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Disclaimer 

This document in any form, software or printed matter, contains proprietary information that is the 

exclusive property of Oracle. Your access to and use of this confidential material is subject to the 

terms and conditions of your Oracle software license and service agreement, which has been 

executed and with which you agree to comply. This document and information contained herein may 

not be disclosed, copied, reproduced or distributed to anyone outside Oracle without prior written 

consent of Oracle. This document is not part of your license agreement nor can it be incorporated 

into any contractual agreement with Oracle or its subsidiaries or affiliates. 

This document is for informational purposes only and is intended solely to assist you in planning for 

the implementation and upgrade of the product features described. It is not a commitment to deliver 

any material, code, or functionality, and should not be relied upon in making purchasing decisions. 

The development, release, and timing of any features or functionality described in this document 

remains at the sole discretion of Oracle. 

Due to the nature of the product architecture, it may not be possible to safely include all features 

described in this document without risking significant destabilization of the code. 
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Introduction 

IT managers need a standards-based enterprise-messaging infrastructure that can integrate the different systems and technologies on 

a scalable, reliable and powerful platform for the real-time flow of information. Oracle Database 19c provides such an enterprise 

messaging infrastructure with Oracle Advanced Queuing (AQ), which is a key component in automating business process workflows for 

distributed applications. Using AQ, businesses can take advantage of the Oracle Database for enterprise messaging needs without the 

need for a separate high-end message-oriented middleware product. Organizations not only can manage all the data inside the Oracle 

database, but also manage the flow and exchange of data using messages to different systems in one highly reliable, available and 

scalable Oracle Database. AQ implements the message queuing functionality natively inside the database and leverages its easy 

manageability, high availability, high performance and security. AQ supports point-to-point and publish/subscribe queues, persistent 

and nonpersistent messaging, and message ordering priorities that offer flexibility and powerful messaging functionality to applications. 

Interfaces to AQ include PL/SQL, JMS 1.1, JDBC, ODP.NET, Python, Node.js, and C/C++ (with OCI).  

This paper focuses on the typical requirements of an enterprise-messaging infrastructure and discusses how Advanced Queuing 

technologies available in the Oracle Database can help automate business workflows in a distributed environment.  The paper 

highlights some of the advanced messaging, routing and propagation features of AQ and how businesses can leverage the database-

integrated messaging functionality in the Oracle Database to maximize the return on their investments on infrastructure and build 

robust, highly scalable, distributed applications with better quality of service to users.  

In Oracle Database Release 12c, AQ introduced AQ Sharded Queues, which provides JMS functionality with a highly optimized and 

scalable database queuing implementation. For more information specifically on AQ Sharded Queues, please refer to the technical brief 

“AQ Sharded Queues for scalable high performance Advanced Queueing”. This paper focuses on the more generic aspects of 

Advanced Queues. 

Message Queuing 

Message queuing infrastructure enables information sharing and integration amongst different, and in many cases distributed, 

applications. Producer applications send or enqueue messages into queues from which consumer applications receive or dequeue 

messages. Producers and consumers use queues to interact asynchronously, and this “decoupling” is the centerpiece of message 

queuing. This pattern has emerged to be very useful for Microservices, which are defined as loosely coupled service-oriented 

architectures with bounded contexts. AQ queues make it simpler to build and deploy microservices with transactional messaging. 

Messages often represent critical business events and impose certain characteristics on the underlying messaging infrastructure. The 

creation, consumption and propagation of the messages must be handled with the highest levels of integrity. Messages must be 

protected against failures in any component in the enterprise stack and be recoverable in all cases. Message content and attributes 

must be easily retrievable through standard interfaces. Finally, the infrastructure should be scalable without compromising the 

performance, availability and reliability of the system.  

Oracle Advanced Queuing 

Oracle Advanced Queuing (AQ) is a database-integrated messaging infrastructure in Oracle Database 19c. AQ leverages the 

functionality of the Oracle database to store messages in persistent queues. All operational benefits of the Oracle database such as 

high availability, scalability and reliability are applicable to the messages and queues in AQ. Standard database features such as 

backup & recovery, security and manageability are available to AQ. Oracle technologies such as Data Guard, Real Application Clusters 

(RAC), and Automatic Storage Management (ASM) can be combined with AQ to deliver a highly available and scalable messaging 

system. Using standard, off-the-shelf servers and storage, customers can build AQ-based messaging systems that can scale linearly 

without sacrificing performance, availability or reliability.  
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AQ Components 

The four main components of AQ are: 

1. Message - A message consists of message content, or payload, which can be specified using typed or raw data and message 

attributes or control information. 

2. Message Queue – Messages are stored in queues and these queues act as “postal boxes” where different applications can 

look for “mail” in the form of messages. Thus, when one application wants to contact certain applications for certain tasks, it 

can leave messages in these queues, and the receiving applications will be able to find these messages for processing.  

3. Message Interfaces – AQ supports enqueue, dequeue, and propagation operations that integrate seamlessly with existing 

applications by supporting popular standards. AQ messages can be created, queried, propagated and consumed using 

popular application programming interfaces (API) such as PL/SQL, C/C++, Java, Visual Basic (through Oracle Objects for 

OLE), Python, Node.js,  and ODP.NET. AQ provides support for the Java Message Service 1.1 (JMS) API that allows Java 

applications to utilize the message queuing functionality. 

4. Message Handling – AQ supports rule-based routing of messages according to data in the message payload or attributes. 

Additionally, message transformations can be applied to messages to re-format data before the messages are automatically 

delivered to target applications or subscribers. Oracle Database 19c can also exchange AQ messages with IBM MQ and 

TIBCO/Rendezvous through the Oracle Messaging Gateway. 

The various components in AQ provide the functionality needed for enterprise application integration or distributed applications. In a 

typical integrated environment as shown below in Figure 1, messages are created, propagated and consumed between the Oracle 

Database server, applications and users. 

 

 

Figure 1: Integrated Application Environment using Oracle AQ 
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AQ Capabilities 

AQ is an integrated messaging infrastructure inside the Oracle database and offers many key capabilities for developing message-

based, distributed applications including: 

• Transaction support 

• Publish/Subscribe support 

• Quality of Service (QoS) 

• Queue Models 

• Security 

• Message Propagation 

• Message Transformation 

• Rules-based Message Routing 

• Priority of Messages 

Transaction Support 

AQ provides transactional semantics to messages using the same underlying infrastructure in the Oracle Database used for relational 

data. Queue operations such as enqueue and dequeue are atomic, and the Oracle database guarantees the consistency of the 

messages in persistent queues. Messages are stored along with the other data using the same storage devices and do not require any 

special set up or management.  With AQ, messages can be retained for any length of time (infinite if required), and used for 

tracking/auditing purposes or for building message warehouses for data mining and analytics. Applications can manipulate the 

relational data and messages in a single transaction. When external or third party messaging systems are used, applications often need 

to use 2-phase commit algorithms to achieve transactional semantics, which could be expensive. In contrast, Oracle WebLogic use a 

one-phase commit optimization when JTA transactions consist only of AQ JMS and JDBC operations to the same Oracle database. 

Quality of Service 

Messages need to be persisted for various reasons. Regulatory compliance, business process auditing, and analytics are a few 

examples where messages need to be retained for different periods of time. Applications can rely on AQ’s message queuing 

infrastructure for guaranteed exactly-once delivery mechanism. Financial services hubs that integrate portfolio management systems 

with trade processing systems need to retain client order messages to satisfy legal requirements. Integrating with partners or 3rd party 

fulfillment contractors for order processing requires messages be exchanged and retained until the order process is complete.  

Applications exchange data in the form of messages and need to retain these messages for processing business process workflows.  

By being integrated with the Oracle database, AQ can provide a higher quality of service than most messaging systems.  AQ queues 

can be backed up like other Oracle tables. Oracle Data Guard provides high availability to AQ messages. AQ scales to very large 

concurrent message volumes. Concurrent smaller message sends are not blocked by larger message sends. AQ can handle extremely 

large message backlogs without requiring producers to be throttled. AQ handles very large message payloads (e.g., gigabytes) and 

leverages the LOB streaming infrastructure.  AQ messages are visible through SQL, and AQ tables can be indexed. 

