses, relative to other access by
processors.

See the The SPARC Architecture Manual-Version 9 for more information about the SPARC V9 memory
models.

On SPARC M7, a MEMBAR #Lookaside is effectively a NOP and is not needed for forcing order of
stores vs. loads to noncacheable addresses.

Note Atomic load-store instructions are treated as both a load and a
store; they can be performed only in cacheable address spaces.
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D.2.3.1 Cacheable Accesses
Accesses that fall within the coherence domain are called cacheable accesses. They are implemented in
SPARC M7 with the following properties:

■ Data resides in real memory locations.

■ They observe the supported cache coherence protocol.

■ The unit of coherence is 64 bytes at the system level (coherence between the virtual processors and
I/O), enforced by the L2 and L3 caches.

■ The unit of coherence for the primary caches (coherence between multiple virtual processors) is the
primary cache line size (32 bytes for the data cache, 64 bytes for the instruction cache), enforced by
the L2 cache directories.

D.2.3.2 Noncacheable and Side-Effect Accesses
Accesses that are outside the coherence domain are called noncacheable accesses. Accesses of some of
these memory (or memory mapped) locations may result in side effects. Noncacheable accesses are
implemented in SPARC M7 with the following properties:

■ Data may or may not reside in real memory locations.

■ Accesses may result in program-visible side effects; for example, memory-mapped I/O control
registers in a UART may change state when read.

■ Accesses may not observe supported cache coherence protocol.

■ The smallest unit in each transaction is a single byte.

Noncacheable accesses are all strongly ordered with respect to other noncacheable accesses (regardless
of the e bit). Speculative loads with the e bit set cause a DAE_so_page trap.

D.2.3.3 Global Visibility and Memory Ordering
To ensure the correct ordering between the cacheable and noncacheable domains, explicit memory
synchronization is needed in the form of MEMBARs or atomic instructions. CODE EXAMPLE D-1
illustrates the issues involved in mixing cacheable and noncacheable accesses.

CODE EXAMPLE D-1 Memory Ordering and MEMBAR Examples

Assume that all accesses go to non-side-effect memory locations.

Process A:
While (1)
{

Store D1:data produced
1 MEMBAR #StoreStore (needed in PSO, RMO)

Store F1:set flag
While F1 is set (spin on flag)
Load F1

2 MEMBAR #LoadLoad | #LoadStore (needed in RMO)

  Load D2
}

Process B:
While (1)
{

Note The side-effect attribute does not imply noncacheability.
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  While F1 is cleared (spin on flag)

      Load F1
2 MEMBAR #LoadLoad | #LoadStore (needed in RMO)

  Load D1

  Store D2
1 MEMBAR #StoreStore (needed in PSO, RMO)

Store F1:clear flag
}

Due to load and store buffers implemented in SPARC M7, CODE EXAMPLE D-1 may not work for RMO
accesses without the MEMBARs shown in the program segment.

Under TSO, loads and stores (except block stores) cannot pass earlier loads, and stores cannot pass
earlier stores; therefore, no MEMBAR is needed.

Under RMO, there is no implicit ordering between memory accesses; therefore, the MEMBARs at both
#1 and #2 are needed.

D.2.4 Memory Synchronization: MEMBAR and FLUSH
The MEMBAR (STBAR in SPARC V8) and FLUSH instructions provide for explicit control of memory
ordering in program execution. MEMBAR has several variations; their implementations in SPARC M7
are described below. See the references to “Memory Barrier,” “The MEMBAR Instruction,” and
“Programming With the Memory Models,” in The The SPARC Architecture Manual-Version 9 for more
information.

D.2.4.1 MEMBAR #LoadLoad

All TSO loads on SPARC M7 are implicitly ordered so no MEMBAR #LoadLoad is required. Block
loads are RMO and require an intervening MEMBAR #LoadLoad to ensure ordering with respect to
prior or subsequent loads.

