

Oracle Product Development

Oracle Enterprise Data Quality
Integration Essentials

Batch Integration

Three models of ETL integration/coexistence with EDQ

1. Batch processing, ETL masters process control

2. Batch processing, EDQ masters process control

3. Transaction processing, ETL masters process control

1 - Batch processing, ETL master

• An EDQ job is modelled into the ETL tool as a single step, called using a command
line interface or the REST API

• The job writes its results to a staged data area or files, with shared access

• The job returns information when it has finished

• ETL tool then continues to the next step, which reads the output data written by
the job from the shared staged data area

• Oracle Data Integrator has a built-in tool that can call EDQ jobs either
synchronously or asynchronously at any point in a data flow

ETL process configuration

1 - Batch processing, ETL master

Extract
data

Simple
mappings
and
transforms

Load datae.g. complex checks /
transforms /
matching

Shared staging database

ReadWrite Write Read

Data sources Data targets

EDQ job

1. ODI or GoldenGate move data into DW

2. ODI maps data into Staging tables

3. EDQ ‘cleanses’ data

4. ODI moves from staging into production
tables

Data in DW is ‘Fit for Purpose’
– BI/Analytics

– Source of truth

Production
Tables

Data Sources

BI/analytics

Single source

of truth for

reference

Staging
tablesODI

EDQ
Parsing, Cleansing,

Standardization, Matching

Replica
source
tables

ODI

Golden Gate

ODI

1 - Batch processing, ETL master with Oracle Data Integrator

Oracle Data Integrator (ODI) is
pre-integrated with EDQ, with a

built-in tool to call EDQ jobs
synchronously or
asynchronously

2 - Batch processing, EDQ master

• An EDQ job includes all required processing

• External Tasks in the job are used for any callouts, for example to ETL

• Where required, shared staging is used

• Jobs will commonly use externalized options so that the files/tables to process,
and those to write, can be specified using command line or REST API
options/overrides, or a stored Run Profile

• Most commonly used where EDQ performs ‘most of’ the ETL, with occasional
callouts to other tools, for example for legacy systems (mainframes etc.)

2 - Batch processing, EDQ master

EDQ job configuration

ETL tool as
External Task

Extract /convert
data Write data

e.g. complex checks / transforms /
matching

Shared staging database

ReadWrite

Data sources
Data targets

3 - Transaction processing, ETL master

• EDQ jobs may be modelled using real-time architecture (Web Services or JMS) and
run continuously to provide DQ services

• Jobs are normally set up to run whenever the EDQ server(s) are running

• Processes normally run continuously

• EDQ’s real-time interface is preferable for small batches of records (<1000) as well
as record streams, as it avoids startup costs for batch jobs

3 - Transaction processing, EDQ called over Real-Time
interface

EDQ services (jobs run continuously)

EDQ services, e.g. Cleansing/Matching

Message sources Message targets

JMS message
queue (IN)

JMS message
queue (OUT)

Web Services

Real-Time Integration (SOA)

The Need for Real-time DQ Services
• Most data quality initiatives begin with a project to

improve existing information in batch

But

• There is no sense in cleaning the lake if the upstream
factory continues to pollute the river…

• EDQ delivers real-time DQ services from the same rules &
configuration used in the batch processes

Moving from Batch to Real-time

• All EDQ processing is independent of the
physical source of the data – e.g. database,
file, Web Service, JMS message etc.

• Jobs can use the same processes, bound to
either real-time or batch sources and targets,
using Data Interface mappings

• The mapping can be overridden at runtime

• Or, just change Readers and Writers

• Ensure new or changed data meets quality standards by validating & standardizing
against your business rules:

New or changed record passed to
EDQ

Standardized & validated record
returned

As your business evolves and your validation & standardization rules
change, there is no change to the integration or the web service. New
rules are simply configured in EDQ.

High quality data
guaranteed and value of
information asset is
preserved

Real-time validation & standardization

• Check new records for matches to reference data, e.g. Watchlists:

User adds a new record

Definite and possible matches
are returned

EDQ checks the data against regularly updated
snapshots of the reference data, all of which are pre-
structured for optimal performance.

User chooses how to update
system, e.g. add, merge, or
link

Real-time linking/enhancement

Real-time duplicate prevention

• Protect systems from duplicate records using EDQ Web Services:

User adds a new record

Definite & possible
matches are returned

EDQ does not hold a copy of the data. Records
are passed back and forth. This avoids complex
data replication & synchronization issues.

The calling application manages storage of all
data, including the key values provided by EDQ
which are used for match candidate selection
(any record that shares any key value).

User chooses how to
update system, e.g. add,
merge, or link

EDQ returns key values

Candidate list for matching

Benefits of EDQ Real-Time

• Protects information assets from errors

• Uses the same rules & configuration as batch
• Minimizes configuration effort

• Rules are consistently applied regardless of the source of the data

• New rules are simply configured in EDQ
• No re-work of the integration required

• High-quality information becomes the norm

Using Web Services

• Real time providers and consumers can be
defined in the GUI as Web Services

• Web Services (and their WSDL files) are
generated and kept up-to-date with any
modifications

• Launchpad provides access to full list of
Web Services on a server

• Both SOAP/XML and REST/JSON
interfaces are generated so either may be
used

Testing Web Services

• EDQ has a built-in UI for testing Web Services

Web Service Generation

EDQ provides a fully GUI-controlled DQ Web Service management environment

• Create and manage Web Services in EDQ Director:

Note: Multi-record support for Web Services where a single inbound or outbound message may contain
many records, e.g. match candidates, and matches

Web Service Generation
• Map the Readers and Writers in a process to the Web Service, which is now a configured real-

time provider and consumer of records

• The same mappings can also be defined in a job, or at runtime

Web Service Generation

• To integrate, copy the URL of the generated WSDL file to the clipboard (SOAP/XML), or use the
Launchpad to see all Web Services on the server and the generated REST documentation

‘Running’ a Web Service
• Processes may be launched externally (e.g. on 3rd party application startup) and configured to write

results periodically:

Editing interfaces

• To change the interface, e.g. to use a new field in matching, edit the Web Service in EDQ
• The WSDL and REST API will be updated automatically

Web Service Logic

• To change the logic used by a Web Service, change the process in EDQ:

Using JMS

• Real time providers and consumer interfaces are defined using XML files on the
EDQ server

• Process Readers and Writers are then wired up to these interfaces using the GUI
(as with Web Services)

• JMS allows connectivity to nearly all Middleware and Message Queueing
technologies

	Structure Bookmarks
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure

