

Oracle Database 19c:

Advanced Queuing
TECHNICAL BRIEF / DECEMBER 2019

2 TECHNICAL BRIEF | Oracle Database 19c: Advanced Queuing

Disclaimer

This document in any form, software or printed matter, contains proprietary information that is the

exclusive property of Oracle. Your access to and use of this confidential material is subject to the

terms and conditions of your Oracle software license and service agreement, which has been

executed and with which you agree to comply. This document and information contained herein may

not be disclosed, copied, reproduced or distributed to anyone outside Oracle without prior written

consent of Oracle. This document is not part of your license agreement nor can it be incorporated

into any contractual agreement with Oracle or its subsidiaries or affiliates.

This document is for informational purposes only and is intended solely to assist you in planning for

the implementation and upgrade of the product features described. It is not a commitment to deliver

any material, code, or functionality, and should not be relied upon in making purchasing decisions.

The development, release, and timing of any features or functionality described in this document

remains at the sole discretion of Oracle.

Due to the nature of the product architecture, it may not be possible to safely include all features

described in this document without risking significant destabilization of the code.

3 TECHNICAL BRIEF | Oracle Database 19c: Advanced Queuing

TABLE OF CONTENTS

Disclaimer ... 2

Introduction ... 4

Message Queuing .. 4

Oracle Advanced Queuing ... 4

AQ Components ... 5

AQ Capabilities ... 6

Transaction Support .. 6

Quality of Service .. 6

Queue Models ... 7

Security ... 7

Message Propagation ... 8

Message Transformation .. 8

Rules-based Message Routing ... 8

AQ Deployments .. 8

Integration with Oracle WebLogic Server .. 9

Best Practices... 9

Performance Monitoring ... 10

Conclusion .. 11

ORACLE ADVANCED QUEUING – SHORT TUTORIAL 12

4 TECHNICAL BRIEF | Oracle Database 19c: Advanced Queuing

Introduction

IT managers need a standards-based enterprise-messaging infrastructure that can integrate the different systems and technologies on

a scalable, reliable and powerful platform for the real-time flow of information. Oracle Database 19c provides such an enterprise

messaging infrastructure with Oracle Advanced Queuing (AQ), which is a key component in automating business process workflows for

distributed applications. Using AQ, businesses can take advantage of the Oracle Database for enterprise messaging needs without the

need for a separate high-end message-oriented middleware product. Organizations not only can manage all the data inside the Oracle

database, but also manage the flow and exchange of data using messages to different systems in one highly reliable, available and

scalable Oracle Database. AQ implements the message queuing functionality natively inside the database and leverages its easy

manageability, high availability, high performance and security. AQ supports point-to-point and publish/subscribe queues, persistent

and nonpersistent messaging, and message ordering priorities that offer flexibility and powerful messaging functionality to applications.

Interfaces to AQ include PL/SQL, JMS 1.1, JDBC, ODP.NET, Python, Node.js, and C/C++ (with OCI).

This paper focuses on the typical requirements of an enterprise-messaging infrastructure and discusses how Advanced Queuing

technologies available in the Oracle Database can help automate business workflows in a distributed environment. The paper

highlights some of the advanced messaging, routing and propagation features of AQ and how businesses can leverage the database-

integrated messaging functionality in the Oracle Database to maximize the return on their investments on infrastructure and build

robust, highly scalable, distributed applications with better quality of service to users.

In Oracle Database Release 12c, AQ introduced AQ Sharded Queues, which provides JMS functionality with a highly optimized and

scalable database queuing implementation. For more information specifically on AQ Sharded Queues, please refer to the technical brief

“AQ Sharded Queues for scalable high performance Advanced Queueing”. This paper focuses on the more generic aspects of

Advanced Queues.

Message Queuing

Message queuing infrastructure enables information sharing and integration amongst different, and in many cases distributed,

applications. Producer applications send or enqueue messages into queues from which consumer applications receive or dequeue

messages. Producers and consumers use queues to interact asynchronously, and this “decoupling” is the centerpiece of message

queuing. This pattern has emerged to be very useful for Microservices, which are defined as loosely coupled service-oriented

architectures with bounded contexts. AQ queues make it simpler to build and deploy microservices with transactional messaging.

Messages often represent critical business events and impose certain characteristics on the underlying messaging infrastructure. The

creation, consumption and propagation of the messages must be handled with the highest levels of integrity. Messages must be

protected against failures in any component in the enterprise stack and be recoverable in all cases. Message content and attributes

must be easily retrievable through standard interfaces. Finally, the infrastructure should be scalable without compromising the

performance, availability and reliability of the system.

Oracle Advanced Queuing

Oracle Advanced Queuing (AQ) is a database-integrated messaging infrastructure in Oracle Database 19c. AQ leverages the

functionality of the Oracle database to store messages in persistent queues. All operational benefits of the Oracle database such as

high availability, scalability and reliability are applicable to the messages and queues in AQ. Standard database features such as

backup & recovery, security and manageability are available to AQ. Oracle technologies such as Data Guard, Real Application Clusters

(RAC), and Automatic Storage Management (ASM) can be combined with AQ to deliver a highly available and scalable messaging

system. Using standard, off-the-shelf servers and storage, customers can build AQ-based messaging systems that can scale linearly

without sacrificing performance, availability or reliability.

5 TECHNICAL BRIEF | Oracle Database 19c: Advanced Queuing

AQ Components

The four main components of AQ are:

1. Message - A message consists of message content, or payload, which can be specified using typed or raw data and message

attributes or control information.

2. Message Queue – Messages are stored in queues and these queues act as “postal boxes” where different applications can

look for “mail” in the form of messages. Thus, when one application wants to contact certain applications for certain tasks, it

can leave messages in these queues, and the receiving applications will be able to find these messages for processing.

3. Message Interfaces – AQ supports enqueue, dequeue, and propagation operations that integrate seamlessly with existing

applications by supporting popular standards. AQ messages can be created, queried, propagated and consumed using

popular application programming interfaces (API) such as PL/SQL, C/C++, Java, Visual Basic (through Oracle Objects for

OLE), Python, Node.js, and ODP.NET. AQ provides support for the Java Message Service 1.1 (JMS) API that allows Java

applications to utilize the message queuing functionality.

4. Message Handling – AQ supports rule-based routing of messages according to data in the message payload or attributes.

Additionally, message transformations can be applied to messages to re-format data before the messages are automatically

delivered to target applications or subscribers. Oracle Database 19c can also exchange AQ messages with IBM MQ and

TIBCO/Rendezvous through the Oracle Messaging Gateway.

The various components in AQ provide the functionality needed for enterprise application integration or distributed applications. In a

typical integrated environment as shown below in Figure 1, messages are created, propagated and consumed between the Oracle

Database server, applications and users.

Figure 1: Integrated Application Environment using Oracle AQ

6 TECHNICAL BRIEF | Oracle Database 19c: Advanced Queuing

AQ Capabilities

AQ is an integrated messaging infrastructure inside the Oracle database and offers many key capabilities for developing message-

based, distributed applications including:

• Transaction support

• Publish/Subscribe support

• Quality of Service (QoS)

• Queue Models

• Security

• Message Propagation

• Message Transformation

• Rules-based Message Routing

• Priority of Messages

Transaction Support

AQ provides transactional semantics to messages using the same underlying infrastructure in the Oracle Database used for relational

data. Queue operations such as enqueue and dequeue are atomic, and the Oracle database guarantees the consistency of the

messages in persistent queues. Messages are stored along with the other data using the same storage devices and do not require any

special set up or management. With AQ, messages can be retained for any length of time (infinite if required), and used for

tracking/auditing purposes or for building message warehouses for data mining and analytics. Applications can manipulate the

relational data and messages in a single transaction. When external or third party messaging systems are used, applications often need

to use 2-phase commit algorithms to achieve transactional semantics, which could be expensive. In contrast, Oracle WebLogic use a

one-phase commit optimization when JTA transactions consist only of AQ JMS and JDBC operations to the same Oracle database.

Quality of Service

Messages need to be persisted for various reasons. Regulatory compliance, business process auditing, and analytics are a few

examples where messages need to be retained for different periods of time. Applications can rely on AQ’s message queuing

infrastructure for guaranteed exactly-once delivery mechanism. Financial services hubs that integrate portfolio management systems

with trade processing systems need to retain client order messages to satisfy legal requirements. Integrating with partners or 3rd party

fulfillment contractors for order processing requires messages be exchanged and retained until the order process is complete.

Applications exchange data in the form of messages and need to retain these messages for processing business process workflows.

By being integrated with the Oracle database, AQ can provide a higher quality of service than most messaging systems. AQ queues

can be backed up like other Oracle tables. Oracle Data Guard provides high availability to AQ messages. AQ scales to very large

concurrent message volumes. Concurrent smaller message sends are not blocked by larger message sends. AQ can handle extremely

large message backlogs without requiring producers to be throttled. AQ handles very large message payloads (e.g., gigabytes) and

leverages the LOB streaming infrastructure. AQ messages are visible through SQL, and AQ tables can be indexed.

In addition to the database-backed quality of service that AQ delivers for persistent messages, AQ provides integrated support for

nonpersistent or buffered messages. In some cases, messages need to have the lowest latency, as measured by the time between

enqueuing and dequeuing the message. Such messages can be transient i.e. need not be retained. Subscribers to stock quotes need

updates at regular intervals, however failures need not be re-tried as the most current stock update is sufficient for most consumers.

Mobile coupons based on location, for example, should be delivered to mobile subscribers as soon as possible. In case of errors, the

7 TECHNICAL BRIEF | Oracle Database 19c: Advanced Queuing

application can decide to re-send the deals to those subscribers or send new deals based on the new locations of the subscribers. For

these types of applications, AQ provides in-memory or buffered messaging for the low latency, high performance message

management infrastructure.

Oracle Database 19c AQ offers comprehensive capabilities for both persistent and nonpersistent messages.

1. Persistent Messaging

AQ provides the queues and the underlying queue tables to persist messages that must be guaranteed to be processed exactly

once, even in the event of network, hardware or software failures. Applications can use AQ queues to process messages arriving

simultaneously from external programs or from modules within applications. AQ supports different mechanisms to control the order

in which messages are processed. Applications can specify a ‘priority’ for each message at enqueue time, which can be used to

control the order in which messages are consumed. Alternately, messages can also be sorted according to enqueue time or

commit time to get a FIFO order for consuming the messages. Commit time is the time at which the transaction was committed,

and this is especially useful when transactions are interdependent. The persistent quality of service is the default in AQ.

2. Nonpersistent Messaging

Certain applications require higher performance and are willing to tradeoff the reliability and the transactional support offered by the

AQ Persistent Messaging. Queues for nonpersistent messages store messages in memory and do not involve disk I/O. The

memory for buffered queues is allocated from the SGA and can be controlled using the ‘streams_pool_size’ parameter. Alternately,

Oracle can automatically allocate the appropriate memory using SGA auto-tuning. All message ordering schemes available for

persistent messages are available to buffered messages.

AQ supports persistent and nonpersistent messages through a common API and provides a messaging infrastructure that effectively

separates the application logic and the message integration logic. AQ queues can be set up under different queuing models such as

point-to-point and publish-subscribe to let business applications communicate with each other flexibly and reliably.

Queue Models

AQ supports two queue models, namely point-to-point and publish/subscribe queues. A point-to-point or single-consumer queue is

aimed at a specific target. Producers and consumers decide on a common queue in which to exchange messages. A message in the

point-to-point can be dequeued only once. A publish/subscribe or multi-consumer queue is aimed at multiple targets. Messages in a

publish/subscribe queue can be dequeued by multiple consumers. This type of queue messaging can be used for broadcast or

multicast dissemination. Applications can set up rules for delivery to consumers, and these rules can be defined on message payload,

attributes or both. Subscriber applications can receive messages that match the subscription rules automatically at dequeue time.

Publishers need not be aware of the different consumers or rules and can continue to publish messages. AQ tracks the subscribers and

can notify the subscriber applications using the Oracle Call Interface (OCI) or PL/SQL notification mechanism. This allows for a push

mode of message delivery.

Security

AQ supports flexible security mechanisms that separate the queue administration and the queue operational tasks. System-level

access control allows the application designer or DBA to control access for all queue operations and designate certain users as queue

administrators. A queue administrator can perform both the administrative and operational tasks on any queue in the database. AQ also

supports queue-level access control for enqueue and dequeue operations. Access to particular queues can be limited to only the

applications running in the same schema.

8 TECHNICAL BRIEF | Oracle Database 19c: Advanced Queuing

Message Propagation

AQ can propagate messages from one queue to another queue in the same database or in a remote database. This allows applications

to communicate asynchronously with each other in a distributed environment without being connected to the same database or to the

same queue. The source queue is a multi-consumer queue while the target queue can be either a single-consumer or multi-consumer

queue. Messages enqueued in the source queue are propagated automatically and are available for dequeuing at the destination

queue or queues. Propagation can be set up to run either continuously as a background process or run only if there is a message to be

propagated. With queue-to-queue propagation, a separate job is created to propagate messages for each source and destination

queue pair. With queue to dblink propagation, propagation to all target queues at a dblink will share the same propagation job.

