

1 Migration Guide: Amazon Aurora to MySQL HeatWave on Amazon Web Services (AWS)

 Copyright © 2023, Oracle and/or its affiliates. Public

Business / Technical Brief

Migration Guide: Amazon
Aurora to MySQL HeatWave
on Amazon Web Services
(AWS)

Copyright © 2023, Oracle and/or its affiliates.

Public

2 Migration Guide: Amazon Aurora to MySQL HeatWave on Amazon Web Services (AWS)

 Copyright © 2023, Oracle and/or its affiliates. Public

Purpose statement

This document provides an overview of the steps to migrate to MySQL

HeatWave.

Disclaimer

This document in any form, software or printed matter, contains proprietary

information that is the exclusive property of Oracle. Your access to and use of

this confidential material is subject to the terms and conditions of your Oracle

software license and service agreement, which has been executed and with

which you agree to comply. This document and information contained herein

may not be disclosed, copied, reproduced or distributed to anyone outside

Oracle without prior written consent of Oracle. This document is not part of your

license agreement nor can it be incorporated into any contractual agreement

with Oracle or its subsidiaries or affiliates.

This document is for informational purposes only and is intended solely to assist

you in planning for the implementation and upgrade of the product features

described. It is not a commitment to deliver any material, code, or functionality,

and should not be relied upon in making purchasing decisions. The

development, release, and timing of any features or functionality described in

this document remains at the sole discretion of Oracle. Due to the nature of the

product architecture, it may not be possible to safely include all features

described in this document without risking significant destabilization of the code.

3 Migration Guide: Amazon Aurora to MySQL HeatWave on Amazon Web Services (AWS)

 Copyright © 2023, Oracle and/or its affiliates. Public

Table of Contents

Purpose statement 2

Disclaimer 2

What is MySQL HeatWave 4

Before you start 4

I. Preparing your AWS environment 5

Section A: Prerequisites 5

Section B: Create an EC2 Instance and configure your SSH keys 6

Section C: Connect to your EC2 Instance and install MySQL Shell 16

II. Exporting the database 20

Section D: In AWS, create an S3 Storage Bucket 20

Section E: Add an IAM user and download the .csv file 23

Section F: Create a credentials file in your EC2 instance 32

Section G: Connect to your Amazon Aurora MySQL Server using MySQL

Shell and execute the util.dumpInstance() utility 34

III. Importing the database 38

Section H: Navigate to the S3 Storage bucket to confirm if the dump was

successful 38

Section I: Create a MySQL HeatWave System 39

Section J: Import the dumped data using the util.loadDump() utility 45

IV. Loading data into MySQL HeatWave 49

Section K: Load data into the HeatWave Cluster 49

V. Appendix 55

Section L: Performing the util.dumpInstance()and util.loadDump() utility

to and from a local filesystem 55

4 Migration Guide: Amazon Aurora to MySQL HeatWave on Amazon Web Services (AWS)

 Copyright © 2023, Oracle and/or its affiliates. Public

What is MySQL HeatWave

MySQL HeatWave is a fully managed database service, powered by the integrated HeatWave in-memory query

accelerator. It’s the only cloud database service that combines transactions, analytics, and machine learning services

into one MySQL Database, delivering real-time, secure analytics without the complexity, latency, and cost of extract,

transform, and load (ETL) duplication. It’s available on Oracle Cloud Infrastructure (OCI), Amazon Web Services (AWS),

and Microsoft Azure.

MySQL HeatWave on AWS delivers price performance that is 7X better than Amazon Redshift and 10X better than

Snowflake. On a 10 GB TPC-C workload, MySQL HeatWave offers up to 10X higher and sustained throughput

compared to Amazon Aurora at high concurrency. With MySQL HeatWave ML, developers and data analysts can

build, train, deploy, and explain machine learning models in MySQL HeatWave without moving data to a separate

machine learning service. For machine learning, MySQL HeatWave on AWS is 25X faster than Redshift ML.

Learn more about MySQL HeatWave

Before you start

1. Using the method outlined in this migration guide, where you export your source database and then import it

into MySQL HeatWave, there will be some downtime involved. The length of the downtime will mostly

depend on the size of your database and checks you may want to perform before bringing your database

back online.

2. You must have an account on Oracle Cloud Infrastructure (OCI) and be able to log in to it at

https://cloud.oracle.com/

• If you do not have an account on OCI, you can create one at

https://www.oracle.com/mysql/free/

3. You must have enabled “MySQL HeatWave on AWS service” from the OCI Console.

• For instructions on how to enable MySQL HeatWave on AWS from OCI, refer to the documentation

https://dev.mysql.com/doc/heatwave-aws/en/heatwave-aws-sign-up.html

https://www.oracle.com/mysql/heatwave/performance/#heatwave-on-aws
https://www.oracle.com/mysql/
https://cloud.oracle.com/
https://www.oracle.com/mysql/free/
https://dev.mysql.com/doc/heatwave-aws/en/heatwave-aws-sign-up.html

5 Migration Guide: Amazon Aurora to MySQL HeatWave on Amazon Web Services (AWS)

 Copyright © 2023, Oracle and/or its affiliates. Public

I. Preparing your AWS environment

Section A: Prerequisites

1. To migrate using the method that is shown in this guide, you will need a source Amazon Aurora MySQL

instance based on MySQL 5.7 or above. For this guide, we have chosen an Amazon Aurora MySQL 5.7.12.

 When applicable, you should always execute the commands shown in this guide as a root/admin user.

You can view the Amazon Aurora MySQL version that is being used for this guide as shown in the image

below:

You can check what version of MySQL you are using by logging into your Amazon Aurora MySQL Server and

execute:

mysql> SELECT @@VERSION;

2. For this guide, we have some data pre-loaded on our Amazon Aurora MySQL database.

 The sample data used in this guide is the ‘world’ database, which can be downloaded from here:

https://dev.mysql.com/doc/index-other.html.

