
Oracle Index Key (Prefix) Compression
and Advanced Index Compression
O R A C L E W H I T E P A P E R | J U L Y 2 0 1 9

1 | ORACLE INDEX COMPRESSION

Table of Contents

Disclaimer 1

Introduction 2

Index Key Compression 3

Enabling Index Key Compression 4

Uses of Index Key Compression 5

Figuring out the optimal prefix column length 5

Limitations of Index Key Compression 6

Compressing Existing Non-Compressed Index Organized Tables (IOT) 7

Advanced Index Compression 9

Advanced Index Compression LOW 10

Enabling Advanced Index Compression LOW 10

Advanced Index Compression HIGH 11

Enabling Advanced Index Compression HIGH 12

Uses of Advanced Index Compression 13

Advanced Index Compression with Partitioned Indexes 13

Limitations of Advanced Index Compression: 14

Conclusion 14

Disclaimer

The following is intended to outline our general product direction. It is intended for information purposes only, and may not be

incorporated into any contract. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in

making purchasing decisions. The development, release, and timing of any features or functionality described for Oracle’s products

remains at the sole discretion of Oracle.

2 | ORACLE INDEX COMPRESSION

Introduction

The amount of data that enterprises store is growing exponentially, where as the IT budget to manage this data is not

growing nearly at the same rate. This exponential growth of data presents daunting challenges for enterprises. IT must

support fast growing amounts of data, which could be due to the explosion in online content, government data retention

regulations or purely due to growth in enterprises business. However, as databases grow at accelerating rates, it can be

difficult to continue to meet performance requirements while staying within budget. The key is to manage the data

growth without hurting the performance of the system, without incurring additional costs and with minimal administrative

intervention.

Even though the cost of storage has been declining dramatically, the cost of enterprise class storage is not declining

nearly at the same rate. The enormous growth in the data volume makes storage one of the biggest cost elements of

most IT budgets. Innovations in Oracle compression technologies help customers reduce the resources and costs of

managing large data volumes. Oracle Database has a number of features and technologies to help customers cope

with these challenges, including table compression, backup compression, network compression, columnar data

compression, LOB and file compression and index compression.

Indexes are used extensively in OLTP and mixed workload environments, as they are capable of efficiently supporting a

wide variety of access paths to the data stored in relational tables. An Index is a data structure that improves the

performance of data retrieval operations at the cost of additional writes and storage space to maintain the structure

itself. It is very common to find a large number of indexes being created on a single table to support a multitude of

access paths for applications. This can cause indexes to contribute a greater share to the overall storage of a database

when compared to the size of the base tables alone. Often times, indexes take upward of 50% of the total database

space and it is not uncommon to have over 20 indexes on a single table (many more in some cases).

Every additional index that is created on the table, even though it speeds up certain queries, introduces additional

overhead for the DML or data change operations, which have to maintain these indexes. It is highly critical to store and

manage these indexes as efficiently as possible, from both storage and efficient access perspectives. This document

will focus on Index Compression technologies available with Oracle Database and provides an in-depth explanation of

each of the index compression options, and guidelines, on how and when to use these technologies to maximize query

performance, while minimizing disk space.

3 | ORACLE INDEX COMPRESSION

Index Key Compression

Index Key Compression, also referred to as Index Prefix Compression, is perhaps one of the oldest compression

features within the Oracle Database, released with Oracle Database 8.1.3 (before Basic Table Compression in 9.2). It

has the potential to substantially reduce the overall size of indexes and helps both multi-column unique indexes and

non-unique indexes alike. As a result, it is one of the most critical index optimization features available to DBAs for

effectively managing the space used by the indexes.

Index Key Compression allows for compressing portions of the key values in an index segment (or Index Organized

Table), by reducing the storage inefficiencies of storing repeating values multiple times. It compresses the data by

splitting the index key into two parts:

 Prefix Entries: the leading group of columns, which are potentially shared across multiple key values

 Suffix Entries: the suffix columns, which are unique to every index key.

As the prefixes are potentially shared across multiple keys in a block, these can be stored more optimally (that is, only

once per block) and shared across multiple suffix entries, resulting in the index data being compressed.