Message Transformation

Most business-to-business (B2B) applications need to manipulate data in different formats to integrate disparate applications and

systems. AQ provides a complete data transformation engine to transform messages from one data type to another. AQ supports

message transformations between different Oracle and user-defined data types. These transformations can be SQL expressions,

PL/SQL functions or Java stored procedures. AQ also supports transformations of XML documents using XSLT.

Transformations change the format of a message, so that a message created by one application can be understood by another

application. AQ message transformations can be automatically applied to messages during enqueuing, dequeuing or subscribing to

queues. A single transformation must be specified when enqueuing or dequeuing a message, irrespective of the number of the

recipients of the message. In the case of remote subscriptions, a single transformation must be specified for all messages sent to a

particular queue at the destination. Message transformations can be applied to both persistent and nonpersistent messages.

Transformations are exported with a schema or a full database export. If an AQ table is exported, the transformations corresponding to

the queue table will also be exported.

Rules-based Message Routing

AQ can intelligently route messages to the right subscribers in a multi-consumer queue or propagate messages to the right queues

based on rules specified by each application. The rules can be defined on message properties, message data content, or both. Similar

in syntax to the WHERE clause of a SQL query, rules can be expressed in terms of attributes that represent message properties or

message content. The rules engine supports faster evaluation of many SQL-92 expressions such as BITAND , CEIL, FLOOR ,

LENGTH, POWER, CONCAT, LOWER, UPPER, LENGTH, INSTR, SYS_CONTEXT, and UID.

AQ Deployments

AQ is a popular infrastructure for building enterprise messaging functionality across many industries. AQ has been used for simple

scalable workflows, messaging hubs, asynchronous processing, information integration, application integration, messaging warehouse,

alerts, and message-based logical replication. The following provides examples of AQ deployments.

A leading online retailer integrated its CRM system that was hosted by a third party provider with its backend Order processing system

using AQ’s robust and reliable database-integrated messaging infrastructure. Customer and order data were synchronized in near real-

time between the two systems in geographically distributed sites. Message persistence with AQ allowed the two systems to send and

receive data changes through persistent queues. This asynchronous message passing de-coupled the two systems and allowed the

online store to be available to customers to collect orders even if the order-processing site was down. With AQ, the company leveraged

the reliability and scalability of the Oracle Database to handle peak traffic during holiday seasons and developed the integration in a

matter of weeks using AQ’s standards based interfaces.

A European financial services firm implemented AQ as the core platform to integrate the firm’s global IT infrastructure. Enterprise

messaging provided by AQ was used to connect the hubs in London, New York, Singapore, Hong Kong and Tokyo. The core

applications in the hubs exchange financial transactions and other information through XML messages. Due to the sensitive nature of

9 TECHNICAL BRIEF | Oracle Database 19c: Advanced Queuing

the information, the customer required 100% reliable messaging with zero message loss in the event of failure or malfunction of any

software or hardware component. Messages had to be delivered in the same order of creation and also be available in a disaster

recovery (DR) location for each hub. This customer used multi-consumer queues with persistent messaging in each hub. In addition,

using Oracle Data Guard, messages were synchronously copied to the DR locations. Messages were propagated from the local hubs to

remote hubs using AQ propagation and appropriate locale-specific transformations for messages were applied at the destination hubs.

AQ and the Oracle Database provided the robust, scalable and reliable messaging infrastructure to satisfy the customers’ extremely

stringent requirements for guaranteed messaging at high throughputs.

Advanced Queuing is a popular feature of the Oracle Database. AQ is widely used as infrastructure by the Oracle Database itself and

other Oracle products. AQ is used for Database Change Notifications, Database Alerts, the Database Scheduler including event-based

jobs and rule-based job chains, Fast Application Notifications (FAN), and Oracle Data Pump. Other Oracle products using AQ include

Enterprise Manager, Audit Vault, Data Vault, Oracle Weblogic Application Server, Oracle E-Business Suite, Oracle Fusion Applications,

Oracle Eloqua and Oracle Retail.