D.2.4.2 MEMBAR #StoreLoad

MEMBAR #StoreLoad forces all loads after the MEMBAR to wait until all stores before the
MEMBAR have reached global visibility. All TSO loads and stores on SPARC M7 are implicitly
ordered so no MEMBAR #StoreLoad is required. Block loads, block stores, and block initializing
stores are RMO and require MEMBAR #StoreLoad to guarantee ordering.

D.2.4.3 MEMBAR #LoadStore

All loads and stores on SPARC M7 commit in order. Thus, MEMBAR #LoadStore is treated as a
NOP on SPARC M7

Note A MEMBAR #MemIssue or MEMBAR #Sync is needed if
ordering of cacheable accesses following noncacheable accesses
must be maintained for RMO cacheable accesses.
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D.2.4.4 MEMBAR #StoreStore and STBAR
TSO stores on SPARC M7 are implicitly ordered and no Membar #StoreStore is required. Block
stores and block initializing stores are not implicitly ordered and require Membar #StoreStore (or
stronger) to guarantee ordering on SPARC M7.

D.2.4.5 MEMBAR #Lookaside

Loads and stores to noncacheable addresses are “self-synchronizing” on SPARC M7. Thus MEMBAR
#Lookaside is treated as a NOP on SPARC M7.

D.2.4.6 MEMBAR #MemIssue

MEMBAR #MemIssue forces all outstanding memory accesses to be completed before any memory
access instruction after the MEMBAR is issued. It must be used to guarantee ordering of noncacheable
loads following cacheable stores. For example, a cacheable store must be followed by a MEMBAR
#MemIssue before subsequent noncacheable loads; this ensures that the store reaches global visibility
(as viewed by other strands) before the noncacheable load after the MEMBAR. All other ordering
cases of noncacheable vs. cacheable accesses are implicitly order by the hardware.

SPARC M7 implements Membar #MemIssue identically to Membar #StoreLoad.

D.2.4.7 MEMBAR #Sync (Issue Barrier)
Membar #Sync forces all outstanding instructions and all deferred errors to be completed before any
instructions after the MEMBAR are issued.

D.2.4.8 Self-Modifying Code (FLUSH)
The SPARC V9 instruction set architecture does not guarantee consistency between code and data
spaces. A problem arises when code space is dynamically modified by a program writing to memory
locations containing instructions. Dynamic optimizers, LISP programs, and dynamic linking require
this behavior. SPARC V9 provides the FLUSH instruction to synchronize instruction and data memory
after code space has been modified.

In SPARC M7, FLUSH behaves like a store instruction for the purpose of memory ordering. In
addition, all instruction fetch (or prefetch) buffers are invalidated. The issue of the FLUSH instruction
is delayed until previous (cacheable) stores are completed. Instruction fetch (or prefetch) resumes at
the instruction immediately after the FLUSH.

SPARC M7 implements FLUSH identically to Membar #Sync.

Notes STBAR has the same semantics as MEMBAR #StoreStore; it is
included for SPARC-V8 compatibility.

Note For SPARC V9 compatibility, this variation should be used
before issuing a load to an address space that cannot be
snooped,

Note MEMBAR #Sync is a costly instruction; unnecessary usage may
result in substantial performance degradation.
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D.2.5 Atomic Operations
SPARC V9 provides three atomic instructions to support mutual exclusion. These instructions behave
like both a load and a store but the operations are carried out indivisibly. Atomic instructions may be
used only in the cacheable domain.

An atomic access with a restricted ASI in nonprivileged mode (PSTATE.priv = 0) causes a
privileged_action trap. An atomic access with a noncacheable address causes a data_access_exception
trap. An atomic access with an unsupported ASI causes a DAE_invalid_ASI trap. TABLE D-1 lists the
ASIs that support atomic accesses.

D.2.5.1 SWAP Instruction
SWAP atomically exchanges the lower 32 bits in an integer register with a word in memory. This
instruction is issued only after store buffers are empty. Subsequent loads interlock on earlier SWAPs.

D.2.5.2 LDSTUB Instruction
LDSTUB behaves like SWAP, except that it loads a byte from memory into an integer register and
atomically writes all 1’s (FF16) into the addressed byte.

D.2.5.3 Compare and Swap (CASX) Instruction
Compare-and-swap combines a load, compare, and store into a single atomic instruction. It compares
the value in an integer register to a value in memory; if they are equal, the value in memory is
swapped with the contents of a second integer register. All of these operations are carried out
atomically; in other words, no other memory operation may be applied to the addressed memory
location until the entire compare-and-swap sequence is completed.

D.2.6 Nonfaulting Load
A nonfaulting load behaves like a normal load, except that

■ It does not allow side-effect access. An access with the e bit set causes a DAE_so_page trap.

■ It can be applied to a page with the nfo bit set; other types of accesses will cause a DAE_NFO_page
trap.

TABLE D-1 ASIs That Support SWAP, LDSTUB, and CAS

ASI Name

ASI_NUCLEUS{_LITTLE}

ASI_AS_IF_USER_PRIMARY{_LITTLE}

ASI_AS_IF_USER_SECONDARY{_LITTLE}

ASI_PRIMARY{_LITTLE}

ASI_SECONDARY{_LITTLE}

ASI_REAL{_LITTLE}

Notes Atomic accesses with nonfaulting ASIs are not allowed, because
these ASIs have the load-only attribute.

For all atomics, allocation is done to the L2 cache only and will
invalidate the L1s.
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Nonfaulting loads are issued with ASI_PRIMARY_NO_FAULT{_LITTLE} or
ASI_SECONDARY_NO_FAULT{_LITTLE}. A store with a NO_FAULT ASI causes a DAE_invalid_ASI
trap.

When a nonfaulting load encounters a TLB miss, the operating system should attempt to translate the
page. If the translation results in an error (for example, address out of range), a 0 is returned and the
load completes silently.

Typically, optimizers use nonfaulting loads to move loads before conditional control structures that
guard their use. This technique potentially increases the distance between a load of data and the first
use of that data, to hide latency; it allows for more flexibility in code scheduling. It also allows for
improved performance in certain algorithms by removing address checking from the critical code
path.

For example, when following a linked list, nonfaulting loads allow the null pointer to be accessed
safely in a read-ahead fashion if the operating system can ensure that the page at virtual address 016
is accessed with no penalty. The nfo (nonfault access only) bit in the MMU marks pages that are
mapped for safe access by nonfaulting loads but can still cause a trap by other, normal accesses. This
allows programmers to trap on wild pointer references (many programmers count on an exception
being generated when accessing address 016 to debug code) while benefitting from the acceleration of
nonfaulting access in debugged library routines.

D.3 L1 I-Cache
The L1 Instruction cache is 16 Kbytes, physically tagged and indexed, with 64-byte lines, and 4-way
associative with true LRU replacement. The format used to index the cache is shown in TABLE D-2.

D.3.1 LRU Replacement Algorithm
The I-cache replacement algorithm is true least-recently-used (LRU). Six bits are maintained for each
cache index.

D.3.2 Direct-Mapped Mode
The I-cache direct-mapped mode works by forcing all replacements to the “way” identified by bits
[13:11] of the virtual address. Since lines already present are not affected but only new lines brought
into the cache are affected, it is safe to turn on (or off) the direct-mapped mode at any time.

D.3.3 I-Cache Disable
Clearing the I-cache enable bit stops all accesses to the I-cache for that strand. All fetches will miss,
and the returned data will not fill the I-cache. Invalidates will still be serviced while the I-cache is
disabled.

TABLE D-2 L1 Instruction Cache Addressing

Bit Field Description

49:12 tag Tag for cache line.
11:6 set Selects cache set containing the cache line.
5:2 instr Selects 32-bit instruction in cache line.
1:0 — Always 0 for access to 32-bit instructions.
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D.4 L1 D-Cache
The L1 Data cache is 16 Kbytes, writethrough, physically tagged and indexed, with 32-byte lines, and
4-way associative with true LRU replacement. The format used to index the cache is shown in TABLE
D-3.