In addition to the database-backed quality of service that AQ delivers for persistent messages, AQ provides integrated support for 

nonpersistent or buffered messages. In some cases, messages need to have the lowest latency, as measured by the time between 

enqueuing and dequeuing the message. Such messages can be transient i.e. need not be retained. Subscribers to stock quotes need 

updates at regular intervals, however failures need not be re-tried as the most current stock update is sufficient for most consumers. 

Mobile coupons based on location, for example, should be delivered to mobile subscribers as soon as possible. In case of errors, the 
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application can decide to re-send the deals to those subscribers or send new deals based on the new locations of the subscribers. For 

these types of applications, AQ provides in-memory or buffered messaging for the low latency, high performance message 

management infrastructure. 

Oracle Database 19c AQ offers comprehensive capabilities for both persistent and nonpersistent messages.  

1. Persistent Messaging 

AQ provides the queues and the underlying queue tables to persist messages that must be guaranteed to be processed exactly 

once, even in the event of network, hardware or software failures. Applications can use AQ queues to process messages arriving 

simultaneously from external programs or from modules within applications. AQ supports different mechanisms to control the order 

in which messages are processed. Applications can specify a ‘priority’ for each message at enqueue time, which can be used to 

control the order in which messages are consumed. Alternately, messages can also be sorted according to enqueue time or 

commit time to get a FIFO order for consuming the messages. Commit time is the time at which the transaction was committed, 

and this is especially useful when transactions are interdependent. The persistent quality of service is the default in AQ. 

 

2. Nonpersistent Messaging 

Certain applications require higher performance and are willing to tradeoff the reliability and the transactional support offered by the 

AQ Persistent Messaging. Queues for nonpersistent messages store messages in memory and do not involve disk I/O. The 

memory for buffered queues is allocated from the SGA and can be controlled using the ‘streams_pool_size’ parameter. Alternately, 

Oracle can automatically allocate the appropriate memory using SGA auto-tuning. All message ordering schemes available for 

persistent messages are available to buffered messages.   

AQ supports persistent and nonpersistent messages through a common API and provides a messaging infrastructure that effectively 

separates the application logic and the message integration logic. AQ queues can be set up under different queuing models such as 

point-to-point and publish-subscribe to let business applications communicate with each other flexibly and reliably. 

Queue Models 

AQ supports two queue models, namely point-to-point and publish/subscribe queues. A point-to-point or single-consumer queue is 

aimed at a specific target. Producers and consumers decide on a common queue in which to exchange messages. A message in the 

point-to-point can be dequeued only once. A publish/subscribe or multi-consumer queue is aimed at multiple targets. Messages in a 

publish/subscribe queue can be dequeued by multiple consumers. This type of queue messaging can be used for broadcast or 

multicast dissemination. Applications can set up rules for delivery to consumers, and these rules can be defined on message payload, 

attributes or both. Subscriber applications can receive messages that match the subscription rules automatically at dequeue time. 

Publishers need not be aware of the different consumers or rules and can continue to publish messages. AQ tracks the subscribers and 

can notify the subscriber applications using the Oracle Call Interface (OCI) or PL/SQL notification mechanism. This allows for a push 

mode of message delivery.  

Security 

AQ supports flexible security mechanisms that separate the queue administration and the queue operational tasks. System-level 

access control allows the application designer or DBA to control access for all queue operations and designate certain users as queue 

administrators. A queue administrator can perform both the administrative and operational tasks on any queue in the database. AQ also 

supports queue-level access control for enqueue and dequeue operations. Access to particular queues can be limited to only the 

applications running in the same schema. 
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Message Propagation 

AQ can propagate messages from one queue to another queue in the same database or in a remote database. This allows applications 

to communicate asynchronously with each other in a distributed environment without being connected to the same database or to the 

same queue. The source queue is a multi-consumer queue while the target queue can be either a single-consumer or multi-consumer 

queue. Messages enqueued in the source queue are propagated automatically and are available for dequeuing at the destination 

queue or queues. Propagation can be set up to run either continuously as a background process or run only if there is a message to be 

propagated. With queue-to-queue propagation, a separate job is created to propagate messages for each source and destination 

queue pair. With queue to dblink propagation, propagation to all target queues at a dblink will share the same propagation job.   

Message Transformation 

Most business-to-business (B2B) applications need to manipulate data in different formats to integrate disparate applications and 

systems. AQ provides a complete data transformation engine to transform messages from one data type to another. AQ supports 

message transformations between different Oracle and user-defined data types. These transformations can be SQL expressions, 

PL/SQL functions or Java stored procedures. AQ also supports transformations of XML documents using XSLT.  

Transformations change the format of a message, so that a message created by one application can be understood by another 

application. AQ message transformations can be automatically applied to messages during enqueuing, dequeuing or subscribing to 

queues.  A single transformation must be specified when enqueuing or dequeuing a message, irrespective of the number of the 

recipients of the message. In the case of remote subscriptions, a single transformation must be specified for all messages sent to a 

particular queue at the destination. Message transformations can be applied to both persistent and nonpersistent messages. 

Transformations are exported with a schema or a full database export. If an AQ table is exported, the transformations corresponding to 

the queue table will also be exported. 

Rules-based Message Routing 

AQ can intelligently route messages to the right subscribers in a multi-consumer queue or propagate messages to the right queues 

based on rules specified by each application. The rules can be defined on message properties, message data content, or both. Similar 

in syntax to the WHERE clause of a SQL query, rules can be expressed in terms of attributes that represent message properties or 

message content. The rules engine supports faster evaluation of many SQL-92 expressions such as BITAND , CEIL, FLOOR , 

LENGTH, POWER, CONCAT, LOWER, UPPER, LENGTH, INSTR, SYS_CONTEXT, and UID. 

AQ Deployments 

AQ is a popular infrastructure for building enterprise messaging functionality across many industries. AQ has been used for simple 

scalable workflows, messaging hubs, asynchronous processing, information integration, application integration, messaging warehouse, 

alerts, and message-based logical replication. The following provides examples of AQ deployments. 

A leading online retailer integrated its CRM system that was hosted by a third party provider with its backend Order processing system 

using AQ’s robust and reliable database-integrated messaging infrastructure. Customer and order data were synchronized in near real-

time between the two systems in geographically distributed sites. Message persistence with AQ allowed the two systems to send and 

receive data changes through persistent queues. This asynchronous message passing de-coupled the two systems and allowed the 

online store to be available to customers to collect orders even if the order-processing site was down. With AQ, the company leveraged 

the reliability and scalability of the Oracle Database to handle peak traffic during holiday seasons and developed the integration in a 

matter of weeks using AQ’s standards based interfaces. 

A European financial services firm implemented AQ as the core platform to integrate the firm’s global IT infrastructure. Enterprise 

messaging provided by AQ was used to connect the hubs in London, New York, Singapore, Hong Kong and Tokyo. The core 

applications in the hubs exchange financial transactions and other information through XML messages. Due to the sensitive nature of 
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the information, the customer required 100% reliable messaging with zero message loss in the event of failure or malfunction of any 

software or hardware component. Messages had to be delivered in the same order of creation and also be available in a disaster 

recovery (DR) location for each hub.  This customer used multi-consumer queues with persistent messaging in each hub. In addition, 

using Oracle Data Guard, messages were synchronously copied to the DR locations. Messages were propagated from the local hubs to 

remote hubs using AQ propagation and appropriate locale-specific transformations for messages were applied at the destination hubs. 

AQ and the Oracle Database provided the robust, scalable and reliable messaging infrastructure to satisfy the customers’ extremely 

stringent requirements for guaranteed messaging at high throughputs. 

Advanced Queuing is a popular feature of the Oracle Database. AQ is widely used as infrastructure by the Oracle Database itself and 

other Oracle products.  AQ is used for Database Change Notifications, Database Alerts, the Database Scheduler including event-based 

jobs and rule-based job chains, Fast Application Notifications (FAN), and Oracle Data Pump. Other Oracle products using AQ include 

Enterprise Manager, Audit Vault, Data Vault, Oracle Weblogic Application Server, Oracle E-Business Suite, Oracle Fusion Applications, 

Oracle Eloqua and Oracle Retail. 

Integration with Oracle WebLogic Server  

Oracle WebLogic Server applications interoperate with AQ through the JMS API using either WebLogic Server resources (Web Apps, 

EJBs, MDBs) or stand-alone clients. AQ JMS uses the WebLogic JMS Foreign Server framework. The required references to the 

database, JDBC driver, and data source are configured as part of this framework. The WebLogic Server installation includes all the 

necessary classes. WebLogic Server applications and stand-alone clients lookup AQ JMS connection factories and destinations using a 

standard the WebLogic JNDI context. WebLogic applications and clients load and invoke AQ JMS using standard Java EE APIs.  

Best Practices 

AQ implements queues using user tables.  JMS Sharded Queues automatically manage system-partitioned tables. Unsharded AQ 

queue tables use index organized tables (IOTs) and indexes in the Oracle database. AQ operations such as enqueue and dequeue 

generate corresponding database activity. Performance of the underlying database operations significantly impacts the overall 

performance of AQ. This section details Oracle’s best practices, recommendations and tuning tips for optimal performance of the AQ 

messaging infrastructure. 

❖ JMS Sharded Queues are the preferred JMS configuration for Oracle Advanced Queuing with 
o JMS queues that have enqueuers or dequeuers on multiple Oracle RAC instances 
o high throughput JMS queues 
o JMS queues that consume too many system resources when using unsharded queues. 
o JMS queues with a large number of subscribers. 

❖ Oracle recommends using automatic segment-space management (ASSM) tablespaces for the AQ queue tables, especially 

for high concurrency applications. Otherwise, initrans, freelists and freelist groups must be tuned to achieve better AQ 

performance. Storage parameters can be specified during creation of the queue table using the storage_clause parameter.  In 

case there are multiple queue tables then from high availability and maintenance aspect it is recommended to define separate 

tablespace for each queue. 

❖ For unsharded queues, the performance characteristics of queue operations on persistent messages are similar to underlying 

database operations. The code path of an enqueue operation is comparable to SELECT and INSERT into a multi-column table 

with three index-organized tables. The code path of a dequeue operation is comparable to a SELECT operation on the multi-

column  table and a DELETE operation on the dequeue index-organized table. In many scenarios, for example when Oracle 

Real Application Clusters (Oracle RAC) is not used and there is adequate streams pool memory, the dequeue operation is 

optimized and is comparable to a SELECT operation on a multi-column table.  To take advantage of the optimized dequeue 

operations, increase STREAMS_POOL_SIZE to allocate  at least 20MB per queue. 
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❖ The queue table indexes and IOTs are automatically coalesced by AQ background processes. However, they must continue to 

be monitored and coalesced if needed. From 10.2 onwards, with automatic space segment management (ASSM), an online 

shrink operation may be used for the same purpose. A well balanced index reduces queue monitor CPU consumption, and 

ensures optimal enqueue-dequeue performance.  

❖ Oracle RAC can be used to provide high availability and scalability to AQ. For queues being accessed exclusively via the JMS 

drivers, JMS Sharded Queues provide optimized performance on Oracle RAC with improved manageability. For queues being 

accessed through the AQ PL/SQL APIs, the performance of AQ can be improved by allowing different queues to be managed 

by different RAC instances. Different instance affinities or preferences can be specified for the queue tables that allows for 

parallelization of queue operations on different queues. Oracle recommends setting instance affinities for the queue tables. 

Setting instance affinities allows distribution of the background processing for queue-monitor scheduling and propagation. If an 

instance affinity is not set, queue table affinity is allocated arbitrarily amongst the available instances, which can cause pinging 

between the application accessing the queue tables and the queue-monitor process monitoring the queue under high loads. 