Integration with Oracle WebLogic Server

Oracle WebLogic Server applications interoperate with AQ through the JMS API using either WebLogic Server resources (Web Apps,

EJBs, MDBs) or stand-alone clients. AQ JMS uses the WebLogic JMS Foreign Server framework. The required references to the

database, JDBC driver, and data source are configured as part of this framework. The WebLogic Server installation includes all the

necessary classes. WebLogic Server applications and stand-alone clients lookup AQ JMS connection factories and destinations using a

standard the WebLogic JNDI context. WebLogic applications and clients load and invoke AQ JMS using standard Java EE APIs.

Best Practices

AQ implements queues using user tables. JMS Sharded Queues automatically manage system-partitioned tables. Unsharded AQ

queue tables use index organized tables (IOTs) and indexes in the Oracle database. AQ operations such as enqueue and dequeue

generate corresponding database activity. Performance of the underlying database operations significantly impacts the overall

performance of AQ. This section details Oracle’s best practices, recommendations and tuning tips for optimal performance of the AQ

messaging infrastructure.

❖ JMS Sharded Queues are the preferred JMS configuration for Oracle Advanced Queuing with
o JMS queues that have enqueuers or dequeuers on multiple Oracle RAC instances
o high throughput JMS queues
o JMS queues that consume too many system resources when using unsharded queues.
o JMS queues with a large number of subscribers.

❖ Oracle recommends using automatic segment-space management (ASSM) tablespaces for the AQ queue tables, especially

for high concurrency applications. Otherwise, initrans, freelists and freelist groups must be tuned to achieve better AQ

performance. Storage parameters can be specified during creation of the queue table using the storage_clause parameter. In

case there are multiple queue tables then from high availability and maintenance aspect it is recommended to define separate

tablespace for each queue.

❖ For unsharded queues, the performance characteristics of queue operations on persistent messages are similar to underlying

database operations. The code path of an enqueue operation is comparable to SELECT and INSERT into a multi-column table

with three index-organized tables. The code path of a dequeue operation is comparable to a SELECT operation on the multi-

column table and a DELETE operation on the dequeue index-organized table. In many scenarios, for example when Oracle

Real Application Clusters (Oracle RAC) is not used and there is adequate streams pool memory, the dequeue operation is

optimized and is comparable to a SELECT operation on a multi-column table. To take advantage of the optimized dequeue

operations, increase STREAMS_POOL_SIZE to allocate at least 20MB per queue.

10 TECHNICAL BRIEF | Oracle Database 19c: Advanced Queuing

❖ The queue table indexes and IOTs are automatically coalesced by AQ background processes. However, they must continue to

be monitored and coalesced if needed. From 10.2 onwards, with automatic space segment management (ASSM), an online

shrink operation may be used for the same purpose. A well balanced index reduces queue monitor CPU consumption, and

ensures optimal enqueue-dequeue performance.

❖ Oracle RAC can be used to provide high availability and scalability to AQ. For queues being accessed exclusively via the JMS

drivers, JMS Sharded Queues provide optimized performance on Oracle RAC with improved manageability. For queues being

accessed through the AQ PL/SQL APIs, the performance of AQ can be improved by allowing different queues to be managed

by different RAC instances. Different instance affinities or preferences can be specified for the queue tables that allows for

parallelization of queue operations on different queues. Oracle recommends setting instance affinities for the queue tables.

Setting instance affinities allows distribution of the background processing for queue-monitor scheduling and propagation. If an

instance affinity is not set, queue table affinity is allocated arbitrarily amongst the available instances, which can cause pinging

between the application accessing the queue tables and the queue-monitor process monitoring the queue under high loads.

❖ Ensure that statistics are being gathered so that the optimal query plans for retrieving messages are being chosen. By default,

queue tables are locked out from automatic gathering of statistics. The recommended use is to gather statistics with a

representative queue message load and lock them.

❖ Ensure that there are enough queue monitor processes running to perform the background tasks. The queue monitor must

also be running for other crucial background activity. Multiple QMN processes share the load; make sure that there are enough

of them. These are auto-tuned, but can be forced to a minimum number by using aq_tm_processes database parameter, if

needed.

❖ Dequeue with a wait time should be used only with dedicated server processes. In a shared server environment, the shared

server process is dedicated to the dequeue operation for the duration of the call, including the wait time. The presence of

many such processes can cause severe performance and scalability problems and can result in deadlocking the shared server

processes.

❖ If queues seem to be growing without bound, check for and drop any persistent subscribers that have been orphaned by their

applications.