D.4.1 LRU Replacement Algorithm
The D-cache replacement algorithm is true least-recently-used (LRU). Six bits are maintained for each
cache index.

D.4.2 Direct-Mapped Mode
The D-cache direct-mapped mode works by changing the replacement algorithm from LRU to instead
use two bits of index (address[12:11]) to select the “way.” Since lines already present are not affected
but only new lines brought into the cache are affected, it is safe to turn on (or off) the direct-mapped
mode at any time.

Note that if the D-cache is in direct-mapped mode, and a parity error occurs, the way replaced will be
the way which experienced the parity error. This overrides the index selected by the address in direct-
mapped mode.

D.4.3 D-Cache Disable
The D-cache enable bit works by forcing all accesses to miss in the D-cache, and all misses are
nonallocating. Stores that hit in the L1 will be performed in the L2, then update the L1 (as normal).

D.5 L2 Instruction Cache
The L2 Instruction cache is 256K, and is shared among 4 physical cores. It is 2 way banked (on PA[6]),
and is 8 way set associative. The L2 instruction cache is physically tagged and indexed, with 64B
lines. Replacement is NRU (Not Recently Used) replacement. The format used to index the full cache
is shown in TABLE D-4.

TABLE D-3 L1 Data Cache Addressing

Bit Field Description

49:12 tag Tag for cache line.
11:5 set Selects cache set containing the cache line.
4:0 data Selects data byte(s) in cache line.

TABLE D-4 L2 Cache Addressing (8 banks) Not Updated for M7

Bit Field Description

48:15 tag Tag for cache line.
14:6 index Selects cache set containing the cache line. Bit 6 selects the cache bank.
5:0 data Selects data byte(s) in the cache line.
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D.5.1 NRU Replacement Algorithm
A used-bit scheme is used to implement an NRU (Not Recently Used) replacement. The used bit is set
each time a cache line is accessed or when initially fetched from memory. If setting the used-bit causes
all used bits (at an index) to be set, the remaining used bits are cleared instead.

In addition, each line has a lock bit, which is set while a line is allocated for replacement as a result of
a cache miss. The lock bit gets cleared when the location is filled with memory data. Any line that
has the lock bit set is ineligible for replacement.

The next replacement way is computed by first checking the Valid and Lock bits. Starting from way 0
and searching to way 7, the first invalid and not locked way will be selected as the next replacement
way. If all ways are valid, then starting from way 0 and searching to way 7, the first way with Used=0
and Lock=0 will be selected as the next replacement way. If all Used bits are set (which means all
Locked bits are set), then a replacement way cannot be determined and any access which misses and
requires a replacement way will be marked non-allocating when sent to the L3. The result from the L3
will be bypassed to the core, but the line will not fill in the L2I.

D.5.1.1 Mapping Out Lines
It is possible to "map out" individual cache lines that have gone bad, e.g. get too many errors, by
setting the line’s Lock bit to 1, and clearing its Valid bit to 0. This marks the line as "busy", but in a
state where it will never become unbusy. These lines are never considered for replacement. This can
be accomplished with the appropriate variant of line flush.

D.5.2 Directory Coherence
The L2 instruction cache has a directory of all L1 instruction cache lines, implemented as reverse
directory. This means that for each location in the L1 I-cache, the directory knows the corresponding
location in the L2 instruction cache. (Because SPARC M7 maintains inclusion between the L2 and L1
caches, a line which exists in an L1 cache will always exist in its connected L2 cache.) When the L1
requests a line from the L2, the virtual processor specifies whether the line will be allocated (put into
the cache), and which “way” it will go into.

The L2 I-cache can issue invalidates to any/all of the cores simultaneously. An invalidation is issued
to the L1 any time a line is invalidated or locked in the L2I. The invalidate transaction includes only
index and way; it does not include the address.

