
Oracle White Paper—Transparent Data Encryption Best Practices

An Oracle White Paper

July 2012

Oracle Advanced Security
Transparent Data Encryption
Best Practices

Oracle White Paper—Transparent Data Encryption Best Practices

Introduction ... 1

Important Concepts ... 1

Hardware cryptographic acceleration with SPARC T4 and Intel 3

Manage Transparent Data Encryption in Oracle Enterprise Manager 3

Transparent Data Encryption and Oracle Database Vault.................. 4

Transparent Data Encryption Key Architecture 4

Key Generation and Backup .. 4

Key Exchange / Rotation ... 4

TDE Wallet Management... 5

Directory and File Permissions .. 5

Avoiding inadvertently deleting the TDE Wallet 6

(Local) Auto-Open vs. Encryption Wallet 7

Strong Wallet Password .. 7

Split knowledge about the Wallet password 8

Changing the Wallet Password .. 9

Multiple databases on the same host ... 9

TDE Tablespace Encryption .. 10

Applications certified for TDE Tablespace Encryption 10

Moving Your Application Data to Encrypted Tablespaces 10

Tablespace Re-Key Restrictions in Oracle Database 11gR1 11

TDE Column Encryption .. 12

Oracle Application certified for TDE Column Encryption 12

Oracle White Paper—Transparent Data Encryption Best Practices

Identifying Sensitive Columns .. 13

Encrypting indexed columns .. 13

Reducing the storage overhead ... 14

Encrypting Columns in Gigabyte and Terabyte Tables 15

Disabling and re-enabling Transparent Data Encryption 15

TDE Tablespace Encryption or TDE Column Encryption? 15

Clear-Text Copies of Encrypted Data .. 16

Attestation ... 17

Oracle Data Guard .. 17

Physical Standby ... 17

Logical Standby ... 18

Oracle Streams ... 18

Active Data Guard ... 18

Oracle Transparent Data Encryption and Oracle GoldenGate 19

Oracle GoldenGate and TDE with a (local) auto-open wallet 19

Oracle Transparent Data Encryption and Oracle RMAN 19

Real Application Clusters (RAC) .. 20

Oracle Wallet management in Oracle RAC 20

Protecting the Oracle Wallet with ACFS access controls 21

Oracle Database Appliance ... 23

Exadata Database Machine ... 24

Oracle White Paper—Transparent Data Encryption Best Practices

 1

Introduction
This paper provides best practices for using Oracle Advanced Security Transparent Data

Encryption (TDE). Oracle Advanced Security TDE provides the ability to encrypt

sensitive application data on storage media completely transparent to the application

itself. TDE addresses encryption requirements associated with public and private privacy

and security mandates such as PCI and California SB1386. Oracle Advanced Security

TDE column encryption was introduced in Oracle Database 10g Release 2, enabling

encryption of application table columns, containing credit card or social security numbers.

Oracle Advanced Security TDE tablespace encryption was introduced with Oracle

Database 11gR1.

Important Concepts
Master encryption key – The encryption key used to encrypt secondary data encryption keys

used for column encryption and tablespace encryption. Master encryption keys are part of the

Oracle Advanced Security two-tier key architecture.

Unified master key – The unified master encryption key is generated with the first re-key

operation in an Oracle Database 11g Release 2. The unified master key can be easily re-keyed

(rotated).

Table key – Sometimes referred to as a column key, this key is used to encrypt one or more

specific columns in a given table. Table keys were introduced in Oracle Database 10g Release 2.

These keys are stored in the Oracle data dictionary, encrypted with the master encryption key.

Tablespace key – The key used to encrypt a tablespace. These keys are encrypted using the

master key and are stored in the tablespace header of the encrypted tablespace, as well as in the

header of each operating system - file that belongs to the encrypted tablespace.

Wallet – A PKCS#12 formatted file outside of the database, encrypted based on password-

based encryption as defined in PKCS#5. Used to store the TDE master key.

Oracle White Paper—Transparent Data Encryption Best Practices

 2

Advanced Encryption Standard (AES) – A symmetric cipher algorithm defined in the Federal

Information Processing (FIPS) standard no. 197. AES provides 3 approved key lengths: 256,

192, and 128 bits.

Oracle White Paper—Transparent Data Encryption Best Practices

3

Hardware cryptographic acceleration with SPARC T4 and Intel

Hardware cryptographic acceleration for TDE tablespace encryption is available with Intel®

CPUs with AES-NI, a set of New Instructions for the Advanced Encryption Standard. Oracle

Database 11gR2 (11.2.0.2) TDE tablespace encryption automatically detects and leverages the

hardware-based cryptographic acceleration for decryption of data; for hardware accelerated

encryption, patch 10296641 is required. With Oracle Database 11.2.0.3, hardware crypto

acceleration support is extended to Solaris 11 x64 on Intel CPUs with AES-NI, as well as

Solaris 11 SPARC on T4. Hardware cryptographic acceleration for TDE column encryption is

not supported.

CPU TYPE
ORACLE DATABASE 11.2.0.2

(PATCH 10296641 REQUIRED)
ORACLE DATABASE 11.2.0.3

Intel
®
 with AES-NI

(all CPUs with AES-NI)

Oracle Linux

 Exadata X2,

 Database Appliance(*),

 any other deployments of 11.2.0.2 on Linux and

Intel with AES-NI

Oracle Solaris 11 Express with bundle patch 11 only in

Exadata X2 (11.2.2.4).

No other deployments as 11.2.0.2 is not certified for

Solaris 11 Express

Adding Solaris 11 x64

SPARC T4 Solaris 11 SPARC:

 SPARC SuperCluster,

 any other deployment of 11.2.0.3

on Solaris 11 SPARC and T4

(*): Patch 10296641 is included in Oracle Database 11.2.0.2.4, which is the patch level used in the

Oracle Database Appliance.

Manage Transparent Data Encryption in Oracle Enterprise
Manager

Most database maintenance and configuration tools are integrated in a convenient, easy-to-use

Web interface called Enterprise Manager. Oracle Enterprise Manager Database Control is

installed by default and used to manage a single, local database instance. Oracle Enterprise

Manager Grid Control is an infrastructure that allows monitoring, configuring and maintaining

many distributed databases from one central console.

The following command starts Oracle Enterprise Manager Database Control:

$ emctl start dbconsole

https://updates.oracle.com/download/10296641.html
https://updates.oracle.com/download/10296641.html
http://ark.intel.com/search/advanced?AESTech=true

Oracle White Paper—Transparent Data Encryption Best Practices

4

Point your Browser to https://<hostname>:<port>/em and provide user name and

password of the user with sufficient privileges to manage a database, for example ‘SYSTEM’.

On the main page of Oracle Enterprise Manager Database Control, click on the ‘Server’ tab, on

the following page, click on ‘Transparent Data Encryption’ within the ‘Security’ group

to reach the Transparent Data Encryption homepage.

