Introducing the Java EE 6 Platform: Part 1
Skip to Content sun Java Solaris Communities My SDN Account Join SDN

» search ti ps Search

- APIs

. Downloads
. Products
- Support

. Traning

. Participate

SDN Home > Java Technology > Reference > Technical Articles and Tips >

Article
Introducing the Java EE 6 Platform: Part 1

= Print-friendly Version f

@ |
By Ed Ort, December 2009 =7 \ lava EESDK
Articles Index Java

Part 1| Part 2 | Part 3

- libraries and system services that support the scalability, accessibility, security,
integrity, and other requirements of enterprise-class applications.

Sinceitsinitia release in 1999, Java EE has matured into a functionally rich, high
performance platform. Recent releases of the platform have also stressed ssmplicity and ease of use. In fact, with the

http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE60verview.html (1 of 17) [12/17/2009 4:54:29 PM]

http://java.sun.com/global/mh/suncom/index.html
http://java.sun.com/global/mh/java/
http://java.sun.com/global/mh/solaris/
http://java.sun.com/global/mh/communities/
http://developers.sun.com/global/my_profile.html
http://developers.sun.com/global/join_sdn.html
http://developers.sun.com/global/search_tips.html
http://www.sun.com/
http://java.sun.com/global/mh/api/index.html
http://java.sun.com/global/mh/downloads/index.html
http://java.sun.com/global/mh/products/index.html
http://java.sun.com/global/mh/support/index.html
http://java.sun.com/global/mh/training/index.html
http://java.sun.com/global/mh/participate/index.html
http://developers.sun.com/index.jsp
http://java.sun.com/index.jsp
http://java.sun.com/reference/index.html
http://java.sun.com/reference/techart/index.html
http://java.sun.com/jsp_utils/PrintPage.jsp
http://java.sun.com/jsp_utils/PrintPage.jsp
http://java.sun.com/developer/technicalArticles/
http://java.sun.com/javaee/
http://java.sun.com/javaee/
http://java.sun.com/javase/
http://java.sun.com/javaee/downloads/preview/

Introducing the Java EE 6 Platform: Part 1

current release of the platform, Java EE 5, development of Java enterprise applications has never been easier or faster. Get Java EE Training

Progress continues. The next release of the platform, Java EE 6, adds significant and Certification

new technologies, some of which have been inspired by the vibrant Java EE Java EE 6 adds significant

community. It also further simplifies the platform, extending the usability gzNe;iTﬂglggéﬁﬁ Ia,:; d) ‘;ﬁz I;i ;{ggtl nd
improvements made in previous Java EE releases. . . -
improvements made in training for
This article highlights some of the significant enhancements in Java EE 6. previous Java EE releases architects and
web component,
business
Contents component, and
- JavaEE 6 Goals integration
- Powerful New Technologies developers.
- Enhanced Web Tier Capabilities -+ Certification
- EJB Technology, Even Easier to Use Lea_\rn about
- A More Complete Java Persistence API various S_un
certification
- Further Ease of Devel opment courses for
- Profiles and Pruning programmers and
- Summary enterprise
- For More Information architects,
- Comments preparation
methods, and

savings programs.
Java EE 6 Goals

Here are the main goals for the Java EE 6 platform: _ Ed Ort isawriter on
i }the staff of the Sun
More Flexible Technology Stack. Over time, the Java EE platform has _ &M Developer Network.
gotten big, in some cases too big for certain types of applications. Toremedy ~ JVaEE 6 introduces the He has written extensively
this, Java EE 6 introduces the concept of profiles, configurations of the Java Web Profile, a subset of about awidevariety of
the Java EE platform programming topics including

EE platform that are designed for specific classes of applications. A profile
may include a subset of Java EE platform technologies, additional technology, programming
technol ogies that have gone through the Java Community Process, but are not languages, web services, and
part of the Java EE platform, or both. Java EE 6 introduces the first of these profiles, the Web Profile, a subset Ajax. Read his blog.

of the Java EE platform designed for web application development. The Web Profile includes only those
technol ogies needed by most web application devel opers, and does not include the enterprise technologies that
these developerstypically don't need.

des gned for web relational database

application development.

In addition, the Java EE 6 platform has identified a number of technologies as candidates for pruning. These

http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview.html (2 of 17) [12/17/2009 4:54:29 PM]

http://java.sun.com/javaee/downloads/index.jsp
http://jcp.org/en/home/index
http://java.sun.com/javaee/support/training/
http://java.sun.com/javaee/support/training/
http://blogs.sun.com/edo

Introducing the Java EE 6 Platform: Part 1

candidates include technol ogies that have been superseded by newer technologies or technol ogies that are not
widely deployed. Pruning a technology means that it can become an optional component in the next rel ease of
the platform rather than a required component.

Enhanced Extensibility. Over time, new technol ogies become available that
are of interest to web or enterprise application developers. Rather than adding
these technol ogies to the platform — and growing the platform without
bounds — Java EE 6 includes more extensibility points and more service
provider interfaces than ever before. This alows you to plug in technologies
— even frameworks — in your Java EE 6 implementationsin a standard sup_port for self-

way. Once plugged in, these technologies are just as easy to use as the registratl on makes the :
facilities that are built into the Java EE 6 platform. platform highly extensible.

More extensibility points
and service provider
interfaces as well as web
tier features such as

Particular emphasis on extensibility has been placed on the web tier. Web application devel opers often use
third-party frameworksin their applications. However, registering these frameworks so that they can be used in
Java EE web applications can be complicated, often requiring developers to add to or edit large and complex
XML deployment descriptor files. Java EE 6 enables these frameworks to self-register, making it easy to
incorporate and configure them in an application.

Further Ease of Development. Java EE 5 made it significantly easier to e :
develop web and enterprise applications. For instance, Java EE 5 introduced Usability improvements in
asimpler enterprise application programming model based on Plain Old Java many areas of the_ platform
Objects (POJOs) and annotations, and eliminated the need for XML " makesit even easier to
deployment descriptors. In addition, Enterprise JavaBeans (EJB) technology . op web ar_1d .

was streamlined, requiring fewer classes and interfaces and offering a enterprise applications,
simpler approach to object-relational mapping by taking advantage of the

Java Persistence API (informally referred to as JPA).

Java EE 6 makesit even easier to develop enterprise or web applications. Usability improvements have been
made in many areas of the platform. For example, you can use annotations to define web components such as
serviets and servlet filters. Furthermore, a set of annotations for dependency injection has been standardized,
making injectable classes much more portable across frameworks. In addition, Java EE application packaging
requirements have been simplified. For example, you can add an enterprise bean directly to aweb archive
(WAR) file. Y ou no longer need to package an enterprise bean in a Java archive (JAR) file and then put the
JAR filein an enterprise archive (EAR) file.

Powerful New Technologies

Java EE 6 adds significant new technol ogies that make the platform even more powerful. Three of these are described
below:

http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview.html (3 of 17) [12/17/2009 4:54:29 PM]

Introducing the Java EE 6 Platform: Part 1
. Java APl for RESTful Web Services (JAX-RS)
. Contexts and Dependency Injection for the Java EE Platform (CDI)
. Bean Validation

Java API for RESTful Web Services (JAX-RYS)

Java API for RESTful Web Services (JAX-RS), JSR 311 enables you to rapidly build lightweight web services that
conform to the Representational State Transfer (REST) style of software architecture. An important concept in REST
is the existence of resources, each of which can be referred to with aglobal identifier, that is, a URI. In particular, data
and functionality are considered resources that can be identified and accessed through URIs. To manipulate these
resources, components of the network, clients and servers, communicate through a standardized interface such as
HTTP and asmall, fixed set of verbs — GET, PUT, POST, and DEL ETE — and exchange representations of these
resources.

RESTful web services are web services built according to the REST architectural style. Building web services with the
RESTful approach has emerged as a popular alternative to using SOAP-based technologies thanks to REST's
lightweight nature and the ability to transmit data directly over HTTP.

JAX-RS furnishes a standardized API for building RESTful web servicesin Java.
The API contributes a set of annotations and associated classes and interfaces.
Applying the annotations to POJOs enables you to expose web resources. This
approach makes it simple to create RESTful web servicesin Java.

JAX-RS makesit smpleto
create RESTful web services
in Java.

The specification for the initial release of the technology, JAX-RS 1.0, was finalized in October 2008 and a reference

implementation named Jersey is also available. Java EE 6 includes the latest release of the technology, JAX-RS 1.1,
which is a maintenance release that aligns JAX-RS with new featuresin Java EE 6.

Let'stake alook at a RESTful web service that uses JAX-RS.

http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview.html (4 of 17) [12/17/2009 4:54:29 PM]

http://jcp.org/en/jsr/detail?id=311
https://jersey.dev.java.net/

Introducing the Java EE 6 Platform: Part 1

i mport javax.
i mport javax.
i mport javax.
i mport javax.
i nport javax.
i mport javax.
i mport javax.
i mport javax.
i mport javax.
i mport java. net

5550655505

@ath ("itens")

.rs. Pat h;

.rs. Produces;

.rs. Get;

.rs. Post;

.rs. Consunes;
.rs.core. Response;
.rs.core. Medi aType;
.rs.core Uilnfo;
.rs.core. Ui Buil der;
. URI;

@r oduces (Medi aType. APPLI CATI ON_XM.)
Public class ItensResource {

@ont ext Ur

@ET

ilnfo urilnfo;

Itens listltems() {
Return Allitens();

}
@osT

@onsunes (Medi aType. APPLI CATI ON_XM.)
Publ i c Response create(ltemitem) throws |tenCreati onException {
Itemnewltem = createltem(item;

URI newltemJRI = urilnfo.get Request Uri Builder().path(newltemgetld()).build();

return Response.created(newtenURl). buil d();

Inthisexample, thel t ems Resour ce classis aweb service that manages a set of items. The imports in the class are

for JAX-RS 1.1 annotations, classes, and interfaces.

The @at h annotation specifies arelative path for the resource, in this case
"items". The URI for the class resource is based on the application context. So
if the application context for thisexampleisht t p: / / exanpl e. com the URI
for the classresourceisht t p: / / exanpl e. com' i t ens. Thismeansthat if a
client directsarequest to the URI ht t p: / / exanpl e. com i t ens, the

| t emsResour ce classwill serveit.

Annotations add much of the
information needed to
identify resources and serve
HTTP requests.

The @3ET annotation specifies that the annotated method, herethel i st 1t ens() method, handlesHTTP GET
requests. When a client directsan HTTP GET request to the URI for the |l t ensResour ce resource, the JAX-RS
http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview.html (5 of 17) [12/17/2009 4:54:29 PM]

Introducing the Java EE 6 Platform: Part 1
runtimeinvokesthel i st It ens() method to handle the GET request.

Notice the @°r oduces annotation. It specifies the MIME media types that the methods in the resource can produce
and return to the client. Inthe | t ens Resour ce example, the @r oduces annotation specifies

Medi aType. APPLI CATI ON_XM.. The Medi aType classis an abstraction of aMIME mediatype. Constants
supplied to the class identify the particular mediatype to be abstracted. The Medi aType. APPLI CATI ON_XM.
specification is an abstraction of the MIME mediatype for XML content, "application/xml".

Annotations such as @r oduces suggest some of the content type translation
that JAX-RS handles automatically. For example, thel i st |1t ens() method
returns a Java object of type | t ens. JAX-RS automatically translates that Java
type to the "application/xml" MIME type to be used in the HTTP response to the
client. Note that the tranglation is automatic only if the returned type is supported
by default. For instance, if | t ens isaJAXB-annotated bean, then the tranglation would be automatic. However, if
I t ens isaPOJO, you would need to implement aMessageBodyReader to handle the serialization.

JAX-RS automatically
trandates between Java types
and MIME mediatypes.

Y ou can also specify a @r oduces annotation on a method. In that case, the MIME type you specify on the method
overrides the MIME typesin any @ oduces annotation that you specify on the class. For example, you could
specify a @r oduces annotation for thel i st 1t ens() method asfollows:

@EET
@r oduces (Medi aType. TEXT_PLAI N)
Itens listltems() {

Return Allitens();

}

JAX-RSwould then trandate the | t ens Javatype to the "text/plain® MIME type, which represents plain text, and
return content of that type in the HTTP response to the client.

The @POST annotation specifies that the annotated method, in this case, thecr eat e() method, respondsto HTTP
POST requests. In this example, the method creates a new item, perhaps in a database, and then returns a response
indicating that it created the new item. When aclient directsan HTTP POST request to the URI for the

I t emsResour ce resource, the JAX-RS runtime invokesthe cr eat e() method to handle the POST request.

Notice that the @onsumnes annotation is specified on the cr eat e() method. The annotation specifies the MIME
mediatypes that the methods in the resource can accept from the client. Asisthe case for the @r oduces annotation,
if you specify @Consunes on aclass, it appliesto all the methods in the class. If you specify @onsunes ona
method, it overrides the MIME type in any @Consunes annotation that you specify for the class. In the example, the
http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview.html (6 of 17) [12/17/2009 4:54:29 PM]

Introducing the Java EE 6 Platform: Part 1

@Consumnes annotation specifiesthat the cr eat e() method can accept XML content, that is, the MIME type
"application/xml". Here the type trandation is from MIME type to Java type. When a client submits XML content in a
POST request to the URI for thel t ems Resour ce class, JAX-RSinvokesthecr eat e() method and automatically
trandates theincoming XML to the | t emJavatype required for the method's argument.

JAX-RS also includes a number of utility classes and interfaces that further
simplify actions related to building and using RESTful web servicesin Java.
Y ou've already seen one of them: Medi aType, aclassfor abstracting MIME
media types. Some others are:

Utility classes and interfaces
further simplify actions
related to building and using
RESTful web services.

. Uri | nf o, aninterface for accessing URI information. In this example, the @Cont ext annotation injects the
Uri | nf o interfaceinto theur i | nf o field of thel t ensResour ce class.

. Uri Bui | der, aclassfor building URIs from their components

. Response, aclassrepresentsan HTTP response

. Response. ResponseBui | der, aclassthat builds Response objects, in accordance with the well-known
Builder Pattern

These classes and interfaces are used in the following statements in the example:

URI newitemJRI = urilnfo.getRequest UriBuilder().path(newitemgetld()).build();
return Response.created(newitenURI). build();

Thefirst statement builds a URI for the new item. The get Request Uri Bui | der () methodisaUri | nfo
method that createsa Ur i Bui | der object. Thepat h() and bui | d() methodsare Ur i Bui | der methods that
together construct the URI for the new item.

The second statement creates aResponse object for the new item to be returned to the client. The cr eat ed method
isaResponse method that createsa Response. ResponseBui | der object. Thebui | d() method isa
Response. ResponseBui | der method that creates the Response object for the new item. This object delivers
metadata to the JAX-RS runtime to construct the HT TP response.