Index Key compression is done in the leaf blocks of a B-Tree index. The keys are compressed locally within an index

leaf block, that is, both the prefix and suffix entries are stored within same block. Suffix entries make up the compressed

representation of the index key. Each one of these compressed rows refers to the corresponding prefix, which is stored

in the same block. By storing the prefixes and suffixes locally in the same block, each index block is self-contained and

it is possible to construct the complete key without incurring any additional block IO. Re-constructing the key is a very

inexpensive memory only operation.

The illustration below shows the logical representation of a non-unique index leaf block with 9 keys in it. The block on

the left is the uncompressed representation, where every row stores all the key columns along with the ROWID of the

corresponding table row. As apparent from the data, there are lots of repeats in the leading columns (that is, the Prefix

Columns) and these can be represented in the block more efficiently. The block on the right is the compressed

representation of the same index leaf block, where the prefix columns are stored only once, and each user row stores

the reference to the corresponding prefix, which results in the index data being compressed.

http://docs.oracle.com/cd/B28359_01/server.111/b28310/indexes003.htm

4 | ORACLE INDEX COMPRESSION

Figure 1: Logical structure of index leaf blocks with Index Key Compression

Enabling Index Key Compression

For new indexes and index partitions, enabling Index Key Compression is easy - simply CREATE the index or index

partition and specify the index compression clause. See the example below:

CREATE INDEX idxname ON tabname(col1, col2, col3) COMPRESS;

An existing index or index partition can be REBUILT compressed using the syntax shown below:

ALTER INDEX idxname REBUILD COMPRESS;

By default, the prefix consists of all indexed columns for non-unique indexes, and all indexed columns excluding the last

one for unique indexes. Alternatively, it is possible to specify the prefix length as part of the index compression clause,

which is the number of columns in the prefix entries:

CREATE INDEX idxname ON tabname(col1, col2, col3) COMPRESS 2;

The number, prefix column length, after the COMPRESS keyword denotes how many columns to compress. The

maximum prefix length for a non-unique index is the number of columns in the index key, and for a unique index is the

number of key columns minus one.

5 | ORACLE INDEX COMPRESSION

Prefix entries are written to the index block only if the index block does not already contain that prefix. They are

available for sharing across multiple suffix entries immediately after being written and remain available until the last

referencing suffix entry is deleted from the block. Although key compression reduces the storage requirements of an

index by sharing parts of keys across multiple entries, there is a small CPU overhead to reconstruct the key column

values during index lookup or scans, which is minimized by keeping the prefixes locally in the block.

Index Key Compression achieves a more optimal representation of an index, and ensures that it stays permanently

compressed without any subsequent overhead on the maintenance operations. As a result, it has a positive impact on

the storage and space savings, but also achieves secondary benefits such as better cache efficiency, fewer leaf blocks

and less deep tree resulting in potentially fewer logical IOs and cheaper execution plans. In many cases the overhead

to construct the complete user row is offset by more efficient representation of the block, ability to fit many more user

rows in a given block, reduction in IO required to read the index rows and better buffer cache efficiency, such that the

applications see improvement in overall performance.

Uses of Index Key Compression

Index Key compression can be extremely useful in many different scenarios, a few of which are listed below:

 Index Key Compression can be used with a non-unique index where ROWID is appended to make the key
unique. If such an index is compressed using key compression, the duplicate key is stored only once as a
prefix entry in the index block without the ROWID. The remaining rows become suffix entries consisting of only
the ROWID

 Index Key Compression can be used with a unique multicolumn index (key compression is not possible for
unique single column index because there is a unique piece but there are no prefix grouping pieces to share)

 Index Key Compression can also be used with Index Organized Tables. The same considerations as unique
multicolumn indexes apply

Figuring out the optimal prefix column length

The key to getting good index compression is identifying which indexes will benefit from it and correctly specifying the

prefix column length for those indexes. This requires a deep understanding of the data in order to choose the most

optimal prefix column count. If you want to estimate the ideal compression ratio and the percentage of leaf blocks that

can be saved, you need to look at INDEX_STATS view after ANALYZING the index:

ANALYZE INDEX index name VALIDATE structure;

SELECT name,

 height,

 blocks,

6 | ORACLE INDEX COMPRESSION

 opt_cmpr_count,

 opt_cmpr_pctsave

FROM index_stats

WHERE name = index name;

“OPT_CMPR_COUNT” indicates the number of columns to compress in the index to get maximum space savings in

the leaf blocks (prefix column length).