Transparent Data Encryption and Oracle Database Vault

If your database is protected with Oracle Database Vault, separation of duties is enforced that

includes controlling the authorizations of users in Enterprise Manager. In order to enable

‘SYSTEM’ to manage Transparent Data Encryption, ‘SYSTEM’ has to be a ‘Participant’ or

‘Owner’ of the ‘Data Dictionary Realm’ in Oracle Database Vault. This change needs to be

done by a user with the Database Vault ‘owner’ role. Oracle recommends using customized

DBA roles for individual users that match your security needs, instead of the powerful ‘SYSTEM’

user. These customized DBA roles may or may not need to be a ‘Participant’ or ‘Owner’ of

the ‘Data Dictionary Realm’, depending on their permissions.

Transparent Data Encryption Key Architecture

Encryption keys are the secrets used in combination with an encryption algorithm to encrypt

data. Oracle Advanced Security TDE uses a two tier encryption key architecture, consisting of a

master key and one or more table and/or tablespace keys. The table and tablespace keys are

encrypted using the master key. The master key is stored in the Oracle Wallet.

Key Generation and Backup

The TDE master key, stored in the Oracle Wallet, is generated by Oracle during the initial

configuration of TDE. The master key is generated using a pseudo-random number generator

inside the Oracle database.

Always backup the wallet associated with the master key

 immediately after it is initially created,

 whenever the master key is changed, and

 before changing the wallet password.

The wallet is a critical component and should be backed up in a secure location, on-site and

offsite.

Key Exchange / Rotation

Oracle White Paper—Transparent Data Encryption Best Practices

5

In TDE column encryption, both the master key and table keys can be individually re-keyed,

providing for a granular implementation of various security policies. Re-keying of the master key

does not impact performance or availability of your application, because it requires only

decryption and re-encryption of the table keys and not the associated encrypted application data.

Re-keying the table keys requires careful planning, since associated application data must first be

decrypted and subsequently re-encrypted using the new table encryption key. Changing the table

keys would be equivalent to performing a full table update. After upgrading to Oracle

Database 11gR1, performing a TDE master key re-key operation will transparently create a

separate TDE tablespace encryption master key in the Oracle Wallet. Tablespaces created using

the ENCRYPT syntax will have any associated data files encrypted using the tablespace key stored

in each tablespace header. The tablespace key itself will be encrypted using the new tablespace

master key. After upgrading to Oracle Database 11g Release 2, performing a TDE master

key re-key operation will either merge the two existing master keys to a unified master encryption

key, or create a new unified master encryption key. The unified master encryption key is used for

both TDE column encryption and TDE tablespace encryption, and it can be easily re-keyed.

Note the restriction in Oracle Database 11gR1 that tablespace master keys and tablespace keys

cannot be re-keyed. If a re-key is required for a given encrypted tablespace, Oracle recommends

moving the data to a new encrypted tablespace. Please see the section on tablespace re-key

restrictions on page 9 for recommendations on moving data to a new tablespace to achieve a re-

key operation. Oracle Database 11g Release 2 allows the rotation of the unified master

encryption key.

RE-KEY SUPPORT

 TDE COLUMN ENCRYPTION TDE TABLESPACE ENCRYPTION

Master Key Table Keys Master Key Tablespace Keys

Oracle Database 10gR2 Yes Yes n/a n/a

Oracle Database 11gR1 Yes Yes No No

Oracle Database 11g Release 2 Yes (*) Yes Yes (*) No

(*): Unified master encryption key for TDE column encryption and TDE tablespace encryption

TDE Wallet Management

Directory and File Permissions

When using the Oracle Wallet, Oracle recommends restricting the associated file and directory

permissions. In addition, a strong password should be used when setting up the wallet. The

Oracle Wallet is the default external security module used to store the (unified) TDE master

Oracle White Paper—Transparent Data Encryption Best Practices

6

encryption key(s). Oracle recommends placing the Oracle Wallet outside of the $ORACLE_BASE

directory tree to avoid accidentally storing the wallet with the encrypted data on a backup tape,

for example:

/etc/ORACLE/WALLETS/<$ORACLE_UNQNAME>

Since /etc is owned by ‘root’, these directories are created by ‘root’; when done, change

ownership to ‘oracle:oinstall’ and set the permissions to ‘oracle’ only:

cd /etc

mkdir –pv ORACLE/WALLETS/DB01

chown –R oracle:oinstall ORACLE

chmod –R 700 ORACLE

Set the ENCRYPTION_WALLET_LOCATION parameter in sqlnet.ora to the newly created

directory:

ENCRYPTION_WALLET_LOCATION =

 (SOURCE = (METHOD = FILE)

 (METHOD_DATA =

 (DIRECTORY = /etc/ORACLE/WALLETS/$ORACLE_UNQNAME/)))

Initialize the wallet and add the master encryption key using Enterprise Manager or the

SQL*Plus command line interface:

SQL> alter system set encryption key identified by “password”;

After successful creation of the wallet and master key, reduce permissions on the wallet file from

the initial value, determined by ‘umask’ for the ‘oracle’ user, to:

$ cd /etc/ORACLE/WALLETS/<$ORACLE_UNQNAME>

$ chmod 600 ewallet.p12

It is highly recommended to always backup the wallet at the same time when backing up your

database, but do not include the wallet on the same media as the database backup. Also, backup

the wallet before any manipulation of its content, whether performing a master key re-key

operation, or changing the wallet password.

Avoiding inadvertently deleting the TDE Wallet

In order to protect the Oracle TDE Wallets from being inadvertently deleted, make them

‘immutable’ (Linux on ext2, ext3 and ext4 file systems; OCFS).

After initially creating the encryption wallet (and optionally a (local) auto-open wallet), navigate

to the directory that stores the Oracle Wallet and set the ‘immutable’ bit with:

chattr +i ewallet.p12

chattr +i cwallet.sso

Oracle White Paper—Transparent Data Encryption Best Practices

7

Any attempt to delete the wallet (by root or any other user) fails; re-key operations that write to

the wallets will fail as well, so for re-key operations, the ‘immutable’ bit must be unset:

chattr -i ewallet.p12

chattr -i cwallet.sso

After a successful re-key operation, turn the ‘immutable’ bit back on.

In Solaris 10 and Solaris 11, the command to set or unset the immutable bit on ZFS is:

chmod S+ci ewallet.p12 # chmod S-ci ewallet.p12

chmod S+ci cwallet.sso # chmod S-ci cwallet.sso

(Local) Auto-Open vs. Encryption Wallet

The encrypted wallet (‘ewallet.p12’) offers strong protection of the master key, by encrypting

the wallet with the wallet password, following the PKCS#5 standard for password-based

encryption. Opening the wallet is a manual operation and must be performed to make the

master encryption key available to the database. Optionally, the master key can be copied into an

‘auto-open’ wallet. This can be done either using Oracle Enterprise Manager, Oracle Wallet

Manager or the ‘orapki’ utility:

$ orapki wallet create –wallet <wallet_location> -auto_login

This command creates an auto-open wallet (‘cwallet.sso’). In order to significantly

strengthen your security when using an auto-open wallet, a local auto-open wallet can be created,

starting with Oracle Database 11.1.0.7; it does not open on any machine other than the one it

was created on:

$ orapki wallet create –wallet <wallet_location> -auto_login_local

It is not possible to use a local auto-open wallet in Oracle RAC when the wallet is to be stored

centrally in ACFS.

Backup the auto-open wallet in a separate location from the encrypted data. Storing the auto-

open wallet with the encrypted data provides no security, since the wallet and data on a stolen or

misplaced tape or disk would have no protection.

Strong Wallet Password

The wallet password is critical to providing strong security. If the wallet password is

compromised, someone with access to the operating system could simply copy the database files

and wallet and use the wallet password to make the master key available to a database and

decrypt the encrypted application data. It is easy to see that the password needs to be strong, yet

Important - Do not delete the original encryption wallet. Re-keying the master key requires the original encryption wallet to be

present. When the master key is re-keyed, the corresponding (local) auto-open wallet is updated automatically.

Oracle White Paper—Transparent Data Encryption Best Practices

8

easy to remember, since a forgotten wallet password cannot be recovered. One way to come up

with a strong yet easy to remember password is to take the first characters of each word in an

easy-to-remember sentence: “I work from 9 to 5 almost every day of the week” would give

“Iwf9t5aedotw”, which satisfies the common requirements for good passwords: It contains

numbers as well as upper- and lower case characters, and it is longer than the recommended

minimum of 10 characters. The sentence is very easy to remember, but you don’t have to

remember the complex password itself at all.

Split knowledge about the Wallet password

When Enterprise Manager is used, the wallet password is always masked, so it is not only easy to

hide from the DBA, but can also be split easily between different custodians: Person A enters

the first part of the password before Person B enters the 2nd half of the password, without

Person B being able to see what Person A typed into the password field.

In Oracle Database 10gR2, where the wallet password on the SQL*Plus command line is

displayed in the clear, password splitting is not possible. For customers to translate the need for

‘split knowledge about the encryption key’ to ‘split knowledge about the Wallet password’, the

following script provides a possible work-around:

Create a user ‘Sentinel’ in your database with only ‘create session’ and ‘alter system’

privileges

Create a Secure External Password Store (SEPS), following the instructions in this document. As

explained in this document, create an entry in tnsnames.ora called ‘keyholder’; confirm with

‘$ tnsping keyholder’ that the entry is correct. Add credentials for the user ‘sentinel’ to

the SEPS: $ mkstore –wrl . –createCredential keyholder sentinel <password>

Try to connect to the database with ‘$ sqlplus /@keyholder’

This script (‘set_key.sh’) creates a new wallet in the defined location (if it does not exist) and

adds a new TDE master encryption key to a wallet, or re-keys the master encryption key:

#!/bin/bash

get_pwd1(){read -s –p “1st

half of password: ” pwd1}

get_pwd2(){read -s –p “2nd

half of password: ” pwd2}

set_key(){sqlplus /@keyholder @set_key.sql $pwd1$pwd2}

get_pwd1

get_pwd2

set_key

The SQL script ‘set_key.sql’:

set termout off;

alter system set encryption key identified by “&1”;

http://www.oracle.com/technetwork/database/security/twp-db-security-secure-ext-pwd-stor-133399.pdf

Oracle White Paper—Transparent Data Encryption Best Practices

9

set termout on;

exit

A similar script can be written to open the wallet, or to change the wallet password using the

‘orapki’ command line tool in 11.1.0.7 or later (see next paragraph).

Oracle recommends performing the wallet creation and master key initialization on the database

server itself. If you plan to use a remote machine to perform the operation, enable network

encryption between the client and database server so that the communication between both

machines is secure.

Changing the Wallet Password

Changing the password is independent from changing the master key. A pseudo-random

number generator generates the master key, while the wallet password is used as the key to

encrypt the wallet. Prior to Oracle Database release 11.1.0.7, changing the wallet password

required using Oracle Wallet Manager. Before changing the password of an existing wallet, be

sure you have backed up the wallet. After changing the password, verify that you can open the

wallet using the new password. If you can’t open the wallet with the new password, simply

restore the backup copy of the wallet and try changing the password again. Starting with Oracle

Database release 11.1.0.7, the ‘orapki’ utility has been enhanced to enable wallet password

changes from the command line:

$ orapki wallet change_pwd -wallet <wallet_location>

Multiple databases on the same host

If there are multiple Oracle Databases installed on the same server, they must access their own

individual TDE wallet. Sharing the same wallet between independent instances is not supported

and can potentially lead to the loss of encrypted data.

If the databases share the same ORACLE_HOME, they also share the same sqlnet.ora file in

$TNS_ADMIN. In order to access their individual wallet, the DIRECTORY entry for the

ENCRYPTION_WALLET_LOCATION needs to point each database to its own wallet location:

DIRECTORY = /etc/ORACLE/WALLETS/$ORACLE_UNQNAME

The names of the subdirectories under /etc/ORACLE/WALLETS/ reflect the ORACLE_UNQNAME

names of the individual databases.

If the databases do not share the same ORACLE_HOME, they will also have their individual

sqlnet.ora files that have to point to the individual subdirectories.

Before changing the password on an existing wallet, be sure you have backed up the existing wallet. After changing the

password, verify that you can open the wallet using the new password.

http://www.oracle.com/webfolder/technetwork/tutorials/obe/db/11g/r2/prod/security/network_encrypt/ntwrkencrypt.htm
http://www.oracle.com/webfolder/technetwork/tutorials/obe/db/11g/r2/prod/security/network_encrypt/ntwrkencrypt.htm

Oracle White Paper—Transparent Data Encryption Best Practices

10

TDE Tablespace Encryption

An Oracle database consists of at least two logical storage units called tablespaces, which

collectively store all of the database’s data. Each tablespace in an Oracle database consists of one

or more files called datafiles, which are physical structures that conform to the operating system

in which Oracle Database is running. Nearly all databases have several additional tablespaces to

store application specific data.

With Oracle Database 11g, new tablespaces can be defined as encrypted. Defining a tablespace

as encrypted means the physical data files created on the operating system will be encrypted.

Any tables, indexes and other objects defined in the new tablespace will be encrypted by default

with no additional storage space requirements. During data reads, the Oracle database will

automatically decrypt data before it arrives in database memory (SGA). Data that is moved out

of the SGA and written to the file system will be encrypted. TDE tablespace encryption

provides optimal performance by enabling existing indexes and foreign keys to continue working

as they were before encryption was turned on. Execution plans remain the same and the

requirement to identify individual columns to encrypt is completely eliminated.

