

Business / Technical Brief

JSON in Oracle Database:
Performance Considerations

On-Premises and Cloud
(including Autonomous Database),
SODA (Simple Oracle Document Access API),
Oracle Database API for MongoDB

November 2022, Version 2.0
Copyright © 2022, Oracle and/or its affiliates
Public

1 Business / Technical Brief / JSON in Oracle Database: Performance Considerations / Version 2.1

Copyright © 2022, Oracle and/or its affiliates / Public

Table of contents

Purpose 3

Brief Introduction to JSON in the Oracle Database 3

Performance Features and Techniques – an in-depth view 3

Storing JSON Data in Oracle Databases for optimal performance 3

Workload Types and Data Access Patterns 4

JSON document retrieval by key (OLTP) 4

JSON document retrieval by field value(s) (OLTP) 4

JSON document retrieval with full text search (OLTP, OLAP) 5

Extraction of JSON value for reporting or analytics (OLAP) 5

JSON Generation (OLTP, OLAP) 5

Performance Features and Techniques – an in-depth view 5

Function-based Indexes 6

Multi-Value Index 6

JSON Search Index 7

Materialized Views 7

Oracle Partitioning 8

Parallel Execution 9

Oracle In-Memory Columnar Storage 10

Oracle Exadata Database Machine 10

Oracle Real Application Clusters 10

Oracle Sharding 11

Performance Tips for SODA Collections 11

Further Information – Links 12

2 Business / Technical Brief / JSON in Oracle Database: Performance Considerations / Version 2.1

Copyright © 2022, Oracle and/or its affiliates / Public

Purpose

This document provides an overview of performance tuning best practices for
JavaScript Object Notation (JSON) stored and processed in Oracle Databases.
Applying these best practices will allow Developers, DBA’s, and Architects to
proactively avoid performance issues and ensure the applications and systems
they design operate at peak performance.

The hyperlinks through out this document provide access to documentation,
additional information, examples, and free hands-on training.

Brief Introduction to JSON in the Oracle Database

In 2014, Oracle released Oracle 12.1.0.2, which added native JSON support
across all Oracle Database Editions. Before this release, JSON was often stored
in NoSQL databases which lacked functionality and a data consistency model,
which forced developers to add additional code to ensure data integrity.

To compensate for NoSQL shortcomings, developers included using relational
databases or other data storage technologies, for example to run analytical
queries. The inclusion of native JSON support in 2014 eliminated the need for
these additional specialized data storage technologies, which greatly
accelerates development by eliminating integration work, simplifying
deployments, reducing risk, and reducing cost. Additionally, storing,
processing, and analyzing JSON using standardized SQL operators significantly
reduces adoption time, required skills and empowers non-developers to easily
work with JSON data.

The Oracle Database provides Native JSON support. JSON works with all Oracle
Database Capabilities including Options, Oracle management Packs,
Frameworks, Architectures, and Security. JSON stored in the Oracle database
also benefits from the Performance, Scalability, Availability, Extensibility,
Portability, and Security of the Oracle Database. Access to JSON stored in the
Oracle Database is the same as access other database access methods,
including OCI, .NET, and JDBC.

Additional information regarding JSON in the Oracle Database can be found in
the JSON Developer’s Guide.

Performance Features and Techniques – an in-depth view

The following section describes the features discussed in the workload section
in more detail:

Storing JSON Data in Oracle Databases for optimal performance

JSON can be stored using columns whose data types are VARCHAR2, CLOB,
BLOB, or JSON. Whichever type you use, you can manipulate JSON data as you
would any other data of those types.

• For Oracle 21c, it is recommended to use the native JSON type,
optimized for queries and efficient (partial) updates. An IS JSON check
constraint can be defined on the JSON columns to enforce correct
JSON syntax and can be disabled (not dropped) if the application can
guarantee JSON correctness.

• For Oracle 19c, it is recommened to use the native BLOB data type,
which is also optimized for queries and efficient updates.

JSON Developer Guide:

19c, 21c

3 Business / Technical Brief / JSON in Oracle Database: Performance Considerations / Version 2.1

Copyright © 2022, Oracle and/or its affiliates / Public

• CLOBs are also supported, but should be avoided as CLOBS typically
require twice storage space (and disk reads) due to UCS2 encoding.

