

JSON Full-Text Search with
Oracle Globally Distributed
Database 23ai
 With Oracle Cloud Infrastructure Base Database Service

August, 2024, Version [1.0]
Copyright © 2024, Oracle and/or its affiliates
Public

2 JSON Full-Text Search with Oracle Globally Distributed Database 23ai / Version [1.0]

 Copyright © 2024, Oracle and/or its affiliates / Public

Purpose statement
This document provides details of a specific use-case and set of features included in Oracle Database release
23ai. It is intended solely to help you assess the business benefits of upgrading to 23ai and planning for the
implementation and upgrade of the product features described.

Disclaimer
This document in any form, software or printed matter, contains proprietary information that is the exclusive
property of Oracle. Your access to and use of this confidential material is subject to the terms and conditions of
your Oracle software license and service agreement, which has been executed and with which you agree to
comply. This document and information contained herein may not be disclosed, copied, reproduced or
distributed to anyone outside Oracle without prior written consent of Oracle. This document is not part of your
license agreement, nor can it be incorporated into any contractual agreement with Oracle or its subsidiaries or
affiliates.

This document is for informational purposes only and is intended solely to assist you in planning for the
implementation and upgrade of the product features described. It is not a commitment to deliver any material,
code, or functionality, and should not be relied upon in making purchasing decisions. The development, release,
timing, and pricing of any features or functionality described in this document remains at the sole discretion of
Oracle. Due to the nature of the product architecture, it may not be possible to safely include all features
described in this document without risking significant destabilization of the code.

3 JSON Full-Text Search with Oracle Globally Distributed Database 23ai / Version [1.0]

 Copyright © 2024, Oracle and/or its affiliates / Public

Table of contents

Introduction 5
Technologies 5

Oracle Database support for JavaScript Object Notation (JSON) 5
Oracle Text 5
Oracle Globally Distributed Database 6

Solution Overview 7
Planning The Solution 7

Example Application Requirements 8
The Initial JSON Data Set 8
Analyzing the JSON Data for Schema and Query Design 9
Schema Design 10

JSON Columns 11
Virtual Columns 11
Sharded Data Distribution Methods 11
Sharding Key 11
Schema Structure 12
Database Schema Details 12

Planning the Sharded Database Topology 13
Elements of the Topology Error! Bookmark not defined.

Globally Distributed Database Components 13
Building the Environment 14

Deploying Database Infrastructure for the Shards and Shard Catalog 14
Deploying Compute Infrastructure for the Shard Director 15
Installing Global Data Services on the Shard Director Host 15
Verifying Connectivity 16
Configuring and Tuning the Database Instances 16

Parameter Tuning & Event Tracing 16
DB User Accounts and Password Policies 17
Validate each Shard Database 17
Configuring TCPS with TLS for Sharding on OCI 18

Configuring the Oracle Globally Distributed Database Topology on the
Shard Director 18

Create the Shard Catalog 19
Add and Start a Shard Director 19
Add Host Metadata 20
Add Shardgroups 21
Verify the Sharding Topology 21
Add Shard CDBs 23
Add Shard PDBs 24
Deploy the Sharding Configuration 25

4 JSON Full-Text Search with Oracle Globally Distributed Database 23ai / Version [1.0]

 Copyright © 2024, Oracle and/or its affiliates / Public

Create and Start Global Database Services 26
Creating the Sharded Database Schema 28

Bulk Loading the JSON Data 34
Deploy the JSON data file(s) 34
Load the JSON Documents 35
Collect Statistics 36

Indexing Sharded JSON Data 37
Creating an Index on the Primary Key 38
Creating a Multivalue Index on JSON Array values 38
Creating an Oracle Text Index 38
Validating Oracle Text Index Status 39

Search Query Design and Examples 43
Example Search Form 43
Use-Cases 45
Query Design 45
SQL Query Overview 46

Bind Variables 46
Search Results Query 47
Category Facet Query 52
Language Facet Query 52

Conclusion 53
Appendix A: High Availability and Disaster Recovery 55
Appendix B: Sharded Data Distribution Methods 56

List of figures and tables

Figure 1 - Abstract of the Search Form User Interface 8
Figure 2 - Physical Infrastructure Overview - System-managed
Sharded Database Deployment 13
Figure 3 Detailed View of a Faceted Search Form UI Mock-Up 44

5 JSON Full-Text Search with Oracle Globally Distributed Database 23ai / Version [1.0]

 Copyright © 2024, Oracle and/or its affiliates / Public

Introduction
This document provides design and deployment guidance for a scalable, distributed full-text search solution for
JSON documents certified on an Oracle 23ai Globally Distributed Database environment.

The advantages of using Oracle Globally Distributed Database as your repository and engine for full-text search
include:

 Oracle Database can remain the source of record for data that requires textual search capabilities with the use
of Oracle Text, without extracting and continually reconciling data with a third-party search platform.

 Oracle customers using third-party JSON-based search indexes can potentially reduce overall costs by
transitioning these indexes into Oracle Database.

 Oracle Globally Distributed Database provides a distributed horizontal scalable database platform that can
grow with your document collection and application/service performance needs.

All of this can be achieved with the Oracle Database native JSON support combined with Oracle Text for indexing
and search capabilities, with Oracle Globally Distributed Database on OCI to achieve horizontal scalability and
meet data sovereignty requirements.

Technologies
This solution combines three Oracle technologies: Oracle Globally Distributed Database, Oracle Text and Oracle’s
native JSON support.

Oracle Database support for JavaScript Object Notation
(JSON)
Oracle Database provides the benefits of SQL and relational databases to JSON data, allowing you to store and
manipulate your JSON documents in the same ways and with the same confidence as any other type of database
data.

Oracle Database supports JSON natively with relational database features, including transactions, indexing,
declarative querying, and views. Oracle Database support for JSON provides the best fit between the worlds of
relational storage and querying JSON data, allowing relational and JSON queries to work well together. Oracle
SQL/JSON support is also closely aligned with the JSON support in the SQL Standard.

Business documents can be stored as JSON documents in a relational table. Each row represents a document with
the content inside the document stored in a column with the JSON datatype.

Further Reading:

 23ai Overview of Sharding JSON Documents

 23ai documentation: JSON Developer's Guide

 Oracle Blog post on the new JSON datatype

 Oracle Blog post on how JSON documents can be stored in a sharded environment

Oracle Text
External text engines are widely available, but most of them only work with file-based text stores. Oracle Database
provides an integrated text indexing and search engine that supports text stores both within and outside the
Oracle Database. If the text to search is in the database to start with, using the integrated text engine within the
Oracle Database has several advantages. In this case, the developer or application owner has:

https://docs.oracle.com/en/database/oracle/oracle-database/23/shard/sharding-json-document-collections1.html#GUID-DBDA8C48-E456-4E48-BE69-FC3F8B58982B
https://docs.oracle.com/en/database/oracle/oracle-database/23/adjsn/intro-to-json-data-and-oracle-database.html#GUID-17642E43-7D87-4590-8870-06E9FDE9A6E9
https://blogs.oracle.com/database/post/json-type-and-other-cool-new-json-features-in-oracle-database-release-21c
https://blogs.oracle.com/database/post/writing-applications-for-json-documents-in-a-sharded-environment

6 JSON Full-Text Search with Oracle Globally Distributed Database 23ai / Version [1.0]

 Copyright © 2024, Oracle and/or its affiliates / Public

• A single repository for all data (text and structured) instead of two, simplifying maintenance, backup, etc.
• Indexes in the same repository, ensuring efficient processing of text and mixed queries.
• A single API for developing applications, leveraging Oracle’s converged database and combining text

search with any other processing in the database, for example spatial, JSON processing, or graph
• Integration with the Oracle SQL execution engine and query plan optimizer, letting Oracle decide on the

most efficient execution plan for the whole statement
• Oracle Text is part of all editions of the Oracle Database. Because text is stored in the database, you get

an integrated, holistic view of your data. Additionally, the database chooses the fastest plan to execute
queries that involve both text and structure content.

In terms of our use-case, Oracle Text supports JSON documents. This means that Oracle Text understands and
can parse the structure of the documents. Oracle Text can use the names and values of the JSON elements within
each row’s JSON column data, not just the raw text. Oracle Text provides the ability to score and rank search
results and render a “snippet” of the document contents in HTML, with term highlighting to provide context and
relevance when the results of the query are processed by the application for display. This and other relational
aspects of the search queries allow us to optimize the data returned to the application and minimize the
application-based processing required.

Further Reading:

 Tech Brief: New User's Guide to Oracle Text in Oracle Database

 23ai Oracle Text Application Developer's Guide

Oracle Globally Distributed Database
Oracle Globally Distributed Database enables the deployment of hyperscale globally distributed converged
databases. It is the Oracle Database feature that supports application requirements for linear scalability, elasticity,
fault isolation, and geographic distribution of data for data sovereignty. Oracle Database implements these
capabilities by distributing chunks of a data set across independent Oracle databases (shards). Shards can be
deployed in the cloud or on-premises and require no specialized hardware or software.

The pool of shards is presented to the application as a single logical database. The single logical database is
known as a sharded database. Business solutions can elastically scale their data tier (data, transactions, and users)
to any level, on any platform, simply by adding shards to the sharded database. Data and workloads are
automatically balanced across the shards transparently to the application tier.

Benefits of sharding with Oracle Globally Distributed Database:

 Linear Scalability: Globally Distributed Database eliminates performance bottlenecks and makes it
possible to linearly scale performance and capacity by adding shards.

 High Availability and Fault Containment: Globally Distributed Database is a shared-nothing hardware
infrastructure that provides strong fault isolation and eliminates requirements that can become single
points of failure, such as shared disk, SAN, and Clusterware. The failure or performance degradation of
one shard does not affect the performance or availability of other shards.

 Data Sovereignty with Geographical Distribution: Allows specific data to be stored close to its
consumers while also meeting regulatory requirements when data at rest must be stored in a specific
jurisdiction.

For in-depth details about the features and benefits of Oracle Globally Distributed Database, visit the Globally
Distributed Database page on Oracle.com and 23ai documentation.

The solution offered in this document uses the “system-managed sharding” method to distribute the data evenly
across the shards. There are other data distribution methods available to distribute sharded table data across the
sharded database to meet various requirements: User-Defined, Directory-Based, and Composite sharding. These
methods provide additional features when the data set needs to be sharded in more purposeful ways, such as to

https://www.oracle.com/a/otn/docs/newusersguidetooracletext.pdf
https://docs.oracle.com/en/database/oracle/oracle-database/23/ccapp/index.html#Oracle%C2%AE-Text
https://www.oracle.com/database/sharding/
https://www.oracle.com/database/sharding/
https://docs.oracle.com/en/database/oracle/oracle-database/23/shard/index.html

7 JSON Full-Text Search with Oracle Globally Distributed Database 23ai / Version [1.0]

 Copyright © 2024, Oracle and/or its affiliates / Public

support data residency and other business or regulatory requirements. For additional details see Appendix B:
Sharded Data Distribution Methods.

Solution Overview
We will walk through and discuss the database-centric aspects of a JSON full-text search solution, including
design and implementation strategy insights, examples, and the critical aspects of each step of the process.

The overall solution is not complex to deploy as it fundamentally involves

1) Deciding on the right mix of JSON and Relational that takes advantage of the power of both

2) Deploying your Oracle Globally Distributed Database Topology

3) Creating the appropriate schemas and indexes and, finally

4) Constructing a template query that can be used for user Searches.

This paper walks through each step in detail to highlight the different decisions that are available and to function
as a reference. We walk through the design of a complete search application. We also include many validation
steps which can also be used later to help in any diagnosis or simply for informational reasons.

This walk-through includes:

1. Plan

a. Review application requirements.

b. Prepare and analyze the JSON data set.

2. Build

a. Deploy OCI 23ai Base Database services.

b. Configure the Oracle Globally Distributed Database topology.

c. Create the schema user, tablespaces, and table family.

3. Load

a. Load the JSON data into the table family on each shard in parallel.

b. Collect statistics.

4. Index

a. Create an index on the primary key.

b. Create a multi-value index on JSON Array data.

c. Configure Oracle Text preferences.

d. Create the Oracle Text index on the JSON column.

5. Search

a. Review your application use-case scenarios and search form user experience.

b. Discuss query design factors and requirements.

c. Review example SQL.

Planning The Solution
For this technical brief, we demonstrate how a JSON data set can be analyzed to inform schema design, loaded
into the Oracle Database, indexed, and used as a basis for full-text search queries.

8 JSON Full-Text Search with Oracle Globally Distributed Database 23ai / Version [1.0]

 Copyright © 2024, Oracle and/or its affiliates / Public

We have opted to use a single table for our schema in which we bulk load the public Wikipedia article data after
converting it into JSON format. The WikiCommons schema for Wikipedia has several tables and available data
files related to the full Wikipedia application functionality, we only need the corpus of article data, in JSON format,
to demonstrate the full-text search indexing and query use-case. Our example table will also include several
virtual columns to automatically parse and expose values from the JSON column data for direct use with
relational query operators and search predicates.

Example Application Requirements
Our example search form user interface differs from that of Wikipedia’s advanced search options. For our
example, we include fields for terms to search for, and start and end dates to allow the user to constrain the
search over time. Once a user performs a search with any of these fields, the search results are populated with the
first page of results. The user can then customize the number of results and which page to view. This is all
standard fare for the search user experience.

In addition to the search results, there are two search queries performed to aggregate counts of matching
documents by specific data dimensions. These are colloquially called “facets” and allow the presentation of values
along these dimensions that users can choose to further refine the search results in a parametric fashion.

Our example uses two dimensions or facets of the data: the language the document is written in, and the
“categories” the authors have specified for each document. Our user interface displays these two facets in a left-
hand navigation panel, side-by-side with the search results. The data for each facet contains all the values found
for the dimension, and the count of documents with that value.

Figure 1: Abstract of the Search Form User Interface

For this solution, we have three queries. The first query populates the search results panel. The second and third
queries generate the data necessary to present the two facets as groupings of checkboxes for each of the facet’s
values and the count of documents for each. With relational data, designing these queries is academic. Doing so
efficiently with JSON Database features and Oracle Text is why we’re here. We will introduce the functions and
design necessary to perform these queries.

The JSON Data Set
For our example, we use a JSON representation of the public Wikipedia Articles English-language data set
("enwiki"). We chose Wikipedia because it provides both a publicly available dataset and the precise full-text
search use-case we’re interested in. Although not originally in JSON format, we converted the enwiki articles data
file to JSON for use in our example. The latest “enwiki” data dump files in XML format can be downloaded from
https://dumps.wikimedia.org/enwiki/latest/.

https://dumps.wikimedia.org/enwiki/latest/

9 JSON Full-Text Search with Oracle Globally Distributed Database 23ai / Version [1.0]

 Copyright © 2024, Oracle and/or its affiliates / Public

Much of the WikiCommons schema and portions of each article’s JSON document are not relevant to
demonstrate our full-text search solution. The converted JSON data file was altered to remove unnecessary JSON
elements from each record.

Below we provide a short introductory example document representative of the JSON elements in our data set.
The data file we load for our example consists of documents similar to this one but with actual subject matter and
metadata values from Wikipedia.

After that, the next section describes the various elements in the JSON documents, and discusses some examples
of how we can leverage the Oracle JSON database features to our best advantage for efficient SQL queries for our
full-text search use-cases.

Wikipedia enwiki Article:Synthetic Example (formatting modified for display)
{"title": "Oracle Demo Intro Article ",

 "wikiTitle": "ORACLE_DEMO_INTRO_ARTICLE",

 "wid": 999019999,

 "lang": "EN",

 "timestamp": "2022-06-21T05:22:00Z",

 "paragraphs": [

 "This is the first paragraph of the MAA Demo Intro Article test document for database sharding. This is the second
sentence of the first paragraph",

 "This is the second paragraph. There are multiple lines each with multiple sentences.\nA second line in the second
paragraph.",

 "With Regards to the Data structure of each document:\n",

 "The .wid element is unique per article and extracted for use as the shard key and primary key in the Articles table.",

 "There may be hundreds of strings in the .paragraphs array with up to 4kb per string.”,

 “The longest article is over 440kb.",

 "The .categories array .id element contains the actual category term with spaces replaced with underscore and prefixed
with the phrase: Category:. \n The .templates array contains various metadata about the article with each .name element
being the key and corresponding .description array containing the value.

],

 "categories": [

 {

 "id": "Category:Database_Sharding",

 "anchor": "database sharding", "start": 71, "end": 88, "type": "CATEGORY"

 },

 {

 "id": "Category:Oracle_Demo_Article",

 "anchor": "", "start": 0, "end": 0, "type": "CATEGORY"

 },

 {

 "id": "Category:Facet B",

 "anchor": "", "start": 0, "end": 0, "type": "CATEGORY"

 }

]

}

Analyzing the JSON Data for Schema and Query Design
Each JSON field in the data set should be evaluated for how it might be used in constructing our associated
database table. Identify other JSON elements that contain data that would be frequently used in queries where
adding indexes or virtual columns could be appropriate for performance reasons or to simplify the application’s
SQL coding requirements.

The analysis of each JSON element in our example data set is as follows:

10 JSON Full-Text Search with Oracle Globally Distributed Database 23ai / Version [1.0]

 Copyright © 2024, Oracle and/or its affiliates / Public

wid
This JSON element contains the unique ID for each article consisting of a 1 to10-digit number. We will be using
this value as the basis for the Article_ID column which will be the primary key for the Articles table and the
sharding key for the table family.

Title
This is the human-readable title of the article. Title is one of the values we want to both search on and present efficiently

in the search results. Implementing a virtual column allows us to include this value in the SELECT clause without the

complexity of additional JSON_VALUE() function calls to parse the JSON element value in every query. From a search

query filter predicate perspective, we will use the JSON_TEXTCONTAINS() function using the JSON column directly to

perform the full-text search using the Oracle Text index.