Applications certified for TDE Tablespace Encryption

The following Oracle applications have been certified with TDE tablespace encryption in Oracle

Database 11.1.0.7 and Oracle Database 11g Release 2:

 Oracle E-Business Suite (see

http://blogs.oracle.com/stevenChan/certifications.html for current updates)

 Oracle PeopleSoft Enterprise 8.48 and later (Migration script and detailed implementation

guide)

 Oracle Siebel CRM 8.0 and later

 Oracle JD Edwards EnterpriseOne

 SAP 6.40_EX2 and later (Oracle Database 11g Release 2 only, SAP note 974876)

 RETEK Retail Sales Audit 13.1.5

 Primavera P6

Internal benchmark tests and customers reported a performance impact of 4 to 8% in end-user

response time, and an increase of 1 to 5% in CPU usage.

Moving Your Application Data to Encrypted Tablespaces

Oracle Database 11g supports encrypting new tablespaces only. Application data can be

migrated from existing, un-encrypted tablespaces to new encrypted tablespaces using these steps:

http://blogs.oracle.com/stevenChan/certifications.html
http://www.oracle.com/technetwork/database/security/tde-tabsp-enc-for-psft-131732.zip
http://www.oracle.com/technetwork/database/security/tde-tabsp-enc-for-psft-131732.zip

Oracle White Paper—Transparent Data Encryption Best Practices

11

1) Backup the database using your standard backup procedures

2) Export all application tablespaces with Oracle Data Pump Export (‘expdp’), optionally

compressing the dump file for faster processing and reduced storage

3) Create encrypted versions of the clear-text tablespaces:

a. Using ‘dbms_metadata.get_ddl’, extract the original DDL (data definition

language) used to create the application tablespaces, and spool them to a SQL script

b. Append ‘ENCRYPTION [using '<algorithm>'] DEFAULT

STORAGE(ENCRYPT)’ to each ‘CREATE TABLESPACE’ command, without changing

any of the other parameters. If the ‘CREATE TABLESPACE’ statement already has a

‘STORAGE’ clause, then update the existing one instead of appending.

c. Drop the original unencrypted application tablespaces, either with:

SQL> drop tablespace <name> including contents and datafiles;

or:

SQL> drop tablespace <name> including contents keep datafiles;

if you want to use operating system level commands like ‘sdelete’ or ‘shred’ to

securely delete the old clear text datafile.

d. Create the encrypted tablespaces by running the edited script

4) Import all application tablespaces with Oracle Data Pump Import (‘impdp’)

5) Verify application is working properly

This procedure requires downtime, which is not always feasible. To migrate to encrypted

tablespaces while the application remains fully available, Oracle recommends using Online Table

Redefinition, a mature high-availability feature of the Oracle Enterprise Edition. A ready-to-run

script, complemented with a detailed implementation guide, is available. The script can be easily

modified to reflect your own migration needs.

Tablespace Re-Key Restrictions in Oracle Database 11gR1

The first ‘set key’ or re-key operation in an Oracle Database 11.1.0.7 (regardless if new

installation or upgrade from an older release, and regardless if an Oracle Wallet with master

encryption key(s) for TDE column encryption already exists) creates an additional master

encryption key for TDE tablespace encryption. The master encryption key for TDE tablespace

encryption is created in the Oracle Wallet at the location specified in sqlnet.ora. Oracle Database

11gR1 does not support the re-key of the TDE tablespace master key. If it becomes necessary to

change the master key associated with encrypted tablespaces, a slightly modified version of the

script mentioned before can be applied to individual or all application tablespaces. Alternativelly,

use the Data Pump utility to extract the application data from the encrypted tablespaces, create

http://www.oracle.com/technetwork/database/security/tde-tabsp-enc-for-psft-131732.zip

Oracle White Paper—Transparent Data Encryption Best Practices

12

new encrypted tablespaces, and then import the data into the new encrypted tablespace using

Oracle Data Pump Import (impdp).

1) Backup the database using your standard backup procedures.

2) Export the application tablespaces with Oracle Data Pump ‘expdp’, optionally compressing,

and encrypting the dump file with a password (do not use the current master key to encrypt

the dump file).

3) Extract the DDL used to build the encrypted tablespaces (using

‘dbms_metadata.get_ddl’) and spool to a SQL file.

4) Drop the original encrypted application tablespaces, ‘including contents and

datafiles’.

5) Build new encrypted tablespaces using the script created in step 2., which are now encrypted

with a new tablespace key.

6) Import the application tablespaces with Oracle Data Pump ‘impdp’.

7) Verify the application is working properly.

TDE Column Encryption

TDE column encryption transparently encrypts sensitive data written to application table

columns. This can be accomplished by marking sensitive columns as ‘encrypted’ in Enterprise

Manager Database Control, or by appending the ‘encrypt’ key word to the SQL DDL

statement. Existing data types remain the same so the encryption is completely transparent to

the existing application. Each table with one or more encrypted columns has its own table

encryption key; these are stored in the data dictionary, encrypted with the master key.

When data is written to an encrypted column, sensitive values are encrypted immediately before

they are written to disk. When an authorized user selects data from the database, the data is

automatically decrypted and presented in clear text. As with TDE tablespace encryption, TDE

column encryption protects against direct access to media by privileged operating system users as

well as lost or misplaced tapes and disk drives.

To increase performance when encrypted data is processed, each table has its own table key that

is used for all encrypted columns in that specific table. These table keys are decrypted with the

master key prior to processing encrypted data, and stay decrypted for the duration of the

transaction.

Oracle Application certified for TDE Column Encryption

The following Oracle applications have been certified with TDE column encryption in Oracle

Database 10gR2 and 11g (10.2.0.5, 11.1.0.7 or 11.2.0.2/3 are recommended):

Oracle White Paper—Transparent Data Encryption Best Practices

13

 Oracle E-Business Suite

(see http://blogs.oracle.com/stevenChan/certifications.html for current

updates)

 Oracle PeopleSoft Enterprise 8.46 and later

 Oracle Siebel CRM 7.7+

 Oracle Financial Services (iFlex): FlexCube 10.0

 Oracle Retail Applications (Retek): Retail Sales Audit (ReSA):

o ReSA 12.0 and 13.0 (in Oracle Database 10gR2 10.2.0.4+)

o ReSA 13.1 (in Oracle Database 11gR1 11.1.0.7)

 Oracle Internet Directory 10.1.4.2

 SAP 6.40 and later (SAP note 974876)

Identifying Sensitive Columns

Identifying tables and columns that contain sensitive data such as social security numbers and

credit cards can be difficult, especially in large applications. One technique that can be useful is

to search the Oracle data dictionary for column names and data types that are frequently used to

store such information. Here’s an example of using SQL to identify columns that might contain

social security numbers:

SQL> select column_name, table_name, data_type from user_tab_cols where

column_name like '%SSN%' or

column_name like '%SECNUM%' or

column_name like '%SOCIAL%';

The user executing this statement is the primary user or schema that owns the application tables.

