
An Oracle Technical White Paper
October 2011

Minimizing Downtime While Updating Oracle
Solaris Containers in Clustered and Non-
Clustered Environments

Minimizing Downtime While updating Oracle Solaris Containers in Clustered and Non-Clustered Environments

Introduction.. 1
Applying Updates on an Oracle Solaris System with Zones Installed. . .2
Alternatives for Updating Oracle Solaris Containers..............................2

Update a Copy of a Zone... 3
Use a new Zone, Created from a Reference..................................... 3
Comparing Oracle Solaris Container Update Procedures.................3

Prerequisites ... 5
Caution... 5
Naming Conventions.. 5
Structure of the Zones Environment.. 5
Zones and Zpool Configuration.. 6

Advanced Updating of Non-Clustered Oracle Solaris Containers.........7
Process Overview.. 7
Advanced Updating Zones in five Steps.. 9
Performing a Fallback (The Extra Step)... 13

Advanced Updating of Failover Zones in Oracle Solaris Cluster...........14
Differences Between Updating Clustered and Non-Clustered Zones14
Creating the Zone Resource Group... 14
How to Patch one Node of a Cluster (Rolling Upgrade)....................16
Restrictions for Rolling Cluster Upgrades.. 17
Advanced Approach for Updating a Zone Under Cluster Control17
Summary of the Update Process for Failover Zones.........................21
Performing a Fallback of a Failover Zone.. 21

Conclusion... 22
Acknowledgments.. 22
Bibliography... 23

Minimizing Downtime While Updating Oracle Solaris Containers in Clustered and Non-Clustered Environments

Introduction

Application downtime, whether planned or unplanned, is not an option today. But patching or
upgrading an OS or an application still needs downtime. In highly consolidated environments it
can become nearly impossible to agree on a common downtime - even a very short one for a
single reboot - which would be needed to activate patches or upgrades. There are already a
number of technologies available that make it possible to minimize downtime like Live Upgrade
([1]). This paper goes a bit further and shows how to combine Oracle Solaris 10 technologies
to update Oracle Solaris Containers individually while minimizing downtime in clustered and
non-clustered environments.

An Oracle Solaris Container, also known as an Oracle Solaris Zone, is a complete runtime
environment for applications. Zones allow application components to be isolated from one
another even though the zones share a single instance of the Oracle Solaris Operating
System.

With the capability to create up to more than eight thousand Zones in one Oracle Solaris
instance, the adoption of Oracle Solaris Containers allows for the consolidation of very large
environments. These environments need to be operated very efficient. Lifecycle management,
e.g. installing patches and performing upgrades is one of the most important tasks of service
operations.
(In the following the term “update” will be used to include patching and updating.)

The more zones that are installed on one physical system, the more important is the careful
planning to update the zones. If for example a system has 30 production zones running, there
is much effort to agree on a common downtime. So during the planning process the following
questions typically come up:

• How can a large number of zones be updated with minimal downtime ?

• Can the update be performed on a zone-by-zone basis ?

• What happens with the application data between the updates ?

• How can such a process be standardized ?

• Can such a process be made easy and safe to be used by the operating staff ?

• Is there a way to fallback safely, e.g. if an update fails ?

1

Minimizing Downtime While Updating Oracle Solaris Containers in Clustered and Non-Clustered Environments

Applying Updates on an Oracle Solaris System with Zones Installed

Software packages in the global zone and in non-global zones should be in sync to the maximum
extent possible. The Oracle Solaris package tools enforce this (See [2] for more details). All patches
applied at the global zone level are applied across all zones. When a non-global zone is installed, it is at
the same patch level as the global zone. When the global zone is patched, all non-global zones are
similarly patched. When migrating a non-global zone from a system with an older software and patch
level to a system with newer software, the non-global zone would have to be updated.

This process can be automated by a mechanism introduced with a later release of Oracle Solaris called
"update-on-attach." This technology compares the software and patch level of a non-global zone with
that of its global zone and lifts this up to the level of the global zone as part of the zoneadm attach
-U process. It is important to understand that the "update-on-attach" mechanism is not capable of
performing downgrades of software or patches.

Alternatives for Updating Oracle Solaris Containers

There are two fundamentally different approaches to update zones – besides the “normal” updating
process that updates a zone during a full downtime:

• Updating a copy of a zone and

• Creating a new zone

The first variant has two subclasses:

• Using Oracle Solaris Live Upgrade or

• Manually cloning and updating a zone.

The second variant also has two subclasses:

• Create a zone from a reference zone and update it, or

• Create a personalized zone on an updated system.

With all methods, application data should reside on a separate filesystem, so that it is a) not touched
during a snapshot or upgrade process and b) can be simply remounted once the updated zone boots up
again and becomes productive.

2

Minimizing Downtime While Updating Oracle Solaris Containers in Clustered and Non-Clustered Environments

Update a Copy of a Zone

• Using Oracle Solaris Live Upgrade: The idea of Live Upgrade is to create a copy of the active
filesystems of all zones while the system is running in production. The copy will either be placed
onto a separate file system or be created as a ZFS snapshot (if ZFS is used) on the production
system. Then the update is applied to this copy, still while the system is up and running. In the final
step the copy will become active after the next reboot of the system with all its zones.

• Manually clone and update a zone: The production zone is cloned in a way that the clone
contains all customizations of the production zone. The cloned zone will then be attached to a
second system, running a more recent software level in the global zone by using the “update-on-
attach” feature. This process will update the clone to this newer software level on the second system,
while the production zone is up and running.

Use a new Zone, Created from a Reference

• Update a copy of a reference zone: A new zone will be created based on a reference zone that
contains all customizations that have been done to the production zone in the past. The new zone
will then be attached to a second system, running a more recent software level in the global zone. By
using the “update-on-attach” feature, the zone will be updated to this newer software level. The
update process of the zone will happen on this second system, while the production zone is up and
running. (Finally the old zone has to be shutdown, the data volumes be migrated to the new server,
and the new zone be started.)

• Create a personalized zone on an updated system: A new zone will be created by running a
script. This script adds all the necessary customizations, to let the new zone look like the production
zone. If the new zone is created on a system running a more recent software level in the global
zone, the zone adopts the new software level. No update is necessary for this zone. Again, to enable
this zone as the production zone, the old production zone has to be stopped, the data volumes be
migrated and then the new zone has to be started using the production data. The process of creating
the new zone happened on this second system, while the production zone was up and running on
another system.

Comparing Oracle Solaris Container Update Procedures

To evaluate these four ways to update zones, the following questions will be compared in a table:

• Because a running zone can not be updated, a copy is needed to perform the update. How much
effort is required to create this copy ?

• During the lifetime of the production zone a lot of customizations may have been made to the
zones. How can these customizations survive the update process ?

3

Minimizing Downtime While Updating Oracle Solaris Containers in Clustered and Non-Clustered Environments

• If multiple zones exist on the production system, it is very unlikely to get a common downtime for
all zones to perform an update. Live Upgrade also does not help, as this would require one reboot,
which would affect all zones simultaneously. How can zones be updated on a zone-by-zone basis ?

• When a system is updated, the zones on it are updated too - either during a common update
downtime or during production, when Live Upgrade is used. The added I/O-burden during the
update process needs to be considered. If a second system is available to perform the update, the
running zones would not be affected at all. Is a second system used during the update process ?

TABLE 1: COMPARING UPDATE PROCDURES OF ZONES

UPDATE PROCESS EFFORT TO

COPY THE ZONE

SURVIVAL OF ZONE-

CUSTOMIZATIONS

ZONE-BY-ZONE UPDATE

POSSIBLE

SECOND SYSTEM

USED

Live Upgrade little,

lucreate command

copy through

Live Upgrade

no no

Clone and

update the zone

little,

clone the zone

clone customizations yes yes

Update a copy of a

reference zone

medium, maintain sample zone,

copy sample zone

maintain in sample zone yes yes

Create a personalized

zone on updated system

high, maintain the script,

create the zone by script

maintain by

 updating the script

yes yes

Based on Table 1 the process to update a cloned zone looks well-suited to update zones with minimal
downtime, little effort and on a zone-by-zone basis.

• The effort to create the copy of the zone is very small, efficient and independent of used storage
devices, if ZFS is used for cloning.

• All customizations, done to the zone will survive during the update process, because they will just be
cloned.

• If “update-on-attach” will be used for updating a zone, the zones can be updated on a zone-by-zone
basis. A separate zone will be cloned and updated on a second system. The production zone will be
up and running until the update process of the cloned zone is done. Then the cloned zone will take-
over the role of the production zone and the former production zone will be retired for fallback
reasons. This is in contrast to using Live Upgrade, where all zones together would be copied and
updated together with the global zone.

• Mission critical environments use multiple similar systems to guarantee highest availability. These
systems can be used during the update process on a zone-by-zone basis.

• The retired zone and data remain available as fallback solution.

We will explain in the following pages how to update Oracle Solaris Containers in non-clustered
environments and then extend the procedure to update zones under Oracle Solaris Cluster control.

4

Minimizing Downtime While Updating Oracle Solaris Containers in Clustered and Non-Clustered Environments

Prerequisites

To explain the process, we will define a set of requirements. To have consistent naming we have
defined some naming conventions that will be used in this paper.

Caution

All of the code samples have been extensively tested. Nevertheless we cannot guarantee that they work
flawlessly under all circumstances.

It is advised to have current backups available of the systems being upgraded. It is also a best
practice to test the proposed update procedures in test environment.

Naming Conventions

The two systems involved in the update process will be named TOM and JERRY, where JERRY is
always the system with the more recent software level.

The production zone is named ora_zone - as runtime environment of service ora.

ZFS will be used as the root filesystem for the zone. That makes cloning of the zone very easy and
reliable with little effort.

The zpools used by the zone, will be named ora_zpool and ora_dpool, where ora_zpool is the root
pool of the zone and ora_dpool is the pool for the data.

The names of the zones and the zpools are modified in two ways.

• A zone or a zpool that has been cloned, will be named <name>-cloned.

• A production zone or zpool that will no longer be used in production, but might be used later on for
fallback, will be named <name>-retired.

Structure of the Zones Environment

The zone root of ora_zone is placed into the data set ora_zpool/ora_zone . This zone root data set is
mounted on /zones/ora_zone.

There are two possibilities to deploy applications:

• In the root filesystem of the zone and

• On the data file system which is on a separate pool.

Installing application binaries on the data pool makes the update more difficult. Deploying the
applications in the root file system of the zone makes it possible to update the application at the same
time, because the zone is updated without affecting the application data.

All application data of the application called ora and also all logdata of ora_zone are located on a
separate zpool ora_dpool.

5

Minimizing Downtime While Updating Oracle Solaris Containers in Clustered and Non-Clustered Environments

This zpool is located on SAN-storage and can be imported by TOM or JERRY. With this, the
application data can be moved independently between TOM and JERRY through zpool export and
zpool import. And so the data can stay and be productive on the production zone until the new
zone has been created and updated to the new software level. Only for the last step, the move of the
data into the new zone, the application needs to be taken down. This can only be done, if the data are
independent from the zones root filesystem. The mountpoint for ora_dpool depends on the
requirements of the application that is being used in the zone.

If logfiles should be carried between the zones and updates, they can also be placed into ora_dpool. If
this is not possible, an additional synchronization step has to be added to the updating process – just
like Live Upgrade does this.

TOM and JERRY are running Oracle Solaris 10 9/10 or above. This Oracle Solaris Update includes
the most recent “update-on-attach” functionality, which will be used for updating the zones.

Figure 1: Basic Prerequisites: Oracle Solaris Containers and Zpools

Zones and Zpool Configuration

The following example shows the configuration of ora_zone and the creation of the zpools on TOM.

[TOM:root] zonecfg -z ora_zone info

zonename: ora_zone

zonepath: /zones/ora_zone

...

dataset:

 name: ora_dpool

[TOM:root] zpool create -m none ora_zpool c3t600A0B8000347ECF00000C014DE35887d0

[TOM:root] zfs create -o mointpoint=/zones/ora_zone ora_zpool/ora_zone

[TOM:root] chmod 700 /zones/ora_zone

[TOM:root] zpool create -m none ora_dpool c3t600A0B8000347ECF00000C044DE358A9d0

6

TOM

ora_zpool/ora_zone

or
a_

zo
ne

ora_dpool

JERRY

Minimizing Downtime While Updating Oracle Solaris Containers in Clustered and Non-Clustered Environments

Advanced Updating of Non-Clustered Oracle Solaris Containers

The following chapter will explain how to use “update-on-attach” with minimal downtime in a non-
clustered environment. This process is very similar to the process that we generally described and
compared in table 1 as “Clone and update the zone”.

Process Overview

We clone the production zone ora_zone by creating a snapshot of the ZFS zone root, while the zone is
up and running. Using this snapshot, the cloned zone root is created locally on the production system
(TOM) into a new created zpool. Then we move this new zpool over to JERRY, who runs already a
more recent OS level. Now it is possible to create on Jerry the cloned zone through “update-on-attach”
of the cloned zone root, which also exists in the moved zpool. This will update the cloned zone to the
newer software level of JERRY. We can perform the update and test process of the cloned zone on
JERRY, while the production zone is up and running on TOM with the application data.

Later, we shutdown the production zone, move the application data over to JERRY and then the
former cloned zone will become the production zone. The previous production zone will be retired
and stays intact as fallback solution.

The process is shown by the following figures in five steps.

Figure 2: Updating Non-Clustered Zones: Step 1 and Step 2

7

TOM

or
a_

zo
ne

ora_dpool

JERRY

ora_zpool/ora_zone

ora_zpool/ora_zone@snapshot

Step 1: Create a ZFS snapshot of
 the production Zone.

ora_zpool-cloned/ora_zone-cloned

Step 2:Create the cloned
 zone root.

Minimizing Downtime While Updating Oracle Solaris Containers in Clustered and Non-Clustered Environments

Figure 3: Updating Non-Clustered Zones: Step 3 and Step 4

Figure 4: Updating Non-Clustered Zones: Step 5

8

TOM

or
a_

zo
ne

-r
et

ire
d

ora_dpool

ora_dpool@retired

JERRY

ora_zpool/ora_zone

or
a_

zo
ne

Step 5: Change the roles of the Zones.
- Create a Snapshot of the production data
- Rename the zpools
- Rename the ora_zone data sets
- Move ora_dpool
- Boot the production Zone

ora_zpool-retired/ora_zone-retired

TOM

or
a_

zo
ne

ora_dpool

JERRY

Step 3: Perform the update process.

ora_zpool-cloned/ora_zone-cloned

or
a_

zo
ne

-c
lo

ne
d

Step 4: Boot and test the cloned zone.

ora_zpool/ora_zone

Minimizing Downtime While Updating Oracle Solaris Containers in Clustered and Non-Clustered Environments

Advanced Updating Zones in five Steps

Step 1: Create a ZFS Snapshot of the Production Zone.

First generate the list of installed packages and patches (SUNWdetached.xml) of ora_zone. This list
will be used later to configure the cloned zone root on JERRY.

To snapshot the production zone during runtime, we use the zfs snapshot command. This creates a
consistent copy of ora_zpool/ora_zone. This ZFS snapshot will later be used to clone ora_zone.
Cloning the zone root with ZFS results in a real identical clone of the running zone. (zoneadm clone
can not be used here, because this command requires the zone to be halted during the clone.
Additionally the cloned zone would have been set to a neutral configuration state - no hostname,
standard timezone, removed nameservices, etc.- which would not lead to an identical zone copy.)

Note: All subsequent changes to the production zone, like configuration changes or package
installations, will be not available in the cloned zone. Change requests to the zone should be
also made to the clone and become active after making the clone active.

To cleanup remove SUNWdetached.xml from ora_zpool/ora_zone.

[TOM:root] zoneadm -z ora_zone detach -n > /zones/ora_zone/SUNWdetached.xml

[TOM:root] zfs snapshot ora_zpool/ora_zone@snapshot

[TOM:root] rm /zones/ora_zone/SUNWdetached.xml

Step 2: Create the Cloned Zone Root.

To be efficient, perform the creation of the clone on TOM. Use the ZFS snapshot to create the clone
of ora_zone's zone root by zfs send and zfs receive. The result is a new data set that will later be
used by JERRY. To make it obvious that this is a clone and to have distinct names, name the new zpool
and data set ...-cloned. We create the new data set in a new zpool (ora_zpool-cloned) that can later
easily be transferred to JERRY.

zfs send -p will make sure that all ZFS properties of ora_zpool/ora_zone are transferred. While
ora_zone-cloned will also receive the pathname of ora_zone, zfs receive -u will safeguard that
ora_zone-cloned will not be automatically mounted by TOM, because the production zone is still up
and running and mounted on /zones/ora_zone.

After that, we delete the snapshots on ora_zpool and ora_zpool-cloned, because they are no longer
needed.

Then we make the zpool available on JERRY by running zpool export on TOM and running
zpool import on JERRY. The mountpoint of ora_zpool-cloned/ora_zone-cloned stays on
/zones/ora_zone.

9

Minimizing Downtime While Updating Oracle Solaris Containers in Clustered and Non-Clustered Environments

As an alternative, we could have transfered the snapshot to JERRY over the network with zfs send
and zfs receive into an existing ora_zpool-cloned on JERRY. This transfer would take more time
and consume additional network bandwidth, but it would not require shared disk storage for
ora_zpool-cloned.

Note: Check if ora_zpool has additional zpool properties set, that need to be adopted by
ora_zpool-cloned.