For special cases, primarily parity errors, the directory will get "conservatively" out-of-sync, which
means the directory thinks a line exists in the L1 but it doesn’t. This is not a problem, as the only
consequence is a possible invalidation for a line which is already invalid.

Since the L2 directory can handle the above cases, just invalidating an L1 line is safe, and can be used
to flush out L1 lines.

D.5.3 L2I Cache Disable
The L2I cache disable is described in Section 20.16.1.1, L2I Off Mode.
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D.6 L2 Data Cache
The L2 data cache is 256K, and is shared among 2 physical cores. It is 2 way banked (on PA[6]), and
is 8 way set associative. The L2D cache is writeback, physically tagged and indexed, with 64B lines.
Replacement is NRU (Not Recently Used) replacement. The format used to index the full cache is
shown in TABLE D-5.

D.6.1 NRU Replacement Algorithm
A used-bit scheme is used to implement an NRU (Not Recently Used) replacement. The used bit is set
each time a cache line is accessed or when initially fetched from memory. If setting the used-bit causes
all used bits (at an index) to be set, the remaining used bits are cleared instead.

In addition, each line has a lock bit, which is set while a line is allocated for replacement as a result of
a cache miss. The lock bit gets cleared when the location is filled with memory data. Any line that
has the lock bit set is ineligible for replacement.

The next replacement way is computed by first checking the Valid and Lock bits. Starting from way 0
and searching to way 7, the first invalid and not locked way will be selected as the next replacement
way. If all ways are valid, then starting from way 0 and searching to way 7, the first way with Used=0
and Lock=0 will be selected as the next replacement way. If all Used bits are set (which means all
Locked bits are set), then a replacement way cannot be determined and any access which misses and
requires a replacement way will be inserted into the miss buffer to be replayed once a line at that
index is unlocked.

D.6.1.1 Mapping Out Lines
It is possible to "map out" individual cache lines that have gone bad, e.g. get too many errors, by
setting the line’s Lock bit to 1, and clearing its Valid bit to 0. This marks the line as "busy", but in a
state where it will never become unbusy. These lines are never considered for replacement.

D.6.2 Directory Coherence
The L2 data cache has a directory of all L1 data cache lines, implemented as reverse directory. This
means that for each location in the L1 D-cache, the directory knows the corresponding location in the
L2 data cache. (Because SPARC M7 maintains inclusion between the L2 and L1 caches, a line which
exists in an L1 cache will always exist in it’s connected L2 cache.) When the L1 requests a line from
the L2, the virtual processor specifies whether the line will be allocated (put into the cache), and
which “way” it will go into.

The L2D can issue invalidates to any/all of the cores simultaneously. An invalidation is issued to the
L1 any time a line is invalidated or locked in the L2D. In addition, if one of the cores connected tothe
L2D stores to a line, that corresponding line must be invalidated in the other core’s D-cache. The
invalidate transaction includes only index and way; it does not include the address.

TABLE D-5 L2 Cache Addressing (8 banks) Not Updated for M7

Bit Field Description

48:15 tag Tag for cache line.
14:6 index Selects cache set containing the cache line. Bit 6 selects the cache bank.
5:0 data Selects data byte(s) in the cache line.
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For special cases, the directory will become "conservatively" out-of-sync, which means the directory
thinks a line exists in the L1 but it doesn’t. This is not a problem, as the only consequence is a
possible invalidation for a line which is already invalid.

Since the L2 directory can handle the above cases, just invalidating an L1 line is safe, and can be used
to flush out L1 lines.

D.6.3 L2 Cache Disable
The L2D cache disable is described in Section 20.16.7, L2D Off Mode.
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APPENDIX E

Glossary

This chapter defines concepts and terminology unique to the SPARC M7 implementation. Definitions
of terms common to all Oracle SPARC Architecture implementations may be found in the Definitions
chapter of Oracle SPARC Architecture 2015.