You can see a list of all the databases on your Amazon Aurora MySQL Server and the tables in the world

database as shown below. We will export the world database from Amazon Aurora MySQL to MySQL

HeatWave on AWS.

mysql> SHOW DATABASES;

mysql> SHOW TABLES IN world;

https://dev.mysql.com/doc/index-other.html

6 Migration Guide: Amazon Aurora to MySQL HeatWave on Amazon Web Services (AWS)

 Copyright © 2023, Oracle and/or its affiliates. Public

Section B: Create an EC2 Instance and configure your SSH keys

3. Login to your AWS account.

https://aws.amazon.com/

4. Click on the “Services” menu and go to “Compute” > “EC2”

https://aws.amazon.com/

7 Migration Guide: Amazon Aurora to MySQL HeatWave on Amazon Web Services (AWS)

 Copyright © 2023, Oracle and/or its affiliates. Public

5. On the “EC2 Dashboard” page, look for the “Launch instance” button.

8 Migration Guide: Amazon Aurora to MySQL HeatWave on Amazon Web Services (AWS)

 Copyright © 2023, Oracle and/or its affiliates. Public

6. Click “Launch instance”. When the “Launch an instance” page opens, enter a name for your EC2 Instance. For

this guide, we have chosen “MySQL-EC2”

7. For Amazon Machine Image type, choose “Red Hat” and either version “Linux 8 or 9”. In the example below,

we have selected Linux 9.

9 Migration Guide: Amazon Aurora to MySQL HeatWave on Amazon Web Services (AWS)

 Copyright © 2023, Oracle and/or its affiliates. Public

8. For “Instance type”, select one that suits your needs. Afterwards for the “Key pair” section, click on “Create

new key pair”. You can also use your existing keys here.

When you click “Create new key pair”, a popup will appear asking you to “Create key pair”. Give a name for

your Key pair and make sure “RSA” is selected under the “Key pair type”. Under “Private key file format”,

select “.pem”.

 Note: click “Create key pair” afterwards. This will close the “Create key pair” popup and will download a private SSH Key. Look below:

10 Migration Guide: Amazon Aurora to MySQL HeatWave on Amazon Web Services (AWS)

 Copyright © 2023, Oracle and/or its affiliates. Public

9. For your “Network settings”, select your appropriate “VPC” and “Subnet”. For “Auto-assign public IP” select

“Enable”. Under the “Firewall (security groups)” tab, choose “Create security group” and have an “Inbound

security group rules” like the below one which allows SSH from anywhere.

11 Migration Guide: Amazon Aurora to MySQL HeatWave on Amazon Web Services (AWS)

 Copyright © 2023, Oracle and/or its affiliates. Public

10. Once that is done, leave everything as default and click “Launch instance”

12 Migration Guide: Amazon Aurora to MySQL HeatWave on Amazon Web Services (AWS)

 Copyright © 2023, Oracle and/or its affiliates. Public

11. You will have to wait until your MySQL-EC2 “Instance state” is “Running” before you can connect to it.

12. Once your EC2 instance is in a “Running” state, open the Private SSH Key that you downloaded in Step 8 in a

text editor of your choice.

13. Once you have opened your Private SSH Key in a text editor, copy the contents of the entire file as shown

below:

13 Migration Guide: Amazon Aurora to MySQL HeatWave on Amazon Web Services (AWS)

 Copyright © 2023, Oracle and/or its affiliates. Public

14. After copying the contents, to connect to your EC2 instance, go to your terminal where you will be accessing

EC2 from. There, create a new file called id_rsa inside your home directory. The guide uses the “nano” text

editor, use a text editor of your own choice.

$ cd

$ nano id_rsa

14 Migration Guide: Amazon Aurora to MySQL HeatWave on Amazon Web Services (AWS)

 Copyright © 2023, Oracle and/or its affiliates. Public

15. After pasting the contents of the private SSH key into the id_rsa file, save and close the file. If you are using

nano:

• to paste the copied content: command + V

• to save the file: control + O

• to exit the file: control + X

16. After you have saved the private SSH Key on your terminal, grab the file path of the id_rsa. To get the file

path of your current working directory where you have the id_rsa, execute:

$ ls

$ pwd

 Note: by looking at the above image, the id_rsa location for this guide will hence be /Users/r***/id_rsa

15 Migration Guide: Amazon Aurora to MySQL HeatWave on Amazon Web Services (AWS)

 Copyright © 2023, Oracle and/or its affiliates. Public

17. Once you have your SSH Key copy and pasted, make sure to change the Private SSH key’s permission by

executing:

$ chmod 400 id_rsa

18. You can now connect to the EC2 Instance you created earlier by executing the following from your terminal

window where you have the SSH keys:

ssh -i <path/to/you-private-ssh-key> ec2-user@<ec2-Public-DNS>

 Note: after executing the above SSH command, when prompted “Are you sure you want to continue connecting (yes/no/[fingerprint])?”,

type “yes”.

19. You are now successfully connected to your EC2 instance.

16 Migration Guide: Amazon Aurora to MySQL HeatWave on Amazon Web Services (AWS)

 Copyright © 2023, Oracle and/or its affiliates. Public

Section C: Connect to your EC2 Instance and install MySQL Shell

20. Once you have identified your Amazon Aurora MySQL version and the data you want to migrate, go to your

AWS environment and connect to the EC2 instance you created in Section B. You now need to install MySQL

Shell on your EC2 instance. You will use MySQL Shell to export the world database and import it into MySQL

HeatWave. (MySQL Shell is an advanced client and code editor for MySQL. To learn more about MySQL Shell,

visit: https://dev.mysql.com/doc/mysql-shell/8.0/en/)

Installing MySQL Shell on Microsoft Windows:

To install MySQL Shell on Microsoft Windows using the MSI Installer, perform the following steps:

a) Download the Windows (x86, 64-bit), MSI Installer package from

http://dev.mysql.com/downloads/shell/

b) When prompted, click Run.

c) Follow the steps in the Setup Wizard.