[TOM:root] zpool create -m none ora_zpool-cloned

c3t600A0B8000347ED600000C654DE3598d0

[TOM:root] zfs send -p ora_zpool/ora_zone@snapshot | \

 zfs receive -u ora_zpool-cloned/ora_zone-cloned

[TOM:root] zfs destroy ora_zpool/ora_zone@snapshot

[TOM:root] zfs destroy ora_zpool-cloned/ora_zone-cloned@snapshot

[TOM:root] zpool export ora_zpool-cloned

[JERRY:root] zpool import ora_zpool-cloned

Step 3: Perform the Update Process.

If the zone configuration does not exist, we configure now the zone on JERRY from the
SUNWdetached.xml file that is located in /zones/ora_zone. We call the zone different than ora_zone,
to make it obvious, that this is not the production zone.

By using “update-on-attach”, the zone could now be updated to the software level of the global zone.
This attach process would not work here, because the data set ora_dpool is configured for ora_zone,
but is missing on JERRY.

There are three alternatives to solve this situation:

• Create an empty local data set to perform the attach operation

• Remove the data set from the zone configuration

• Create a snapshot of the production ora_dpool and work with this snapshot

The first two alternatives could not work if an application within the zone would automatically be
started and would require their data to be available. In that case the usage of a data snapshot would be
mandatory.

In this example an empty local data set in a file is created. After the empty ora_dpool data set has been
created, the update process can be performed.

[JERRY:root] zonecfg -z ora_zone-cloned create -a /zones/ora_zone

[JERRY:root] mkfile 64M /tmp/tmp_dpool

[JERRY:root] zpool create -m none ora_dpool /tmp/tmp_dpool

[JERRY:root] zoneadm -z ora_zone-cloned attach -U

10

Minimizing Downtime While Updating Oracle Solaris Containers in Clustered and Non-Clustered Environments

Step 4: Boot and Test the Cloned Zone.

Prior to making the cloned zone the production zone, we need to test the zone. One potential
difficulty could be the zone’s the network configuration. This could contain IP addresses , that are still
in use by the production zone. There are three alternatives to solve this:

• Temporary remove the IP-configuration from the zone configuration

• Change the IP-configuration of the zone

• Run the zone during the test in an isolated network, where a conflict with the IP-configuration of
the production zone is not possible.

Because in our example no network is configured, we can skip this problem.

Now we can boot and test ora_zone-cloned. After successful testing, we shutdown the zone, clear the
configuration changes and remove the temporary ora_dpool.

[JERRY:root] zoneadm -z ora_zone-cloned boot

[JERRY:root] zlogin ora_zone-cloned init 5

[JERRY:root] zpool destroy ora_dpool

[JERRY:root] rm /tmp/tmp_dpool

Step 5: Change the Roles of the Zones.

Now is the time for ora_zone and ora_zone-cloned to change their roles. That means that ora_zone-
cloned will become the production zone and the former production zone will be retired - maybe for
possible later fallback reasons (See the “Performing a Fallback (The Extra Step)“ section).

To be prepared for a fallback of the whole process, we create a snapshot of the application data prior
to changing the roles. A recursive snapshot for all included data sets can be created by zfs snapshot
-r on ora_dpool. To create a consistent snapshot of the application data, we have to make sure that
all data that may have been cached by the application, have been synced onto disk. We achieve this by
stopping the zone. The downtime for the application ora begins.

Now we need the production data in ora_dpool on JERRY. ora_dpool is located on shared SAN
storage. To be efficient and fast to limit the downtime, we make ora_dpool to JERRY available by
running zpool export on TOM and zpool import on JERRY.

As an alternative, the same procedure as used for cloning ora_zone's zone root could be used to clone
the ora_dpool. Then we would use the recursive snapshots of ora_dpool to create new data sets in a
new created dpool (called ora_dpool-cloned). We would then move the whole new zpool ora_dpool-
cloned to JERRY, rename it there and use it for production. While this alternative creates a complete
independent dpool, the copying of the snapshots would take much more time, consumes more disk
throughput and would lengthen the required downtime.

11

Minimizing Downtime While Updating Oracle Solaris Containers in Clustered and Non-Clustered Environments

To enable a transparent change, we now change all the names for the zones and the zpools to have
obvious names for the roles of the zones. There must never be the situation in the network or on the
storage where two zones or two zpools have the same name.

We achieve the renaming of a zpool by exporting it and importing it with a different name. ZFS data
sets can be renamed with zfs rename and zones can be renamed with zonecfg.

Note: The mountpoint of our zone can not be changed while it is in installed state and stays
on /zones/ora_zone.

After the name changes we now boot the cloned zone on JERRY. The downtime for the application
ora ends.

[TOM:root] zlogin ora_zone init 5

[TOM:root] zfs snapshot -r ora_dpool@retired

[TOM:root] zpool export ora_dpool

[TOM:root] zfs rename ora_zpool/ora_zone ora_zpool/ora_zone-retired

[TOM:root] zpool export ora_zpool

[TOM:root] zpool import ora_zpool ora_zpool-retired

[TOM:root] zonecfg -z ora_zone set zonename=ora_zone-retired

[JERRY:root] zonecfg -z ora_zone-cloned set zonename=ora_zone

[JERRY:root] zpool export ora_zpool-cloned

[JERRY:root] zpool import ora_zpool-cloned ora_zpool

[JERRY:root] zfs rename ora_zpool/ora_zone-cloned ora_zpool/ora_zone

[JERRY:root] zpool import ora_dpool

[JERRY:root] zoneadm -z ora_zone boot

After this step, the update process is done. The production zone runs the software level of JERRY and
is using the current application data of ora_dpool. A backup copy of the application data prior to the
update exists in the snapshot ora_dpool@retired. As required, the downtime was very short. The only
needed downtime for the application ora during the update process was the time needed in step 5.

Note: The retired zone must not be booted later on by accident and may only be used for
fallback reasons with the old data. To assure this, the retired zone could be detached from
TOM.

12

Minimizing Downtime While Updating Oracle Solaris Containers in Clustered and Non-Clustered Environments

Performing a Fallback (The Extra Step)

In most cases the update process will only be performed, if a fallback solution has been prepared. A
fallback is required if the update process fails or the zone needs to be reverted back to its previous
configuration for other reasons.