These utility classes and interfaces hide alot of the complexity of HTTP
programming — another reason why using JAX-RS is asimple way to build
RESTful web services. However, this simplicity also extends beyond web
services. JAX-RS can simplify the development of many types of HTTP-aware
web applications. For example, if you need to build a web application that
examines HTTP headers, you can probably code it in a much simpler way by

JAX-RS eliminates alot of
the low-level programming
required in HTTP-aware web
applications.

http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview.html (7 of 17) [12/17/2009 4:54:29 PM]

Introducing the Java EE 6 Platform: Part 1
using JAX-RS rather than other approaches.

JAX-RS has other convenient features. For example, JAX-RS includes a number of parameter-based annotations to
extract information from arequest. One of theseis @uer yPar am with which you can extract query parameters
from the Quer y component of arequest URL. Some other parameter-based annotations are @vat r i xPar am which
extracts information from URL path segments, @Header Par am which extracts information from HTTP headers,
and @Cooki ePar amwhich extracts information from the cookies declared in cookie-related HT TP headers.

For information about all the featuresin JAX-RS 1.1, see Java APl for RESTful Web Services (JAX-RS), JSR 311.

Contexts and Dependency I njection for the Java EE Platform

Contexts and Dependency Injection for the Java EE Platform (CDI), JSSR 299 isa CDI unifies and simplifies
technology that supplies a powerful set of servicesto Java EE components. These the EJB and JSF

services allow Java EE components, including EJB session beans and JavaServer programming models, It

Faces (JSF) managed beans, to be bound to lifecycle contexts, to be injected, and allows enterprise beans to act

to interact in aloosely coupled way by firing and observing events. Perhaps most as JSF managed beansin a

significantly, CDI unifies and ssimplifies the EJB and JSF programming models. It JSF application, and brings

allows enterprise beans to replace JSF managed beans in a JSF application. transactional support to the
web tier.

In essence, CDI helps bridge what was a major gap between the web tier of the

Java EE platform and the enterprise tier. The enterprise tier, through technologies such as EJB and JPA, has strong
support for transactional resources. For example, using EJB and JPA you can easily build an application that interacts
with a database, commits or rolls back transactions on the data, and persists the data. The web tier, by comparison, is
focused on presentation. Web tier technol ogies such as JSF and JavaServer Pages (JSP pages) render the user interface
and display its content, but have no integrated facilities for handling transactional resources.

Through its services, CDI brings transactional support to the web tier. This can make it alot easier to access
transactional resources in web applications. For example, CDI makes it alot easier to build a Java EE web application
that accesses a database with persistence provided by JPA.

Let'slook at some key parts of aweb application that uses CDI services. The application, which processes user login

and user logout requests, includes both JSF and EJB components. Here is the code for an input form on a JSF page
that displays alogin prompt for the web application:

http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview.html (8 of 17) [12/17/2009 4:54:29 PM]

http://jcp.org/en/jsr/detail?id=311
http://jcp.org/en/jsr/detail?id=299

Introducing the Java EE 6 Platform: Part 1

<f:view>
<h: f or e
<h: panel Gid col ums="2" rendered="#{!1ogi n.| oggedl n}">
<h: out put Label for="usernane">User nane: </ h: out put Label >
<h: i nput Text id="usernane" val ue="#{credential s.usernane}"/>
<h: out put Label for="password">Password: </ h: out put Label >
<h: i nput Text id="password" val ue="#{credential s. password}"/>
</ h: panel Gi d>
<h: conmandBut t on val ue="Logi n" action="#{login.login}" rendered="#{!login.|oggedl n}"/>
<h: commandBut t on val ue="Logout" action="#{login.logout}" rendered="#{l ogin.| oggedln}"/>
</ h:formp
</f:view

Asyou can see from the code, the login prompt displays fields for a user to enter a user name and password. It also
displays a Login button and a L ogout button. Notice the unified expression language (EL) expressions such as
#{credenti al s. user nane} and#{| ogi n. | ogi n} . These expressions refer to beans, named

credenti al s andl ogi n.

Note that CDI builds on a new concept introduced in Java EE 6 called managed
beans, which is designed to unify all of the various types of beansin JavaEE 6. A
managed bean is a Java class that is treated as a managed component by the Java
EE container. Optionally, you can give it a name in the same namespace as that
used by EJB components. A managed bean can aso rely on a small number of
container-provided services, mostly related to lifecycle management and resource
injection. Other Java EE technologies such as JSF, EJB, and CDI build on this basic definition of a managed bean by
adding services. So for example, a JSF managed bean adds lifecycle scopes, an EJB session bean adds services such as
support for transactions, and CDI adds services such as dependency injection. In CDI a managed bean or smply a
bean is a Java EE component that can be injected into other components, associated with a context, or reached through
EL expressions.

CDI builds on managed
beans, which are designed to
unify al of the various types
of beansin JavaEE 6.

Y ou declare a managed bean by annotating its class with thej avax. annot at i on. ManagedBean annotation or
by using one of several CDI annotations such as a scope annotation or a qualifier annotation. Scope annotations and
qualifier annotations are discussed later in this section. The annotation-based programming model makes it possible
for abean to begin as a POJO and later become another type of Java EE component such as an EJB component —
perhaps to take advantage of more advanced functionality, such as transactional and security annotations or the
instance pooling facility offered by EJB containers. For example, you can turn a POJO into a stateful session bean by
adding a @bt at ef ul annotation to the object. Clients that use CDI to access a bean are unaffected by the bean's
transition from POJO to EJB.

Any bean can be bound to alifecycle context, can be injected, and can interact with other beansin aloosely coupled
http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview.html (9 of 17) [12/17/2009 4:54:29 PM]

Introducing the Java EE 6 Platform: Part 1

way by firing and observing events. In addition, a bean may be called directly from Java code, or asin this example, it
may be invoked in aunified EL expression. This enables a JSF page to directly access a bean, even a bean that is
implemented as an EJB component such as a session bean.

In this application, a bean named Cr edent i al s hasalifecyclethat is bound to the JSF request. The
Credent i al s bean isimplemented as a JavaBean as follows:

@hbdel
public class Credentials {

private String usernane;
private String password;

public String getUsernane() { return username; }
public void setUsernane(String usernane) { this.usernane = usernane; }

public String getPassword() { return password; }
public void setPassword(String password) { this.passwrd = password; }

To request CDI services, you annotate a Java EE component with CDI annotations. The @vbdel annotation isa CDI
annotation that identifiesthe Cr edent i al s bean asamodel object in an Model-View-Controller (MV C)
architecture. The annotation, which is built into CDI, is a stereotype annotation. A stereotype annotation marks a class
as fulfilling a specific role within the application.

The application also includesalLogi n bean whose lifecycle is bound to the
HTTP session. The Logi n bean isimplemented as an EJB stateful session bean,
asfollows:

CDI services allow Java EE
components, including EJB
components, to be bound to
lifecycle events.

http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview.html (10 of 17) [12/17/2009 4:54:29 PM]

Introducing the Java EE 6 Platform: Part 1

@t at ef ul
@sessi onScoped

@bdel
public class Login {

@nject Credentials credentials;
@nj ect EntityManager userDat abase;

private User user;

@ransacti onAttri but e(REQUI RES_NEW
@Rol esAl | owed("guest™)
public void login() {

}

public void | ogout() {
user = null;

}

publ i c bool ean isLoggedln() {
return user!=null

}

@Rol esAl | oned("user")
@°r oduces @oggedl n User getCurrentUser() {

}

The @t at ef ul annotation is an EJB annotation that specifies that this bean is an EJB stateful session bean. The
@ransacti onAttri but e and @ol esAl | owed annotations are also EJB annotations. They declare the EJB
transaction demarcation and security attributes of the annotated methods.

The @essi onScoped annotation is a CDI annotation that specifies a scope for
the bean. All beans have a scope that determines the lifecycle of its instances and
the instances of the bean that are made visible to instances of other beans. Thisis
an important feature because components such as EJB components do not have a
well-defined scope. In particular, EJB components are not aware of the request,
session, and application contexts of web tier components such as JSF managed
beans, and do not have access to the state associated with those contexts. In
addition, the lifecycle of a stateful EJB component cannot be scoped to aweb-tier
context.

All beans have a scope.
Among other things, this
gives EJB components
access to the request,
session, and application
contexts of web tier
components.

http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview.html (11 of 17) [12/17/2009 4:54:29 PM]

Introducing the Java EE 6 Platform: Part 1

By contrast, scoped objectsin CDI exist in awell-defined lifecycle context that is managed by the Java EE container.
Scoped objects may be automatically created when needed and then automatically destroyed when the context in
which they were created ends. Significantly, the state of a scoped object is automatically shared by clients that execute
in the same context. This means that clients such as other beans that execute in the same context as a scoped object see
the same instance of the object. But clients in a different context see a different instance. The @essi onScoped
annotation specifies that the scope type for the Logi n bean is session scope. Objects that are not associated with any
of the usual scopes, but instead exist for the exclusive benefit of an object that triggered their creation, are said to be
dependents of their owner. The lifecycle of these dependent objectsistied to that of the owner. In particular, a
dependent object is destroyed whenever the owner is destroyed.

Beans typically acquire references to other beans through dependency injection.
The dependency injection mechanism is completely type safe. CDI usesthe
annotations specified in JSR 330: Dependency Injection for Java for dependency
injection. One of those annotations, @ nj ect , identifiesa point at which a
dependency on a Java class or interface can be injected. The container then
provides the needed resource. In this example, the Logi n bean specifies two injection points. The first use of the

@ nj ect annotation in the example injects a dependency on the Cr edent i al s bean. In response, the container
will inject the Cr edent i al s bean into any instance of Logi n created within this context. The second @ nj ect
annotation injects a dependency on the JPA Ent i t yManager . The container will inject the Ent i t yManager to
manage the persistence context. Refer to Standardized Annotations for Dependency Injection to learn more about the

@ nj ect annotation and other annotationsin JSR 330.

CDI servicesalow Java EE
components, including EJB
and JPA components, to be
injected.

The @'r oduces annotation identifiesthe get Cur r ent User () method as a producer method. A producer method
is caled whenever another bean in the system needs an injected object of the specified type. In this case, the injected
object is the currently logged-in user, which isinjected by the qualifier annotation @Q.oggedl| n. A qualifier identifies
a specific implementation of a Javaclass or interface to be injected. In order to use aqualifier annotation, you first
need to defineitstype asa qualifier. You usethe @ual i fi er annotation, another JSR 330 annotation, to do that.
For example:

@arget({ TYPE, METHOD, PARAMETER, FIELD })
@Ret ent i on(RUNTI VE)
@ocunent ed
@ualifier
public @nterface Loggedin {...}

Let's return to the login prompt discussed earlier. When a user responds to the prompt and clicks the Submit button,

CDI technology goesinto action. The Java EE container automatically instantiates a contextual instance of the

Credent i al s bean and the Logi n bean. An instance of a bean that is bound to a context is called a contextual
http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview.html (12 of 17) [12/17/2009 4:54:29 PM]

http://jcp.org/en/jsr/detail?id=330

Introducing the Java EE 6 Platform: Part 1

instance. JSF assigns the user name and password the user entered to the Cr edent i al s bean contextual instance.
Next, JSF callsthel ogi n() method intheLogi n bean contextual instance. This instance continues to exist for and
isavailable to other requests in the same HT TP session, and provides the User aobject that represents the current user
to any other bean that requiresit.

This example demonstrates only some of the features in this powerful technology. Another feature enables beansto
produce or consume events. Y et another lets you define interceptors that bind additional function across all bean types,
or define decorators that apply the additional function to a specific bean type. To learn about these and the other
featuresin CDI technology, see Contexts and Dependency Injection for the Java EE Platform, JSR 299.

Bean Validation

Validating datais a common task that occurs throughout an application. For example, in the presentation layer of an
application, you might want to validate that the number of characters a user entersin atext field isat most 20
characters or that the number a user entersin anumeric field is positive. If you set those constraints, you probably
want the same data to be validated before it's used in the business logic of the application and when the datais stored
in adatabase.

Developers often code the same validation logic in multiple layers of an application, something that's time consuming
and error-prone. Or they put the validation logic in their data model, cluttering it with what is essentially metadata.

Bean Validation, JSR 303 makes validation simpler and reduces the duplication,
errors, and clutter that characterizes the way validation is often handled in
enterprise applications. Bean Validation affords a standard framework for
validation, in which the same set of validations can be shared by all the layers of
an application.

Bean Validation affords a
standard framework for
validation, in which the same
set of validations can be
shared by all the layers of an

Specifically, Bean Validation offers a framework for validating Java classes application.

written according to JavaBeans conventions. Y ou use annotations to specify constraints on a JavaBean — you can
annotate a JavaBean class, field, or property. Y ou can also extend or override these constraints through XML
descriptors. A validator class then validates each constraint. Y ou specify which validator class to use for agiven type
of constraint.

Here, for example, is part of a class that declares some constraints through Bean Validation annotations:

http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview.html (13 of 17) [12/17/2009 4:54:29 PM]

http://jcp.org/en/jsr/detail?id=299
http://jcp.org/en/jsr/detail?id=303

Introducing the Java EE 6 Platform: Part 1

public class Address {
@Not Nul | @i ze(max=30)
private String addresslinel;

@i ze(max=30)
private String addressline2;

public String get Addresslinel() ({
return addresslinel;

}

public void set Addresslinel(String addresslinel) {
this. addresslinel = addresslinel,

}

The @\ot Nul | annotation specifies that the annotated element, addr essl i nel, must not be null. The @i ze
annotation specifies that the annotated elements, addr essl i nel and addr essl i ne2, must not be longer than the
specified maximum, 30 characters.

When an Addr ess object isvalidated, the addr essl i nel valueis passed to a validator class that is defined for the
@Not Nul | constraint aswell asto avalidator class defined for the @i ze constraint. Theaddr essl i ne2 valueis
also passed to the validator class for the @i ze constraint. The pertinent validator classes perform the validations.