Installing MySQL Shell on Linux:

To install MySQL Shell on Linux, run the following command:

sudo yum install mysql-shell

For other Linux installation options, visit: https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-shell-

install-linux-quick.html

Installing MySQL Shell on macOS:

To install MySQL Shell on macOS, perform the following steps:

a) Download the package from http://dev.mysql.com/downloads/shell/.

b) Double-click the downloaded DMG to mount it. Finder opens.

c) Double-click the .pkg file shown in the Finder window.

d) Follow the steps in the installation wizard.

e) When the installer finishes, eject the DMG (It can be deleted).

https://dev.mysql.com/doc/mysql-shell/8.0/en/
http://dev.mysql.com/downloads/shell/
https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-shell-install-linux-quick.html
https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-shell-install-linux-quick.html
http://dev.mysql.com/downloads/shell/

17 Migration Guide: Amazon Aurora to MySQL HeatWave on Amazon Web Services (AWS)

 Copyright © 2023, Oracle and/or its affiliates. Public

This is how the guide installed MySQL Shell, visit: https://dev.mysql.com/downloads/shell/. Select the latest

version of the MySQL Shell and select the appropriate OS System and Version. For this guide, Red Hat

Enterprise Linux 9 server is being used for the EC2 instance.

 Note: the RPM Package (28.2M), without the debug information was chosen for this guide. Once you have identified which MySQL Shell

version you want to download, click on the “Download” button shown in the above image. A new page will popup, which is shown in the

next step.

21. When you click “Download” as shown in Step 20, this page will come up. Right click on “No thanks, just

start my download.” and select “Copy Link Address”

https://dev.mysql.com/downloads/shell/

18 Migration Guide: Amazon Aurora to MySQL HeatWave on Amazon Web Services (AWS)

 Copyright © 2023, Oracle and/or its affiliates. Public

22. Go back to your AWS EC2 instance and download MySQL Shell via wget by pasting the link copied in the

previous step. But first, download wget itself

$ sudo yum instal wget -y

$ wget https://dev.mysql.com/get/Downloads/MySQL-Shell/mysql-shell-8.0.31-

1.el8.x86_64.rpm

 Note: download and install MySQL Shell by using the proper commands/files/methods required for your own Operating System.

23. Once MySQL Shell RPM file is downloaded on your your EC2 instance, extract it using

sudo rpm -ivh <file-name>

 Note: there were missing dependences when the rpm command was executed

https://dev.mysql.com/get/Downloads/MySQL-Shell/mysql-shell-8.0.31-1.el8.x86_64.rpm
https://dev.mysql.com/get/Downloads/MySQL-Shell/mysql-shell-8.0.31-1.el8.x86_64.rpm

19 Migration Guide: Amazon Aurora to MySQL HeatWave on Amazon Web Services (AWS)

 Copyright © 2023, Oracle and/or its affiliates. Public

24. To resolve the above dependency, run the following command:

sudo yum install compat-openssl11

25. Once all the required dependencies are installed, execute the same rpm command from Step 23

sudo rpm -ivh <file-name>

 Note: MySQL Shell was properly installed after all the dependencies were solved

20 Migration Guide: Amazon Aurora to MySQL HeatWave on Amazon Web Services (AWS)

 Copyright © 2023, Oracle and/or its affiliates. Public

II. Exporting the database

Section D: In AWS, create an S3 Storage Bucket

26. Login to your AWS account.

https://aws.amazon.com/

27. Click the ‘Services’ menu on the top-left corner. From there, navigate to ‘Storage’ and click on “S3”

https://aws.amazon.com/

21 Migration Guide: Amazon Aurora to MySQL HeatWave on Amazon Web Services (AWS)

 Copyright © 2023, Oracle and/or its affiliates. Public

28. Once you are on the ‘S3’ Buckets page, click the “Create bucket” button. In a later step, you will export your

Amazon Aurora MySQL database to AWS in this bucket.

29. On the ‘Create bucket’ page, give a name for your bucket and select “US East (N. Virginia)” as the ‘AWS

Region’

22 Migration Guide: Amazon Aurora to MySQL HeatWave on Amazon Web Services (AWS)

 Copyright © 2023, Oracle and/or its affiliates. Public

30. Leave the other fields as-is and click the “Create bucket” button.

 Note: once the S3 bucket is created, save the bucket name in a notepad for later use.

23 Migration Guide: Amazon Aurora to MySQL HeatWave on Amazon Web Services (AWS)

 Copyright © 2023, Oracle and/or its affiliates. Public

Section E: Add an IAM user and download the .csv file

31. From the AWS Console, navigate to the ‘Services’ menu. From there, navigate to ‘Security, Identity, &

Compliance’ and look for “IAM”

24 Migration Guide: Amazon Aurora to MySQL HeatWave on Amazon Web Services (AWS)

 Copyright © 2023, Oracle and/or its affiliates. Public

32. From the ‘Identity and Access Management (IAM)’ dashboard page, click on “Users” under ‘Access

management’