The fallback with this procedure is very easy. It is just turning back step 5. The retired zone has not
been altered and the retired data in ora_dpool is still in sync with the retired zone.

We need to rename back the ora_zpools, the ora_zone data sets and the zonenames.

Then we rollback the snapshot of the application data and move ora_dpool back to TOM. Because
there is no command to recursively roll back a recursive snapshot, you need to roll back all existing
snapshots on ora_dpool step by step.

Then we can boot the old production zone on TOM.

[JERRY:root] zlogin ora_zone init 5

[JERRY:root] zpool export ora_dpool

[JERRY:root] zfs rename ora_zpool/ora_zone ora_zpool/ora_zone-cloned

[JERRY:root] zpool export ora_zpool

[JERRY:root] zpool import ora_zpool ora_zpool-cloned

[JERRY:root] zonecfg -z ora_zone set zonename=ora_zone-cloned

[TOM:root] zonecfg -z ora_zone-retired set zonename=ora_zone

[TOM:root] zpool export ora_zpool-retired

[TOM:root] zpool import ora_zpool-retired ora_zpool

[TOM:root] zfs rename ora_zpool/ora_zone-retired ora_zpool/ora_zone

[TOM:root] zpool import ora_dpool

[TOM:root] zfs rollback ora_dpool@retired

[TOM:root] zfs destroy ora_dpool@retired

[TOM:root] zoneadm -z ora_zone boot

Now the production zone runs again on TOM with the old software level and the old application data.
We only rolled back step 5. Because we were well prepared, the required downtime to fallback was
again very short.

13

Minimizing Downtime While Updating Oracle Solaris Containers in Clustered and Non-Clustered Environments

Advanced Updating of Failover Zones in Oracle Solaris Cluster

In this chapter we want to extend the update process, described so far for non clustered environments,
to Oracle Solaris Containers that are under Oracle Solaris Cluster control, a so called failover zone,
sometimes also called a “flying container”. A failover zone is a zone that is under Oracle Solaris Cluster
control, and can be failed over manually using the Oracle Solaris Cluster CLI or which is failed over
automatically by the cluster in certain failure conditions.

The agent, implementing the integration of highly available failover containers into the cluster, is called
“HA Container Agent” [3]. Failover zones under cluster control are very popular with customers, as
their management is similar to the management of a complete OS. In addition, this type of zones
offers a way to delegate the administration of a zone to its owner, which is a benefit in strictly
separated administrative organizational structures.

Differences Between Updating Clustered and Non-Clustered Zones

There are a few differences, that make it worth to describe this scenario in detail as well.

• A failover zone is in the installed state on all nodes of the cluster on which the zone could be
started by the cluster (as defined by the nodelist property of a resource group). Therefore, you must
not create the zone on the node where the “update-on-attach” will take place, because the right zone
configuration is already in place.

• Cluster failover zones must be prevented from failing over to a node with a newer software and
patch status.

• The integration of the failover zone resources makes some extra steps necessary, on the other hand,
facilitate the fallback process.

• Finally, non-clustered nodes may run different software versions for an indefinite amount of time.
But clustered nodes are allowed to differ in version, software, or patch level only during the update
process itself. This is a clearly documented restriction. The cluster must be back into its normal state
as soon as possible.

Creating the Zone Resource Group

In order to use a real life example in the following paragraphs, we will briefly describe the process to
create a cluster resource group (RG) controlling the failover container first. The following chapters will
then be using this sample RG and demonstrate all of the steps required for updating the zone with
detailed commands and explanations.

14

Minimizing Downtime While Updating Oracle Solaris Containers in Clustered and Non-Clustered Environments

The zone RG (ora_zone-rg) will contain three resources:

• Logical IP address

• A storage resource of type HAStoragePlus (ora_zone-hasp), that makes sure that the zpools, needed
for the container to run, are imported before the zone boots.

• A container resource of type GDS (Generic Data Service), that controls the zone itself.

None of the following commands returns any message text as long as no error occurs! All cluster
commands can be run on any of the cluster nodes.

[TOM:root] clrg create ora_zone-rg

[TOM:root] clrslh create -g ora_zone-rg hazone

[TOM:root] clrs create -t HAStoragePlus -g ora_zone-rg \

 -p Zpools=ora_zpool,ora_dpool ora_zone-hasp

[TOM:root] clrg online -M ora_zone-rg

[TOM:root] clrt register SUNW.gds

With this first set of commands we create an empty RG and add two resources to it, the IP address
and the storage resource. Both of these resources are still in the state disabled. The SUNW.gds
resource type only has to be registered, if this has not been done already.

We can only create the zone resource if all of the corresponding storage resources are available, i.e. its
zpools are imported. Otherwise the validation process that is part of the resource creation fails and the
zone cannot be created. Therefore we have to start the still incomplete RG , which enables the two
resources and makes the storage resource import the zpools.

In order to create an HA container resource, a configuration file must be used. Usually one copies the
reference file in /SUNWsczone/sczbt/util/sczbt_config to enter the relevant information into this
copy. For this example the following settings will be used. Only the relevant part of this file is shown.
And all of the variables are clearly explained in the reference file.

RS=ora_zone-rs

RG=ora_zone-rg

PARAMETERDIR=/zones/ora_zone

SC_NETWORK=true

SC_LH=hazone

FAILOVER=true

HAS_RS=ora_zone-hasp

Zonename="ora_zone"

Zonebrand="native"

Zonebootopt=""

Milestone="multi-user-server"

LXrunlevel="3"

SLrunlevel="3"

Mounts=""

15

Minimizing Downtime While Updating Oracle Solaris Containers in Clustered and Non-Clustered Environments

In the same directory a registration script is available, that creates the HA container resource by reading
the configuration file (in this case the script is called sczbt_config_ora_zone).

[TOM:root] ./sczbt_register -f ./sczbt_config-ora_zone

sourcing ./sczbt_config-ora_zone

Registration of resource ora_zone-rs succeeded.