Paragraph[] Array Data
The JSON document’s paragraph array contains comma-separated quoted strings. This comprises the bulk of the
article content and is used along with Title in the main search results query as the primary source data fields for
the requested keywords string search predicates. The paragraph array is searched using the
JSON_TEXTCONTAINS() function, and the execution of this function gets optimized to use the available Oracle Text

search index. The paragraph JSON element value is also used with an Oracle Text function called

CTX_DOC.POLICY_SNIPPET() in the SELECT clause of our main search results query to return a short section of

contextually relevant document text with the search terms highlighted in HTML format.

Categories[] Array Data
In Wikipedia, category assignments to articles are a many-to-many relationship.

The categories data serves as a useful example to demonstrate how to perform a faceted search aggregation
query using JSON array-based values. In the full-text search user experience, presenting a faceted search
capability includes querying for an aggregation, or count, of results based on an associated value that provides a
meaningful grouping. These groupings are referred to as “buckets” and the collection of buckets for a given piece
of associated data or metadata is called a “facet”. Typically, the user is presented with a list of buckets for one or
more facets and allowed to refine their search parameters by choosing a subset of buckets to use as a filter for the
search results.

Lang
This JSON element contains the ISO 639-1 short code for a 2-char regional language name.

To allow the use of simple relational search predicates and efficient query of these values, we chose to implement
a virtual column for this element in our relational schema. This avoids repeated use of the JSON function calls in
application code, simplifies the query syntax, and allows the database to efficiently optimize the SQL execution.

Timestamp
This element contains the last-modified date string for each article document. The "timestamp" format in article
data does not directly match an Oracle Timestamp format but is easily cast to the timestamp_tz data type.

This is a perfect example of the efficiency provided by virtual columns. The data type conversion can be
configured once in the schema definition rather than in every client-side query needing the last-modified
timestamp value.

Schema Design
Oracle's converged database allows data to be accessed relationally, indexed, and searched via Oracle Text, and
via JSON database functions. In considering the schema design we can take into account all of these access
methods. This allows customers to take advantage of consuming and maintaining data already in JSON format as
well as the capabilities of a relational database.

11 JSON Full-Text Search with Oracle Globally Distributed Database 23ai / Version [1.0]

 Copyright © 2024, Oracle and/or its affiliates / Public

JSON Columns
Oracle stores JSON within a JSON datatype column of a database table. The JSON documents within this column
are fully indexable and searchable. Standard SQL queries can include filter predicates using JSON functions to
perform searches within the JSON documents directly.

In the simplest case, all JSON records are stored in the database as individual rows in a large table. Each table is
partitioned across the shards but remains one logical table. Our example schema consists of a single table
described in the Schema Structure section below.

Virtual Columns
These are columns with values derived from other columns or fixed expressions. The advantage of a virtual
column is that we can create a column in a relational table as a column derived from the evaluation of an
expression on the JSON field in our table. Many of the columns in our example table are virtual columns.

For example, the Title of a document may be stored as an element within the JSON document stored in the JSON
column. The title data can also appear in a standard relational column, perhaps named “title”, with the value
automatically derived from the JSON element value. The advantage is that we can use this virtual column in
purely relational expressions with the JSON-specific function call details abstracted at the schema level instead of
in every query.

Sharded Data Distribution Methods
There are multiple methods for partitioning the data across the sharded databases in your topology. This is
relevant to our data design as it determines how the data will be distributed.

The system-managed data distribution method is used for the examples in this technical brief.

The system-managed method requires only that a column be declared as the “sharding key”. Beyond that, the
user does not need to specify the mapping of data to shards. Data is automatically distributed across shards using
partitioning by consistent hash of the values of the shard key. The partitioning algorithm evenly and randomly
distributes data across shards. The distribution used by the system-managed method is aptly named as it is
intended to eliminate hot spots, provide uniform performance across shards, and automatically maintain the
balanced distribution of the data when shards are added to or removed from a sharded database.

In our use case:

• The data and use-cases do not include any specific business or technical requirements for correlating
and grouping specific records to the same shard.

• Each document record is independent of any other.

• All document records can be re-sharded to any other shard if the sharded database needs to be scaled-
out to increase performance.

If there were some correlations, such as a common account with multiple sales invoices, or a requirement for Data
Sovereignty records must be sharded together based on a country code or other regional field value, then other
sharding methods would be more appropriate.

Sharding Key
Central to sharded databases is the concept of a sharding key. Often this can be naturally mapped to a record
identifier although no formal relation needs to exist between the sharding key and the record.

To obtain the benefits of sharding, the schema of a sharded database should be designed in a way that
maximizes the number of database requests processed on a single shard. Choosing which field to use as a
sharding key is important in organizing your documents across the sharded database.

When using system-managed data distribution, the sharding key does not strictly need to be unique or
necessarily the primary key. However, It is recommended that you use the primary key as the sharding key when
organizing unrelated records with a unique document ID.

12 JSON Full-Text Search with Oracle Globally Distributed Database 23ai / Version [1.0]

 Copyright © 2024, Oracle and/or its affiliates / Public

For more information, see the Sharding Keys section of the Oracle Globally Distributed Database documentation.

In online transaction processing scenarios, queries and insert/update/deletion operations are performed with a
known primary key and therefore also a known sharding key. These operations can be directed specifically to the
appropriate single shard based on the sharding key by the client-side database driver when Oracle drivers are
used.

In the document search use-case used in our examples, the sharding key is not known when searches are
submitted, only the keywords/full-text to be searched. When a user clicks on a returned document in the search
results, the application would then have the document ID as the sharding key data for that unique document
request and can retrieve the document directly from the correct shard.

Some suggestions when choosing a sharding key:

o The sharding key can be a text string or number, but we recommend that it be unique and so
uniquely identify the document.

o Sharding keys should rarely or never change. It is best to use a fixed ID that will always be
associated with the document.

Schema Structure
Related tables that are to be sharded/distributed the same way are called a sharded table family. A sharded
database can have multiple table families. There can also be “duplicated tables” where each shard has the same
table contents across all shards, typically used for "look-up" tables. Sharded tables are horizontally partitioned
across shards, and duplicated tables are replicated entirely to all shards.

See the Sharded Table Family and Duplicated Tables documentation for a full description.

Database Schema Details
Our example implements a single table named "Articles" as the parent table in our sharded table family. The
Articles table contains an ID column as the primary key and sharding key, the Article_JSON column, and four
virtual columns based on the Articles_JSON column content. The design intent for each column is summarized
here.

Article_ID

This is the primary key and used as the sharding key. The data type is NUMBER(10). Article_ID contains
the scalar value extracted from the $.wid JSON element. The value must be extracted and inserted
verbatim when the data is loaded from the JSON file's external table, and during single-record
insert/update operations. The primary key column cannot be a virtual column.

Article_JSON

The Article_JSON column is of datatype JSON and contains the JSON document inserted verbatim as
extracted from the JSON file’s external table during data load, or as inserted/updated by the application.

Title

Title is a virtual column with a data type of VARCHAR2(512), evaluating the JSON_VALUE() of $.title from
Articles_JSON. This column will be populated dynamically and cannot have a value explicitly inserted.

Lang

This is a virtual column with a VARCHAR2(2) data type, evaluating the JSON_VALUE() of $.lang from
Articles_JSON. The values contain an ISO standard 2-character country code. This column will be
populated dynamically and cannot have a value explicitly inserted.

Last_Modified

A virtual column querying the JSON_VALUE() of the $.timestamp element from Articles_JSON as a string
and converting it to a TIMESTAMP(0) WITH TIMEZONE data type. This column will be populated
dynamically and cannot have a value explicitly inserted.

The Article table for our examples, to be created in a later section, is described as follows:

https://docs.oracle.com/en/database/oracle/oracle-database/23/shard/sharding-keys.html#GUID-3514F441-FF8F-4313-A3F4-427031B94B2A
https://docs.oracle.com/en/database/oracle/oracle-database/21/shard/sharded-database-schema-objects.html#GUID-4E2E01CA-5103-4F4D-AB2A-79527A62B2E7
https://docs.oracle.com/en/database/oracle/oracle-database/21/shard/sharded-database-schema-objects.html#GUID-50D56C0A-5185-4F04-A0CA-EAA442E825D3

13 JSON Full-Text Search with Oracle Globally Distributed Database 23ai / Version [1.0]

 Copyright © 2024, Oracle and/or its affiliates / Public

SQL> desc Articles
 Name Null? Type
 --- -------- ----------------------------
 ARTICLE_JSON NOT NULL JSON
 ARTICLE_ID NOT NULL VARCHAR2(10)
 DATE_LOADED NOT NULL TIMESTAMP(6)
 TITLE VARCHAR2(512)
 WIKI_TITLE VARCHAR2(512)
 LANG VARCHAR2(2
 LAST_MODIFIED TIMESTAMP(0) WITH TIME ZONE

Planning the Sharded Database Topology
Planning the topology and architecture of each sharded database will vary from solution to solution and across
environments based on the specific business, technical, and regulatory requirements imposed in the same way as
any other database solution. With Oracle Globally Distributed Database, there are just a few more components to
factor into the equation.

For the purposes of this technical brief, as a proof-of-concept (POC) focused on the JSON full-text search
indexing and query functionality, all high availability and disaster recovery aspects necessary for a rigorous
enterprise implementation are out-of-scope. Links to Oracle documentation can be found in the Further Reading
appendix at the end of this document.

The simplest topology for deploying a sharded database solution POC environment would consist of one shard
catalog database (single-instance), one shard director, and a few shard databases (single-instance) of sufficient
capacity to contain a fraction of your data payload and indices.

Figure 2: Physical Infrastructure Overview - System-managed Sharded Database Deployment

Globally Distributed Database Components

Shards
The individual shards each hold a fraction of the records in your data set. The number of shards configured has a
direct effect on the overall load that each shard will take. The system-managed data distribution method,
recommended for our example use-case, uses a hash of the record identifier (the shard key) to assign each row to
a specific shard. This ensures a scalable, even distribution of your data.

14 JSON Full-Text Search with Oracle Globally Distributed Database 23ai / Version [1.0]

 Copyright © 2024, Oracle and/or its affiliates / Public

Shard Directors
The shard directors are stateless and lightweight components which provide query redirection capabilities to
client applications based on a sharding key or record key. Using this sharding key value, the shard director
responds to the client application with a connection redirect message for the appropriate shard database. This is
used when an application needs to retrieve documents directly, either as the result of a search or at any point
when a document needs to be retrieved for reading or updating.

Shard Catalog
The multi-shard query coordinator functionality of the shard catalog database is used for queries that involve a
search across more than one shard. The coordinator is responsible for distributing these multi-shard queries to
every shard and then retrieving and combining the results. The shard catalog database also serves as the
repository for the sharded database configuration metadata.

Building the Environment
Oracle Globally Distributed Database can be deployed on-premises or in the cloud. Currently, the latest version of
the database with the features required for the solution in this technical brief can be deployed as OCI Base
Database services. The shard directors can be deployed as OCI Compute instances.

When deploying on-premises, the traditional hardware, network, operating system, software requirements, and
tuning for Oracle Database apply as usual. There are some tuning specifications to be aware of that apply
specifically to Oracle Globally Distributed Database installations. Please review the full specifications in the
Provision and Configure Hosts and Operating Systems section of the Oracle Globally Distributed Database Guide.

Note that we have provided here the exact steps for creating a Globally Distributed Database manually, either on
premise or using OCI Base Database Service. If automation solutions are used, such as creating an environment
using MarketPlace on OCI then feel free to skip down to the Sections on creating the Database Schema on page 28
of this document.

Deploying Database Infrastructure for the Shards and Shard
Catalog
Currently, Oracle Database 23ai instances can be deployed using the OCI Base Database Service. Create new Base
Database Services for the shard catalog and each shard with the specifications required for your implementation,
choosing the 23ai database version. This can be performed using the OCI Console or the OCI Command Line
Interface (OCI CLI).

Example OCI CLI command to create a base-database service for a shard catalog:

Note: this example does not include parameters for configuring automatic backups. All parameter values should
be tuned to our environment and may not be suitable as-is.

https://docs.oracle.com/en/database/oracle/oracle-database/23/shard/deployment1.html#GUID-E71E438E-C16F-46F7-8B6D-213F9B98C81C

15 JSON Full-Text Search with Oracle Globally Distributed Database 23ai / Version [1.0]

 Copyright © 2024, Oracle and/or its affiliates / Public

[user@laptop ~/dev/oci]$ oci db system launch --display-name "w23catyyz10" \
 --hostname w23catyyz10 \
 --db-name catcdb \
 --pdb-name catpdb \
 --region ca-toronto-1 \
 --compartment-id ocid1.compartment.oc1..aaaaaaaarc… \
 --subnet-id ocid1.subnet.oc1.ca-toronto-1.aaaaaaaa3q… \
 --availability-domain efXT:CA-TORONTO-1-AD-1 \
 --fault-domains '["FAULT-DOMAIN-1"]' \
 --shape VM.Standard.E4.Flex \
 --node-count 1 \
 --cpu-core-count 4 \
 --initial-data-storage-size-in-gb 2048 \
 --disk-redundancy NORMAL \
 --database-edition ENTERPRISE_EDITION_EXTREME_PERFORMANCE \
 --storage-management LVM \
 --license-model BRING_YOUR_OWN_LICENSE \
 --db-version 23.4.0.24.05 \
 --character-set AL32UTF8 \
 --ncharacter-set AL16UTF16 \
 --db-workload OLTP \
 --admin-password sys_credential \
 --ssh-authorized-keys-file /full/path/to/.ssh/desired_key.pub \
 --is-incident-logs-enabled true \
 --is-diagnostics-events-enabled true

Deploying Compute Infrastructure for the Shard Director
Almost any Linux-based compute instance can be used to host a shard director as long as package, kernel
versions, physical storage, and memory requirements are met. See Planning an Installation in the Global Data
Services Concepts and Administration Guide.

Installing Global Data Services on the Shard Director Host
Download the Oracle Global Data Services (GDS) global service manager release 21.3.0.0 from Oracle eDelivery
and install using the Oracle Universal Installer from the root directory of the software media, following the
prompts, or perform a silent install. See the Oracle Database Global Data Services Concepts and Administration
Guide for information about installing the global service manager (GSM) software.

Open the necessary ports for the GSM in the local OS firewall. This includes the ports that will be specified when
creating the GSM instance. The following default values can be customized if necessary.

• Local listener: TCP/1522

• Local ONS: TCP/6123

• Remote ONS: TCP/6234

Example: Oracle Linux firewall lD configuration for GSM ports

https://docs.oracle.com/en/database/oracle/oracle-database/23/gsmug/global-data-services-config.html#GUID-04D33448-2CB4-40C7-9DA0-1CFC6EC5E101
https://edelivery.oracle.com/osdc/faces/SoftwareDelivery
https://docs.oracle.com/pls/topic/lookup?ctx=en/database/oracle/oracle-database/23/shard&id=GSMUG-GUID-04D33448-2CB4-40C7-9DA0-1CFC6EC5E101
https://docs.oracle.com/pls/topic/lookup?ctx=en/database/oracle/oracle-database/23/shard&id=GSMUG-GUID-04D33448-2CB4-40C7-9DA0-1CFC6EC5E101

16 JSON Full-Text Search with Oracle Globally Distributed Database 23ai / Version [1.0]

 Copyright © 2024, Oracle and/or its affiliates / Public

[opc@w23diryyz10 ~]$ sudo firewall-offline-cmd --port=1522:tcp
[opc@w23diryyz10 ~]$ sudo firewall-offline-cmd --port=6123:tcp
[opc@w23diryyz10 ~]$ sudo firewall-offline-cmd --port=6234:tcp
[opc@w23diryyz10 ~]$ sudo /bin/systemctl restart firewalld

Verify Connectivity
Ensure that your network topology and compute instance operating systems allow proper network ingress and
egress for the connections required between the GSM instances on the shard director hosts, and the shard and
shard catalog database servers.

OCI security lists or network security groups should be correctly defined and applied. Compute OS firewalls for the
GSM instances should be configured to allow the required ports. All shard directors and databases will also need
the ability to resolve the short host names as well as the fully-qualified domain names.

Testing Database TNS Connectivity
From the shard director, test for TNS ping to the shard and shard catalog databases using the short host names.
Also, test TNS ping from the shard catalog to the shards the same way.

Example: Testing connectivity with the tnsping command

[oracle@w23diryya10 ~]$ tnsping w23shdyyz11:1521 | egrep 'msec|TNS-|Attempting'
Attempting to contact
(DESCRIPTION=(CONNECT_DATA=(SERVICE_NAME=))(ADDRESS=(PROTOCOL=tcp)(HOST=10.8.208.94)(PORT=1521)))
OK (0 msec)

Configuring and Tuning the Database Instances
Several configurations must be performed when the generic database services are available.

Parameter Tuning and Event Tracing
Most of the default database parameters set for the OCI Base Database System are sufficient for at least R&D
Proof-of-Concept or development environment use; however, some parameter default values need to be tuned
specifically due to sharding requirements.

• OPEN_LINKS* – The shard catalog and some direct path load features on the shards require this
parameter to be tuned beyond the defaults. Given the complexity of the dependencies, a starting value of
255 or the number of shards in your environment is recommended, whichever is greater.

• GLOBAL_NAMES – Global names should be set to FALSE to allow for the intended interoperability
between the shard director (GSM) instances, the shard catalog, and the shards.