Both the @\ot Nul | and @5i ze constraints are built into the Bean Validation
framework so you do not need to define validator classes for them. However, you
can add your own constraints to the built-in constraints, in which case, you need to
define validator classes. For example, you can define a constraint named

@i pCode asfollows:

Bean Validation includes a
number of built-in constraint
definitions. Y ou add your
own constraints by declaring
an annotation type that
specifies avalidator class.

http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview.html (14 of 17) [12/17/2009 4:54:29 PM]

Introducing the Java EE 6 Platform: Part 1

@i ze(m n=5, max=5)
@onstrai nt Val i dat or (Zi pcodeVal i dat or . cl ass)
@ocunent ed
@rar get ({ ANNOTATI ON_TYPE, METHOD, FI ELD})
@Ret ent i on(RUNTI ME)
public @nterface Zi pCode {
String nessage() default "Wong zi pcode";
String[] groups() default {};

Then you can specify the @i pCode constraint on aclass, field, or property just like any other constraint. Hereis an
example:

public class Address {

@i pCode
private String zi pCode;

public String getZi pCode() {
return zi pCode;

}

public void setZi pCode(String zi pCode) {
t his. zi pCode = zi pCode;
}

When an Addr ess object isvalidated, the zi pCode valueis passed to the Zi pcodeVal i dat or classfor
validation. Notice that the constraint definition includes another constraint: @i ze(m n=5, nax=5) . Thismeans
that an element annotated by the @i pCode annotation must be exactly 5 charactersin length. The element is
validated against this constraint in addition to the primary constraint check that Zi pcodeVal i dat or performs.
Bean Validation alows you to create a constraint that is composed of other constraints. In fact, any composing
constraint can itself be composed of constraints. Notice too that the constraint definition specifies an error message to
be returned if the constraint fails the validation check. Here, the error message is "Wrong zipcode".

Y ou can aso use Bean Validation to validate an entire object graph in a straightforward way. An object graph isan
object composed of other objects. If you specify the @/al i d annotation on the root object of an object graph, it
http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview.html (15 of 17) [12/17/2009 4:54:29 PM]

Introducing the Java EE 6 Platform: Part 1

directs the pertinent validator to recursively validate the associated objectsin the

object graph. Consider the following example: In addition to validating

individual objects, you can
use Bean Validation to
public class Order { validate an entire object

@ der Nunber private String order Nunber; graph.
@alid @otNull private Address delivery;

When an Or der object isvalidated, the Addr ess object and the associated objectsin its object graph are validated
too.

To meet the objective of sharing the same set of validations across al the layers of

an application, Bean Validation is integrated across the Java EE 6 platform. For
example, presentation-layer technologies such as JSF and enterprise-layer
technologies such as JPA have access to the constraint definitions and validators
available through the Bean Validation framework. Y ou no longer need to specify
constraints in multiple places and in multiple ways across the layers of an application.

Bean Validation isintegrated
across the JavaEE 6
platform.

To learn more about Bean Validation, see Bean Validation, JSR 303.

» Continue to the next part of this article

Part 1 |Part 2 | Part 3

Rate This Article

Comments

We welcome your participation in our community. Please keep your comments civil and on point. Y ou may optionally
provide your email address to be notified of replies - your information is not used for any other purpose. By
submitting a comment, you agree to these Terms of Use.

http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview.html (16 of 17) [12/17/2009 4:54:29 PM]

http://jcp.org/en/jsr/detail?id=303
http://developers.sun.com/global/termsofuse.html

Introducing the Java EE 6 Platform: Part 1

http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview.html (17 of 17) [12/17/2009 4:54:29 PM]

http://www.sun.com/
http://developers.sun.com/global/aboutsun.html
http://developers.sun.com/global/aboutsdn.html
http://developers.sun.com/global/newsletters.html
http://developers.sun.com/global/contact.html
http://developers.sun.com/global/employment.html
http://developers.sun.com/global/howtobuy.html
http://developers.sun.com/global/licensing.html
http://developers.sun.com/global/termsofuse.html
http://developers.sun.com/global/privacy.html
http://developers.sun.com/global/trademarks.html
http://developers.sun.com/global/aboutsdn.html
http://developers.sun.com/global/aboutsdn.html
http://developers.sun.com/global/berkeley_license.html
http://developers.sun.com/global/rss_sdn.html
http://developers.sun.com/global/content_feeds.html

Introducing the Java EE 6 Platform: Part 2
Skip to Content Sun Java Solaris Communities My SDN Account Join SDN

» search tips | Search

- APIs

. Downloads
. Products
- Support

. Training

. Participate

SDN Home > Java Technology > Reference > Technical Articles and Tips >

Article

Introducing the Java EE 6 Platform: Part 2

Print-friendly Version /

By Ed Ort, December 2009 . 3 I"-_ lava EE SDK

|l

Part 1| Part 2 | Part 3

Enhanced Web Tier Capabilities

Some of the most significant enhancements made in Java EE 6 appear in the web tier. As mentioned earlier, one of
the goals of Java EE 6 is to make the platform more extensible, and two key improvements in the area of extensibility
are web fragments and shared framework pluggability. These two new features are provided in Java EE 6 by Servlet
3.0 technology. Servlet 3.0, JSR 315, the latest version of Servlet technology, offers some other valuable
enhancements such as support for asynchronous processing and support for annotations.

Another important Java EE 6 web tier technology is JSF 2.0, the latest version of JSF technology. Among its

http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE60verview_Part2.html (1 of 18) [12/17/2009 4:54:31 PM]

http://java.sun.com/global/mh/suncom/index.html
http://java.sun.com/global/mh/java/
http://java.sun.com/global/mh/solaris/
http://java.sun.com/global/mh/communities/
http://developers.sun.com/global/my_profile.html
http://developers.sun.com/global/join_sdn.html
http://developers.sun.com/global/search_tips.html
http://www.sun.com/
http://java.sun.com/global/mh/api/index.html
http://java.sun.com/global/mh/downloads/index.html
http://java.sun.com/global/mh/products/index.html
http://java.sun.com/global/mh/support/index.html
http://java.sun.com/global/mh/training/index.html
http://java.sun.com/global/mh/participate/index.html
http://developers.sun.com/index.jsp
http://java.sun.com/index.jsp
http://java.sun.com/reference/index.html
http://java.sun.com/reference/techart/index.html
http://java.sun.com/jsp_utils/PrintPage.jsp
http://java.sun.com/jsp_utils/PrintPage.jsp
http://jcp.org/en/jsr/detail?id=315
http://java.sun.com/javaee/downloads/preview/

Introducing the Java EE 6 Platform: Part 2

benefits, JSF 2.0 simplifies page and component authoring through Facelets, and adds support for asynchronous
JavaScript and XML (commonly referred to as Ajax), and annotations.

Support for Web Fragmentsin Servlet 3.0

Web application developers often use third-party frameworks such as A pache Wicket or Spring MV C in their
applications. To use these frameworks, devel opers need to register the frameworks in the web application, atask that
involves configuring framework-specific artifacts such as servlets and listener classes. It'stypical for developersto
register these frameworks by specifying deployment descriptors for the frameworks in the application'sweb. xmi

fi | e — the samefile that contains deployment descriptors for the web components that constitute the web
application. Not only does this make for some very largeweb. xm , filesbut it also makesit difficult to isolate and
maintain the descriptors for the frameworks.

Web fragments, a new feature of Servlet 3.0 technology, solves this problem by
modularizing deployment descriptors. A web fragment can be considered a
logical segment of aweb. xm file. There can be multiple web fragments, each
representing alogical segment, and the set of web fragments can be viewed as
constituting an entireweb. xn file. Thislogical partitioning of theweb. xm
file enables web frameworks to self-register to the web container. Each web
framework that you use in aweb application can definein aweb fragment all the
artifacts that it needs, such as servlets and listeners, without requiring you to edit or add information in theweb. xm
file.

Web fragments enable web
frameworks to self-register,
eliminating the need for you
to register them through
deployment descriptors.

Hereis an example of aweb fragment that registers a servlet and alistener:

<web- f ragment >
<servl et>
<servl et - nane>nyFr amewor kSer vl et </ ser vl et - name>
<servl et - cl ass>nyFr anewor k. myFr amewor kSer vl et </ servl et - cl ass>
</servlet>

<l i stener>
<l i st ener-cl ass>nyFramewor k. myFr anewor kLi st ener </ | i st ener - cl ass>
</listener>
</ web- f ragnment >

The <web- f r agnent > element identifies aweb fragment. A web fragment must be in afile named web-
fragnment . xm and can be placed in any location in aweb application's classpath. However, it's expected that a
web framework will typically place its web fragments in the META- | NF directory of the framework's JAR file,

http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview_Part2.html (2 of 18) [12/17/2009 4:54:31 PM]

Get Java EE Training
and Certification

. JavaEE Training
Find out about
training for
architects and
web component,
business
component, and
integration
developers.

- Certification
Learn about
various Sun
certification
courses for
programmers and
enterprise
architects,
preparation
methods, and
savings programs.

4 Ed Ort isawriter on
l'IF}the staff of the Sun
SNSRI Developer Network.
He has written extensively
about awide variety of
programming topicsincluding
relational database
technology, programming
languages, web services, and
Ajax. Read his blog.

http://java.sun.com/javaee/support/training/
http://java.sun.com/javaee/support/training/
http://blogs.sun.com/edo

Introducing the Java EE 6 Platform: Part 2
which will typically reside inthe WEB- | NF/ | i b directory of the web application.

Y ou use the element <net adat a- conpl et e>intheweb. xn fileto instruct the web container whether to look
for web fragments as well as annotations — see Annotations in More Types of Java EE Components for information
about annotations provided by Servlet 3.0 technology. If you set <met adat a- conpl et e> to false, or do not
specify the <net adat a- conpl et e> element in your web. xm file, then during deployment, the container must
scan web fragments and annotations to build the effective metadata for the web application. In response, the web
container searches for web fragments and annotations in framework JAR files. The web container then uses the
configuration information in each web fragment to register the framework for use with the web application. However,
setting <met adat a- conpl et e> to true, causes the deployment descriptors to provide all the configuration
information for the web application. In this case, the web container does not search for web fragments and
annotations.

Because Servlet 3.0 technology supports web fragments, you can modularize
your web. xm file. Y our web application can still have the traditional,
monolithicweb. xm file, or it can have alogically partitioned web. xm file
that includes one or more web fragments.

With its support for web
fragments, Servlet 3.0
technology letsyou
modularize your web. xm

However, because Servlet 3.0 enables you to modularize your deployment file.

descriptors, the order in which these descriptors are processed can be important.

For example, the order in which the descriptors for an application are processed affects the order in which servlets,
listeners, and filters are invoked. With Servlet 3.0, you can specify the order in which deployment descriptors are
processed.

Servlet 3.0 supports absolute ordering and relative ordering of deployment descriptors. Y our specify absolute
ordering using the <absol ut e- or der i ng> element intheweb. xm file. You specify relative ordering with an
<or deri ng> elementintheweb- f ragnent . xm file.

For example, suppose your application includes two web fragments — MyFr agnent 2 and MyFr agnent 3, and

asoincludesaweb. xm file. You can declare absolute ordering of the descriptors by specifying the following in the
web. xm filefor the application:

http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview_Part2.html (3 of 18) [12/17/2009 4:54:31 PM]

Introducing the Java EE 6 Platform: Part 2

<web- app>
<nane>MyApp</ nane>
<absol ut e- orderi ng>
<nane>MyFr agnent 3</ nane>
<nane>MyFr agnent 2</ nane>
</ absol ut e- orderi ng>

</ web- app>

Here, the processing order would be as follows:

. web. xm . Theweb. xm descriptor is always processed first.
. MyFragnent 3.
. MyFragnent 2.

Shared Framework Pluggability

Web fragments and annotations are not the only way that Servlet 3.0 allows you to extend aweb application. You
can aso plug in shared copies of frameworks, such as Java APl for XML-Based Web Services (JAX-WS), JAX-RS
and JSF, that are built on top of the web container. Servlet 3.0 introduces a new interface called

Servl et Containerlnitializer that can beusedto plug in aframework.

For example, here's how you can plug in aframework named A:

@andl esTypes(Annot ati onA. cl ass)

AServl etContainerlnitializer inplements ServletContainerlnitializer

{

public void onStartup(Set<C ass<A>>c, ServletContext ctx) throws Servl et Exception {
/'l Framewor k- speci fic code here to initialize the runtine
/1 and setup the mapping etc.

Servl et Regi stration reg = ctx.addServlet("AServlet", "comfoo.AServlet");
reg. addSer vl et Mappi ng("/foo");

The container discoversthe Ser vl et Cont ai nerl niti al i zer using the JAR services API. It does thiswhen
the container or application is started. The framework implementing the Ser vl et Cont ai nerlnitiali zer

http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview_Part2.html (4 of 18) [12/17/2009 4:54:31 PM]

Introducing the Java EE 6 Platform: Part 2

must bundlein the META- | NF/ ser vi ces directory of itsJAR fileafile caled

j avax. servl et. Servl et Contai nerlnitializer that pointsto theimplementation class of the

Servl et Contai nerlnitializer.The@andl esTypes annotation specifies the types that the

Servl et Contai nerlnitializer canhandle. Any classes of those types discovered in any JAR contained in
the VEB- | NF/ | i b directory are passed to the Ser vl et Cont ai nerlnitializer.The

Servl et Cont ai nerlnitializer isthen ableto usethe same programmeatic configuration APIs as

Ser vl et Cont ext Li st eners.

Asynchronous Processing in Servlet 3.0

Servlet 3.0 introduces support for asynchronous processing. With this support, a servlet no longer has to wait for a
response from a resource such as a database before its thread can continue processing, that is, the thread is not
blocked. This support enables long-lived client connections such as those in chat room applications. In these types of
applications you don't want a server thread to be blocked for along period of time serving arequest from asingle
client. Y ou want the servlet to process a request from the client and then free up the server thread as quickly as
possible for other work. Among its benefits, support for asynchronous processing makes the use of servlets with Ajax
more efficient.

Servlets and servlet filters that support asynchronous processing must be written
with the goal of asynchrony in mind. In particular, several long-standing
assumptions about the order in which some methods will be called do not apply
for asynchronous processing. To ensure that code written for synchronous
processing won't be used in an asynchronous context, Servlet 3.0 requires you to
usetheasyncSupport ed=t r ue attribute. To make a servlet asynchronous,
you specify asyncSupport ed=t rue ina@+¥bSer vl et annotation and
make asynchronous requestsin the serviet. You can aso mark aservlet filter as asynchronous by specifying
asynchSupport ed=t rue ina@ebFi | t er annotation. Only after taking these steps are taken the
corresponding classes available for asynchronous invocations.

A servlet no longer hasto
wait for aresponse from a
resource such as a database
beforeits thread can
continue processing.

The support for asynchronous processing also includes new Ser vl et Request methods, such as
start Async(), to make an asynchronous request, and new classes, such as Async Cont ext , which provides the
execution context for an asynchronous operation.

Here, for example, is aservlet that makes an asynchronous request.

http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview_Part2.html (5 of 18) [12/17/2009 4:54:31 PM]

Introducing the Java EE 6 Platform: Part 2

@ebSer vl et (name="Cal cul ator Servl et", asyncSupported=true, urlPatterns={"/calc", "/getVal"})
public class Cal cul atorServl et extends HttpServlet{
public void doGet(HttpServl et Request req, HttpServl et Response res) {

AsyncContext aCtx = req.startAsync(req, res);

Noticethat thest ar t Async() method returnsan AsyncCont ext object. This object holds the request and
response objects that were passed in the call to the method. At this point, the thread that served the original request is
available for other operations.

Servlet 3.0 also introduces anew listener class, AsyncLi st ener , that notifies you when an asynchronous
operation is complete or if atimeout occurs. The AsyncCont ext classincludesaconpl et e() method, with
which you can commit the response after an asynchronous operation is complete. The AsyncLi st ener classaso
hasadi spat ch() method that forwards the asynchronous request to the container so that other frameworks such
as JSP can generate the response.

Simplified Page Authoring in JSF 2.0

JavaServer Faces technology provides a server-side component framework that simplifies the devel opment of user
interfaces (Uls) for Java EE applications. The latest release of the technology, JSF 2.0, JSR 314, makes Ul
development for Java EE applications even easier. One area of particular improvement is page authoring. Authoring a
JSF page is much easier in JSF 2.0 through the use of the standard JavaServer Faces View Declaration Language,
commonly called Facelets.

Facelets

Faceletsis a powerful but lightweight declaration language that you can use to
present JSF pages. In the Facel ets approach, you use HTML-style templates to
present a JSF page and to build component trees. Although JSF can be used with
different display technologies, most JSF applications use JSP as the display
technology. In other words, the Ul in a JSF application is typically a JSP page

that contains JSF components. However, Facelets offers several advantages over JSP.

Faceletsis a powerful but
lightweight declaration
language that you can use to
present JSF pages.

In JSP, elementsin aweb page are processed and rendered in a progressive order. However, JSF provides its own
processing and rendering order. This can cause unpredictable behavior when web applications are executed. Facelets

http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview_Part2.html (6 of 18) [12/17/2009 4:54:31 PM]

http://jcp.org/en/jsr/detail?id=314

Introducing the Java EE 6 Platform: Part 2
resolves this mismatch. Facelets a so enables code reuse through templ ating and
can significantly reduce the time to develop and deploy Uls. For these reasons,
Faceletsis now the preferred presentation technology for building JSF-based
applications.

Faceletsis now the preferred
presentation technology for
building JSF-based
applications.

Facelets are usually written with XHTML markup language. This allows Facelets pages to be portable across diverse
development platforms. Here, for example, is a Facelets XHTML page that is part of a sample JSF application
provided with the Java EE 6 Tutorial.

<xm version="1.0" encodi ng="UTF- 8" ?>
<! DOCTYPE htm PUBLIC "-//WBC//DID XHTML 1.0 Transitional//EN
"http://ww. w3. org/ TR/ xht m 1/ DTD/ xht ml 1-transi ti onal . dtd">
<htm xm ns="http://ww. w3. org/ 1999/ xht m " xml : | ang="en" | ang="en"
xm ns: f="http://java. sun. com j sf/core"
xm ns: h="http://java. sun.com jsf/htm"
xm ns:ui ="http://java. sun. conljsf/facel ets">
<head>
<title>CGuess Number JSF Application</title>
</ head>
<body>
<h: f or e
<h2>
H. My nanme is Duke. | amthinking of a number from
<h: out put Text val ue="#{User Nunber Bean. m ni nun}"/> to

<h: out put Text val ue="#{User Nunber Bean. maxi munt} "/ >.
<p>
Can you guess it ?
</ p>
<h: gr aphi cl mage i d="wavel ng" url="/wave.ned.gif" />
<h: i nput Text id="user No"
val ue="#{ User Nunber Bean. user Nunber} " >
converter Message="#{ Err Msg. user NoConvert}">
<f:val i dat eLongRange
m ni mum=" #{ User Nunber Bean. m ni nun "
maxi mume" #{ User Nunber Bean. maxi munt} "/ >
</ h:i nput Text >
<h: commandBut t on i d="subm t"
acti on="success" val ue="submt" />
<h: message showSummary="true" showbDetail ="fal se"
styl e="col or: red;
font-fam ly: 'New Century School book', serif;
font-style: oblique;
t ext -decoration: overline"
id="errorsl"
for="user No"/>
</ h2>

http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview_Part2.html (7 of 18) [12/17/2009 4:54:31 PM]

http://java.sun.com/javaee/6/docs/tutorial/doc/

Introducing the Java EE 6 Platform: Part 2

</ h:fornp
</ body>
</htn >

The page renders the Ul shown in Figure 1. The Ul prompts a user to guess a number that the system — in the person

of Duke, the Java technology mascot — has selected. The Ul displaysthetextHi ny nanme is Duke. | am
t hi nking of a nunber frommn to nmax. ,wherem n and max represent the minimum and
maximum values allowable as a guess, respectively. The Ul also displays the Duke image, atext field for the user to
enter a number, and a button to submit the form.

Hi my name is Duke. I am thinking of a number from
0 to 10.

Can you guess it ?

submit

Figure 1. A Ul Created With Facelets

This Facelets XHTML pageis not very different from an equivalent JSP page. In particular, Facelets supports JSF
and JSTL tag libraries. Facelets also includes a Facelets tag library that enables feature-rich page templating. The
namespace declaration xm ns: ui =" http://java. sun. com j sf/facel et s" isfor the Faceletstag library
— athough no tagsin that library are used in this example. Facelets also supports the unified expression language.

It might not be evident here what additional value Facelets provides over JSP. To better understand the value of
Facelets, lets examine two of its most powerful features: templating and composite components.

http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview_Part2.html (8 of 18) [12/17/2009 4:54:31 PM]

Introducing the Java EE 6 Platform: Part 2
Templating

With templating, you can create a page that acts as atemplate for other pagesin

Templating al t
an application. This helps you avoid creating similarly constructed pages multiple emplating alows you to

: . o . — create a page that actsas a
ti mﬁs ;I’emplatlng aIS(f) helps maintain a standard look and feel in an application template for other pagesin
with alarge number of pages. an application.

The Facelets tag library contains atemplating tag, <ui : i nsert >. To implement templating, you create a template
page that includesthe <ui : i nsert > tag. You then create a client page that uses the template. In the client page,
you use a<ui : conposi t i on> tag to point to the template and <ui : def i ne> tagsto specify content to insert
into the template.

Here is an example of atemplate page.

<xm version="1.0" encodi ng="UTF-8"?>
<! DOCTYPE htm PUBLIC "-//WBC//DID XHTML 1.0 Transitional//EN
"http://ww. w3.org/ TR xhtm 1/ DTD/ xht ml 1-transiti onal . dtd">

<htm xm ns="http://ww.w3.org/ 1999/ xhtm "
xm ns:ui ="http://java. sun.conijsf/facel ets"
xm ns: h="http://java.sun.com jsf/htm"

<head>
<title><ui:insert nane="title">Page Title</ui:insert</title><body>
</ head>
<body>
<di v>
<ui:insert name="Links"/>
</ di v>
<di v>
<ui:insert nanme="Data"/>
</div>
</ body>
</htm >

Hereis an example of aclient page that uses the template.

http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview_Part2.html (9 of 18) [12/17/2009 4:54:31 PM]

Introducing the Java EE 6 Platform: Part 2

<xm version="1.0" encodi ng="UTF-8"?>
<! DOCTYPE html PUBLIC "-//WBC//DTD XHTML 1.0 Transitional//EN

"http://ww.w3.org/ TR/ xhtm 1/ DTDY xht ml 1-transi tional . dtd">

<htm xml ns="http://ww. w3. org/ 1999/ xht m "
xm ns:ui ="http://java. sun.conijsf/facel ets"
xm ns: h="http://java.sun.com jsf/htm"
<body>
<ui : conposition tenplate="/tenpl ate. xhtm ">
This text will not be displayed
<ui : define name="title">
Wel cone page
</ ui : defi ne>
<ui : define name="Li nks">
[Li nks shoul d be here]
</ ui : defi ne>
<ui : defi ne name="Li nks">
[Dat a shoul d be here]
</ ui : defi ne>
</ ui : conposition>
This text also will not be displayed.
</ body>
</htm >

When the template isinvoked by the client, it renders a page with thetitle Wel cone Page. The page also displays
two sections: one that lists the links specified in the client, and one that shows the data specified in the client.

Composite Components

Composite componentsis a new feature in JSF that makes it easy to create
customized JSF components. Y ou can create composite components by using JSF
page markup, other JSF Ul components, or both. And with the help of Facelets,
any XHTML page can become a composite component. In addition, composite
components can have validators, converters, and listeners attached to them just like the set of Ul components
provided by JSF.

Composite components
makes it easy to create
customized JSF components.

After you create a composite component, you can store it in alibrary and use it as needed.

L et's create a composite component that is rendered as alogin panel. When a user logs in, the component reports a
login event as shown in Figure 2.

http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview_Part2.html (10 of 18) [12/17/2009 4:54:31 PM]

Introducing the Java EE 6 Platform: Part 2

File Edit Image Help

Usage of Login Panel Component

Username: geuypeyes

Password: ssssss

'ff_Lﬁgin j"

f reload _".

Login event happened

Figure 2. Composite Component

Here is the source code for the composite component.

<! DOCTYPE htm PUBLIC "-//WBC//DTD XHTML 1.0 Transitional//EN
"http://ww. w3. org/ TR/ xhtm 1/ DTDY xht ml 1-transi tional . dtd">
<htm xm ns="http://ww. w3. org/ 1999/ xht m "

xm ns: h="http://java.sun.com jsf/htm"

xm ns: f="http://java. sun.com jsf/core">

xm ns: f="http://java.sun.com jsf/facel ets">

xm ns: conposi te="http://java. sun. cont j sf/conposite">

<h: head>
<title>This content will not be displayed in the rendered output</title>
</ h: head>

<h: body>
<conposite:interface>
<conposi te: acti onSource nane="|ogi nEvent"/>
</ conmposite:interface>
<conposite:inplenentation>
<t abl e>
<tr>
<td>Usernanme: <h:inputText id="username" /> </td>
</tr>
<tr>
<t d>Password: <h:input Secret id="password" /></td>
</tr>

http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE60Overview_Part2.html (11 of 18) [12/17/2009 4:54:31 PM]

Introducing the Java EE 6 Platform: Part 2
<tr>
<t d><h: commandBut t on val ue="Logi n" id="1ogi nEvent" /></td>
</tr>
</t abl e>
</ conmposi te:inpl ementati on>
</ h: body>
</htm >

The declaration xm ns: conposite="http://java. sun. com j sf/ conposi te" declaresthe namespace
for composite Ul components. The <conposi t e: i nt er f ace> tag declares the usage contract for the composite
component, in other words, what a page author needs to know to use the composite component. The

<conposi te: attribut e>taginthe usage contract specifiesa<conposi t e: acti onSour ce> tag. Thistag
indicates that the component can expose an event, making it accessible by any page that uses the composite
component.

The<conposi t e: i npl enent at i on> tag defines the implementation for the composite component. Here the
implementation is a ssimple table that contains JSF components for the username and password fields and alogin
button.

To make the composite component available for use, you save the codein an XHTML file and then store thefilein a
subdirectory of ther esour ces directory under the application root directory. The name of the subdirectory istaken
to be the name of the resource library that contains the composite component. The JSF runtime finds the composite
component by appending . xht m to the name of the composite component's tag. For example, if you name the tag

| ogi nPanel , store the code for the composite component in afile named | ogi nPanel . xht m .

Y ou can then use the composite component in aweb page. Here, for example, is the code for the web page shown in
Figure 2 that uses the composite component.

http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview_Part2.html (12 of 18) [12/17/2009 4:54:31 PM]

Introducing the Java EE 6 Platform: Part 2

<! DOCTYPE ht
PUBLIC "-//WBC// DTD XHTML 1.0 Transitional //EN'
"http://ww. w3. org/ TR/ xhtml 1/ DTDY xht ml 1-transi tional . dtd">
<htm xm ns="http://ww.w3.org/ 1999/ xhtm "

xm ns: h="http://java.sun.com jsf/htm"

xmns: f="http://java. sun.com j sf/core"

xm ns:ui ="http://java. sun.conijsf/facel ets"

xm ns: ez="http://java. sun. conljsf/conpositel/ ezcomp">

<head>

<title>Exanple 01>/title>

<style type="text/css">

.grayBox { padding: 8px; margin: 10px 0; border: 1px solid #CCC, background-color: #f9f9f9; }
</style>

</ h: head>

<h: body>
<p>Usage of Logi n Panel Conponent</p>

<ui : debug hot key="p" rendered="true"/>

<h: fornme
<di v id="conpositeConponent"” class="grayBox" style="border: 1px solid #090;">
<ez: | ogi nPanel >
<f:actionLi stener for="logi nEvent" type="exanpl e0l. Logi nActi onLi stener" />

</ ez: | ogi nPanel >
</ di v>
<p><h: commandBut t on val ue="rel oad" /></p>

<p><h: out put Text val ue="#{Il ogi nActi onMessage}" /></p>
</ h:fornp

</ h: body>
</htm >

Notice the declaration xm ns: ez="htt p://j ava. sun. coni j sf/ conposi t e/ ezconp". This specifies
the namespace and prefix for the composite component. In this case, ezconp isthe name of the subdirectory in the
resources directory. JSF uses the following convention: for any namespace URI starting with
http://java.sun.com/jsf/composite/, the one and only path segment that ends the namespace URI is taken to be the
name of the resource library in which the Facelets XHTML files for the composite components are found.

The<f : acti onLi st ener > tag associates an action listener with the composite component. Thef or attributein
the tag indicates that this listener isfor the action event named | ogi nEvent on the composite component. Y ou
would also need to provide code to process the event. For example, you might provide code that looks something like

http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview_Part2.html (13 of 18) [12/17/2009 4:54:31 PM]

Introducing the Java EE 6 Platform: Part 2
the following:

i mport j avax. faces. conponent. U Conponent;

i mport j avax.faces. conponent. Val ueHol der;

i mport javax. faces. cont ext. FacesCont ext;

i mport javax.faces. event. Abort Processi ngExcepti on;
i mport javax.faces. event. Acti onEvent;

i mport javax.faces. event. Acti onLi stener;

public class LoginActionLi stener inplenents ActionListener {

public void processAction(ActionEvent event) throws AbortProcessi ngException {
FacesCont ext context = FacesContext.getCurrentlnstance();
cont ext . get Ext er nal Cont ext (). get Request Map() . put ("l ogi nActi onMessage",
"Logi n event happened");

Support for Ajax in JSF 2.0

JSF 2.0 has built-in support for Ajax. With Ajax, web applications can retrieve
data from the server asynchronously in the background without interfering with
the display and behavior of the existing page.

JSF 2.0 has built-in support
for Ajax, making it easier to
develop dynamic web
applications that take
advantage of both JSF
technology and Ajax.