This technique can be used for other types of information as well by simply substituting another

string such as “PIN” in the SQL text.

Encrypting indexed columns

An indexed column can be encrypted if the column is used for equality searches and the index

type is a B-tree index (normal, not DESCending). An index over one or more encrypted

columns can be built only when these columns are encrypted using the ‘no salt’ syntax. If

encrypted columns are used to build an index, the corresponding columns in the index are

encrypted as well. Before the SQL statement is processed, the value in the SQL text that targets

the encrypted column is encrypted with the table key of the target table; the database checks the

index, matches the encrypted value, finds the rowid in the index, and presents the corresponding

row from the base table. Following this procedure, the performance impact for equality searches

http://blogs.oracle.com/stevenChan/certifications.html

Oracle White Paper—Transparent Data Encryption Best Practices

14

can be substantially minimized. Note that range scans (‘between’ clauses) cannot use the

encrypted index. However, personally identifiable information (PII) is rarely used in range scan

operations. The encryption algorithm (default AES192) is defined per table, even if the

statement can be given at any column definition in the ‘create table’ statement.

Reducing the storage overhead

TDE column encryption differs from TDE tablespace encryption in the area of storage

requirements; after encryption, an encrypted value can be between 1 and 52 bytes longer than the

clear text value. By default, TDE column encryption adds ‘salt’ and an integrity check

(Message Authentication Code, MAC) to each encrypted value. Here we explore when you can

forgo those security features to save storage overhead.

Basic encryption is deterministic, which means that a given plaintext will always encrypt to the

same cipher text. This property is less secure when the uniqueness of the values in a column is

not given. For example, when a column contains sensitive patient information about a rare

medical condition, most patients would enter ‘No’, while only a few would enter ‘Yes’. All of the

cipher texts for ‘Yes’ would be identical, as would be those for the negative answers. Even

though their responses are encrypted, people that suffer from that rare condition would be easy

to identify. To get beyond this limitation, each clear text value is modified with ‘salt’, a random

16-byte string. The resulting output using identical plaintext inputs generates completely

different cipher texts. However, if you can guarantee that all values in a column are unique (for

example when a ‘UNIQUE INDEX’ has been applied to the column), you can set the ‘NO SALT’

parameter when encrypting a column to reduce storage by 16 bytes for each cell. Salt is defined

per column; one table can contain columns that are encrypted with or without salt at the same

time.

For further protection, a 20-byte integrity check is appended to each encrypted value to provide

tamper detection for the cipher text. Starting with Oracle Databases 10.2.0.4 and 11.1.0.7, the

‘NOMAC’ parameter can be used with TDE column encryption to omit the generation and storage

of these additional 20 bytes. ‘NOMAC’ is defined on a table level; even though ‘NOMAC’ can be

specified on one or more columns, it applies to all encrypted columns in a table.

The final type of storage overhead associated with column-level encryption is unavoidable. Each

plaintext value is padded out to the next 16 byte if encrypted using AES; it’s padded out to the

next 8 byte when encrypted using 3DES168: If a clear text value requires 9 byte of storage, it is

expanded to 16 bytes; if the clear text value requires 16 byte, it is expanded to 32 bytes (24 for

3DES168), and so on.

It is highly recommended to install patch 8421211 for TDE column encryption in 11.1.0.7 to

greatly improve performance for a certain type of queries and to correct the behavior of TDE

column encryption when applied to a column which is part of a composite index, where other

http://updates.oracle.com/download/8421211.html

Oracle White Paper—Transparent Data Encryption Best Practices

15

columns than the encryption candidate are used for functional indexes. Please contact Oracle

Support if a patch is not available for your version/platform combination.

Encrypting Columns in Gigabyte and Terabyte Tables

Sometimes, tables have so many rows and the application downtime window is so small, that the

‘UPDATE’ operation necessary to encrypt one or more columns would take too long, even though

‘READ’ access to the table is still possible while it’s being updated.

Often, these tables that are the foundation of your business, containing Personally Identifiable

Information (PII) that needs to be protected through encryption, but they are constantly

updated, and cannot be taken down without interrupting your business.

For those tables, Oracle provides Online Table Redefinition, offering a transparent method to

change table characteristics while the source table is fully available. For detailed steps, consult

the documentation, but here is a short form:

1) Create an interim table that has the desired characteristics you want the source table to have

after the procedure, for example: One column is encrypted, while all other columns remain

unchanged.

2) Start the redefinition process while the source table is fully available.

3) After the final step (where the source table is offline for a short moment; transparent to

users and applications, with no data loss!), delete the interim table.

Disabling and re-enabling Transparent Data Encryption

Usually, when a wallet is deleted, whether or not data has been encrypted, and a new wallet and

master encryption key are to be created, the error message ‘ORA-28374: typed master key

not found in wallet’ is displayed.

The following procedure cannot be used to recover or replace a lost wallet, wallet password, or

TDE master encryption key; it’s provided for administrators who at one point in time created a

wallet with TDE master encryption key, never encrypted data, and decided to not use TDE and

deleted the wallet, and then decided to eventually use TDE.

After installing patch 8682102, perform log switches to cycle through all redo logs, and then

create a new wallet and TDE master encryption keys.

TDE Tablespace Encryption or TDE Column Encryption?

In Oracle Database 11gR1, security administrators or DBAs can choose between TDE

tablespace encryption and TDE column encryption; here are some guidelines:

TDE TABLESPACE ENCRYPTION OR TDE COLUMN ENCRYPTION?

http://updates.oracle.com/download/8682102.html

Oracle White Paper—Transparent Data Encryption Best Practices

16

CHOOSE TDE COLUMN ENCRYPTION IF …: CHOOSE TDE TABLESPACE ENCRYPTION IF …:

Location of sensitive information is known Location of sensitive information is unknown

Less than 5% of all application columns are encryption

candidates.

Most of the application data is deemed sensitive, or

multiple national and international security and privacy

mandates apply to your industry

Data type and length is supported by TDE column encryption Not all data types that hold sensitive information are

supported by TDE column encryption

Encryption candidates are not foreign-key columns Encryption candidates are foreign key columns

Indexes over encryption candidates are normal B-tree indexes Indexes of encryption candidates are functional indexes

Application does not perform range scans over encrypted data Application searches for ranges of sensitive data

Increase in storage by 1 to 52 bytes per encrypted value No storage increase acceptable

Performance impact depends on percentage of encrypted

columns; how often the encrypted values are selected or

updated, the size of encrypted data, and other variables.

Constant performance impact below 10%

 If you want to benefit from hardware crypto acceleration

 If you want to enjoy the benefits of encryption and

compression at the same time.

Clear-Text Copies of Encrypted Data

During the lifetime of a table, data may become fragmented, re-arranged, sorted, copied and

moved within the tablespace; this leaves ‘ghost copies’ of your data within the database file.