ALU Arithmetic Logical Unit

architectural state Software-visible registers and memory (including caches).

ARF Architectural register file.

blocking ASI An ASI access that accesses its ASI register or array location once all older instructions in
that strand have retired, no instructions in the other strand can issue, and the store queue,
TSW, and LMB are all empty.

branch outcome A reference as to whether or not a branch instruction will alter the flow of execution from
the sequential path. A taken branch outcome results in execution proceeding with the
instruction at the branch target; a not-taken branch outcome results in execution
proceeding with the instruction along the sequential path after the branch.

branch resolution A branch is said to be resolved when the result (that is, the branch outcome and branch
target address) has been computed and is known for certain. Branch resolution can take
place late in the pipeline.

branch target address The address of the instruction to be executed if the branch is taken.

commit An instruction commits when it modifies architectural state.

complex instruction A complex instruction is an instruction that requires the creation of secondary “helper”
instructions for normal operation, excluding trap conditions such as spill/fill traps (which
use helpers). Refer toInstruction Latency on page 153 for a complete list of all complex
instructions and their helper sequences.

consistency See coherence.

CPU Central Processing Unit. A synonym for virtual processor.

CSR Control Status register.

FP Floating point.

L2C (or L2$) Level 2 cache.

leaf procedure A procedure that is a leaf in the program’s call graph; that is, one that does not call (by
using CALL or JMPL) any other procedures.

nonblocking ASI A nonblocking ASI access will access its ASI register/array location once all older
instructions in that strand have retired, and there are no instructions in the other strand
which can issue.

older instruction Refers to the relative fetch order of instructions. Instruction i is older than instruction j if
instruction i was fetched before instruction j. Data dependencies flow from older
instructions to younger instructions, and an instruction can only be dependent upon older
instructions.
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one hot An n-bit binary signal is one hot if and only if n − 1 of the bits are each zero and a single
bit is a 1.

quadlet

SIAM Set interval arithmetic mode instruction.

younger instruction See older instruction.

writeback The process of writing a dirty cache line back to memory before it is refilled.
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Index

A
Accumulated Exception (aexc) field of FSR register, 68, 69
Address Mask (am)

field of PSTATE register, 53, 54, 80
address space identifier (ASI)

identifying memory location, 51
ASI

restricted, 80
support for atomic instructions, 172
usage, 54–60

ASI, See address space identifier (ASI)
ASI_AS_IF_USER_PRIMARY, 79
ASI_AS_IF_USER_SECONDARY, 80
ASI_NUCLEUS, 79
ASI_PRIMARY_NO_FAULT, 76, 79, 80
ASI_PRIMARY_NO_FAULT_LITTLE, 76, 79, 80
ASI_QUEUE registers, 47–49
ASI_REAL, 60
ASI_REAL_IO, 60
ASI_REAL_IO_LITTLE, 60
ASI_REAL_LITTLE, 60
ASI_SCRATCHPAD, 60
ASI_SECONDARY_NO_FAULT, 76, 79, 80
ASI_SECONDARY_NO_FAULT_LITTLE, 76, 79, 80
ASI_ST_BLK_INIT_PRIMARY, 41
ASI_ST_BLK_INIT_PRIMARY_LITTLE, 41
ASI_ST_BLK_INIT_SECONDARY, 41
ASI_ST_BLK_INIT_SECONDARY_LITTLE, 41
ASI_ST_BLKINIT_AS_IF_USER_PRIMARY, 41
ASI_ST_BLKINIT_AS_IF_USER_PRIMARY_LITTLE, 41
ASI_ST_BLKINIT_AS_IF_USER_SECONDARY, 41
ASI_ST_BLKINIT_AS_IF_USER_SECONDARY_LITTLE, 4