• VARCHAR2s fields are also supported and can be considered if the
maximum JSON document size is known or the JSON Documents are
already stored in VARCHAR2 fields or if the simplicity of working with
VARCHAR2 is preferred. VARCHAR2 values can hold up to 32 bytes.

Workload Types and Data Access Patterns

Database workloads can be classified as operational or analytical. Operational
workloads, also known as online transaction processing systems, or OLTP, are
transaction-oriented, have many users, and are designed for immediate
response; for example, an automated teller machine (ATM) for a bank. OLTP
systems support all data manipulation types. Typical operations involve
transactions that insert or update data using a minimal number of rows. The
performance goals for OLTP systems are transactional speed, throughput,
and Database Concurrency. In contrast, Analytical workloads, such as online
analytical processing (OLAP), data warehouses, and data lakes, are built for
data analysis, have fewer users, and are designed to process large volumes of
data. Typical operations include processing thousands or millions of rows using
complex resource-intensive queries which join and aggregate data across
many tables. OLAP systems are optimized for query.

JSON document retrieval by key (OLTP)

Your workload selects individual JSON documents based on a relational
column (key), with the JSON data stored in a second (payload) column. A
primary key constraint on the key column enforces unique key values and
also indexes them for fast lookups. If the key is not random (for example,
using a sequence or identity column), then the index may become a hot spot
in highly transactional systems because concurrent/subsequent inserts hit
the same index block. Hash Partitioning the index on the key column will
distribute inserts evenly to all partitions. SODA and MongoDB collections
automatically have a primary key column – no further action is required for
key-based document lookups.

JSON document retrieval by field value(s) (OLTP)

Here, one or few documents are selected by field values inside the JSON
document. Path expressions in JSON_VALUE or JSON_EXISTS operators
define the values. If the same path expressions are used repeatedly, a
function-based index using JSON_VALUE is recommended. Indexing your
field values of interest ensures the best possible performance by replacing
full table scans with index lookups for data retrieval.

While indexing single fields within a JSON document can be easily
accomplished, the indexing of arrays is more challenging. Function-based
indexes cannot index array values (the function can only return one value
per JSON data); in releases prior to Oracle 21c, materialized views can be
used as an alternative: the materialized view expands the array into a
relational column with multiple row entries that are then indexed as normal
columns. Oracle’s comprehensive query rewrite framework automatically
rewrites SQL statements against the JSON document to use the materialized
view for fast data retrieval. With Oracle 21c, you index values in JSON arrays
natively, using new multi-value index capabilities introduced in this release.

“Native JSON support is
significant because it
used to be the case that
one had to choose
between more efficient
JSON management in a
pure-play DBMS, or the
ability to integrate
JSON data with other
data, such as relational
data…now, that choice
is no longer necessary,
because Oracle
Database features both
JSON efficiency and
integrated data
management."

Carl W Olofson IDC

bit.ly/nativeJSON_IDC

4 Business / Technical Brief / JSON in Oracle Database: Performance Considerations / Version 2.1

Copyright © 2022, Oracle and/or its affiliates / Public

JSON document retrieval with full text search (OLTP, OLAP)

Some workloads only know the values of interest without knowing the path
expressions to the fields within the JSON document, such as in ad-hoc
queries on arbitrary documents. Oracle provides a JSON Search Index to
improve the performance of such workloads. With JSON Search Indexes,
the SQL/JSON operator JSON_TEXTCONTAINS allows selecting rows based
on text search criteria, including word stemming and fuzzy search.

Extraction of JSON value for reporting or analytics (OLAP)

In reporting or analytical use cases, JSON data is mapped to the relational
model for further processing using SQL. Commonly used SQL operations
are joins (with other JSON or relational data), aggregates (sum, averages,
window functions), or machine learning (classification, prediction). The
SQL/JSON operator JSON_TABLE allows the mapping from JSON to the
relational model. Whenever possible, Oracle Database optimizes multiple
JSON query operators into a single JSON_TABLE statement (shown in the
query execution plan).

For highly selective analysis (only a few JSON documents are selected based
on field filter criteria) the access can be optimized with indexes. If many (but
not all) rows are accessed, and indexes are no longer selective enough,
partitioning the data should be considered to prune irrelevant partitions
from the query. It is also recommended to leverage parallel execution
whenever you work on large data volumes. The SQL/JSON operator
JSON_TABLE can be parallelized without any limitations.