• DB_CREATE_FILE_DEST – Must be set to a valid value for your environment

• STANDBY_FILE_MANAGEMENT – Set to AUTO to avoid warnings in GSM configuration

• NLS_NCHAR_CHARACTERSET – Must be identical on all shards and shard catalog databases

• NLS_CHARACTERSET – Must be identical on all shards and shard catalog databases

Setting some trace events is also recommended. Set trace events to allow logging of PL/SQL traces on all shard
and shard catalog databases, and for the shards, include events to propagate any parallel query worker errors
back to the query coordinator, and disable parallel direct path loading for Oracle Text indexing.

• Enable PL/SQL tracing
'10798 trace name context forever, level 7'

• Propagating parallel query (PQ) worker errors to the query coordinator instead of throwing an ORA-
12801
'10397 trace name context forever, level 1'

• For Oracle Text, disable parallel direct path loading when indexing:
'30580 trace name context forever, level 256'

17 JSON Full-Text Search with Oracle Globally Distributed Database 23ai / Version [1.0]

 Copyright © 2024, Oracle and/or its affiliates / Public

Example DDL: Tune 23ai DBS CDB parameters

[oracle@w23catyyz10 ~]$ sqlplus / as sysdba
SQL> ALTER SYSTEM SET MAX_DUMP_FILE_SIZE=UNLIMITED SCOPE=BOTH;
SQL> ALTER SYSTEM SET STANDBY_FILE_MANAGEMENT=AUTO SCOPE=BOTH;
SQL> ALTER SYSTEM SET GLOBAL_NAMES=FALSE SCOPE=BOTH;
SQL> ALTER SYSTEM SET OPEN_LINKS=255 SCOPE=SPFILE;
SQL> ALTER SYSTEM SET OPEN_LINKS_PER_INSTANCE=255 SCOPE=SPFILE;

Example DDL: Tune Shard Catalog 23ai DBS CDB Trace Events for Sharding

SQL> ALTER SYSTEM SET EVENT='10798 TRACE NAME CONTEXT FOREVER, LEVEL 7',
 COMMENT='PL/SQL Tracing for Sharding for Shard Catalog'
 SCOPE=SPFILE;

Example DDL: Tune Shard 23ai DBS CDB Trace Events for Sharding and Oracle Text

SQL> ALTER SYSTEM SET EVENT='10397 TRACE NAME CONTEXT FOREVER, LEVEL 1',
 '10798 TRACE NAME CONTEXT FOREVER, LEVEL 7',
 '30580 TRACE NAME CONTEXT FOREVER, LEVEL 256',
 COMMENT='PL/SQL Tracing for Sharding plus: PQ Worker Error
Propagation, and disable Parallel Direct Path Load for Oracle Text Indexing on Shards only'
 SCOPE=SPFILE;

Restart the CDBs after altering them and confirm trace events are set.

SQL> SHUTDOWN IMMEDIATE
SQL> STARTUP
SQL> CONNECT / AS SYSDBA
SQL> ORADEBUG SETMYPID
SQL> ORADEBUG EVENTDUMP system
10798 trace name context forever, level 7
30582 trace name context forever, level 1048576

Database User Accounts and Password Policies
Specific accounts must be enabled on the shard catalog and shard databases so that the shard directors can
connect to the databases and manage the sharded database. Follow the instructions in the documentation to set
up your databases and the specified user accounts. See Create the Shard Catalog Database and Create the Shard
Databases

Validate Each Shard Database
After fully configuring and tuning the shard databases, run the dbms_gsm_fix.validateShard procedure on each
shard PDB.

Note: If Oracle Data Guard is not required and the dg_broker_start parameter is set to false, this will throw an error
in the validateShard procedure. This error can be ignored when Data Guard is not in use.

Example: Validate shard PDB configuration

https://docs.oracle.com/en/database/oracle/oracle-database/23/shard/deployment1.html#GUID-9A0F96A7-4D52-4B3A-8538-6DA2AB5A9BFB
https://docs.oracle.com/en/database/oracle/oracle-database/23/shard/deployment1.html#GUID-AA268F12-4389-4BB2-B588-06BD48A8DA5C
https://docs.oracle.com/en/database/oracle/oracle-database/23/shard/deployment1.html#GUID-AA268F12-4389-4BB2-B588-06BD48A8DA5C

18 JSON Full-Text Search with Oracle Globally Distributed Database 23ai / Version [1.0]

 Copyright © 2024, Oracle and/or its affiliates / Public

$ sqlplus / as sysdba
SQL> set serveroutput on
SQL> execute dbms_gsm_fix.validateShard;
INFO: Data Guard shard validation requested.
INFO: Database role is PRIMARY.
INFO: Database name is SHDCDB0.
INFO: Database unique name is shdcdb0_3s2_yyz.
INFO: Database ID is 493557786.
INFO: Database open mode is READ WRITE.
INFO: Database in archivelog mode.
WARNING: Flashback is off.
INFO: Force logging is on.
INFO: Database platform is Linux x86 64-bit.
INFO: Database character set is AL32UTF8. This value must match the character set of the
catalog database.
INFO: 'compatible' initialization parameter validated successfully.
INFO: Database is a multitenant container database.
INFO: Current container is SHDPDB0.
INFO: Database is using a server parameter file (spfile).
INFO: db_create_file_dest set to: '/u02/app/oracle/oradata/shdcdb0_3s2_yyz/'
INFO: db_recovery_file_dest set to: '/u03/app/oracle/fast_recovery_area'
INFO: db_files=200. Must be greater than the number of chunks and/or tablespaces to be
created in the shard.
ERROR: dg_broker_start set to FALSE.
INFO: remote_login_passwordfile set to EXCLUSIVE.
INFO: db_file_name_convert set to: '*, /u01/app/oracle/oradata/'
INFO: standby_file_management is set to AUTO.
INFO: GSMUSER account validated successfully.
INFO: DATA_PUMP_DIR is '/u01/app/oracle/admin/ORCL/dpdump/16E9F79186922679E0631701F40AB0C5'.

PL/SQL procedure successfully completed.

Configuring TCPS with TLS for Sharding on OCI
To secure communications between sharded database components, Oracle recommends using Oracle Database
native network encryption or the TCPS protocol and Transport Layer Security (TLS) for all connections to, and
between, the shard catalog and the shards. When deploying using OCI Base Database Services, enable TLS using
the information in Configure TCP/IP with SSL/TLS for Sharding – GSM OCI Mode (Doc ID 2881390.1).

For additional guidance on the use of wallets, configuring Transparent Data Encryption (TDE), and other security-
related concepts and recommendations, see the Security in an Oracle Globally Distributed Database Environment
documentation.

Configuring the Oracle Globally Distributed Database
Topology on the Shard Director
After the databases for the shard catalog and all shards are configured, along with corresponding TNS listeners,
you can add the sharding metadata to the shard catalog database using GDSCTL from the shard director. The
sharding metadata describes the topology used for the sharded database.

We will run through an example of creating a system-managed sharded database topology without high
availability.

https://support.oracle.com/rs?type=doc&id=2881390.1
https://docs.oracle.com/en/database/oracle/oracle-database/23/shard/security1.html#GUID-B3240727-88A1-480A-A1C9-B9EA5977E495

19 JSON Full-Text Search with Oracle Globally Distributed Database 23ai / Version [1.0]

 Copyright © 2024, Oracle and/or its affiliates / Public

These steps are also covered in the Configure the Oracle Globally Distributed Database Topology section of the
documentation. There is also an Example Oracle Globally Distributed Database Deployment section that includes
high availability with Oracle Active Data Guard standby replica shards in a second regional data center.

The high-level configuration process:

1. Create the shard catalog.
2. Add and start shard directors.
3. Add host metadata.
4. Add a primary shardgroup.
5. Verify the sharding topology.
6. Add the shard CDBs.
7. Add the shard PDBs.
8. Check free DB_FILES.
9. Deploy the sharding configuration.
10. Create and start global services.
11. Verify shard status.

Create the Shard Catalog
Use the GDSCTL CREATE SHARDCATALOG command to create metadata describing the sharded database topology
in the shard catalog database.

As a best practice, it is recommended that you always set the AUTOVNCR parameter to OFF (default is ON) and
specify the required hosts and IP addresses declaratively as “invited nodes” in a later step.

For the shard catalog PDB connection string, the entire string can be provided inline as the parameter value or
provide a TNS alias for a connect string that has been added to ORACLE_HOME/network/admin/gsm.ora file.

If using Oracle Active Data Guard to provide an associated standby, this connection string should specify the
primary and standby databases. See Configure the Connection String for High Availability in the Oracle Database
High Availability Overview and Best Practices documentation.

Our example uses system-managed data distribution within a single region, with single-instance shard catalog
and shard databases with no replication. See the Oracle Sharding documentation Create the Shard Catalog for
practical examples.

Example: gdsctl create shardcatalog

$ gdsctl
GDSCTL> connect
gsmcatuser/gsmcatuser_credential@w23catyyz10.db.maasdbpoc.oraclevcn.com:1521/catpdb.db.maasdb
poc.oraclevcn.com
Catalog connection is established

GDSCTL> create shardcatalog -user gsmcatuser/gsmcatuser_credential -database
w23catyyz10.db.maasdbpoc.oraclevcn.com:1521/catpdb.db.maasdbpoc.oraclevcn.com -region ca-
toronto-1 -configname oradbcloud -sdb sharddb -autovncr OFF -chunks 120 -sharding system

Catalog is created

Add and Start a GSM Instance
Shard directors monitor the sharding system and run background tasks in response to GDSCTL commands and
other events.

Add and start the GSM instance on each shard director host one-by-one, running the commands locally on the
shard director host. If adding a shard director to an existing configuration, connect to the shard catalog database

https://docs.oracle.com/en/database/oracle/oracle-database/23/shard/deployment1.html#GUID-4DD37935-BA84-4817-99D6-5FB0BE607E3E
https://docs.oracle.com/en/database/oracle/oracle-database/23/shard/deployment1.html#GUID-74F7C601-C9AE-4805-A7BF-70BCB8E73393
https://docs.oracle.com/en/database/oracle/oracle-database/23/haovw/configuring-level-1-basic-application-high-availability.html#GUID-526F4E44-1F2B-427B-A96F-3243CEF3DA17
https://docs-uat.us.oracle.com/en/database/oracle/oracle-database/23/shard/sharded-database-deployment1.html#GUID-323F1808-3FD4-48AC-B4F6-961D0CF8B820

20 JSON Full-Text Search with Oracle Globally Distributed Database 23ai / Version [1.0]

 Copyright © 2024, Oracle and/or its affiliates / Public

before adding the new GSM. In our example, we are continuing the GDSCTL session started earlier for the initial
configuration.

Example: gdsctl create and start GSM

GDSCTL> add gsm -gsm w23diryyz10 -catalog
w23catyyz10.db.maasdbpoc.oraclevcn.com:1521/catpdb.db.maasdbpoc.oraclevcn.com -region ca-
toronto-1 -listener 1522 -localons 6123 -remoteons 6234 -pwd gsmcatuser_credential
GSM successfully added

GDSCTL> start gsm -gsm w23diryyz10
GSM is started successfully

GDSCTL> config gsm
Name Region ENDPOINT
---- ------ --------
w23diryyz ca-toront (ADDRESS=(HOST=w23diryyz10.db.maasdbpoc.oraclevcn.com)(PORT
10 o-1 =1522)(PROTOCOL=tcp))

Add Host Metadata
Add the allowed host names and IP addresses of your shard hosts to the configuration. Oracle recommends
creating your shard catalog with the automatic valid node checking for registration functionality (AUTOVNCR)
disabled using the "-autovncr off" parameter value as shown in the example above.

As part of the deployment process, the shard director contacts the shards and directs them to register with the
shard director’s TNS listener process. This listener process only accepts incoming registration requests from
trusted sources and rejects registration requests from unknown hosts.

If your shard hosts have multiple host names or network interfaces assigned to them, it is possible that the
incoming registration request from the shard to the shard director may come from an address that was not
automatically added during the GDSCTL ADD SHARD operation. In this case, the registration request is rejected,
and the shard will not deploy correctly. The visible symptom of this problem will be that GDSCTL CONFIG SHARD
shows PENDING for the shard’s Availability after DEPLOY has completed.

When deploying using Oracle RAC, the IPs for the Public IP and Floating VIP for each RAC instance should be
added. The SCAN VIP and FQDN do not need to be included here.

Use the GDSCTL ADD INVITEDNODE command to manually add the required entries for your shard hosts to the
shard catalog metadata.

See the Add Host Metadata documentation for complete details and examples.

Example: gdsctl add invitednode - Entries for four shards – IP Address and hostnames

add invitednode 10.8.208.94
add invitednode w23shdyyz10
add invitednode w23shdyyz10.db.maasdbpoc.oraclevcn.com

add invitednode 10.8.208.78
add invitednode w23shdyyz11
add invitednode w23shdyyz11.db.maasdbpoc.oraclevcn.com

add invitednode 10.8.208.89
add invitednode w23shdyyz12
add invitednode w23shdyyz12.db.maasdbpoc.oraclevcn.com

https://docs.oracle.com/en/database/oracle/oracle-database/23/shard/deployment1.html#GUID-88CCD096-2BCD-496F-93AB-4781E6C49A75

21 JSON Full-Text Search with Oracle Globally Distributed Database 23ai / Version [1.0]

 Copyright © 2024, Oracle and/or its affiliates / Public

add invitednode 10.8.208.72
add invitednode w23shdyyz13
add invitednode w23shdyyz13.db.maasdbpoc.oraclevcn.com

After adding everything, run gdsctl config vncr to validate all host and IP entries are included.

Add Shardgroups
When using system-defined sharding, configure your desired sharding topology using the ADD SHARDGROUP
command.

Multiple shardgroup types for primary, standby, and active_standby databases can be declared using the -
deploy_as parameter. The default is "standby".

Ensure that each shard database is opened with the correct status before adding the shards to the new
shardgroup. Any shards subsequently added to the shardgroup must be opened in the mode corresponding to
the -deploy_as setting for the shardgroup. For example, read-write for primary shardgroups, mounted for
standby shardgroups, or read-only with apply for active standby shardgroups.

Example: gdsctl create shardgroup - Primary

GDSCTL> add shardgroup -shardgroup shardgroup_primary -shardspace shardspaceora -deploy_as
primary -region ca-toronto-1
The operation completed successfully

For our example, no replication for HA or disaster-recovery was implemented, so all shards are configured in the
default primary shardspace. See the Add Shardspaces documentation for more details and examples.

Verify the Sharding Topology
Before adding information about your shard databases to the shard catalog, verify that your sharding topology is
correct before proceeding by using the various GDSCTL CONFIG commands.

You can use the various GDSCTL CONFIG commands to display more information about shardspaces,
shardgroups, and other shard catalog objects. For a complete list of GDSCTL CONFIG command variants, see the
GDSCTL reference documentation or run GDSCTL HELP.

Note: there will be no databases or services listed at this point.

Example: Validate the configuration with gdsctl status and config commands

https://docs.oracle.com/en/database/oracle/oracle-database/23/shard/deployment1.html#GUID-A3BA1D48-101A-462F-885D-24D29326F1B1

22 JSON Full-Text Search with Oracle Globally Distributed Database 23ai / Version [1.0]

 Copyright © 2024, Oracle and/or its affiliates / Public

GDSCTL> status
Alias W23DIRYYZ10
Version 23.0.0.0.0
Start Date 09-MAY-2024 16:36:04
Trace Level off
Listener Log File /u01/app/oracle/diag/gsm/w23diryyz10/w23diryyz10/alert/log.xml
Listener Trace File
/u01/app/oracle/diag/gsm/w23diryyz10/w23diryyz10/trace/ora_949066_139912260905920.trc
Endpoint summary
(ADDRESS=(HOST=w23diryyz10.db.maasdbpoc.oraclevcn.com)(PORT=1522)(PROTOCOL=tcp))
GSMOCI Version 4.0.191114
Mastership Y
Connected to GDS catalog Y
Process Id 949068
Number of reconnections 0
Pending tasks. Total 0
Tasks in process. Total 0

Regional Mastership TRUE
Total messages published 0
Time Zone +00:00
Orphaned Buddy Regions:
 None
GDS region ca-toronto-1

23 JSON Full-Text Search with Oracle Globally Distributed Database 23ai / Version [1.0]

 Copyright © 2024, Oracle and/or its affiliates / Public

GDSCTL> config
Catalog connection is established

Regions

ca-toronto-1

GSMs

w23diryyz10

Sharded Database

sharddb

Databases

Shard Groups

shardgroup_primary

Shard spaces

shardspaceora

Services

GDSCTL pending requests

Command Object Status
------- ------ ------

Global properties

Name: oradbcloud
Master GSM: w23diryyz10
DDL sequence #: 0

Add Shard CDBs
Add each of the CDBs containing the shard PDBs to the sharding configuration with the ADD CDB command.
Include the connect string or TNS alias along with the gsmrootuser credential. This is a different database
schema user credential than what was used earlier for the shard catalog connection. Use the CONFIG CDB
command when you are done to verify that all CDBs have been added. See the Add the Shard CDBs
documentation for complete details and examples.

The connect string for each shard should consist of the simple, direct connection details. GDS deals with each
shard CDB individually and does not require a DR-enabled connection string. When using OCI Base Database
System databases, the CDB connection strings will use the database unique name fully qualified with the system’s
domain name.