When encrypting an existing column, only the most recent ‘valid’ copy is encrypted, leaving

behind older clear-text versions in ghost copies. If the data file holding the tablespace is directly

accessed, bypassing the access controls of the database (for example with an hex - editor), old

clear text values might be visible for some time, until those blocks are overwritten by the

database. To minimize this risk, please follow these recommendations:

1) Backup the database using your standard backup procedures.

2) Create a new tablespace in a new data file (CREATE TABLESPACE ...)

3) Encrypt sensitive data in the original tables (ALTER TABLE ... ENCRYPT)

4) Move all tables (with or without encrypted columns) from the original tablespace into the

new data file (ALTER TABLE ... MOVE ...)

5) Verify the application is working properly.

Oracle White Paper—Transparent Data Encryption Best Practices

17

6) Drop the original tablespace (DROP TABLESPACE). Do not use the ‘and datafiles’

parameter; Oracle recommends to use stronger methods for OS – level operations.

7) Use ‘shred’ or other commands for your platform to delete the old data file on the OS

level.

The last step is recommended to lower the probability of being able to find ghost copies of the

database file, generated by either the operating system, or storage firmware.

Attestation

In order to present proof of encryption, for example upon an auditor’s request, Oracle provides

views that document the encryption status of your database. For TDE column encryption,

please use the view ‘dba_encrypted_columns’, which lists the owner, table name, column

name, encryption algorithm, and salt, for all encrypted columns. For TDE tablespace

encryption, the following SQL statement lists all encrypted tablespaces with their encryption

algorithm and corresponding, encrypted, data files:

SQL> SELECT t.name “TSName”, e.encryptionalg “Algorithm”, d.file_name

“File Name” FROM

v$tablespace t, v$encrypted_tablespaces e, dba_data_files d WHERE

t.ts# = e.ts# and t.name = d.tablespace_name;

The next SQL statement lists the table owner, tables within encrypted tablespaces, and the

encryption algorithm:

SQL> SELECT a.owner “Owner”, a.table_name “Table Name”, e.encryptionalg

“Algorithm”, FROM

dba_tables a, v$encrypted_tablespaces e WHERE

a.tablespace_name in (select t.name from v$tablespace t,

v$encrypted_tablespaces e where t.ts# = e.ts#);

Oracle Data Guard

Physical Standby

Oracle Data Guard Physical Standby works with Transparent Data Encryption beginning with

the first release of Oracle Database 10g Release 2. The encrypted application data stays

encrypted while redo log files are transferred from the primary to the secondary databases.

However, the master key from the primary database needs to be present on the secondary site

only when the secondary site is in READ ONLY mode or after a failover, but not for applying

the redo logs. It is recommended to copy the primary wallet over to the secondary sites, so that

in a case of a failover, all data is quickly available. In addition, the Oracle Wallet can optionally

Oracle White Paper—Transparent Data Encryption Best Practices

18

be converted to an auto-open wallet, making the master key available to the secondary database

automatically when the database is brought online. Encrypted data remains encrypted in log files

and during transit when the log files are shipped to the secondary database; Oracle Network

Encryption is optional.

When the master key on the primary database is re-keyed, the wallet needs to be recopied over to

all secondary sites. If the wallet is open on the secondary site it would need to be closed (which

removes the old master key from memory), the new wallet could then be opened so that the new

master key is loaded into database memory, where it is stored obfuscated.

Logical Standby

Oracle Data Guard Logical Standby works with Transparent Data Encryption beginning with

Oracle Database 11gR1. The master key needs to be present and open at the secondary site for

SQL Apply to decrypt the data that it reads from the encrypted log files. The same master key is

also used to optionally encrypt the incoming data while it is written to the Logical Standby

database.

Oracle Streams

Oracle Streams works with TDE starting in Oracle Database 11g. Encrypted data is decrypted

by the Streams engine to allow data transformation (character sets, database versions, platforms,

etc.) and is not encrypted while being transmitted to the other databases, hence, encrypting the

traffic with Oracle Advanced Security Network Encryption is recommended. When the

receiving side cannot be reached and data needs to be stored temporarily, data originally

encrypted is stored encrypted on disk. Prior to Oracle Database 11g, Oracle Streams treated

encrypted columns as ‘unsupported data types’ and skipped the associated tables. For the

receiving databases, the local wallet does not need to be identical to the source wallet and master

key, since the sensitive content arrives in clear text.

Active Data Guard

During a master key re-key operation on the primary, it generates a redo marker with a new

master key ID which will be shipped to the standby databases. The standby will then perform

the same master key re-key operations with the master key ID, given it can also access a copy of

the wallet.

Customers concerned about the wallet being used to access sensitive data on the standby site can change the wallet password

on the secondary site. However, this can lead to increased password management complexity and the possibility of delayed

availability of the standby site should the password be forgotten.

Oracle White Paper—Transparent Data Encryption Best Practices

19

Oracle Transparent Data Encryption and Oracle GoldenGate

Oracle Databases 10.2.0.5 and 11.2.0.2/3 have built-in support for Oracle GoldenGate 11.1.1.1;

to enable it, simply execute

SYSTEM> @$ORACLE_HOME/rdbms/admin/prvtclkm.plb;

In Oracle 11.1.0.7, after applying patch 9409423, execute the same procedure to enable Oracle

GoldenGate 11.1.1.1 to extract encrypted data from an Oracle database.

Oracle GoldenGate and TDE with a (local) auto-open wallet

When TDE in the source database is configured with a (local) auto-open wallet, patch 10395645

needs to be applied to 10.2.0.5, 11.1.0.7, and 11.2.0.2.

To protect the clear text data while in transit from the Oracle database to its target location,

Oracle GoldenGate supports encrypting network traffic via BlowFish or SSH.

ORACLE TRANSPARENT DATA ENCRYPTION AND ORACLE GOLDEN GATE

ORACLE GOLDEN GATE VERSION TDE COLUMN ENCRYPTION TDE TABLESPACE ENCRYPTION

Releases before 11.1.1.1 Partial support for all DB versions if table

 has primary key or unique index,

and encrypted columns are

 CHAR and VARCHAR2 data types, and

 not primary key or unique index

Not supported

11.1.1.1 Built-in support in Oracle 10.2.0.5 and 11.2.0.2/3, patch 9409423 needed in 11.1.0.7

Oracle Transparent Data Encryption and Oracle RMAN

With a simple command, RMAN backups to disk can be encrypted and compressed:

RMAN> connect target <ORACLE_SID>/<SYS password>;

RMAN> set encryption on;

RMAN> backup [as compressed backupset] database;

ORACLE RMAN ENCRYPTION AND COMPRESSION OF DATA ENCRYPTED BY TDE

DATA

BACKUP WITH …

COMPRESSION ENCRYPTION COMPRESSION AND ENCRYPTION

NOT ENCRYPTED Data compressed Data encrypted Data first compressed, then

encrypted

https://updates.oracle.com/download/9409423.html
https://updates.oracle.com/download/10395645.html

Oracle White Paper—Transparent Data Encryption Best Practices

20

ORACLE RMAN ENCRYPTION AND COMPRESSION OF DATA ENCRYPTED BY TDE

ENCRYPTED WITH TDE

COLUMN ENCRYPTION

Data compressed; encrypted

columns are treated as if they

were not encrypted, resulting

in low compression ratio for

encrypted columns.