1
ASI_ST_BLKINIT_NUCLEUS, 41
ASI_ST_BLKINIT_NUCLEUS_LITTLE, 41
ASI_STBI_AIUP, 41
ASI_STBI_AIUPL, 41
ASI_STBI_AIUS, 41
ASI_STBI_AIUS_L, 41
ASI_STBI_N, 41
ASI_STBI_NL, 41
ASI_STBI_P, 41
ASI_STBI_PL, 41
ASI_STBI_S, 41
ASI_STBI_SL, 41

atomic instructions, 172

B
block

load instructions, 38, 41
memory operations, 71
store instructions, 38

block-initializing ASIs, 41
branch instruction, 54

C
cache flushing, when required, 167
cacheable in physically-indexed cache (cp) field of TTE, 76
caching

TSB, 77
CALL instruction, 54
CANRESTORE register, 66
CANSAVE register, 66
clean window, 66
clean_window exception, 66
CLEANWIN register, 66
compatibility with SPARC V9

terminology and concepts, 179
context

field of TTE, 76
Current Exception (cexc) field of FSR register, 68, 69
CWP register, 66

D
DAE_invalid_ASI exception, 70, 85
DAE_invalid_asi exception, 54
DAE_privilege_violation exception, 77
DAE_so_page, 169
Dcache

direct-mapped mode, 174
disabling, 174
displacement flush, 168
flushing, 167

deferred
trap, 65

Dirty Lower (dl) field of FPRS register, 68
Dirty Upper (du) field of FPRS register, 68



184 SPARC M7 Processor Supplement • Draft D1.0, 30 Jun 2016

D-MMU, 79

E
endianness, 76
enhanced security environment, 66
errors

See also individual error entries
extended

instructions, 71
Extended instructions, 71

F
floating point

deferred trap queue (fq), 68, 69
exception handling, 67
trap type (ftt) field of FSR register, 69

Floating Point Condition Code (fcc)
0 (fcc0) field of FSR register, 68
3 (fcc3) field of FSR register, 68
field of FSR register in SPARC-V8, 68

Floating Point Registers State (FPRS) register, 68
FLUSH instruction, 70
fp_exception_ieee_754 exception, 68, 69
fp_exception_other exception, 69

G
global level register, See GL register
Graphics Status register, See GSR

H
hardware_error floating-point trap type, 68, 69

I
IAE_privilege_violation exception, 77
Icache

direct-mapped mode, 173
disabling, 173
flushing, 167

IEEE Std 754-1985, 68
IEEE support

infinity arithmetic, 163
normal operands/subnormal result, 163

IEEE_754_exception floating-point trap type, 69
illegal_instruction exception, 65, 68, 69, 70, 71
ILLTRAP instructions, 65
implementation-dependent instructions, See IMPDEP2A

instructions
instruction fetching

near VA (RA) hole, 53
instruction latencies, 153–161
instruction-level parallelism

history, 9
instruction-level parallelism, See ILP
integer

division, 66

multiplication, 66
register file, 66

internal registers, 80
interrupt

hardware delivery mechanism, 47
invalid_fp_register floating-point trap type, 68, 69
invert endianness, (ie) field of TTE, 76
ISA, See instruction set architecture

J
JMPL instruction, 54
jump and link, See JMPL instruction

L
L2 cache

configuration, 12
directory coherence, 175, 176–177
displacement flush, 168
flushing, 167, 168
instruction/data registers, 174–??, 176–??

latencies for instructions, 153–161
LDBLOCKF instruction, 38
LDD instruction, 70
LDDF_mem_address_not_aligned exception, 70
LDQF instruction, 70
LDQFA instruction, 70
LDXA instruction, 54
load

block, See block load instructions
short floating-point, See short floating-point load

instructions

M
mem_address_not_aligned exception, 79, 85
MEMBAR #LoadLoad, 52
MEMBAR #Lookaside, 52
MEMBAR #MemIssue, 52, 170
MEMBAR #StoreLoad, 39, 40, 52
MEMBAR #StoreStore, 70
MEMBAR #Sync, 85
MEMBAR #Sync, 170
memory

cacheable and noncacheable accesses, 168
location identification, 51
model, 40
noncacheable accesses, 169
order between references, 52
ordering in program execution, 170–171

memory model supported, 51
memory models, 51
minimum single-strand instruction latencies, 153–161
MMU

requirements, compliance with SPARC V9, 84

N
N_REG_WINDOWS, 66
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nested traps
in SPARC-V9, 65