33. After landing on the ‘Users’ page, click “Add users”

25 Migration Guide: Amazon Aurora to MySQL HeatWave on Amazon Web Services (AWS)

 Copyright © 2023, Oracle and/or its affiliates. Public

34. On Step 1 of ‘Create user’, enter a ‘User name’. Click “Next” afterwards.

35. On Step 2, click “Attach policies directly” and select the ‘AdministratorAcess’ policy. Leave everything as it is

and click “Next” afterwards

26 Migration Guide: Amazon Aurora to MySQL HeatWave on Amazon Web Services (AWS)

 Copyright © 2023, Oracle and/or its affiliates. Public

27 Migration Guide: Amazon Aurora to MySQL HeatWave on Amazon Web Services (AWS)

 Copyright © 2023, Oracle and/or its affiliates. Public

36. On Step 3, review all the information for accuracy. Click the “Create user” button afterwards.

28 Migration Guide: Amazon Aurora to MySQL HeatWave on Amazon Web Services (AWS)

 Copyright © 2023, Oracle and/or its affiliates. Public

37. Once the User has been created, from the ‘Users’ page of IAM, click on the User we just created in the

previous step

38. After your User page opens for the User that was just created, click on “Security credentials” and scroll down

until you see “Access keys”

29 Migration Guide: Amazon Aurora to MySQL HeatWave on Amazon Web Services (AWS)

 Copyright © 2023, Oracle and/or its affiliates. Public

 Note: when you locate the ‘Access keys’ section, click on “Create access key”

30 Migration Guide: Amazon Aurora to MySQL HeatWave on Amazon Web Services (AWS)

 Copyright © 2023, Oracle and/or its affiliates. Public

39. On Step 1 of ‘Create access key’, locate and select “Other”. Click “Next” afterwards

31 Migration Guide: Amazon Aurora to MySQL HeatWave on Amazon Web Services (AWS)

 Copyright © 2023, Oracle and/or its affiliates. Public

40. On Step 2, leave the values blank and click the “Create access key” button

41. On Step 3, your “Access key” will be created alongside the “Secret access key”. Save these two keys in a

notepad for later use. Click “Download .csv file” to save the Access key and Secret access key in a .csv file.

Click “Done” after downloading the .csv file

32 Migration Guide: Amazon Aurora to MySQL HeatWave on Amazon Web Services (AWS)

 Copyright © 2023, Oracle and/or its affiliates. Public

Section F: Create a credentials file in your EC2 instance

42. After creating the bucket and adding a user in AWS, go back to your EC2 instance where you have MySQL

Shell installed.

On the EC2 instance where MySQL Shell is installed, create a new directory called “.aws” inside your home

directory. Next, go into the “.aws” directory and create a file called “credentials”. After the file is created, copy

and paste the below contents in that “credentials” file.

[default]

aws_access_key_id=

aws_secret_access_key=

region=

The commands used to achieve this step for the guide are listed below:

ec2-user $ mkdir ~/.aws

ec2-user $ cd .aws

ec2-user $ nano credentials

 Note: to download nano, execute sudo yum install nano -y

43. After pasting the “credentials” file contents from Step 42, below is how your “credentials” file should look like

33 Migration Guide: Amazon Aurora to MySQL HeatWave on Amazon Web Services (AWS)

 Copyright © 2023, Oracle and/or its affiliates. Public

44. Inside the ‘credentials’ file, for the “aws_access_key_id” and “aws_secret_access_key” fields, fill them using

the .csv file we downloaded in Step 41. For “region”, since we have a Bucket created in us-east-1 and the

MySQL HeatWave system that we will create in the later steps will also be in the same region, enter

us-east-1

After filling all the information for your credentials file, you should have something like this:

 Note: save the “credentials” file after filling all the missing fields. If you are using nano,

 to paste the copied content: command + V

 to save the file: control + O

 to exit the file: control + X

34 Migration Guide: Amazon Aurora to MySQL HeatWave on Amazon Web Services (AWS)

 Copyright © 2023, Oracle and/or its affiliates. Public

Section G: Connect to your Amazon Aurora MySQL Server using MySQL Shell and execute the

util.dumpInstance() utility

45. Using MySQL Shell installed on your EC2 instance, connect to your Amazon Aurora MySQL Server by

executing (account with Root privilege necessary):

ec2-user $ mysqlsh <username>@<localhost/ip>

or

ec2-user $ mysqlsh -u <username> -h <localhost/ip> -P <portnumber> -p

 Note: anytime you login using MySQL Shell, MySQL Shell will display the MySQL Shell version and MySQL Sever version currently being

used. You can see this in the image above.

46. Once you are inside MySQL Shell, you can interact in three different modes. The default is JavaScript, the

other ones you can choose from are SQL and Python. Once inside MySQL Shell:

 to switch to JavaScript mode, execute: \js

 to switch to SQL mode, execute: \sql

 to switch to Python mode, execute: \py

35 Migration Guide: Amazon Aurora to MySQL HeatWave on Amazon Web Services (AWS)

 Copyright © 2023, Oracle and/or its affiliates. Public

47. Make sure you are in JavaScript mode by typing \js and execute the dumpInstance utility to export the

dump data into AWS S3 Storage bucket.

MySQL JS> \js

MySQL JS> util.dumpInstance("sampledump",{s3bucketName: "heatwave-s3",

ocimds: "true", compatibility: ["strip_restricted_grants", "strip_definers",

"ignore_missing_pks"], users: "true", dryRun: "true"})

Note:

• The util.dumpInstance() utility will take a dump of all the databases except “mysql, sys,

performance schema, and information schema”. The dump comprises of DDL files for the schema

structure and tab-separated .tsv files containing the actual data. Additionally, you can also use

util.dumpSchemas() or util.dumpTables() if you only want to dump specific schemas or

tables. The three dump utilities can export the data into:

• a) Object Storage bucket in Oracle Cloud

• b) S3-compatible buckets

• c) local filesystem

• This guide showcases option b). For more information, refer: https://dev.mysql.com/doc/mysql-

shell/8.0/en/mysql-shell-utilities-dump-instance-schema.html#mysql-shell-utilities-dump-opt-run

• The dryRun option runs the export command but does not generate any output export file. It

displays information about what would be dumped with the specified set of options, and about the

results of MySQL HeatWave compatibility checks (if the ocimds option is specified, which is required

for this guide), but does not proceed with the dump. Setting this option enables you to list out all the

compatibility issues before starting the dump. The default is false. You can read more about the

utility options at https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-shell-utilities-dump-

instance-schema.html#mysql-shell-utilities-dump-opt-control

• In the command above, sampledump is the prefix under which all the exported dump files will be

stored in S3 Storage bucket in AWS.

• Change the s3bucketName to match with what you have when you created your bucket in AWS in

Step 30.

• Setting the ocimds: true option ensures compatibility of the export dump with MySQL HeatWave.

https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-shell-utilities-dump-instance-schema.html#mysql-shell-utilities-dump-opt-run
https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-shell-utilities-dump-instance-schema.html#mysql-shell-utilities-dump-opt-run
https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-shell-utilities-dump-instance-schema.html#mysql-shell-utilities-dump-opt-control
https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-shell-utilities-dump-instance-schema.html#mysql-shell-utilities-dump-opt-control

36 Migration Guide: Amazon Aurora to MySQL HeatWave on Amazon Web Services (AWS)

 Copyright © 2023, Oracle and/or its affiliates. Public

• Primary keys are required on every table for using MySQL HeatWave.

• If you can’t seem to solve an error during the dryRun, contact a MySQL Solution Engineer for

guidance: https://go.oracle.com/LP=132857?src1=:ow:o:s:po:::&intcmp=:ow:o:s:po:::

• To understand the dumpInstance(), dumpSchemas(), or dumpTables() utility in more detail,

refer to this website: https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-shell-utilities-dump-

instance-schema.html

48. Running the commands in Step 47 may generate “Errors” regarding “table locks” (see the image in Step 47).

If (and only if) you do encounter such an error, execute the same command but add an additional option

“consistent: false”

MySQL JS> util.dumpInstance("sampledump",{s3bucketName: "heatwave-s3",

ocimds: "true", compatibility: ["strip_restricted_grants", "strip_definers",

"ignore_missing_pks"], users: "true", dryRun: "true", consistent: "false"})

https://go.oracle.com/LP=132857?src1=:ow:o:s:po:::&intcmp=:ow:o:s:po
https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-shell-utilities-dump-instance-schema.html
https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-shell-utilities-dump-instance-schema.html

37 Migration Guide: Amazon Aurora to MySQL HeatWave on Amazon Web Services (AWS)

 Copyright © 2023, Oracle and/or its affiliates. Public

49. Once you have executed the command in Step 47/48 and did not see any errors or warnings, execute the

same Step 47/48 command. Although, this time change the dryRun option to false

MySQL JS> util.dumpInstance("sampledump",{s3bucketName: "heatwave-s3",

ocimds: "true", compatibility: ["strip_restricted_grants", "strip_definers",

"ignore_missing_pks"], users: "true", dryRun: "false", consistent: "false"})

 Note: once the dump process is complete, MySQL Shell will display a summary of the dump process like the one shown above.

38 Migration Guide: Amazon Aurora to MySQL HeatWave on Amazon Web Services (AWS)

 Copyright © 2023, Oracle and/or its affiliates. Public

III. Importing the database

Section H: Navigate to the S3 Storage bucket to confirm if the dump was successful

50. Once the export dump operation has completed, go back to your AWS S3 Storage bucket created in Step 30

and locate the dump files under the sampledump prefix

39 Migration Guide: Amazon Aurora to MySQL HeatWave on Amazon Web Services (AWS)

 Copyright © 2023, Oracle and/or its affiliates. Public

Section I: Create a MySQL HeatWave System

51. After completing all the above Steps, navigate to “cloud.mysql.com” to provision your MySQL HeatWave on

AWS instance (assuming you have enabled MySQL HeatWave on AWS from OCI)

cloud.mysql.com

 Note: on the above page, enter your OCI Account Name and click “Continue”. Afterwards, you will be prompted to enter your Oracle

Cloud ‘User Name’ and ‘Password’.

52. Once you are logged in, this is what the home screen looks like: the MySQL HeatWave on AWS Console

40 Migration Guide: Amazon Aurora to MySQL HeatWave on Amazon Web Services (AWS)

 Copyright © 2023, Oracle and/or its affiliates. Public

53. Click the “Create MySQL DB System” button

 Note: You can also perform the same action by clicking the ‘MySQL’ tab at the bottom of the page and then clicking the ‘Create MySQL

DB System’ button

41 Migration Guide: Amazon Aurora to MySQL HeatWave on Amazon Web Services (AWS)

 Copyright © 2023, Oracle and/or its affiliates. Public

54. After clicking on “Create MySQL DB System”, enter a name for your MySQL DB system. Then, create an

Admin ‘Username’ and ‘Password’.

55. Scroll down and choose the appropriate ‘Hardware configuration’ and ‘Data storage size’. The minimum

storage size you can select is 32 GB. The maximum storage size is 65 TB. For your InnoDB storage, if it is

greater than 1 TB, we recommend you switch to the 32.256GB shape. Leave the ‘Maintenance window’ and

‘Availability zone’ as-is.

42 Migration Guide: Amazon Aurora to MySQL HeatWave on Amazon Web Services (AWS)

 Copyright © 2023, Oracle and/or its affiliates. Public

56. Under ‘Networking’ and ‘Allowed client addresses’, enter the Public IP address of your EC2 Compute Instance

that we created in the earlier step, followed by a ‘/32’.

 Note: click “Next” after you have entered at least one client address under the ‘Allowed client addresses’

57. After clicking Next, you will be taken to Page 2 where you will create a HeatWave Cluster. Name your

HeatWave Cluster whatever you want and chose the appropriate “HeatWave Cluster Configuration”. For the

“Shape”, you can either choose a Cluster Node of 16 GB (can handle ~25 GB of data) or a Cluster Node of 256

GB (can handle ~400 GB of data). The “Cluster Size” can go from 1 to 128. Here we will use the “HWonAWS-

Cluster” name, 16GB Shape and Cluster Size of 1

43 Migration Guide: Amazon Aurora to MySQL HeatWave on Amazon Web Services (AWS)

 Copyright © 2023, Oracle and/or its affiliates. Public

58. Click “Create” as shown in the above image, once you are done with everything. After a few minutes, your

MySQL HeatWave System will be created and will be in an “Active” State

59. Once the System is created, click on the “Name” of your system. This will take us to the “DB Systems Details”

page where we can view a variety of information regarding your MySQL HeatWave System.

44 Migration Guide: Amazon Aurora to MySQL HeatWave on Amazon Web Services (AWS)

 Copyright © 2023, Oracle and/or its affiliates. Public

60. You will then be taken to the “DB Systems Details” page

 Note: here, copy the “Host Name” for later use

45 Migration Guide: Amazon Aurora to MySQL HeatWave on Amazon Web Services (AWS)

 Copyright © 2023, Oracle and/or its affiliates. Public

Section J: Import the dumped data using the util.loadDump() utility

61. After noting down the Host Name, log back into your EC2 instance where we have the ‘credentials’ file and

MySQL Shell installed. Using MySQL Shell, log in to your MySQL HeatWave instance (the EC2 instance whose

IP you entered in ‘Allowed Client Addresses’ in Step 56)

ssh -i <path/to/you-private-ssh-key> ec2-user@<ec2-Public-DNS>

then

$ mysqlsh <username>@<hostname>

or

$ mysqlsh -u <username> -h <hostname> -P <portnumber> -p

46 Migration Guide: Amazon Aurora to MySQL HeatWave on Amazon Web Services (AWS)

 Copyright © 2023, Oracle and/or its affiliates. Public

62. Now that you are logged in to the MySQL HeatWave on AWS System, it is time to load our Amazon Aurora

MySQL Server data from S3 into this newly created MySQL HeatWave System. Make sure you are in the

JavaScript mode of MySQL Shell by executing \js and then execute the MySQL Shell Load command

MySQL JS> \js

MySQL JS> util.loadDump("sampledump", {s3BucketName: "heatwave-s3",

progressFile: "/home/ec2-user/progressfile.json", ignoreVersion:true,

loadUsers:true, dryRun:true})

 Note:

• The util.loadDump() utility will use the DDL files and tab-separated .tsv data files to set up the

server instance or schema in the target MySQL instance, then load the data. For more information,

refer to: https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-shell-utilities-load-dump.html

• Change the prefix and s3BucketName to match with what you have.

https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-shell-utilities-load-dump.html

47 Migration Guide: Amazon Aurora to MySQL HeatWave on Amazon Web Services (AWS)

 Copyright © 2023, Oracle and/or its affiliates. Public

63. Once you have executed the command in Step 62 and did not see any errors or warnings, execute the same

Step 62 command. Although, this time change the dryRun option to false

MySQL JS> util.loadDump("sampledump", {s3BucketName: "heatwave-s3",

progressFile: "/home/ec2-user/progressfile.json", ignoreVersion:true,

loadUsers:true, dryRun:false})

 Note: once the load process is complete, MySQL Shell will display a summary of the dump process like the one shown in the image

above.

48 Migration Guide: Amazon Aurora to MySQL HeatWave on Amazon Web Services (AWS)

 Copyright © 2023, Oracle and/or its affiliates. Public

64. After your import command has completed successfully in the previous step, you can verify the schemas and

tables imported by running the following commands in \sql mode of MySQL Shell:

MySQL JS> \sql

MySQL SQL> SHOW SCHEMAS;

MySQL SQL> SHOW TABLES IN world;

49 Migration Guide: Amazon Aurora to MySQL HeatWave on Amazon Web Services (AWS)

 Copyright © 2023, Oracle and/or its affiliates. Public

IV. Loading data into MySQL HeatWave

Section K: Load data into the HeatWave Cluster

To make use of MySQL HeatWave’s in-memory query engine and query acceleration capabilities, you need to

attach a HeatWave cluster to your MySQL database.

65. Login to your MySQL HeatWave on AWS Console and navigate to the ‘Workspaces’ tab

66. From the ‘Workspaces’ tab, click the “Connect to MySQL DB System’ button and then, select your MySQL

HeatWave System (in our case we will be selecting “HWonAWS”)

50 Migration Guide: Amazon Aurora to MySQL HeatWave on Amazon Web Services (AWS)

 Copyright © 2023, Oracle and/or its affiliates. Public

51 Migration Guide: Amazon Aurora to MySQL HeatWave on Amazon Web Services (AWS)

 Copyright © 2023, Oracle and/or its affiliates. Public

67. After selecting the appropriate MySQL DB System, enter the DB Username and Password. Click “Connect”

afterwards

68. Once you connect, your MySQL DB System name alongside the username that was used to connect will be

displayed on the top right. You can also view all the “Schemas” that are currently in the MySQL InnoDB

Storage engine, under the “Database Objects”

52 Migration Guide: Amazon Aurora to MySQL HeatWave on Amazon Web Services (AWS)

 Copyright © 2023, Oracle and/or its affiliates. Public

69. On the ‘Workspaces’ tab, switch to “Manage Data in HeatWave” from ‘Query Editor’

70. This screen will show a list of the schemas and tables that are loaded in the MySQL DB System. From this

screen, you can select the schemas and tables to load into MySQL HeatWave’s in-memory engine. Select the

databases/tables you want to load by checking the box next to the appropriate database(s)/table(s). (For this

guide, instead of loading the whole “world” database, we will only load the “city” table and “countrylanguage”

table)

53 Migration Guide: Amazon Aurora to MySQL HeatWave on Amazon Web Services (AWS)

 Copyright © 2023, Oracle and/or its affiliates. Public

71. After you have selected all the tables you want to load into HeatWave, click the ‘Load into HeatWave’ button

on the top left.

72. After you’ve clicked the ‘Load into HeatWave’ button, a popup will appear, which will show you information

about the tables that will be loaded and how much memory HeatWave will consume. The estimated time

required to load the tables into memory will also be displayed. Click “Load Tables” when the below popup

appears.

73. You can click the ‘Refresh’ button to view the progress of how much data has been loaded into HeatWave.

Depending on the size of your data, it may take a few minutes to complete the load.

54 Migration Guide: Amazon Aurora to MySQL HeatWave on Amazon Web Services (AWS)

 Copyright © 2023, Oracle and/or its affiliates. Public

74. To confirm if your data is 100% loaded, expand the schema by clicking the tiny arrow next to the Schema

name from either the “Query Editor” or “Manage Data in HeatWave” on the ‘Workspaces’ tab.

75. You now have a complete MySQL HeatWave cluster.

76. Congratulations, you’ve now successfully migrated your data from Amazon Aurora MySQL to MySQL

HeatWave on AWS!

To learn more about using HeatWave, please visit our documentation.

https://docs.oracle.com/en-us/iaas/mysql-database/doc/heatwave.html

55 Migration Guide: Amazon Aurora to MySQL HeatWave on Amazon Web Services (AWS)

 Copyright © 2023, Oracle and/or its affiliates. Public

V. Appendix

Section L: Performing the util.dumpInstance()and util.loadDump() utility to and from a local filesystem

77. For relatively small databases, you can create the dump files on your local system. Although, you need to

transfer them to the AWS EC2 instance using the copy utility of your choice, depending on the operating

system you chose for your EC2 instance. (MySQL Shell must be installed on the systems from where you

intend to run the util.dumpInstance() and util.loadDump() utility, setting up the credentials file is not

required here)

78. In this Section, we will showcase how to perform the dumpInstance() utility from the Amazon Aurora MySQL

instance into a local filesystem. The local filesystem used for the dumpInstance() in this guide is the AWS EC2

instance that was shown in Step 11.

79. Connect to your Amazon Aurora MySQL Server using MySQL Shell

ec2-user $ mysqlsh <username>@<localhost/ip>

or

ec2-user $ mysqlsh -u <username> -h <localhost/ip> -P <portnumber> -p

56 Migration Guide: Amazon Aurora to MySQL HeatWave on Amazon Web Services (AWS)

 Copyright © 2023, Oracle and/or its affiliates. Public

80. Make sure you are in JavaScript mode by typing \js and execute the dumpInstance utility to export the

dump data into your local filesystem

MySQL JS> \js

MySQL JS> util.dumpInstance("/home/ec2-user/sampledump", {"ocimds": "true",

"compatibility": ["strip_restricted_grants", "strip_definers"], users:

"true", dryRun:"true", consistent: "false"})

Note:

• dumpInstance SYNTAX: util.dumpInstance(outputUrl[, options])

• /home/opc/sampledump is the outputUrl. Here, you can specify an absolute path or a path

relative to the current working directory for your local filesystem.

• sampledump is the directory under which all the exported dump files will be stored in EC2. The

sampledump directory must not exist or if it does, the directory should be empty

• Add the consistent: false option, if and only if, your dump utility produces “Errors” regarding

“table locks” (MySQLSH 52002: See Steps 47/48 for more information)

• The util.dumpInstance() utility will take a dump of all the databases except “mysql, sys,

performance schema, and information schema”. The dump comprises of DDL files for the schema

57 Migration Guide: Amazon Aurora to MySQL HeatWave on Amazon Web Services (AWS)

 Copyright © 2023, Oracle and/or its affiliates. Public

structure and tab-separated .tsv files containing the actual data. Additionally, you can also use

util.dumpSchemas() or util.dumpTables() if you only want to dump specific schemas or

tables. The three dump utilities can export the data into:

• a) Object Storage bucket in Oracle Cloud

• b) S3-compatible buckets

• c) local filesystem

• This Section showcases option c). For more information, refer: https://dev.mysql.com/doc/mysql-

shell/8.0/en/mysql-shell-utilities-dump-instance-schema.html#mysql-shell-utilities-dump-opt-run

• The dryRun option runs the export command but does not generate any output export file. It

displays information about what would be dumped with the specified set of options, and about the

results of MySQL HeatWave compatibility checks (if the ocimds option is specified, which is required

for this guide), but does not proceed with the dump. Setting this option enables you to list out all the

compatibility issues before starting the dump. The default is false. You can read more about the

utility options at https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-shell-utilities-dump-

instance-schema.html#mysql-shell-utilities-dump-opt-control

• Setting the ocimds: true option ensures compatibility of the export dump with MySQL HeatWave.

• Primary keys are required on every table for using MySQL HeatWave.