❖ Oracle Database Release 11 transparently introduced many performance optimizations for unsharded queues. For example,

empty index blocks are now automatically freed incrementally by internally monitoring empty index blocks and the number of

message dequeued at queue and subscriber level. In previous releases, such periodic maintenance needed to be performed

manually.

❖ Other performance best practices include batching multiple dequeue operations on multi-consumer queues into a single

transaction, using NEXT_MESSAGE compared to FIRST_MESSAGE as the navigation mode if not using message priorities,

and using the REMOVE_NODATA dequeue mode if dequeuing in BROWSE mode followed by a REMOVE. Please see the

AQ documentation for additional performance hints.

Performance Monitoring

In addition to AQ administrative functions, Enterprise Manager has support for monitoring AQ metrics and setting thresholds for alerts.

These metrics cover both persistent and nonpersistent queues. They can be used to detect problems like orphaned subscribers that

have not dequeued for a long time or to identify slow subscribers. The metrics can also monitor the health of a queues, such as

throughput or how fast the length of a queue is growing or shrinking or space usage. Please see the Oracle® Enterprise Manager

Oracle Database Plug-in Metric Reference Manual for more information.

11 TECHNICAL BRIEF | Oracle Database 19c: Advanced Queuing

Enhanced views for persistent messaging statistics, notification statistics and subscription management allow direct monitoring of

system performance and troubleshooting in 19c. The Automatic Workload Repository (AWR) displays the most active queues for

persistent messaging operations, allowing for easier diagnosability of AQ performance problems. Users can generate a report based

on two AWR snapshots to compute enqueue rate, dequeue rate, and other statistics per queue or per subscriber. In addition, a

performance monitoring PL/SQL package for AQ is available through Support Document 1163083.1.

Conclusion

Oracle Advanced Queuing, built into the Oracle Database, offers a robust platform to standardize and integrate the various

technologies and applications inside the data center. Businesses can leverage AQ’s enterprise messaging infrastructure to build highly

scalable and reliable distributed applications. Powerful AQ features such as differing qualities of service, automatic message

transformations, and propagations give businesses the tools needed to design a powerful and flexible messaging platform. Database

integrated Advanced Queuing provides smooth, real-time flow of critical information, less management and more productivity for your

ever growing, scalable, highly available business.

12 TECHNICAL BRIEF | Oracle Database 19c: Advanced Queuing

ORACLE ADVANCED QUEUING – SHORT TUTORIAL

The following is a short tutorial on how to configure and use Oracle Advanced Queuing (AQ). This section demonstrates the basic

functionality and the simplicity of using AQ.

An electronic store needs to route the customer orders from its online store to the right warehouse in US or Europe for order fulfillment.

The central CRM application collects the order along with the customer information and stores

the order data in the Oracle Database. The order details are enqueued as ADT messages in AQ. The fulfillment applications for the

different warehouses then dequeue the order messages (deleted from queue automatically) and process the customer orders. The

CRM, Europe Fulfillment and US Fulfillment applications work asynchronously and should work even if other applications are down. For

example, even if the Europe site is down, the online store should continue to process new customer orders through the CRM

application and the US warehouse should continue to process the orders for the US region.

This tutorial explains the steps needed to set up and use the messaging infrastructure in AQ.

1. Configure AQ Administrator account

 The AQ Administrator user (‘aq_admin’) creates and owns the queuing infrastructure. The role AQ_ADMINISTATOR_ROLE that

allows for the creation and administration of the queuing infrastructure needs to be granted to the ‘aq_admin’ user.

 --create aq_admin administrator account

CREATE USER aq_admin IDENTIFIED BY aq_admin

DEFAULT TABLESPACE users

TEMPORARY TABLESPACE temp;

ALTER USER aq_admin QUOTA UNLIMITED ON users;

--grant roles to aq_admin

GRANT aq_administrator_role TO aq_admin;

GRANT connect TO aq_admin;

GRANT create type TO aq_admin;

2. Set up Order message payload and Orders queues

The following steps must be executed as the aq_admin user.

13 TECHNICAL BRIEF | Oracle Database 19c: Advanced Queuing

• Create the content or the payload of the message.

CREATE TYPE orders_message_type AS OBJECT (

order_id NUMBER(15),

Product_code VARCHAR2(10),

Customer_id VARCHAR2(10),

order_details VARCHAR2(4000),

price NUMBER(4,2),

region_code VARCHAR2(100));

• Create Queue Table and Queue

After creating the payload, the queuing infrastructure can be created. Queues are implemented using a queue table that can

hold multiple queues with the same payload type. The following creates a queue table ‘orders_qt’ and a queue

‘orders_msg_queue’.