Validation of resource ora_zone-rs succeeded.

The resource is now created, but not yet started. To start the zone, the resource has to be enabled.
Using the following command we boot the zone „within“ the zone resource group ora_zone-rg.
Remember: the other two resources are already in enabled state through the onlining of the RG.

Note: Make sure, that the zone is fully configured before the clrs enable command is
issued. If your zone has no proper system configuration (sysidcfg file) it must be booted at
least once manually, to complete the initial installation process. Otherwise the boot process
initiated by the cluster will fail.

[TOM:root] clrs enable ora_zone-rs

[TOM:root] zoneadm list -icv

 ID NAME STATUS PATH BRAND IP

 0 global running / native shared

 14 ora_zone running /zones/ora_zone native shared

Now, this RG can be switched to another cluster node by using the simple clrg switch command.
The switch subcommand will stop the RG with all its resources; i.e. the zone will be shutdown, the IP
address unconfigured and the zpools exported. On the other node all of the resources will be started
in reverse order to establish a running zone with all its resources being present.

How to Patch one Node of a Cluster (Rolling Upgrade)

As we depend for the update example on cluster nodes with different patch levels, we will briefly
describe how updating a cluster node can be done.

There are three procedures available to update a cluster

• Standard upgrade, which updates all nodes of a cluster while the cluster is down

• Rolling upgrade, which updates a set of nodes at a time and lets the nodes rejoin the cluster, so that
it runs with mixed versions and

• Dual partition upgrade, which also updates a set of nodes at a time, but then starts a new cluster
with the updated nodes and switches the HA services to the new cluster during this process.

To minimize the downtime and to minimize the time a cluster runs without proper redundancy (in the
case of the rolling and dual partition upgrade) the Live Upgrade technology can be used. It creates an
alternate boot environment (ABE) and updates this while the system is running. A simple reboot then
enables this ABE. Live Upgrade can be combined with all three of the procedures presented.

16

Minimizing Downtime While Updating Oracle Solaris Containers in Clustered and Non-Clustered Environments

It is important to understand, that a rolling cluster upgrade is only possible between minor updates, e.g.
from Oracle Solaris Cluster 3.2 2/08 to Oracle Solaris Cluster 3.2 11/09, or between minor Oracle
Solaris updates. If a major update of Oracle Solaris or Oracle Solaris Cluster has to be done, only the
standard upgrade or the dual partition upgrade are an option.

It is also important to understand, that in the context of this paper, the dual partition upgrade can not
be used to update a system with failover containers. This is a conceptual problem, as the prerequisite
for a dual partition upgrade is that shared storage is not part of the update. But, as a failover container
is based on a zonepath which has to be located on a shared storage, and which has to be updated as
part of any update, this just does not fit the model.

It is left as an exercise for the reader to think about combining the procedures described in this paper
with a dual partition upgrade.

Restrictions for Rolling Cluster Upgrades

Be aware that in an Oracle Solaris Cluster environment the nodes of a cluster must always run with the
same version and patch levels of Oracle Solaris and Oracle Solaris Cluster. The only exception is for
the purpose of a rolling upgrade. It is obvious that under this rule, having two cluster nodes running
different versions for a week or even longer would be unsupported. Please contact your local support
engineers to discuss more details.

Advanced Approach for Updating a Zone Under Cluster Control

In the following paragraphs we’ll execute the same five steps described in “Advanced Updating Zones
in five Steps“. They will be slightly changed, as the prerequisites in a cluster environment offer more
flexibility. They also will be enhanced with the additional steps to take care of the cluster integration.

As we are not dealing with a simple zone any more but with a cluster resource group, some more care
has to be taken. As we are now working in a cluster environment with nodes at different patch levels, a
zone running on TOM must not be switched to JERRY, not even in case of a node failure. So, the first
additional step is to set the nodelist property to contain only TOM which prevents this from
happening.

[TOM:root] clrg set -p nodelist=TOM ora_zone-rg

As described in “Advanced Updating of Non-Clustered Oracle Solaris Containers“ the preparation for
the update process contains steps 1 to 3:

1. Taking a snapshot of the running zone

2. Copying the snapshot into a separate zpool and

3. “configure” the cloned zone on JERRY and perform the update-on-attach.

All of these actions are being done, while the original zone (ora_zone) is up and providing services.
The fact that the zone is running under cluster control is not relevant yet.

17

Minimizing Downtime While Updating Oracle Solaris Containers in Clustered and Non-Clustered Environments

Step 1: Creating the Snapshot

The following command shows how the snapshot is taken:

[TOM:root] zfs snapshot ora_zpool/ora_zone@snapshot

Step 2: Transferring the Snapshot

This sequence of commands is still independent of the cluster controlling the container. It copies the
snapshot to a new pool into a new filesystem, that uses a new data set name to make it obvious that
this is a clone: ora_zone-cloned. This zpool can now be exported to JERRY.

[TOM:root] zpool create -m none ora_zpool-cloned c3t600A0B8000347ED600000C654DE359d0

[TOM:root] zfs send -p ora_zpool/ora_zone@snapshot | \

 zfs receive -u ora_zpool-cloned/ora_zone-cloned

[TOM:root] zfs destroy ora_zpool-cloned/ora_zone-cloned@snapshot

[TOM:root] zfs destroy ora_zpool/ora_zone@snapshot

As an alternative, one could copy the snapshot directly to a zpool owned by the other node, but doing
the copy locally and switching the zpool then in the SAN is the more efficient way.

We now export the clone, which is stored in the zpool ora_zpool-cloned and import it on the updated
node. Do not try to rename the pool to the original name, as this will later lead to confusion as you'll
have two pools with the same name on shared storage!

[TOM:root] zpool export ora_zpool-cloned

[JERRY:root] zpool import ora_zpool-cloned

[JERRY:root] zfs list

NAME USED AVAIL REFER MOUNTPOINT

ora_zpool-cloned 4.41G 5.38G 23K none

ora_zpool-cloned/ora_zone-cloned 4.41G 5.38G 4.41G /zones/ora_zone

We now have imported on the updated cluster node a ZFS data set and a zpool that have different
names, but exactly the same mountpoints as the originals.