No-Fault Only (nfo) field of TTE, 76, 80
nonfaulting loads, 172

speculative, 78
Non-Standard (ns) field of FSR register, 69
Nucleus Context register, 86

O
OTHERWIN register, 66
out of range

virtual address, 53
virtual address, as target of JMPL or RETURN, 54
virtual addresses, during STXA, 85

P
page

size field of TTE, 77
size, encoding in TTE, 77

partial store
instruction, 71

Partial Store Order (PSO), 51
pcontext field, 86
PCR register

fields, 62
performance instrumentation counter register, See PIC

register
physical core

components, 11
UltraSPARC T2 microarchitecture, 11

PIC register
field description, 62

precise traps, 65
PREFETCHA instruction, 70
Primary Context register, 86
privileged

(p) field of TTE, 77
(priv) field of PSTATE register, 77, 78, 79

privileged_action exception
attempting access with restricted ASI, 51, 79, 80

processor
memory model, 40

processor interrupt level register, See PIL register
processor state register, See PSTATE register
processor states, See execute_state
PSTATE register fields

ie
masking disrupting trap, 46

pef
See also pef field of PSTATE register

PTE (page table entry), See translation table entry (TTE)

Q
quad-precision floating-point instructions, 67
queue

Not Empty (qne) field of FSR register, 69

R
RA hole, 53
real page number (ra) field of TTE, 76
Relaxed Memory Order (RMO), 51, 52
reserved

fields in opcodes, 65
instructions, 65

resumable_error exception, 47
RETURN instruction, 54
RMO, See relaxed memory order (RMO) memory model
Rounding Direction (rd) field of FSR register, 68

S
SAVE instruction, 66
scontext field, 86
Secondary Context register, 86
secure environment, 66
self-modifying code, 70
short floating point

load instruction, 71
store instruction, 71

side effect
field of TTE, 76

software
defined fields of TTE, 76
Translation Table, 70, 77

software-defined field (soft) of TTE, 76
SPARC V9

compliance with, 65
speculative load, 78
STBLOCKF instruction, 38
STD instruction, 70
STDF_mem_address_not_aligned exception, 70
STQF instruction, 70
STQFA instruction, 70
STXA instruction, 54
supervisor interrupt queues, 47

T
TBA register, 54
terminology for SPARC V9, definition of, 179
thread-level parallelism

advantages, 10
background, 10
differences from instruction-level parallelism, 10

thread-level parallelism, See TLP
Throughput Computing, 9
TNPC register, 54
Total Store Order (TSO), 51, 52
TPC register, 54
Translation Table Entry see TTE
Translation Table Entry, See TTE
trap

mask behavior, ??–46
stack, 65
state registers, 65

Trap Enable Mask (tem) field of FSR register, 68, 68, 69
trap level register, See TL register
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trap next program counter register, See TNPC register
trap program counter register, See TPC register
trap stack array, See TSA
trap state register, See TSTATE register
trap type register, See TT register
Trap-on-Event (toe) field of PCR register, 62
traps

See also exceptions and individual trap names
TSB

caching, 77
index to smallest, 76
in-memory, 70
organization, 77

TSO, See total store order (TSO) memory model
tstate, See trap state (TSTATE) register
TTE, 75

U
unimplemented instructions, 65

V
VA hole, 53
VA_tag field of TTE, 76
Valid (v) field of TTE, 76
Version (ver) field of FSR register, 69
virtual address

space illustrated, 53
Visual Instruction Set, See VIS instructions

W
window fill exception, See also fill_n_normal exception
window spill exception, See also spill_n_normal exception
writable (w) field of TTE, 77
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