Example: Add Shard CDBs

https://docs-uat.us.oracle.com/en/database/oracle/oracle-database/23/shard/sharded-database-deployment1.html#GUID-58DF214E-49AD-4122-82E7-387498DB7327

24 JSON Full-Text Search with Oracle Globally Distributed Database 23ai / Version [1.0]

 Copyright © 2024, Oracle and/or its affiliates / Public

GDSCTL> add cdb -connect
w23shdyyz10.db.maasdbpoc.oraclevcn.com:1521/shdcdb0_3s2_yyz.db.maasdbpoc.oraclevcn.com -pwd
gsmrootuser_password

GDSCTL> add cdb -connect
w23shdyyz11.db.maasdbpoc.oraclevcn.com:1521/shdcdb1_224_yyz.db.maasdbpoc.oraclevcn.com -pwd
gsmrootuser_password

GDSCTL> add cdb -connect
w23shdyyz12.db.maasdbpoc.oraclevcn.com:1521/shdcdb2_542_yyz.db.maasdbpoc.oraclevcn.com -pwd
gsmrootuser_password

GDSCTL> add cdb -connect
w23shdyyz13.db.maasdbpoc.oraclevcn.com:1521/shdcdb3_pqd_yyz.db.maasdbpoc.oraclevcn.com -pwd
gsmrootuser_password

GDSCTL> config cdb
Catalog connection is established
Name Host
---- ----
shdcdb0_3s2_yyz
shdcdb1_224_yyz
shdcdb2_542_yyz
shdcdb3_pqd_yyz

Note that the config cdb output may not show a host name in all cases. This is not an issue.

Add Shard PDBs
Add each of the shard PDBs to the sharding configuration with the ADD SHARD command.

Include parameters for the shard PDB connect string or TNS alias, with the gsmuser credential, the shardgroup
name, and cdb name. Use the CONFIG SHARD command when you are done to verify that all PDBs have been
added.

See the Add the Shard PDBs documentation for complete details and examples.

Example: Add Shard PDBs

https://docs.oracle.com/en/database/oracle/oracle-database/23/shard/deployment1.html#GUID-C960E712-2083-4A52-B47F-ED8A94A3CCAA

25 JSON Full-Text Search with Oracle Globally Distributed Database 23ai / Version [1.0]

 Copyright © 2024, Oracle and/or its affiliates / Public

GDSCTL> add shard -connect
w23shdyyz10.db.maasdbpoc.oraclevcn.com:1521/shdpdb0.db.maasdbpoc.oraclevcn.com -shardgroup
shardgroup_primary -cdb shdcdb0_3s2_yyz -pwd gsmuser_credential

GDSCTL> add shard -connect
w23shdyyz11.db.maasdbpoc.oraclevcn.com:1521/shdpdb1.db.maasdbpoc.oraclevcn.com -shardgroup
shardgroup_primary -cdb shdcdb1_224_yyz -pwd gsmuser_credential

GDSCTL> add shard -connect
w23shdyyz12.db.maasdbpoc.oraclevcn.com:1521/shdpdb2.db.maasdbpoc.oraclevcn.com -shardgroup
shardgroup_primary -cdb shdcdb2_542_yyz -pwd gsmuser_credential

add shard -connect
w23shdyyz13.db.maasdbpoc.oraclevcn.com:1521/shdpdb3.db.maasdbpoc.oraclevcn.com -shardgroup
shardgroup_primary -cdb shdcdb3_pqd_yyz -pwd gsmuser_credential

GDSCTL> config shard
Name Shard Group Status State Region Availability
---- ----------- ------ ----- ------ ------------
shdcdb0_3s2_yyz_shd shardgroup_primary U none ca-toront none
pdb0 o-1
shdcdb1_224_yyz_shd shardgroup_primary U none ca-toront none
pdb1 o-1
shdcdb2_542_yyz_shd shardgroup_primary U none ca-toront none
pdb2 o-1
shdcdb3_pqd_yyz_shd shardgroup_primary U none ca-toront none
pdb3 o-1

Note that the value for Status is U for “undeployed”, and State and Availability are none and - until the DEPLOY
command is successfully run. Also, the column lengths are hardcoded.

Deploy the Sharding Configuration
Once the shards have been added, run the GDSCTL DEPLOY command. This will request the shard catalog to
deploy any shards recently added with an undeployed status.

Depending on your topology, the output may vary significantly. See Deploy the Configuration documentation for
additional examples and advice about what to do if something is not right.

Example: gdsctl deploy

GDSCTL> deploy
deploy: examining configuration...
deploy: requesting Data Guard configuration on shards via GSM
deploy: shards configured successfully
The operation completed successfully

https://docs.oracle.com/en/database/oracle/oracle-database/23/shard/deployment1.html#GUID-D382277F-02B2-4BBC-B8F0-15EEA16E630A

26 JSON Full-Text Search with Oracle Globally Distributed Database 23ai / Version [1.0]

 Copyright © 2024, Oracle and/or its affiliates / Public

GDSCTL> config shard
Name Shard Group Status State Region Availability
---- ----------- ------ ----- ------ ------------
shdcdb0_3s2_yyz_shd shardgroup_primary Ok Deployed ca-toront ONLINE
pdb0 o-1
shdcdb1_224_yyz_shd shardgroup_primary Ok Deployed ca-toront ONLINE
pdb1 o-1
shdcdb2_542_yyz_shd shardgroup_primary Ok Deployed ca-toront ONLINE
pdb2 o-1
shdcdb3_pqd_yyz_shd shardgroup_primary Ok Deployed ca-toront ONLINE
pdb3 o-1

Create and Start Global Database Services
After the shards are successfully deployed, and the correct status has been confirmed, create and start global
database services on the shards to service incoming connection requests from your application.

The commands in the first example creates read-write services on the primary shards in the configuration. If you
have standby shards, read-only services can be created on the standby shards. These service names can then be
used in connect strings from your application to appropriately route requests to the correct shards. See Create
and Start Global Database Services in the documentation for more details.

Example: Add and start a global service that runs on the primary shards (non-RAC)

GDSCTL> add service -service oltp_rw_srvc -role primary
GDSCTL> start service -service oltp_rw_srvc

Example: Add and start a global service for the read-only workload to run on the standby shards (non-RAC)

GDSCTL> add service -service oltp_ro_srvc -role physical_standby
GDSCTL> start service -service oltp_ro_srvc

Note: If you are using an Oracle RAC database, each service must be modified to set the preferred Oracle RAC
instances before starting the service. When using Administrator Managed RAC (not Policy Managed), the services
must be modified for every RAC node and include all instances the service might run on. This includes the primary
RAC as well as any Oracle Active Data Guard standbys. Open the standby instances in read-only mode before
configuring, modifying, and starting the services. Mounted, non-open standbys exist for disaster recovery and
high availability purposes only and cannot service connections.

Note: Database instance names for the -preferred parameter are case-sensitive and must match the instance
name db parameter value from the ‘show parameters instance_name’ SQL statement.

Example: Modify service to set preferred Oracle RAC instances

GDSCTL> add service -service oltp_rw_srvc -role primary
GDSCTL> modify service -gdspool poc -service oltp_rw_srvc -database poc_iad1f9_usshard -
modify_instances -preferred POC1,POC2
GDSCTL> modify service -gdspool poc -service oltp_rw_srvc -database poc_yyz173_usshard -
modify_instances -preferred POC1,POC2
GDSCTL> start service -service oltp_rw_srvc

Finally, verify the configuration now that the setup is complete.

https://docs.oracle.com/en/database/oracle/oracle-database/23/shard/deployment1.html#GUID-1DDE95AD-D1B6-4012-9F3E-8833A16E5774
https://docs.oracle.com/en/database/oracle/oracle-database/23/shard/deployment1.html#GUID-1DDE95AD-D1B6-4012-9F3E-8833A16E5774

27 JSON Full-Text Search with Oracle Globally Distributed Database 23ai / Version [1.0]

 Copyright © 2024, Oracle and/or its affiliates / Public

GDSCTL> config
Catalog connection is established

Regions

ca-toronto-1

GSMs

w23diryyz10

Sharded Database

sharddb

Databases

shdcdb0_3s2_yyz_shdpdb0
shdcdb1_224_yyz_shdpdb1
shdcdb2_542_yyz_shdpdb2
shdcdb3_pqd_yyz_shdpdb3

Shard Groups

shardgroup_primary

Shard spaces

shardspaceora

Services

GDSCTL pending requests

Command Object Status
------- ------ ------

Global properties

Name: oradbcloud
Master GSM: w23diryyz10
DDL sequence #: 0

GDSCTL> config service
Name Network name Pool Started Preferred all
---- ------------ ---- ------- -------------
oltp_rw_srvc oltp_rw_srvc.sharddb.oradbclo sharddb Yes Yes
 ud

Verify that the databases have all registered correctly and have their services started properly. Databases should
show successfully registered and an “OK” state. Services for each database should all be Globally started, Started,
Enabled, and Preferred. Validate these parameters have a “Y” value.

28 JSON Full-Text Search with Oracle Globally Distributed Database 23ai / Version [1.0]

 Copyright © 2024, Oracle and/or its affiliates / Public

GDSCTL> databases
Database: "shdcdb0_3s2_yyz_shdpdb0" Registered: Y State: Ok ONS: N. Role: PRIMARY Instances:
1 Region: ca-toronto-1
 Service: "oltp_rw_srvc" Globally started: Y Started: Y
 Scan: N Enabled: Y Preferred: Y
 Registered instances:
 sharddb%1
Database: "shdcdb1_224_yyz_shdpdb1" Registered: Y State: Ok ONS: N. Role: PRIMARY Instances:
1 Region: ca-toronto-1
 Service: "oltp_rw_srvc" Globally started: Y Started: Y
 Scan: N Enabled: Y Preferred: Y
 Registered instances:
 sharddb%11
Database: "shdcdb2_542_yyz_shdpdb2" Registered: Y State: Ok ONS: N. Role: PRIMARY Instances:
1 Region: ca-toronto-1
 Service: "oltp_rw_srvc" Globally started: Y Started: Y
 Scan: N Enabled: Y Preferred: Y
 Registered instances:
 sharddb%21
Database: "shdcdb3_pqd_yyz_shdpdb3" Registered: Y State: Ok ONS: N. Role: PRIMARY Instances:
1 Region: ca-toronto-1
 Service: "oltp_rw_srvc" Globally started: Y Started: Y
 Scan: N Enabled: Y Preferred: Y
 Registered instances:
 sharddb%31

Validate the completed sharded database configuration for any warnings or errors.

GDSCTL> validate
Validation results:

[Warning] VLD2: Region "ca-toronto-1" does not have buddy region
[Warning] VLD63: No sharded table family exists.

 Total errors: 0. Total warnings:2

The warnings above in the final “validate” output are expected at this point. We have only set up one region, with
no plans for cross-region replication in our example, and our next step is to create the sharded table family.

Creating the Sharded Database Schema
There are several steps and specific details critical to creating schema objects in a sharded database. See the
Creating Schema Objects section of the Oracle Globally Distributed Database Guide for full specifications.

Our sharded table family consists of a single table named "Articles" with the Wikipedia Articles JSON data stored
in a JSON column named "Article_JSON". Our sharded table family is system-managed with a sharding key
matching the primary key, both using the Article_ID column. The primary/sharding key value for the Article_ID
column is extracted during data load from the Wikipedia article JSON document content $.wid element.

To make some of our SQL queries more efficient with relational operators and reduced complexity, virtual
columns are configured to abstract some JSON elements value lookups. Notably, we extract certain elements
using JSON_VALUE() queries from Article_JSON and in some cases do the type conversions centrally as part of

https://docs.oracle.com/en/database/oracle/oracle-database/23/shard/creating-schema-objects.html#GUID-401CD85A-63FC-44A3-97AB-D0BE01B27239

29 JSON Full-Text Search with Oracle Globally Distributed Database 23ai / Version [1.0]

 Copyright © 2024, Oracle and/or its affiliates / Public

the virtual column specification. Virtual columns are created to include the following JSON elements in the
Wikipedia article documents: .wid, .title, .wikiTitle, .lang, and .timestamp.

The steps for deploying a new schema with some additional details necessary in a sharded database environment
can be summarized as follows:

1. Start a SQL session, connect to the shard catalog PDB as SYSDBA.
2. Alter the session to enable shard DDL so the schema deployment occurs on all shards, not just the shard

catalog database.
3. Create the all-shards schema user.
4. Grant roles and permissions.
5. Reconnect to the shard catalog database as the new schema user.
6. Alter the session to enable shard DDL to ensure that the schema deployment occurs on all shards, not

just the shard catalog database.
7. Create the tablespace set and set quotas appropriately.
8. Create the sharded table family, specifying the primary key, tablespace set, and partitioning scheme with

the table column to use as the sharding key.
9. Create functional indexes needed (the OracleText index will be created in its own chapter after data is

loaded).

Before we begin, a note on sharded DDL execution:

When using SQL*Plus to execute DDL on the shard catalog PDB with shard DDL enabled on your session, the SQL
execution will return completed once it has been executed on the shard catalog. Two additional steps are required
to know if execution on the shards has completed and if there were any errors on any of the shards before
continuing with additional DDL statements.

To ultimately know if it is safe to execute your next DDL statement:

1. In between each DDL request, you must execute the
gsmadmin_internal.dbms_gsm_utility.wait_for_ddl() function in your catalog PDB session to ensure that
execution is complete on all shards before continuing. This function will wait for the execution to
complete on all shards before returning control in SQL*Plus. You will not be informed whether or not
the SQL completed successfully or had errors on the shards, however.

2. To check for errors during DDL execution across all the shards, use the GDSCTL SHOW DDL command
on a shard director. This will not show query completion, only errors.

To avoid this complexity, SQL can be executed using the GDSCTL command line tool from a shard director host.
See the DDL Processing in an Oracle Globally Distributed Database section of the documentation.

For example:

[oracle@sharddirector1] $ gdsctl
GDSCTL> connect sys@catalog.fqdn:1521/catpdb as sysdba
password:
Catalog connection is established

GDSCTL> sql “GRANT CONNECT, RESOURCE, ALTER SESSION TO wikip”
The operation completed successfully

GDSCTL> show ddl -count 1
id DDL Text Failed shards
-- -------- -------------
113 GRANT CONNECT, RESOURCE, ALTER SESSIO...

For the purposes of our examples, we used SQL*Plus.

Example DDL to create a schema user from the shard catalog via SQL*Plus:

DDL: Create Sharded Schema User via Shard Catalog Database

https://docs.oracle.com/en/database/oracle/oracle-database/23/shard/schema-design1.html#GUID-FD5760B7-1F77-4A3C-A74C-2C70B2469E16

30 JSON Full-Text Search with Oracle Globally Distributed Database 23ai / Version [1.0]

 Copyright © 2024, Oracle and/or its affiliates / Public

REM Connect to Catalog Database with SYS as SYSDBA
SQL> CONNECT sys@catpdb as sysdba;

-- Set the disposition of shard DDL and/or shard operations for the session\
ALTER SESSION ENABLE SHARD DDL;

-- Drop our schema user to be safe.
DROP USER wikip CASCADE;
exec gsmadmin_internal.dbms_gsm_utility.wait_for_ddl();

-- Create our schema user
CREATE USER wikip IDENTIFIED BY "RedactedCredentialString";
exec gsmadmin_internal.dbms_gsm_utility.wait_for_ddl();

After each use of the wait_for_ddl() function, when executing DDL from the shard catalog database, always
confirm that the DDL has not failed on any shard before continuing. Use the GDSCTL command on a shard
director to list the DDL executed and indicate whether that DDL failed on any shards.

Example use of GDSCTL to confirm status of DDL completion on all shards:

GSM: Check DDL status for failed shards

Now check DDL status via GDSCTL on Shard Director for success or faulted shards
Use the -count parameter to reduce the data presented to just the latest DDL as
needed.

[oracle@sharddirector1] $ gdsctl show ddl -count 1

id DDL Text Failed shards
-- -------- -------------
88 CREATE USER wikip IDENTIFIED BY...

Continue with granting the necessary roles and permissions. The roles and permissions necessary may differ
based on your specific requirements.

DDL: Grant example roles and permissions:

SQL>
-- Grant Roles to the new schema user and wait for shards to catch up.
GRANT CONNECT, RESOURCE, ALTER SESSION TO wikip;
GRANT CREATE TABLE, CREATE PROCEDURE, CREATE TABLESPACE, CREATE MATERIALIZED VIEW TO
wikip;
GRANT GSMADMIN_ROLE TO wikip;
GRANT GSM_POOLADMIN_ROLE TO wikip;
GRANT ANALYZE ANY TO wikip;
GRANT SELECT ANY DICTIONARY TO wikip;
GRANT SELECT ANY TABLE TO wikip;
GRANT SELECT_CATALOG_ROLE TO wikip;
GRANT EXECUTE ON DBMS_CRYPTO TO wikip;
GRANT EXECUTE ON DBMS_LOCK TO wikip;
GRANT EXECUTE ON DBMS_SODA TO wikip;
GRANT EXECUTE ON DBMS_SODA_ADMIN TO wikip;
GRANT EXECUTE ON DBMS_SYS_ERROR TO wikip;
GRANT EXECUTE ON EXEC_SHARD_PLSQL TO wikip;
GRANT CTXAPP TO wikip;
-- Grant execute privs on PL/SQL packages for CTX packages
-- These are also granted by ctxapp role, but role perms do not always work in PL/SQL
procedures
-- It is safest to explicitly grant these permissions to the user who already has the
CTXAPP role.
GRANT EXECUTE ON CTXSYS.CTX_ADM TO wikip;
GRANT EXECUTE ON CTXSYS.CTX_CLS TO wikip;

31 JSON Full-Text Search with Oracle Globally Distributed Database 23ai / Version [1.0]

 Copyright © 2024, Oracle and/or its affiliates / Public

GRANT EXECUTE ON CTXSYS.CTX_DDL TO wikip;
GRANT EXECUTE ON CTXSYS.CTX_DOC TO wikip;
GRANT EXECUTE ON CTXSYS.CTX_OUTPUT TO wikip;
GRANT EXECUTE ON CTXSYS.CTX_QUERY TO wikip;
GRANT EXECUTE ON CTXSYS.CTX_REPORT TO wikip;
GRANT EXECUTE ON CTXSYS.CTX_THES TO wikip;
GRANT EXECUTE ON CTXSYS.CTX_ULEXER TO wikip;

exec gsmadmin_internal.dbms_gsm_utility.wait_for_ddl();

GDSCTL> show ddl -count 24
Catalog connection is established
id DDL Text Failed shards
-- -------- -------------
89 GRANT CONNECT, RESOURCE, ALTER SES...
90 GRANT CREATE TABLE, CREATE PROCEDU...
91 GRANT GSMADMIN_ROLE TO wikip; ...
92 GRANT GSM_POOLADMIN_ROLE TO wikip;...
93 GRANT ANALYZE ANY TO wikip; ...
94 GRANT SELECT ANY DICTIONARY TO wik...
95 GRANT SELECT ANY TABLE TO wikip; ...
96 GRANT SELECT_CATALOG_ROLE TO wikip...
97 GRANT EXECUTE ON DBMS_CRYPTO TO wi...
98 GRANT EXECUTE ON DBMS_LOCK TO wiki...
99 GRANT EXECUTE ON DBMS_SODA TO wiki...
100 GRANT EXECUTE ON DBMS_SODA_ADMIN T...
101 GRANT EXECUTE ON DBMS_SYS_ERROR TO...
102 GRANT EXECUTE ON EXEC_SHARD_PLSQL ...
103 GRANT CTXAPP TO wikip; ...
104 GRANT EXECUTE ON CTXSYS.CTX_ADM TO...
105 GRANT EXECUTE ON CTXSYS.CTX_CLS TO...
106 GRANT EXECUTE ON CTXSYS.CTX_DDL TO...
107 GRANT EXECUTE ON CTXSYS.CTX_DOC TO...
108 GRANT EXECUTE ON CTXSYS.CTX_OUTPUT...
109 GRANT EXECUTE ON CTXSYS.CTX_QUERY ...
110 GRANT EXECUTE ON CTXSYS.CTX_REPORT...
111 GRANT EXECUTE ON CTXSYS.CTX_THES T...
112 GRANT EXECUTE ON CTXSYS.CTX_ULEXER...