Step 3: Performing the Update Process

In contrast to the first example in “Advanced Updating Zones in five Steps,“ the zone configuration
for this zone already exists on the second node. Because this is a cluster and the zone is configured
with the HA Container agent, this is a prerequisite. We also prevented the zone from failing over to
JERRY by setting the nodelist property appropriately. So, it is now safe to use the same pathnames, but
not the same pool and filesystem names, because the original pool is still using them. Before we can
perform the “update-on-attach”, we have to bring the zone into the configured state, because it is
still in installed state, as required by the HA Container agent. We do this by detaching it.

One important consideration at this step is how to deal with the data set for the data and the
application. In this example we have not created a snapshot for them, but the zoneadm attach

18

Minimizing Downtime While Updating Oracle Solaris Containers in Clustered and Non-Clustered Environments

operation requires the data set to be present. As already discussed in “Step 3: Perform the Update
Process.“ we create an empty ora_dpool.

[JERRY:root] mkfile 100M /tmp/zpool_tmp

[JERRY:root] zpool create -m none ora_dpool /tmp/zpool_tmp

[JERRY:root] zfs create ora_dpool

[JERRY:root] zoneadm -z ora_zone detach

[JERRY:root] zoneadm -z ora_zone attach -U

Getting the list of files to remove

Removing 5 files

Remove 13 of 13 packages

Installing 8 files

Add 13 of 13 packages

Updating editable files

The file </var/sadm/system/logs/update_log> within the zone contains a log of the

zone update.

Then the “update-on-attach” is performed, which brings our non-global zone to the level of its global
zone and into installed state.

Step 4: Booting the Updated Zone Once

Prior to re-integrating the updated zone into the cluster, it has to be booted once, manually. The reason
is, that due to new packages and services, there might be some extra work to be done as part of the
boot process. If this would be done under cluster control, the boot process could easily run out of the
START_TIMEOUT and be stopped by the cluster.

One difficulty during this boot process lies in the fact that the zone might have one or more IP
addresses associated with it, that must not be started because they are still in use in production with the
ora_zone on node TOM. If these IP addresses are configured as part of the cluster RG, nothing can
happen during the zone boot process, because the cluster is not involved here. But if the IP addresses
are part of the zone configuration, they either have to be changed to non-conflicting addresses or
temporarily be removed. An alternative would be to boot the zone in a sandbox network environment.

When you login to the booted zone now, the zone prints “ORA-zone” which is correct, because it is a
clone of the original ora_zone. Be aware that ora_zone is the zone name that is used from the global
zone, whereas ORA-zone is the hostname of the zone that was given to it during its creation –
hostnames must not contain the character '_'!

19

Minimizing Downtime While Updating Oracle Solaris Containers in Clustered and Non-Clustered Environments

[JERRY:root] zlogin -C ora_zone

[Connected to zone 'ora_zone' console]

ORA-zone console login: root

Password:

Jun 9 11:04:11 ora-zone login: ROOT LOGIN /dev/console

Last login: Wed Jun 8 11:37:21 on console

Oracle Corporation SunOS 5.10 Generic Patch January 2005

Step 5: Re-Integrating the Updated Zone into the Cluster RG

We can now integrate the zone, that we updated on the new node, back into the cluster. A little care
has to be taken because we have one RG that must use different storage resources on the two nodes.
This looks complicated and risky, but is rather not.

Because we are re-using the existing cluster RG, we only have to be careful with changes made to the
resources that are used. The IP address has not been changed and thus the LogicalHostname resource
does not need to be changed either. The zone resource has not been changed, except for the patch
update. Only the underlying storage zpool has changed, which is irrelevant for the zone itself. It only
needs a valid zone configuration and a valid zonepath. The name and technology of the underlying
filesystem are irrelevant.

So, what has to be changed is the HAStoragePlus resource, because it still points to the old zpool
holding the old zonepath. We'll stop the zone resource on the old node TOM, change the nodelist
property of the RG, change the HAStoragePlus resource and finally switch the RG to the new node
and boot the zone by enabling the zone resource.

In case you used a temporary data pool, it must be removed because otherwise the cluster will find
duplicate names. If you changed your zone configuration, you must revert these changes. You should
also shut down the updated zone, so that it can reboot under cluster control.

The following steps are the ones that control the duration of the service outage. The main part of the
time will be spent in shutting down the zone which might include an application shutdown, plus the
restart of the zone including its applications on the other node.

[JERRY:root] clrg set -p nodelist=TOM,JERRY ora_zone-rg

[JERRY:root] clrs disable ora_zone-rs

[JERRY:root] clrs set -p Zpools=ora_zpool-cloned,ora_dpool ora_zone-hasp

[JERRY:root] clrg switch -n JERRY ora_zone-rg

[JERRY:root] clrg set -p nodelist=JERRY ora_zone-rg

[JERRY:root] clrs enable ora_zone-rs

To allow for a switchover to the updated node, we have to set the nodelist property back to include
both cluster nodes. Then we stop ora_zone, by disabling its resource. This is where the downtime of
the application service begins. Now we can change the storage resource.

20

Minimizing Downtime While Updating Oracle Solaris Containers in Clustered and Non-Clustered Environments

We then switch the RG to JERRY, set the nodelist to contain only JERRY and boot the zone by
enabling the zone resource again. Because we have booted the upgraded zone once, we can be sure,
that this will also work under cluster control. The downtime for the application is now over.

We are done now, and can upgrade TOM to the latest version, which is a standard procedure and does
not need any additional explanation.

To have a clear naming convention, it makes sense to rename the old zpool by importing it with a
different name.

[TOM:root] zpool import ora_zpool ora_zpool-retired

One could also rename the cloned zpool to have the original name. Whether this is needed and how
the additional steps are integrated into the example, is left to the reader.