Data encrypted; double

encryption of encrypted

columns.

Data compressed first, then

encrypted; encrypted columns

are treated as if they were not

encrypted; double encryption of

encrypted columns

DATA ENCRYPTED WITH

TDE TABLESPACE

ENCRYPTION

Encrypted tablespaces are

decrypted, compressed, and

re-encrypted; Clear text

tablespaces are compressed

and encrypted (after

compression, they cannot be

distinguished from encrypted

data).

Encrypted blocks are

passed through to the

backup unchanged; clear

text blocks are encrypted

for backup.

Encrypted blocks are decrypted,

compressed, and re-encrypted;

Clear text blocks are

compressed and encrypted.

Oracle RMAN can compress and encrypt backups to disk. Either the master key from the

source database can be used, or, if the data is to be restored into another database, the encryption

key can be generated from a password, which eliminates the need to share the master encryption

key. It also allows a ‘dual’ mode, where the backup file can be decrypted either by making the

correct master key available, or by providing the correct password.

Real Application Clusters (RAC)

Oracle Wallet management in Oracle RAC

When Oracle Advanced Security TDE is configured to use an Oracle Wallet for the master key,

there is a 1:1 relationship between the wallet/master key and database; this is also true for Real

Application Clusters (RAC) configurations in Oracle Database 11gR1. Once TDE is enabled on

the first instance, the wallet and the local sqlnet.ora file need to be copied to all other

instances and manually opened for the master key to be loaded into each instance’s memory.

Likewise, when the master encryption key is rekeyed on one instance, the wallet needs to be

copied to all other instances in this cluster; close the wallet to remove the old master key from

memory and open it again to load the new master key. Oracle does not support sharing the

same Oracle Wallet between RAC instances, since the wallet may become corrupted when one

instance re-keys the master key without properly updating the other instances.

In Oracle Database 11g Release 2, Oracle recommends to store the Oracle Wallet in a

centralized location: Create an ACFS file system on top of ASM using ‘asmca’ (ASM

Configuration Assistant) and store the wallet there; the entry in sqlnet.ora in all instances

looks like this:

Oracle White Paper—Transparent Data Encryption Best Practices

21

ENCRYPTION_WALLET_LOCATION=

 (SOURCE = (METHOD = FILE)

 (METHOD_DATA =

 (DIRECTORY = /opt/oracle/acfsmounts/data_tdevolume/$ORACLE_UNQNAME/)))

This file system is mounted automatically when the instances start. Opening and closing the

wallet, as well as commands to set or rekey/rotate the TDE master encryption key are

synchronized between all nodes.

When the environment variable ‘ORACLE_UNQNAME’ is set, multiple RAC-enabled databases can

run off the same Grid Infrastructure, storing their individual TDE master encryption keys in

ACFS. For example, two RAC-enabled databases with ‘ORACLE_UNQNAME’ set to ‘RAC-HR’ and

‘RAC-FIN’, their wallets would be stored in separate sub-directories on ACFS:

/opt/oracle/acfsmounts/data_tdevolume/RAC-HR and

/opt/oracle/acfsmounts/data_tdevolume/RAC-FIN

It is mandatory to set ‘ORACLE_UNQNAME’ in the normal OS environment variables, as well as

with ‘srvctl’ for the databases:

$ srvctl setenv database -d RAC-HR -T “ORACLE_UNQNAME=RAC-HR”

$ srvctl setenv database -d RAC-FIN -T “ORACLE_UNQNAME=RAC-FIN”

If the Oracle Wallet cannot be stored on an ACFS file system, it needs to be copied to all

instances: First create wallet and master key on the first instance, and then copy the wallet to all

other instances. Wallet operations that do not update the wallet content (wallet open/close

commands) are synchronized between RAC instances, even if the wallet is not stored in a central

location, while master key set key or rekey operations are only synchronized with a centralized,

shared wallet.

In all RAC cases, the auto-open functionality should be applied so that TDE fully supports

Oracle Restart (automatically starting instances that run on top of ASM). A local auto-open

Wallet cannot be used when multiple instances share a centrally stored Oracle Wallet.

Protecting the Oracle Wallet with ACFS access controls

When the TDE Wallet is stored in an ACFS file system, additional access controls and separation

of duty can be implemented using the ACFS Security feature starting with Oracle Database

11.2.0.2 on Linux and 11.2.0.3 on Windows. To use the ACFS Security feature, it must first be

initialized for the cluster, and each ACFS file system, where ACFS Security will be used, must be

prepared for ACFS Security as described in Oracle® Automatic Storage Management

Administrator's Guide 11g Release 2. It is recommended to use ‘asmca’ to perform these

operations. These steps can also be done via the command line interface as follows:

Oracle White Paper—Transparent Data Encryption Best Practices

22

This example assumes that the TDE Wallets are already created in the directory

/u01/opt/oracle/acfsmounts/data_tdevolume/wallet_dir/ewallet.p12 and

/u01/opt/oracle/acfsmounts/data_tdevolume/wallet_dir/cwallet.sso

To initialize ACFS security for the cluster, execute as ‘root’:

/sbin/acfsutil sec init -u secadmin -g secadmingrp

where ‘secadmin’ is an existing OS user designated as the (first) security administrator and

‘secadmingrp’ is an existing OS group designated as the security administrator group. All

security administrators must be part of the security administrator group. This command can only

be run by ‘root’ and it prompts for a password. This is a password for the new security

administrator. It is recommended that the ‘secadmin’ user changes the password immediately

after the initialization of ACFS security:

$ /sbin/acfsutil sec admin password

Once the password of the ACFS security has been changed by ‘secadmin’, ‘root’ cannot make

any changes to it. Once security is initialized for the cluster, each ACFS file system where

security will be used, must be prepared for security:

As a user with ‘SYSASM’ privileges, log in to the ASM instance and execute in Oracle

Database 11.2.0.2:

SYSASM> alter diskgroup DATA set attribute ‘compatibility.asm’ = ’11.2.0.2’;

SYSASM> alter diskgroup DATA set attribute ‘compatibility.advm’ = ’11.2.0.2’;

… in Oracle Database 11.2.0.3:

SYSASM> alter diskgroup DATA set attribute ‘compatibility.asm’ = ’11.2.0.3’;

SYSASM> alter diskgroup DATA set attribute ‘compatibility.advm’ = ’11.2.0.3’;

$ /sbin/acfsutil sec prepare -m /u01/opt/oracle/acfsmounts/data_tdevolume

where ‘-m’ specifies the mount point where the ACFS file system is mounted.