Once the schema user has been created on all shards successfully, reconnect to the shard catalog database as the
new schema user to execute DDL for creating the tablespace set and table family for the sharded database
implementation.

Note that in a sharded database, each individual shard database will contain a fraction (1/shards) of the data set
payload. Partitions and data files will be created for each "chunk" as declared when the shardspace is defined. The
default number of chunks is 120. In a four-shard environment, there will be 120 partitions per database instance
with 30 of them populated with data and the other 90 partition's data files empty.

When planning and configuring the tablespace for the sharded table family, the data file size specified in the DDL
is used for each (populated) partition's data file. With 4 shards and 120 chunks, and a data file maxsize of 20G,
the new tablespace set will consume up to 620GB of storage. Size this sufficiently for the expected data import
and indexing payloads.

Example DDL and GSM commands to create the tablespace set and table family is as follows:

DDL: Create Sharded Tablespace Set

REM Connect to Catalog and Shard Databases with the WIKIP schema user
CONNECT wikip@catpdb;

-- Set the disposition of shard DDL and/or shard operations for the session

32 JSON Full-Text Search with Oracle Globally Distributed Database 23ai / Version [1.0]

 Copyright © 2024, Oracle and/or its affiliates / Public

ALTER SESSION ENABLE SHARD DDL;

-- Create our Tablespace Set and wait for shards to catch up.
-- 31 chunks per shard @ MAXSIZE 20G ~= 620GB
CREATE BIGFILE TABLESPACE SET TSP_SET_WIKIP
 USING TEMPLATE (
 DATAFILE SIZE 10G
 AUTOEXTEND ON NEXT 250M maxsize 20G
 EXTENT MANAGEMENT LOCAL
 SEGMENT SPACE MANAGEMENT AUTO
);

exec gsmadmin_internal.dbms_gsm_utility.wait_for_ddl();

Verify that the create tablespace set DDL has completed on all shards.

GSM: Check DDL status for failed shards

Now check DDL status via GDSCTL on Shard Director for success or faulted shards
Use the -count parameter to reduce the data presented to just the latest DDL as
needed.

[oracle@sharddirector1] $ gdsctl show ddl -count 1

id DDL Text Failed shards
-- -------- -------------
113 CREATE BIGFILE TABLESPACE SET...

Alter the new schema user's quota on the new tablespace set to be unlimited, connecting as sysdba.

DDL: Alter User to set Unlimited Quota on the tablespace family

REM Connect to Catalog and Shard Databases with the WIKIP schema user
CONNECT sys@catpdb as sysdba;

-- Set the disposition of shard DDL and/or shard operations for the session
ALTER SESSION ENABLE SHARD DDL;

ALTER USER wikip QUOTA UNLIMITED ON TSP_SET_WIKIP;
exec gsmadmin_internal.dbms_gsm_utility.wait_for_ddl();

Verify that the Alter User DDL has completed on all shards.

GSM: Check DDL status for failed shards

Now check DDL status via GDSCTL on Shard Director for success or faulted shards
Use the -count parameter to reduce the data presented to just the latest DDL as
needed.

[oracle@sharddirector1] $ gdsctl show ddl -count 1

id DDL Text Failed shards
-- -------- -------------
90 ALTER USER wikip QUOTA UNLIMITED ON...

Create the Table Family

 In our example we use the Article_ID column as both the primary key and the sharding key. The sharding key and
use of system-managed data distribution is specified in the PARTITION BY CONSISTENT HASH clause. We have

33 JSON Full-Text Search with Oracle Globally Distributed Database 23ai / Version [1.0]

 Copyright © 2024, Oracle and/or its affiliates / Public

also included several virtual columns to support the use of specific JSON attribute values in queries with relational
query operators.

DDL: Create Sharded Table Family

REM Connect to Catalog and Shard Databases with the WIKIP schema user
CONNECT wikip@catpdb;

-- Set the disposition of shard DDL and/or shard operations for the session
ALTER SESSION ENABLE SHARD DDL;
-- Create the table family, dropping if it already exists
-- Wait for the drop and create executions to complete on all shards before continuing.
DROP TABLE ARTICLES CASCADE CONSTRAINTS PURGE;
exec gsmadmin_internal.dbms_gsm_utility.wait_for_ddl();
CREATE SHARDED TABLE Articles
(
 Article_JSON JSON NOT NULL,
 Article_ID VARCHAR(10) NOT NULL,
 Date_Loaded TIMESTAMP(6) DEFAULT SYS_EXTRACT_UTC(SYSTIMESTAMP) NOT NULL,
 Title VARCHAR(512) AS (JSON_VALUE(Article_JSON, '$.title'
 returning varchar(512) null on error
 null on empty)),
 Wiki_Title VARCHAR(512) AS (JSON_VALUE(Article_JSON, '$.wikiTitle'
 returning varchar(512) null on error
 null on empty)),
 Lang VARCHAR(2) AS (JSON_VALUE(Article_JSON, '$.lang'
 returning varchar(2) null on error
 null on empty)),
 Last_Modified TIMESTAMP(0) WITH TIME ZONE AS (TO_TIMESTAMP_TZ(
 JSON_VALUE(Article_JSON, '$.timestamp' null on error null on empty),
 'YYYY-MM-DD"T"HH24:MI:SS TZH:TZM')),
 PRIMARY KEY (Article_ID)
)
TABLESPACE SET tsp_set_wikip
PARTITION BY CONSISTENT HASH (Article_ID) PARTITIONS AUTO;

SQL> exec gsmadmin_internal.dbms_gsm_utility.wait_for_ddl();

GSM: Check DDL status for shard status

Now check DDL status via GDSCTL on Shard Director for success
Use the -count parameter to reduce the data presented to just the latest DDL as
needed.

[oracle@sharddirector1] $ gdsctl show ddl -count 2

id DDL Text Failed shards
-- -------- -------------
91 DROP TABLE ARTICLES CASCADE CONSTRAIN...
92 CREATE SHARDED TABLE Articles (Articl...

With the table family created, describe the table and verify the virtual columns using the same SQL session.

SQL> desc articles

Name Null? Type

34 JSON Full-Text Search with Oracle Globally Distributed Database 23ai / Version [1.0]

 Copyright © 2024, Oracle and/or its affiliates / Public

------------------------- -------- ------------------------------
 ARTICLE_JSON NOT NULL JSON
 ARTICLE_ID NOT NULL VARCHAR2(10)
 DATE_LOADED NOT NULL TIMESTAMP(6)
 TITLE VARCHAR2(512)
 WIKI_TITLE VARCHAR2(512)
 LANG VARCHAR2(2)
 LAST_MODIFIED TIMESTAMP(0) WITH TIME ZONE

SQL> -- Query for virtual column details
SQL> col column_name format a48;
SQL> col data_default format a80;
SQL> SELECT
 column_name,
 virtual_column,
 data_default
 FROM
 all_tab_cols
 WHERE owner = 'WIKIP'
 AND column_name not like 'SYS%';

COLUMN_NAME VIR DATA_DEFAULT
----------------- --- ---
ARTICLE_JSON NO
ARTICLE_ID NO
DATE_LOADED NO SYS_EXTRACT_UTC(SYSTIMESTAMP)
TITLE YES JSON_VALUE("ARTICLE_JSON" FORMAT OSON , '$.title' RETURNING VARCH
WIKI_TITLE YES JSON_VALUE("ARTICLE_JSON" FORMAT OSON , '$.wikiTitle' RETURNING V
LANG YES JSON_VALUE("ARTICLE_JSON" FORMAT OSON , '$.lang' RETURNING VARCHA
LAST_MODIFIED YES TO_TIMESTAMP_TZ(JSON_VALUE("ARTICLE_JSON" FORMAT OSON , '$.timest

Bulk Loading the JSON Data
Loading JSON documents into the schema in bulk from existing JSON data files involves staging the required
data file on each shard, then declaring an external table and using Oracle SQL*Loader to extract the
primary/sharding key values from the JSON records, and then insert the data as selected from the external table
into the sharded table family. This can be performed in parallel on all shards simultaneously. Only the JSON
documents with sharding keys having hashed values within the range for each shard will be loaded on that shard.

Note that when loading data, the only columns that must be inserted include the JSON column and the Primary
Key/Sharding key. All other columns in our example table are virtual columns and their values will be derived
from the JSON column based on the virtual column declaration.

Deploy the JSON Data File
Data can be made available for loading from a central JSON file into each shard database individually using an
external table. The JSON data file can be loaded directly on to each shard’s local file system, accessed from a
shared storage location or OCI Object Storage.

In our example, we have simply copied the data file to each of the shards temporarily and exposed it as an
external table. This is performed on all shards. We load the data file enwiki.json to the /u01/wikip/data folder
on each shard database server. This folder can be local or on a shared file system mounted to all shards. Once the
folder exists, it can be made available to the shard databases as follows while connected as sys with sysdba
privileges at the shard PDBs.

Example code: Registering the shard data directory

35 JSON Full-Text Search with Oracle Globally Distributed Database 23ai / Version [1.0]

 Copyright © 2024, Oracle and/or its affiliates / Public

SQL> ALTER SESSION DISABLE SHARD DDL;
SQL> DROP DIRECTORY wikip_data_dir;
SQL> CREATE OR REPLACE DIRECTORY wikip_data_dir AS '/u01/wikip/data';
SQL> GRANT ALL on DIRECTORY wikip_data_dir TO wikip;

Once the directory is configured, we can reference the data file in that directory using Oracle Loader with an
external table while connected as the all-shards user, in our case “wikip”.

The length in bytes of the longest individual JSON document records within the data file must be used to tune the
READSIZE access parameter in the following statement, so that the Oracle Loader can accurately parse long JSON
document records.

SQL> CONNECT WIKIP@SHDPDB0
SQL> ALTER SESSION DISABLE SHARD DDL;
SQL> DROP TABLE Articles_Ext;
SQL> CREATE TABLE Articles_Ext
 (Article_JSON JSON NOT NULL)
 ORGANIZATION EXTERNAL(
 TYPE ORACLE_LOADER
 DEFAULT DIRECTORY wikip_data_dir
 ACCESS PARAMETERS (
 RECORDS DELIMITED BY 0x'0A'
 READSIZE 444100
 BADFILE wikip_data_dir: 'JSON_DUMPFILE_CONTENTS.bad'
 LOGFILE wikip_data_dir: 'JSON_DUMPFILE_CONTENTS.log'
 FIELDS(Article_JSON char(444100))
)
 LOCATION (wikip_data_dir:'enwiki.json')
)
PARALLEL
REJECT LIMIT UNLIMITED;

-- Count the rows to verify the entire data set is available
select count(*) from articles_ext;

Load the JSON Documents
Once the JSON data is available as a JSON column in an external table, we can query for insert into the sharded
table family. This query can be executed in parallel directly on each shard. The insert statement populates the
primary key "article_id" and "article_json" columns only. Both the "article_id" column value and the sharding key
value are set using the JSON_VALUE() function to extract the $.wid element value from each JSON record. This
concept applies to any inserted record during application runtime as well. The submission of a new JSON
document must also submit a value for the “article_id” primary key column and can specify the same value as the
sharding key.

Note: Once this section is complete and data load is validated, the external table can be dropped.

Execute this in parallel on all shards as the all-shards user.

36 JSON Full-Text Search with Oracle Globally Distributed Database 23ai / Version [1.0]

 Copyright © 2024, Oracle and/or its affiliates / Public

SQL> CONNECT WIKIP@SHDPDB0
SQL> ALTER SESSION DISABLE SHARD DDL;
SQL> ALTER SESSION ENABLE SHARD OPERATIONS;
SQL> ALTER SESSION ENABLE PARALLEL DML;
SQL> INSERT /*+ NOLOGGING APPEND PARALLEL (6) */ INTO ARTICLES (article_id, article_json)
 (SELECT json_value(ext.article_json,'$.wid'), ext.article_json
 FROM articles_ext ext
 WHERE SHARD_CHUNK_ID('WIKIP.ARTICLES',
 json_value(ext.article_json,'$.wid')) IS NOT NULL
);
SQL> COMMIT;

The INSERT AS SELECT statement can utilize parallel execution based on the number of CPU threads available to
the database by enabling parallel DML and including the appropriate PARALLEL(x) hint on the INSERT statement.

It may not be ideal to use all CPU cores for parallel processing of this query, and it may not be ideal to leave the
default value of “1” either. Tune the degree of parallelism (DOP) of this insert as necessary based on your
database instance’s hardware resource availability. It is also a best practice to disable logging during bulk inserts
for performance reasons.

Finally, to ensure only the correct rows are inserted for each shard, it is necessary to include a WHERE clause
using the SHARD_CHUNK_ID() function to evaluate the system-managed hash of the shard key value for each
row, and decide if that row belongs in a chunk on this shard. The SHARD_CHUNK_ID() function requires two
values: the name of the table family, and the sharding key value. For details about the SHARD_CHUNK_ID()
function, see the Oracle 23ai SQL Language Reference Guide.

Currently, it is recommended that when implementing a sharded database with system-managed data
distribution to have the entire data file available to every shard to allow processing of all rows via the external
table consistently. It is up to the SHARD_CHUNK_ID function to distinguish which rows have a shard ID value that
is valid to insert for the chunks assigned to the current shard, based on the value of the Oracle consistent hash
model. See System-Managed Sharding in the Oracle Globally Distributed Database documentation for details.

Collect Statistics
Once the data has been inserted completely on all shards, collect schema statistics for the sharded schema user.

There are several steps required to accurately collect statistics in a sharded database. Statistics need to be
gathered at each shard and “pulled” up to the coordinator (shard catalog database). To allow the coordinator to
pull the statistics gathered on the shards, the statistic preference parameter COORDINATOR_TRIGGER_SHARD must
be set to true on all shard databases.

Note: When deploying into a multi-tenant database environment, these steps should be performed against the
shard catalog and shard pluggable databases (PDB).

The steps for manual statistics gathering on sharded tables include:

1. Set COORDINATOR_TRIGGER_SHARD to TRUE on all shard PDBs as sys on behalf of your all-shards
schema user. This only needs to be done once per shard.

SQL> CONNECT sys/shdpdb0 AS SYSDBA
SQL> ALTER SESSION DISABLE SHARD DDL;
SQL> EXECUTE DBMS_STATS.SET_SCHEMA_PREFS('WIKIP','COORDINATOR_TRIGGER_SHARD','TRUE');

2. Collect schema statistics for your all-shards user on all shard PDBs connected as your all-shards schema
user. The SYS.DBMS_STATS.GATHER_SCHEMA_STATS() procedure can be executed directly on each shard,
or on all shards at once from the shard catalog using the SYS.EXEC_SHARD_PLSQL() function with SHARD
DDL enabled on your session.

https://docs.oracle.com/en/database/oracle/oracle-database/23/sqlrf/shard_chunk_id-operator.html#GUID-FABB2038-EFA8-4A5C-8048-2B3F01D0E6CA
http://www.oracle.com/pls/topic/lookup?ctx=db23&id=SHARD-GUID-37F20817-EFD5-400B-A082-41171C0B6D1C

37 JSON Full-Text Search with Oracle Globally Distributed Database 23ai / Version [1.0]

 Copyright © 2024, Oracle and/or its affiliates / Public

SQL> CONNECT wikip@catpdb
SQL> ALTER SESSION ENABLE SHARD DDL;
SQL> EXEC SYS.EXEC_SHARD_PLSQL('SYS.DBMS_STATS.GATHER_SCHEMA_STATS(
 OWNNAME => ''WIKIP'', OPTIONS => ''GATHER'')');

3. Gather statistics on the shard catalog PDB for your schema after statistics have been gathered on all of
the shards.

SQL> CONNECT wikip@catpdb
SQL> ALTER SESSION DISABLE SHARD DDL;
SQL> EXEC SYS.DBMS_STATS.GATHER_SCHEMA_STATS(OWNNAME => 'WIKIP', OPTIONS => 'GATHER');

4. Check statistics on each shard.

SQL> CONNECT wikip@shdcdb0
SQL> ALTER SESSION DISABLE SHARD DDL;
SQL> SELECT t.table_name AS "Table Name",
 t.num_rows AS "Rows",
 t.avg_row_len AS "Avg Row Len",
 Trunc((t.blocks * p.value)/1024) AS "Size KB",
 sharded,
 duplicated,
 to_char(t.last_analyzed,'DD/MM/YYYY HH24:MM:SS') AS "Last Analyzed"
FROM user_tables t,
 v$parameter p
WHERE table_name not like 'MLOG%'
 AND table_name not like 'RUPD%'
 AND table_name not like 'USLOG%'
 AND table_name not like 'DR$%'
 AND p.name = 'db_block_size'
ORDER by t.table_name
/

Table Name Rows Avg Row Len Size KB S D Last Analyzed
------------------------ ---------- ----------- ---------- - - -------------------
ARTICLES 1524331 2860 5952480 Y N 30/05/2024 10:05:27
ARTICLES_EXT N N

Once statistics have been gathered and validated, automatic statistics gathering can be configured. For full
details, including how to configure automatic statistics gathering on the sharded database, see Gathering
Optimizer Statistics on Sharded Tables. Any additional tuning of statistics gathering parameters and the related
optimizations and tuning of maintenance plans is beyond the scope of this example and can be integrated as
needed.