Suppose you run the same transformation from JSON to relational
repeatedly, for example, a daily report or dashboard queries. In that case, a
materialized view avoids the repeated execution of the same JSON_TABLE
transformation at runtime altogether by materializing intermediate results
in the view. JSON_TABLE materialized views are fast-refreshable so that
they get efficiently and automatically refreshed after inserts or updates.
A materialized view can also be used together with Oracle Database In-
Memory to benefit from in-memory columnar compression and fast SIMD
scans. This greatly improves performance, especially for analytical queries.

JSON Generation (OLTP, OLAP)

Oracle database added SQL/JSON operators to generate new JSON data
from relational data and query results. Typical use cases are to modify the
shape of one JSON document or to return the result of an analytical query
as a JSON data extract. When only a few rows are accessed, then indexes
provide fast access to them. If the JSON generation is built on many rows,
then materialized views should be considered with the caveat that fast
refresh is only supported in limited cases for JSON generation.

Performance Features and Techniques – an in-depth view

The following section describes the performance relevant features in more
detail and with examples. In general, normal SQL tuning techniques apply:
you can leverage the skills you already know.This shortens the learning curve
and removes the fear DBA’s and database managers have regarding adopting
JSON in the Oracle Database. The main idea behind the tuning techniques is
to reduce the data that needs to be read and processed:

5 Business / Technical Brief / JSON in Oracle Database: Performance Considerations / Version 2.1

Copyright © 2022, Oracle and/or its affiliates / Public

Function-based Indexes

Function-based indexes can be created on specific keys or a combination of
keys and optimize query operations that use SQL/JSON operators on the same
keys. Function-based indexes are built using JSON_VALUE operators and
support both bitmap and B-Tree index format.

The following creates a (unique) functional index on the PONumber key of our
sample JSON document, accessed by the path expressions ‘$.PONumber’.
The example assumes the JSON data is stored in a column called ‘data’ of a
table called ‘purchaseorder’.

create unique index PO_NUMBER_IDX on PURCHASEORDER po(
json_value(po.DATA, '$.PONumber' returning number

null on empty error on error));

The PONumber values will be extracted (and indexed) as numbers. This affects
range queries (numeric ordering instead of alphabetical ordering) and avoids data
type conversions at runtime for mathematical operations or comparisons. Missing

values will be indexed as SQL NULL value.

The following query uses the simplified JSON syntax. Because of the ‘number()’
item method, the index is used for data retrieval, as the plan shows.

select data from PURCHASEORDER po
where po.data.PONumber.number() = 200;

| Id | Operation | Name |

0	SELECT STATEMENT	
1	TABLE ACCESS BY INDEX ROWID	PURCHASEORDER
* 2	INDEX UNIQUE SCAN	PO_NUMBER_IDX

Multi-Value Index

A multi-value index is recommended if a path expression can select more than
one value – this is common when accessing values inside a JSON array. The
following creates a multi-value index on the field ‘UPCCode in the JSON array
‘LineItems’of our sample JSON document. The values are indexed as strings.

create multivalue index UPCCODE_INDEX on PURCHASEORDER po(
po.data.LineItems.Part.UPCCode.string());

The multi-value index also uses B-Trees but is slightly slower than the
functional index because resulting ROWIDs need deduplication. Therefore, if a
path expression is known to return at most one value, the function-based index
should be preferred. Multi-value indexing was introduced in Oracle 21c (for
earlier reasons, materialized views can be used to accelerate access to arrays).
The following query uses the multi-value index:

select data from PURCHASEORDER po where
po.data.LineItems.Part.UPCCode.string() = '13131092705';

| Id | Operation | Name |

0	SELECT STATEMENT	
* 1	TABLE ACCESS BY INDEX ROWID BATCHED	PURCHASEORDER
* 2	INDEX RANGE SCAN (MULTI VALUE)	UPCCODE_INDEX

Functional Indexes 19c, 21c

"Independent
benchmarking of JSON
databases based on the
Yahoo! Cloud System
benchmark revealed
that Oracle is by far the
leader in the space,
outperforming all
competitors […]"