❖ Ensure that statistics are being gathered so that the optimal query plans for retrieving messages are being chosen. By default, 

queue tables are locked out from automatic gathering of statistics. The recommended use is to gather statistics with a 

representative queue message load and lock them. 

❖ Ensure that there are enough queue monitor processes running to perform the background tasks. The queue monitor must 

also be running for other crucial background activity. Multiple QMN processes share the load; make sure that there are enough 

of them. These are auto-tuned, but can be forced to a minimum number by using aq_tm_processes database parameter, if 

needed. 

❖ Dequeue with a wait time should be used only with dedicated server processes. In a shared server environment, the shared 

server process is dedicated to the dequeue operation for the duration of the call, including the wait time. The presence of 

many such processes can cause severe performance and scalability problems and can result in deadlocking the shared server 

processes. 

❖ If queues seem to be growing without bound, check for and drop any persistent subscribers that have been orphaned by their 

applications. 

❖ Oracle Database Release 11 transparently introduced many performance optimizations for unsharded queues. For example, 

empty index blocks are now automatically freed incrementally by internally monitoring empty index blocks and the number of 

message dequeued at queue and subscriber level. In previous releases, such periodic maintenance needed to be performed 

manually. 

❖ Other performance best practices include batching multiple dequeue operations on multi-consumer queues into a single 

transaction,  using NEXT_MESSAGE compared to FIRST_MESSAGE as the navigation mode if not using message priorities, 

and using the REMOVE_NODATA dequeue mode if dequeuing in BROWSE mode followed by a REMOVE.  Please see the 

AQ documentation for additional performance hints. 

 

Performance Monitoring 

In addition to AQ administrative functions, Enterprise Manager has support for monitoring AQ metrics and setting thresholds for alerts. 

These metrics cover both persistent and nonpersistent queues. They can be used to detect problems like orphaned subscribers that 

have not dequeued for a long time or to identify slow subscribers.  The metrics can also monitor the health of a queues, such as 

throughput or how fast the length of a queue is growing or shrinking or space usage. Please see the Oracle® Enterprise Manager 

Oracle Database Plug-in Metric Reference Manual for more information. 
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Enhanced views for persistent messaging statistics, notification statistics and subscription management allow direct monitoring of 

system performance and troubleshooting in 19c.  The Automatic Workload Repository (AWR) displays the most active queues for 

persistent messaging operations, allowing for easier diagnosability of AQ performance problems.   Users can generate a report based 

on two AWR snapshots to compute enqueue rate, dequeue rate, and other statistics per queue or per subscriber. In addition, a 

performance monitoring PL/SQL package for AQ is available through Support Document 1163083.1.  

 
Conclusion 

Oracle Advanced Queuing, built into the Oracle Database, offers a robust platform to standardize and integrate the various 

technologies and applications inside the data center. Businesses can leverage AQ’s enterprise messaging infrastructure to build highly 

scalable and reliable distributed applications. Powerful AQ features such as differing qualities of service, automatic message 

transformations, and propagations give businesses the tools needed to design a powerful and flexible messaging platform. Database 

integrated Advanced Queuing provides smooth, real-time flow of critical information, less management and more productivity for your 

ever growing, scalable, highly available business. 
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ORACLE ADVANCED QUEUING – SHORT TUTORIAL 

The following is a short tutorial on how to configure and use Oracle Advanced Queuing (AQ). This section demonstrates the basic 

functionality and the simplicity of using AQ.  

An electronic store needs to route the customer orders from its online store to the right warehouse in US or Europe for order fulfillment. 

The central CRM application collects the order along with the customer information and stores  

 

the order data in the Oracle Database. The order details are enqueued as ADT messages in AQ. The fulfillment applications for the 

different warehouses then dequeue the order messages (deleted from queue automatically) and process the customer orders. The 

CRM, Europe Fulfillment and US Fulfillment applications work asynchronously and should work even if other applications are down. For 

example, even if the Europe site is down, the online store should continue to process new customer orders through the CRM 

application and the US warehouse should continue to process the orders for the US region.  