DBMS_AQADM.CREATE_QUEUE_TABLE (

queue_table => 'aq_admin.orders_qt',

queue_payload_type =>

'aq_admin.orders_message_type');

DBMS_AQADM.CREATE_QUEUE (

queue_name => 'orders_msg_queue',

queue_table => 'aq_admin.orders_msg_qt',

queue_type => DBMS_AQADM.NORMAL_QUEUE,

max_retries => 0,

retry_delay => 0,

retention_time => 1209600,

dependency_tracking => FALSE,

comment => 'Test Object Type Queue',

auto_commit => FALSE);

• Start the queue

DBMS_AQADM.START_QUEUE('orders_msg_queue');

3. Configure AQ user account

The AQ user (‘aq_user’) accesses the queuing infrastructure created in the above step. The following creates the ‘aq_user’

account and grants the necessary privileges.

--create aq_user user account

CREATE USER aq_user IDENTIFIED BY aq_user DEFAULT

TABLESPACE users TEMPORARY TABLESPACE temp;

 --grant roles to aq_user

GRANT aq_user_role TO aq_user;

14 TECHNICAL BRIEF | Oracle Database 19c: Advanced Queuing

 -grant EXECUTE on message_type to aq_user

GRANT EXECUTE ON message_type TO aq_user;

DBMS_AQADM.GRANT_QUEUE_PRIVILEGE(

privilege => 'ALL',

queue_name => 'aq_admin.orders_msg_queue',

grantee => 'aq_user',

grant_option => FALSE);

4. Subscriptions to the Orders queue

The orders queue has two subscriptions, one for orders made from within the US, and another for orders made from Europe.

The region_code in the orders_message_type distinguishes the two types of orders.

-- need administrator privileges to add subscriber

DBMS_AQADM.ADD_SUBSCRIBER(

Queue_name => ‘aq_admin.orders_msg_queue’,

Subscriber => ‘US_ORDERS’,

Rule => ‘tab.user_data.region_code = ‘`USA’’’);

DBMS_AQADM.ADD_SUBSCRIBER(

Queue_name => ‘aq_admin.orders_msg_queue’,

Subscriber => ‘EUROPE_ORDERS’,

Rule => ‘tab.user_data.region_code =

‘`EUROPE’’’, Transformation =>

‘aq_admin.Dollar_to_Euro’);

5. Create message transformations (optional)

Message transformations can be automatically applied to messages in AQ queues. The code below shows an example of

translating currency from dollars to euros. The price field in the order message is specified in dollars. When the European

warehouse dequeues the message, the price field is automatically changed to euros as shown in the simple example below.

CREATE FUNCTION

Fn_Dollars_to_Euro(src aq_admin.orders_msg_type)

Returns aq_admin.orders_msg_type AS

 Target aq_admin.orders_msg_type;

BEGIN

Target := aqadmin.orders_msg_type(src.order_id,

src.product_code, src.customer_id,

src.order_details, src.price*.5,

src.region_code);

15 TECHNICAL BRIEF | Oracle Database 19c: Advanced Queuing

END;

DBMS_TRANSFORM.CREATE_TRANSFORMATION(

schema => 'AQ_ADMIN',

 name => 'DOLLAR_TO_EURO’,

 from_schema => 'AQ_ADMIN',

 from_type => 'ORDERS_MSG_TYPE',

 to_schema => 'AQ_ADMIN',

 to_type => 'ORDERS_MSG_TYPE',

transformation => 'AQ_ADMIN.Fn_Dollars_to_Euro(source.user_data)');

6. Queue Operations – Enqueue and Dequeue Messages

The following steps must be executed as the aq_user user. The CRM application enqueues the order messages into the

Orders queue that is then dequeued by the Fulfillment applications.

• Enqueue Message - Enqueue a new order into the orders_queue using the DBMS_AQ.ENQUEUE procedure. The

order price is specified in dollars.