 “OPT_CMPR_PCTSAVE” indicates the percentage reduction in leaf block space used if index is compressed using

this prefix length.

Limitations of Index Key Compression

Compression can be very beneficial when the prefix columns of an index are repeated many times within a leaf block.

However, if the leading columns are very selective or if there are not many repeated values for the prefix columns, then

index prefix compression may not be the best solution. In these scenarios, Oracle still creates prefix entries storing all

unique combinations of compressed column values within a leaf block. The index rows will refer to the prefix entry,

which are not shared (if at all) by other index rows. Thus, it is possible that compression in these cases is not beneficial,

and could end up increasing the index size due to the overhead of storing all of the prefix entries.

For index compression to be beneficial, ensure that low cardinality columns are the leading columns in a concatenated

index. Otherwise, there is a risk of getting negative compression such that leaf blocks can no longer store as many keys

as their non-compressed counterparts. Additionally, there is no point in compressing a single column unique index or

compressing every column in a concatenated, multi-column unique index. In these cases, compression will result in an

index structure that increases in size rather than decreasing (negative compression) due to all the overhead associated

with having prefix entries for every index row.

The key to getting good index compression is identifying which indexes will benefit from it and correctly specifying the

prefix column length. The discussion above on how to figure out the optimal Prefix Column Length can help, but this

approach has the following down sides:

 Requires a deep understanding of the data in order to choose the most optimal prefix column count

 Specified prefix column count may not be optimal to produce the best compression ratio for every block in the
index

 Requires running ANALYZE INDEX to obtain an optimal prefix column count, which produces the optimal count
for the index as a whole. This is not at the granularity of a block, so it may not yield the best compression ratio.

7 | ORACLE INDEX COMPRESSION

Additionally, running ANALYZE INDEX takes an exclusive lock on the table, effectively making the table
“offline” for this period

 Possible to get negative compression, as pointed out earlier, such as in the case where the specified prefix
columns are unique in a block

Application developers and DBAs need to be very selective on which indexes to compress and correctly set the prefix

column count for these indexes. Oracle protects you under certain obvious conditions, but it is your responsibility to

compress the indexes in the right manner.

Compressing Existing Non-Compressed Index Organized Tables (IOT)

Before attempting any reorganization, it is recommended that you determine if prefix compression would be useful, and

if so, how may prefix columns should be specified. This step is required for Index Key Compression and requires some

knowledge of the data. If there are repeated leading columns, then typically prefix compression is beneficial.

For example, if the keys look like:

A B C D
A C D B
A D B C

Since there is a repeated first column, and that can be stored once as a prefix, compression would reduce the suffix

rows to the following:

B C D
C D B
D B C

It is a more difficult choice if there are rows like:

A B C D
A B D C
A C E F
A G H I

Here, it is difficult to know whether to choose 1 or 2 prefix columns to compress – choosing 2 would mean we store the

following prefix rows

A B
A C
A G

8 | ORACLE INDEX COMPRESSION

Choosing 1 would mean we store only “A”. The “optimal” choice is the one that saves most space in prefix+suffix rows

together.

As indicated earlier, ANALYZE INDEX determines the optimal count for how many columns to compress. For example

if we have DDL like this:

CREATE TABLE tiot (c1 number, c2 number, c3 number, constraint tiot_pk primary key

(c1, c2, c3)) ORGANIZATION INDEX;

Then we can use ANALYZE INDEX as follows:

ANALYZE INDEX TIOT_PK VALIDATE STRUCTURE;

SELECT OPT_CMPR_COUNT, OPT_CMPR_PCTSAVE FROM index_stats;

OPT_CMPR_COUNT OPT_CMPR_PCTSAVE

-------------- ---------------- ---------- ------------ ----------

 1 20

ANALYZE INDEX indicates that a prefix count of 1 would give an estimated 20% saving in space.

The IOT segment can be rebuilt, enabling compression, using the following ALTER TABLE MOVE command online

and indicates 1 column is to be used for compression.

ALTER TABLE tiot MOVE COMPRESS 1 ONLINE;

Below are some SQL commands/examples on how to achieve index key compression on an existing non-compressed

IOT (as well as examples of SQL commands that are invalid with IOTs)

 ALTER TABLE <table-name> MOVE COMPRESS [number of columns] [ONLINE]

Examples:

o alter table tiot move compress online;

o alter table tiot move compress 1 online;

o alter table tiot move compress 2 online;

9 | ORACLE INDEX COMPRESSION

o alter table tiot move compress 1

 ALTER TABLE <table-name> COMPRESS

o This is an invalid command for an IOT

 ALTER INDEX REBUILD COMPRESS

o This is an invalid command for an IOT. Attempts to rebuild the Primary Key of the IOT will result in:

 ORA-28650: Primary index on an IOT cannot be rebuilt

 DBMS_REDEFINITION can be used to compress an existing non-compressed IOT. Please see the

dbms_redefinition documentation for more details.

Using partition exchange is not possible as a means of enabling compression when using prefix compression of

indexes. The reason is that a partitioned IOT cannot be moved as a whole, nor can we move a partition to be

compressed if the table (IOT) as a whole is not compressed. Further, we cannot exchange a partition unless both the

partition and the table have the same compression attribute (i.e. they are both (non) compressed already).

Advanced Index Compression

Index entries, with many duplicate keys, can be compressed making it possible to reduce both the storage overhead

and the access overhead for large index range scans or fast full scans. Prefix compression can be very beneficial when

the prefix columns of an index are repeated many times within a leaf block. However, if the leading columns are very

selective or if there are not many repeated values for the prefix columns, then index prefix compression may not be the

best solutions.

Advanced Index Compression automates index compression and at the same time achieve much higher compression

ratios for indexes. Advanced Index Compression enables the highest levels of data compression and provides

enterprises with tremendous cost-savings and performance improvements due to reduced I/O.

Advanced Index Compression is an enabling technology for multiple compression levels – LOW and HIGH. Average

storage savings can range from 2x to 4x depending on which compression level is implemented. With substantial

storage savings from Advanced Index Compression, IT managers can drastically reduce and often eliminate their need

to purchase new storage for several years. We will discuss each of the compression levels, in detail, next in this

document as the next generation in index compression technology.

10 | ORACLE INDEX COMPRESSION

Advanced Index Compression LOW

Advanced Index Compression LOW automates index key compression. It automatically decides which indexes to

compress and computes the prefix column count within compressed indexes. Additionally, rather than using a static

prefix count for all index leaf block, it aims towards computing an optimal prefix count for every index leaf block in the

index.

The correct and most optimal numbers of prefix columns are computed automatically on a block-by-block basis, and

thus produce the best compression ratio possible. It is now possible to have different index leaf blocks compressed with

different prefix column count or not be compressed at all, if there are no repeating prefixes.

The illustration below shows logical structure of three consecutive index leaf blocks, each compressed differently. For

the block to the left, the optimal prefix column count is 2, and the block is compressed with the first 2 columns from the

index key in the prefix. For the block in the center, since there are no repeats in the leading columns, the block is left

uncompressed. In addition, for the block on the right, the optimal prefix column count is 1 column, and the block is

compressed with only 1 leading prefix column. The dynamic algorithm to compute prefix column count automatically on

block-by-block basis guarantees maximizing the compression benefits for the index and makes sure that the

compressed index segment is never bigger in size than its non-compressed counterpart.

Figure 2: Logical structure of index leaf blocks with Advanced Index Compression

Enabling Advanced Index Compression LOW

Advanced Index Compression LOW can be enabled easily by specifying the COMPRESS option for indexes. New

indexes can be automatically created as compressed, or the existing indexes can be rebuilt compressed.