To protect the TDE Wallet, first, a realm must be created on the ACFS file system:

$ /sbin/acfsutil sec realm create TDEWalletRealm

 -m /u01/opt/oracle/acfsmounts/data_tdevolume

 -d "Realm to protect the TDE Wallet"

 -e off

This command creates a realm named ‘TDEWalletRealm’ on the ACFS file system mounted on

‘/u01/opt/oracle/acfsmounts/data_tdevolume’. ‘-e off’ option specifies that

encryption has been turned off for this realm.

To allow only the Oracle executable access to the TDE Wallet, an application rule can be created

as follows:

Oracle White Paper—Transparent Data Encryption Best Practices

23

$ /sbin/acfsutil sec rule create allowOracleDBRule

 –m /u01/opt/oracle/acfsmounts/data_tdevolume

 –t application $ORACLE_HOME/bin/oracle

 –o ALLOW

‘-t’ specifies the type of the rule. In this example, it is an application rule. Other types of rules

based on the username, time, or hostname are also supported. Once a rule is created, it can be

added to a rule set as follows:

Create a new rule set:

$ /sbin/acfsutil sec ruleset create TDEWalletRuleSet

 –m /u01/opt/oracle/acfsmounts/data_tdevolume

Add the rule to the ruleset:

$ /sbin/acfsutil sec ruleset edit TDEWalletRuleSet

 –m /u01/opt/oracle/acfsmounts/data_tdevolume

 -a allowOracleDBRule -o ANY_TRUE

Optionally, to allow Java applications such as ‘orapki’ and Oracle Wallet Manager

(‘owm’) access to the Oracle TDE wallet:

$ /sbin/acfsutil sec rule create allowJavaAppRule

 –m /u01/opt/oracle/acfsmounts/data_tdevolume

 –t application $ORACLE_HOME/jdk/bin/java –o ALLOW

Add the rule to the rule set:

$ /sbin/acfsutil sec ruleset edit TDEWalletRuleSet

 –m /u01/opt/oracle/acfsmounts/data_tdevolume

 -a allowJavaAppRule -o ANY_TRUE

The TDE Wallet can then be protected by the realm:

$ /sbin/acfsutil sec realm add TDEWalletRealm

 –m /u01/opt/oracle/acfsmounts/data_tdevolume

 -u oracle -l ALL:TDEWalletRuleSet –f

 -r /u01/opt/oracle/acfsmounts/data_tdevolume/wallet_dir

With these protections in place, the ‘oracle’ OS user, as well as ’secadmin’ and ‘root’, have

neither read nor write privileges on the TDE wallet; only the Oracle Database can open and close

the wallet, and re-key the TDE master encryption key.

For more details on all the commands and options supported by the ACFS Security feature, see

the Oracle® Automatic Storage Management Administrator's Guide 11g Release 2 (11.2).

Oracle Database Appliance

Oracle White Paper—Transparent Data Encryption Best Practices

24

The Oracle Database Appliance is a pre-configured 2-node RAC system based on Oracle

Database 11.2.0.2. An ACFS file system is created by default, allowing centralized storage of the

Oracle Wallet, including applying the strong access controls discussed before. Further, the Intel®

CPUs in the appliance provide hardware crypto acceleration for TDE tablespace encryption

based on AES-NI. Patch 10296641 is included in Oracle Database 11.2.0.2.4 as well as 11.2.0.3,

so both encryption and decryption benefit from hardware crypto acceleration provided by Intel

AES-NI.

Exadata Database Machine

Exadata Database Machine X2, based on Oracle Database 11gR2 (11.2.0.2) is equipped with

Intel® Xeon® CPUs that provide hardware-based cryptographic acceleration for TDE

tablespace encryption. The storage nodes of both X2-2 and X2-8 are identical; they use the

Intel® Xeon® L5640 CPU with AES-NI. Decryption takes place on the storage nodes when the

Oracle Optimizer decided to push the query down to the intelligent storage cells; if not, data is

decrypted on the compute nodes. The following table illustrates this fact:

EXADATA MODEL X2-2 X2-8

NODE ENCRYPT DECRYPT ENCRYPT DECRYPT

COMPUTE Enable hardware-

acceleration (6 times

faster) in Intel
®
 Xeon

®

X5670 with patch

10296641

Hardware acceleration

(8 times faster) in

Intel
®
 Xeon

®
 X5670

enabled by default

Enable hardware-

acceleration (6 times

faster) in Intel
®
 Xeon

®

E7-8870 with patch

10296641

Hardware acceleration

(8 times faster) in

Intel
®
 Xeon

®
 E7-8870

enabled by default

STORAGE n/a Hardware acceleration

in Intel
®
 Xeon

®
 L5640

enabled by default

n/a Hardware acceleration

in Intel
®
 Xeon

®
 L5640

enabled by default

In Exadata X2-8 ordered before December 6th, 2011, the compute nodes were equipped with

Intel X7560 which provided hardware crypto acceleration by ~ 2x based on the Nehalem

technology. If Exadata has been upgraded to 11.2.0.3, patch 10296641 is not needed.

When TDE tablespace encryption is used, data sent to Exadata is (optionally) first compressed

with Exadata Hybrid Columnar Compression (EHCC), then encrypted, and finally written to

disc.

When selecting data, it is first decrypted, then ‘smart scan’ is applied to remove unneeded data

from the result set, then the result set is decompressed, and returned to the database.

Exadata Hybrid Columnar Compression used in conjunction with TDE tablespace encryption

will more than compensate the small performance overhead caused by TDE tablespace

encryption, because compressed data is encrypted: When the size of a compressed data set is 35%

https://updates.oracle.com/download/10296641.html
https://updates.oracle.com/download/10296641.html

Oracle White Paper—Transparent Data Encryption Best Practices

25

smaller than uncompressed, TDE tablespace encryption has to encrypt and decrypt 35% less

data.

Transparent Data Encryption Best Practices

July 2012

Author: Peter Wahl

Oracle Corporation

World Headquarters

500 Oracle Parkway

Redwood Shores, CA 94065

U.S.A.

Worldwide Inquiries:

Phone: +1.650.506.7000

Fax: +1.650.506.7200

oracle.com

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. This document is provided for information purposes only and

the contents hereof are subject to change without notice. This document is not warranted to be error-free, nor subject to any other

warranties or conditions, whether expressed orally or implied in law, including implied warranties and conditions of merchantability or

fitness for a particular purpose. We specifically disclaim any liability with respect to this document and no contractual obligations are

formed either directly or indirectly by this document. This document may not be reproduced or transmitted in any form or by any

means, electronic or mechanical, for any purpose, without our prior written permission.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective

owners.

0109