Indexing Sharded JSON Data
To optimize the access to our data, several indexes are created. We will demonstrate the creation of functional
indexes on the primary key and a multivalue index of the array of categories for each JSON document. Then we
will create an Oracle Text search index on the full text of the values within each JSON document. The multivalue
index will demonstrate the use of the JSON database features and help optimize the execution of search results

https://docs.oracle.com/en/database/oracle/oracle-database/23/shard/gathering-optimizer-statistics-sharded-tables.html#GUID-DBB78044-EE32-4A9C-AC90-31E9EBFF8823
https://docs.oracle.com/en/database/oracle/oracle-database/23/shard/gathering-optimizer-statistics-sharded-tables.html#GUID-DBB78044-EE32-4A9C-AC90-31E9EBFF8823

38 JSON Full-Text Search with Oracle Globally Distributed Database 23ai / Version [1.0]

 Copyright © 2024, Oracle and/or its affiliates / Public

queries that filter based on category facet values. The Oracle Text search index will support contextual full text
search of the element values from the JSON document rather than matching against the JSON code.

These indexes are created from the shard catalog, or from the shard director, using the GDSCTL SQL command,
ensuring that the index is created on every shard. Verify each DDL execution using GDSCTL SHOW DDL on the
shard director to detect any failures. When PL/SQL is needed, the SYS.EXEC_SHARD_PLSQL() function can be
used from the shard catalog to propagate the execution to all shards.

Executing DDL via SQL at the shard catalog will return a prompt as soon as the index is created on the shard
catalog; however, the population of the index on each of the shards may take several minutes, or possibly much
longer.

To monitor the status of index creation, execute the SQL in the Validating Oracle Text Index Status section (below)
on each shard periodically to determine the status of the index creation. Note that verifying each DDL execution
using GDSCTL SHOW DDL will now show successful completion on each shard.

For full documentation on indexing JSON data, see Indexes for JSON Data.

Creating an Index on the Primary Key
We have added an index for the primary key/sharding key column. This is a standard relational database
operation and is included to provide a complete representation of the deployment.

SQL> CREATE INDEX article_id_idx ON articles(article_id) LOCAL;

Creating a Multivalue Index on JSON Array Values
The primary use of a multivalue index (MVI) is to index scalar values within an array, and can also include scalar
field values of object array elements.

For queries that target multiple values, a multivalue index can be more performant than a B-tree or bitmap index.
If a single value is targeted, a B-tree or bitmap index may out perform the MVI. The SQL Optimizer will only use
the MVI when the WHERE clause of a SELECT statement includes the use of the JSON_EXISTS() function. In a
sharded database environment, the MVI must be created as a local index.

In our example data, each JSON document stored in the Articles_JSON column has a $.categories[] array with
several array elements. Each array element has an .id value containing the name of the category. These
$.categories[].id values are used in the category facet aggregated data query to display document counts for each
category. If a user selects one or more categories to refine their search, the search results query must include
WHERE clause filter predicates using JSON_EXISTS() for each selected category. This is where the MVI becomes
important.

Example: DDL to create the multivalue index for the categories array ID element value

SQL> CREATE MULTIVALUE INDEX mvi_article_categories ON Articles a
 (a.article_json.categories.id.string()) local;

Creating an Oracle Text Index
To facilitate full text searching of the JSON content, we create an Oracle Text search index on our JSON column.
First, we create the text preferences as desired, before creating the index. Oracle Text indexes can be tuned to
meet your specific needs by setting any necessary preference attributes. Oracle Text preferences are defined once
and applied consistently across all shards.

For full documentation, see the JSON Search Index for Ad Hoc Queries and Full-Text Search section of the JSON
Developers Guide, and the Creating Oracle Text Indexes section of the Oracle Text Application Developer's Guide.

Example: SQL for creating the Oracle Text preferences

https://docs.oracle.com/en/database/oracle/oracle-database/23/adjsn/indexes-for-json-data.html#GUID-CA25E863-1EA2-4E9A-A898-E7CA9CD645B1
https://docs.oracle.com/en/database/oracle/oracle-database/23/adjsn/indexes-for-json-data.html#GUID-D7A604E1-F617-4C92-A9D9-00B6AB78EFD8
https://docs.oracle.com/en/database/oracle/oracle-database/23/adjsn/index.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/adjsn/index.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/ccapp/creating-oracle-text-indexes.html#GUID-3505DB0D-B507-4D2E-A157-F16BD79FCF6E
https://docs.oracle.com/en/database/oracle/oracle-database/23/ccapp/index.html

39 JSON Full-Text Search with Oracle Globally Distributed Database 23ai / Version [1.0]

 Copyright © 2024, Oracle and/or its affiliates / Public

SQL> begin

 sys.exec_shard_plsql('ctxsys.ctx_ddl.create_preference(''wl'', ''BASIC_WORDLIST'')');

 sys.exec_shard_plsql('ctxsys.ctx_ddl.set_attribute(''wl'', ''FUZZY_MATCH'', ''ENGLISH'')');

 sys.exec_shard_plsql('ctxsys.ctx_ddl.set_attribute(''wl'', ''FUZZY_SCORE'', ''60'')');

 sys.exec_shard_plsql('ctxsys.ctx_ddl.set_attribute(''wl'', ''FUZZY_NUMRESULTS'', ''5000'')');

 sys.exec_shard_plsql('ctxsys.ctx_ddl.set_attribute(''wl'', ''WILDCARD_INDEX'', ''TRUE'')');

end;

/

Once the Oracle Text wordlist preferences are set, create the Oracle Text search index.

Example SQL for creating an Oracle Text Index:

SQL> create search index articles_idx on Articles(article_json) for json

parameters (' wordlist wl

 search_on text_value_string

 memory 170M

 maintenance auto

 optimize (auto_daily parallel 1)

 ')

 parallel 6

 local;

Several parameters in addition to the wordlist preferences are set directly in the CREATE SEARCH INDEX call.
These should be analyzed and tuned appropriately for the specific needs of each implementation. See the
Creating Oracle Text Indexes documentation for full details.

For the parameters and values shown:

• SEARCH_ON TEXT_VALUE_STRING - Causes the index to be created on the JSON element values rather
than the full JSON code.

• MEMORY 170M – A moderate allocation on our hardware. Test and adjust with your hardware and data
set keeping in mind any degree of parallelism specified.

• MAINTENANCE AUTO – Provides automatic synchronization of the index across the partitions for the
sharded data rather than the traditional “manual” approach with scheduled jobs on a discrete schedule.
This is new in Oracle Database 23ai.

• OPTIMIZE (auto_daily parallell 1) – A baseline configuration is more than sufficient for our test scenario
considering our data set is not getting updates from end-users.

• PARALLEL 6 – Our test environment databases have 8 CPU cores, and no other utilization. Sparing a few
from the indexing allows other database and system processes to be scheduled without CPU contention.
Assess your free CPU resources and tune accordingly.

Validating Oracle Text Index Status
Several queries can be helpful to run on the shards to help inspect and verify that the index partitions, tables, and
jobs have been created and are functioning correctly.

Keep in mind that the default sharded database configuration creates 120 “chunks” for your sharded data that
are allocated to however many shards are added to the topology. When the tablespace set was created, every
shard had a tablespace and partition created for every chunk, though only the allocated chunks for that shard will
be populated with data. The Oracle Text index will still need to process every partition for every tablespace in the
tablespace set.

In our examples, with four shards and the default 120 chunks, the tablespace set will only contain 25% of the data
on a given shard, and the Oracle Text index will only populate 30 of 120 local index partitions.

https://docs.oracle.com/en/database/oracle/oracle-database/23/ccapp/creating-oracle-text-indexes.html#GUID-3505DB0D-B507-4D2E-A157-F16BD79FCF6E

40 JSON Full-Text Search with Oracle Globally Distributed Database 23ai / Version [1.0]

 Copyright © 2024, Oracle and/or its affiliates / Public

When running these SQL statements on each shard, alter the SQL session to disable shard DDL.

SQL> ALTER SESSION DISABLE SHARD DDL;

Query for Tablespace Size
In addition to the default system tablespaces, there will be a row displayed for the explicitly declared tablespace
set and several additional tablespaces for each “chunk” assigned to the shard.

In our case, for the example shard, this adds 1 for the TSP_SET_WIKIP and 30 tablespaces for each chunk
(C001..C00UTSP_SET_WIKIP). The second shard will also have TSP_SET_WIKIP, and 30 more tablespaces for each
chunk, starting with tablespace C00VTSP_SET_WIKIP.

SQL> column "Tablespace" format a24
SQL> column "Used MB" format 99,999,999
SQL> column "Free MB" format 99,999,999
SQL> column "Total MB" format 99,999,999
SQL> select
 fs.tablespace_name "Tablespace",
 (df.totalspace - fs.freespace) "Used MB",
 fs.freespace "Free MB",
 df.totalspace "Total MB",
 round(100 * (fs.freespace / df.totalspace)) "Pct. Free"
from
 (select tablespace_name, (sum(bytes) / 1048576) TotalSpace
 from dba_data_files
 group by tablespace_name
) df,
 (select tablespace_name, round(sum(bytes) / 1048576) FreeSpace
 from dba_free_space
 group by tablespace_name
) fs
where
 df.tablespace_name = fs.tablespace_name
order by df.tablespace_name;

Tablespace Used MB Free MB Total MB Pct. Free
------------------------ ----------- ----------- ----------- ----------
C001TSP_SET_WIKIP 1,616 158 1,774 9
C002TSP_SET_WIKIP 1,616 158 1,774 9
C003TSP_SET_WIKIP 1,540 234 1,774 13
(24 rows omitted…)
C00STSP_SET_WIKIP 1,532 242 1,774 14
C00TTSP_SET_WIKIP 1,608 166 1,774 9
C00UTSP_SET_WIKIP 1,608 166 1,774 9
SYSAUX 1,015 75 1,090 7
SYSTEM 328 2 330 1
TSP_SET_WIKIP 13,118 7,362 20,480 36
UNDOTBS1 277 17,117 17,394 98
USERS 1 4 5 80

41 JSON Full-Text Search with Oracle Globally Distributed Database 23ai / Version [1.0]

 Copyright © 2024, Oracle and/or its affiliates / Public

Query for List of Tables, Status, and Number of Rows for Our Schema User
There should be rows returned for the tables in the table family, the external table used for data load if it hasn’t
been dropped, and several tables for the Oracle Text index depending on the preferences specified for the Index.

These “dollar-sign” tables contain various types of index data, the details of which are beyond the scope of this
technical brief. If they are created with a “valid” status, and the other queries in this section show no faults, all is
well.

SQL> COL OWNER FORMAT A16
SQL> COL TABLE_NAME FORMAT A32
SQL> SELECT
 OWNER, TABLE_NAME, IOT_TYPE, STATUS, NUM_ROWS
 FROM DBA_TABLES
 WHERE OWNER='WIKIP'
 ORDER BY TABLE_NAME;

OWNER TABLE_NAME IOT_TYPE STATUS NUM_ROWS
---------------- -------------------------------- ------------ -------- ----------
WIKIP ARTICLES VALID 1524331
WIKIP ARTICLES_EXT VALID
WIKIP DR$ARTICLES_IDX$B VALID
WIKIP DR$ARTICLES_IDX$C VALID
WIKIP DR$ARTICLES_IDX$G VALID
WIKIP DR$ARTICLES_IDX$I VALID
WIKIP DR$ARTICLES_IDX$K VALID
WIKIP DR$ARTICLES_IDX$KG VALID
WIKIP DR$ARTICLES_IDX$N VALID
WIKIP DR$ARTICLES_IDX$Q VALID
WIKIP DR$ARTICLES_IDX$SN VALID
WIKIP DR$ARTICLES_IDX$ST VALID
WIKIP DR$ARTICLES_IDX$SV VALID
WIKIP DR$ARTICLES_IDX$U VALID

14 rows selected.

Query for the Status of the Index
Verify that none of the status values report back as FAILED.

SQL> SELECT
 OWNER, INDEX_NAME, INDEX_TYPE, TABLE_NAME,
 STATUS, DOMIDX_STATUS, DOMIDX_OPSTATUS, FUNCIDX_STATUS,
 DROPPED, INDEXING, DEGREE, INSTANCES, PARTITIONED, BUFFER_POOL
 FROM SYS.DBA_INDEXES
 WHERE INDEX_NAME = 'ARTICLES_IDX'
 ORDER BY 1, 2;

42 JSON Full-Text Search with Oracle Globally Distributed Database 23ai / Version [1.0]

 Copyright © 2024, Oracle and/or its affiliates / Public

OWNER INDEX_NAME INDEX_TYPE TABLE_NAME STATUS
-------- -------------- ---------- ------------ --------
WIKIP ARTICLES_IDX DOMAIN ARTICLES VALID

DOMIDX_STATUS DOMIDX_OPSTATUS FUNCIDX_STATUS
------------- --------------- --------------
VALID VALID

DROPPED INDEXING DEGREE INST PAR BUFFER_POOL
------- -------- ------ ---- --- -----------
NO FULL 6 1 YES DEFAULT

Query for Partition Status
This query will provide a count of partitions grouped by status column values.

All partitions should report status of USABLE and DOMIDX_OPSTATUS of VALID or INPROCESS. The total number
of partitions should match the number of chunks configured for your sharded database.

SQL> SELECT INDEX_NAME, STATUS, DOMIDX_OPSTATUS, COUNT(*)
 FROM DBA_IND_PARTITIONS
 WHERE INDEX_NAME IN ('ARTICLES_IDX')
 GROUP BY INDEX_NAME, STATUS, DOMIDX_OPSTATUS
 ORDER BY 1,2,3;

INDEX_NAME STATUS DOMIDX_OPSTATUS COUNT(*)
------------- -------- --------------- ----------
ARTICLES_IDX USABLE VALID 120

Query for a List of Index Partitions and Details.
This query will list all 120 index partitions, their status, indexed document count, and synchronization details.

When using “MAINTENANCE AUTO”, the columns pertaining to manually scheduled sync jobs can be omitted.
These include IXP_SYNC_PARA_DEGREE, IXP_SYNC_INTERVAL, and IXP_SYNC_JOB_NAME.

Note that for this shard, partitions 1-30 are populated with documents. This corresponds with the chunks
assigned to the shard in the sharded database configuration. These assigned chunks can be seen with GDSCTL
CONFIG CHUNKS from the shard director.

43 JSON Full-Text Search with Oracle Globally Distributed Database 23ai / Version [1.0]

 Copyright © 2024, Oracle and/or its affiliates / Public

SQL> SELECT IXP_ID, IXP_INDEX_OWNER, IXP_INDEX_NAME, IXP_INDEX_PARTITION_NAME,
 IXP_STATUS, IXP_DOCID_COUNT, IXP_SYNC_TYPE, IXP_SYNC_MEMORY
 FROM CTXSYS.CTX_INDEX_PARTITIONS
 WHERE IXP_INDEX_NAME IN ('ARTICLES_IDX')
 ORDER BY 2, 3, 1;

 IXP_ID IXP_INDEX_OWNER IXP_INDEX_NAME IXP_INDEX_PARTIT IXP_STATUS IXP_DOCID_COUNT IXP_SYNC_TYPE IXP_SYNC_MEM

---------- ---------------- ---------------- ---------------- ------------ --------------- ------------- -------------

 1 WIKIP ARTICLES_IDX ARTICLES_P4 INDEXED 50999 MANUAL 178257920

 2 WIKIP ARTICLES_IDX ARTICLES_P3 INDEXED 50746 MANUAL 178257920

 3 WIKIP ARTICLES_IDX ARTICLES_P6 INDEXED 51040 MANUAL 178257920

(rows 4-28 omitted)

 29 WIKIP ARTICLES_IDX ARTICLES_P29 INDEXED 50833 MANUAL 178257920

 30 WIKIP ARTICLES_IDX ARTICLES_P30 INDEXED 50687 MANUAL 178257920

 31 WIKIP ARTICLES_IDX ARTICLES_P31 INDEXED 0 MANUAL 178257920

(rows 32-119 omitted)

 120 WIKIP ARTICLES_IDX ARTICLES_P120 INDEXED 0 MANUAL 178257920

Search Query Design and Examples
A fully realized solution for text search might include several capabilities for filtering and refining search requests.

For our example, we outline several use-cases, present a mock-up of a UI design, and discuss some of the user-
experience as a basis for informing the design of the SQL queries necessary for implementation. Examples of the
queries and how they change to meet the requirements for the various use cases are provided, including
recommended best practices.

Example Search Form
The abstract search form mock-up shown earlier is provided here in detail. This design includes basic text search
functionality, date filtering, and faceted search, based on the specific categories and language metadata from our
document set.

The aggregated facet selection lists should only populate after an initial search by keyword is submitted. Any
dates also submitted would serve as additional filter predicates on queries. Pagination parameters are also
provided for customization. The page size and current page number are used in the search results query to limit
the data retrieved per request.

44 JSON Full-Text Search with Oracle Globally Distributed Database 23ai / Version [1.0]

 Copyright © 2024, Oracle and/or its affiliates / Public

Figure 3 Detailed View of a Faceted Search Form UI Mock-Up

Search Form Layout and Parameters:
The UI contains three panels with several form parameters relevant to our query design. The mechanisms to
submit the forms are left to the application development team.

1. Horizontal search bar with three form elements:

a. “search_term” text box for free-form input

b. “start_date” element for providing a date (text/calendar pop-up, etc…)

c. “end_date” element for providing a date (text/calendar pop-up, etc…)

2. Left-hand search filter panel, containing form elements for two ‘faceted’ search filters:

a. Result Count Aggregated By Categories

i. displaying a header with and total count of categories found

ii. checkboxes for each category, displayed with an aggregated count of articles for each.

b. Result Count Aggregated By Language

i. displaying a header with and total count of languages found

ii. checkboxes for each language, displayed with an aggregated count of articles for each.

3. Right-hand search results panel

a. Displays a partial list of search results sorted by the Oracle Text “score” ranking
Each search result may display:

i. Title

ii. Text Snippet containing the search term(s)

iii. Last Modified date

iv. The search results score (optional, not shown here, use for sorting only)

45 JSON Full-Text Search with Oracle Globally Distributed Database 23ai / Version [1.0]

 Copyright © 2024, Oracle and/or its affiliates / Public

Use Cases
The example application text search use case scenarios shown here highlight features common to many search
interfaces. These capabilities help inform the distinct design aspects of our queries.

1. Search using basic keywords or phrases
Submit a simple text search phrase without additional filters.
Initial Facets and Search Results data should be presented.

2. Search with date filters
Configure one or both start and end date filters in addition to the search term and submit the form.
Updated Facets and Search Results data should be presented.

3. Faceted Search
Select one or more values from the Facets and submit the form.
The application should update the Search Results.

4. Paging through results
Click the search results page navigation links to change the page of results displayed.
The application should update the Search Results with the requested page of results.

5. Changing the number of results
Update the preferred page size in the search results panel.
The application should update the Search Results with the requested number of results starting from the
same point.

6. Document View
Click on a search result link for a specific document to be presented with a rendered view of the JSON
document.
Page should refresh, replacing the search form with the document view.

Query Design
The application’s search UI form element submissions drive application logic to alter the WHERE clause filter
predicates based on the parameters provided. The SQL queries are designed with bind variables based on the
user inputs.

Our search queries are “multi-shard queries” that must search for results across the entire sharded database. This
is appropriate for a system-managed sharded database. All multi-shard queries are submitted to the coordinator
at the shard catalog database.

The exception is the sixth use-case scenario where a user clicks on a specific document link that will be handled
differently. The final search result click-through query to retrieve a single article based on its shard key can use
the read-write or read-only OLTP service configured through the shard director.

For each of our first five use-cases, different combinations of the queries will need to be submitted with specific
combinations of filter predicates. The syntax for filter predicates will be the same for all queries. For efficiency, the
SQL query examples are shown with all filter predicates in-place as if the user has iterated through use-cases 1, 2,
and 3.

We provide a short description of each query, example SQL code, sample results, and discussion of the functions
and techniques demonstrated. The SQL queries will show all filter predicates with comments discussing the
permutations for the different use cases where various predicates are required in the WHERE clause.

Note: Use-cases 4 and 5 for managing the search results in view pagination. The implementation of the queries to
derive the total documents count and paging details for the UI is left to the reader.

As the user updates the search terms, selects facet values or dates, and resubmits the faceted search page forms,
the application must dynamically derive the search results query with the appropriate clauses specifically
matching the input values submitted.

46 JSON Full-Text Search with Oracle Globally Distributed Database 23ai / Version [1.0]

 Copyright © 2024, Oracle and/or its affiliates / Public

SQL Query Overview

There are three primary queries, one for each panel to be displayed. Each query must be adapted to include the
appropriate filter predicates based on the properties of each incoming search request.

We will start with a comprehensive overview of each of the queries, along with their respective filter clauses. Once
the full context is presented, the individual clauses and SQL features and functions used will be discussed in detail
along with best practice recommendations.

The primary queries include:

1. Search results query - Including scored relevance rankings and document snippets
2. Faceted search query - JSON category array values with aggregated document counts
3. Faceted search query - JSON language element values with aggregated document counts

When additional filtering options are provided, the queries must include additional filters on a request-by-request
basis within the application code. These filter predicates are included in the primary query examples and
discussed separately. These include filtering by:

A. Dates
B. Category terms
C. Languages

Bind Variables
Using bind variables to declare the values used in query filter predicates allows for a single cursor for each SQL
statement per use-case, rather than having to allocate memory for and spend time optimizing what is essentially
the same SQL statement but with n-combinations with hardcoded data for parameter values. Imagine the number
of combinations for every search term and date range the user population could feasibly submit. Removing these
values from the literal queries has a drastic effect on the number of cursors, memory and processing overhead,
and ultimately performance and scalability. For reference, see the Designing Applications for Oracle Real World
Performance documentation.

Note: Applications should do strict field data validations before setting bind variable values for SQL execution.

For our example solution, the optimization of the search queries benefits from multiple bind variable declarations.
Some are simple values parsed directly from the form data submitted by the users, and others are more complex
values composed into specific SQL function parameter clauses or calculated values.

 The search term and date-based variables are straightforward string values of explicit input data.

 The pagination parameters that inform the search results query may be simple submitted values as
well, or calculated depending on requirement. For example, the offset value needed in the query
would be calculated from the rows-per-page value times the page number.

 Facet parameters may be multi-value, and therefore require some formatting to be used within a
single bind variable. It is advisable in these cases for the application to build the complete filter clause
parameter or path expression statement based on the SQL required.

 In the case of the language virtual column, we can use an “IN” clause that needs a simple
comma- separated list of quoted string values.

 For the Categories facet values, use the submitted form category_id values to generate a fully
qualified path expression with filters.

 Example: SQL*Plus bind variable declarations

https://docs.oracle.com/en/database/oracle/oracle-database/23/adfns/rwp.html#GUID-754328E1-2203-4B03-A21B-A91C3E548233
https://docs.oracle.com/en/database/oracle/oracle-database/23/adfns/rwp.html#GUID-754328E1-2203-4B03-A21B-A91C3E548233

47 JSON Full-Text Search with Oracle Globally Distributed Database 23ai / Version [1.0]

 Copyright © 2024, Oracle and/or its affiliates / Public

REM Set bind variables for our search queries based on user request form inputs
REM
REM Main Search Header Form data with freeform search term text entry, and selectors for
start and end dates.

define s_searchterm = 'Orange and fruit';
define s_datestart = '2021-11-10';
define s_dateend = '2021-11-20';

REM Categories Facet Values
REM Form Element: "FacetCategories" checkboxes contains:
REM "Taxonomy_articles_created_by_Polbot"
REM and
REM "Taxa_named_by_Carl_Linnaeus"
REM get exact matches for each individual values (exclusive OR) to match the categories[]
array .id fields
REM format as a path expression containing a filter for JSON_EXISTS()

define s_filtercat = '$.categories[*]?(@.id == "Taxonomy_articles_created_by_Polbot" || @.id
== "Taxa_named_by_Carl_Linnaeus")';

REM
REM Language Facet Values
REM Form Element: "FacetLang" checkboxes contains:
REM "EN"
REM and
REM "HI"
REM format the bind variable value for multiple values to use with the "IN" filter clause

define s_filterlang = '''EN'',''HI''';

REM
REM Paging Parameters
REM The number of rows to display
REM The number of rows to offset (calculate in-app as rows to display * page number)

define n_pgrows = 3;
define n_pgoffset = 0;

Search Results Query
Our example search query selects data from both the virtual columns and from the JSON column, using Oracle
Text to retrieve the required results. In addition to the basic selection of the article ID and title (virtual column)
data, the query returns ranked search scores and a relevant short snippet of HTML of each document’s contents
for each search result.

After submission of any updates on the application's search form, the application will need to build the search
results query with the appropriate clauses based on the input form element values provided, execute the query,
and format the results for display in the results view. The query will need to be dynamically assembled to include
conditional clauses and set the bind variables based on the specific combination of inputs provided.

There are two sections to the query below:

48 JSON Full-Text Search with Oracle Globally Distributed Database 23ai / Version [1.0]

 Copyright © 2024, Oracle and/or its affiliates / Public

1) The inner SELECT statement returns all matching rows, sets the search rank scores, and constructs the
document snippet content. These “inner” query operations are sent from the coordinator in parallel to
each shard for processing.

2) The outermost SELECT statement operations perform the final sorting and filtering for paging purposes
on the result set, including the combined data returned from all shards after the inner query operations
are completed and data returned to the coordinator.

Example: Scored search results query – all parameters

SELECT /*+ QB_NAME(qb_paging)*/
 article_id,
 title,
 last_modified,
 search_score,
 doc_snippet
FROM
 (
 SELECT /*+ QB_NAME(search_result_uc3) DOMAIN_INDEX_SORT FIRST_ROWS(100) PARALLEL(4) */
 a.article_id,
 a.title,
 a.last_modified,
 greatest(score(1),score(2)) AS search_score,
 ctx_doc.policy_snippet('articles_idx',
 json_serialize(a.article_json.paragraphs RETURNING clob),
 '&s_searchterm') AS doc_snippet
 FROM
 articles a
 WHERE
 (
 JSON_TEXTCONTAINS(a.article_json, '$.title', '&s_searchterm', 1)
 OR JSON_TEXTCONTAINS(a.article_json, '$.paragraphs', '&s_searchterm', 2)
)
 AND a.last_modified BETWEEN to_utc_timestamp_tz('&s_datestart')
 AND to_utc_timestamp_tz('&s_dateend')
 AND JSON_EXISTS (a.article_json, '&s_filtercat')
 AND a.lang IN (&s_filterlang)
 ORDER BY
 greatest(score(1),score(2)) DESC
)
OFFSET &n_pgoffset ROWS FETCH NEXT &n_pgrows ROWS ONLY;

49 JSON Full-Text Search with Oracle Globally Distributed Database 23ai / Version [1.0]

 Copyright © 2024, Oracle and/or its affiliates / Public

Example: Scored Search Results Data Returned

ARTICLE_ID TITLE DOC_SNIPPET SEARCH_SCORE

---------- ------------------------ -- ------------

191214 Mandarin orange Short_description, Small citrus fruit]\nTEMPL 100

 ATE[speciesbox, name = Mandarin orange, image

 = Citrus reticulata April...mandarine, is a

 small citrus tree fruit. Treated as a distinc

 t species of orange, it is usually eaten plai

 n or in fruit salads.TEMPLATE[cite

58875 Maclura pomifera Osage orange, image...caption = Foliag 100

 e and [[multiple fruit]], genus = Maclura, sp

 ecies...commonly known as the Osage orange

 , horse apple, hedge, or hedge...15, m, f

 t, -1] tall. The distinctive fruit, a multipl

 e fruit, is roughly spherical, bumpy

68763241 Worldwide breakfast and fresh fruit, including...accompani 100

 ed by coffee, tea and orange juice. A typical

 Israeli meal...and drink milk, hot chocolate

 or fruit juice. Japanese adults (especially

 younger...They often drink coffee or orang

 e juice. Traditional Japanese inns

Returned Data
This query returns display elements for each document in the search results according to business requirements,
as reflected in the JSON data and schema design. For our example, this includes:

1. The document title text and article ID
These are used to present a hyperlink to each document. For efficient retrieval of the article data from the
correct shard, the request must include the shard key (article_ID) as a parameter. In this example, our
sharding key matches the primary key for the data.
Note: In some cases, the sharding key may not be the primary key. In that case, both the primary key and
the sharding key column values would need to be returned by this query.

2. The last modified date of the document

3. The search results rank/score for the document to be used for sorting purposes

4. A "snippet" of the document body text from the $.paragraphs[] array
This displays a short section of the document content with the search terms highlighted.

Noteworthy SQL Functionality
As various search form element parameters are included in the request, corresponding SQL clauses need to be
present in the query to refine the results accordingly.

Search Term Text
The application user may input the search terms with or without conditional operators in free-form text. This will
require careful validation at the application tier to avoid SQL injection attacks before inserting the value into the
SQL queries.

Our example data has two elements within the JSON data that contain content-relevant text to search on: the title
element and the paragraph element. The paragraph element is an array of string elements containing the body
content of each article, and the title element as a single string.

The text string of search terms submitted from the application should be used for the search term bind parameter
value specified with the JSON_TEXTCONTAINS() function. The execution plan operation for the
JSON_TEXTCONTAINS() filter predicate will be optimized to use the Oracle Text search index.

50 JSON Full-Text Search with Oracle Globally Distributed Database 23ai / Version [1.0]

 Copyright © 2024, Oracle and/or its affiliates / Public

Note that Oracle also provides the CONTAINS() function. When evaluating a JSON typed column it is a best
practice to use the JSON_TEXTCONTAINS() function specifically optimized for this use-case.

When an evaluation of the JSON_TEXTCONTAINS() function returns a non-zero result indicating a match, the row
is added to the result set. The parameters for the JSON_TEXTCONTAINS() function include the JSON field to
process, a logic statement called a “path expression”, and the numeric scoring object to attribute the ranked score
of these matches. It is a best practice to include separate JSON_TEXTCONTAINS() functions for each JSON
element required in your WHERE clause. It is possible to write a path expression that includes the logic for
multiple element values, however that may not allow the SQL engine to optimize the query to your best
advantage.

Example: Multiple JSON_TEXTCONTAINS() clauses

 WHERE
 (
 JSON_TEXTCONTAINS(a.article_json, '$.title', '&s_searchterm', 1)
 OR JSON_TEXTCONTAINS(a.article_json, '$.paragraphs', '&s_searchterm', 2)
)

With multiple JSON_TEXTCONTAINS() functions, the results rank scoring is done on a per-element basis. It is
then necessary to account for all the scores when sorting the results. Using the GREATEST function with the
multiple scores provides the expected results.

Example: SQL SELECT and ORDER BY clauses obtaining the actual greatest score

SELECT greatest(score(1),score(2)) AS search_score
ORDER BY greatest(score(1),score(2)) DESC

WHERE clause order and precedence must be tested with care. When including JSON_TEXTCONTAINS() for
multiple JSON elements for full-text search and using other clauses with the AND operator, the
JSON_TEXTCONTAINS() should be grouped with parenthesis and use the OR operator so the search result for a
given row will be successful for either match. The parenthesis wrapping the JSON_TEXT_CONTAINS() clauses are
necessary when additional search predicates are included with the AND operator. The AND operator takes
precedence over the OR. For example, consider these abstracted WHERE clauses:

1. WHERE A or B and C and D
This is evaluated as: WHERE A or (B and C and D)

2. WHERE (A or B) and C and D
This is what we want, where A & B are our JSON_TEXTCONTAINS() always being evaluated together
before filtering on other fields.

Search Results HTML "Snippet" With Search Term Highlighting
Displaying a relevant HTML "snippet" of the article content containing the search term can be accomplished by
returning the results of the Oracle Text CTX_DOC.POLICY_SNIPPET() function. CTX_DOC.POLICY_SNIPPET
produces a 'concordance' of the document, in which occurrences of the query term are returned with their
surrounding text. See the Oracle Text Application Developer's Guide 23ai

The POLICY_SNIPPET() function can take many parameters based on required functionality. For our basic
example, we require three parameters: the index to search, the data to display, and the search term. When
returning JSON data to display, we are choosing in this example to return the snippet from the paragraphs array
with the article body content in it. This JSON array data is returned as a CLOB and processed with
JSON_SERIALIZE() to give reliably displayable results. See the CTX_DOC section of the Oracle Text Reference 23ai
documentation.

Example: How to take an HTML snippet of document content with search term highlighting

https://docs.oracle.com/en/database/oracle/oracle-database/23/ccapp/presenting-documents-in-oracle-text.html#GUID-EB1024E5-7E65-43D9-9878-A4DF4F324D2B
https://docs.oracle.com/en/database/oracle/oracle-database/23/ccref/CTX_DOC-package.html#GUID-66B252A2-4C02-4E11-80DF-71BECD3BAFD6
https://docs.oracle.com/en/database/oracle/oracle-database/23/ccref/CTX_DOC-package.html#GUID-66B252A2-4C02-4E11-80DF-71BECD3BAFD6

51 JSON Full-Text Search with Oracle Globally Distributed Database 23ai / Version [1.0]

 Copyright © 2024, Oracle and/or its affiliates / Public

ctx_doc.policy_snippet('articles_idx',
 json_serialize(a.article_json.paragraphs RETURNING clob),
 '&s_searchterm') AS doc_snippet

Start and/or End Date Filters
All date form field values should be validated before query submission and cast to a date format. If no dates are
submitted, the WHERE clause filter predicates for date comparison should of course be omitted from the query
before submission.

For our example schema, we have implemented an Articles.last_modified virtual column that automatically
converts the JSON string value to a proper date format.

If only one date is submitted, the WHERE clause filter predicate would simply include a greater-than or less-than
comparison. When both values are required, the BETWEEN() function can be more efficient.

Use one of these three filter clauses per use-case scenario:

AND a.last_modified > TO_UTC_TIMESTAMP_TZ('&s_datestart')

AND a.last_modified < TO_UTC_TIMESTAMP_TZ('&s_dateend')

AND a.last_modified BETWEEN TO_UTC_TIMESTAMP_TZ('&s_datestart')
 AND TO_UTC_TIMESTAMP_TZ('&s_dateend')

Facet Checkbox Selected Values
Once the user completes the first search, and the facet queries have been run to populate the facet bucket values
and document counts, the user is able to select any combination of facet bucket values to further refine the
search results. After selecting the facet value check boxes and resubmitting the search form, the search results
documents query will need to be executed with additional WHERE clauses for the facets with returned bucket
values.

In our example, there are two facets on the form: facetCategories, and facetLang. After the first search, these will
be populated and contain select box elements/values for the categories and languages for the documents from
the earlier search results. Let's say the user for our example selects "Category:A" and "Category:B" to limit the
search context and then selects two languages, English (EN) and Hindi (HI), before submitting the search form
again.

In this case, the search results document query will need to include additional SQL WHERE clauses, and the JSON
path expressions required should be pre-assembled by the application and set in the bind variable values.

define s_filtercat = '$.categories[*]?(@.id == "Category:A" || @.id == "Category:B")';
define s_filterlang = '''EN'',''HI''';

 AND JSON_EXISTS (a.article_json, '&s_filtercat')
 AND a.lang IN (&s_filterlang)

For the Categories facet checkbox values, each document will be filtered by the JSON value of each
$.categories[].id value matching the either of the two values submitted. To do this, we construct a filter to use with
the JSON_EXISTS() function. The filter can be interpreted as "for every $.categories array element, match the
document if the contained @.id element equals one of the requested values". The addition of a Multivalue Index
on the articles_json.categories.id element values help optimize performance.

For the Language facet, because the bind variable values are compared to a simple scalar JSON element rather
than a JSON array, we can use a virtual column and a simpler relational clause. We avoid having to explicitly use a
JSON_VALUE() function in the query with the implementation of the Articles.lang virtual column.

Pagination
The user may choose the number of results to display or change the 'page' of results they want to see. The sorting
and pagination of the complete merged row set returned from all shards is performed at the shard catalog using a
“wrapper” SELECT statement around the main query. Use the “offset” function to provide pagination.

52 JSON Full-Text Search with Oracle Globally Distributed Database 23ai / Version [1.0]

 Copyright © 2024, Oracle and/or its affiliates / Public

Note that the example inner query has an optimizer hint of /* FIRST_ROWS(100) */. This value should probably
be modified dynamically using its own bind variable set to a value of (&n_pgoffset+1)*&n_pgrows if the remote
shard execution of the query is not optimizing well.

Category Facet Query
The query to aggregate data for the Category Facet returns distinct $category[].id values for all matching
documents ordered by document count and then the category. To retrieve a simple list of distinct category IDs
requires declaring a JSON Table with one column for the $category[].id values.

When using JSON_TABLE() we provide the JSON column to work with, the JSON array we want to parse data
from, and column definitions that use the JSON path relative to the array. This will distinctly populate a row in the
JSON Table for every $.category[].id value found in the JSON data for every row returned by this query. To get
the article_id counts we group by the JSON Table’s catid column.

The WHERE clauses for this query follow the same logic and functionality as the Search Results query but should
only include the search terms and any date values. The category and language facet data presented are
independent in our example.

Example: Category Facet SQL query

SELECT /*+ QB_NAME(facet_cat_uc3) FIRST_ROWS(10) PARALLEL(4) */
 jt.catid,
 COUNT(a.article_id) AS doc_count
 FROM Articles a,
 JSON_TABLE(Article_JSON,
 '$.categories[*]' COLUMNS (catid varchar2(64) PATH '$.id'
 null on error)) jt
WHERE
 (
 JSON_TEXTCONTAINS(a.article_json, '$.title', '&s_searchterm')
 OR JSON_TEXTCONTAINS(a.article_json, '$.paragraphs', '&s_searchterm')
)
 AND a.last_modified BETWEEN to_utc_timestamp_tz('&s_datestart')
 AND to_utc_timestamp_tz('&s_dateend')
GROUP BY jt.catid
ORDER BY doc_count DESC, jt.catid;

Example: Category Facet data set

CATID DOC_COUNT
-- ----------
Taxa_named_by_Carl_Linnaeus 246
Flora_of_New_South_Wales 200
Flora_of_Queensland 179
Fungi_of_North_America 148
Taxonomy_articles_created_by_Polbot 144

Language Facet Query
The design for the language facet query is identical to that of the Category facet query, however the JSON_TABLE
is built directly on the $.lang JSON element containing a single string value per document. Optionally, the
language facet query could utilize the lang Virtual Column we created earlier for relational queries. This
eliminates the complexity of calling and parsing a JSON_TABLE() function evaluation simplifying client-side code.
Both approaches are provided.

Example: Language Facet SQL Query with JSON_TABLE()

53 JSON Full-Text Search with Oracle Globally Distributed Database 23ai / Version [1.0]

 Copyright © 2024, Oracle and/or its affiliates / Public

SELECT /*+ QB_NAME(facet_lang_uc3a) PARALLEL(4) */
 jt.lang,
 COUNT(a.article_id) AS doc_count
 FROM Articles a,
 JSON_TABLE(Article_JSON,'$.lang' COLUMNS (lang PATH '$' null on error)) jt
 WHERE
 (
 JSON_TEXTCONTAINS(a.article_json, '$.title', '&s_searchterm')
 OR JSON_TEXTCONTAINS(a.article_json, '$.paragraphs', '&s_searchterm')
)
 AND a.last_modified BETWEEN to_utc_timestamp_tz('&s_datestart')
 AND to_utc_timestamp_tz('&s_dateend')
 GROUP BY jt.lang
 ORDER BY doc_count desc jt.lang;

Example: Category Facet data set

LANG DOC_COUNT
---- ----------
EN 851
HI 1

Example: Language Facet SQL query using a virtual column

SELECT /*+ QB_NAME(facet_lang_uc3b) PARALLEL(4) */
 a.lang,
 COUNT(a.article_id) AS doc_count
 FROM Articles a,
 WHERE
 (
 JSON_TEXTCONTAINS(a.article_json, '$.title', '&s_searchterm')
 OR JSON_TEXTCONTAINS(a.article_json, '$.paragraphs', '&s_searchterm')
)
 AND a.last_modified BETWEEN to_utc_timestamp_tz('&s_datestart')
 AND to_utc_timestamp_tz('&s_dateend')
 GROUP BY a.lang
 ORDER BY doc_count desc, a.lang;

Example: Language Facet data set

LANG DOC_COUNT
---- ----------
EN 851
HI 1

Conclusion
We have demonstrated how to keep your data in the Oracle database and combine the power of OracleText
Indexes, JSON Search capabilities, and Oracle’s Globally Distributed Database architecture to provide full-text
search at a massive scale using Oracle’s native query capabilities.

This provides the ability to:

54 JSON Full-Text Search with Oracle Globally Distributed Database 23ai / Version [1.0]

 Copyright © 2024, Oracle and/or its affiliates / Public

 Reduce application complexity with a single connection model for data and search requests.

 Eliminate requirements for other third-party document stores, reducing operational costs.

 Scale-out to support massive datasets and extreme workloads.

 Leverage the high availability inherent to Oracle Database solutions.

55 JSON Full-Text Search with Oracle Globally Distributed Database 23ai / Version [1.0]

 Copyright © 2024, Oracle and/or its affiliates / Public

Appendix A: High Availability and Disaster Recovery
Oracle Maximum Availability Architecture best practices apply to Globally Distributed Databases.

In terms of replication technologies, Oracle Globally Distributed Database includes a built-in Raft replication
technology using Raft consensus algorithms. Oracle Data Guard is also tightly integrated. Either replication
technology can be chosen for the shard databases. Oracle Data Guard can be used for replicating the shard
catalog database.

References:

 Replication in Oracle Globally Distributed Database

 Introduction to Sharded Database Deployment

 Raft Replication Configuration and Management

 Oracle MAA Best Practices for Oracle Database

https://docs.oracle.com/en/database/oracle/oracle-database/23/shard/replication.html#GUID-133A4C15-FCD5-46E3-B33B-0DB3EBE54064
https://docs.oracle.com/en/database/oracle/oracle-database/23/shard/deployment1.html#GUID-059FD35C-C1C2-4B14-9A76-B3632A6080DC
https://docs.oracle.com/en/database/oracle/oracle-database/23/shard/raft-replication.html#GUID-AB5D3A4B-51BD-456C-B03E-4C6B3EDB4C2B
https://www.oracle.com/database/technologies/high-availability/oracle-database-maa-best-practices.html

56 JSON Full-Text Search with Oracle Globally Distributed Database 23ai / Version [1.0]

 Copyright © 2024, Oracle and/or its affiliates / Public

Appendix B: Sharded Data Distribution Methods
Oracle Globally Distributed Database uses a scaling technique based on horizontal partitioning of data across
multiple independent physical databases, called “shards”. The distribution of the data is transparent to the
application.

Tables that are deployed as sharded tables are partitioned in a manner similar to the standard Oracle Database
partitioning features with the addition of distributing the data into specific partitions across distinctly separate
shard databases. The way data is distributed across the shards can be chosen to align with your design goals and
requirements. For a comprehensive introduction, see the Overview section of the Oracle Globally Distributed
Database Guide documentation.

Because Oracle Globally Distributed Database is based on table partitioning, all of the sub-partitioning methods
provided by Oracle Database are also supported by Oracle Globally Distributed Database.

A data distribution method controls the placement of the data on the shards. Oracle Globally Distributed Database
supports system-managed, user-defined, directory-based, and composite sharding methods.

 System-managed: Does not require you to map data to shards. The data is automatically distributed
across shards using partitioning by consistent hash. The partitioning algorithm uniformly and randomly
distributes data across shards.

See System-Managed Sharding in the Oracle Globally Distributed Database Guide documentation for
more information.

 User-defined: Lets you explicitly specify the mapping of data to individual shards. It is used when,
because of performance, regulatory, or other reasons, certain data needs to be stored on a particular
shard, and the administrator needs to have full control over moving data between shards.

See User-Defined Sharding in the Oracle Globally Distributed Database Guide documentation for more
information.

 Composite: Allows you to use two levels of partitioning. First the data is partitioned by range or list and
then it is partitioned further by consistent hash.

In many use cases, especially for data sovereignty and data proximity requirements, the composite
method offers the best of both system-managed and user-defined methods, giving you the automation
you want and the control over data placement you need.

See Composite Sharding in the Oracle Globally Distributed Database Guide documentation for more
information.

 Directory-Based: An enhancement of the user-defined method, where the location of data records
associated with any sharding key is specified dynamically at runtime based on user preferences. The key
location information is stored in a directory, which can hold a large set of key values in the hundreds of
thousands.

You have the freedom to move individual key values from one location to another, or make bulk
movements to scale up or down, or for data and load balancing. The location information can include the
shard database information and partition information.

See Directory-Based Sharding in the Oracle Globally Distributed Database Guide documentation for more
information.

https://docs.oracle.com/en/database/oracle/oracle-database/23/shard/overview1.html#GUID-0F39B1FB-DCF9-4C8A-A2EA-88705B90C5BF
https://docs.oracle.com/en/database/oracle/oracle-database/23/shard/system-managed-sharding.html#GUID-37F20817-EFD5-400B-A082-41171C0B6D1C
https://docs.oracle.com/en/database/oracle/oracle-database/23/shard/user-defined-sharding.html#GUID-DA34E219-A601-40B3-A6E4-6545CA2EBB0B
https://docs.oracle.com/en/database/oracle/oracle-database/23/shard/user-defined-sharding.html#GUID-DA34E219-A601-40B3-A6E4-6545CA2EBB0B
https://docs.oracle.com/en/database/oracle/oracle-database/23/shard/directory-based-sharding1.html#GUID-DDF72F24-4303-4B9E-A2D6-A9BF740A44DD

57 JSON Full-Text Search with Oracle Globally Distributed Database 23ai / Version [1.0]

 Copyright © 2024, Oracle and/or its affiliates / Public

Further Reading:

Oracle’s JSON Capabilities:

 23ai Overview of Sharding JSON Documents

 23ai Doc Reference: JSON Developer's Guide

 Oracle Blog post on the new JSON datatype:

 Oracle Blog post on how JSON documents can be stored in a Sharded environment:

Oracle Text:

 Tech Brief: New User's Guide to Oracle Text in Oracle Database

 23ai Oracle Text Application Developer's Guide

Globally Distributed Database:

 23ai Globally Distributed Database Documentation

 Configure TCPS with TLS for Sharding

 Oracle Globally Distributed Database Deployment

 Command Reference

Global Data Services:

 Global Data Services Concepts and Administration Guide

https://docs.oracle.com/en/database/oracle/oracle-database/23/shard/sharding-json-document-collections1.html#GUID-DBDA8C48-E456-4E48-BE69-FC3F8B58982B
https://docs.oracle.com/en/database/oracle/oracle-database/23/adjsn/intro-to-json-data-and-oracle-database.html#GUID-17642E43-7D87-4590-8870-06E9FDE9A6E9
https://blogs.oracle.com/database/post/json-type-and-other-cool-new-json-features-in-oracle-database-release-21c
https://blogs.oracle.com/database/post/writing-applications-for-json-documents-in-a-sharded-environment
https://www.oracle.com/a/otn/docs/newusersguidetooracletext.pdf
https://docs.oracle.com/en/database/oracle/oracle-database/23/ccapp/index.html#Oracle%C2%AE-Text
https://docs.oracle.com/en/database/oracle/oracle-database/23/shard/index.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/shard/security1.html#GUID-B3240727-88A1-480A-A1C9-B9EA5977E495
https://docs.oracle.com/en/database/oracle/oracle-database/23/shard/deployment1.html#GUID-F99B8742-4089-4E77-87D4-4691EA932207
https://docs.oracle.com/en/database/oracle/oracle-database/23/shard/reference1.html#GUID-89DBBC10-D892-4FA7-A38B-6761B2A936CF
https://docs.oracle.com/en/database/oracle/oracle-database/23/gsmug/index.html

58 JSON Full-Text Search with Oracle Globally Distributed Database 23ai / Version [1.0]

 Copyright © 2024, Oracle and/or its affiliates / Public

Connect with us

Call +1.800.ORACLE1 or visit oracle.com. Outside North America, find your local office at: oracle.com/contact.

 blogs.oracle.com facebook.com/oracle twitter.com/oracle

Copyright © 2024, Oracle and/or its affiliates. This document is provided for information purposes only, and the contents hereof are subject to change without notice. This document
is not warranted to be error-free, nor subject to any other warranties or conditions, whether expressed orally or implied in law, including implied warranties and conditions of
merchantability or fitness for a particular purpose. We specifically disclaim any liability with respect to this document, and no contractual obligations are formed either directly or
indirectly by this document. This document may not be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, without our prior written
permission.

Oracle, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

https://blogs.oracle.com/
https://www.facebook.com/Oracle/
https://twitter.com/oracle

	Introduction
	Technologies
	Oracle Database support for JavaScript Object Notation (JSON)
	Oracle Text
	Oracle Globally Distributed Database

	Solution Overview
	Planning The Solution
	Example Application Requirements
	The JSON Data Set
	Analyzing the JSON Data for Schema and Query Design
	wid
	Title
	Paragraph[] Array Data
	Categories[] Array Data
	Lang
	Timestamp

	Schema Design
	JSON Columns
	Virtual Columns
	Sharded Data Distribution Methods
	Sharding Key
	Schema Structure
	Database Schema Details

	Planning the Sharded Database Topology
	Globally Distributed Database Components
	Shards
	Shard Directors
	Shard Catalog

	Building the Environment
	Deploying Database Infrastructure for the Shards and Shard Catalog
	Deploying Compute Infrastructure for the Shard Director
	Installing Global Data Services on the Shard Director Host
	Verify Connectivity
	Testing Database TNS Connectivity

	Configuring and Tuning the Database Instances
	Parameter Tuning and Event Tracing
	Database User Accounts and Password Policies
	Validate Each Shard Database
	Configuring TCPS with TLS for Sharding on OCI

	Configuring the Oracle Globally Distributed Database Topology on the Shard Director
	Create the Shard Catalog
	Add and Start a GSM Instance
	Add Host Metadata
	Add Shardgroups
	Verify the Sharding Topology
	Add Shard CDBs
	Add Shard PDBs
	Deploy the Sharding Configuration
	Create and Start Global Database Services

	Creating the Sharded Database Schema

	Bulk Loading the JSON Data
	Deploy the JSON Data File
	Load the JSON Documents
	Collect Statistics

	Indexing Sharded JSON Data
	Creating an Index on the Primary Key
	Creating a Multivalue Index on JSON Array Values
	Creating an Oracle Text Index
	Validating Oracle Text Index Status
	Query for Tablespace Size
	Query for List of Tables, Status, and Number of Rows for Our Schema User
	Query for the Status of the Index
	Query for Partition Status
	Query for a List of Index Partitions and Details.

	Search Query Design and Examples
	Example Search Form
	Search Form Layout and Parameters:

	Use Cases
	Query Design
	SQL Query Overview
	Bind Variables
	Search Results Query
	Returned Data
	Noteworthy SQL Functionality
	Search Term Text
	Search Results HTML "Snippet" With Search Term Highlighting
	Start and/or End Date Filters
	Facet Checkbox Selected Values
	Pagination

	Category Facet Query
	Language Facet Query

	Conclusion
	Appendix A: High Availability and Disaster Recovery
	Appendix B: Sharded Data Distribution Methods