CREATE INDEX idxname ON tabname(col1, col2, col3) COMPRESS ADVANCED LOW;

11 | ORACLE INDEX COMPRESSION

Note that there is no need to provide the number of columns in the prefix entries with Advanced Index Compression as

this will be computed automatically for every leaf block.

Advanced Index Compression HIGH

Advanced Index Compression HIGH is geared towards dramatically improving index compression ratios. It introduces

many additional compression techniques, which improves the compression ratios significantly while still providing

efficient OLTP access.

With Advanced Index Compression HIGH, every index leaf block can contain compressed and uncompressed rows.

The compressed index key entries are stored physically as Compression Units (a concept similar to Hybrid Columnar

Compression), utilizing more complex compression algorithms on a potentially larger number of index keys to achieve

higher levels of compression. While the recently inserted keys and modified keys are stored in the non-compressed

region of the leaf block.

Advanced Index Compression uses an internal threshold, similar to that used by Advanced Row Compression, to trigger

(re) compression of the leaf block. Recently inserted rows are buffered uncompressed in the block, which is then

compressed as the block fullness approaches this threshold. This ensures that the cost of compression is amortized

over multiple DML operations and that not every operation incurs compression overhead. With indexes, this internal

threshold is geared towards avoiding index block splits and alleviating the need to allocate additional leaf blocks to the

index structure.

Advanced Index Compression supports full concurrency and row level locking with compressed rows ensuring no

deadlocks and complete application transparency.

As stated earlier, Advanced Index Compression utilizes complex sets of compression algorithms to achieve higher

compression ratios. Some of the compression techniques used with Advanced Index Compression HIGH include (but

are not limited to):

 Intra-column Prefix Replacement

Intra-column prefix replacement algorithm exploits the fact that, as a result of index rows being sorted in key

order, there is a high likelihood that a prefix of each key matches the corresponding prefix of the preceding key

even at sub key column level. Replacing the matching prefixes from each row with a reference to the

corresponding symbol gives good compression benefits. Additionally, if the cardinality of the symbol table

indexes is low, and a large number of index keys have a matching prefix, bit encoding the symbol table

references can further improve compression benefits.

http://www.oracle.com/technetwork/database/exadata/ehcc-twp-131254.pdf
http://www.oracle.com/technetwork/database/exadata/ehcc-twp-131254.pdf

12 | ORACLE INDEX COMPRESSION

 Length Byte Compression

It is very common to find a large number of rows in an index with short column lengths. Thus, it is possible to

encode these lengths in less than a byte (as with the uncompressed and prefix compressed index) and hence

save space. Additionally, if all key columns in the block have the same length, the block level fixed length can

be stored.

 Duplicate Key Removal

If the index block has a large number of duplicates, it is possible to realize significant space savings by storing

the key exactly once followed by a list of ROWIDs associated with the key in sorted order. Intra-column prefix

compression can then be applied on top of this transformed representation to further compress the now unique

set of keys.

 ROWID List Compression

ROWID List Compression is an independent transformation that takes the set of ROWIDs for each unique

index key and represents them in a compressed form, ensuring that the compressed ROWID representation is

logically maintained in the ROWID order to allow for efficient ROWID based lookup.

 Row Directory Compression

The general idea behind Row Directory Compression is to layout the compressed rows contiguously in the

increasing offset order within each 256 byte region of the index block, which enables maintaining a base offset

(once per 256 bytes) and a relative 1 byte offset per compressed row.

 Flag and Lock Byte Compression

Generally speaking, the index rows are not locked and the flags are similar for all the rows in the index block.

These lock and flag bytes on disk can be represented more efficiently provided it is possible to access and

modify them. Any modification to the flag or lock bytes requires these to be uncompressed.

Enabling Advanced Index Compression HIGH

Advanced Index Compression HIGH can be enabled easily by specifying the COMPRESS option for indexes. New

indexes can be automatically created as compressed, or the existing indexes can be rebuilt compressed.

13 | ORACLE INDEX COMPRESSION

CREATE INDEX idxname ON tabname(col1, col2, col3) COMPRESS ADVANCED HIGH;

Note that there is no need to provide the compression technique to use with Advanced Index Compression. Not every

compression technique is applicable to every index. The decision on which compression algorithms are applicable to an

index is made real-time and can differ from index-to-index and block-to-block.

Uses of Advanced Index Compression

Advanced Index Compression works well on all supported indexes, including the ones that were not good candidates

for prefix key compression. Creating an index using Advanced Index Compression reduces the size of all unique and

non-unique indexes (or at least guarantees that the size does not increase due to negative compression) and at the

same time improves the compression ratio significantly while still providing efficient access to the indexes.

The following graph shows sample compression ratios for two customers using Advanced Index Compression in SAP

environment. Along with substantially reducing the storage footprint for the indexes, these workloads also observed

significant improvement in the overall system performance.

Figure 3: Sample compression ratio with Advanced Index Compression (size in GB)

Advanced Index Compression with Partitioned Indexes

For partitioned indexes, you can specify the compression clause for the entire index or on a partition-by-partition basis.

Therefore, you can choose to have some index partitions compressed, while others are not.

The following example shows a mixture of compression attributes on the partitioned indexes:

CREATE INDEX my_test_idx ON test(a, b) COMPRESS ADVANCED HIGH local

0

100

200

300

400

500

600

700

Consumer
Goods Mfg

Govt. Agency

Uncompressed (GB)

Advanced LOW (GB)

Advanced HIGH (GB)

14 | ORACLE INDEX COMPRESSION

 (PARTITION p1 COMPRESS ADVANCED LOW,

 PARTITION p2 COMPRESS,

 PARTITION p3,

 PARTITION p4 NOCOMPRESS);

The next example below shows Advanced Index Compression support on partitions where the parent index is not

compressed:

CREATE INDEX my_test_idx ON test(a, b) NOCOMPRESS local

 (PARTITION p1 COMPRESS ADVANCED LOW,

 PARTITION p2 COMPRESS ADVANCED HIGH,

 PARTITION p3);

Limitations of Advanced Index Compression:

 Advanced Index Compression is not supported for Bitmap Indexes

 Advanced Index Compression is not supported for Index Organized Tables (IOTs)

 Advanced Index Compression is not supported for compress Functional Indexes

Conclusion

The massive growth in data volume, being experienced by enterprises, introduces significant challenges. Companies

must quickly adapt to the changing business landscape without influencing the bottom line. IT managers need to

efficiently manage their existing infrastructure to control costs, yet continue to deliver extraordinary application

performance.

With Advanced Index Compression, it is now possible to simply enable compression for all your B-Tree indexes, and

Oracle will automatically compress every index leaf block when beneficial, while taking care of computing the optimal

prefix column length for every block. This makes index compression truly local at a block level, where both the

compression prefix table as well as the decision on how to compress the leaf block is made locally for every block and

aims towards achieving the most optimal compression ratio for the entire index segment, while still providing efficient

access to the indexes.

15 | ORACLE INDEX COMPRESSION

Using Advanced Index Compression, along with other Oracle Advanced Compression features, enterprises can

efficiently manage their increasing data requirements with minimal administrative intervention – minimizing database

storage costs while continuing to achieve the highest levels of application performance.

Oracle Corporation, World Headquarters Worldwide Inquiries

500 Oracle Parkway Phone: +1.650.506.7000

Redwood Shores, CA 94065, USA Fax: +1.650.506.7200

16 | ORACLE INDEX COMPRESSION

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. This document is provided for information purposes only, and the
contents hereof are subject to change without notice. This document is not warranted to be error-free, nor subject to any other
warranties or conditions, whether expressed orally or implied in law, including implied warranties and conditions of merchantability or
fitness for a particular purpose. We specifically disclaim any liability with respect to this document, and no contractual obligations are
formed either directly or indirectly by this document. This document may not be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without our prior written permission.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and
are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are
trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group. 0719

C O N N E C T W I T H U S

blogs.oracle.com/oracle

C O N N E C T W I T H U S

blogs.oracle.com/oracle

facebook.com/oracle

twitter.com/oracle

oracle.com