Summary of the Update Process for Failover Zones

The process performed with these steps is very elegant. Once the other, old node is updated as well,
ora_zone could again be switched between the cluster nodes, although the old ora_zone might still
exist on the other zpool which holds its zonepath. Because there is no direct relationship between a
zone and its underlying storage (zpool), but only between the zone and its zonepath, the difference
between the two zones is only visible at the zpool layer, which is represented in the HAStoragePlus
resource.

Trying to retain the old RG and at the same time creating a new one is not a good solution. Because
the IP address and the zone resource are identical, they could only be part of one RG at a time. In
order to have two RGs, one would have to create a brand new zone with a new IP address and put
these two resources together with the storage resource in a new RG. It is a lot more work, creates a lot
more resources and does not lead to a clearer configuration.

Performing a Fallback of a Failover Zone

The elegance of the process described above shows its beauty also in its fallback scenario. We just have
to revert the failover process to change the HAStoragePlus resource to point to the old pool with the
old zonepath and switch the RG back.

Remember that cluster commands can be issued on any cluster node.

[JERRY:root] clrs disable ora_zone-rs

[JERRY:root] clrg set -p nodelist=TOM,JERRY ora_zone-rg

[JERRY:root] clrs set -p Zpools=ora_zpool-retired,ora_dpool ora_zone-hasp

[JERRY:root] clrg switch -n TOM ora_zone-rg

[JERRY:root] clrg set -p nodelist=TOM ora_zone-rg

[JERRY:root] clrs enable ora_zone-rs

21

Minimizing Downtime While Updating Oracle Solaris Containers in Clustered and Non-Clustered Environments

In short, we stop the zone, set the nodelist so that we can switch the RG so that the IP address and
storage resource will be online on the old node. We change the storage resource to include the old
pool, which we renamed to ora_zpool-retired, set the nodelist back to the TOM and put the zone
resource online.

If we use a snapshot of the data pools as well, we can create an even better fallback solution because
the data at the time of the old zone shutdown would still be available. Integrating a cloned data pool
into this example is straight forward. Integrating it into the cluster RG would just mean to change the
name of the ora_dpool to ora_dpool-cloned in step 5. The other steps would be identical to the ones
in “Performing a Fallback (The Extra Step)“.

Conclusion

We have shown how a highly consolidated infrastructure, based on Oracle Solaris Containers can be
patched or updated independently with minimal downtime. ZFS and its snapshot and cloning features
are the base for this new approach. Update-on-attach delivers the update of the zones as part of the
attach process. Using this approach in environments based on Oracle Solaris Cluster demonstrates the
same kind of downtime minimization.

Acknowledgments

Many thanks to Heiko Stein from etomer GmbH and Frank Batschulat from Oracle Solaris Zones
Engineering for their comments and advice. We also would like to thank Stephanie Choyer, Enda
O'Connor, Penny Cotton, Eve Kleinknecht, Karen Perkins and Kemer Thomson.

22

Minimizing Downtime While Updating Oracle Solaris Containers in Clustered and Non-Clustered Environments

Bibliography

[1] How to Upgrade and Patch with Oracle Solaris Live Upgrade, Oracle Whitepaper,
May 2010 by Jeff McMeekin
http://www.oracle.com/technetwork/server-storage/solaris/solaris-live-upgrade-wp-
167900.pdf

[2] System Administration Guide: Oracle Solaris Containers-Resource Management and
Oracle Solaris Zones
http://download.oracle.com/docs/cd/E18752_01/html/817-1592

[3] Oracle Solaris Cluster Data Service for Solaris Containers Guide
http://download.oracle.com/docs/cd/E18728_01/html/821-2677/

[4] Maintaining Solaris with Live Upgrade and Update On Attach; Sun Microsystems
Blueprint, September 2009 by Hartmut Streppel, Dirk Augustin and Martin Müller
http://www.oracle.com/technetwork/server-storage/archive/a11-028-sol-live-upgrade-
455915.pdf

[5] Using Live Upgrade in complex environments, Enda O'Connor
http://blogs.oracle.com/patch/entry/using_live_upgrade_in_complex

[6] ZFS Best Practices Guide
http://www.solarisinternals.com/wiki/index.php/ZFS_Best_Practices_Guide

[7] Solaris 10 Container Guide, November 2009 by Detlef Drewanz, Ulrich Gräf, et al.
http://blogs.oracle.com/solarium/resource/solaris-container-guide-en-v3.1.pdf

[8] Oracle Solaris ZFS Administration Guide
http://download.oracle.com/docs/cd/E18752_01/html/819-5461

23

http://download.oracle.com/docs/cd/E18752_01/html/819-5461
http://www.solarisinternals.com/wiki/index.php/ZFS_Best_Practices_Guide
http://download.oracle.com/docs/cd/E18728_01/html/821-2677/
http://download.oracle.com/docs/cd/E18752_01/html/817-1592

Minimizing Downtime While Updating Oracle
Solaris Containers in Clustered and Non-
Clustered Environments
October 2011, Version 1.0
Author: Hartmut Streppel, Detlef Drewanz

Oracle Corporation
World Headquarters
500 Oracle Parkway
Redwood Shores, CA 94065
U.S.A.

Worldwide Inquiries:
Phone: +1.650.506.7000
Fax: +1.650.506.7200
oracle.com

Copyright © 2011 Oracle and/or its affiliates. All rights reserved. This document is provided for information purposes only and the
contents hereof are subject to change without notice. This document is not warranted to be error-free, nor subject to any other
warranties or conditions, whether expressed orally or implied in law, including implied warranties and conditions of merchantability or
fitness for a particular purpose. We specifically disclaim any liability with respect to this document and no contractual obligations are
formed either directly or indirectly by this document. This document may not be reproduced or transmitted in any form or by any
means, electronic or mechanical, for any purpose, without our prior written permission.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. Intel
and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are
trademarks or registered trademarks of SPARC International, Inc. UNIX is a registered trademark licensed through X/Open Company,
Ltd. 0410