Accenture technical report:

Increase agility and cut

bdevelopment time with JSON

and Oracle, 2021

https://accntu.re/3Iezy00

JSON Multi-Value Index 21c

6 Business / Technical Brief / JSON in Oracle Database: Performance Considerations / Version 2.1

Copyright © 2022, Oracle and/or its affiliates / Public

https://accntu.re/3Iezy00

JSON Search Index

Oracle Database supports indexing an entire JSON document using a search
index, which is based on Oracle Full-Text index. The search index incorporates
not only all values but their field names as well and allows full-text searches.
The following creates a JSON Search index on ‘purchaseorder’.

create search index PO_FULL_IDX on PURCHASEORDER po (po.data) for json
parameters('SYNC (EVERY "FREQ=SECONDLY; INTERVAL=1") DATAGUIDE OFF');

The ‘parameters’ clause specifies that the index is asynchronous and gets
synchronized every second. It is also possible to sync the index with every
transaction commit, but this increases the cost of index maintenance and
reduces the throughput of concurrent DML. The JSON Search index can also
discover schema changes during DML operations with a feature called JSON
Dataguide – it allows for example to auto-generate JSON_Table views. The
clause ‘DATAGUIDE OFF’ disables this schema discovery and therefore reduces
the costs of the JSON Search Index during DML operations.

The underlying data structure of a JSON Search index is posting lists, which are
typically slower than B-Tree indexes. If the JSON Search index is used together
with function-based indexes or the multi-value index, then those will be
preferred by the Optimizer whenever possible. Because a JSON Search index
indexes the entire JSON data, the size of this index will be significantly larger
than other indexes, typically in the range of 20%-30% of the original data.
JSON Search indexes support values inside JSON arrays and also full-text
search operations.The following selects all documents with a ‘Description’ field
that contains both the word ‘Magic’ and ‘Christmas’. Instead of ‘{and}’, one
could also use ‘{near}’ or ‘{not(…)}’. More information about the capabilities of
JSON search indexes can be found in the documentation

select data from PURCHASEORDER po
where JSON_TEXTCONTAINS(po.data, '$.LineItems.Part.Description', 'Magic
{and} Christmas');

The query execution plan shows a JSON Search index as a ‘Domain Index’:

| Id | Operation | Name |

0	SELECT STATEMENT	
1	TABLE ACCESS BY INDEX ROWID	PURCHASEORDER
* 2	DOMAIN INDEX	PO_FULL_IDX

For workloads with many DML operations, it may be beneficial to use a single
JSON search index over a large number of functional and multi-value indexes
to reduce the amount of index maintenance (index synchronization after DML).
Further optimization strategies are listed in the blog referenced on the right.

Materialized Views

You can use materialized views to improve the performance of frequent queries
that access many rows (not key-based lookups that are index driven). A
materialized view persist the result of a query. Subsequent queries that partially
or fully match the query of the materialized view access the materialized data
without having to re-run the original query (space is traded for speed).

In this document, we focus primarily on JSON_TABLE materialized views. The
following creates a materialized view including values from the ‘LineItems’
7 Business / Technical Brief / JSON in Oracle Database: Performance Considerations / Version 2.1

Copyright © 2022, Oracle and/or its affiliates / Public

JSON Search Index: 19c, 21c

JSON Search Index blog

JSON DataGuide: 19c, 21c

JSON_Table

Materialized Views: 19c, 21c

array of our sample JSON document. As previously mentioned, with the use
of materialized views one can index JSON array values in Oracle 19c, where
multi-value JSON indexes are not available.:

create materialized view PO_MV build immediate
refresh fast on statement with primary key as

select po.id, jt.*
from PURCHASEORDER po,

json_table(po.data, '$' error on error null on empty
columns (

po_number NUMBER PATH '$.PONumber',
userid VARCHAR2(10) PATH '$.User',
NESTED PATH '$.LineItems[*]'
columns (

itemno NUMBER PATH '$.ItemNumber',
description VARCHAR2(256) PATH '$.Part.Description',
upc_code NUMBER PATH '$.Part.UPCCode',
quantity NUMBER PATH '$.Quantity',
unitprice NUMBER PATH '$.Part.UnitPrice')))

jt;