 

This tutorial explains the steps needed to set up and use the messaging infrastructure in AQ.  

1. Configure AQ Administrator account 

  The AQ Administrator user (‘aq_admin’) creates and owns the queuing infrastructure. The role AQ_ADMINISTATOR_ROLE that 

allows for the creation and administration of the queuing infrastructure needs to be granted to the ‘aq_admin’ user.  

 --create aq_admin administrator account 

CREATE USER aq_admin IDENTIFIED BY aq_admin 

DEFAULT TABLESPACE users  

TEMPORARY TABLESPACE temp;  

 

ALTER USER aq_admin QUOTA UNLIMITED ON users; 

--grant roles to aq_admin 

GRANT aq_administrator_role TO aq_admin;  

GRANT connect TO aq_admin; 

GRANT create type TO aq_admin;   

2. Set up Order message payload and Orders queues  

The following steps must be executed as the aq_admin user. 
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• Create the content or the payload of the message.   

CREATE TYPE orders_message_type AS OBJECT ( 

order_id       NUMBER(15),  

Product_code   VARCHAR2(10), 

Customer_id    VARCHAR2(10), 

order_details  VARCHAR2(4000), 

price          NUMBER(4,2), 

region_code    VARCHAR2(100)); 

 

• Create Queue Table and Queue  

After creating the payload, the queuing infrastructure can be created. Queues are implemented using a queue table that can 

hold multiple queues with the same payload type. The following creates a queue table ‘orders_qt’ and a queue 

‘orders_msg_queue’.  

 
DBMS_AQADM.CREATE_QUEUE_TABLE ( 

queue_table => 'aq_admin.orders_qt', 

queue_payload_type => 

'aq_admin.orders_message_type');  

 

DBMS_AQADM.CREATE_QUEUE ( 

queue_name => 'orders_msg_queue',  

queue_table => 'aq_admin.orders_msg_qt', 

queue_type => DBMS_AQADM.NORMAL_QUEUE, 

max_retries => 0,  

retry_delay => 0, 

retention_time => 1209600,  

dependency_tracking => FALSE,  

comment => 'Test Object Type Queue', 

auto_commit => FALSE); 

• Start the queue 

DBMS_AQADM.START_QUEUE('orders_msg_queue');  

3. Configure AQ user account  

The AQ user (‘aq_user’) accesses the queuing infrastructure created in the above step. The following creates the ‘aq_user’ 

account and grants the necessary privileges. 

--create aq_user user account 

CREATE USER aq_user IDENTIFIED BY aq_user DEFAULT 

TABLESPACE users TEMPORARY TABLESPACE temp;  

 --grant roles to aq_user 

GRANT aq_user_role TO aq_user;  
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  -grant EXECUTE on message_type to aq_user 

GRANT EXECUTE ON message_type TO aq_user; 

 

DBMS_AQADM.GRANT_QUEUE_PRIVILEGE(  

privilege => 'ALL',  

queue_name => 'aq_admin.orders_msg_queue', 

grantee => 'aq_user',  

grant_option => FALSE); 

4. Subscriptions to the Orders queue 

The orders queue has two subscriptions, one for orders made from within the US, and another for orders made from Europe. 

The region_code in the orders_message_type distinguishes the two types of orders. 

-- need administrator privileges to add subscriber 

DBMS_AQADM.ADD_SUBSCRIBER(              

Queue_name => ‘aq_admin.orders_msg_queue’, 

Subscriber => ‘US_ORDERS’, 

Rule => ‘tab.user_data.region_code = ‘`USA’’’); 

 

DBMS_AQADM.ADD_SUBSCRIBER(              

Queue_name => ‘aq_admin.orders_msg_queue’, 

Subscriber => ‘EUROPE_ORDERS’, 

Rule => ‘tab.user_data.region_code = 

‘`EUROPE’’’, Transformation => 

‘aq_admin.Dollar_to_Euro’); 

 

5. Create message transformations (optional) 

Message transformations can be automatically applied to messages in AQ queues. The code below shows an example of 

translating currency from dollars to euros. The price field in the order message is specified in dollars. When the European 

warehouse dequeues the message, the price field is automatically changed to euros as shown in the simple example below.  

CREATE FUNCTION  

Fn_Dollars_to_Euro(src aq_admin.orders_msg_type) 

Returns  aq_admin.orders_msg_type AS 

  Target  aq_admin.orders_msg_type; 

 

BEGIN 

Target := aqadmin.orders_msg_type(src.order_id, 

src.product_code, src.customer_id, 

src.order_details, src.price*.5, 

src.region_code); 
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END; 

 

DBMS_TRANSFORM.CREATE_TRANSFORMATION( 

schema         => 'AQ_ADMIN', 

      name           => 'DOLLAR_TO_EURO’,  

      from_schema    => 'AQ_ADMIN', 

      from_type      => 'ORDERS_MSG_TYPE',  

      to_schema      => 'AQ_ADMIN', 

      to_type        => 'ORDERS_MSG_TYPE', 

transformation =>   'AQ_ADMIN.Fn_Dollars_to_Euro(source.user_data)'); 

 

6. Queue Operations – Enqueue and Dequeue Messages 

The following steps must be executed as the aq_user user. The CRM application enqueues the order messages into the 

Orders queue that is then dequeued by the Fulfillment applications. 

• Enqueue Message  - Enqueue a new order into the orders_queue using the DBMS_AQ.ENQUEUE procedure. The 

order price is specified in dollars. 

 

DECLARE  

enqueue_options dbms_aq.enqueue_options_t; 

message_properties 

dbms_aq.message_properties_t;  

message_handle RAW(16);  

message aq_admin.orders_message_type; 

message_id NUMBER;  

 

BEGIN  

message := AQ_ADMIN.MESSAGE_TYPE (1, 325, 49, 

'Details: Digital Camera. Brand: ABC. Model: XYX' , 23.2, ‘EUROPE’ );  

-- default for enqueue options VISIBILITY is    

-- ON_COMMIT. message has no delay and no      

-- expiration 

message_properties.CORRELATION :=  message.order_id; 

 

DBMS_AQ.ENQUEUE (  

queue_name => 'aq_admin.orders_msg_queue',  

enqueue_options => enqueue_options,  

message_properties => message_properties,  

payload => message,  

msgid => message_handle);  
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COMMIT;  

 

END;  

 

• Dequeue Message – This example shows how the European warehouse dequeues messages corresponding to 

orders from Europe. The DBMS_AQ.DEQUEUE procedure is used to read or dequeue the messages from the queue. The 

price is automatically transformed to euros before dequeue. 

 

DECLARE  

 

dequeue_options dbms_aq.dequeue_options_t; 

message_properties 

dbms_aq.message_properties_t;  

message_handle RAW(16);  

message aq_admin.orders_message_type;  

 

BEGIN  

 

-- defaults for dequeue_options 

-- Dequeue for the Europe_Orders subscriber   

-- Transformation Dollar_to_Euro is 

-- automatically applied                       

dequeue_options.consumer_name := 

‘EUROPE_ORDERS’; 

-- set immediate visibility  

dequeue_options.VISIBILITY := 

DBMS_AQ.IMMEDIATE;   

 

DBMS_AQ.DEQUEUE (  

queue_name => 'aq_admin.orders_msg_queue',  

dequeue_options => dequeue_options,  

message_properties => message_properties,  

payload => message,  

msgid => message_handle);  

 

dbms_output.put_line('+---------------+'); 

dbms_output.put_line('| MESSAGE PAYLOAD |');  

dbms_output.put_line('+---------------+');  

dbms_output.put_line('- Order ID := ' ||  

message.order_id);  

 

dbms_output.put_line('- Customer ID:= ' || 
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message.customer_id); 

dbms_output.put_line('- Product Code:= ' || 

message.product_code);   

 

dbms_output.put_line('- Order Details := ' ||  

message.order_details); 

dbms_output.put_line('- Price in Euros := ' || 

message.price);  

 

COMMIT; 

END;  
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