• If you can’t seem to solve an error during the dryRun, contact a MySQL Solution Engineer for

guidance: https://go.oracle.com/LP=132857?src1=:ow:o:s:po:::&intcmp=:ow:o:s:po:::

• To understand the dumpInstance(), dumpSchemas(), or dumpTables() utility in more detail,

refer to this website: https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-shell-utilities-dump-

instance-schema.html

https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-shell-utilities-dump-instance-schema.html#mysql-shell-utilities-dump-opt-run
https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-shell-utilities-dump-instance-schema.html#mysql-shell-utilities-dump-opt-run
https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-shell-utilities-dump-instance-schema.html#mysql-shell-utilities-dump-opt-control
https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-shell-utilities-dump-instance-schema.html#mysql-shell-utilities-dump-opt-control
https://go.oracle.com/LP=132857?src1=:ow:o:s:po:::&intcmp=:ow:o:s:po
https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-shell-utilities-dump-instance-schema.html
https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-shell-utilities-dump-instance-schema.html

58 Migration Guide: Amazon Aurora to MySQL HeatWave on Amazon Web Services (AWS)

 Copyright © 2023, Oracle and/or its affiliates. Public

81. Once you have executed the command in Step 80 and did not see any additional errors or warnings, execute

the same Step 80 command. Although, this time change the dryRun option to false

MySQL JS> util.dumpInstance("/home/ec2-user/sampledump", {"ocimds": "true",

"compatibility": ["strip_restricted_grants", "strip_definers"], users:

"true", dryRun:"false", consistent: "false"})

 Note: once the dump process is complete, MySQL Shell will display a summary of the dump process like the one shown in the above

image.

82. Go back to your local filesystem and locate the dump files under the sampledump directory, to confirm if the

dump was successful (in our case, the EC2 instance).

59 Migration Guide: Amazon Aurora to MySQL HeatWave on Amazon Web Services (AWS)

 Copyright © 2023, Oracle and/or its affiliates. Public

83. Now, transfer the sampledump directory to the AWS EC2 instance using the copy utility of your choice,

depending on the operating system you chose for your EC2 instance. One way to do this is to use the scp

command.

84. After you have copied over your sampledump directory to the AWS EC2 instance, login to that EC2 instance

and retrieve the path to the sampledump directory.

ssh -i <path/to/you-private-ssh-key> ec2-user@<ec2-Public-DNS>

 Note: by looking at the above image, the sampledump directory location for this guide will hence be /home/ec2-user/sampledump

85. Make sure you are logged in to that EC2 instance, and then login to your MySQL HeatWave instance using

MySQL Shell to load those dump files.

ssh -i <path/to/you-private-ssh-key> ec2-user@<ec2-Public-DNS>

then:

$ mysqlsh <username>@<hostname>

or

$ mysqlsh -u <username> -h <hostname> -P <portnumber> -p

60 Migration Guide: Amazon Aurora to MySQL HeatWave on Amazon Web Services (AWS)

 Copyright © 2023, Oracle and/or its affiliates. Public

86. It is now time to load our sample database “world”, that was dumped from our Amazon Aurora MySQL

instance to the local filesystem, which we later transferred to the AWS EC2 instance using the copy utility of

your choice. Inside MySQL Shell, make sure you are in JavaScript mode of MySQL Shell by executing \js and

then, execute the loaddump utility to import the dumped data from AWS EC2 instance into MySQL

HeatWave.

MySQL SQL> \js

MySQL JS> util.loadDump("/home/ec2-user/sampledump", {progressFile:

"/home/ec2-user/progressfile.json", ignoreVersion: "true", loadUsers: "true",

dryRun: "true"})

 Note:

• loadDump SYNTAX: util.loadDump(url[, options])

• /home/opc/sampledump is the url. Here, you can specify the path to a local directory containing

the dump files

• The util.loadDump() utility will use the DDL files and tab-separated .tsv data files to set up the

server instance or schema in the target MySQL instance, then loads the data. For more information,

refer to: https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-shell-utilities-load-dump.html

• Change the filesystem path to match with what you have.

https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-shell-utilities-load-dump.html

61 Migration Guide: Amazon Aurora to MySQL HeatWave on Amazon Web Services (AWS)

 Copyright © 2023, Oracle and/or its affiliates. Public

87. Once you have executed the command in Step 86 and did not see any errors or warnings, execute the same

Step 86 command. Although, this time change the dryRun option to false

MySQL JS> util.loadDump("/home/ec2-user/sampledump", {progressFile:

"/home/ec2-user/progressfile.json", ignoreVersion: "true", loadUsers: "true",

dryRun: "false"})

 Note: once the load process is complete, MySQL Shell will display a summary of the dump process like the one shown in the image

above.

88. After your import command has completed successfully in the previous step, you can verify the schemas and

tables imported by running the following commands in \sql mode:

MySQL JS> \sql

MySQL SQL> SHOW SCHEMAS;

MySQL SQL> SHOW TABLES IN world;

62 Migration Guide: Amazon Aurora to MySQL HeatWave on Amazon Web Services (AWS)

 Copyright © 2023, Oracle and/or its affiliates. Public

Connect with us

Call +1.800.ORACLE1 or visit oracle.com. Outside North America, find your local office at: oracle.com/contact.

 blogs.oracle.com facebook.com/oracle twitter.com/oracle

Copyright © 2023, Oracle and/or its affiliates. All rights reserved. This document is

provided for information purposes only, and the contents hereof are subject to change

without notice. This document is not warranted to be error-free, nor subject to any other

warranties or conditions, whether expressed orally or implied in law, including implied

warranties and conditions of merchantability or fitness for a particular purpose. We

specifically disclaim any liability with respect to this document, and no contractual

obligations are formed either directly or indirectly by this document. This document

may not be reproduced or transmitted in any form or by any means, electronic or

mechanical, for any purpose, without our prior written permission.

Oracle, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names

may be trademarks of their respective owners.

https://blogs.oracle.com/
https://www.facebook.com/Oracle/
https://twitter.com/oracle