The transformation of our array values into multiple rows in our materialized
view allows us to create an additional (secondary) index on fields of our JSON
array as follows:

CREATE INDEX mv_idx ON PO_MV(upc_code, quantity);

SQL/JSON queries on the base table will now transparently rewrite to use
materialized views and its indexes whenever possible. The following query is
an example where Oracle automatically rewrites the query to use the
materialized view and its secondary index, as seen in the execution plan:

select data from PURCHASEORDER po
where JSON_EXISTS(po.data, '$.LineItems[*]?(@.Part.UPCCode == 1234)');

| Id | Operation | Name |
…
| 4 | MAT_VIEW ACCESS BY INDEX ROWID BATCHED| PO_MV |
|* 5 | INDEX RANGE SCAN | MV_IDX |

To keep the materialized view (MV) in sync with the underlying data (after
DML) we created our materialized view as ‘fast refreshable on statement’.
This automates the process of refreshing and keeps the materialized view and
the base table data consistent all the time. An in-depth discussion of the
various refresh mechanisms of materialized views is out of the scope of this
paper. Please consult the documentation for further details.

Oracle Partitioning

You can patition a table of with documents like you normally would to improve
performance: Partitioning enables tables and indexes to be subdivided into
individual smaller physical objects, so-called partitions. The data placement
within a partitioned table is identified by a partitioning key. This key can be a
relational column or a field from the JSON data. From the perspective of the
application, a partitioned table is identical to a non-partitioned table.

The following example creates a range partitioned table with the partition key
extracted from the JSON document stored in column ‘data’, using a
JSON_VALUE-based virtual column called ‘po_num_vc’;

“The ability to run all the
critical enterprise
database loads—from
analytical to
transactional loads—in
autonomous fashion, as
well as support for ML,
Graph, IoT, JSON and
more, sets the Oracle
Autonomous Database
apart in the market for
databases right now.
Would you rather have
nine specialized
databases, each with its
own separate security
profile and management
learning curve, or a
single database that
operates with all types of
datasets autonomously?"

Holger Mueller, Constellation

bit.ly/ADB_Constellation

JSON Partitioning: 19c, 21c

Partitioning Concepts: 19c, 21c

8 Business / Technical Brief / JSON in Oracle Database: Performance Considerations / Version 2.1

Copyright © 2022, Oracle and/or its affiliates / Public

mailto:LineItems[*]?(@.Part.UPCCode

CREATE TABLE part_j (id VARCHAR2 (32) NOT NULL PRIMARY KEY,
data JSON,
po_num_vc NUMBER GENERATED ALWAYS AS

(json_value (data, '$.PONumber' RETURNING NUMBER)))
PARTITION BY RANGE (po_num_vc)

(PARTITION p1 VALUES LESS THAN (1000),
PARTITION p2 VALUES LESS THAN (2000));

Queries filtering on the JSON field'$.PONumber'- the JSON field used as virtual
column partitioning key - will transparently benefit from Oracle Partitioning: an
optimization technique called partition pruning automatically excludes all
irrelevant partitions, partitions that are known not to contain any data relevant
for a query.

The following sample query only needs to access the first partition since the
equality predicate of the query can only find matching records in this very
partition. This is shown in the execution plan, with columns Pstart and Pstop
both being 1.

select data from part_j
where json_value (data, '$.PONumber' RETURNING NUMBER) = 500;

| Id | Operation | Name | Time | Pstart| Pstop |

0	SELECT STATEMENT		00:00:01		
1	PARTITION RANGE ALL		00:00:01	1	1
* 2	TABLE ACCESS FULL	PART_J	00:00:01	1	1

Oracle Partitioning has various mechanisms to partition a table, which are
omitted here for space reasons. Please consult the documentation for more
details. In general, using a relational column as partition key for larger JSON
documents (average >32kb) is generally more performant during DML than
using a JSON_VALUE virtual column because the latter requires the extraction
of the partitioning key from the JSON prior of writing to the right partition.

Parallel Execution

JSON operations (for example queries or bulk updates) can be parallelized by
processing JSON documents using multiple processes. This yields a more
efficient use of hardware resource and is key for large-scale data processing.

Large data warehouses should always use parallel execution to achieve good
performance. Specific operations in OLTP applications, such as batch
operations, can also significantly benefit from parallel execution.

Parallel execution supports both queries and DML (inserts, updates). There are
multiple ways to enable and configure parallel execution. For example, Oracle
Autonomous Database automatically selects parallelism depending on the
consumer group chosen for a connection. For databases that control
parallelism manually, you can enable parallelism on a session level or decorate
individual objects. For example, the following enables a degree of parallelism
of 8 for our table ‘purchaseorder’.

alter table PURCHASEORDER parallel 8;

If parallel execution is used, then the execution plan will show lines with ‘PX’.

| 1 | PX COORDINATOR |
| 2 | PX SEND QC (ORDER) |

Parallel Execution: 19c, 21c

9 Business / Technical Brief / JSON in Oracle Database: Performance Considerations / Version 2.1

Copyright © 2022, Oracle and/or its affiliates / Public

Oracle In-Memory Columnar Storage

JSON data can be stored in the In-Memory Column Store (IM column store) to
improve query performance. JSON values up to a size of 32 KBytes can directly
be loaded and processed in-memory – together with other relational columns.
Often, not all the values in the JSON document are relevant for an analytical
query. In this case, memory can be used more efficiently by just moving the
relevant JSON fields separately in memory: either by using virtual columns or
an intermediate materialized view.

The following example adds a virtual column to our table ‘purchaseorder’ that
extracts the ‘zipCode’ field from the order’s address. The virtual column is
added, and the table is enabled for in-memory processing.

alter table PURCHASEORDER add (ZIP varchar2(4000) generated always as
(JSON_VALUE(data, '$.ShippingInstructions.Address.zipCode.number()')));

alter table PURCHASEORDER inmemory;

The following analytical sample query counts the number of orders by
zipCode and makes use of fast in-memory processing, as seen in the
execution plan.

select zip, count(1) from PURCHASEORDER group by zip ;

| Id | Operation | Name |

0	SELECT STATEMENT	
1	HASH GROUP BY	
2	TABLE ACCESS INMEMORY FULL	PURCHASEORDER

store that also supports
SQL analytics over
JSON and Blockchain."

Peter Merkert, CTO Retraced

www.retraced.co

Oracle Exadata Database Machine

Exadata accelerates JSON performance: queries with table and index scans
can offload data search and retrieval processing to the Exadata Storage
Servers. This offloading happens automatically and transparently for JSON
operators, for example JSON_VALUE or JSON_EXISTS if used in the WHERE
clause of a query. JSON documents up to 4KB can be offloaded to the
Exadata Storage Server. Larger documents will be processed in the database.

The STORAGE term in an execution plan shows that offloading is done:

| Id | Operation | Name |

|* 3 | TABLE ACCESS STORAGE FULL| PURCHASEORDER |

Oracle Real Application Clusters

Oracle Real Application Clusters (RAC) allow customers to run a single Oracle
Database across multiple servers in order to maximize availability and enable
horizontal scalability while accessing shared storage.

Using Oracle Real Application Clusters is transparent to the processing of
JSON documents, and any SQL/JSON processing will automatically benefit.

In-Memory JSON: 19c, 21c

In-Memory Guide: 19c, 21c

"We heavily use JSON
whenever faced with
unpredictable data from
external APIs or custom
user extensions. We
decided to use Oracle
Database as a document

Oracle Exadata Database

Machine: doc

Oracle Real Application

Clusters doc: 19c, 21c

10 Business / Technical Brief / JSON in Oracle Database: Performance Considerations / Version 2.1

Copyright © 2022, Oracle and/or its affiliates / Public

Oracle Sharding

Oracle Sharding is also a horizontal scaling technique, but unlike RAC, it uses a
shared-nothing architecture. Sharding allows JSON documents to scale to
massive data and transactions volume and support data sovereignty. JSON
documents are distributed to the individual database table shards according to
the sharding key, which can be a relational column or a JSON field.

Using Oracle Sharding is transparent to the processing of sharded JSON
documents. For many operations the processing of sharded documents will
take place only on the database owning a specific shard of the documents
whereas cross-shard queries will transparently collect and aggregate result
data from all relevant shards.

This concludes the JSON performance tuning features in Oracle Database. The
following summarized performance relevant topics for the JSON Document
Store APIs (MongoDB collections and SODA collections):

Performance Tips for SODA Collections

Oracle Database offer APIs that allow to access JSON data as collections: The
Oracle Database API for MongoDB and the Simple Oracle Document Access API
- SODA. Conceptually, JSON collections stores JSON data (called documents)
in automatically generated tables (so that SQL access is also possible). SODA
supports the same storage options as regular tables with JSON data, and the
same recommendations apply: use BLOB on Oracle 19c and the native JSON
type on Oracle 21c.

Users will typically work with JSON collections using native language drivers,
for example, SODA for Java or SODA for Python. SODA native language drivers
generally provide more throughput (operations per second) than the REST
driver (SODA for REST).

It is recommended to configure the SODA drivers as follows:

• Enable SODA Metadata Cache
The SODA driver needs to know the metadata of each JSON collection (the
column names, types, etc.). By enabling the metadata cache, roundtrips to
the database can be saved, improving latency and throughput.

• Enable Statement Cache
Statement caching improves performance by caching executable
statements that are used repeatedly, such as in a loop or in a method that
is called repeatedly. For Java, the statement cache is enabled using JDBC.

• For load-balanced systems: turn off DNS caching
Load balancing allows to distribute SODA operations across different
nodes. If DNS caching is turned on, then all connections are likely to use
the same node and nullifying the load balancing. For Java, the following
system property should be set: inet.addr.ttl=0

The database performance tuning techniques also apply to SODA: for
example, SODA collections can be partitioned or sharded, and queries can
be accelerated using indexes and/or materialized views. SODA operations
are translated automatically to equivalent SQL operations: for example, a

Oracle Sharding Doc:19c, 21

Sharded JSON collections: doc

SODA API

Database API for MongoDB

11 Business / Technical Brief / JSON in Oracle Database: Performance Considerations / Version 2.1

Copyright © 2022, Oracle and/or its affiliates / Public

SODA query becomes a SELECT with a JSON_EXISTS operator in the WHERE
clause.

The SQL operations can be retrieved from the v$sql database view or by
enabling logging in the SODA driver directly: In Java,the standard package
for logging is used – it can be enabled for SODA as follows:

java -classpath "..." -Doracle.soda.trace=true -

Djava.util.logging.config.file=logging.properties <program>

• ‘oracle.soda.trace=true’ enables the logging of SQL
statements.

• ‘logging.java.util.logging.config.file’defines the path to the
java.util.logging configuration file, which allows different logging
levels: FINEST is the most verbose logging level.

Further Information – Links

Oracle XE

Oracle Standard Edition

Oracle Enterprise Edition

Oracle Exadata Cloud Service

Oracle Exadata Cloud at Customer

Oracle Exadata Database Machine

Oracle Database Cloud Service

Oracle Autonomous JSON

Oracle Autonomous Transaction Processing

Oracle Autonomous Data Warehouse

Connect with us

Call +1.800.ORACLE1 or visit oracle.com. Outside North America, find your local office at: oracle.com/contact.

blogs.oracle.com facebook.com/oracle twitter.com/oracle

Copyright © 2022, Oracle and/or its affiliates. All rights reserved. This document is
provided for information purposes only, and the contents hereof are subject to
change without notice. This document is not warranted to be error-free, nor subject
to any other warranties or conditions, whether expressed orally or implied in law,
including implied warranties and conditions of merchantability or fitness for a
particular purpose. We specifically disclaim any liability with respect to this
document, and no contractual obligations are formed either directly or indirectly by
this document. This document may not be reproduced or transmitted in any form
or by any means, electronic or mechanical, for any purpose, without our prior written
permission.

This device has not been authorized as required by the rules of the Federal
Communications Commission. This device is not, and may not be, offered for sale
or lease, or sold or leased, until authorization is obtained.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may
be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC
trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks
or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The
Open Group. 0120

Disclaimer: If you are unsure whether your data sheet needs a disclaimer, read the revenue
recognition policy. If you have further questions about your content and the disclaimer
requirements, e-mail REVREC_US@oracle.com.

12 Business / Technical Brief / JSON in Oracle Database: Performance Considerations / Version 2.1

Copyright © 2022, Oracle and/or its affiliates / Public

mailto:REVREC_US@oracle.com
http:blogs.oracle.com
http:oracle.com