DECLARE

enqueue_options dbms_aq.enqueue_options_t;

message_properties

dbms_aq.message_properties_t;

message_handle RAW(16);

message aq_admin.orders_message_type;

message_id NUMBER;

BEGIN

message := AQ_ADMIN.MESSAGE_TYPE (1, 325, 49,

'Details: Digital Camera. Brand: ABC. Model: XYX' , 23.2, ‘EUROPE’);

-- default for enqueue options VISIBILITY is

-- ON_COMMIT. message has no delay and no

-- expiration

message_properties.CORRELATION := message.order_id;

DBMS_AQ.ENQUEUE (

queue_name => 'aq_admin.orders_msg_queue',

enqueue_options => enqueue_options,

message_properties => message_properties,

payload => message,

msgid => message_handle);

16 TECHNICAL BRIEF | Oracle Database 19c: Advanced Queuing

COMMIT;

END;

• Dequeue Message – This example shows how the European warehouse dequeues messages corresponding to

orders from Europe. The DBMS_AQ.DEQUEUE procedure is used to read or dequeue the messages from the queue. The

price is automatically transformed to euros before dequeue.

DECLARE

dequeue_options dbms_aq.dequeue_options_t;

message_properties

dbms_aq.message_properties_t;

message_handle RAW(16);

message aq_admin.orders_message_type;

BEGIN

-- defaults for dequeue_options

-- Dequeue for the Europe_Orders subscriber

-- Transformation Dollar_to_Euro is

-- automatically applied

dequeue_options.consumer_name :=

‘EUROPE_ORDERS’;

-- set immediate visibility

dequeue_options.VISIBILITY :=

DBMS_AQ.IMMEDIATE;

DBMS_AQ.DEQUEUE (

queue_name => 'aq_admin.orders_msg_queue',

dequeue_options => dequeue_options,

message_properties => message_properties,

payload => message,

msgid => message_handle);

dbms_output.put_line('+---------------+');

dbms_output.put_line('| MESSAGE PAYLOAD |');

dbms_output.put_line('+---------------+');

dbms_output.put_line('- Order ID := ' ||

message.order_id);

dbms_output.put_line('- Customer ID:= ' ||

17 TECHNICAL BRIEF | Oracle Database 19c: Advanced Queuing

message.customer_id);

dbms_output.put_line('- Product Code:= ' ||

message.product_code);

dbms_output.put_line('- Order Details := ' ||

message.order_details);

dbms_output.put_line('- Price in Euros := ' ||

message.price);

COMMIT;

END;

ORACLE CORPORATION

Worldwide Headquarters

500 Oracle Parkway, Redwood Shores, CA 94065 USA

Worldwide Inquiries

TELE + 1.650.506.7000 + 1.800.ORACLE1

FAX + 1.650.506.7200

oracle.com

CONNECT WITH US

Call +1.800.ORACLE1 or visit oracle.com. Outside North America, find your local office at oracle.com/contact.

 blogs.oracle.com/oracle facebook.com/oracle twitter.com/oracle

Copyright © 2020, Oracle and/or its affiliates. All rights reserved. This document is provided for information purposes only, and the contents hereof are

subject to change without notice. This document is not warranted to be error-free, nor subject to any other warranties or conditions, whether expressed

orally or implied in law, including implied warranties and conditions of merchantability or fitness for a particular purpose. We specifically disclaim any

liability with respect to this document, and no contractual obligations are formed either directly or indirectly by this document. This document may not be

reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, without our prior written permission.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or

registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks

of Advanced Micro Devices. UNIX is a registered trademark of The Open Group. 0920

White Paper Oracle Database 19c: Advanced Queuing

December 2019

Author: Sanjay Goil

Contributing Authors: Mahesh Girkar, James Stamos, Amit Ketkar, Amitabha Samanta

https://www.oracle.com/
http://www.oracle.com/contact

	TECHNICAL BRIEF / DECEMBER 2019
	Disclaimer
	Introduction
	Message Queuing
	Oracle Advanced Queuing
	AQ Components
	AQ Capabilities
	Transaction Support
	Quality of Service
	Queue Models
	Security
	Message Propagation
	Message Transformation
	Rules-based Message Routing

	AQ Deployments
	Integration with Oracle WebLogic Server
	Best Practices
	Performance Monitoring
	Conclusion
	ORACLE ADVANCED QUEUING – SHORT TUTORIAL
	DEFAULT TABLESPACE users
	DBMS_AQADM.GRANT_QUEUE_PRIVILEGE(
	DBMS_AQADM.ADD_SUBSCRIBER(
	CREATE FUNCTION
	BEGIN
	Target := aqadmin.orders_msg_type(src.order_id,
	END;
	DBMS_TRANSFORM.CREATE_TRANSFORMATION(