In support of Ajax, JSF's request processing cycle has been expanded to allow
partial page updates and partial view traversal. Partial view traversal allows one
or more components in aview to be visited, potentially to have them pass
through either or both the execute phase or render phase of the request processing lifecycle. Thisisakey feature in
JSF and Ajax frameworks and it allows selected components in the view to be processed, rendered, or both.

To use Ajax with JSF you need to access a JavaScript resource that has the resource identifier j sf. j s. The
resource, which exists under thej avax. f aces resource library, contains the JavaScript API that enables JSF to
interact with Ajax. The JavaScript APl comprises a standard set of JavaScript functions that facilitate Ajax operations
in aJavaServer Faces framework. Y ou rarely need to include this file directly. JSF automatically includes it
whenever you use any Ajax-enabled tags or components in your view.

Y ou can then make an Ajax request in either of two ways. Y ou can usethe <f : aj ax> tag or you can invoke
functions in the JavaScript API.

Here is an example that usesthe <f : aj ax> tag:

http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview_Part2.html (14 of 18) [12/17/2009 4:54:31 PM]

Introducing the Java EE 6 Platform: Part 2

<h: conmandBut t on i d="buttonl">
<f:ajax execute="..." render="..."/>
</ h: commandBut t on>

Here, the <f . aj ax> tagisnested inside an <h: conmandBut t on> tag. This associates the Ajax action specified
in the execut e attribute with the command button rendered by the <h: conmmandBut t on> tag. You can also
specify an event attribute to identify the JavaScript DOM event to which the Ajax action applies. If you do not
specify an event attribute, JSF uses the default action for the component. In this case, the default action is

oncl i ck, so JSF associates the Ajax request specified in the execut e attribute with theoncl i ck event of the
rendered button. When a user clicks the button, JSF submits the Ajax request to the server.

One benefit of using the <f : aj ax> tag isthat you don't have to specifically load thej sf . j s resourcein your page
— it isdone automatically for you. By comparison, if you invoke the JavaScript API, you first have to make the
j sf.] s resource available to the current view, using an <h: out put Scr i pt > tag. For example:

<f:view content Type="text/htm"/>
<h: head>
<neta...
<title...
</ h: head>
<h: body>

<h: out put Scri pt name="jsf.js" library="javax.faces" target="body"/>

</ h: body>

Y ou then use functions in the JavaScript APl to make Ajax requests. For example, you use the JavaScript function
j sf. aj ax. request tosendan Ajax request to the server, as shown in the following code example. The code
includes a<h: commandBut t on> tag that renders a button. When a user clicks the button, an Ajax request is
submitted to the server.

http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview_Part2.html (15 of 18) [12/17/2009 4:54:31 PM]

Introducing the Java EE 6 Platform: Part 2

<h: commandButt on i d="buttonl" val ue="subnit">
oncl i ck="j sf. aj ax. request(this,event);" />

JSF 2.0's built-in support for Ajax makesit alot easier to develop dynamic web applications that take advantage of
both JSF technology and Ajax.

More New Featuresin Servlet 3.0 and JSF 2.0

This section covered only some of the many new features and enhancements in Servlet 3.0 and JSF 2.0. Another new
feature of notein Servlet 3.0 enables you to use methods in the Ser vl et Cont ext classto programmatically add
servlets and servlet filtersto a web application during startup. You usetheaddSer vl et () method to add a servlet
to the web application, and theaddFi | t er () method to add a servlet filter. The ability to programmatically add
servlets and servlet filters at startup is particularly useful to framework writers. In conjunction with the shared
framework pluggability feature by which extension libraries can discover classes listed in the @Handl esTypes
annotation, with this facility web frameworks can configure themselves with no developer intervention.

In addition, Servlet 3.0 works with a number of enhanced security features. For example, in addition to declarative
security, Servlet 3.0 offers programmatic security through the Ht t pSer vl et Request interface. Y ou can, for
example, usetheaut hent i cat e() method of Ht t pSer vl et Request in an application to perform username
and password collection, or you can usethel ogi n() method to direct the container to authenticate the request
caller from within an unconstrained request context. For more information about these and other featuresin Servlet
3.0, see Servlet 3.0, JSR 315.

Some additional enhancementsin JSF 2.0 relate to how resources are packaged and handled. JSF 2.0 standardizes
where resources are packaged. All resources now goinar esour ces directory or a subdirectory. Resources are any
artifacts that a component may need in order to be rendered properly, such as CSSfiles or JavaScript files. Figure 3

shows part of a NetBeans IDE project for a JSF application. Noticethe r esour ces directory in the project and the
CSS and image resources it contains.

http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview_Part2.html (16 of 18) [12/17/2009 4:54:31 PM]

http://jcp.org/en/jsr/detail?id=315
http://www.netbeans.org/

Introducing the Java EE 6 Platform: Part 2

4l Files

¥ LG Web Pages

F | WEB-INF
¥ | resources
v il css
% styles.css
¥ | images
|&| banner_logo.gif
. s
(€] detail.xhtml
|_e'i index.htm
[@] list.xhtml

Figure 3. Resourcesinther esour ces Directory of a
JSF Application

JSF 2.0 also includes new APIs for representing and handling resources. Y ou use the

j avax. faces. appl i cati on. Resour ce classto represent aresource. You use the

j avax. faces. appl i cati on. Resour ceHandl| er classto create instances of resources as well asto serve
resources to the requesting user agent. For more information about these and other featuresin JSF 2.0, see JavaServer

Faces 2.0: A Complete Tour. Also see the JSR 314: JavaServer Faces 2.0 specification.

» Continue to the next part of this article

Part 1 | Part 2 | Part 3

Rate ThisArticle

Comments
We welcome your participation in our community. Please keep your comments civil and on point. Y ou may

optionally provide your email address to be notified of replies - your information is not used for any other purpose.
By submitting a comment, you agree to these Terms of Use.

http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview_Part2.html (17 of 18) [12/17/2009 4:54:31 PM]

https://www.sun.com/offers/details/javaserver_faces.xml
https://www.sun.com/offers/details/javaserver_faces.xml
http://jcp.org/en/jsr/detail?id=314
http://developers.sun.com/global/termsofuse.html

Introducing the Java EE 6 Platform: Part 2

http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview_Part2.html (18 of 18) [12/17/2009 4:54:31 PM]

http://www.sun.com/
http://developers.sun.com/global/aboutsun.html
http://developers.sun.com/global/aboutsdn.html
http://developers.sun.com/global/newsletters.html
http://developers.sun.com/global/contact.html
http://developers.sun.com/global/employment.html
http://developers.sun.com/global/howtobuy.html
http://developers.sun.com/global/licensing.html
http://developers.sun.com/global/termsofuse.html
http://developers.sun.com/global/privacy.html
http://developers.sun.com/global/trademarks.html
http://developers.sun.com/global/aboutsdn.html
http://developers.sun.com/global/aboutsdn.html
http://developers.sun.com/global/berkeley_license.html
http://developers.sun.com/global/rss_sdn.html
http://developers.sun.com/global/content_feeds.html

Introducing the Java EE 6 Platform: Part 3
Skip to Content Sun Java Solaris Communities My SDN Account Join SDN

» search tips | Search

- APIs

. Downloads
. Products
- Support

. Traning

. Participate

SDN Home > Java Technoloqgy > Reference > Technical Articlesand Tips >

Article

Introducing the Java EE 6 Platform: Part 3

Print-friendly Version f

By Ed Ol’t, December 2009 .) I"-. lava EF SDKE

Il

Part 1 | Part 2 | Part 3

EJB Technology, Even Easier to Use

Enterprise JavaBeans technology is the server-side component architecture for developing and deploying
business applications in Java EE. Applications that you write using EJB technology are scalable, transactional,
and secure. EJB 3.0, which is part of the Java EE 5 platform, made the technology alot easier to use. The latest
release of the technology, JSR 318: Enterprise JavaBeans 3.1, which is available in the Java EE 6 platform,

further simplifies the technology and makes many improvements that reflect common usage patterns.

http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE60verview_Part3.html (1 of 28) [12/17/2009 4:54:33 PM]

http://java.sun.com/global/mh/suncom/index.html
http://java.sun.com/global/mh/java/
http://java.sun.com/global/mh/solaris/
http://java.sun.com/global/mh/communities/
http://developers.sun.com/global/my_profile.html
http://developers.sun.com/global/join_sdn.html
http://developers.sun.com/global/search_tips.html
http://www.sun.com/
http://java.sun.com/global/mh/api/index.html
http://java.sun.com/global/mh/downloads/index.html
http://java.sun.com/global/mh/products/index.html
http://java.sun.com/global/mh/support/index.html
http://java.sun.com/global/mh/training/index.html
http://java.sun.com/global/mh/participate/index.html
http://developers.sun.com/index.jsp
http://java.sun.com/index.jsp
http://java.sun.com/reference/index.html
http://java.sun.com/reference/techart/index.html
http://java.sun.com/jsp_utils/PrintPage.jsp
http://java.sun.com/jsp_utils/PrintPage.jsp
http://jcp.org/en/jsr/detail?id=318
http://java.sun.com/javaee/downloads/preview/

Introducing the Java EE 6 Platform: Part 3
Some improvements made in EJB 3.1 are as follows:

. No-interface view. Allows you to specify an enterprise bean using only a bean class without having to
write a separate business interface.

. Singletons. Lets you easily share state between multiple instances of an enterprise bean component or
between multiple enterprise bean components in an application.

. Asynchronous session bean invocation. Enables you to invoke session bean methods asynchronously by
specifying an annotation.

. Simplified Packaging. Removes the restriction that enterprise bean classes must be packaged in an ej b-
j ar file. You can now place EJB classes directly inaWAR file.

. EJB Lite. Isasubset of EJB 3.1 for inclusion in avariety of Java EE profiles.

No-I nterface View

The EJB 3.0 local client view is based on a plain old Javainterface (POJI) called alocal business interface. A
local interface defines the business methods that are exposed to the client and that are implemented on the bean
class. This separation of interface and implementation is sometimes unnecessarily cumbersome and adds little
value — thisis especially true for fine-grained components that are accessed locally from clients within the
same module.

EJB 3.1 simplifies this approach by making local business interfaces optional.
A bean that does not have alocal business interface exposes a no-interface
view. Now you can get the same enterprise bean functionality without having
to write a separate business interface.

Local businessinterfaces
are optional in EJB 3.1.
Now you can get the
same enterprise bean
functionality without
having to write a separate
business interface.

The no-interface view has the same behavior as the EJB 3.0 local view, for
example, it supports features such as pass-by-reference calling semantics and
transaction and security propagation. However, a no-interface view does not
require a separate interface, that is, al public methods of the bean class are
automatically exposed to the caller. By default, any session bean that has an empty i npl enent s clause and
does not define any other local or remote client views, exposes a no-interface client view.

For example, the following session bean exposes a no-interface view:

http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview_Part3.html (2 of 28) [12/17/2009 4:54:33 PM]

Get Java EE Training
and Certification

. JavaEE Training

Find out about
training for
architects and
web component,
business
component, and
integration
developers.

. Cetification
L earn about
various Sun
certification
courses for
programmers and
enterprise
architects,
preparation
methods, and
savings programs.

Ed Ort isawriter on
< ﬂ the staff of the Sun
SN Devel oper Network.
He has written extensively
about awide variety of
programming topics including
relational database
technology, programming
languages, web services, and
Ajax. Read his blog.

http://java.sun.com/javaee/support/training/
http://java.sun.com/javaee/support/training/
http://blogs.sun.com/edo

Introducing the Java EE 6 Platform: Part 3

@bt at el ess
public class Hell oBean {

public String sayHello() {
String nessage = propertiesBean. get Property("hello. nmessage");
return nessage;

Asisthe casefor alocal view, the client of a no-interface view always acquires an EJB reference -- either
through injection or INDI lookup. The only difference is that the Javatype of the EJB reference is the bean
class type rather than the type of alocal interface. Thisis shown in the following bean client:

@JB

private Hell oBean hel | oBean;

String nmsg = hel |l oBean. sayHel | o();

Note that even though there is no interface, the client cannot use the new() operator to explicitly instantiate
the bean class. That's because all bean invocations are made through a special EJB reference, or proxy,
provided by the container. This allows the container to provide all the additional bean services such as pooling,
container-managed transactions, and concurrency management.

Singletons

A singleton bean, also known as a singleton, is anew kind of session bean that
is_guaranteed_to be instalntiat_ed o_ncefor an application _in aparticular Java easily share state between
Vi rtl_JaI Machl ne (JVM)*. Wlth-SI ngletons, you can easily share state_ between the EJB componentsin
multipl gmstances of an enterprlse bean component or between multiple an application.

enterprise bean components in the application. Consider, for example, a class

that caches data for an application. Y ou might define the class as a singleton and in doing so, ensure that only
one instance of the cache and its state is shared in the application.

Singletons help you

http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview_Part3.html (3 of 28) [12/17/2009 4:54:33 PM]

Introducing the Java EE 6 Platform: Part 3
Y ou define a singleton with the @i ngl et on annotation, as shown in the following code example:

@i ngl et on
public class PropertiesBean {

private Properties props;
public String getProperty(String nane) { ... }

@Post Const ruct
public void initialize { // props = ...}

Because it's just another kind of session bean, a singleton can define the same local and remote client views as
can stateless and stateful beans. Clients access singletons in the same way as they access stateless and stateful
beans, that is, through an EJB reference. For example, aclient can accessthe Pr oper t i esBean singleton
shown in the previous example as follows:

@JB

private PropertiesBean propsBean;

String msg = propsBean. get Property("hello. message");

Here, the container ensures that all invocations through Pr oper t i esBean referencesin the same VM are
serviced by the same instance of the Pr oper t i esBean. By default, the container enforces the same
threading guarantee as for other component types. In other words, the singleton is fully thread safe.
Specifically, no more than one invocation is allowed to access a particular bean instance at any one time. For
singletons, that means blocking any concurrent invocations. However, thisis just the default concurrency
behavior. Additional concurrency options allow more efficient concurrent access to the singleton instance.

Asynchronous Session Bean I nvocation
One of the powerful features introduced in EJB 3.1 isthe ability to invoke session bean methods

http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview_Part3.html (4 of 28) [12/17/2009 4:54:33 PM]

Introducing the Java EE 6 Platform: Part 3
asynchronously. For an asynchronous invocation, control returns to the client
before the container dispatches the invocation to an instance of the bean. This
allows the client to continue processing in parallel while the session bean
method performs its operations.

With EJB 3.1, you can
invoke session bean
methods synchronously
or asynchronously.

Y ou can make a method asynchronous by marking it with the
@\synchr onous annotation. Y ou apply the annotation to a business method of a bean class. Y ou can also
use a deployment descriptor to designate a method as asynchronous.

Asynchronous methods canreturnaj ava. uti | . concurrent . Fut ur e<V> object or voi d. A

Fut ur e<V> object holds the result of an asynchronous operation. Y ou can access the Fut ur e<V> object to
retrieve aresult value, check for exceptions, or cancel an in-progress invocation. The Fut ur e<V> interface
providesaget () method to retrieve the value. Y ou can aso retrieve the value by using the convenience class,
AsyncResul t <V>, which implements the Fut ur e<V> interface.

In the following example, the per f or nCal cul ati on() method in made asynchronous. The method uses
the AsyncResul t <V> classto retrieve the value returned in the Fut ur e<V> object.

@bt at el ess
Publi c class Cal cul at orBean i npl ements Cal cul at or Servi ce {

@\synchr onous
publ i ¢ Future<lnteger> perfornCal cul ation(...) {

// ... do calculation

Integer result = ...;
return new AsyncResul t <l nt eger>(result);

}
}

Simplified Packaging

The EJB specification has aways required that enterprise beans be packaged in an enterprise module called an
ej b-j ar file. Sinceit is common for Java EE web applications to use enterprise beans, this packaging
reguirement can be burdensome. These applications are forced to use aweb application archive (. war) file for
the web application, an e] b-j ar filefor the enterprise beans, and an enterprise archive (. ear file) that
encompasses the other packages. Thisisillustrated in Figure 4. This packaging approach is further complicated
http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview_Part3.html (5 of 28) [12/17/2009 4:54:33 PM]

Introducing the Java EE 6 Platform: Part 3
by the special handling required for any classes or resources that must be shared among the modules.

foo.ear

foo web.war

WEB-INF/web_xmi

WEB-INF/classes/
com/acme/FooServiet class

WEB-INF/classes
com/acme/Foo.class

foo_ejb.jar

com/acme/FooBean . class
com/acme/Foo.class

Figure 4. Traditional Enterprise Application Packaging

foo.war

WEB-INF/classes/com/acme/
FooServlet.class

FooBean.class

Figure 5. Smplified Enterprise Application Packaging

http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview_Part3.html (6 of 28) [12/17/2009 4:54:33 PM]

Introducing the Java EE 6 Platform: Part 3
EJB 3.1 addresses this packaging complexity by removing the restriction that
enterprise bean classes must be packaged inan ej b- | ar file. AsFigure5
illustrates, you can now place EJB classes directly in the. war file, using the
same packaging guidelines that apply to web application classes. This means
that you can place EJB classes under the WEB- | NF/ cl asses directory or in
a. j ar filewithinthe WEB- | NF/ | i b directory. The EJB deployment
descriptor is also optional. If you need it, you can package the EJB deployment
descriptor asaVEB- | NF/ ej b-j ar. xm file.

In EJB 3.1, you can place
enterprise bean classesin
the. war file along with
web tier components.

Y ou don't have to put
EJB classesintheej b-

j ar file.

EJB Lite

For many applications, EJB technology offers alot more functionality than those applications really need. The
typical application that uses EJB only needs a subset of the features provided by the technology. EJB Lite
meets the needs of these applications with a small subset of the featuresin EJB 3.1 centered around the session
bean component model.

EJB Lite should simplify the use of EJB technology for many developers.
Developers who use EJB Lite in their applications only need to learn to use a
small set of features. In addition, applications devel oped with EJB Lite can run
in application servers that implement either EJB Lite or the full EJB 3.1 API.
Also, vendor implementations of EJB Lite should be smpler and more
lightweight than full EJB implementations.

EJB Lite meets the needs
of applications that
require only a subset of
the features provided by
EJB technology.

Note that EJB Liteisnot a product or an implementation, but rather a small convenient subset of the EJB 3.1
API. The objective of EJB Liteisto offer a subset of EJB 3.1 features that cover the common requirements for
the business logic tier of most applications, one that also gives vendors the flexibility to provide EJB
technology across a variety of Java EE profiles. To meet those objectives, EJB Lite offers the following
features:

. Stateless, stateful, and singleton session beans

. Local EJB interfaces or no interfaces

. Interceptors

. Container-managed and bean-managed transactions
. Declarative and programmatic security

. Embeddable API

More New Featuresin EJB 3.1

EJB 3.1 delivers more features and enhancements than those covered in the previous sections. For example, it
http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview_Part3.html (7 of 28) [12/17/2009 4:54:33 PM]

Introducing the Java EE 6 Platform: Part 3

includes an embeddable API and container for use in the Java SE environment. These makes it easy to test EJB
components outside a Java EE container, and more generally, in Java SE. For another example, the introduction
of singletons in EJB 3.1 offers a convenient way for EJB applications to receive callbacks during application
initialization or shutdown. By default, the container decides when to instantiate the singleton instance.
However, you can force the container to instantiate a singleton instance during application initialization by
using the @t ar t up annotation. This allows the bean to define a @ost Const r uct method that is
guaranteed to be called at startup time. In addition, any @°r eDest r oy method for a singleton is guaranteed to
be called when the application is shutting down, regardless of whether the singleton was instantiated using lazy
instantiation or eager instantiation.

To learn about all the features and enhancementsin EJB 3.1, see JSR 318: Enterprise JavaBeans 3.1.

A More Complete Java Persistence API

The Java EE 5 platform introduced the Java Persistence API, which provides a POJO-based persistence model
for Java EE and Java SE applications. JPA handles the details of how relational datais mapped to Java objects,
and it standardizes Object/Relational (O/R) mapping. JPA has been widely adopted and is recognized as the
enterprise standard for O/R persistence.

Java EE 6 includes the latest release of this technology, JSR 317: Java Persistence 2.0. JPA 2.0 adds a number
of significant new features and enhancements. These include:

. Object/Relational mapping enhancements, such as the ability to model collections of objects
. Additions to the Java Persistence query language

. A new criteria-based query AP

. Support for pessimistic locking

Object/Relational M apping Enhancements

JPA 1.0 supported the mapping of collections. However, those collections
could only contain entities. JPA 2.0 adds the mapping of collections of basic
datatypes, suchas St ri ngsor | nt eger s, aswell as collections of
embeddak_)le obj _ects. Recall thz_at an embeddabl e object i n JPA isan _obj_ect that or | nt eger s, aswell as
cannot exist on its own, but exists as part of a parent object — that is, its data :
does not exist in its own table, but is embedded in the parent object's tab coliections of

oes not exist inits own table, but isem in the parent object's table. embeddable objects.

In JPA 2.0, you can map
collections of basic data
types, suchas St ri ngs

JPA 2.0 adds two annotations in support of the new collection mappings. @l enment Col | ecti on and

http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview_Part3.html (8 of 28) [12/17/2009 4:54:33 PM]

http://jcp.org/en/jsr/detail?id=318
http://jcp.org/en/jsr/detail?id=317

Introducing the Java EE 6 Platform: Part 3
@Col | ecti onTabl e. You usethe @l enent Col | ect i on annotation to specify that the basic or
embeddabl e objects in the collection are stored in a separate table called a collection table. Y ou use the
@Col | ect i onTabl e annotation to specify details about the collection table, such asits columns.

Here, for example, is an embeddable class that represents a service visit for avehicle. The embeddable class
stores the date of the visit, a description of the work that was done, and the cost. In addition, the vehicle can be
equipped with one or more optional features. Each of the available featuresis an enumerated value of type
Feat ur eType.

public enum FeatureType { AC, CRU SE, PWR, BLUETOOTH, TV, ... }

@nbeddabl e

public class ServiceVisit {
@renpor al (DATE)
@Col um(nane="SVC_DATE")
Dat e servi ceDat e;

String workDesc;
int cost;

The enumerated val ues and embeddabl e objects can then be used in an entity that represents a vehicle's service
history and its features.

@ntity

public class Vehicle {
@d int vin;

@l ement Col | ecti on

@col | ecti onTabl e(nane="VEH_OPTNS")
@Col um(name=" FEAT")

Set <Feat ur eType> opti onal Feat ur es;

@&l ement Col | ecti on

@ol | ecti onTabl e(nane="VEH_SVC')
@x derBy("servi ceDate")

Li st <ServiceVisit> serviceHistory;

}

http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview_Part3.html (9 of 28) [12/17/2009 4:54:33 PM]

Introducing the Java EE 6 Platform: Part 3

Thefirst pairing of @&l ement Col | ecti on and @ol | ecti onTabl e annotationsin the Vehi cl e entity
specifiesthat the Feat ur e Type values are stored in the VEH _OPTNS collection table. The second pairing of
@&l enment Col | ecti on and @ol | ecti onTabl e annotations in the entity specifies that the

Ser vi ceVi si t embeddable objects are stored in the VEH_SVC callection table.

Though not shown in the example, the @l enment Col | ect i on annotation has two attributes:

target Cl ass andf et ch. Thet ar get O ass attribute specifies the class name of the basic or
embeddable class, and is optional if the field or property is defined using generics, asit isin this example. The
f et ch attribute is optional and specifies whether the collection should be retrieved lazily or eagerly, using the
j avax. per si st ence. Fet chType constants of either LAZY or EAGER, respectively. By default, the
collection is fetched lazily, which is the case in this example.

There are many more Object/Relational mapping enhancements in JPA 2.0 than the mapping of collections
described here. For example, JPA 2.0 supports nested embeddabl es, embeddables with relationships, and
ordered lists. There are also new annotations for generalized map functionality, more flexible support for
specific access types through an @A\ccess annotation, more mapping options for entity relationships such as
foreign key mapping support for unidirectional one-to-many relationships, support for derived identities
through the @vaps| d annotation, and support for orphan removal.

Additionsto the Java Persistence Query L anguage

JPA 1.0 defined an extensive Java Persistence query language (informally IPA 2.0includes
referred to as JPQL) with which you can query entities and their persistent
state. JPA 2.0 makes a number of enhancements to JPQL . For example, you
can Nnow use case expressions in queries. In the following query, a case
expression increases an employee's salary by amultiplier of 1.1 if the
employee hasarating of 1, by amultiplier of 1.05if therating is 2, and by a
multiplier of 1.01 for any other rating:

enhancements to Java
Persistence query
language. For example,
yOu can Now use case
eXpressions in queries.

UPDATE Enpl oyee e
SET e.salary =
CASE WHEN e.rating 1 THEN e.salary * 1.1
WHEN e. rating 2 THEN e.salary * 1.05
ELSE e.salary * 1.01

END

http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview_Part3.html (10 of 28) [12/17/2009 4:54:33 PM]

Introducing the Java EE 6 Platform: Part 3

JPA 2.0 also adds a number of new operators to JPQL. Two of these are
NULLI F, and COALESCE. The NULLI F operator is particularly useful when a
database uses something other than nulls to encode missing or non-applicable

JPA 2.0 also adds two
new operators to Java

. : :) : Persistence quer
information. Using NULLI F, you can easily convert these valuesto nullsin language: N(LJJLL?/ E and
queries. If the argumentsto NULLI F are equal, NULLI F returns null, COAL ESCE ’

otherwise it returns the value of the first argument.

For example, suppose that salaries in an employee table are represented as integer values and that missing
salaries are encoded by -99999. Here's a query that returns the average value of the salaries. To correctly ignore
the missing salaries, the query uses NULLI F to convert the -99999 values to null.

SELECT AVGE NULLI F(e.sal ary, -99999))
FROM Enpl oyee e

The COALESCE operator accepts alist of parameters and then returns the first non-null value from thelist. Itis
equivalent to the following case expression:

CASE VWHEN val uel IS NOT NULL THEN val uel
VWHEN val ue2 1'S NOT NULL THEN val ue2
VWHEN val ue3 I'S NOT NULL THEN val ue3

ELSE NULL
END

For example, suppose that an employee table includes columns for awork phone number and a home phone
number. A missing phone number is represented by a null value. The following query returns the name and
phone number of each employee. The COALESCE operator specifies that the query return the work phone
number, but if it's null, return the home phone number. If both are null, return anull value for the phone
number.

http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview_Part3.html (11 of 28) [12/17/2009 4:54:33 PM]

Introducing the Java EE 6 Platform: Part 3

SELECT Nane, COALESCE(e.wor k_phone, e. hone_phone) phone
FROM Enpl oyee e

The other new operators that JPA 2.0 adds to JPQL are | NDEX, TYPE, KEY, VALUE, and ENTRY. The | NDEX
operator queries over the ordering in an ordered list. The TYPE operator selects an entity's type and restricts a
guery to one or more entity types. The KEY, VALUE, and ENTRY operators are part of the generalized map
functionality in JPA 2.0. You use the KEY operator to extract map keys, the VAL UE operator to extract map
values, and the ENTRY operator to select a map entry.

In addition, JPA 2.0 adds support for operatorsin the select list, as well asin collection-valued parameters and
non-polymorphic queries.

Criteria API

One of the significant new features introduced in JPA 2.0 isthe Criteria AP,
an APl for dynamically constructing object-based queries. In essence, the
Criteria API isthe object-oriented equivalent of JPQL. With it, you can take an
object-based approach to creating queries, rather than using the string
manipulation required by JPQL.

Y ou can use the new
CriteriaAPI to
dynamically construct
object-based queries.

The Criteria API is based on a metamodel, an abstract model that provides schema-level metadata about the
managed classes of the persistence unit. The metamodel enables you to build queries that are strongly typed. It
also enables you to browse the logical structure of a persistence unit.

Typically an annotation processor is expected to use the metamodel to generate static metamodel classes. These
classes provide the persistent state and rel ationships of the managed classes of a persistence unit. However, you
can a'so code the static metamodel classes.

Here, for example, is an entity:

http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview_Part3.html (12 of 28) [12/17/2009 4:54:33 PM]

Introducing the Java EE 6 Platform: Part 3

@ntity public class Enployee {
@d Long Id;
String firstNaneg;
String | ast Nane;
Depart nment dept;

And hereisits corresponding static metamodel class:

i mport javax. persi stence. et a, nodel . Si ngul ar Attri bute;
i mport javax. persistence. et a, nodel . St ati cMet anodel ;

@=xner at ed("Ecl i pseLi nk JPA 2.0 Canoni cal Mdel Generation”

@5t at i cMet anodel (Enpl oyee. cl ass)

public class Enpl oyee_ {
public static volatile SingularAttribute<Enmpl oyee, Long> id,
public static volatile SingularAttribute<Enployee, String> firstNaneg;
public static volatile SingularAttribute<Enployee, String> |astNane;
public static volatile SingularAttribute<Enpl oyee, Departnent> dept;

In addition, a JPA 2.0 metamodel APl enables you to dynamically access the
metamodel. So when you use the Criteria APl you can either statically access
the metamodel classes or dynamically access the metamodel. However, the
Criteria API gives you even more flexibility in that you can navigate the
metamodel either in an object-based way or in a string-based way. This means
that you have four waysto use the Criteria API:

The Criteria AP is based
on a metamodel for
building queriesthat are
strongly typed.

. Statically with metamodel classes
. Statically with strings

. Dynamically with the metamodel
. Dynamically with strings

No matter which of these approaches you use, you define a Criteria API-based query by constructing a

http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview_Part3.html (13 of 28) [12/17/2009 4:54:33 PM]

Introducing the Java EE 6 Platform: Part 3
CriteriaQuery object. You constructtheCri t eri aQuery using afactory object called
CriteriaBuil der.YoucangettheCriteri aBuil der fromeither theEnti t yManager or
Ent it yManager Fact or y class.The following code, for example, constructsaCri t eri aQuery object:

EntityManager em= ... ;
CriteriaBuilder cb = emgetCriteriaBuilder();
Criteri aQuery<Custoner> cq = cb. createQuery(Custoner.cl ass);

NoticethattheCri t eri aQuery object is generically typed. You usethecr eat eQuer y method of
CriteriaBuil der tocreateaCri t eri aQuery and to specify atype for the query result. In this example,
the Enpl oyee. cl ass argument to the cr eat eQuer y method specifies that the query result typeis

Enpl oyee. Significantly, Cri t er i aQuer y objects and the methods that create them are strongly typed, and
this typing continues through the execution of the query.

Next, you specify one or more query rootsfor theCr i t er i aQuer y object. The query roots represent the
entities on which the query is based. Y ou create a query root and add it to a query with thef r on{) method of
the Abst r act Query interface. The Abst r act Quer y interface is one of a number of interfaces, such as
CriteriaQuery, Fromand Root , that are defined in the Criteria API. The Cri t eri aQuery interface
inherits from the Abst r act Quer y interface.

The argument to thef r on() method isthe entity classor Ent i t yType instance for the entity. The result of
thef r om() method isaRoot object. The Root interface extends the Fr ominterface, which represents
objects that may occur in the f r omclause of a query.

The following code adds asingle query root tothe Cri t er i aQuer y object:

CriteriaBuilder cb = emgetCriteriaBuilder();
CriteriaQuery<Enpl oyee> cq = cb. creat eQuery(Enpl oyee. cl ass);
Root <Enpl oyee> enp = cq. fron(Enpl oyee. cl ass);

After you add one or more query rootstothe Cri t er i aQuer y object, you access the metamodel and then
construct a query expression. How you do that depends on whether you issue the query statically or
dynamically and whether you use the metamodel or strings to navigate the metamodel. Here's an example of a

http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview_Part3.html (14 of 28) [12/17/2009 4:54:33 PM]

Introducing the Java EE 6 Platform: Part 3
static query that uses the metamodel classes:

cqg. sel ect (enp) ;

cq. wher e(cb. equal (enp. get (Enpl oyee_. | astNane), "Smith"));
TypedQuer y<Enpl oyee> query = em creat eQuery(cq);

Li st <Enpl oyee> rows = query. getResultList();

Thesel ect () andwher e() methodsof theCri t eri aQuery interface specify the selection items that are
to be returned in the query result.

Notice that you create aquery using the Ent i t yManager and you specify theCri t eri aQuer y object as
input. Thisresultsina TypedQuer y, an extension introduced in JPA 2.0 to the

j avax. per si st ence. Query interface. The TypedQuer y interface knows the type it returns so that
strong typing continues into the query's execution.

In metamodel terminology, Enpl oyee_ isthe canonical metamodel class corresponding to the Enpl oyee
entity class. A canonical metamodel class follows certain rules described in the JPA 2.0 specification. For
example, the name of the metamodel class is derived from the name of the managed class by appending " " to
the name of the managed class. A canonical metamodel is a metamodel comprising the static metamodel
classes that correspond to the entities, mapped superclasses, and embeddable classes in the persistence unit.
This query, in fact, uses the canonical metamodel.

Here is the complete query:

EntityManager em= ... ;

CriteriaBuilder cb = emgetCriteriaBuilder();
CriteriaQuery<Enpl oyee> cq = cb. creat eQuery(Enpl oyee. cl ass);
Root <Enpl oyee> enp = cq. fron{ Enpl oyee. cl ass);

cq. sel ect (enmp) ;

cqg. wher e(ch. equal (enp. get (Enpl oyee_. |l ast Nane), "Smith"));
TypedQuer y<Enpl oyee> query = em creat eQuery(cq);

Li st <Enpl oyee> rows = query.getResul tList();

Here's adynamic version of the query that uses the metamodel API:

http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview_Part3.html (15 of 28) [12/17/2009 4:54:33 PM]

Introducing the Java EE 6 Platform: Part 3

EntityManager em= ...

CriteriaBuilder cb = em getCriteriaBuilder();

CriteriaQuery<Enpl oyee> cq = cb. creat eQuery(Enpl oyee. cl ass);

Root <Enpl oyee> enp = cq.f ron"(Enpl oyee. cl ass);

EntityType<Enpl oyee> enp_ = enp. get Model () ;

cqg. sel ect (enp) ;

cq. where(cbh. equal (enp. get (enp_. getSingul arAttri bute("l ast Name", String.class)),"Smth"));
TypedQuer y<Enpl oyee> query=em creat eQuery(cq);

Li st <Enpl oyee> rows=query. get Resul t Li st();

A criteriaquery that uses the metamodel API provides the same type safety as one that uses the canonical
metamodel, but it can be more verbose than queries based on the canonical metamodel.

Theget Model () method of Root returns the metamodel entity corresponding to the root. It also enables run
time access to the persistent attributes declared in the Enpl oyee entity. Again, thesel ect () andwher e()
methods of theCri t eri aQuer y interface specify the selection items that are to be returned in the query
result.

Theget Si ngul ar Attri but e() method isametamodel APl method that returns a persistent single-
valued property or field. In thisexample, it returnsthe |l ast Nane property whose valueis Smi t h.

Hereisadtatic version of the query that uses string navigation of the metadata:

EntityManager em= ...

CriteriaBuilder cb = em getCrlterl aBui | der () ;
CriteriaQuery<Enpl oyee> cq = ch. creat eQuery(Enpl oyee. cl ass);
Root <Enpl oyee> enp = cq. from Enpl oyee. cl ass) ;

cqg. sel ect (enp) ;

cq. where(ch. equal (enp. get ("l ast Nane"), "Smith"));

TypedQuery query = em createQuery(cq);

Li st <Enpl oyee>rows = query.getResultList();

The string-based approach isrelatively easy to use, but you lose the type safety that the metamodel enables.

http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview_Part3.html (16 of 28) [12/17/2009 4:54:33 PM]

Introducing the Java EE 6 Platform: Part 3
Support for Pessimistic L ocking

Locking is atechnique for handling database transaction concurrency. When two or more database transactions
concurrently access the same data, locking is used to ensure that only one transaction at atime can change the
data.

There are generally two locking approaches: optimistic and pessimistic. Optimistic locking assumes infrequent
conflicts between concurrent transactions, that is, they won't often try to read and change the same data at the
same time. In optimistic locking, the objective is to give concurrent transactions freedom to process
simultaneously, but to detect and prevent collisions. Two transactions can access the same data simultaneously.
However, to prevent collisions, a check is made to detect any changes made to the data since the data was last
read.

Pessimistic locking assumes that transactions will frequently collide. In pessimistic locking, a transaction that
reads the data locks it. Another transaction cannot change the data until the first transaction commits.

JPA 1.0 only supported optimistic locking. Y ou could indicate what type of locking was in effect by specifying
alock mode value of READ or WRI TE inthel ock() method of the Ent i t yManager class. For example:

EntityManager em= ...
em |l ock (pl, READ);

For the READ lock mode, the JPA entity manager locked the entity and before a transaction committed,
checked the entity's version attribute to determine if it had been updated since the entity was last read. If the
version attribute had been updated, the entity manager threw an Opt i m st i cLockExcepti on and rolled
back the transaction.

For the WRI TE lock mode, the entity manager performed the same optimistic locking operations as for the
READ lock mode. However, it also updated the entity's version column.

JPA 2.0 adds six new lock modes. Two of these are for optimistic locking. JPA 2.0 also permits pessimistic
locking and adds three lock modes for that. A sixth lock mode specifies no locking.

These are the two new optimistic lock modes:

. OPTI M STI C. Thisisthe same as the READ lock mode. The READ lock mode is still supported in JPA

http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview_Part3.html (17 of 28) [12/17/2009 4:54:33 PM]

Introducing the Java EE 6 Platform: Part 3
2.0, but specifying OPTI M STI Cisrecommended for new

applications. JPA 2.0 adds two new
. OPTI M STI C_FORCE_| NCREVENT. Thisisthe sameastheWRl TE ~ |0Ck modes for optimistic
lock mode. The WRI TE lock mode is still supported in JPA 2.0, but locking. JPA 2.0 al'so

specifying OPTI M STI C_FORCE_| NCREVENT isrecommended for ~ PErMits pessimistic
new applications. locking and adds three

lock modes for that.

These are the three new pessimistic lock modes:

. PESSI M STI C_READ. The entity manager locks the entity as soon as a transaction readsit. The lock
is held until the transaction completes. Use this lock mode when you want to query data using repeatable-
read semantics — in other words, when you want to ensure that the data is not updated between
successive reads. Thislock mode does not block other transactions from reading the data.

. PESSI M STI C_WRI TE. The entity manager locks the entity as soon as a transaction updatesit. This
lock mode forces serialization among transactions attempting to update the entity data. Thislock mode
is often used when there is a high likelihood of update failure among concurrent updating transactions.

. PESSI M STI C_FORCE_| NCREMENT. The entity manager locks the entity when a transaction reads
it. It also increments the entity's version attribute when the transaction ends, even if the entity is not
modified.

Y ou can also specify the new lock mode NONE, in which case, no lock is acquired.

JPA 2.0 also provides multiple ways to specify the lock mode for an entity. Y ou can specify the lock modein
thel ock() andfi nd() methodsof the Ent i t yManager . In addition, the

Enti t yManager . refresh() method refreshes the state of the entity instance from the database and locks
it in accordance with the entity's lock mode.

The following code exampl e illustrates pessimistic locking with the PESSI M STI C_WRI TE lock mode:

[l read
Part p = emfind(Part.class, pld);

/'l 1ock and refresh before update
emrefresh(p, PESSIM STI C_WRI TE) ;
i nt pAnount = p.get Amount () ;

p. set Amount (pAmount - uCount);

http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview_Part3.html (18 of 28) [12/17/2009 4:54:33 PM]

Introducing the Java EE 6 Platform: Part 3

The code in this example first reads some data. It then appliesa PESSI M STI C_WRI TE lock using acall to
theEnt i t yManager . r ef resh() method before updating the data. The PESSI M STI C_WRI TE lock
locks the entity as soon as the transaction updates it. Other transactions cannot update the same entity until the
initial transaction commits.

More New Featuresin JPA 2.0

In addition to the enhancements and new features described in the previous sections, JPA 2.0 can use Bean
Validation to automatically validate an entity when it is persisted, updated, or removed. What this meansiis that

you can specify a constraint on an entity, for example, that the maximum length of afield in the entity is 15,
and have the field automatically validated when the entity is persisted, updated, or removed. Y ou use the

<val i dati on- node> element in the per si st ence. xm configuration file to specify whether automatic
lifecycle event validation isin effect.

For more information about all the featuresin JPA 2.0, see JSR 317: Java Persistence 2.0.

Further Ease of Development

Y ou've seen how new technologies such as CDI and Bean Validation, as well
as support for features such as web fragments, Facelets, the no-interface view,
and the Criteria APl make it even easier to develop enterprise or web
applications. However, additional usability improvements have been made in
many areas of the Java EE 6 platform. In particular, annotations can now be annotations used for

used in more types of Java EE components. In addition, the set of annotations dependency injection has
used for dependency injection has been standardized, making injectable classes peen standardized.

much more portabl e across frameworks.

Annotations can now be
used in more types of
Java EE components.
And the set of

Annotationsin More Types of Java EE Components

The simpler annotation-based programming model that was introduced in Java EE 5 has been extended to other
types of Java EE components, such as servlets and JSF components. For example, instead of using a
deployment descriptor to define a servlet in aweb application, all you need to do is mark a class with the
@\bSer vl et annotation, as shown below:

http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview_Part3.html (19 of 28) [12/17/2009 4:54:33 PM]

http://jcp.org/en/jsr/detail?id=317

Introducing the Java EE 6 Platform: Part 3

@ebSer vl et (name="Cal cul atorServlet", urlPatterns={"/calc", "/getVal"})
public class Cal cul atorServl et extends HttpServlet{
public void doGet(HttpServl et Request req, HttpServl et Response res) {

The @\ébSer vl et annotation is one of the annotations provided by Servlet Instead of creating

3.0 technology. Here are some other Servlet 3.0 annotations: deployment descriptors,

: . o - you can annotate classes
. @\ebFi | t er. Definesaservlet filter in aweb application to specify serviet-related

. @\ebl ni t Par am Specifiesany i ni t parameters that must be deployment information.
passed to a servlet or servlet filter

. @\ebLi st ener . Annotates alistener to get events for various operations on a particular web
application context

. @l tipart Confi g. When specified on a servlet, indicates that the request the servlet expectsis of
the MIME typernul ti part/*

A good example of the annotation support in JSF 2.0 is the ssmplified approach to configuring managed beans.
Instead of registering a managed bean by configuring it in the JSF configuration file, f aces- confi g. xm ,
al you need to do is mark the bean with the @vanagedBean annotation and set its scope with the

Request Scope annotation, as shown below:

i mport javax.faces. bean. ManagedBean;
i mport javax. faces. bean. Request Scoped,;

@/MmanagedBean(nane="user Bean")
@request Scoped
public class UserBean {

private String nane;

public String getNanme() {
return nane;
}
public void setNane(String nane) {
t hi s. nane = nane;
}
http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview_Part3.html (20 of 28) [12/17/2009 4:54:33 PM]

Introducing the Java EE 6 Platform: Part 3

public UserBean() {}
}

Some other JSF 2.0 annotations are: JSF 2.0 supports various

annotations to specify

. @mnagedPr operty. Marks abean property to be a managed configuration

property information.

. @Resour ceDependency. Declares the resources that a component
will need

. @i st enFor . Enables a component to subscribe to particular events with the component as the
listener

. @acesConverter.RegistersaclassasaConvert er, that is, aclassthat can perform Cbj ect -to-
StringandString-to-Obj ect conversions
. @acesVal i dat or . RegistersaclassasaVal i dat or , that is, aclass that can perform validation

If you want the annotations to be processed — whether they are Servlet 3.0 annotations or JSF 2.0 annotations
— you need to put the classes that are marked with these annotations in the WEB- | NF/ ¢l asses directory of
the web application. Y ou can also put the classesin aJAR filein the WEB- | NF/ | i b directory of the
application.

Asisthe case for web fragments, you use the <net adat a- conpl et e> element intheweb. xm fileto
instruct the web container whether to look for annotations. If you set <met adat a- conpl et e> to false or do
not specify the <nmet adat a- conpl et e> element in your file, then during deployment, the container must
scan annotations as well as web fragments to build the effective metadata for the web application. However, if
you set <nmet adat a- conpl et e> to true, the deployment descriptors provide all the configuration
information for the web application. In this case, the web container does not search for annotations and web
fragments.

With its support for annotations as well asitsnew Ser vl et Cont ext methods, Serviet 3.0 makesthe
web. xm file optional. In other words, you no longer need to include aweb. xmi fileinaWAR file for aweb
application.

Standardized Annotations for Dependency | njection

Dependency injection is a popular technique in devel oping enterprise Java applications. In dependency
injection, also called inversion of control, a component specifies the resources that it depends on. An injector,

http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview_Part3.html (21 of 28) [12/17/2009 4:54:33 PM]

Introducing the Java EE 6 Platform: Part 3
typically a container, provides the resources to the component. Although dependency injection can be
implemented in various ways, many developersimplement it with annotations. Dependency injection is used
heavily in Java devel opment frameworks such as Spring and Guice. Unfortunately, there is no standard
approach for annotation-based dependency-injection. In particular, aframework such as Spring takes a different
approach to annotation-based dependency injection than that of a framework such as Guice.

However, JSR 330: Dependency Injection for Java, which is part of Java EE 6,

changes that. The objective of this specification isto provide a standardized
and extensible API for dependency injection.

SR 330, Dependency
Injection for Java,
provides a standardized
and extensible API for
dependency injection.

Y ou no longer haveto

. e , work with vendor-
. @nj ect . ldentifiesinjectable constructors, methods, and fields. specific annotations.

. @ual i fier.ldentifiesqualifier annotations. Qualifiers are strongly-
typed keys that help distinguish different uses of objects of the same type. For example, a@ed Car
and a@l ue Car areunderstood to be different instances of the same type. In this example, @Red and
@Bl ue are qualifiers.

. @bcope. |dentifies scope annotations.

. @i ngl et on. Identifies atype that the injector only instantiates once

. @aned. A Stri ng-based qualifier.

The APl comprises a set of annotations for use on injectable classes. The
annotations are as follows:

For example, the following class named St opwat ch usesthe @ nj ect annotation to inject a dependency on
aclassnamed Ti neSour ce:

cl ass Stopwatch {
final TinmeSource tinmeSource;
@ nj ect Stopwat ch(Ti mneSource Ti meSource) {
this. Ti meSour ce = Ti neSour ce;

}
void start() { ... }

long stop() { ... }

The dependency injection can be extended to other dependencies. For example, suppose, you want to create a
St opwat chW dget classthat has a dependency on the St opwat ch class. You could define the class as

http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview_Part3.html (22 of 28) [12/17/2009 4:54:33 PM]

http://jcp.org/en/jsr/detail?id=330

Introducing the Java EE 6 Platform: Part 3
follows:

cl ass St opwat chW dget {
@ nj ect StopwatchW dget (Stopwatch sw) { ... }

In response, the injector findsa Ti neSour ce object, usesthe Ti meSour ce object to construct a
St opwat ch object, and then constructs a St opwat chW dget object with the St opwat ch object. .

The standardized set of annotations specified by JSR 330 should make injectable classes portable across
frameworks. Y ou no longer have to work with vendor-specific annotations.

Note that CDI builds on JSR-330 and adds much functionality to dependency injection. This functionality
includes automatic discovery and configuration of injectable classes, and an API to define new injectable
classes at runtime — for example, to help integrate with third-party frameworks.

Profilesand Pruning

Java EE 6 introduces the concept of profiles asaway to reduce t.he size of the Profiles are Java EE
Java EE platform and better target it for specific audiences. Profiles are

: : : o latform configurations
configurations of the Java EE platform that are designed for specific classes of D g

T . :) that are designed f
applications. A profile may include a subset of Java EE platform technologies, specﬁ‘rii clfsggs of o
additional technologies that have gone through the Java Community Process, applications

but that are not part of the Java EE platform, or both. For example, consider a

hypothetical profile for telephony applications. Such a profile might include Java EE web tier technologies,
such as JSP and Servlet, EJB for the enterprise component model, and JPA for persistence. It would likely also
include telephony-oriented technol ogies such as JSR 289: SIP Servlet v1.1, that have gone through the JCP

process, but that are not part of the Java EE platform.

A profileis defined by following the JCP Community Process. In addition, the Java EE 6 Specification defines
the rules for referencing Java EE platform technologies in Java EE Profiles. However, the Java EE 6
specification also underscores the principle that a new profile should be created only when there is a good
reason for doing so. The specification states " The decision to create a profile should take into account its
potential drawbacks, especially in terms of fragmentation and developer confusion. In general, a profile should

http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview_Part3.html (23 of 28) [12/17/2009 4:54:33 PM]

http://jcp.org/en/home/index
http://jcp.org/en/jsr/detail?id=289
http://jcp.org/en/jsr/detail?id=316

Introducing the Java EE 6 Platform: Part 3

be created only when there is a natural developer constituency and a well-understood class of applications that
can benefit from it."

Profiles are intended to evolve independently of each other and independently of the Java EE 6 platform. In
particular, profiles are initiated by submitting a Java Specification Request and are released on their own
schedule, independently of any concurrent revision of the Java EE platform or of other profiles. This means that
aprofile such as the hypothetical telephony profile can evolve at a pace that is natural for its targeted industry,
without being tied to the evolution of the Java EE platform or any other profile. Note however that it is highly
recommended that profiles periodically synchronize with the platform, in particular when a major new platform
isreleased. The objective isto preserve a common programming model and simplify the transfer of developer
skills across the entire Java EE 6 family of products.

Web Profile

Java EE 6 definesthe first profile, called the Web Profile. Thisinitial profile
provides a subset of the Java EE platform and is designed for web application
development. The Web Profile includes only those technologies needed by
most web application devel opers, and does not include the enterprise

technol ogies that these devel opers typically don't need.

Java EE 6 defines the
first profile, called the
Web Profile. Thisinitial
profileisaJava EE
platform subset for web

lication devel t.
Table 1 lists the technologies in the full Java EE 6 platform and indicates by appiication developmen

checkmark (00) which of those are in the Web Profile.

Table 1. Comparing the Technologiesin the Java EE Platform and the Web Profile

Java EE Platform Technology Web Profile

Web Application Technologies
JSR 315: Java Servlet 3.0

JSR 314: JavaServer Faces (JSF) 2.0

JSR 245: JavaServer Pages 2.2 and Expression Language (EL) 1.2

JSR 52: A Standard Tag Library for JavaServer Pages 1.2

O oo O d

JSR-45: Debugging Support for Other Languages 1.0

http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview_Part3.html (24 of 28) [12/17/2009 4:54:33 PM]

http://www.jcp.org/en/jsr/detail?id=315
http://www.jcp.org/en/jsr/detail?id=314
http://www.jcp.org/en/jsr/detail?id=245
http://www.jcp.org/en/jsr/detail?id=52
http://www.jcp.org/en/jsr/detail?id=45

Introducing the Java EE 6 Platform: Part 3

Enterprise Application Technologies

JSR 299: Contexts and Dependency Injection for the Java EE Platform 1.0 O
JSR 330: Dependency Injection for Java O
JSR 318: Enterprise JavaBeans 3.1 J(EJB Lite)
JSR 317: Java Persistence API 2.0 0

JSR 250: Common Annotations for the Java Platform 1.1

O
JSR 907: Java Transaction APl (JTA) 1.1 0
O

JSR 303: Bean Validation 1.0

JSR 322: Java EE Connector Architecture 1.6

JSR 914: Java Message Service (JMS) APl 1.1

JSR 919: JavaMail 1.4

Web Services Technologies
JSR 311: JAX-RS: The Java API for RESTful Web Services1.1

JSR 109: Implementing Enterprise Web Services 1.3

JSR 224: Java API for XML -Based Web Services (JAX-WS) 2.2

JSR 222: Java Architecture for XML Binding (JAXB) 2.2

JSR 181: Web Services Metadata for the Java Platform

JSR 101: Java APIsfor XML based RPC 1.1

JSR 67: Java APIsfor XML Messaging 1.3

JSR 93: Java APl for XML Registries 1.0 (JAXR) 1.0

Management and Security Technologies

http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE60Overview_Part3.html (25 of 28) [12/17/2009 4:54:33 PM]

http://jcp.org/en/jsr/detail?id=299
http://jcp.org/en/jsr/detail?id=330
http://jcp.org/en/jsr/detail?id=318
http://www.jcp.org/en/jsr/detail?id=317
http://www.jcp.org/en/jsr/detail?id=250
http://www.jcp.org/en/jsr/detail?id=907
http://jcp.org/en/jsr/detail?id=303
http://jcp.org/en/jsr/detail?id=322
http://www.jcp.org/en/jsr/detail?id=914
http://jcp.org/en/jsr/detail?id=919
http://jcp.org/en/jsr/detail?id=311
http://jcp.org/en/jsr/detail?id=109
http://jcp.org/en/jsr/detail?id=224
http://jcp.org/en/jsr/detail?id=222
http://jcp.org/en/jsr/detail?id=181
http://jcp.org/en/jsr/detail?id=101
http://jcp.org/en/jsr/detail?id=67
http://jcp.org/en/jsr/detail?id=93

Introducing the Java EE 6 Platform: Part 3

JSR 196: Java Authentication Service Provider Interface for Containers 1.0

JSR 115: Java Authorization Contract for Containers 1.3

JSR 88: Java EE Application Deployment 1.2

JSR 77: J2EE Management 1.1

Notice that the Web Profile includes a servlet container and all the traditional presentation technologies such as
JSP, JSF, and the Standard Tag Library for JavaServer Pages (informally referred to as JSTL). EJB 3.1 Liteis
available as a component model. There is also JPA for persistence and JTA for transaction management. And
with the enhanced extensibility enabled by features such as web fragments, you can easily extend the Web

Profile with additional frameworks or libraries such as JAX-RS.

Pruning

Another t'echni que introdgced in Java EE 6 for reducing the size of the Another technigue
platform is pruning. Pruning a technology means that the technology can introduced in Java EE 6 for
become an optional component in the next release of the platform rather than
arequired component. Community reaction ultimately decides whether the
candidate actually becomes an optional component. Pruning can reduce the
size of Java EE platform products because implementors such as Java EE application server vendors may
include or exclude a pruned technology in their implementation. However, if Java EE application server
vendors do include a pruned technology, they must do so in a compatible way, such that existing applications
will keep running.

reducing the size of the
platform is pruning.

These are candidates for pruning:

. JSR 101: Java APIsfor XML-Based RPC

. JSR93: Java APl for XML Registries 1.0 (JAXR)

. EJB Entity Beans (defined as part of JSR 153: Enterprise JavaBeans 2.0, and earlier)
. JSR 88: Java EE Application Deployment

Summary

With its support for profiles, significant new technologies such as JAX-RS, enhanced extensibility features
such as web fragments, and ease of development improvements such as Facel ets and platform-wide adoption of

http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview_Part3.html (26 of 28) [12/17/2009 4:54:33 PM]

http://jcp.org/en/jsr/detail?id=196
http://jcp.org/en/jsr/detail?id=115
http://jcp.org/en/jsr/detail?id=88
http://jcp.org/en/jsr/detail?id=77
http://www.jcp.org/en/jsr/detail?id=101
http://www.jcp.org/en/jsr/detail?id=93
http://jcp.org/aboutJava/communityprocess/final/jsr153/
http://www.jcp.org/en/jsr/detail?id=88

Introducing the Java EE 6 Platform: Part 3
annotations, Java EE 6 delivers a Java EE platform that is more flexible, more powerful, and more devel oper
friendly than ever before. Y ou can try out an implementation of the Java EE 6 platform by downloading the
Java EE 6 SDK. For a more in-depth understanding of the Java EE 6 platform, see the Java EE 6 Tutorial.

Part1|Part 2| Part 3

For More Information

. JSR 316: Java Platform, Enterprise Edition 6 (Java EE 6) Specification
. JavaEE 6 Technologies

. JavaEE 6 SDK

. JavaEE 6 Tutorial

* As used on thisweb site, the terms "Java Virtual Machine" and "JVM" mean avirtual machine for the Java
platform.

Rate This Article

Comments
We welcome your participation in our community. Please keep your comments civil and on point. Y ou may

optionally provide your email address to be notified of replies - your information is not used for any other
purpose. By submitting a comment, you agree to these Terms of Use.

http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview_Part3.html (27 of 28) [12/17/2009 4:54:33 PM]

http://java.sun.com/javaee/downloads/index.jsp
http://java.sun.com/javaee/6/docs/tutorial/doc/
http://jcp.org/en/jsr/detail?id=316
http://java.sun.com/javaee/technologies/javaee6.jsp
http://java.sun.com/javaee/downloads/index.jsp
http://java.sun.com/javaee/6/docs/tutorial/doc/
http://developers.sun.com/global/termsofuse.html

Introducing the Java EE 6 Platform: Part 3

http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview_Part3.html (28 of 28) [12/17/2009 4:54:33 PM]

http://www.sun.com/
http://developers.sun.com/global/aboutsun.html
http://developers.sun.com/global/aboutsdn.html
http://developers.sun.com/global/newsletters.html
http://developers.sun.com/global/contact.html
http://developers.sun.com/global/employment.html
http://developers.sun.com/global/howtobuy.html
http://developers.sun.com/global/howtobuy.html
http://developers.sun.com/global/licensing.html
http://developers.sun.com/global/termsofuse.html
http://developers.sun.com/global/privacy.html
http://developers.sun.com/global/trademarks.html
http://developers.sun.com/global/aboutsdn.html
http://developers.sun.com/global/aboutsdn.html
http://developers.sun.com/global/berkeley_license.html
http://developers.sun.com/global/rss_sdn.html
http://developers.sun.com/global/content_feeds.html

	sun.com
	Introducing the Java EE 6 Platform: Part 1
	Introducing the Java EE 6 Platform: Part 2
	Introducing the Java EE 6 Platform: Part 3

	FMDAEGOEOOKAFPJCEKELEAPGKAIFGNJCDM:
	form1:
	x:
	f1: utf-8
	f2: main-developer-all
	f3: Search

	f4:

	ANAHOMPCGHJKGPAONMFCFAKILADFGHNM:
	form1:
	x:
	f1: utf-8
	f2: main-developer-all
	f3: Search

	f4:

	NCKGKBCBIOPOMCPIKGHLLKPALHLBHOBI:
	form1:
	x:
	f1: utf-8
	f2: main-developer-all
	f3: Search

	f4:

